Cirrus Consulting, LLC

Phone: 505-466-1790

lkillion@cirrusllc.com

April 15, 2023

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

Re: **Application to Renew Title V Operating Permit P046-R3-M1** (A.I. No. 1002) **Harvest Four Corners, LLC – El Cedro Compressor Station**

Dear Madam or Sir,

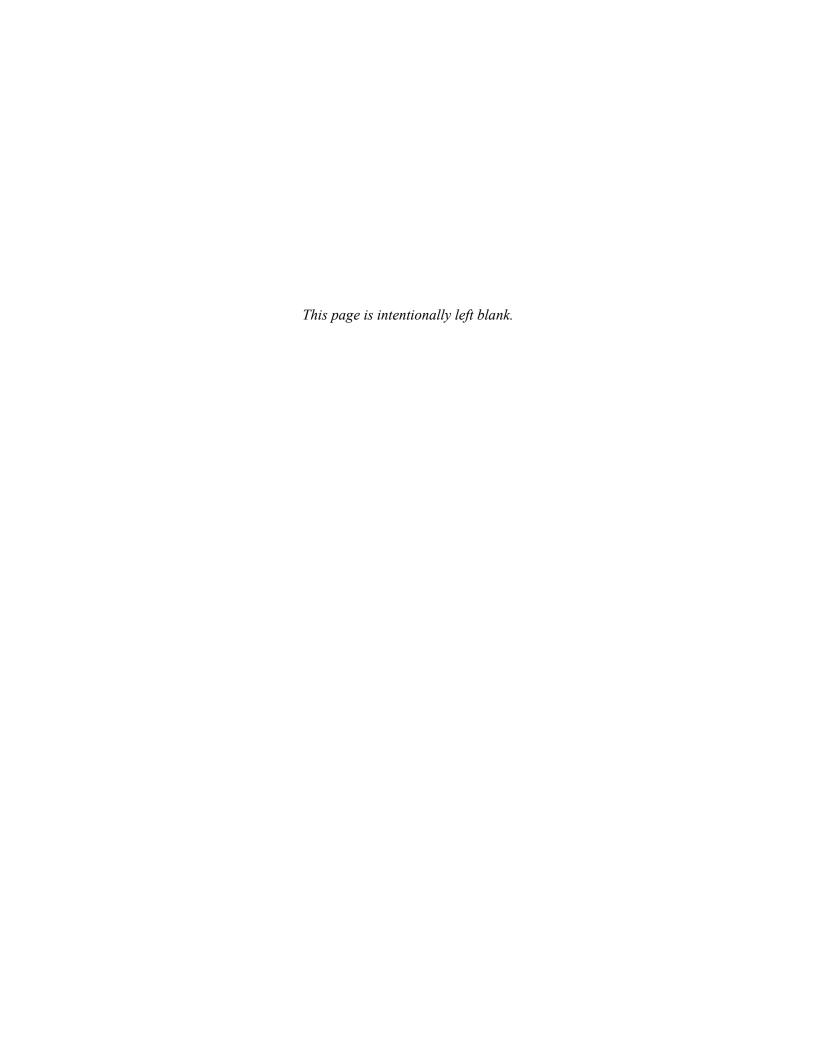
On behalf of Harvest Four Corners, LLC (Harvest), Cirrus Consulting, LLC is pleased to submit the enclosed Title V Operating Permit renewal application for the **El Cedro Compressor Station.** The application is being submitted under 20.2.70.300.B(2) of the New Mexico Administrative Code (NMAC).

In accordance with the instructions in the NMAQB Universal Air Quality Permit Application, one hard copy original, one hard copy review copy, and two CDs containing the application electronic files are included.

Thank you. Please contact Ms. Jennifer Deal of Harvest at (505) 324-5128 or at jdeal@harvestmidstream.com if you have questions or need additional information regarding this application.

Sincerely,

CIRRUS CONSULTING, LLC


Lisa Killion

Pasa Killion

Enclosure

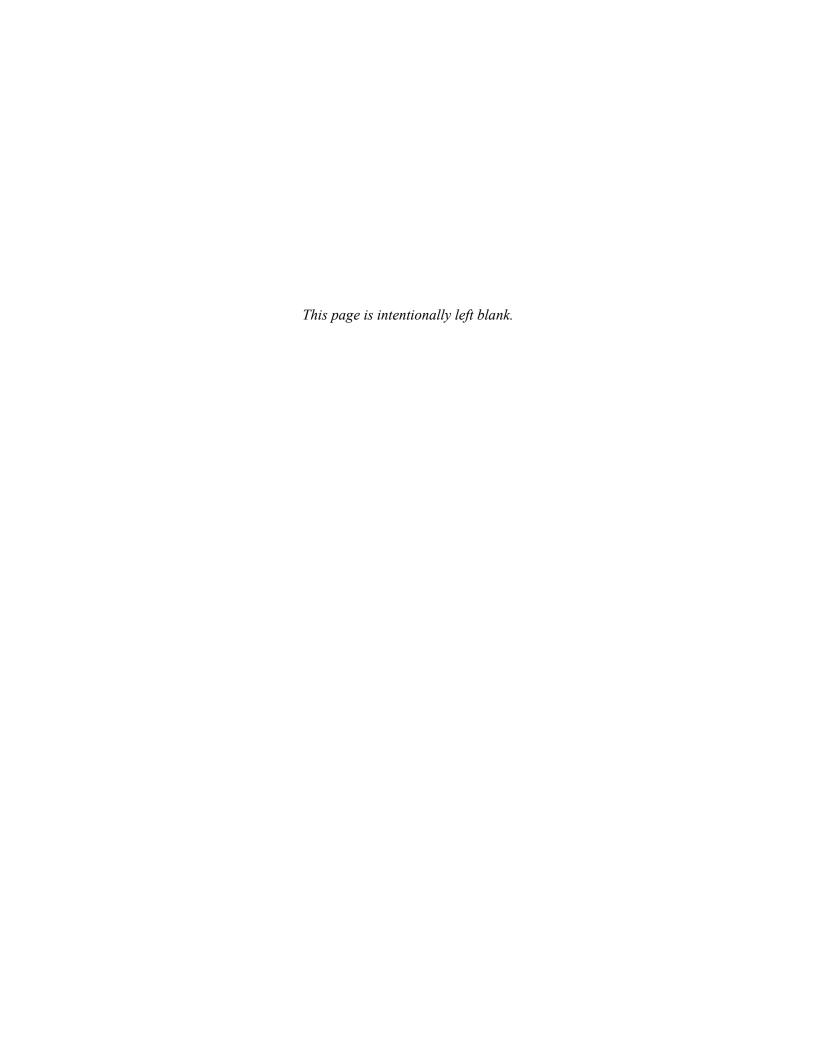
One application original hard copy
One application review hard copy
Two CDs containing application electronic files

cc: Jennifer Deal, Harvest (electronic copy)
James Newby, Cirrus (electronic copy)

NEW MEXICO 20.2.70 NMAC APPLICATION TO RENEW TITLE V OPERATING PERMIT NUMBER P046-R3-M1

EL CEDRO COMPRESSOR STATION

Submitted By:


Harvest Four Corners, LLC

1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

Círrus Consulting, LLC 11139 Crisp Air Drive Colorado Springs, CO 80908 (801) 294-3024

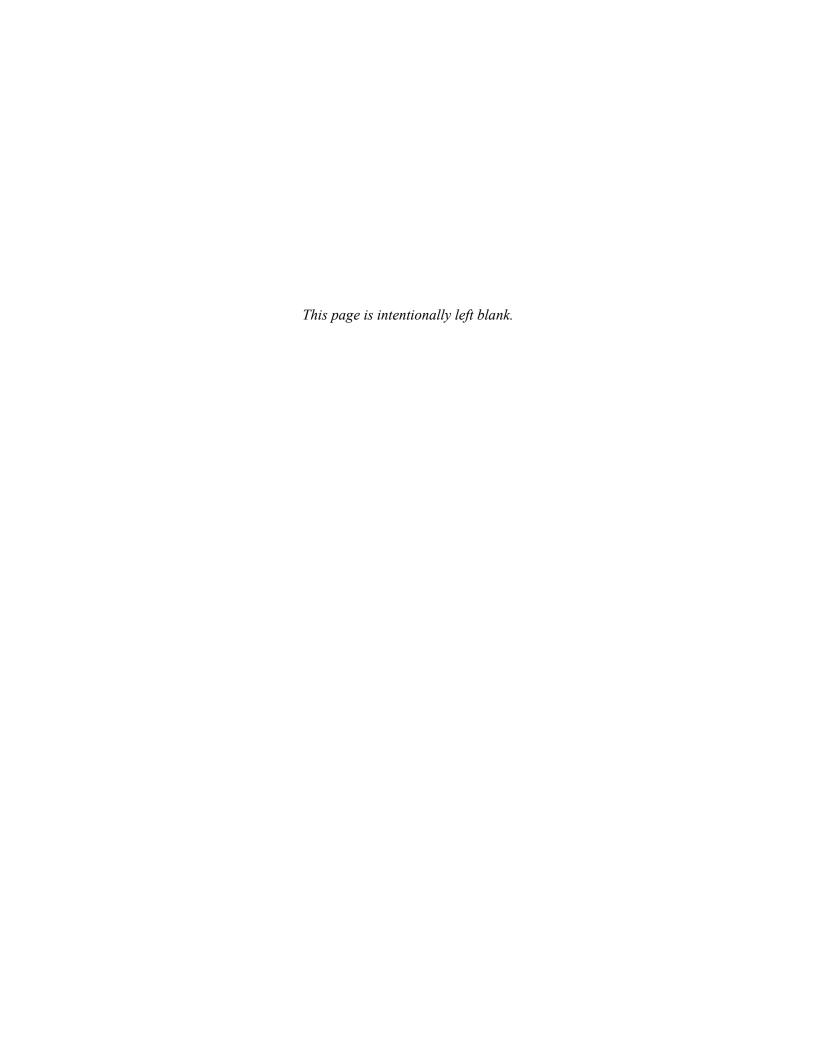

April 2023

Table of Contents

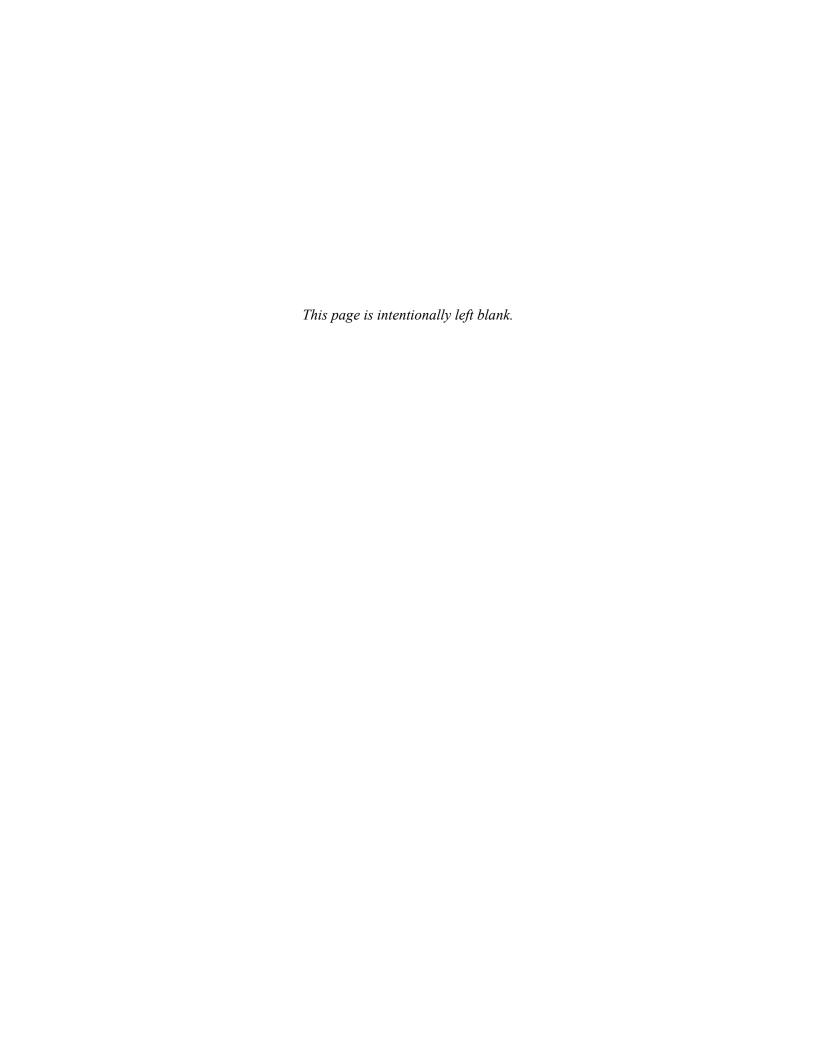
Intr		

Section 1:	Facility Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations 6.a: Green House Gas Emissions
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications
Section 19:	Requirements for the Title V Program
Section 20:	Other Relevant Information
Section 21:	Addendum for Landfill Applications
Section 22:	Certification

Harvest Four Corners, LLC Aztec CDP Dec. 2022, Rev.0

Introduction

Application Summary


The Harvest Four Corners, LLC (Harvest) El Cedro Compressor Station (El Cedro) currently operates under Title V operating permit P046-R3, dated April 19, 2019, as modified through P046-R3-M1 (issued April 13, 2021). The facility Construction Permit is number PSD 0340-M15 (issued July 15, 2020), as technically and administratively revised through PSD 0340-M15-R8, issued April 6, 2023.

Equipment currently approved for construction and use at the facility is listed in Tables 2-A, 'Regulated Sources' and Table 2-B, 'Insignificant Activities1 (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC') of Section 2 of this application.

As of August 5, 2022, certain existing and previously unregulated emission sources are now subject to the requirements of 20.2.50 NMAC. The newly-regulated equipment are included in Table 2-A regardless of whether 20.2.50 NMAC imposes emission limits on the source. There are no revisions or modifications to the permit that de-bottleneck impacts or change the facility's major/minor status under either the Prevention of Significant Deterioration [PSD] permitting program or the Title V Operating Permits program.

This application is being submitted under 20.2.70.300.B(2) NMAC of the New Mexico Administrative Code (NMAC) to renew the facility's Title V Operating permit. It incorporates any revisions to the construction permit that have occurred since the last Title V Operating Permit issuance.

Saved Date: 4/15/2023

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee)

□ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
Construction Status: Not Constructed X Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility
Minor Source: ☐ a NOI 20.2.73 NMAC ☐ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application
Title V Source: ☐ Title V (new) 🗓 Title V renewal ☐ TV minor mod. ☐ TV significant mod. TV Acid Rain: ☐ New ☐ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification
Acknowledgements:
I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamlin
applications).
☐ Check No. in the amount of
X I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched
(except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
X I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/ .
☐ This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has
been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:
www.env.nm.gov/air-quality/small-biz-eap-2/.)
Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.300.B(2) NMAC

(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

		AI # if known (see 1st	Updating			
~		3 to 5 #s of permit	Permit/NOI #:			
Section 1-A: Company Information		IDEA ID No.): 1002	P046-R3-M1			
1	Facility Name: El Cedro Compressor Station	Plant primary SIC Code (4 digits): 1389				
1 El ecuro compressor station		Plant NAIC code (6 digits): 213112				
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): See directions in Section 1-D4.					
2	Plant Operator Company Name: Harvest Four Corners, LLC	Phone/Fax: 505-632-4	600 / 505-632-4782			
a	a Plant Operator Address: 1755 Arroyo Drive, Bloomfield, NM 87413					
b	Plant Operator's New Mexico Corporate ID or Tax ID: 76-0451075					

3	Plant Owner(s) name	(s): Same as #2 above	Phone/Fax:	Same as #2 above	
a	Plant Owner(s) Maili	ng Address(s): Same as #2a above			
4	Bill To (Company):	Same as #2 above	Phone/Fax:	Same as #2 above	
a	Mailing Address:	Same as #2a above	E-mail: N/A		
5	☐ Preparer: ☑ Consultant:	Lisa Killion, Cirrus Consulting, LLC	Phone/Fax:	505-466-1790	
a	Mailing Address: c/o 11139 Cri	isp Air Drive, Colorado Springs, CO 80908	E-mail:	lkillion@cirrusllc.com	
6	Plant Operator Contact	ct: Jennifer Deal	Phone/Fax:	505-324-5128 / 505-632-4782	
a	Address:	Same as #2a above	E-mail:	jdeal@harvestmidstream.com	
7	Air Permit Contact:	Same as #6 above	Title:	Environmental Specialist	
a	E-mail:	Same as #6a above	Phone/Fax:	Same as #6 above	
b	Mailing Address:	Same as #2a above			
c	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

DCC	tion 1-D. Current Facility Status					
1.a	Has this facility already been constructed? X Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico?				
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☒ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? X Yes □ No				
3	Is the facility currently shut down? ☐ Yes ☒ No	If yes, give month and year of shut down (MM/YY): N/A				
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☐ Yes ☒ No					
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $8/31/1972$? \Box Yes \Box No $\boxed{\mathbf{x}}$ N/A It is assumed this question refers to question 4 rather than question 3.					
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? X Yes □ No	If yes, the permit No. is: P046-R3-M1				
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes X No	If yes, the NPR No. is: N/A				
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes 🗓 No	If yes, the NOI No. is: N/A				
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? X Yes □ No	If yes, the permit No. is: PSD 0340-M15 (as revised)				
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☒ No	If yes, the register No. is: N/A				

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)						
a	Current	Hourly:	17 MMCF ^(a)	Daily:	408 MMCF ^(a)	Annually:	148,920 MMCF ^(a)
b	Proposed	Hourly:	17 MMCF ^(a)	Daily:	408 MMCF ^(a)	Annually:	148,920 MMCF ^(a)
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)						
a	Current	Hourly:	17 MMCF ^(a)	Daily:	408 MMCF ^(a)	Annually:	148,920 MMCF ^(a)
b	Proposed	Hourly:	17 MMCF ^(a)	Daily:	408 MMCF ^(a)	Annually:	148,920 MMCF ^(a)

(a) Station capacity is a direct function of available horsepower. The throughput is therefore dependent on atmospheric temperature, gas temperature, atmospheric pressure, gas pressure, relative humidity and gas quality, as well as other factors. The "capacity" expressed in the application is a nominal quantity, neither an absolute maximum nor an average. The actual throughput will vary from the nominal amount.

Section 1-D: Facility Location Information

1	Section: 31	Range: 05W	Township: 29N	County:	Rio Arriba		Elevation (ft): 6,450
2	UTM Zone: □ 12 or 👿 13			Datum:	□ NAD 27	□ NAD 8	33 X WGS 84
a	UTM E (in meters, to nearest 10 meters): 285,405 m UTM N (in meters, to nearest 10 meters): 4,063,080 m					4,063,080 m	
b	AND Latitude	(deg., min., sec.):	36° 41' 21.0''	Longitude	(deg., min., se	c.):	-107° 24' 6.8''
3	Name and zip o	code of nearest Ne	ew Mexico town: Navajo	Dam, NM	87419		
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Bloomfield, drive east on Hwy 64 to mile marker 100.5. The facility is on the left.						
5	The facility is -	-18 miles (distanc	ee) east-southeast (direction	on) of Navaj	o Dam, NM (1	nearest tow	n).
6	Status of land a	nt facility (check o	one): X Private 🗆 Indian/Pu	ueblo □ Fed	eral BLM 🗆 I	Federal For	est Service Other (specify)
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: None; Jicarilla Apache Tribe; Rio Arriba County						
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)? ▼ Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: N/A						
9	Name nearest Class I area: Weminuche Wilderness						
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 73.75 km						
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: ~500 m						
12	"Restricted An continuous wal that would requ	rea" is an area to als, or other continuire special equip	nent to traverse. If a large	the Departn property is	nent, such as ru completely enc	gged physiclosed by fe	ical terrain with steep grade encing, a restricted area
13	within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.						
14			nction with other air regul nit number (if known) of the	-	-	operty?	⊠ No □ Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

~ • • • •	2011 2 20 2 1 0 p 0 5 0 to 0 p 0 1 to 1 1 2 to 1 2
1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24 $(\frac{\text{days}}{\text{week}})$: 7 $(\frac{\text{weeks}}{\text{year}})$: 52 $(\frac{\text{hours}}{\text{year}})$: 8,760
2	Facility's maximum daily operating schedule (if less than 24 hours day)? Start: N/A AM PM End: N/A AM PM
3	Month and year of anticipated start of construction: N/A
4	Month and year of anticipated construction completion: N/A
5	Month and year of anticipated startup of new or modified facility: N/A
6	Will this facility operate at this site for more than one year? ▼ Yes □ No

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
1	to this facility? X Yes \square No If yes, specify: Incorrect serial number noted during an inspection in October 2022.

a	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A	
b	Is this application in response to any issue listed in 1-F, 1 o	r 1a above? □ Yes	No If Y	es, provide the 1c & 1d info below:	
c	Document Title: N/A	Date: N/A		ment # (or nd paragraph #): N/A	
d	Provide the required text to be inserted in this permit: N/A	L			
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? Yes No				
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? ☐ Yes ☒ No				
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ▼ Yes □ No				
a	If Yes, what type of source? \square Major \square Major \square 10 tpy of an \square Minor \square 410 tpy of an			5 tpy of any combination of HAPS) 5 tpy of any combination of HAPS)	
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes 🗓 No				
a	If yes, include the name of company providing commercial purchased from a commercial utility company, which spec purpose of the user.				

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 ☐ I have filled out Section 18, "Addendum for Streamline Applications." 🗓 N/A (This is not a Streamline application.)

$\begin{array}{lll} \textbf{Section 1-H: Current Title V Information} & \textbf{-Required for all applications from TV Sources} \\ \textbf{(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or } \\ \end{array}$

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):	Travis Jones		Phone: 713-289-2630		
a	R.O. Title:	EH&S Manager	R.O. e-mail: tr	jones@harvestmidstream.com		
b	R. O. Address:	1111 Travis Street, Houston, T	X 77002			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):	TBD		Phone: TBD		
a	A. R.O. Title:	TBD	A. R.O. e-mail:	TBD		
b	A. R. O. Address:	TBD				
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A					
4	Name of Parent Company ("Pare permitted wholly or in part.):	ent Company" means the primary r Harvest Midstream	name of the organiz	ation that owns the company to be		
a	Address of Parent Company: Same as #1b above					
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A					
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: N/A					
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Yes: State of Colorado, ~32.2 km; Jicarilla Apache Tribe, ~16.1 km; Southern Ute Tribe, ~32.2 km; Navajo Nation, ~75.6 km; Ute Mountain Ute Tribe, ~77.2 km.					

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

✓ CD/DVD attached to paper application	
☐ secure electronic transfer. Air Permit Cor	ntact Name
	Email
	Phone number

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary Section 4: Process Flow Sheet

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³	Requested Permitted Capacity ³	Date of Manufacture ²	Controlled by Unit #	Source Classi- fication	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI,	Replacing
Number ¹					(Specify Units)	(Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Code (SCC)		4SLB, 4SRB, 2SLB) ⁴	Unit No.
1	Reciprocating Engine	Waukesha	L7042GL	C-10461/7 (Package #	1,232 hp	1,142 hp	12/16/1991	N/A	20200254	■ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	N/A
1	(Compressor)	W dukesha	E7012GE	X00387)	1,232 np	1,142 пр	12/16/1991	1	2020020.	☐ To Be Modified ☐ To be Replaced	HOLD	14/71
2	Reciprocating Engine	Waukesha	L7042GL	C-12595/1 (Package #	1,232 hp	1,142 hp	3/25/1998	N/A	20200254	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	N/A
2	(Compressor)	w aukcsiia	L/042GL	X00388)	1,232 np	1,142 np	3/25/1998	2	20200234	☐ To Be Modified ☐ To be Replaced	+SLB	11/71
3	Reciprocating Engine	Waukesha	1.7042CI	C-12553/1 (Package #	1,232 hp	1,142 hp	1/26/1998	N/A	20200254	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	4SLB	N/A
3	(Compressor)	waukesna	L7042GL	(Package # X00389)	1,232 np	1,142 np	1/26/1998	3	20200234	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	IN/A
4	Reciprocating Engine	337 1 1	1.704261	C-12095/2	1 222 1	1 1 40 1	7/25/1996	N/A	20200254	☑ Existing (unchanged) ☐ To be Removed	4CL D	3.1/4
4	(Compressor)	Waukesha	L7042GL	(Package # X00390)	1,232 hp	1,142 hp	7/25/1996	4	20200254	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	N/A
_	Reciprocating Engine	*** 1 1	7 5 0 10 GY	C-12096/2	1 222 1	1 1 10 1	8/15/1996	N/A		☑ Existing (unchanged) □ To be Removed	401.5	27/4
5	(Compressor)	Waukesha	L7042GL	(Package # X00391)	1,232 hp	1,142 hp	8/15/1996	5	20200254	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
	Reciprocating Engine			C-11061/1			12/2/1993	N/A		☑ Existing (unchanged) □ To be Removed	4.07.5	27/1
6	(Compressor)	Waukesha	L7042GL	(Package # 76455)	1,232 hp	1,142 hp	12/2/1993	6	20200254	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
_	Reciprocating Engine			C-12597/4			5/12/1998	N/A		☑ Existing (unchanged) □ To be Removed		
7	(Compressor)	Waukesha	L7042GL	(Package # X00393)	1,232 hp	1,142 hp	5/12/1998	7	20200254	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	N/A
	Reciprocating Engine			C-61146/1			2/22/1991	N/A		☑ Existing (unchanged) □ To be Removed		
8	(Compressor)	Waukesha	L7042GL	(Package # X00394)	1,232 hp	1,142 hp	2/22/1991	8	20200254	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
	Reciprocating Engine			234466 (Package			11/22/1972	N/A		☑ Existing (unchanged) □ To be Removed		
9	(Compressor)	Waukesha	L7042GL	# X00068)	1,232 hp	1,142 hp	11/22/1972	9	20200254	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
1.0	Reciprocating Engine	TT 1 1	7 5 0 10 GY	TBD - not	1 222 1	1 1 10 1	TBD - not installed	N/A		☑ Existing (unchanged) □ To be Removed	401.5	27/4
10	(Compressor)	Waukesha	L7042GL	installed	1,232 hp	1,142 hp	TBD - not installed	10	20200254	 □ New/Additional □ To Be Modified □ To be Replaced 	4SLB	N/A
1.5	Turbine	G 1	MARS 90-	OHH22-M0173	10.5501	11 6451	11/15/1996	N/A		☑ Existing (unchanged) □ To be Removed	27/4	27/4
15	(Compressor)	Solar	T12000S	(Package # MC81315)	12,579 hp	11,647 hp	11/15/1996	15	20200209	 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
	Turbine		MARS 90-	OHI19-M8603			9/1/2019	N/A		☑ Existing (unchanged) □ To be Removed		
16	(Compressor)	Solar	T12000S	(Package # MC81316)	12,579 hp	11,647 hp	9/1/2019	16	20200209	 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
	Reciprocating Engine						5/1/1994	N/A		☑ Existing (unchanged) □ To be Removed		
17	(Generator #2)	Waukesha	L7042G	308280/C	1,025 hp	873 hp	5/1/1994	17	20100253	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SRB	N/A
1.0	Reciprocating Engine			S 10==0/0	4 400 1	1	4/16/1999	N/A		☑ Existing (unchanged) □ To be Removed	4000	27/1
18	(Generator #1)	Waukesha	L7042GSI	C-12779/2	1,480 hp	1,467 hp	4/16/1999	18	20100253	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SRB	N/A
10	Reciprocating Engine	TT 1 1	F200	2022 17		5.00:	12/19/84	N/A		☑ Existing (unchanged) □ To be Removed	4677	27/
or 18a	(Generator #4)	Waukesha	F2895GSI	383247	607 hp	562 hp	05/20/19	18a	20100253	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SRB	N/A

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Chec	ck One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
19	Reciprocating Engine	Waukesha	F2895GSI	361831	754 hp	699 hp	3/30/1981	N/A	20100253	☑ Existing (unchanged) □ To be Rem □ New/Additional □ Replacement		4SRB	N/A
17	(Generator #4)	vv auxesna	120,000	301031	754 пр	055 Hp	3/30/1981	19	20100203	☐ To Be Modified ☐ To be Repl		TORD	1.0/2.1
20	Fuel Gas Heater	BS&B Inc.	N/A	13634	0.5	0.5	1991	N/A	31000404	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
20	Tuel Gus Heutel	Books inc.	1 1/11	15051	MMBtu/hr	MMBtu/hr	1994	20		☐ To Be Modified ☐ To be Repl	laced	1071	1 1/11
28	Fuel Gas Heater	Pesco	N/A	404851	0.7	0.7	2002	N/A	31000404	☑ Existing (unchanged) □ To be Rem □ New/Additional □ Replacement		N/A	N/A
20	Tuel Gus Heutel	1 6566	1 1/11	101031	MMBtu/hr	MMBtu/hr		28		☐ To Be Modified ☐ To be Repl		1071	1 1/11
38	Truck Loading	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	✓ Existing (unchanged)□ To be Rem□ New/Additional□ Replacement		N/A	N/A
36	(Condensate)	1 V/A	11/74	IV/A	11/74	IV/A	N/A	N/A	31000011	☐ To Be Modified ☐ To be Repl		11/14	11/74
SSM	Startup, Shutdown	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000203	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
SSIVI	& Maintenance	IN/A	IN/A	IN/A	IN/A	IV/A	N/A	N/A	31000203	☐ To Be Modified ☐ To be Repl		1 \ / <i>A</i>	IN/A
F1	Equipment Lealer	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
ГІ	Equipment Leaks	N/A	N/A	IN/A	IN/A	IN/A	N/A	N/A	31000011	☐ To Be Modified ☐ To be Repl		IN/A	IN/A
M1	Malfunctions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
IVII	Manufictions	N/A	N/A	IN/A	IN/A	IN/A	N/A	N/A	31000299	☐ To Be Modified ☐ To be Repl		IN/A	IN/A
PR1	G-12 Pig Receiver	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
FKI	G-12 Fig Receiver	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	31000299	☐ To Be Modified ☐ To be Repl		1 N / <i>A</i> 1	IN/A
PR2	11-S Pig Receiver	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
r K2	11-3 Fig Receiver	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	31000299	☐ To Be Modified ☐ To be Repl		1 N / <i>A</i> 1	IN/A
T501	Produced Water	NATCO	N/A	9Y24701-01	200 bbl	200 bbl	10/2007	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
1301	Storage Tank	NATCO	N/A	9124/01-01	200 001	200 001	Prior to 08/23/2011	N/A	31000299	☐ To Be Modified ☐ To be Repl		IN/A	IN/A
T91019	Condensate Storage	American Tank	N/A	8364	500 bbl	500 bbl	1981	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
191019	Tank	& Steel Corp.	IN/A	0304	300 001	300 001	Prior to 08/23/2011	N/A		☐ To Be Modified ☐ To be Repl		1 N / <i>A</i> 1	IN/A
T91020	Condensate Storage	American Tank	N/A	2262	300 bbl	300 bbl	05/1969	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		N/A	N/A
191020	Tank	& Steel Corp.	N/A	3263	300 001	300 001	Prior to 08/23/2011	N/A	31000299	□ New/Additional□ To Be Modified□ To be Repl		IN/A	IN/A
T91021	Condensate Storage	American Tank	N/A	2265	200 kkl	300 bbl	05/1969	N/A	31000299	☑ Existing (unchanged) ☐ To be Rem ☐ New/Additional ☐ Replacement		NT/A	N/A
191021	Tank	& Steel Corp.	N/A	3265	300 bbl	300 001	Prior to 08/23/2011	N/A	31000299	☐ To Be Modified ☐ To be Repl		N/A	IN/A
T01024	Produced Water	Continental	NI/A	5220	200 1-1-1	200 1-1-1	5/1957	N/A	21000200	☑ Existing (unchanged) ☐ To be Rem		NT/A	NT/A
T91024	Storage Tank	Tank Co.	N/A	5229	300 bbl	300 bbl	Prior to 08/23/2011	N/A	31000299	□ New/Additional□ To Be Modified□ To be Repl		N/A	N/A
T01025	Produced Water	NATOO	NI/A	03/01/701 04	200 111	200 1.1.1	5/2007	N/A	21000200	☑ Existing (unchanged) ☐ To be Rem		NT/A	NT/A
T91025	Storage Tank	NATCO	N/A	8Y91701-04	200 bbl	200 bbl	Prior to 08/23/2011	N/A	31000299	□ New/Additional□ To Be Modified□ To be Repl		N/A	N/A

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³	Requested Permitted Capacity ³	Date of Manufacture ²	Controlled by Unit #	Source Classi- fication	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI,	Replacing
Number ¹	Source Description	Make	Widdel #	Scrial #	(Specify Units)	(Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Code (SCC)	To Each Freet of Equipment, Circle One	4SLB, 4SRB, 2SLB) ⁴	Unit No.
T91028	Condensate Storage	NATCO	N/A	8J54101-03	500 bbl	500 bbl	01/24/2008	N/A	31000299	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
191026	Tank	NATCO	IN/A	6334101-03	300 001	300 001	Prior to 08/23/2011	N/A	31000299	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A
BGT-1	Below Grade Produced Water	NT/A	N/A	NT/A	120 1-1-1	120 1-1-1	2019	N/A	31000299	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	NI/A	NT/A
BG1-1	Storage Tank	N/A	N/A	N/A	120 bbl	120 bbl	2019	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
C1-C10	Reciptocating	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	Existing (unchanged) To be Removed	N/A	N/A
C1-C10	Compressor Venting	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	IN/A
C15,	Centrifugal	NT/A	NI/A	DT/A	N T/A	N T/A	N/A	N/A	21000200	Existing (unchanged) To be Removed	NT/A	N T/A
C16	Compressor Venting	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
PC1-	D (: 1 :	NI/A	DT/A	DT/A	DT/A	DT/A	N/A	N/A	21000202	☑ Existing (unchanged) □ To be Removed	NT/A	NT/A
PC84	Pneumatic devices	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

Form Revision: 5/3/2016 Table 2-A: Page 3 Printed 4/15/2023 2:47 PM

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Saura Description	Manufacturer -	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Oint Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Fiece of Equipment, Check Onc
37	Stabilizer Reboiler	Exotherm Corp.	UNIFLUX	0.8	20.2.72.202.B(5)		☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
37	Stauffizer Reduiter	Exomerm Corp.	4332	MMBtu/hr	#1a & #1b		☐ To Be Modified ☐ To be Replaced
39	Water Tank Heater			0.25	20.2.72.202.B(5)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
39	water rank freater			MMBtu/hr	#1a & #1b		☐ To Be Modified ☐ To be Replaced
40	Tech Shop Heater			0.125	20.2.72.202.B(1)(a)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
40	Tech Shop Heater			MMBtu/hr	#1a, #1b & 3		☐ To Be Modified ☐ To be Replaced
41	Maintenance Shop Heater			0.125	20.2.72.202.B(1)(a)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
41	Maintenance Shop Heater			MMBtu/hr	#1a, #1b & 3		☐ To Be Modified ☐ To be Replaced
42	Maintenance Shop Heater			0.125	20.2.72.202.B(1)(a)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
42	Maintenance Shop Heater			MMBtu/hr	#1a, #1b & 3		☐ To Be Modified ☐ To be Replaced
43	Maintenance Shop Heater			0.125	20.2.72.202.B(1)(a)		☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
43	Maintenance Shop Heater			MMBtu/hr	#1a, #1b & 3		☐ To Be Modified ☐ To be Replaced
44	Generator Building Heater			0.125	20.2.72.202.B(1)(a)		☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
44	Generator Building Heater			MMBtu/hr	#1a, #1b & 3		☐ To Be Modified ☐ To be Replaced
45	Tech Shop Heater			0.25	20.2.72.202.B(1)(a)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
43	Tech Shop Heater			MMBtu/hr	#1a, #1b & 3		☐ To Be Modified ☐ To be Replaced
46	Produced Water Truck				20.2.72.202.B(1)(a)		☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
40	Loading				#1a, #1b & 3		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T1-T10	Lubrication Oil Storage			500	20.2.72.202.B(2)		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
11-110	Tanks (RICE day tanks)			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T15	Lubrication Oil Storage Tank			100	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
113	(for RICE)			bbl	#1a, #1b & 5		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T16	Used Oil Storage Tank (for			165	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed
116	RICE)			bbl	#1a, #1b & 5		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T17	W4- W-4 Ct T 1			300	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed
T17	Waste Water Storage Tank	Ī		bbl	#1a, #1b & 5		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Chit i vanibei	Source Description	ivianui actui ci	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	Tot Each Freee of Equipment, Check One
T19	Used Oil Storage Tank			500	20.2.72.202.B(2)		☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
117	Osed Oil Stolage Talik			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T20	Gasoline Storage Tank			500	20.2.72.202.B(5)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
120	Gasonne Storage Tank			gal			☐ To Be Modified ☐ To be Replaced
T21	Diesel Storage Tank			300	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
121	Diesel Stolage Talik			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T22	Lubrication Oil Storage Tank			150	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
122	(for turbines)			bbl	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T23	Lubrication Oil Storage Tank			800	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
123	(turbine day tank)			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T24	Lubrication Oil Storage Tank			600	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
124	(generator engine day tank)			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T28	Waste Water Overflow			165	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
120	Storage Tank			bbl	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T30	Waste Water Storage Tank			165	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
130	(for RICE)			bbl	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T32	Storage Tank			300	Out-of-Service		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
132	Storage Tank			bbl	For Information Only		☐ To Be Modified ☐ To be Replaced
Т33	De-ionized Water Storage			500	Not An Emissions Source		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
133	Tank			bbl	For Information Only		☐ To Be Modified ☐ To be Replaced
T34	De-ionized Water Storage			300	Not An Emissions Source		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
1 34	Tank			bbl	For Information Only		☐ To Be Modified ☐ To be Replaced
T35	Methanol Storage Tank			1,100	20.2.72.202.B(5)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
133	Memanor Storage Tank			gal	#1a & #1b		☐ To Be Modified ☐ To be Replaced
T36	Methanol Storage Tank			300	20.2.72.202.B(5)		☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
130	Medianoi Storage Tank			bbl	#1a & #1b		☐ To Be Modified ☐ To be Replaced

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Omt Number	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Fiele of Equipment, Check One
Т37	Storage Tank			500	Out-of-Service		✓ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
137	Storage Talik			gal	For Information Only		☐ To Be Modified ☐ To be Replaced
T38	Glycol Storage Tank			300	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
130	Glycol Stolage Talik			bbl	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T40	Storage Tank			300	Out-of-Service		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
140	Storage Tank			bbl	For Information Only		☐ To Be Modified ☐ To be Replaced
T41	III:I:4- W-4 C4 T			500	Not An Emissions Source		✓ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
141	Utility Water Storage Tank			bbl	For Information Only		☐ To Be Modified ☐ To be Replaced
T42	Used Oil Filter Storage Tank			100	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
142	Osed On Filter Storage Tank			gal	#1a, #1b & 5		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T43	Hand Oil Filton Stangar Tonk			500	20.2.72.202.B(2)		Existing (unchanged) To be Removed
143	Used Oil Filter Storage Tank			gal	#1a, #1b & 5		 □ New/Additional □ To Be Modified □ To be Replaced
T44	Used Oil Storage Tank (for			882	20.2.72.202.B(2)		✓ Existing (unchanged)□ To be Removed□ New/Additional□ Replacement Unit
144	generator engines)			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T46 & T47	Media Heat Release Storage			120	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
140 & 147	Tanks			bbl	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T48	Heat Media Relief Storage			200	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
140	Tank			bbl	#1a, #1b & 5		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T49	Emulsion Breaker Storage			65	20.2.72.202.B(5)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
149	Tank			gal	#1a & #1b		☐ To Be Modified ☐ To be Replaced
T50 % T51	De-ionized Water Storage			8,000	Not An Emissions Source		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
T50 & T51	Tank (for turbines)			gal	For Information Only		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T52	Corrosion Inhibitor Storage			325	20.2.72.202.B(5)		☑ Existing (unchanged) □ To be Removed
132	Tank			gal	#1a & #1b		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
T52	II10:10:			50	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed
T53	Used Oil Storage Tank			bbl	#1a, #1b & 5		☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced

Harvest Four Corners, LLC El Cedro Compressor Station Apr. 2023; Rev.0

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Omt Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	• • •
T54	Antifreeze Storage Tank			500	20.2.72.202.B(2)		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
134	Antiffeeze Storage Talik			gal	#1a, #1b & 5		☐ To Be Modified ☐ To be Replaced
T55	Soon Storage Tonk			500	Not An Emissions Source		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
133	T55 Soap Storage Tank			gal	For Information Only		☐ To Be Modified ☐ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

Form Revision: 7/8/2011 Table 2-B: Page 4 Printed 4/15/2023 2:47 PM

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
17	Air/fuel ratio controller & non-selective catalytic converter	5/1/1994	NOX, CO & VOC	17	93, 85 & 20	Manufacturer's Data
18	Air/fuel ratio controller & non-selective catalytic converter	Before 05/94	NOX, CO & VOC	18	93, 85 & 20	Manufacturer's Data
or 18a	Air/fuel ratio controller & non-selective catalytic converter	05/20/19	NOX, CO & VOC	18a	96, 78 & 33	Manufacturer's Data

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Form Revision: 7/8/2011 Table 2-C: Page 1 Printed 4/15/2023 2:47 PM

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI 4 NI.	NO	Ox	C	O	VO	OC	SO	Ox	P	M^1	PM	I10 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
2	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
3	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	1	ı	-	-
4	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	ı	ı	-	-
5	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	ı	-	-
6	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	ı	1	-	-
7	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	ı	-	-
8	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	ı	1	-	-
9	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
10	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
15	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	ı	1	9.13E-05	4.00E-04
16	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	1	9.13E-05	4.00E-04
17	30.79	134.87	25.02	109.58	4.81E-01	2.11	3.90E-03	1.71E-02	1.29E-01	5.65E-01	1.29E-01	5.65E-01	1.29E-01	5.65E-01	-	-	-	-
18	51.74	226.63	42.04	184.13	8.08E-01	3.54	6.75E-03	2.96E-02	2.23E-01	9.76E-01	2.23E-01	9.76E-01	2.23E-01	9.76E-01	-	-	-	-
or 18a	16.12	70.61	11.16	48.88	3.72E-01	1.63	2.66E-03	1.17E-02	8.78E-02	3.85E-01	8.78E-02	3.85E-01	8.78E-02	3.85E-01	-	-	-	-
19	33.89	8.47	49.29	12.32	5.39E-01	1.35E-01	3.20E-03	8.00E-04	1.06E-01	2.64E-02	1.06E-01	2.64E-02	1.06E-01	2.64E-02	-	-	-	-
20	5.56E-02	2.43E-01	4.67E-02	2.04E-01	3.06E-03	1.34E-02	3.33E-04	1.46E-03	4.22E-03	1.85E-02	4.22E-03	1.85E-02	4.22E-03	1.85E-02	-	-	2.78E-07	1.22E-06
28	7.78E-02	3.41E-01	6.53E-02	2.86E-01	4.28E-03	1.87E-02	4.67E-04	2.04E-03	5.9E-03	2.6E-02	5.91E-03	2.59E-02	5.91E-03	2.59E-02	-	-	3.89E-07	1.70E-06
38	-	-	-	-	14.97	11.51	_	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	Unspecified	33.07	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	1.58	6.94	_	-	_	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	Unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
PR1	-	-	-	-	Unspecified	9.63E-01	-	-	-	-	-	-	_	-	-	-	-	-
PR2	-	-	-	-	Unspecified	9.02	-	-	-	-	-	-	-	-	-	-	-	-
T501	-	-	-	-	Unspecified	8.80	-	-	-	-	-	-	_	-	-	-	-	-
T91019	-	-	-	-	1.82	26.08	-	-	-	-	-	-	_	-	-	-	-	-
T91020	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 4/15/2023 2:47 PM

Harvest Four Corners, LLC El Cedro Compressor Station Apr. 2023; Rev.0

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	C	О	V	OC	SO	Ox	PI	M^1	PM	[10 ¹	PM	2.51	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91021	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
T91024	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	_	-
T91025	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	-	-
T91028	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	_	-
BGT-1	-	-	-	-	Unspecified	1.78	-	-	-	-	-	-	-	-	-	-	-	-
Total #1	181.21	654.10	204.72	693.26	51.56	251.41	6.65E-01	2.90	2.46	10.34	2.46	10.34	2.46	10.34	-	-	1.83E-04	8.03E-04
Total #2	145.59	498.09	173.84	558.01	51.12	249.50	6.61E-01	2.88	2.32	9.74	2.32	9.74	2.32	9.74	-	-	1.83E-04	8.03E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Form Revision: 6/14/2019 Table 2-D: Page 2 Printed 4/15/2023 2:47 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

TI 4 NI.	NO	Ox	C	O	VO	OC	S	Ox	Pi	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
2	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
3	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
4	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
5	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
6	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
7	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
8	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
9	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
10	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
15	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	-	9.13E-05	4.00E-04
16	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	ı	9.13E-05	4.00E-04
17	2.12	9.27	3.85	16.86	3.85E-01	1.69	3.90E-03	1.71E-02	1.29E-01	5.65E-01	1.29E-01	5.65E-01	1.29E-01	5.65E-01	-	-	-	-
18	3.56	15.58	6.47	28.33	6.47E-01	2.83	6.75E-03	2.96E-02	2.23E-01	9.76E-01	2.23E-01	9.76E-01	2.23E-01	9.76E-01	-	-	-	-
or 18a	6.20E-01	2.72	2.48	10.86	2.48E-01	1.09	2.66E-03	1.17E-02	8.78E-02	3.85E-01	8.78E-02	3.85E-01	8.78E-02	3.85E-01	-	-	-	-
19	33.89	8.47	49.29	12.32	5.39E-01	1.35E-01	3.20E-03	8.00E-04	1.06E-01	2.64E-02	1.06E-01	2.64E-02	1.06E-01	2.64E-02	-	-	-	-
20	5.56E-02	2.43E-01	4.67E-02	2.04E-01	3.06E-03	1.34E-02	3.33E-04	1.46E-03	4.22E-03	1.85E-02	4.22E-03	1.85E-02	4.22E-03	1.85E-02	_	-	2.78E-07	1.22E-06
28	7.78E-02	3.41E-01	6.53E-02	2.86E-01	4.28E-03	1.87E-02	4.67E-04	2.04E-03	5.91E-03	2.59E-02	5.91E-03	2.59E-02	5.91E-03	2.59E-02	-	-	3.89E-07	1.70E-06
38	-	-	-	-	14.97	11.51	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	Unspecified	33.07	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	1.58	6.94	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	Unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
PR1	-	-	-	-	Unspecified	9.63E-01	-	-	-	-	-	-	-	-	-	-	-	-
PR2	-	-	-	-	Unspecified	9.02	-	-	-	-	-	-	-	-	-	-	-	-
T501	-	-	-	-	Unspecified	8.80	-	-	-	-	-	-	-	-	-	-	-	-
T91019	-	-	-	-	1.82	26.08	-	-	-	-	-	-	-	-	-	-	-	-
T91020	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
T91021	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
T91024	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	-	-

Form Revision: 6/14/2019 Table 2-E: Page 1 Printed 4/15/2023 2:47 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	NO	Ox	C	О	V	OC	SO	Ox	PI	M^1	PM	10 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91025	-	-	1	-	Unspecified	w/T501	-	-	-	-	-	-	1	-	-	1	-	-
T91028	-	-	1	-	Unspecified	w/T91019	-	-	-	-	-	-	1	-	-	1	-	-
BGT-1	-	-	-	-	Unspecified	1.78	-	-	-	-	-	-	-	-	-	-	-	-
Total #1	104.35	317.46	147.98	444.73	51.30	250.28	6.65E-01	2.90	2.46	10.34	2.46	10.34	2.46	10.34	-	-	1.83E-04	8.03E-04
Total #2	101.41	304.60	143.99	427.27	50.90	248.53	6.61E-01	2.88	2.32	9.74	2.32	9.74	2.32	9.74	-	-	1.83E-04	8.03E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-E: Page 2 Printed 4/15/2023 2:47 PM

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI '4 NI	N	Ox	C	O	V	OC	S	Ox	P	M^2	PM	110^2	PM	2.5 ²	Н	$_2$ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	ı	ı	ı	-	ı	ı	-	-	ŀ	-	ı	-	ı	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	ı	ı	1	-	1	ı	-	-	ŀ	-	ı	-	ı	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1	-	-	-
15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
or 18a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	Unspecified	33.07	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	Unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
PR1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PR2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T501	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Form Revision: 6/14/2019 Table 2-F: Page 1 Printed 4/15/2023 2:47 PM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	CO	VO	OC	S	Ox	P	M^2	PM	110^2	PM	2.5^2	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91024	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91025	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91028	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
BGT-1	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Total	-	-	-	-	Unspecified	43.07	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 2 Printed 4/15/2023 2:47 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

Stack No.	Serving Unit Number(s)				O	V	OC	S	Ox	P	M	PN	110	PM	12.5	\Box H ₂ S or	r □ Lead
Stack 110.	from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
T	otals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	1	V	No	19.67	667	101			289	0.67
2	2	V	No	19.67	667	101			289	0.67
3	3	V	No	19.67	667	101			289	0.67
4	4	V	No	19.67	667	101			289	0.67
5	5	V	No	19.67	667	101			289	0.67
6	6	V	No	19.67	667	101			289	0.67
7	7	V	No	19.67	667	101			289	0.67
8	8	V	No	19.67	667	101			289	0.67
9	9	V	No	19.67	667	101			289	0.67
10	10	V	No	19.67	667	101			289	0.67
15	15	V	No	41.50	845	3097			161	4.95
16	16	V	No	41.50	845	3097			161	4.95
17	17	V	No	16.60	1053	73			69	1.17
18	18a	V	No	19.08	1125	116			108	1.17
or 18a	or 18b	V	No	19.08	1070	44			80.1	0.83
19	19	V	No	20.00	1110	55			278	0.50
20	20	V	No	16.67	600	1			6	0.50
28	28	V	No	14.25	600	2			6	0.67

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		dehyde or □ TAP	Ben ☑ HAP (zene or 🗆 TAP		ldehyde or 🗆 TAP		exane or 🗆 TAP	Tol	uene or 🗆 TAP		enes or 🗆 TAP	Nam	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🏻 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	1	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
2	2	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
3	3	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
4	4	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
5	5	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
6	6	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
7	7	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
8	8	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
9	9	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
10	10	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
15	15	1.1	4.7	0.4	1.9	-	0.1	0.4	1.9	-	0.2	-	-	-	0.1				
16	16	1.1	4.7	0.4	1.9	-	0.1	0.4	1.9	-	0.2	-	-	-	0.1				
17	17	0.1	0.5	-	-	-	0.1	0.1	0.3	-	-	-	-	-	-				
18	18	0.2	0.9	-	-	0.1	0.3	0.1	0.5	-	-	-	0.1	-	-				
or 18a	or 18a	0.1	0.3	-	-	-	0.1	0.0	0.2	-	-	-	-	-	-				
19	19	2.2	0.5	-	-	0.6	0.1	1.1	0.3	-	-	0.2	-	-	-				
20	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
28	28	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
38	38	1.6	1.3	-	-	0.1	0.1	-	-	1.5	1.1	-	-	-	-				
SSM	SSM	-	1.6	-	-	-	-	-	-	-	-	-	0.4	-	0.1				
F1	F1	0.1	0.4	-	-	-	-	-	-	-	0.2	-	0.1	-	-				
M1	M1	-	0.5	-	-	-	-	-	-	-	0.3	-	0.1	-	-				
PR1	PR1	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
PR2	PR2	-	0.5	-	-	-	-	-	-	-	0.3	-	0.1	-	-				

Form Revision: 10/9/2014 Table 2-1: Page 1 Printed 4/15/2023 2:47 PM

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Acetal	dehyde or 🗆 TAP		zene or 🗆 TAP		ldehyde or 🗆 TAP		exane or 🗆 TAP	Tole	uene or 🗆 TAP		enes or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T501	T501	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1	-	-				
T91019	T91019	0.5	3.4	-	-	0.0	0.1	-	-	0.1	0.6	0.0	0.2	-	-				
T91020	T91020	0.1	0.4	-	-	-	-	-	-	0.1	0.4	-	-	-	-				
T91021	T91021	0.1	0.4	-	-	-	-	-	-	0.1	0.4	-	-	-	-				
T91024	T91024	-	0.9	-	-	-	-	-	-	-	0.4	-	0.2	-	0.1				
T91025	T91025	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1	-	-				
T91028	T91028	0.1	0.5	-	-	-	-	-	-	0.1	0.5	-	-	-	-				
BGT-1	BGT-1	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1	-	-				
Tota	al #1	11.3	39.1	0.9	3.9	1.0	2.0	6.4	23.4	2.0	6.0	0.3	1.6	0.2	1.0				
Tota	al #2	11.1	38.4	0.9	3.9	1.0	1.9	6.3	23.1	2.0	6.0	0.3	1.5	0.2	1.0				

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Form Revision: 10/9/2014 Table 2-1: Page 2 Printed 4/15/2023 2:47 PM

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

Unit No.	Fuel Type (low sulfur Diesel, ultra low sulfur diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue		Speci	fy Units		
Unit No.	Natural Gas, Coal,)	gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
2	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
3	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
4	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
5	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
6	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
7	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
8	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
9	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
10	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	9.2 MCF	80.3 MMCF	NA	NA
15	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	98.3 MCF	860.9 MMCF	NA	NA
16	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	98.3 MCF	860.9 MMCF	NA	NA
17	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	7.4 MCF	64.6 MMCF	NA	NA
18	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	12.8 MCF	111.8 MMCF	NA	NA
or 18a	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	5.0 MCF	44.0 MMCF	NA	NA
19	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	6.0 MCF	3.0 MMCF	NA	NA
20	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	556 CF	4.9 MMCF	NA	NA
28	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	778 CF	6.8 MMCF	NA	NA

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

				Liquid	Vapor	Average Stor	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T1-T10	31000299	Lubrication Oil	Lubrication Oil	Exempt/Ins	significant Source				
T15	31000299	Lubrication Oil	Lubrication Oil	Exempt/Ins	significant Source				
T16	31000299	Used Oil	Used Oil	Exempt/Ins	significant Source				
T17	31000299	Waste Water	99% H2O & 1% Hydrocarbon	Exempt/Ins	significant Source				
T19	31000299	Used Oil	Used Oil	Exempt/Ins	significant Source				
T20	31000299	Gasoline	Gasoline	Exempt/Ins	significant Source				
T21	31000299	Diesel	Diesel	Exempt/Ins	significant Source				
T22	31000299	Lubrication Oil	Lubrication Oil	Exempt/Ins	significant Source				
T23	31000299	Lubrication Oil	Lubrication Oil	Exempt/Ins	significant Source				
T24	31000299	Lubrication Oil	Lubrication Oil	Exempt/Ins	significant Source				
T28	31000299	Waste Water	99% H2O & 1% Hydrocarbon	Exempt/Ins	significant Source				
T30	31000299	Waste Water	99% H2O & 1% Hydrocarbon	Exempt/Ins	significant Source				
T32	31000299	Out-of-Service	Out-of-Service	Out-of-Ser	vice - For Informa	tion Only			
T33	31000299	De-ionized Water	De-ionized Water	Not An Em	nissions Source - I	For Information O	nly		
T34	31000299	De-ionized Water	De-ionized Water	Not An Em	nissions Source - I	For Information O	nly		
T35	31000299	Methanol	Methanol	Exempt/Ins	significant Source				
T36	31000299	Methanol	Methanol	Exempt/Ins	significant Source				
T37	31000299	Out-of-Service	Out-of-Service	Out-of-Ser	vice - For Informa	tion Only			
T38	31000299	Glycol	Glycol	Exempt/Ins	significant Source				
T40	31000299	Out-of-Service	Out-of-Service	Out-of-Ser	vice - For Informa	tion Only			
T41	31000299	Water	Water	Not An Em	nissions Source - I	For Information O	nly		
T42	31000299	Used Oil	Used Oil	Exempt/Ins	significant Source				
T43	31000299	Used Oil	Used Oil	Exempt/Ins	significant Source				
T44	31000299	Used Oil	Used Oil	Exempt/Ins	significant Source				
T46 & T47	31000299	Glycol	50% H2O & 50% Glycol	Exempt/Ins	significant Source				
T48	31000299	Glycol	50% H2O & 50% Glycol	Exempt/Ins	significant Source				
T49	31000299	Emulsion Breaker	Sulfatron DN-100	Exempt/Ins	significant Source				

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

				Liquid	Vapor	Average Stor	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T50 & T51	31000299	De-ionized Water	De-ionized Water	Not An Em	nissions Source - F	For Information O	nly		
T52	31000299	Corrosion Inhibitor	CG049 Corrosion Inhibitor	Exempt/Ins	significant Source				
T53	31000299	Used Oil	Used Oil	Exempt/Ins	significant Source				
T54	31000299	Antifreeze	50% EG & 50% H2O	Exempt/Ins	significant Source				
T55	31000299	Soap	Soap	Not An Em	nissions Source - F	or Information O	nly		
T501	31000299	Produced Water	99% H2O & 1% Hydrocarbon						
T91019	31000299	Condensate	Condensate	5.77	83.36	67.36	1.44	80.79	1.99
T91020	31000299	Condensate	Condensate	5.77	83.36	67.36	1.44	80.79	1.99
T91021	31000299	Condensate	Condensate	5.77	83.36	67.36	1.44	80.79	1.99
T91024	31000299	Produced Water	99% H2O & 1% Hydrocarbon						
T91025	31000299	Produced Water	99% H2O & 1% Hydrocarbon						
T91028	31000299	Condensate	Condensate	5.77	83.36	67.36	1.44	80.79	1.99
BGT-1	31000299	Produced Water	99% H2O & 1% Hydrocarbon						

Form Revision: 7/8/2011 Table 2-K: Page 2 Printed 4/15/2023 2:47 PM

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tonk No	Date	Materials Stored	Seal Type	Roof Type	Cap	acity	Diameter	Vapor		olor ble VI-C)	Paint Condition	Annual	Turn-
Tank No.	Installed	Materiais Stored	LR below)	(refer to Table 2- LR below)	(bbl)	(M ³)	(M)	Space (M)	Roof	Shell	(from Table VI-C)	Throughput (gal/yr)	overs (per year)
T1-T10		Lubrication Oil		FX	12		Exempt/Insi	gnificant Sour	ce				
T15		Lubrication Oil		FX	100		Exempt/Insi	gnificant Sour	ce				
T16		Used Oil		FX	165		Exempt/Insi	gnificant Sour	ce				
T17		Waste Water		FX	300		Exempt/Insi	gnificant Sourc	e				
T19		Used Oil		FX	12		Exempt/Insi	gnificant Sour	e				
T20		Gasoline		FX	21		Exempt/Insi	gnificant Sour	e				
T21		Diesel		FX	7		Exempt/Insi	gnificant Sour	e				
T22		Lubrication Oil		FX	150		Exempt/Insi	gnificant Sour	ce				
T23		Lubrication Oil		FX	19		Exempt/Insi	gnificant Sour	ce				
T24		Lubrication Oil		FX	14		Exempt/Insi	gnificant Sour	ce				
T28		Waste Water		FX	165		Exempt/Insignificant Source Exempt/Insignificant Source						
T30		Waste Water		FX	165		Exempt/Insignificant Source						
T32		Amine		FX	300		Out-of-Service - For Information Onl						
T33		De-ionized Water		FX	500		Not An Emi	ssions Source -	For Informa	tion Only			
T34		De-ionized Water		FX	300		Not An Emi	ssions Source -	For Informa	tion Only			
T35		Methanol		FX	26		Exempt/Insi	gnificant Sour	e				
T36		Methanol		FX	300		Exempt/Insi	gnificant Sour	ce				
T37		Out-of-Service		FX	12		Out-of-Servi	ice - For Inforn	nation Only				
T38		Glycol		FX	300		Exempt/Insi	gnificant Sour	e				
T40		Out-of-Service		FX	300		Out-of-Servi	ice - For Inforn	nation Only				
T41		Water		FX	500		Not An Emi	ssions Source -	For Informa	tion Only			
T42		Used Oil		FX	2		Exempt/Insi	gnificant Sour	e				
T43		Used Oil		FX	12		Exempt/Insi	gnificant Sour	e				
T44		Used Oil		FX	21		Exempt/Insignificant Source Exempt/Insignificant Source						
T46 & T47		Glycol		FX	120		Exempt/Insignificant Source						
T48		Glycol		FX	200		Exempt/Insignificant Source						
T49		Emulsion Breaker		FX	2		Exempt/Insignificant Source						
T50 & T51		De-ionized Water		FX	190		Not An Emissions Source - For In			tion Only			
T52		Corrosion Inhibitor		FX	8		Exempt/Insi	gnificant Sour	ce				

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date	Materials Stored	Seal Type	Roof Type (refer to Table 2-	Сар	acity	Diameter	Vapor		olor ble VI-C)	Paint Condition	Annual	Turn-
Tank No.	Installed	Materiais Stored	LR below)	LR below)	(bbl)	(M ³)	(M)	Space (M)	Roof	Shell	(from Table VI-C)	Throughput (gal/yr)	overs (per year)
T53		Used Oil		FX	50		Exempt/Insignificant Source						
T54		Antifreeze		FX	12		Exempt/Insi	gnificant Source	e				
T55		Soap		FX	12		Not An Emi	ssions Source -	For Informa	tion Only			
T501		Produced Water		FX	200							643,200	76.57
T91019		Condensate		FX	500		4.72	2.79	MG	MG	Good	4,567,895	231.15
T91020		Condensate		FX	300		3.66	2.48	MG	MG	Good	2,737,760	231.14
T91021		Condensate		FX	300		3.66	2.48	MG	MG	Good	2,737,760	231.14
T91024		Produced Water		FX	300							with T501	with T501
T91025		Produced Water		FX	200							with T501	with T501
T91028		Condensate		FX	500		4.11	4.01	MG	MG	Good	3,516,586	234.59
BGT-1		Produced Water		N/A	120							571,200	113.3

Form Revision: 7/8/2011 Table 2-L: Page 2 Printed 4/15/2023 2:47 PM

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

		1 8				
Roof Type	Seal Type, Wo	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		M	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Low pressure natural gas	C1-C6+	Gas	148,920 MMcf/yr	High pressure natural gas	C1-C6+	Gas	148,920 MMcf/yr
The station capacity is a direct	t function of available horsepor	wer. The throughput is therefore de	pendent on atmospheric tempera	ture and pressure, gas temperature a	and pressure, relative hun	nidity	
and gas quality, was well as o	ther factors. The "throughput"	expressed above is a nominal quan	tity (with a 15 percent safety fact	or), neither an absolute maximum,	nor an average. Actual th	nroughput	
will vary from the nominal an	nount.						

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
17 & 18 or 18a	Pressure Drop	Across catalyst	Inches H2O	± 2" from tested pressure	As per manufacturer	As per manufacturer	Manual	NA
17 & 18 or 18a	Temperature	Inlet to catalyst	°F	750 - 1250 °F	As per manufacturer	As per manufacturer	CPMS	4-hr

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
1	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
1	CO ₂ e	6010.45	3.37	2.83							-	6016.64
2	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
2	CO ₂ e	6010.45	3.37	2.83							-	6016.64
3	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
3	CO ₂ e	6010.45	3.37	2.83							-	6016.64
4	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
4	CO ₂ e	6010.45	3.37	2.83							-	6016.64
5	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
3	CO ₂ e	6010.45	3.37	2.83							-	6016.64
6	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
0	CO ₂ e	6010.45	3.37	2.83							-	6016.64
7	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
,	CO ₂ e	6010.45	3.37	2.83							-	6016.64
8	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
	CO ₂ e	6010.45	3.37	2.83							-	6016.64
9	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
	CO ₂ e	6010.45	3.37	2.83							-	6016.64
10	mass GHG	6010.45	1.13E-02	1.13E-01							6010.57	-
10	CO ₂ e	6010.45	3.37	2.83							-	6016.64
15	mass GHG	50367.37	9.49E-02	9.49E-01							50368.41	-
13	CO ₂ e	50367.37	28.28	23.73							-	50419.38
16	mass GHG	50367.37	9.49E-02	9.49E-01							50368.41	-
10	CO ₂ e	50367.37	28.28	23.73							-	50419.38
17	mass GHG	4209.59	7.93E-03	7.93E-02							4209.68	-
17	CO ₂ e	4209.59	2.36	1.98							-	4213.94

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
18	mass GHG	6453.57	1.22E-02	1.22E-01							6453.70	-
18	CO ₂ e	6453.57	3.64	3.05							-	6460.26
or 18a	mass GHG	2573.47	4.85E-03	4.85E-02							2573.52	-
01 104	CO ₂ e	2573.47	1.45	1.21							-	2576.13
19	mass GHG	163.75	3.09E-04	3.09E-03							163.75	-
19	CO ₂ e	163.75	9.21E-02	7.73E-02							-	163.92
20	mass GHG	284.05	5.35E-04	5.35E-03							284.06	-
20	CO ₂ e	284.05	1.59E-01	1.34E-01							-	284.34
28	mass GHG	397.67	7.49E-04	7.49E-03							397.68	-
26	CO ₂ e	397.67	2.23E-01	1.87E-01							-	398.08
37	mass GHG	454.48	8.57E-04	8.57E-03							454.49	-
37	CO ₂ e	454.48	2.55E-01	2.14E-01							-	454.95
38	mass GHG	-	-	-							0.00	-
36	CO ₂ e	-	-	-							-	0.00
39	mass GHG	142.02	2.68E-04	2.68E-03							142.02	-
3)	CO ₂ e	142.02	7.99E-02	6.70E-02							-	142.17
40	mass GHG	71.01	1.34E-04	1.34E-03							71.01	-
40	CO ₂ e	71.01	3.99E-02	3.35E-02							-	71.08
41	mass GHG	71.01	1.34E-04	1.34E-03							71.01	-
71	CO ₂ e	71.01	3.99E-02	3.35E-02							-	71.08
42	mass GHG	71.01	1.34E-04	1.34E-03							71.01	-
-12	CO ₂ e	71.01	3.99E-02	3.35E-02							-	71.08
43	mass GHG	71.01	1.34E-04	1.34E-03							71.01	-
43	CO ₂ e	71.01	3.99E-02	3.35E-02							-	71.08
44	mass GHG	71.01	1.3E-04	1.34E-03							71.01	-
-77	CO ₂ e	71.01	4.0E-02	3.35E-02							-	71.08

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²							Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3								
45	mass GHG	142.02	2.7E-04	2.7E-03									142.02	-
-13	CO ₂ e	142.02	8.0E-02	6.7E-02									-	142.17
SSM	mass GHG	143.94	-	538.51									682.45	-
55111	CO ₂ e	143.94	-	13462.69									-	13606.63
F1	mass GHG	219.52	-	940.95		F-1 Includes				rifugal compr	essor		1160.47	-
1.1	CO ₂ e	219.52	-	23523.84		venting, pneu	matic device	es, and pneum	natic pumps.				-	23743.36
M1	mass GHG	472.08		1485.85									1957.93	-
1411	CO ₂ e	472.08	-	37146.32									-	37618.40
PR1	mass GHG	1.15E-01	-	3.21									3.33	-
TKI	CO ₂ e	1.15E-01	-	80.27									-	80.38
PR2	mass GHG	1.03	-	28.79									29.82	-
1112	CO ₂ e	1.03	-	719.79									-	720.82
T501	mass GHG	-	-	-									0.00	-
1301	CO ₂ e	-	-	-									-	0.00
T19019	mass GHG	6.45E-02	-	9.93E-03									0.07	-
115015	CO ₂ e	6.45E-02	-	0.25									-	0.31
T19020	mass GHG	3.86E-02	-	5.95E-03									0.04	-
117020	CO ₂ e	3.86E-02	-	0.15									-	0.19
T19021	mass GHG	3.86E-02	-	5.95E-03									0.04	-
11/021	CO ₂ e	3.86E-02	-	0.15									-	0.19
T19024	mass GHG	-	-	-									0.00	-
11/027	CO ₂ e	-	-	-									-	0.00
T19025	mass GHG	-	-	-									0.00	-
117023	CO ₂ e	-	-	-									 -	0.00

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
T19028	mass GHG	4.96E-02	-	7.64E-03							0.06	-
119028	CO ₂ e	4.96E-02	-	0.19							-	0.24
BGT_1	mass GHG	-	-	-							0.00	-
BG1_1	CO ₂ e	-	-	-							-	0.00
Total #1	mass GHG	174278.3	0.3	3000.6							177,279	
Total #1	CO ₂ e	174278.3	97.3	75015.3								249,391
Total #2	mass GHG	170398.2	0.3	3000.5							173,399	-
1 0tal #2	CO ₂ e	170398.2	95.1	75013.4							-	245,507

GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Application Summary

The Harvest Four Corners, LLC (Harvest) El Cedro Compressor Station (El Cedro) currently operates under Title V operating permit P046-R3, dated April 19, 2019, as modified through P046-R3-M1 (issued April 13, 2021). The facility Construction Permit is number PSD 0340-M15 (issued July 15, 2020), as technically and administratively revised through PSD 0340-M15-R8, issued April 6, 2023.

Equipment currently approved for construction and use at the facility is listed in Tables 2-A, 'Regulated Sources' and Table 2-B, 'Insignificant Activities1 (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC') of Section 2 of this application. <u>Unless noted, all regulated emissions from the currently permitted equipment and sources are brought forward from the most current Construction and/or Title V permit.</u> A calculated emission rate that is lower than the currently permitted emission rate in Table 2-E is a demonstration of compliance with the permitted emission rate.

As of August 5, 2022, certain existing and previously unregulated emission sources are now subject to the requirements of 20.2.50 NMAC. The newly-regulated equipment are included in Table 2-A regardless of whether 20.2.50 NMAC imposes emission limits on the source. There are no revisions or modifications to the permit that de-bottleneck impacts or change the facility's major/minor status under either the Prevention of Significant Deterioration [PSD] permitting program or the Title V Operating Permits program.

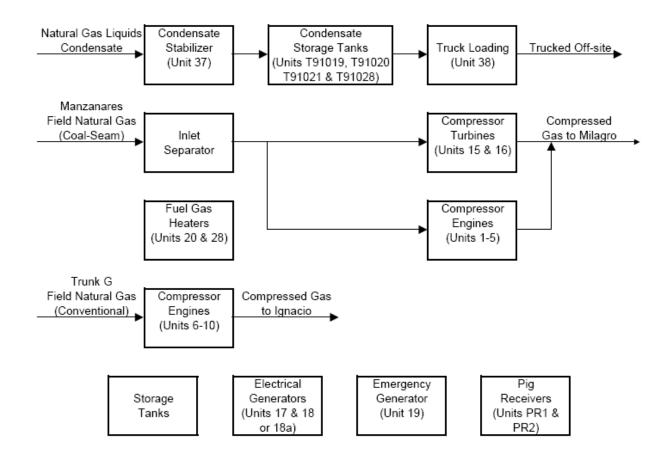
This application is being submitted under 20.2.70.300.B(2) NMAC of the New Mexico Administrative Code (NMAC) to renew the facility's Title V Operating permit. It incorporates any revisions to the construction permit that have occurred since the last Title V Operating Permit issuance.

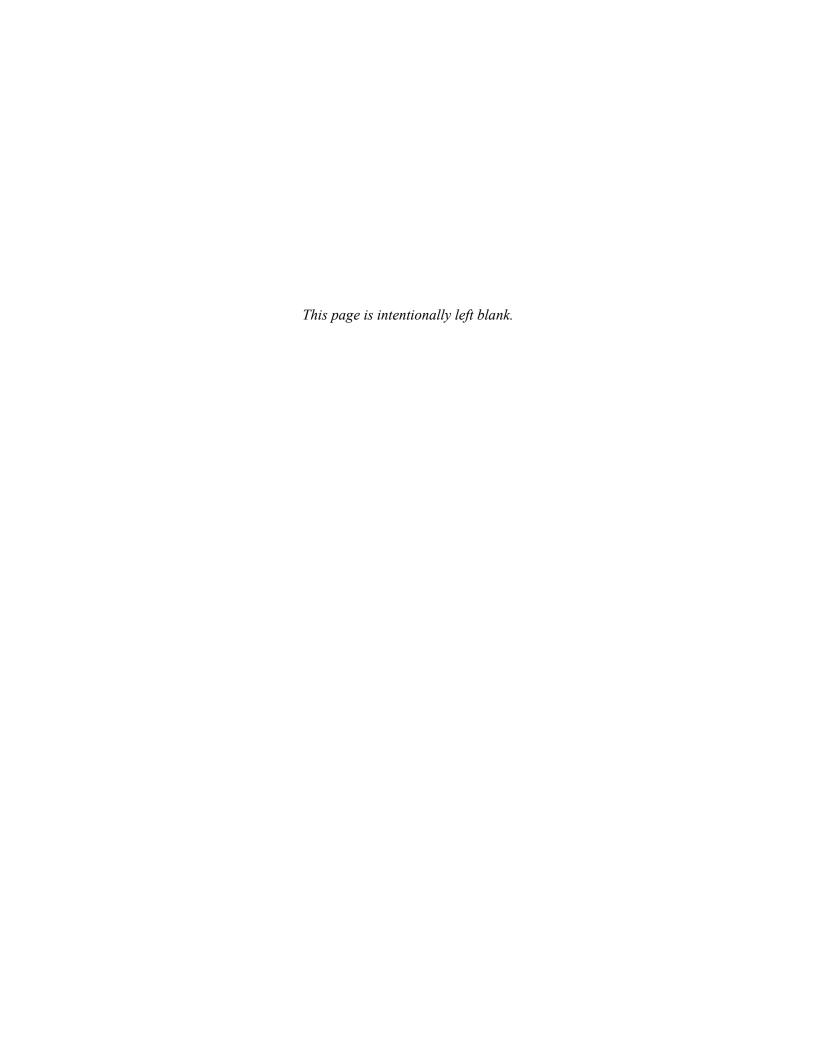
Process Description

A brief summary of facility operations is outlined in Section 10 of this application.

Startup, Shutdown and Maintenance Emissions (SSM)

Except for facility compressor and piping blowdown events identified in tables 2-E and 2-F in application Section 2, there are no SSM emissions in excess of those identified for steady-state operation. Discussions justifying this conclusion are provided in Section 6. The only SSM emissions are of volatile organic compounds (VOC).

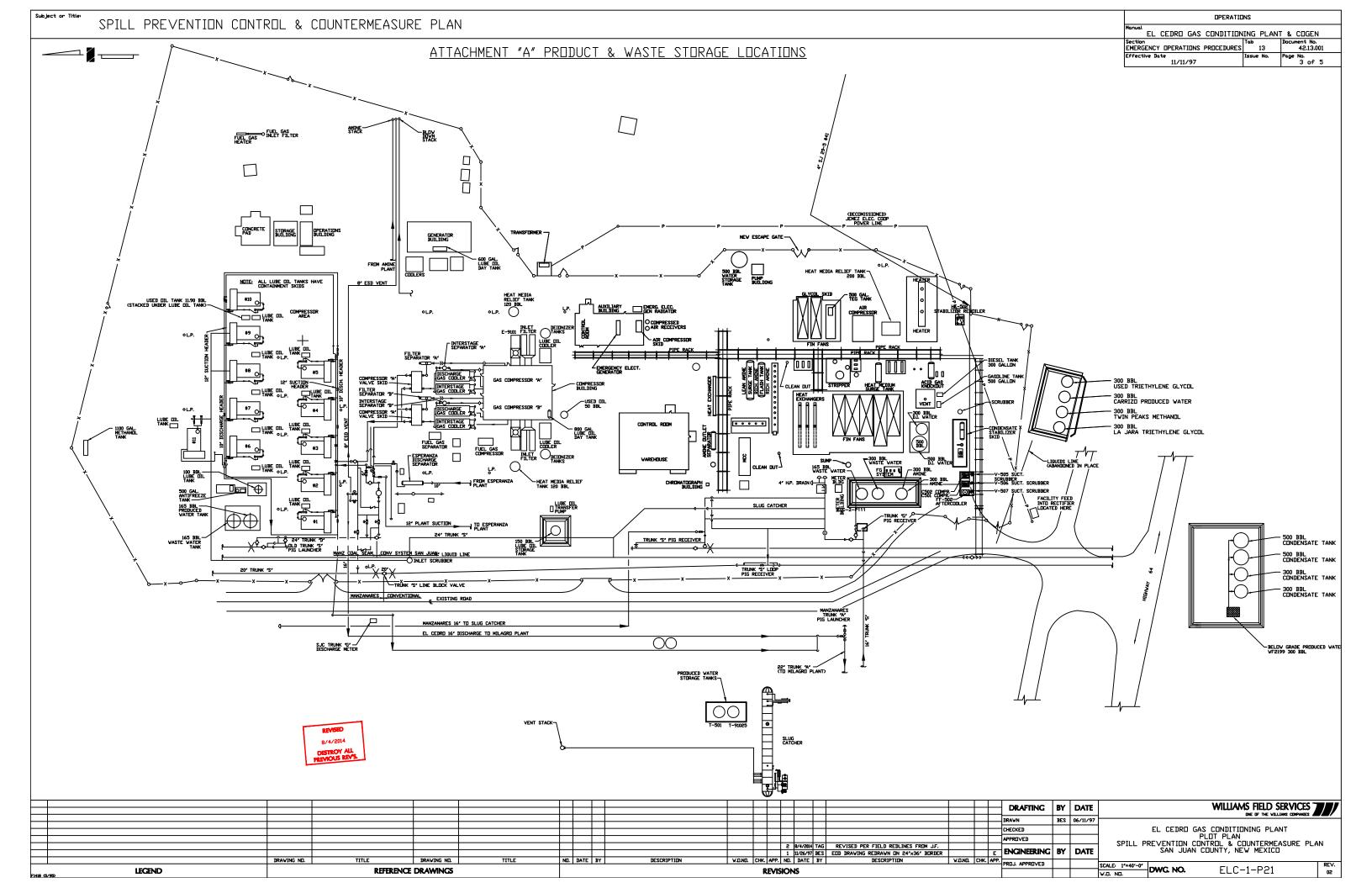

Saved Date: 4/6/2023


Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Section 5


Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is provided in this section. Please see the following page.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Engines

The NO₂, CO, and VOC emissions from the reciprocating internal combustion engines were calculated from manufacturer's data. The SO₂ and particulate emissions were calculated using AP-42 emission factors from Table 3.2-2. HAP emissions were calculated using GRI-HAPCalc 3.0. All emissions were calculated assuming each engine operates at full site capacity for 8,760 hours per year.

The engines startup with no load and a rich fuel mixture. As a result, emissions are minimized. Because the engines take only minutes to reach operating temperature, emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steady-state allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the engines are not in operation during maintenance.

No modifications are being made to the engines or their operation.

Turbines

The NO_X, CO, VOC, and SO₂ emissions from the combustion turbines were calculated using stack test and manufacturer's data as identified in previous applications. Particulate emissions were calculated using the AP-42 emission factor from Table 3.1-2a. HAP emissions were calculated using GRI-HAPCalc 3.0. Emissions were calculated assuming each turbine operates at full site capacity for 8,760 hours per year.

The turbines start up with no load and a rich fuel mixture. As a result, emissions are minimized. Because the turbine takes only minutes to reach operating temperature, emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steady-state allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the turbines are not in operation during maintenance.

No modifications are being made to the turbines or their operation.

SSM from Turbines, Compressors and Piping Blowdowns (SSM-Tur)

SSM emissions from the turbines result from the blowdown of motive gas used to drive turbine components during startups and shutdowns. Blowdown emissions from the compressors and piping Form-Section 6 last revised: 5/3/16 Section 6, Page 2 Saved Date: 4/15/2023

associated with the facility occur when high pressure gas is used to purge air from the system prior to startup. Also, after shutdowns, high pressure gas is released to atmosphere as a safety precaution.

VOC and HAP emissions from blowdowns of the turbines, compressors and piping associated with the station were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event was determined by Harvest engineering. The composition of the gas was determined from a recent extended gas analysis. For each unit, the annual number of blowdown events were estimated based on historical operations. A safety factor was added because emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary. Use of the safety factor is also designed to ensure an adequate emissions limit, which includes emissions from other miscellaneous startup, shutdown and maintenance activities.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance and do not include malfunctions or upsets.

SSM from Compressors and Piping Blowdowns (SSM-Eng)

SSM blowdown emissions from the compressors and piping associated with the facility occur when high pressure gas is used to purge air from the system prior to startup. Also, after shutdowns, high pressure gas is released to atmosphere as a safety precaution.

VOC and HAP emissions from blowdowns of the compressors and piping associated with the station were calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event was determined by Harvest engineering. The composition of the gas was determined from a recent extended gas analysis. For each unit, the annual number of blowdown events were estimated based on historical operations. A safety factor was incorporated because emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary. Use of the safety factor is also designed to ensure an adequate emissions limit, which includes emissions from other miscellaneous startup, shutdown and maintenance activities.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance, and do not include malfunctions or upsets.

Storage Tanks

Flashed emissions of VOC and HAP from the condensate storage tanks and inlet separator were calculated using the ProMax flash emissions model. TANKS 4.0.9d was used to calculate the standing-

working-breathing losses for the stabilized (post-flash) condensate storage. The emission calculations assumed the maximum annual facility condensate throughput identified in the flash emissions model.

The Potential To Emit (PTE) for VOC and HAP from the produced water tanks was calculated using the aggregated maximum facility throughput in barrels per year (bbl/yr) and emission factors from the Colorado Department of Public Health and Environment (CDPHE) and the Texas Commission on Environmental Quality (TCEQ).

For the remaining tanks, the following assumptions were made:

- Residual oil #6 was used as an estimate for lubrication oil, used lube oil, and solvent. As the vapor pressure of residual oil #6 is less than 0.2 psia, the tanks containing lubrication oil, used lube oil, and solvent are NSR exempt sources under 20.2.72.202.B(2) NMAC, and insignificant sources under Title V Insignificant Activity list Item #5.
- The wastewater storage tank liquid composition is assumed to be 99% water and 1% residual oil. As the vapor pressure of residual oil is less than 0.2 psia, the wastewater storage tank is an exempt source under 20.2.72.202.B(2) NMAC, and an insignificant source under Title V Insignificant Activity list Item #5.
- Emissions from the gasoline storage tank were calculated using TANKS 4.0.9d. The gasoline was assumed to have a Reid Vapor Pressure of 13. As the VOC emission rate from the gasoline tank is less than 0.5 tpy, the tank is NSR exempt in accordance with 20.2.72.202.B(5) NMAC, and insignificant under the Title V Insignificant Activity list, Item #1.
- The composition of the diesel stored in the diesel fuel tank is assumed to be distillate fuel oil #2. As the vapor pressure of distillate fuel oil #2 is less than 0.2 psia, the wastewater storage tank is an exempt source under 20.2.72.202.B(2) NMAC, and an insignificant source under Title V Insignificant Activity list Item #5.
- The anti-freeze is an inhibited ethylene glycol (EG) coolant containing 50 percent EG and 50 percent water. As the vapor pressure of EG is less than 0.2 psia, the antifreeze storage tanks are exempt sources under 20.2.72.202.B(2) NMAC, and insignificant sources in accordance with the Title V Insignificant Activity List Item #5.
- Emissions from the methanol storage tanks were calculated using TANKS 4.09d. As the VOC emission rate from the methanol tanks is less than 0.5 tpy, the methanol tanks are NSR exempt in accordance with 20.2.72.202.B(5) NMAC, and insignificant under the Title V Insignificant Activity list, Item #1.

Due to the nature of operations, startup and shutdown emissions from the storage tanks are assumed to be accounted for in the calculations discussed above. Emissions due to maintenance are negligible as the units are not in operation during maintenance.

No changes are being made to the storage tanks or their operation.

Truck Loading (Condensate)

VOC emissions from condensate truck loading were calculated using the AP-42 emission factor from Section 5.2 and data provided by Harvest. HAP emissions were calculated from the composition of the condensate as determined from TANKS 4.0 results.

Due to the nature of the source, it is estimated there are no startup or shutdown emissions associated with truck loading. No maintenance is conducted during truck loading operations.

No modifications are being made to the condensate truck loading operations.

Truck Loading - Produced Water

The VOC emissions from truck loading of produced water were calculated using the AP-42 emissions factor identified in Section 5.2-1. The data used to calculate the emission factor was obtained assuming the liquid was pure water.

Due to the nature of the source, it is estimated that SSM emissions from truck loading are accounted for in the calculations; therefore, there are no SSM emissions associated with truck loading. No SSM maintenance activities are performed during the truck loading.

Based on calculated PTE, produced water truck loading is a Title V insignificant source in accordance with Insignificant Activity Item #1, as well as an exempt source in accordance with 20.2.72.202.B(5) NMAC (VOC emissions are less than 0.5 tons per year).

Equipment Leaks - Fugitive Emissions

Fugitive VOC and HAP emissions from equipment leaks were calculated using emission factors from Table 2.4 of the 1995 Protocol for Equipment Leak Emission Estimates published by the Environmental Protection Agency (EPA) and the gas stream composition obtained from a recent extended gas analysis. Emissions were calculated assuming the equipment operates 8,760 hours per year.

Due to the nature of the source, it is estimated that SSM emissions from the equipment are accounted for in the calculations.

Malfunctions

Malfunction emissions were set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions (including, but not limited to, unscheduled blowdowns and relief valve releases). Based on the gas release rate associated with the set annual VOC emission rate, HAP emissions are calculated using a recent extended gas analysis. Note the malfunction emissions include the venting of gas only, and no combustion emissions.

No changes to currently permitted malfunction emissions are proposed.

Unit Number: 1-10

Description: Waukesha L7042GL

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

6,445 ft above MSL Elevation
1,232 hp Nameplate hp Mfg. data

1,142 hp NMAQB Site-rated hp NMAQB Procedure # 02.002-00

(loss of 3% for every 1,000 ft over 4,000 ft)

1,110 hp Mfg. Site-rated hp Mfg. product bulletin Power Derate,

S8154-6, April 2001

(loss of 2% for every 1,000 ft over 1,500 ft)

Engine Specifications

1000 rpmEngine rpmMfg. data7040 cu inEngine displacementMfg. data

128.43 psi BMEP Mfg. data (+[(792,000 x NMAQB Site-rated hp)

/ (rpm * in^3)])

Fuel Consumption

7230 Btu/hp-hr Brake specific fuel consumption Mfg. data

8.25 MMBtu/hr Hourly fuel consumption Btu/hp-hr x NMAQB site-rated hp / 1,000,000

9,172 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC

72,310 MMBtu/yrAnnual fuel consumptionMMBtu/hr x hr/yr80.34 MMscf/yrAnnual fuel consumptionscf/hr x hr/yr / 1,000,000900 Btu/scfField gas heating valueNominal heat content

Steady-State Emission Rates

Pollutants	Emission Factors, g/hp-hr	Uncontrolled E	mission Rates,
NOX	1.50	3.78	16.54
CO	2.65	6.67	29.21
VOC	1.00	2.52	11.02

Emission factors taken from Waukesha Bulletin 7005 0107

Uncontrolled Emission Rates (pph) = g/hp-hr x NMAQB Site-rated hp / 453.59 g/lb

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
SO2	5.88E-04	4.85E-03	2.13E-02
PM	9.99E-03	8.24E-02	3.61E-01
PM10	9.99E-03	8.24E-02	3.61E-01
PM2.5	9.99E-03	8.24E-02	3.61E-01

Emission factors taken from AP-42, Table 3.2-2

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

667 °FStack exit temperatureMfg. data6048 acfmStack flowrateMfg. data

0.67 ftStack exit diameterHarvest Four Corners, LLC0.35 ft/2Stack exit area3.1416 x ((ft / 2) ^2)288.76 fpsStack exit velocityacfm / ft/2 / 60 sec/min19.67 ftStack heightHarvest Four Corners, LLC

Unit Number: 17

Waukesha L7042G (Naturally Aspirated) Description:

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

873 hp

6,445 ft above MSL Elevation

1,025 hp Nameplate hp Mfg. data NMAQB Site-rated hp

(loss of 3% for every 1,000 ft over 1,500 ft)

873 hp Mfg. Site-rated hp Mfg. product bulletin Power Derate,

S8154-6, April 2001

NMAQB Procedure # 02.002-00

(loss of 3% for every 1,000 ft over 1,500 ft)

Engine Specifications

1200 rpm Engine rpm Mfg. data 7040 cu in Engine displacement Mfg. data

81.84 psi **BMEP** Mfg. data (+[(792,000 x NMAQB Site-rated hp)

/ (rpm * in^3)])

Fuel Consumption

110.683 Btu/min Brake specific fuel consumption Mfg. data 6.64 MMBtu/hr Hourly fuel consumption Btu/min x 60 min/hr / 1,000,000 7,379 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Harvest Four Corners, LLC Annual operating time 58,175 MMBtu/yr MMBtu/hr x hr/yr Annual fuel consumption

64.64 MMscf/yr Annual fuel consumption scf/hr x hr/yr / 1,000,000 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Uncontrolled			Controlled		
	Emission			Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,	Factors,	Controlled Em	ission Rates,
	g/hp-hr	pph	tpy	g/hp-hr	pph	tpy
NOX	16.00	30.79	134.87	1.10	2.12	9.27
CO	13.00	25.02	109.58	2.00	3.85	16.86
VOC	0.25	4.81E-01	2.11	0.20	3.85E-01	1.69

Emission factors taken from Waukesha Product Bullletin 7011B 1008 Emission Rates (pph) = g/hp-hr x NMAQB Site-rated hp / 453.59 g/lb Emission Rates (tpy) = Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rate	
	lb/MMBtu	pph	tpy
SO2	5.88E-04	3.90E-03	1.71E-02
PM	1.94E-02	1.29E-01	5.65E-01
PM10	1.94E-02	1.29E-01	5.65E-01
PM2.5	1.94E-02	1.29E-01	5.65E-01

Emission factors taken from AP-42, Table 3.2-3

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

1,053 °F	Stack exit temperature	Mfg. data
4,395 acfm	Stack flowrate	Mfg. data
1.17 ft	Stack exit diameter	Harvest Four Corners, LLC
1.07 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
68.51 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
16.60 ft	Stack height	Harvest Four Corners, LLC

Unit Number: 18

Description: Waukesha L7042GSI (Turbocharged)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

6,445 ft above MSL Elevation
1,480 hp Nameplate hp Mfg. data

1,371 hp NMAQB Site-rated hp NMAQB Procedure # 02.002-00

(loss of 3% for every 1,000 ft over 4,000 ft)

1,467 hp Mfg. Site-rated hp Mfg. product bulletin Power Derate,

S8154-6, April 2001

(loss of 2% for every 1,000 ft over 6,000 ft)

Engine Specifications

1200 rpmEngine rpmMfg. data7040 cu inEngine displacementMfg. data

137.52 psi BMEP Mfg. data (+[(792,000 x Mfg. Site-rated hp)

/ (rpm * in^3)])

Fuel Consumption

7,829 Btu/hp-hr Brake specific fuel consumption Mfg. data

11.48 MMBtu/hr Hourly fuel consumption Btu/hp-hr x Mfg. site-rated hp / 1,000,000

12,759 scf/hrHourly fuel consumptionMMBtu/hr x 1,000,000 / Btu/scf8,760 hr/yrAnnual operating timeHarvest Four Corners, LLC

100,593 MMBtu/yrAnnual fuel consumptionMMBtu/hr x hr/yr111.77 MMscf/yrAnnual fuel consumptionscf/hr x hr/yr / 1,000,000900 Btu/scfField gas heating valueNominal heat content

Steady-State Emission Rates

	Uncontrolled			Controlled		
	Emission			Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,	Factors,	Controlled Em	ission Rates,
	g/hp-hr	pph	tpy	g/hp-hr	pph	tpy
NOX	16.00	51.74	226.63	1.10	3.56	15.58
CO	13.00	42.04	184.13	2.00	6.47	28.33
VOC	0.25	8.08E-01	3.54	0.20	6.47E-01	2.83

Emission factors taken from Waukesha Product Bulletin 7011 1008 Emission Rates (pph) = g/hp-hr x Mfg. Site-rated hp / 453.59 g/lb Emission Rates (tpy) = Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
SO2	5.88E-04	6.75E-03	2.96E-02
PM	1.94E-02	2.23E-01	9.76E-01
PM10	1.94E-02	2.23E-01	9.76E-01
PM2.5	1.94E-02	2.23E-01	9.76E-01

Emission factors taken from AP-42, Table 3.2-3

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

1,125 °F	Stack exit temperature	Mfg. data
6,942 acfm	Stack flowrate	Mfg. data
1.17 ft	Stack exit diameter	Harvest Four Corners, LLC
1.07 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
108.23 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
19.08 ft	Stack height	Harvest Four Corners, LLC

Unit Number: 18a

Description: Waukesha F2895GSI (Turbocharged)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

562 hp

6,445 ft above MSL Elevation

607 hp Nameplate hp Mfg. data

NMAQB Site-rated hp NMAQB Procedure # 02.002-00 (loss of 3% for every 1,000 ft over 4,000 ft)

547 hp Mfg. Site-rated hp Mfg. product bulletin Power Derate,

S8154-6, April 2001

(loss of 2% for every 1,000 ft over 1,500 ft)

Engine Specifications

1200 rpmEngine rpmMfg. data2894 cu inEngine displacementMfg. data

128.28 psi BMEP Mfg. data (+[(792,000 x NMAQB Site-rated hp)

/ (rpm * in^3)])

Fuel Consumption

8,045 Btu/hp-hr Brake specific fuel consumption Mfg. data

4.53 MMBtu/hr Hourly fuel consumption Btu/hp-hr x NMAQB site-rated hp / 1,000,000

5,028 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC

39,640 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr
44.04 MMscf/yr Annual fuel consumption scf/hr x hr/yr / 1,000,000
900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Uncontrolled			Controlled		
	Emission			Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,	Factors,	Controlled Em	ission Rates,
	g/hp-hr	pph	tpy	g/hp-hr	pph	tpy
NOX	13.00	16.12	70.61	0.50	6.20E-01	2.72
CO	9.00	11.16	48.88	2.00	2.48	10.86
VOC	0.30	3.72E-01	1.63	0.20	2.48E-01	1.09

Uncontrolled emission factors taken from Waukesha data (EN: 125515, Date: 04/01, Ref. S-8483-4)

Controlled emission factors taken from EMIT datasheet

Emission Rates (pph) = $g/hp-hr \times NMAQB$ Site-rated hp / 453.59 g/lb Emission Rates (tpy) = Emission Rates (pph) $\times hr/yr$ / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
SO2	5.88E-04	2.66E-03	1.17E-02
PM	1.94E-02	8.78E-02	3.85E-01
PM10	1.94E-02	8.78E-02	3.85E-01
PM2.5	1.94E-02	8.78E-02	3.85E-01

Emission factors taken from AP-42, Table 3.2-3

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

1,070 °F	Stack exit temperature	Mfg. data
2,621 acfm	Stack flowrate	Mfg. data

0.83 ftStack exit diameterHarvest Four Corners, LLC0.55 ft/2Stack exit area3.1416 x ((ft / 2) ^2)80.10 fpsStack exit velocityacfm / ft/2 / 60 sec/min19.08 ftStack heightHarvest Four Corners, LLC

Unit Number: 19

Description: Waukesha F2895GSI (Turbocharged)

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

6,445 ft above MSL Elevation

754 hp Nameplate hp Mfg. data 699 hp NMAQB Site-rated hp

NMAQB Procedure # 02.002-00 (loss of 3% for every 1,000 ft over 4,000 ft)

679 hp Mfg. Site-rated hp Mfg. product bulletin Power Derate,

S8154-6, April 2001

(loss of 2% for every 1,000 ft over 1,500 ft)

Engine Specifications

1200 rpm Engine rpm Mfg. data Engine displacement 2894 cu in Mfg. data

159.34 psi **BMEP** Mfg. data (+[(792,000 x NMAQB Site-rated hp)

/ (rpm * in^3)])

Fuel Consumption

7.790 Btu/hp-hr Brake specific fuel consumption Mfg. data

5.44 MMBtu/hr Hourly fuel consumption Btu/hp-hr x NMAQB site-rated hp / 1,000,000

6,048 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 500 hr/yr Annual operating time Harvest Four Corners, LLC

2,721 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr 3.02 MMscf/yr Annual fuel consumption scf/hr x hr/yr / 1,000,000 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Uncontrolled		
	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	g/hp-hr	pph	tpy
NOX	22.00	33.89	8.47
CO	32.00	49.29	12.32
VOC	0.35	5.39E-01	1.35E-01

Uncontrolled emission factors taken from Waukesha data (EN: 125515, Date: 04/01, Ref. S-8483-4)

Uncontrolled Emission Rates (pph) = g/hp-hr x NMAQB Site-rated hp / 453.59 g/lb

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rate	
	lb/MMBtu	pph	tpy
SO2	5.88E-04	3.20E-03	8.00E-04
PM	1.94E-02	1.06E-01	2.64E-02
PM10	1.94E-02	1.06E-01	2.64E-02
PM2.5	1.94E-02	1.06E-01	2.64E-02

Emission factors taken from AP-42, Table 3.2-3

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

1,110 °F	Stack exit temperature	Mfg. data
3,275 acfm	Stack flowrate	Mfg. data
0.50 ft	Stack exit diameter	Harvest Four Corners, LLC

0.20 ft^2 3.1416 x ((ft / 2) ^2) Stack exit area Stack exit velocity 278.02 fps acfm / ft^2 / 60 sec/min 20.00 ft Harvest Four Corners, LLC Stack height

GRI-HAPCalc® 3.0 Engines Report

Facility ID: EL CEDRO Notes:

Operation Type: COMPRESSOR STATION

Facility Name: EL CEDRO COMPRESSOR STATION

User Name: Harvest Four Corners, LLC

Units of Measure: U.S. STANDARD

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero.

These emissions are indicated on the report with a "0".

Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

Engine Unit

Unit Name: 2895GSI#1

Hours of Operation: 8,760 Yearly Rate Power: 562 hp

Fuel Type: FIELD GAS

Engine Type: 4-Stroke, Rich Burn

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
<u>HAPs</u>			
Formaldehyde	0.2271	0.04188340 g/bhp-hr	GRI Field
Methanol	0.0361	0.00666670 g/bhp-hr	GRI Field
Benzene	0.1198	0.02210000 g/bhp-hr	GRI Field
Toluene	0.0385	0.00710000 g/bhp-hr	GRI Field
Xylenes(m,p,o)	0.0092	0.00170000 g/bhp-hr	GRI Field
Naphthalene	0.0015	0.00027540 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0003	0.00005050 g/bhp-hr	GRI Field
Acenaphthylene	0.0001	0.00001890 g/bhp-hr	GRI Field
Acenaphthene	0.0001	0.00001090 g/bhp-hr	GRI Field
Dibenzofuran	0.0000	0.00000570 g/bhp-hr	GRI Field
Fluorene	0.0001	0.00001720 g/bhp-hr	GRI Field
Anthracene	0.0000	0.00000400 g/bhp-hr	GRI Field
Phenanthrene	0.0002	0.00003210 g/bhp-hr	GRI Field
Fluoranthene	0.0001	0.00001260 g/bhp-hr	GRI Field
Pyrene	0.0000	0.00000860 g/bhp-hr	GRI Field
Benz(a)anthracene	0.0000	0.00000180 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(a)pyrene	0.0000	0.00000040 g/bhp-hr	GRI Field
Benzo(b)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(k)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(g,h,i)perylene	0.0000	0.00000070 g/bhp-hr	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.00000050 g/bhp-hr	GRI Field
Dibenz(a,h)anthracene	0.0000	0.00000020 g/bhp-hr	GRI Field
Total	0.4331		

02/06/2019 21:31:38 GRI-HAPCalc 3.0 Page 1 of 5

Criteria Pollutants

СО	49.2501	9.08349210 g/bhp-hr	GRI Field	
NMEHC	1.4312	0.26396820 g/bhp-hr	GRI Field	
NOx	40.8085	7.52654670 g/bhp-hr	GRI Field	
Other Pollutants				
Methane	5.3135	0.98000000 g/bhp-hr	GRI Field	
Ethylene	0.6868	0.12666670 g/bhp-hr	GRI Field	
Ethane	1.6627	0.30666670 g/bhp-hr	GRI Field	
Propylene	0.1301	0.02400000 g/bhp-hr	GRI Field	
Propane	0.5205	0.09600000 g/bhp-hr	GRI Field	

Unit Name: 2895GSI#2

Hours of Operation: 8,760 Yearly
Rate Power: 699 hp

Fuel Type: FIELD GAS

Engine Type: 4-Stroke, Rich Burn

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

		· ,	
Chemical Name	Emissions	Emission Factor	Emission Factor Set
HAPs			_
Formaldehyde	0.2824	0.04188340 g/bhp-hr	GRI Field
Methanol	0.0450	0.00666670 g/bhp-hr	GRI Field
Benzene	0.1490	0.02210000 g/bhp-hr	GRI Field
Toluene	0.0479	0.00710000 g/bhp-hr	GRI Field
Xylenes(m,p,o)	0.0115	0.00170000 g/bhp-hr	GRI Field
Naphthalene	0.0019	0.00027540 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0003	0.00005050 g/bhp-hr	GRI Field
Acenaphthylene	0.0001	0.00001890 g/bhp-hr	GRI Field
Acenaphthene	0.0001	0.00001090 g/bhp-hr	GRI Field
Dibenzofuran	0.0000	0.00000570 g/bhp-hr	GRI Field
Fluorene	0.0001	0.00001720 g/bhp-hr	GRI Field
Anthracene	0.0000	0.00000400 g/bhp-hr	GRI Field
Phenanthrene	0.0002	0.00003210 g/bhp-hr	GRI Field
Fluoranthene	0.0001	0.00001260 g/bhp-hr	GRI Field
Pyrene	0.0001	0.00000860 g/bhp-hr	GRI Field
Benz(a)anthracene	0.0000	0.00000180 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(a)pyrene	0.0000	0.00000040 g/bhp-hr	GRI Field
Benzo(b)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(k)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(g,h,i)perylene	0.0000	0.00000070 g/bhp-hr	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.00000050 g/bhp-hr	GRI Field
Dibenz(a,h)anthracene	0.0000	0.00000020 g/bhp-hr	GRI Field
Total	0.5387		
Criteria Pollutants			
СО	61.2559	9.08349210 g/bhp-hr	GRI Field
NMEHC	1.7801	0.26396820 g/bhp-hr	GRI Field
NOx	50.7564	7.52654670 g/bhp-hr	GRI Field

02/06/2019 21:31:38 GRI-HAPCalc 3.0 Page 2 of 5

Other Pollutants

Methane	6.6088	0.98000000 g/bhp-hr	GRI Field
Ethylene	0.8542	0.12666670 g/bhp-hr	GRI Field
Ethane	2.0681	0.30666670 g/bhp-hr	GRI Field
Propylene	0.1618	0.02400000 g/bhp-hr	GRI Field
Propane	0.6474	0.09600000 g/bhp-hr	GRI Field

Unit Name: 7042G

Hours of Operation: 8,760 Yearly
Rate Power: 873 hp

Fuel Type: FIELD GAS

Engine Type: 4-Stroke, Rich Burn

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

Chemical Name	<u>Emissions</u>	Emission Factor	Emission Factor Set
HAPs			
Formaldehyde	0.3528	0.04188340 g/bhp-hr	GRI Field
Methanol	0.0561	0.00666670 g/bhp-hr	GRI Field
Benzene	0.1861	0.02210000 g/bhp-hr	GRI Field
Toluene	0.0598	0.00710000 g/bhp-hr	GRI Field
Xylenes(m,p,o)	0.0143	0.00170000 g/bhp-hr	GRI Field
Naphthalene	0.0023	0.00027540 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0004	0.00005050 g/bhp-hr	GRI Field
Acenaphthylene	0.0002	0.00001890 g/bhp-hr	GRI Field
Acenaphthene	0.0001	0.00001090 g/bhp-hr	GRI Field
Dibenzofuran	0.0000	0.00000570 g/bhp-hr	GRI Field
Fluorene	0.0001	0.00001720 g/bhp-hr	GRI Field
Anthracene	0.0000	0.00000400 g/bhp-hr	GRI Field
Phenanthrene	0.0003	0.00003210 g/bhp-hr	GRI Field
Fluoranthene	0.0001	0.00001260 g/bhp-hr	GRI Field
Pyrene	0.0001	0.00000860 g/bhp-hr	GRI Field
Benz(a)anthracene	0.0000	0.00000180 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(a)pyrene	0.0000	0.00000040 g/bhp-hr	GRI Field
Benzo(b)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(k)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(g,h,i)perylene	0.0000	0.00000070 g/bhp-hr	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.00000050 g/bhp-hr	GRI Field
Dibenz(a,h)anthracene	0.0000	0.00000020 g/bhp-hr	GRI Field
otal	0.6727		
Criteria Pollutants			
CO	76.5042	9.08349210 g/bhp-hr	GRI Field
NMEHC	2.2232	0.26396820 g/bhp-hr	GRI Field
NOx	63.3911	7.52654670 g/bhp-hr	GRI Field
Other Pollutants			
Methane	8.2539	0.98000000 g/bhp-hr	GRI Field
Ethylene	1.0668	0.12666670 g/bhp-hr	GRI Field
Ethane	2.5828	0.30666670 g/bhp-hr	GRI Field
Propylene	0.2021	0.02400000 g/bhp-hr	GRI Field
	ODL HADO-I-		

02/06/2019 21:31:38 GRI-HAPCalc 3.0 Page 3 of 5

Propane 0.8085 0.09600000 g/bhp-hr **GRI Field**

Unit Name: 7042GL

Hours of Operation: 8,760 Yearly 1,142 hp Rate Power:

FIELD GAS Fuel Type:

4-Stroke, Lean Burn Engine Type:

FIELD > EPA > LITERATURE Emission Factor Set:

-NONE-Additional EF Set:

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
<u>HAPs</u>			
Formaldehyde	1.8543	0.16830000 g/bhp-hr	GRI Literature
Benzene	0.0573	0.00520000 g/bhp-hr	GRI Literature
Toluene	0.0231	0.00210000 g/bhp-hr	GRI Literature
Xylenes(m,p,o)	0.0154	0.00140000 g/bhp-hr	GRI Literature
Total	1.9501		

Unit Name: 7042GSI

Hours of Operation: 8,760 Yearly Rate Power: 1,467 hp

FIELD GAS Fuel Type:

4-Stroke, Rich Burn Engine Type:

FIELD > EPA > LITERATURE Emission Factor Set:

-NONE-Additional EF Set:

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
<u>HAPs</u>			
Formaldehyde	0.5928	0.04188340 g/bhp-hr	GRI Field
Methanol	0.0944	0.00666670 g/bhp-hr	GRI Field
Benzene	0.3128	0.02210000 g/bhp-hr	GRI Field
Toluene	0.1005	0.00710000 g/bhp-hr	GRI Field
Xylenes(m,p,o)	0.0241	0.00170000 g/bhp-hr	GRI Field
Naphthalene	0.0039	0.00027540 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0007	0.00005050 g/bhp-hr	GRI Field
Acenaphthylene	0.0003	0.00001890 g/bhp-hr	GRI Field
Acenaphthene	0.0002	0.00001090 g/bhp-hr	GRI Field
Dibenzofuran	0.0001	0.00000570 g/bhp-hr	GRI Field
Fluorene	0.0002	0.00001720 g/bhp-hr	GRI Field
Anthracene	0.0001	0.00000400 g/bhp-hr	GRI Field
Phenanthrene	0.0005	0.00003210 g/bhp-hr	GRI Field
Fluoranthene	0.0002	0.00001260 g/bhp-hr	GRI Field
Pyrene	0.0001	0.00000860 g/bhp-hr	GRI Field
Benz(a)anthracene	0.0000	0.00000180 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(a)pyrene	0.0000	0.00000040 g/bhp-hr	GRI Field
Benzo(b)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
Benzo(k)fluoranthene	0.0000	0.00000220 g/bhp-hr	GRI Field
19 21:31:38	GRI-HAPCalc	3.0	Page 4 of 5

02/06/2019

Benzo(g,h,i)perylene	0.0000	0.00000070 g/bhp-hr	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.00000050 g/bhp-hr	GRI Field
Dibenz(a,h)anthracene	0.0000	0.00000020 g/bhp-hr	GRI Field
Total	1.1309		
Criteria Pollutants			
СО	128.5586	9.08349210 g/bhp-hr	GRI Field
NMEHC	3.7359	0.26396820 g/bhp-hr	GRI Field
NOx	106.5232	7.52654670 g/bhp-hr	GRI Field
Other Pollutants			
Methane	13.8699	0.98000000 g/bhp-hr	GRI Field
Ethylene	1.7927	0.12666670 g/bhp-hr	GRI Field
Ethane	4.3403	0.30666670 g/bhp-hr	GRI Field
Propylene	0.3397	0.02400000 g/bhp-hr	GRI Field
Propane	1.3587	0.09600000 g/bhp-hr	GRI Field

02/06/2019 21:31:38 GRI-HAPCalc 3.0 Page 5 of 5

Unit Number: 15 & 16

Solar MARS 90-T12000S (w/SoLoNOx burners) Description:

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

6,445 ft above MSL Elevation

12,579 hp Nameplate hp Mfg. data 9,868 hp NMAQB Site-rated hp NMAQB Procedure # 02.002-00

(Nameplate hp x [29.9 - (ft above MSL

/ 1000)] / 29.9)

11,647 hp Mfg. Site-rated hp Mfg. data

Fuel Consumption

7,594 Btu/hp-hr Brake specific fuel consumption Mfg. data

88.45 MMBtu/hr Hourly fuel consumption Btu/hp-hr x Mfg. site-rated hp / 1,000,000

98,275 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC

MMBtu/hr x hr/yr 774,799 MMBtu/yr Annual fuel consumption 860.89 MMscf/yr scf/hr x hr/yr / 1,000,000 Annual fuel consumption 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

Pollutants	Uncontrolled Emission Rates,		
	pph	tpy	
NOX	13.45	58.92	
CO	10.78	47.20	
VOC	3.09	13.52	

Emission rates taken from the Solar Data Sheet

	Emission		
Pollutants	Factors,	Uncontrolled En	nission Rates,
	lb/MMBtu	pph	tpy
SO2	3.40E-03	3.01E-01	1.32
PM	6.60E-03	5.84E-01	2.56
PM10	6.60E-03	5.84E-01	2.56
PM2.5	6.60E-03	5.84E-01	2.56

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

845 °F	Stack exhaust temperature	Mfg. data
185,801 acfm	Stack flowrate	Calculated from mfg. data
4.95 ft	Stack exit diameter	Bypass stack drawing
19.24 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
160.92 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
41.50 ft	Stack height	Bypass stack drawing

GRI-HAPCalc® 3.0 **Turbine Report**

Facility ID: **EL CEDRO** Notes:

Operation Type: COMPRESSOR STATION

Facility Name: **EL CEDRO COMPRESSOR STATION**

User Name: Williams Four Corners LLC

Units of Measure: U.S. STANDARD

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero.

These emissions are indicated on the report with a "0".

Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

Turbine Unit

Unit Name: 90-T12000S

Hours of Operation: 8,760 Yearly Rate Power: 11647 hp NATURAL GAS Fuel Type:

FIELD > EPA > LITERATURE Emission Factor Set:

-NONE-Additional EF Set:

Calculated Emissions (ton/yr)

		(10111)	
Chemical Name	Emissions	Emission Factor	Emission Factor Set
<u>HAPs</u>			
Formaldehyde	1.9031	0.01693680 g/bhp-hr	GRI Field
Acetaldehyde	1.9479	0.01733570 g/bhp-hr	GRI Field
1,3-Butadiene	0.0069	0.00006160 g/bhp-hr	GRI Field
Acrolein	0.0292	0.00026000 g/bhp-hr	GRI Field
Propional	0.0972	0.00086500 g/bhp-hr	GRI Field
Propylene Oxide	0.0140	0.00012480 g/bhp-hr	EPA
n-Nitrosodimethylamine	0.0001	0.00000100 g/bhp-hr	EPA
Benzene	0.0605	0.00053840 g/bhp-hr	GRI Field
Toluene	0.0462	0.00041100 g/bhp-hr	GRI Field
Ethylbenzene	0.0116	0.00010330 g/bhp-hr	EPA
Xylenes(m,p,o)	0.1398	0.00124410 g/bhp-hr	GRI Field
2,2,4-Trimethylpentane	0.1804	0.00160530 g/bhp-hr	GRI Field
n-Hexane	0.1692	0.00150580 g/bhp-hr	GRI Field
Phenol	0.0124	0.00011010 g/bhp-hr	GRI Field
n-Nitrosomorpholine	0.0001	0.00000100 g/bhp-hr	EPA
Naphthalene	0.0009	0.00000760 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0001	0.00000130 g/bhp-hr	GRI Field
Biphenyl	0.0371	0.00033050 g/bhp-hr	GRI Field
Phenanthrene	0.0001	0.00000050 g/bhp-hr	GRI Field
Chrysene	0.0001	0.00000100 g/bhp-hr	GRI Field
Beryllium	0.0000	0.00000010 g/bhp-hr	GRI Field
Phosphorous	0.0073	0.00006520 g/bhp-hr	GRI Field
Chromium	0.0009	0.00000820 g/bhp-hr	GRI Field
Chromium	0.0006	0.00000560 g/bhp-hr	EPA
Manganese	0.0020	0.00001750 g/bhp-hr	GRI Field
Nickel	0.0007	0.00000610 g/bhp-hr	GRI Field
Cobalt	0.0002	0.00000160 g/bhp-hr	GRI Field
7 16:49:36	GRI-HAPC	alc 3.0	Page 1 of 2

01/09/2017

Arsenic	0.0001	0.00000060 g/bhp-hr	GRI Field
Selenium	0.0000	0.00000030 g/bhp-hr	GRI Field
Cadmium	0.0000	0.00000020 g/bhp-hr	GRI Field
Mercury	0.0003	0.00000270 g/bhp-hr	GRI Field
Lead	0.0004	0.00000340 g/bhp-hr	GRI Field
Total	4.6694		
Criteria Pollutants			
PM	3.5785	0.03184680 g/bhp-hr	EPA
СО	236.8981	2.10828420 g/bhp-hr	GRI Field
NMHC	21.7852	0.19387800 g/bhp-hr	GRI Field
NMEHC	1.3540	0.01205010 g/bhp-hr	EPA
NOx	140.6997	1.25216290 g/bhp-hr	GRI Field
SO2	0.1154	0.00102720 g/bhp-hr	GRI Field
Other Pollutants			
Methane	110.9262	0.98719230 g/bhp-hr	GRI Field
Acetylene	0.8051	0.00716540 g/bhp-hr	GRI Field
Ethylene	1.5680	0.01395450 g/bhp-hr	GRI Field
Ethane	16.8642	0.15008370 g/bhp-hr	GRI Field
Propane	1.7978	0.01600000 g/bhp-hr	GRI Field
Isobutane	0.5394	0.00480000 g/bhp-hr	GRI Field
Butane	0.5843	0.00520000 g/bhp-hr	GRI Field
Trimethylamine	0.0001	0.00000070 g/bhp-hr	EPA
Cyclopentane	0.1855	0.00165110 g/bhp-hr	GRI Field
Butyrald/Isobutyraldehyde	0.1506	0.00134000 g/bhp-hr	GRI Field
n-Pentane	9.1184	0.08115000 g/bhp-hr	GRI Field
Cyclohexane	0.6881	0.00612400 g/bhp-hr	GRI Field
Methylcyclohexane	0.9923	0.00883120 g/bhp-hr	GRI Field
n-Octane	0.3583	0.00318890 g/bhp-hr	GRI Field
1,3,5-Trimethylbenzene	0.3371	0.00300000 g/bhp-hr	GRI Field
n-Nonane	0.0598	0.00053260 g/bhp-hr	GRI Field
CO2	53,193.5357	473.39811550 g/bhp-hr	EPA
Vanadium	0.0001	0.00000070 g/bhp-hr	GRI Field
Copper	0.0023	0.00002050 g/bhp-hr	GRI Field
Molybdenum	0.0023	0.00002030 g/bhp-hr	GRI Field

0.0026

Barium

0.00002290 g/bhp-hr

GRI Field

Heater Exhaust Emissions Calculations

Unit Number: 20

Description: BS&B Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

0.50 MMBtu/hr Capacity Mfg. data 556 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC 4,380 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 4.87 MMscf/yr Annual fuel consumption 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rates,	
	lb/MMscf	pph	tpy
NOX	100	5.56E-02	2.43E-01
CO	84	4.67E-02	2.04E-01
VOC	5.5	3.06E-03	1.34E-02
SO2	0.6	3.33E-04	1.46E-03
PM	7.60	4.22E-03	1.85E-02
PM10	7.60	4.22E-03	1.85E-02
PM2.5	7.60	4.22E-03	1.85E-02
Lead	5.00E-04	2.78E-07	1.22E-06

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2 Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600 °F Exhaust temperature Mfg. data 71.86 acfm Stack flowrate ft/sec x ft^2 x 60 sec/min 0.5 ft Stack exit diameter Harvest Four Corners, LLC 0.20 ft^2 Stack exit area 3.1416 x ((ft / 2) ^2) 6.10 fps Stack exit velocity Estimate 16.67 ft Stack height Harvest Four Corners, LLC

Heater Exhaust Emissions Calculations

Unit Number: 28

Description: Pesco Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

0.70 MMBtu/hr Capacity Mfg. data 778 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC 6,132 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 6.81 MMscf/yr Annual fuel consumption 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rates,	
	lb/MMscf	pph	tpy
NOX	100	7.78E-02	3.41E-01
CO	84	6.53E-02	2.86E-01
VOC	5.5	4.28E-03	1.87E-02
SO2	0.6	4.67E-04	2.04E-03
PM	7.60	5.91E-03	2.59E-02
PM10	7.60	5.91E-03	2.59E-02
PM2.5	7.60	5.91E-03	2.59E-02
Lead	5.00E-04	3.89E-07	1.70E-06

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2 Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600 °F Exhaust temperature Mfg. data 127.76 acfm Stack flowrate ft/sec x ft^2 x 60 sec/min 0.67 ft Stack exit diameter Harvest Four Corners, LLC 0.35 ft^2 Stack exit area 3.1416 x ((ft / 2) ^2) 6.10 fps Stack exit velocity Estimate 14.25 ft Stack height Harvest Four Corners, LLC

GRI-HAPCalc® 3.0 External Combustion Devices Report

Facility ID: EL CEDRO Notes:

Operation Type: COMPRESSOR STATION

Facility Name: EL CEDRO COMPRESSOR STATION

User Name: Williams Four Corners LLC

Units of Measure: U.S. STANDARD

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero.

These emissions are indicated on the report with a "0".

Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

External Combustion Devices

Unit Name: BS&B

Hours of Operation: 8,760 Yearly
Heat Input: 0.50 MMBtu/hr

Fuel Type: NATURAL GAS

Device Type: HEATER

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
HAPs			
7,12-Dimethylbenz(a)anthracene	0.0000	0.0000000157 lb/MMBtu	EPA
Formaldehyde	0.0018	0.0008440090 lb/MMBtu	GRI Field
Methanol	0.0021	0.0009636360 lb/MMBtu	GRI Field
Acetaldehyde	0.0016	0.0007375920 lb/MMBtu	GRI Field
1,3-Butadiene	0.0007	0.0003423350 lb/MMBtu	GRI Field
Benzene	0.0016	0.0007480470 lb/MMBtu	GRI Field
Toluene	0.0022	0.0010163310 lb/MMBtu	GRI Field
Ethylbenzene	0.0046	0.0021128220 lb/MMBtu	GRI Field
Xylenes(m,p,o)	0.0029	0.0013205140 lb/MMBtu	GRI Field
2,2,4-Trimethylpentane	0.0062	0.0028417580 lb/MMBtu	GRI Field
n-Hexane	0.0031	0.0014070660 lb/MMBtu	GRI Field
Phenol	0.0000	0.0000001070 lb/MMBtu	GRI Field
Styrene	0.0046	0.0020788960 lb/MMBtu	GRI Field
Naphthalene	0.0000	0.0000005100 lb/MMBtu	GRI Field
2-Methylnaphthalene	0.0000	0.0000001470 lb/MMBtu	GRI Field
Acenaphthylene	0.0000	0.0000000670 lb/MMBtu	GRI Field
Biphenyl	0.0000	0.0000004730 lb/MMBtu	GRI Field
Acenaphthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
Fluorene	0.0000	0.0000000800 lb/MMBtu	GRI Field
Anthracene	0.0000	0.0000000870 lb/MMBtu	GRI Field
Phenanthrene	0.0000	0.0000000600 lb/MMBtu	GRI Field
Fluoranthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
Pyrene	0.0000	0.0000000830 lb/MMBtu	GRI Field
Benz(a)anthracene	0.0000	0.0000000870 lb/MMBtu	GRI Field
Chrysene	0.0000	0.0000001170 lb/MMBtu	GRI Field
Benzo(a)pyrene	0.0000	0.0000000700 lb/MMBtu	GRI Field
017 17:22:44	GRI-HAPCalc 3.0		Page 1 of 4

Benzo(b)fluoranthene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.0000007600 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000	0.0000002600 lb/MMBtu	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001200 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000	0.0000001030 lb/MMBtu	GRI Field
Lead	0.0000	0.0000004902 lb/MMBtu	EPA
Total	0.0314		
Criteria Pollutants			
VOC	0.0118	0.0053921569 lb/MMBtu	EPA
PM	0.0163	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.0122	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0041	0.0018627451 lb/MMBtu	EPA
СО	0.0709	0.0323636360 lb/MMBtu	GRI Field
NMHC	0.0187	0.0085294118 lb/MMBtu	EPA
NOx	0.2125	0.0970167730 lb/MMBtu	GRI Field
SO2	0.0013	0.0005880000 lb/MMBtu	EPA
Other Pollutants			
Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA
Methane	0.0230	0.0105212610 lb/MMBtu	GRI Field
Acetylene	0.0307	0.0140000000 lb/MMBtu	GRI Field
Ethylene	0.0021	0.0009476310 lb/MMBtu	GRI Field
Ethane	0.0058	0.0026312210 lb/MMBtu	GRI Field
Propylene	0.0051	0.0023454550 lb/MMBtu	GRI Field
Propane	0.0023	0.0010686280 lb/MMBtu	GRI Field
Isobutane	0.0032	0.0014640770 lb/MMBtu	GRI Field
Butane	0.0030	0.0013766990 lb/MMBtu	GRI Field
Cyclopentane	0.0025	0.0011304940 lb/MMBtu	GRI Field
Pentane	0.0076	0.0034671850 lb/MMBtu	GRI Field
n-Pentane	0.0031	0.0014221310 lb/MMBtu	GRI Field
Cyclohexane	0.0020	0.0009183830 lb/MMBtu	GRI Field
Methylcyclohexane	0.0048	0.0022011420 lb/MMBtu	GRI Field
n-Octane	0.0063	0.0028538830 lb/MMBtu	GRI Field
1,2,3-Trimethylbenzene	0.0075	0.0034224540 lb/MMBtu	GRI Field
1,2,4-Trimethylbenzene	0.0075	0.0034224540 lb/MMBtu	GRI Field
1,3,5-Trimethylbenzene	0.0075	0.0034224540 lb/MMBtu	GRI Field
n Managa	0.0000	0.0000004470 III /NAMPU	ODLE:-I-I

0.0080

257.6471

0.0036604170 lb/MMBtu

117.6470588235 lb/MMBtu

GRI Field

EPA

Unit Name: PESCO

n-Nonane

CO2

Hours of Operation: 8,760 Yearly
Heat Input: 0.70 MMBtu/hr

Fuel Type: NATURAL GAS

Device Type: HEATER

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

<u>Chemical Name</u> <u>Emissions</u> <u>Emission Factor</u> <u>Emission Factor Set</u>

01/10/2017 17:22:44 GRI-HAPCalc 3.0 Page 2 of 4

HAPs

<u>APs</u>			
3-Methylchloranthrene	0.0000	0.0000000018 lb/MMBtu	EPA
7,12-Dimethylbenz(a)anthracene	0.0000	0.0000000157 lb/MMBtu	EPA
Formaldehyde	0.0026	0.0008440090 lb/MMBtu	GRI Field
Methanol	0.0030	0.0009636360 lb/MMBtu	GRI Field
Acetaldehyde	0.0023	0.0007375920 lb/MMBtu	GRI Field
1,3-Butadiene	0.0010	0.0003423350 lb/MMBtu	GRI Field
Benzene	0.0023	0.0007480470 lb/MMBtu	GRI Field
Toluene	0.0031	0.0010163310 lb/MMBtu	GRI Field
Ethylbenzene	0.0065	0.0021128220 lb/MMBtu	GRI Field
Xylenes(m,p,o)	0.0040	0.0013205140 lb/MMBtu	GRI Field
2,2,4-Trimethylpentane	0.0087	0.0028417580 lb/MMBtu	GRI Field
n-Hexane	0.0043	0.0014070660 lb/MMBtu	GRI Field
Phenol	0.0000	0.0000001070 lb/MMBtu	GRI Field
Styrene	0.0064	0.0020788960 lb/MMBtu	GRI Field
Naphthalene	0.0000	0.0000005100 lb/MMBtu	GRI Field
2-Methylnaphthalene	0.0000	0.0000001470 lb/MMBtu	GRI Field
Acenaphthylene	0.0000	0.0000000670 lb/MMBtu	GRI Field
Biphenyl	0.0000	0.0000004730 lb/MMBtu	GRI Field
Acenaphthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
Fluorene	0.0000	0.0000000800 lb/MMBtu	GRI Field
Anthracene	0.0000	0.0000000870 lb/MMBtu	GRI Field
Phenanthrene	0.0000	0.0000000600 lb/MMBtu	GRI Field
Fluoranthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
Pyrene	0.0000	0.0000000830 lb/MMBtu	GRI Field
Benz(a)anthracene	0.0000	0.0000000870 lb/MMBtu	GRI Field
Chrysene	0.0000	0.0000001170 lb/MMBtu	GRI Field
Benzo(a)pyrene	0.0000	0.0000000700 lb/MMBtu	GRI Field
Benzo(b)fluoranthene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.0000007600 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000	0.0000002600 lb/MMBtu	GRI Field
Indeno(1,2,3-c,d)pyrene	0.0000	0.0000001200 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000	0.0000001030 lb/MMBtu	GRI Field
Lead	0.0000	0.0000004902 lb/MMBtu	EPA
	0.0442		

Total 0.0442

Criteria Pollutants

VOC	0.0165	0.0053921569 lb/MMBtu	EPA
PM	0.0228	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.0171	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0057	0.0018627451 lb/MMBtu	EPA
CO	0.0992	0.0323636360 lb/MMBtu	GRI Field
NMHC	0.0262	0.0085294118 lb/MMBtu	EPA
NOx	0.2975	0.0970167730 lb/MMBtu	GRI Field
SO2	0.0018	0.0005880000 lb/MMBtu	EPA

Other Pollutants

Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA
Methane	0.0323	0.0105212610 lb/MMBtu	GRI Field
Acetylene	0.0429	0.0140000000 lb/MMBtu	GRI Field
Ethylene	0.0029	0.0009476310 lb/MMBtu	GRI Field
Ethane	0.0081	0.0026312210 lb/MMBtu	GRI Field
Propylene	0.0072	0.0023454550 lb/MMBtu	GRI Field
Propane	0.0033	0.0010686280 lb/MMBtu	GRI Field

01/10/2017 17:22:44 GRI-HAPCalc 3.0 Page 3 of 4

Isobutane	0.0045	0.0014640770 lb/MMBtu	GRI Field
Butane	0.0042	0.0013766990 lb/MMBtu	GRI Field
Cyclopentane	0.0035	0.0011304940 lb/MMBtu	GRI Field
Pentane	0.0106	0.0034671850 lb/MMBtu	GRI Field
n-Pentane	0.0044	0.0014221310 lb/MMBtu	GRI Field
Cyclohexane	0.0028	0.0009183830 lb/MMBtu	GRI Field
Methylcyclohexane	0.0067	0.0022011420 lb/MMBtu	GRI Field
n-Octane	0.0088	0.0028538830 lb/MMBtu	GRI Field
1,2,3-Trimethylbenzene	0.0105	0.0034224540 lb/MMBtu	GRI Field
1,2,4-Trimethylbenzene	0.0105	0.0034224540 lb/MMBtu	GRI Field
1,3,5-Trimethylbenzene	0.0105	0.0034224540 lb/MMBtu	GRI Field
n-Nonane	0.0112	0.0036604170 lb/MMBtu	GRI Field
CO2	360.7059	117.6470588235 lb/MMBtu	EPA

01/10/2017 17:22:44 GRI-HAPCalc 3.0 Page 4 of 4

Compressor Blowdown Emissions Calculations

Unit Number: SSM (associated with the Units 1-5 compressors)
Description: Compressor & Piping Associated With Station

Throughput

5 # of units Number of units Harvest Four Corners, LLC
504 events/yr/unit Blowdowns per year per unit Harvest Four Corners, LLC
7,230 scf/event Gas loss per blowdown Harvest Four Corners, LLC

18,219,600 scf/yr Annual gas loss # of units x events/yr/unit x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	2.522E-04	2.30
Benzene	4.118E-07	3.75E-03
Ethylbenzene	0.000E+00	0.00E+00
n-Hexane	1.817E-06	1.66E-02
Isooctane	0.000E+00	0.00E+00
Toluene	1.214E-06	1.11E-02
Xylene	5.597E-07	5.10E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
, in the second	%	lb/lb-mole	lb/scf
Carbon dioxide	10.2645	44.01	1.191E-02
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.0578	28.01	4.267E-05
Methane	88.6428	16.04	3.748E-02
Ethane	0.8409	30.07	6.665E-04
Propane	0.1442	44.09	1.676E-04
Isobutane	0.0170	58.12	2.604E-05
n-Butane	0.0185	58.12	2.834E-05
Isopentane	0.0045	72.15	8.558E-06
n-Pentane	0.0041	72.15	7.797E-06
Cyclopentane	0.0001	70.14	1.849E-07
n-Hexane	8000.0	86.17	1.817E-06
Cyclohexane	0.0003	84.16	6.655E-07
Other hexanes	0.0011	86.18	2.499E-06
Heptanes	0.0006	100.20	1.585E-06
Methylcyclohexane	0.0008	98.19	2.070E-06
Isooctane	0.0000	100.21	0.000E+00
Benzene	0.0002	78.11	4.118E-07
Toluene	0.0005	92.14	1.214E-06
Ethylbenzene	0.0000	106.17	0.000E+00
Xylenes	0.0002	106.17	5.597E-07
C8+ Heavies	0.0010	110.00	2.899E-06
Total	99.9999		
Total VOC			2.522E-04

Gas composition obtained from the El Cedro Trunk D Inlet [Manzanares] extended gas analysis dated Sept. 27, 2022. Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Compressor Blowdown Emissions Calculations

Unit Number: SSM (associated with the Units 6-10 compressors)
Description: Compressor & Piping Associated With Station

Throughput

5 # of units Number of units Harvest Four Corners, LLC
178 events/yr/unit Blowdowns per year per unit Harvest Four Corners, LLC
6,200 scf/event Gas loss per blowdown Harvest Four Corners, LLC

5,518,000 scf/yr Annual gas loss # of units x events/yr/unit x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.091E-02	30.10
Benzene	3.809E-05	1.05E-01
Ethylbenzene	3.358E-06	9.26E-03
n-Hexane	3.352E-04	9.25E-01
Isooctane	1.902E-05	5.25E-02
Toluene	1.251E-04	3.45E-01
Xylene	4.869E-05	1.34E-01

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.0757	44.01	1.248E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3212	28.01	2.371E-04
Methane	82.5476	16.04	3.490E-02
Ethane	8.7394	30.07	6.927E-03
Propane	3.6714	44.09	4.267E-03
Isobutane	0.7166	58.12	1.098E-03
n-Butane	1.3192	58.12	2.021E-03
Isopentane	0.4032	72.15	7.668E-04
n-Pentane	0.2978	72.15	5.663E-04
Cyclopentane	0.0180	70.14	3.328E-05
n-Hexane	0.1476	86.17	3.352E-04
Cyclohexane	0.0458	84.16	1.016E-04
Other hexanes	0.3015	86.18	6.849E-04
Heptanes	0.1171	100.20	3.093E-04
Methylcyclohexane	0.1124	98.19	2.909E-04
Isooctane	0.0072	100.21	1.902E-05
Benzene	0.0185	78.11	3.809E-05
Toluene	0.0515	92.14	1.251E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0174	106.17	4.869E-05
C8+ Heavies	0.0698	110.00	2.024E-04
Total	100.0001		
Total VOC			1.091E-02

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022. Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Turbine & Compressor Blowdown Emissions Calculations

Unit Number: SSM (associated with the Units 15 & 16 compressors)
Description: Turbine, Compressor & Piping Associated With Station

Throughput

2 # of units
Number of units
Harvest Four Corners, LLC
228 events/yr/unit
Blowdowns per year per unit
Harvest Four Corners, LLC
4,800 scf/event
Gas loss per blowdown (compressor)
Harvest Four Corners, LLC
Gas loss per blowdown (turbine)
Harvest Four Corners, LLC
5,380,800 scf/yr
Annual gas loss
of units x events/yr/unit

x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	2.522E-04	0.68
Benzene	4.118E-07	1.11E-03
Ethylbenzene	0.000E+00	0.00E+00
n-Hexane	1.817E-06	4.89E-03
Isooctane	0.000E+00	0.00E+00
Toluene	1.214E-06	3.27E-03
Xylene	5.597E-07	1.51E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission	
Components	Percents,	Weights,	Factors,	
	%	lb/lb-mole	lb/scf	
Carbon dioxide	10.2645	44.01	1.191E-02	
Hydrogen sulfide	0.0000	34.07	0.000E+00	
Nitrogen	0.0578	28.01	4.267E-05	
Methane	88.6428	16.04	3.748E-02	
Ethane	0.8409	30.07	6.665E-04	
Propane	0.1442	44.09	1.676E-04	
Isobutane	0.0170	58.12	2.604E-05	
n-Butane	0.0185	58.12	2.834E-05	
Isopentane	0.0045	72.15	8.558E-06	
n-Pentane	0.0041	72.15	7.797E-06	
Cyclopentane	0.0001	70.14	1.849E-07	
n-Hexane	0.0008	86.17	1.817E-06	
Cyclohexane	0.0003	84.16	6.655E-07	
Other hexanes	0.0011	86.18	2.499E-06	
Heptanes	0.0006	100.20	1.585E-06	
Methylcyclohexane	0.0008	98.19	2.070E-06	
Isooctane	0.0000	100.21	0.000E+00	
Benzene	0.0002	78.11	4.118E-07	
Toluene	0.0005	92.14	1.214E-06	
Ethylbenzene	0.0000	106.17	0.000E+00	
Xylenes	0.0002	106.17	5.597E-07	
C8+ Heavies	0.0010	110.00	2.899E-06	
Total	99.9999			
Total VOC			2.522E-04	

Gas composition obtained from the El Cedro Trunk D Inlet [Manzanares] extended gas analysis dated Sept. 27, 2022. Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Equipment Leaks Emissions Calculations

Unit Number: F1 (Manzanares components)

Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

	Number of	Emission	Emission	Uncontro	olled TOC
Equipment	Components,	Factors,	Factors,	Emissio	n Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	630	0.0045	0.0099	6.24	27.32
Connectors	643	0.0002	0.0004	0.28	1.24
Pump Seals	0	0.0024	0.0053	0.00	0.00
Compressor Seals	52	0.0088	0.0194	1.01	4.41
Pressure Relief Valves	49	0.0088	0.0194	0.95	4.16
Open-Ended Lines	163	0.0020	0.0044	0.72	3.14
Tota				9.19	40.26

Number of components based on the numbers of compressors and dehydrators at the station (see next page)

Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

	Mole	Molecular	Component	Weight	Uncon	trolled
Components	Percents,	Weights,	Weights,	Percent	Emissio	n Rates,
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy
Carbon dioxide	10.2645	44.010	4.517	31.006	2.85E+00	1.25E+01
Hydrogen sulfide	0.0000	34.070	0.000	0.000	0.00E+00	0.00E+00
Nitrogen	0.0578	28.013	0.016	0.111	1.02E-02	4.47E-02
Methane	88.6428	16.043	14.221	97.607	8.97E+00	3.93E+01
Ethane	0.8409	30.070	0.253	1.736	1.60E-01	6.99E-01
Propane	0.1442	44.097	0.064	0.436	4.01E-02	1.76E-01
Isobutane	0.0170	58.123	0.010	0.068	6.23E-03	2.73E-02
n-Butane	0.0185	58.123	0.011	0.074	6.78E-03	2.97E-02
Isopentane	0.0045	72.150	0.003	0.022	2.05E-03	8.97E-03
n-Pentane	0.0041	72.150	0.003	0.020	1.87E-03	8.17E-03
Cyclopentane	0.0001	70.134	0.000	0.000	4.43E-05	1.94E-04
n-Hexane	0.0008	86.177	0.001	0.005	4.35E-04	1.91E-03
Cyclohexane	0.0003	84.161	0.000	0.002	1.59E-04	6.98E-04
Other hexanes	0.0011	86.177	0.001	0.007	5.98E-04	2.62E-03
Heptanes	0.0006	100.204	0.001	0.004	3.79E-04	1.66E-03
Methylcyclohexane	0.0008	98.188	0.001	0.005	4.96E-04	2.17E-03
Isooctane	0.0000	114.231	0.000	0.000	0.00E+00	0.00E+00
Benzene	0.0002	78.114	0.000	0.001	9.86E-05	4.32E-04
Toluene	0.0005	92.141	0.000	0.003	2.91E-04	1.27E-03
Ethylbenzene	0.0000	106.167	0.000	0.000	0.00E+00	0.00E+00
Xylenes	0.0002	106.167	0.000	0.001	1.34E-04	5.87E-04
C8+ Heavies	0.0010	114.231	0.001	0.008	7.21E-04	3.16E-03
Total	99.9999		14.570			
Total VOC				0.657	6.04E-02	2.65E-01

Gas composition obtained from the El Cedro Trunk D Inlet [Manzanares] extended gas analysis dated Sept. 27, 2022.

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

 $Uncontrolled\ Emission\ Rates\ (pph) = Total\ Uncontrolled\ Emission\ Rate\ (from\ Table\ 1\ above)\ (pph)\ x\ (\%\ /\ 100)$

Uncontrolled Emission Rates (tpy) = Total Uncontrolled Emission Rate (from Table 1 above) (tpy) x (% / 100)

Harvest Four Corners, LLC Apr. 2023; Rev.0

Equipment Leaks Emissions Calculations

Unit Number: F1 (Manzanares components)

Description: Valves, Connectors, Seals & Open-Ended Lines

Component Count

Number of Compressors at the Facility: 7
Number of Dehydrators at the Facility: 0

	Equipment Count				Instrument Count				
					Pressure				
Process Equipment Description			Pump	Compressor	Relief	Open-			
	Valves	Connectors	Seals	Seals	Valves	End	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	308	413	0	28	42	77	0	28	63
Components from dehydrators	0	0	0	0	0	0	0	0	0
Total	429	486	0	52	49	125	3	38	75
Adjusted Total	630	643	0	52	49	163			

The following additions are included in the Adjusted Total:

The component count is based on the evaluation of a comparable facility (Sim Mesa Central Delivery Point)

¹ valve is added for each open end line

² connectors are added for each flow meter

² valves, 2 connectors and 1 open end line are added for each level gauge

¹ connector is added for each pressure gauge

Equipment Leaks Emissions Calculations

Unit Number: F1 (Trunk L components)

Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

	Number of	Emission	Emission	Uncontro	lled TOC
Equipment	Components,	Factors,	Factors,	Emissio	n Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	504	0.0045	0.0099	4.99	21.85
Connectors	491	0.0002	0.0004	0.22	0.95
Pump Seals	0	0.0024	0.0053	0.00	0.00
Compressor Seals	44	0.0088	0.0194	0.85	3.73
Pressure Relief Valves	37	0.0088	0.0194	0.72	3.14
Open-Ended Lines	133	0.0020	0.0044	0.59	2.56
Total				7.36	32.23

Number of components based on the numbers of compressors and dehydrators at the station (see next page)

Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

	Mole	Molecular	Component	Weight	Uncor	trolled
Components	Percents,	Weights,	Weights,	Percent	Emissio	n Rates,
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy
Carbon dioxide	1.0757	44.010	0.473	2.365	1.74E-01	7.62E-01
Hydrogen sulfide	0.0000	34.070	0.000	0.000	0.00E+00	0.00E+00
Nitrogen	0.3212	28.013	0.090	0.450	3.31E-02	1.45E-01
Methane	82.5476	16.043	13.243	66.167	4.87E+00	2.13E+01
Ethane	8.7394	30.070	2.628	13.130	9.66E-01	4.23E+00
Propane	3.6714	44.097	1.619	8.089	5.95E-01	2.61E+00
Isobutane	0.7166	58.123	0.417	2.081	1.53E-01	6.71E-01
n-Butane	1.3192	58.123	0.767	3.831	2.82E-01	1.23E+00
Isopentane	0.4032	72.150	0.291	1.453	1.07E-01	4.68E-01
n-Pentane	0.2978	72.150	0.215	1.074	7.90E-02	3.46E-01
Cyclopentane	0.0180	70.134	0.013	0.063	4.64E-03	2.03E-02
n-Hexane	0.1476	86.177	0.127	0.636	4.68E-02	2.05E-01
Cyclohexane	0.0458	84.161	0.039	0.193	1.42E-02	6.21E-02
Other hexanes	0.3015	86.177	0.260	1.298	9.55E-02	4.18E-01
Heptanes	0.1171	100.204	0.117	0.586	4.31E-02	1.89E-01
Methylcyclohexane	0.1124	98.188	0.110	0.551	4.06E-02	1.78E-01
Isooctane	0.0072	114.231	0.008	0.041	3.02E-03	1.32E-02
Benzene	0.0185	78.114	0.014	0.072	5.31E-03	2.33E-02
Toluene	0.0515	92.141	0.047	0.237	1.74E-02	7.64E-02
Ethylbenzene	0.0012	106.167	0.001	0.006	4.68E-04	2.05E-03
Xylenes	0.0174	106.167	0.018	0.092	6.79E-03	2.97E-02
C8+ Heavies	0.0698	114.231	0.080	0.398	2.93E-02	1.28E-01
Total	100.0001		20.015			
Total VOC				20.703	1.52E+00	6.67E+00

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022.

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

 $Uncontrolled\ Emission\ Rates\ (pph) = Total\ Uncontrolled\ Emission\ Rate\ (from\ Table\ 1\ above)\ (pph)\ x\ (\%\ /\ 100)$

Uncontrolled Emission Rates (tpy) = Total Uncontrolled Emission Rate (from Table 1 above) (tpy) x (% / 100)

Harvest Four Corners, LLC Apr. 2023; Rev.0

Equipment Leaks Emissions Calculations

Unit Number: F1 (Trunk L components)

Description: Valves, Connectors, Seals & Open-Ended Lines

Component Count

Number of Compressors at the Facility: 5
Number of Dehydrators at the Facility: 0

	Equipment Count In				Ins	Instrument Count			
					Pressure				
Process Equipment Description			Pump	Compressor	Relief	Open-			
	Valves	Connectors	Seals	Seals	Valves	End	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	220	295	0	20	30	55	0	20	45
Components from dehydrators	0	0	0	0	0	0	0	0	0
Total	341	368	0	44	37	103	3	30	57
Adjusted Total	504	491	0	44	37	133			

The following additions are included in the Adjusted Total:

The component count is based on the evaluation of a comparable facility (Sim Mesa Central Delivery Point)

¹ valve is added for each open end line

² connectors are added for each flow meter

² valves, 2 connectors and 1 open end line are added for each level gauge

¹ connector is added for each pressure gauge

Malfunction Emissions Data and Calculations

Unit Number: M1

Description: Malfunctions

Emission Rates

Pollutants	Weight Percents, %	Uncontrolled Emission Rates, tpy
VOC		10.00
Benzene	3.491E-01	3.49E-02
Ethylbenzene	3.078E-02	3.08E-03
n-Hexane	3.073E+00	3.07E-01
Isooctane	1.743E-01	1.74E-02
Toluene	1.146E+00	1.15E-01
Xylene	4.463E-01	4.46E-02

Weight percents calculated from gas composition (see table below)

Uncontrolled Emission Rates (tpy) = VOC Emission Rate (tpy) x (% / 100)

Gas Composition

	Mole	Molecular	Component	Weight
Components	Percents,	Weights,	Weights,	Percent,
· ·	%	lb/lb-mole	lb/lb-mole	%
Carbon dioxide	1.0757	44.01		
Hydrogen sulfide	0.0000	34.07		
Nitrogen	0.3212	28.01		
Methane	82.5476	16.04		
Ethane	8.7394	30.07		
Propane	3.6714	44.09	1.6187	3.911E+01
Isobutane	0.7166	58.12	0.4165	1.006E+01
n-Butane	1.3192	58.12	0.7667	1.852E+01
Isopentane	0.4032	72.15	0.2909	7.028E+00
n-Pentane	0.2978	72.15	0.2149	5.191E+00
Cyclopentane	0.0180	70.14	0.0126	3.050E-01
n-Hexane	0.1476	86.17	0.1272	3.073E+00
Cyclohexane	0.0458	84.16	0.0385	9.312E-01
Other hexanes	0.3015	86.18	0.2598	6.277E+00
Heptanes	0.1171	100.20	0.1173	2.835E+00
Methylcyclohexane	0.1124	98.19	0.1104	2.666E+00
Isooctane	0.0072	100.21	0.0072	1.743E-01
Benzene	0.0185	78.11	0.0145	3.491E-01
Toluene	0.0515	92.14	0.0475	1.146E+00
Ethylbenzene	0.0012	106.17	0.0013	3.078E-02
Xylenes	0.0174	106.17	0.0185	4.463E-01
C8+ Heavies	0.0698	110.00	0.0768	1.855E+00
Total	100.0001			
Total VOC			4.1392	

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022. Component Weights (lb/lb-mole) = (% / 100) x Molecular Weights (lb/lb-mole)

Weight Percents (%) = 100 x Component Weights (lb/lb-mole) / Total VOC Weight (lb/lb-mole)

Pig Receiver Emissions Calculations

Unit Number: PR1

Description: G-12 Pig Receiver

Throughput

184 events/yrBlowdowns per yearHarvest Four Corners, LLC1,000 scf/eventGas loss per blowdownHarvest Four Corners, LLC184,000 scf/yrAnnual gas lossevents/yr x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.091E-02	1.00
Benzene	3.809E-05	3.50E-03
Ethylbenzene	3.358E-06	3.09E-04
n-Hexane	3.352E-04	3.08E-02
Isooctane	1.902E-05	1.75E-03
Toluene	1.251E-04	1.15E-02
Xylene	4.869E-05	4.48E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.0757	44.01	1.248E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3212	28.01	2.371E-04
Methane	82.5476	16.04	3.490E-02
Ethane	8.7394	30.07	6.927E-03
Propane	3.6714	44.09	4.267E-03
Isobutane	0.7166	58.12	1.098E-03
n-Butane	1.3192	58.12	2.021E-03
Isopentane	0.4032	72.15	7.668E-04
n-Pentane	0.2978	72.15	5.663E-04
Cyclopentane	0.0180	70.14	3.328E-05
n-Hexane	0.1476	86.17	3.352E-04
Cyclohexane	0.0458	84.16	1.016E-04
Other hexanes	0.3015	86.18	6.849E-04
Heptanes	0.1171	100.20	3.093E-04
Methylcyclohexane	0.1124	98.19	2.909E-04
Isooctane	0.0072	100.21	1.902E-05
Benzene	0.0185	78.11	3.809E-05
Toluene	0.0515	92.14	1.251E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0174	106.17	4.869E-05
C8+ Heavies	0.0698	110.00	2.024E-04
Total	100.0001		
Total VOC			1.091E-02

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022. Emission Factors (lb/scf) = $(\% / 100) \times lb/lb-mole / 379.4 scf/lb-mole$

Pig Receiver Emissions Calculations

Unit Number: PR2

Description: 11-S Pig Receiver

Throughput

550 events/yrBlowdowns per yearHarvest Four Corners, LLC3,000 scf/eventGas loss per blowdownHarvest Four Corners, LLC1,650,000 scf/yrAnnual gas lossevents/yr x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.091E-02	9.00
Benzene	3.809E-05	3.14E-02
Ethylbenzene	3.358E-06	2.77E-03
n-Hexane	3.352E-04	2.77E-01
Isooctane	1.902E-05	1.57E-02
Toluene	1.251E-04	1.03E-01
Xylene	4.869E-05	4.02E-02

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.0757	44.01	1.248E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3212	28.01	2.371E-04
Methane	82.5476	16.04	3.490E-02
Ethane	8.7394	30.07	6.927E-03
Propane	3.6714	44.09	4.267E-03
Isobutane	0.7166	58.12	1.098E-03
n-Butane	1.3192	58.12	2.021E-03
Isopentane	0.4032	72.15	7.668E-04
n-Pentane	0.2978	72.15	5.663E-04
Cyclopentane	0.0180	70.14	3.328E-05
n-Hexane	0.1476	86.17	3.352E-04
Cyclohexane	0.0458	84.16	1.016E-04
Other hexanes	0.3015	86.18	6.849E-04
Heptanes	0.1171	100.20	3.093E-04
Methylcyclohexane	0.1124	98.19	2.909E-04
Isooctane	0.0072	100.21	1.902E-05
Benzene	0.0185	78.11	3.809E-05
Toluene	0.0515	92.14	1.251E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0174	106.17	4.869E-05
C8+ Heavies	0.0698	110.00	2.024E-04
Total	100.0001		
Total VOC			1.091E-02

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022. Emission Factors (lb/scf) = $(\% / 100) \times lb/lb-mole / 379.4 scf/lb-mole$

Storage Tank Emissions Calculations

Unit Number: T501 & T91025
Description: Produced Water Tank

Note: The data on this worksheet applies to each individual emissions unit identified above.

Throughput

200 bbl/turnover Tank capacity Harvest Four Corners, LLC

67.20 turnover/yr Turnovers per year Estimated

13,440 bbl/yr Annual liquid throughput bbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.76
Benzene	0.007	4.70E-02
Ethylbenzene	0.0007	4.70E-03
n-Hexane	0.022	1.48E-01
Toluene	0.009	6.05E-02
Xylene	0.006	4.03E-02

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

Storage Tank Emissions Calculations

Unit Number: T91024

Description: Produced Water Tank

Note: The data on this worksheet applies to each individual emissions unit identified above.

Throughput

300 bbl/turnover Tank capacity Harvest Four Corners, LLC

134.4 turnover/yr Turnovers per year Estimated

40,320 bbl/yr Annual liquid throughput bbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	5.28
Benzene	0.007	1.41E-01
Ethylbenzene	0.0007	1.41E-02
n-Hexane	0.022	4.44E-01
Toluene	0.009	1.81E-01
Xylene	0.006	1.21E-01

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

Storage Tank Emissions Calculations

Unit Number: BGT-1

Description: Produced Water Tank

Note: The data on this worksheet applies to each individual emissions unit identified above.

Throughput

120 bbl/turnover Tank capacity Harvest Four Corners, LLC

113.33 turnover/yr Turnovers per year Estimated

13,600 bbl/yr Annual liquid throughput bbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.78
Benzene	0.007	4.76E-02
Ethylbenzene	0.0007	4.76E-03
n-Hexane	0.022	1.50E-01
Toluene	0.009	6.12E-02
Xylene	0.006	4.08E-02

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

Storage Tank Emissions Data and Calculations

Unit Number: T19019, T19020, T19021 & T19028

Description: Condensate Storage Tanks (with the potential for flash emissions)

Emission Rates

			Flash	Uncontrolled Emission
Source/Pollutants	Working/Brea	thing Losses,	Losses,	Rates,
	рру	tpy	tpy	tpy
T19019	FF7			4-7
VOC	12,358.97	6.18	0.742	6.92
Benzene	121.23	6.06E-02	1.04E-02	7.11E-02
Ethylbenzene	1.19	5.95E-04	8.36E-05	6.79E-04
n-Hexane	1,209.12	6.05E-01	4.09E-02	6.45E-01
2,2,4-Trimethylpentane (Isooctane)	1.24	6.20E-04	7.19E-05	6.92E-04
Toluene	9.06	4.53E-03	7.47E-04	5.28E-03
Xylene	19.18	9.59E-03	1.46E-03	1.11E-02
T19020				
VOC	7,311.62	3.66	with T19019	3.66
Benzene	71.72	3.59E-02	with T19019	0.04
Ethylbenzene	0.70	3.50E-04	with T19019	0.00
n-Hexane	715.32	3.58E-01	with T19019	0.36
2,2,4-Trimethylpentane (Isooctane)	0.73	3.65E-04	with T19019	0.00
Toluene	5.36	2.68E-03	with T19019	0.00
Xylene	11.35	5.68E-03	with T19019	0.01
T19021				
VOC	7,311.62	3.66	with T19019	3.66
Benzene	71.72	3.59E-02	with T19019	0.04
Ethylbenzene	0.70	3.50E-04	with T19019	0.00
n-Hexane	715.32	3.58E-01	with T19019	0.36
2,2,4-Trimethylpentane (Isooctane)	0.73	3.65E-04	with T19019	0.00
Toluene	5.36	2.68E-03	with T19019	0.00
Xylene	11.35	5.68E-03	with T19019	0.01
T19028	0.707.00	4.00		4.00
VOC	9,767.29	4.88	with T19019	4.88
Benzene	95.81	4.79E-02	with T19019	0.05
Ethylbenzene	0.94	4.70E-04	with T19019	0.00
n-Hexane 2,2,4-Trimethylpentane (Isooctane)	955.57 0.98	4.78E-01 4.90E-04	with T19019 with T19019	0.48 0.00
Toluene	7.16	4.90E-04 3.58E-03	with T19019 with T19019	0.00
Xylene	7.16 15.16	7.58E-03	with T19019	0.00
Aylerie	15.10	7.36E-03	WIII 1 19019	0.01
Combined Total				
VOC	36,749.50	18.37	with T19019	18.37
Benzene	360.48	1.80E-01	with T19019	0.18
Ethylbenzene	3.53	1.77E-03	with T19019	0.00
n-Hexane	3,595.33	1.80E+00	with T19019	1.80
2,2,4-Trimethylpentane (Isooctane)	3.68	1.84E-03	with T19019	0.00
Toluene	26.94	1.35E-02	with T19019	0.01
Xylene The plant will handle a maximum of 13.5	57.04	2.85E-02	with T19019	0.03

The plant will handle a maximum of 13,560,000 gallons of unstabilized condensate per year.

The stabilizer will capture the vapors from at least 13,559,000 gallons per year. The stabilized condensate from the stabilizer will be transferred to the condensate tanks (T91019, T91020, T91021 & T91028) for storage.

The remaining 42,000 gallons of unstabilized condensate will go directly to the same tanks. All 42,000 gallons will flash on entering the tanks and those emissions will be vented to the atmosphere.

Working/breathing losses are calculated using TANKS 4.0.9d. The throughputs for each tank are estimated as the total throughput multiplied by the usable volume of each tank divided by the usable volume of the entire tank battery.

Flash emissions are calculated using ProMax. For the purpose of the calculations, it is assumed the flash emissions will be distributed among the four condensate storage tanks according to the useable volume.

(Continued)

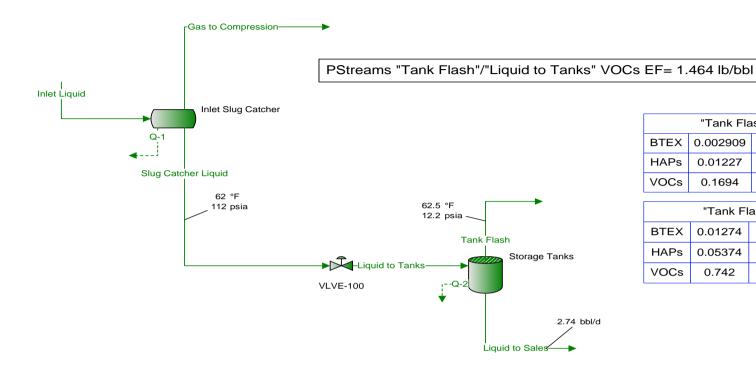
Storage Tank Emissions Data and Calculations

Unit Number: T19019, T19020, T19021 & T19028

Description: Condensate Storage Tanks (with the potential for flash emissions)

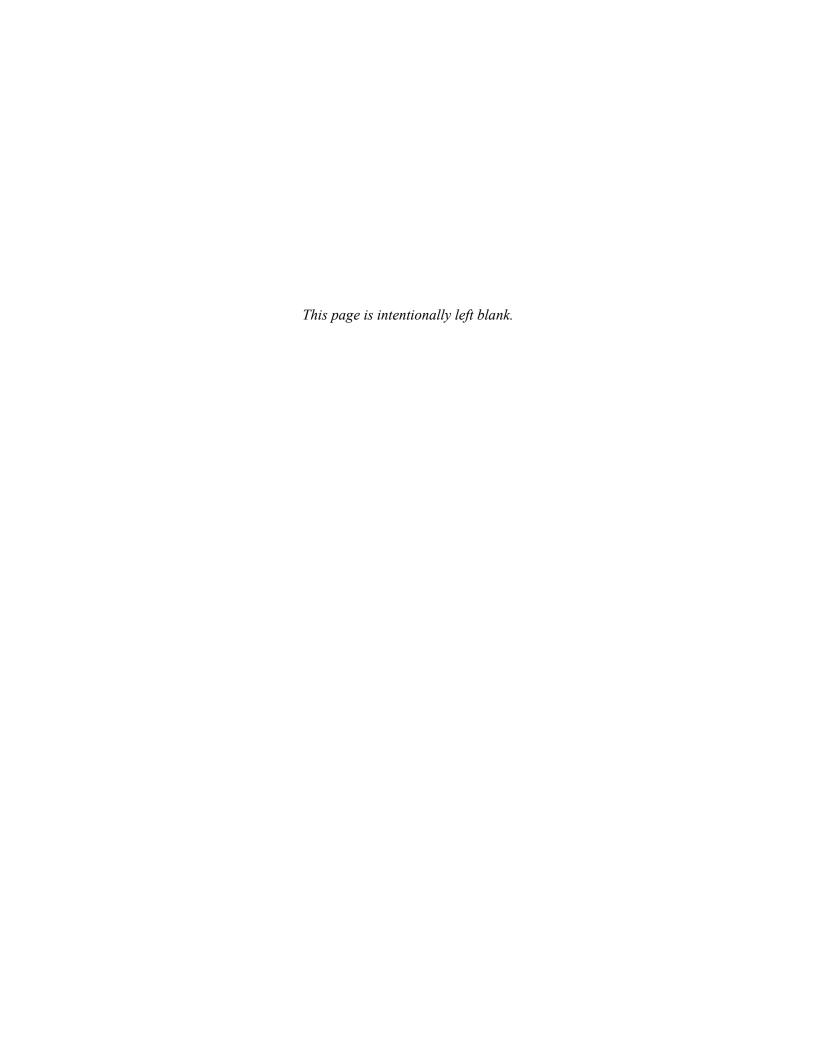
Tank Throughputs

Total Condensate Throughput: 13,560,000 gal/yr
Flashed Condensate Throughput: 1,000 bbl/yr
Flashed Condensate Throughput: 42,000 gal/yr
Stabilized Condensate Throughput: 13,518,000 gal/yr


Tank	Useable	Useable	Total
Number	Volume,	Volume,	Throughput,
	gal	%	gal/yr
T91019	21,173	33.69	4,567,895
T91020	12,690	20.19	2,737,760
T91021	12,690	20.19	2,737,760
T91028	16,300	25.93	3,516,586
Total	62.853	100.00	13.560.000

Because the tanks are manifolded together, the useable volumes associated with Units T91019 & T91028 are less than the design capacities of the tanks. See Condition A203.C of the existing permit.

This table distributes the annual liquid throughput to the tanks based on the Percent of Total Usable Tank Volume.


Useable Volume (%) = 100 x Useable Volume (gal) / Total Useable Volume (gal)

Total Throughput (gal/yr) = Total Condensate Throughput (gal/yr) x Useable Volume (% / 100)

"Tank Flash" Component Sums					
BTEX	0.002909	lb/h			
HAPs	0.01227	lb/h			
VOCs	0.1694	lb/h			

"Tank Flash" Component Sums					
BTEX	0.01274	ton/yr			
HAPs	0.05374	ton/yr			
VOCs	0.742	ton/yr			

	Gas to		Liquid to	Liquid to	Slug Catcher	
Process Streams	Compression	Inlet Liquid	Sales	Tanks	Liquid	Tank Flash
Composition Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total From Block: To Block:	Inlet Slug Catcher		Storage Tanks	VLVE-100	Inlet Slug Catcher	Storage Tanks
Mole Fraction	 %	Inlet Slug Catcher %	 %	Storage Tanks	VLVE-100 %	%
Nitrogen	67.9251	0.988899*	0.0310459	0.717769	0.717769	26.7899
Methane	26.2327	1.11830*	0.146733	1.01657	1.01657	34.0409
Carbon Dioxide	0.640599	0.0752999*	0.0246153	0.0730101	0.0730101	1.91037
Hydrogen Sulfide	0	0*	0	0	0	0
Ethane	1.46171	0.386400*	0.208284	0.382044	0.382044	6.97901
Propane	0.269390	0.253200*	0.209361	0.253134	0.253134	1.91501
i-Butane	0.872218	2.12720*	2.00602	2.13228	2.13228	6.92591
n-Butane	0.249700	0.932299*	0.906156	0.935064	0.935064	2.03257
i-Pentane	0.982898	9.54729*	9.62017	9.58198	9.58198	8.13198
n-Pentane	0.599860	7.91969*	8.02783	7.94934	7.94934	4.96934
Cyclopentane	0.0354203	0.738099*	0.752658	0.740946	0.740946	0.296279
i-Hexane	0.142630	4.80360*	4.91821	4.82247	4.82247	1.18793
n-Hexane	0.163535	8.00919*	8.21708	8.04097	8.04097	1.35501
Methylcyclohexane	0.0938687	14.5803*	15.0045	14.6390	14.6390	0.761295
2,2,4-Trimethylpentane	0.000224119	0.0310000*	0.0318971	0.0311246	0.0311246	0.00179530
Benzene	0.0456662	2.29170*	2.35134	2.30080	2.30080	0.381685
Cyclohexane	0.104649	7.05509*	7.24711	7.08325	7.08325	0.861897
i-Heptane	0.0852409	9.09909*	9.35781	9.13560	9.13560	0.699184
n-Heptane	0.0586269	9.27829*	9.54856	9.31564	9.31564	0.472245
Toluene	0.00279113	0.499400*	0.514008	0.501411	0.501411	0.0231480
n-Octane	0.0265093	13.8393*	14.2557	13.8952	13.8952	0.211285
Ethylbenzene	0.000275034	0.168600*	0.173681	0.169282	0.169282	0.00224626
m-Xylene	0.00478396	3.23490*	3.33250	3.24798	3.24798	0.0390314
o-Xylene	2.56744E-05	0.0197000*	0.0202951	0.0197797	0.0197797	0.000209281
n-Nonane	0.00148687	2.67070*	2.75183	2.68151	2.68151	0.0116286
C10+ El Cedro	1.94151E-05	0.332500*	0.342636	0.333846	0.333846	0.000144154
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen	0.000857855	0.00309582*	9.43149E-05	0.00223796	0.00223796	0.00214365
Methane	0.000331304	0.00350091*	0.000445765	0.00316961	0.00316961	0.00272384
Carbon Dioxide	8.09039E-06	0.000235732*	7.47794E-05	0.000227641	0.000227641	0.000152862
Hydrogen Sulfide	0	0*	0	0	0	0
Ethane	1.84605E-05	0.00120965*	0.000632752	0.00119119	0.00119119	0.000558438
Propane	3.40224E-06	0.000792659*	0.000636024	0.000789257	0.000789257	0.000153233
i-Butane	1.10156E-05	0.00665934*	0.00609414	0.00664832	0.00664832	0.000554189
n-Butane	3.15357E-06	0.00291863*	0.00275283	0.00291547	0.00291547	0.000162640
i-Pentane	1.24134E-05	0.0298885*	0.0292253	0.0298760	0.0298760	0.000650695
n-Pentane	7.57588E-06	0.0247931*	0.0243879	0.0247856	0.0247856	0.000397631
Cyclopentane	4.47338E-07	0.00231067*	0.00228652	0.00231022	0.00231022	2.37073E-05
i-Hexane	1.80134E-06	0.0150380*	0.0149411	0.0150362	0.0150362	9.50541E-05
n-Hexane	2.06535E-06	0.0250733*	0.0249628	0.0250713	0.0250713	0.000108424
Methylcyclohexane	1.18551E-06	0.0456446*	0.0455825	0.0456434	0.0456434	6.09164E-05
2,2,4-Trimethylpentane	2.83050E-09	9.70475E-05*	9.69011E-05	9.70447E-05	9.70447E-05	1.43654E-07
Benzene	5.76738E-07	0.00717432*	0.00714320	0.00717374	0.00717374	3.05412E-05
Cyclohexane	1.32165E-06	0.0220865*	0.0220162	0.0220851	0.0220851	6.89663E-05
,	1.07654E-06	0.0284853*	0.0284283	0.0284843	0.0284843	5.59465E-05
i-Heptane	1.070046 00					
	7.40424E-07	0.0290463*	0.0290078	0.0290456	0.0290456	3.77876E-05
i-Heptane		0.0290463* 0.00156340*	0.0290078 0.00156152	0.0290456 0.00156337	0.0290456 0.00156337	3.77876E-05 1.85223E-06
i-Heptane n-Heptane	7.40424E-07					
i-Heptane n-Heptane Toluene	7.40424E-07 3.52503E-08	0.00156340*	0.00156152	0.00156337	0.00156337	1.85223E-06
i-Heptane n-Heptane Toluene n-Octane	7.40424E-07 3.52503E-08 3.34797E-07	0.00156340* 0.0433248*	0.00156152 0.0433076	0.00156337 0.0433245	0.00156337 0.0433245	1.85223E-06 1.69064E-05
i-Heptane n-Heptane Toluene n-Octane Ethylbenzene	7.40424E-07 3.52503E-08 3.34797E-07 3.47352E-09	0.00156340* 0.0433248* 0.000527813*	0.00156152 0.0433076 0.000527630	0.00156337 0.0433245 0.000527810	0.00156337 0.0433245 0.000527810	1.85223E-06 1.69064E-05 1.79738E-07
i-Heptane n-Heptane Toluene n-Octane Ethylbenzene m-Xylene	7.40424E-07 3.52503E-08 3.34797E-07 3.47352E-09 6.04187E-08	0.00156340* 0.0433248* 0.000527813* 0.0101271*	0.00156152 0.0433076 0.000527630 0.0101239	0.00156337 0.0433245 0.000527810 0.0101270	0.00156337 0.0433245 0.000527810 0.0101270	1.85223E-06 1.69064E-05 1.79738E-07 3.12317E-06

Mass Fraction	%	%	%	%	%	%
Nitrogen	71.6422	0.304393*	0.00938215	0.220304	0.220304	20.2412
Methane	15.8448	0.197127*	0.0253941	0.178682	0.178682	14.7289
Carbon Dioxide	1.06146	0.0364131*	0.0116865	0.0352048	0.0352048	2.26759
Hydrogen Sulfide	0	0*	0	0	0	0
Ethane	1.65482	0.127665*	0.0675631	0.125865	0.125865	5.65995
Propane	0.447250	0.122680*	0.0995921	0.122298	0.122298	2.27754
i-Butane	1.90871	1.35852*	1.25780	1.35787	1.35787	10.8572
n-Butane	0.546428	0.595407*	0.568170	0.595464	0.595464	3.18630
i-Pentane	2.66999	7.56877*	7.48764	7.57455	7.57455	15.8243
n-Pentane	1.62949	6.27847*	6.24828	6.28395	6.28395	9.67002
Cyclopentane	0.0935290	0.568791*	0.569446	0.569352	0.569352	0.560431
i-Hexane	0.462772	4.54848*	4.57217	4.55329	4.55329	2.76104
n-Hexane	0.530598	7.58382*	7.63894	7.59214	7.59214	3.14938
Methylcyclohexane	0.347011	15.7301*	15.8929	15.7483	15.7483	2.01605
2,2,4-Trimethylpentane	0.000963887	0.0389092*	0.0393060	0.0389539	0.0389539	0.00553110
Benzene	0.134303	1.96694*	1.98137	1.96910	1.96910	0.804121
Cyclohexane	0.331596	6.52412*	6.57962	6.53142	6.53142	1.95640
i-Heptane	0.321585	10.0182*	10.1154	10.0296	10.0296	1.88959
n-Heptane	0.221180	10.2155*	10.3216	10.2273	10.2273	1.27627
Toluene	0.00968262	0.505598*	0.510909	0.506182	0.506182	0.0575246
n-Octane	0.114011	17.3702*	17.5669	17.3905	17.3905	0.650944
Ethylbenzene	0.00109936	0.196678*	0.198915	0.196908	0.196908	0.00643192
m-Xylene	0.0191224	3.77362*	3.81667	3.77805	3.77805	0.111762
o-Xylene	0.000102625	0.0229807*	0.0232438	0.0230077	0.0230077	0.000599252
n-Nonane	0.00717995	3.76371*	3.80741	3.76813	3.76813	0.0402255
C10+ El Cedro	0.000116616	0.582846*	0.589674	0.583533	0.583533	0.000620257
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen	0.0240314	0.0867243*	0.00264208	0.0626929	0.0626929	0.0600508
Methane	0.00531494	0.0561632*	0.00715116	0.0508483	0.0508483	0.0436971
Carbon Dioxide	0.000356054	0.0103744*	0.00329100	0.0100184	0.0100184	0.00672737
Hydrogen Sulfide	0	0*	0	0	0	0
Ethane	0.000555090	0.0363730*	0.0190262	0.0358179	0.0358179	0.0167917
Propane	0.000150024	0.0349528*	0.0280459	0.0348028	0.0348028	0.00675691
i-Butane	0.000640252	0.387055*	0.354205	0.386415	0.386415	0.03221069
n-Butane	0.000183292	0.169637*	0.160001	0.169454	0.169454	0.00945298
i-Pentane	0.000895614	2.15642*	2.10857	2.15552	2.15552	0.04694685
n-Pentane	0.000546591	1.78879*	1.75956	1.78825	1.78825	0.02868860
Cyclopentane	3.13731E-05	0.162054*	0.160360	0.162023	0.162023	0.00166266
i-Hexane	0.000155231	1.29590*	1.28756	1.29575	1.29575	0.00819132
n-Hexane	0.000177982	2.16070*	2.15118	2.16053	2.16053	0.00934344
Methylcyclohexane	0.000116400	4.48166*	4.47556	4.48155	4.48155	0.00598114
2,2,4-Trimethylpentane	3.23324E-07	0.0110856*	0.0110689	0.0110853	0.0110853	0.00001641
Benzene	4.50500E-05	0.560399*	0.557968	0.560354	0.560354	0.00238563
Cyclohexane	0.000111230	1.85878*	1.85287	1.85867	1.85867	0.00580416
i-Heptane	0.000107872	2.85429*	2.84857	2.85418	2.85418	0.00560595
n-Heptane	7.41919E-05	2.91050*	2.90664	2.91042	2.91042	0.00378639
Toluene	3.24791E-06	0.144050*	0.143876	0.144046	0.144046	0.00017066
n-Octane	3.82434E-05	4.94893*	4.94696	4.94889	4.94889	0.00193119
Ethylbenzene	3.68766E-07	0.0560353*	0.0560159	0.0560349	0.0560349	0.00001908
m-Xylene	6.41435E-06	1.07514*	1.07480	1.07513	1.07513	0.00033157
o-Xylene	3.44243E-08	0.00654742*	0.00654561	0.00654739	0.00654739	0.00000178
n-Nonane	2.40842E-06	1.07232*	1.07219	1.07231	1.07231	0.00011934
C10+ El Cedro	3.91173E-08	0.166058*	0.166056	0.166058	0.166058	0.00000184
				VO	C (NMNE) tpy:	0.742
					HAP tpy:	0.054

Process Streams		Gas to Compression	Inlet Liquid	Liquid to Sales	Liquid to Tanks	Slug Catcher Liquid	Tank Flash
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:						
rilase. Iotal	To Block:	Inlet Slug Catcher	 Inlet Slug Catcher	Storage Tanks	VLVE-100 Storage Tanks	Inlet Slug Catcher VLVE-100	Storage Tanks
Property	Units		illet Slug Catcher		Storage ranks	VLVE-100	
Temperature	°F	62*	55*	62.5	60.1207	62	62.5*
Pressure	psia	112*	249.696*	12.2	12.2*	112	12.2*
Mole Fraction Vapor	%	100	0	0	2.50172	0	100
Mole Fraction Light Liquid	%	0	100	100	97.4983	100	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0
Phase Mole Fraction	%	100	100	100	100	100	100
Molecular Weight	lb/lbmol	26.5600	91.0088	92.6973	91.2699	91.2699	37.0766
Mass Density	lb/ft^3	0.536614	44.3344	44.1113	6.80790	44.0586	0.0812916
Molar Flow	lbmol/h	0.00126294	0.313057	0.303792	0.311794	0.311794	0.00800168
Mass Flow	lb/h	0.0335437	28.4909	28.1607	28.4574	28.4574	0.296676
Vapor Volumetric Flow	ft^3/h	0.0625100	0.642638	0.638402	4.18005	0.645898	3.64953
Liquid Volumetric Flow	gpm	0.00779345	0.0801210	0.0795929	0.521150	0.0805276	0.455006
Std Vapor Volumetric Flow	MMSCFD	1.15024E-05	0.00285120	0.00276682	0.00283970	0.00283970	7.28763E-05
Std Liquid Volumetric Flow	sgpm	0.000109494	0.0811189*	0.0799167	0.0810094	0.0810094	0.00109275
Compressibility	O1	0.990203	0.0928030	0.00457511	0.0293212	0.0414434	0.992978
Specific Gravity		0.917047	0.710843	0.707266		0.706422	1.28016
API Gravity			68.2591	68.2155		68.5214	
Enthalpy	Btu/h	-15.7460	-25466.5	-25046.0	-25363.7	-25363.7	-282.724
Mass Enthalpy	Btu/lb	-469.419	-893.846	-889.393	-891.285	-891.285	-952.973
Mass Cp	Btu/(lb*°F)	0.313954	0.483889	0.488749	0.486064	0.488997	0.373225
deal Gas CpCv Ratio	, ,	1.32149	1.06533	1.06322	1.06452	1.06430	1.16846
Dynamic Viscosity	cР	0.0149086	0.456503	0.444235		0.433064	0.0104122
Kinematic Viscosity	cSt	1.73441	0.642809	0.628698		0.613621	7.99604
Thermal Conductivity	Btu/(h*ft*°F)	0.0154702	0.0705434	0.0700653		0.0699200	0.0130829
Surface Tension	lbf/ft		0.00132368?	0.00143278?		0.00136003?	
Net Ideal Gas Heating Value	Btu/ft^3	395.346	4562.80	4660.66	4579.68	4579.68	1505.46
Net Liquid Heating Value	Btu/lb	5630.90	18902.5	18956.1	18918.2	18918.2	15314.2
Gross Ideal Gas Heating Value	Btu/ft^3	434.690	4910.13	5014.93	4928.26	4928.26	1637.62
Gross Liquid Heating Value	Btu/lb	6193.05	20351.1	20406.8	20367.8	20367.8	16666.8

				1		01 0 1 1	
Dragono Straomo		Gas to	Inlot Liquid	Liquid to Sales	Liquid to Tanks	Slug Catcher	Tank Flash
Process Streams	Ctatura	Compression	Inlet Liquid			Liquid	
Composition Phase: Nonspecific Liquid	Status: From Block:	Solved	Solved	Solved	Solved	Solved	Solved
Phase. Nonspecific Liquid	To Block:	Inlet Slug Catcher	Inlet Slug Catcher	Storage Tanks	VLVE-100	Inlet Slug Catcher VLVE-100	Storage Tanks
Mole Fraction	TO BIOCK.		%	 %	Storage Tanks	%	
Nitrogen			0.988899	0.0310459	0.0318482	0.717769	
Methane			1.11830	0.146733	0.0510402	1.01657	
Carbon Dioxide			0.0752999	0.0246153	0.0253451	0.0730101	
Hydrogen Sulfide			0.0732999	0.0240133	0.0233431	0.0730101	
Ethane			0.386400	0.208284	0.212902	0.382044	
			0.253200	0.209361	0.212502	0.253134	
Propane				2.00602			
i-Butane			2.12720		2.01533	2.13228	
n-Butane i Bantana			0.932299 9.54729	0.906156	0.908910	0.935064 9.58198	
i-Pentane n-Pentane				9.62017	9.62901		
			7.91969 0.738099	8.02783 0.752658	8.03220	7.94934	
Cyclopentane					0.752757	0.740946	
i-Hexane		1	4.80360	4.91821	4.91746	4.82247	
n-Hexane		1	8.00919	8.21708	8.21464	8.04097	
Methylcyclohexane			14.5803	15.0045	14.9964	14.6390	
2,2,4-Trimethylpentane		1	0.0310000	0.0318971	0.0318802	0.0311246	
Benzene			2.29170	2.35134	2.35062	2.30080	
Cyclohexane			7.05509	7.24711	7.24423	7.08325	
i-Heptane			9.09909	9.35781	9.35324	9.13560	
n-Heptane			9.27829	9.54856	9.54338	9.31564	
Toluene			0.499400	0.514008	0.513723	0.501411	
n-Octane			13.8393	14.2557	14.2468	13.8952	
Ethylbenzene			0.168600	0.173681	0.173572	0.169282	
m-Xylene			3.23490	3.33250	3.33040	3.24798	
o-Xylene			0.0197000	0.0202951	0.0202823	0.0197797	
n-Nonane			2.67070	2.75183	2.75004	2.68151	
C10+ El Cedro			0.332500	0.342636	0.342409	0.333846	
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	
Nitrogen			0.00309582	9.43149E-05	9.68166E-05	0.00223796	
Methane			0.00350091	0.000445765	0.000459405	0.00316961	
Carbon Dioxide			0.000235732	7.47794E-05	7.70475E-05	0.000227641	
Hydrogen Sulfide			0	0	0	0	
Ethane			0.00120965	0.000632752	0.000647210	0.00119119	
Propane			0.000792659	0.000636024	0.000643075	0.000789257	
i-Butane			0.00665934	0.00609414	0.00612647	0.00664832	
n-Butane		1	0.00291863	0.00275283	0.00276303	0.00291547	
i-Pentane			0.0298885	0.0292253	0.0292716	0.0298760	
n-Pentane		1	0.0247931	0.0243879	0.0244174	0.0247856	
Cyclopentane		1	0.00231067	0.00228652	0.00228833	0.00231022	
i-Hexane		1	0.0150380	0.0149411	0.0149488	0.0150362	
n-Hexane		1	0.0250733	0.0249628	0.0249720	0.0250713	
Methylcyclohexane		1	0.0456446	0.0455825	0.0455880	0.0456434	
2,2,4-Trimethylpentane			9.70475E-05	9.69011E-05	9.69139E-05	9.70447E-05	
Benzene		1	0.00717432	0.00714320	0.00714574	0.00717374	
Cyclohexane		1	0.0220865	0.0220162	0.0220220	0.0220851	
i-Heptane		1	0.0284853	0.0284283	0.0284333	0.0284843	
n-Heptane		1	0.0290463	0.0290078	0.0290113	0.0290456	
Toluene		1	0.00156340	0.00156152	0.00156169	0.00156337	
n-Octane		1	0.0433248	0.0433076	0.0433093	0.0433245	
Ethylbenzene		1	0.000527813	0.000527630	0.000527648	0.000527810	
m-Xylene		1	0.0101271	0.0101239	0.0101242	0.0101270	
o-Xylene		1	6.16721E-05	6.16551E-05	6.16568E-05	6.16718E-05	
n-Nonane		1	0.00836080	0.00835985	0.00835995	0.00836078	
C10+ El Cedro			0.00104091	0.00104090	0.00104090	0.00104091	

Mass Fraction	%	%	%	%	
Nitrogen	0.304393	0.00938215	0.00962657	0.220304	
Methane	0.197127	0.0253941	0.0261591	0.178682	
Carbon Dioxide	0.0364131	0.0116865	0.0120354	0.0352048	
Hydrogen Sulfide	0	0	0	0	
Ethane	0.127665	0.0675631	0.0690750	0.125865	
Propane	0.122680	0.0995921	0.100650	0.122298	
i-Butane	1.35852	1.25780	1.26389	1.35787	
n-Butane	0.595407	0.568170	0.570012	0.595464	
i-Pentane	7.56877	7.48764	7.49603	7.57455	
n-Pentane	6.27847	6.24828	6.25294	6.28395	
	0.568791	0.569446	0.569636	0.569352	
Cyclopentane					
i-Hexane	4.54848	4.57217	4.57240	4.55329	
n-Hexane	7.58382	7.63894	7.63822	7.59214	
Methylcyclohexane	15.7301	15.8929	15.8875	15.7483	
2,2,4-Trimethylpentane	0.0389092	0.0393060	0.0392931	0.0389539	
Benzene	1.96694	1.98137	1.98116	1.96910	
Cyclohexane	6.52412	6.57962	6.57834	6.53142	
i-Heptane	10.0182	10.1154	10.1125	10.0296	
n-Heptane	10.2155	10.3216	10.3181	10.2273	
Toluene	0.505598	0.510909	0.510729	0.506182	
n-Octane	17.3702	17.5669	17.5595	17.3905	
Ethylbenzene	0.196678	0.198915	0.198830	0.196908	
m-Xylene	3.77362	3.81667	3.81503	3.77805	
o-Xylene	0.0229807	0.0232438	0.0232337	0.0230077	
n-Nonane	3.76371	3.80741	3.80570	3.76813	
C10+ El Cedro	0.582846	0.589674	0.589403	0.583533	
Mass Flow	lb/h	lb/h	lb/h	lb/h	
Nitrogen	0.0867243	0.00264208	0.00271216	0.0626929	
Methane	0.0504000	0.00745440	0.0070000		
• · · · · · · · · · · · · · · · · · · ·	0.0561632	0.00715116	0.00736999	0.0508483	
Carbon Dioxide	0.0561632 0.0103744	0.00715116	0.00736999	0.0508483 0.0100184	
Carbon Dioxide	0.0103744	0.00329100	0.00339082	0.0100184	
Carbon Dioxide Hydrogen Sulfide	0.0103744 0	0.00329100 0	0.00339082 0	0.0100184 0	
Carbon Dioxide Hydrogen Sulfide Ethane	0.0103744 0 0.0363730	0.00329100 0 0.0190262	0.00339082 0 0.0194610	0.0100184 0 0.0358179	
Carbon Dioxide Hydrogen Sulfide Ethane Propane	0.0103744 0 0.0363730 0.0349528	0.00329100 0 0.0190262 0.0280459	0.00339082 0 0.0194610 0.0283568	0.0100184 0 0.0358179 0.0348028	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane	0.0103744 0 0.0363730 0.0349528 0.387055	0.00329100 0 0.0190262 0.0280459 0.354205	0.00339082 0 0.0194610 0.0283568 0.356084	0.0100184 0 0.0358179 0.0348028 0.386415	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane n-Heptane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane n-Heptane Toluene	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050 0.144050	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664 0.143876	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699 0.143891	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042 0.144046	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane n-Heptane n-Heptane n-Heptane n-Heptane n-Heptane n-Heptane n-Heptane n-Octane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050 0.144050 4.94893	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664 0.143876 4.94696	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699 0.143891 4.94716	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042 0.144046 4.94889	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane Toluene n-Octane Ethylbenzene	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050 0.144050 4.94893 0.0560353	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664 0.143876 4.94696 0.0560159	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699 0.143891 4.94716 0.0560178	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042 0.144046 4.94889 0.0560349	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane Toluene n-Octane Ethylbenzene m-Xylene	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050 0.144050 4.94893 0.0560353 1.07514	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664 0.143876 4.94696 0.0560159 1.07480	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699 0.143891 4.94716 0.0560178 1.07484	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042 0.144046 4.94889 0.0560349 1.07513	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane n-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane n-Heptane i-Heptane i-Heptane n-Heptane i-Heptane n-Heptane n-Heptane Toluene n-Octane Ethylbenzene m-Xylene o-Xylene	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050 0.144050 4.94893 0.0560353 1.07514 0.00654742	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664 0.143876 4.94696 0.0560159 1.07480 0.00654561	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699 0.143891 4.94716 0.0560178 1.07484 0.00654579	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042 0.144046 4.94889 0.0560349 1.07513 0.00654739	
Carbon Dioxide Hydrogen Sulfide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane Cyclopentane i-Hexane Methylcyclohexane 2,2,4-Trimethylpentane Benzene Cyclohexane i-Heptane Toluene n-Heptane	0.0103744 0 0.0363730 0.0349528 0.387055 0.169637 2.15642 1.78879 0.162054 1.29590 2.16070 4.48166 0.0110856 0.560399 1.85878 2.85429 2.91050 0.144050 4.94893 0.0560353 1.07514	0.00329100 0 0.0190262 0.0280459 0.354205 0.160001 2.10857 1.75956 0.160360 1.28756 2.15118 4.47556 0.0110689 0.557968 1.85287 2.84857 2.90664 0.143876 4.94696 0.0560159 1.07480	0.00339082 0 0.0194610 0.0283568 0.356084 0.160593 2.11191 1.76169 0.160488 1.28821 2.15197 4.47611 0.0110703 0.558167 1.85336 2.84907 2.90699 0.143891 4.94716 0.0560178 1.07484	0.0100184 0 0.0358179 0.0348028 0.386415 0.169454 2.15552 1.78825 0.162023 1.29575 2.16053 4.48155 0.0110853 0.560354 1.85867 2.85418 2.91042 0.144046 4.94889 0.0560349 1.07513	

		Gas to		Liquid to	Liquid to	Slug Catcher	
Process Streams		Compression	Inlet Liquid	Sales	Tanks	Liquid	Tank Flash
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Nonspecific Liquid	From Block:	Inlet Slug Catcher	-	Storage Tanks	VLVE-100	Inlet Slug Catcher	Storage Tanks
	To Block:		Inlet Slug Catcher		Storage Tanks	VLVE-100	
Property	Units						
Temperature	°F		55	62.5	60.1207	62	
Pressure	psia		249.696	12.2	12.2	112	
Mole Fraction Vapor	%		0	0	0	0	
Mole Fraction Light Liquid	%		100	100	100	100	
Mole Fraction Heavy Liquid	%		0	0	0	0	
Phase Mole Fraction	%		100	100	97.4983	100	
Molecular Weight	lb/lbmol		91.0088	92.6973	92.6786	91.2699	
Mass Density	lb/ft^3		44.3344	44.1113	44.1825	44.0586	
Molar Flow	lbmol/h		0.313057	0.303792	0.303994	0.311794	
Mass Flow	lb/h		28.4909	28.1607	28.1737	28.4574	
Vapor Volumetric Flow	ft^3/h		0.642638	0.638402	0.637667	0.645898	
Liquid Volumetric Flow	gpm		0.0801210	0.0795929	0.0795013	0.0805276	
Std Vapor Volumetric Flow	MMSCFD		0.00285120	0.00276682	0.00276866	0.00283970	
Std Liquid Volumetric Flow	sgpm		0.0811189	0.0799167	0.0799593	0.0810094	
Compressibility			0.0928030	0.00457511	0.00458772	0.0414434	
Specific Gravity			0.710843	0.707266	0.708408	0.706422	
API Gravity			68.2591	68.2155	68.2268	68.5214	
Enthalpy	Btu/h		-25466.5	-25046.0	-25092.5	-25363.7	
Mass Enthalpy	Btu/lb		-893.846	-889.393	-890.636	-891.285	
Mass Cp	Btu/(lb*°F)		0.483889	0.488749	0.487213	0.488997	
Ideal Gas CpCv Ratio			1.06533	1.06322	1.06350	1.06430	
Dynamic Viscosity	сР		0.456503	0.444235	0.451098	0.433064	
Kinematic Viscosity	cSt		0.642809	0.628698	0.637382	0.613621	
Thermal Conductivity	Btu/(h*ft*°F)		0.0705434	0.0700653	0.0702878	0.0699200	
Surface Tension	lbf/ft		0.00132368?	0.00143278?	0.00144232?	0.00136003?	
Net Ideal Gas Heating Value	Btu/ft^3		4562.80	4660.66	4659.73	4579.68	
Net Liquid Heating Value	Btu/lb		18902.5	18956.1	18956.2	18918.2	
Gross Ideal Gas Heating Value	Btu/ft^3		4910.13	5014.93	5013.94	4928.26	
Gross Liquid Heating Value	Btu/lb		20351.1	20406.8	20406.9	20367.8	

Storage Tank Emissions Data and Calculations

Unit Number: T19019, T19020, T19021 & T19028
Description: Condensate Tanks (flash emissions)

Calculation of Emission Rates from ProMax Results

Pollutant	Emission Rate,					
	pph	tpy				
VOC		0.742				
Benzene	2.386E-03	1.04E-02				
Ethylbenzene	1.908E-05	8.36E-05				
n-Hexane	9.343E-03	4.09E-02				
Isooctane	1.641E-05	7.19E-05				
Toluene	1.707E-04	7.47E-04				
Xylenes	3.333E-04	1.46E-03				

VOC tpy and HAP pph emission rates are obtained from thethe ProMax output 'Tank Flash', 'Storage Tanks', Mass fraction % HAP Emission Rate (tpy) = HAP Emission Rate (pph) x 8,760 hr/yr / 2,000 lb/ton

Composition of Post Flash Condensate (for use in TANKS 4)

	Speciated	Speciated Liquid		
	Mass Percent	Weight Percent		
Component	of Total	for TANKS Input		
	%	%		
Carbon dioxide	0.0117			
Nitrogen	0.0094			
Methane	0.0254			
Ethane	0.0676			
Propane	0.0996			
Isobutane	1.2578	1.3091		
n-Butane	0.5682	0.6187		
Isopentane	7.4876	7.4962		
n-Pentane	6.2483	6.2554		
Cyclopentane	0.5694	0.5701		
n-Hexane	12.2111	12.2251		
Methylcyclohexane	15.8929	15.9111		
Cyclohexane	6.5796	6.5871		
n-Heptane	20.4370	20.4603		
Octane	17.5669	17.5869		
Nonane	3.8074	3.8118		
Decane	0.5897	0.5903		
Benzene	1.9814	1.9836		
Ethylbenzene	0.1989	0.1991		
Isooctane	0.0393	0.0394		
Toluene	0.5109	0.5115		
Xylenes	3.8399	3.8443		
Total	100.0000			
VOC Total	99.8860	100.0000		

Speciated Mass Fractions are obtained from the ProMax output 'Flowsheet1 Pstreams_LIQUID', 'Liquid to Sales', 'Storage Tanks', Mass fraction %

Total = Sum of all species (Carbon Dioxide through Xylene Mass Fraction %)

VOC Total = Sum of specides (Propane through Xylene Mass Fraction %)

Mass Percent of VOC (%) = (Specific Component Mass Fraction % / VOC Total Mass Fraction %) x 100

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: El Cedro T91019 Condensate 500 bbl City: Rio Arriba Co., T30N, R06W, Sec01

State: NI

Company: Harvest Four Corners
Type of Tank: Vertical Fixed Roof Tank

Description: 500-bbl (21,000 gal) Condensate storage tank 4,567.895 gpy throughput

Tank Dimensions

 Shell Height (ft):
 16.00

 Diameter (ft):
 15.50

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 7.00

 Volume (gallons):
 19,761.25

 Turnovers:
 231.15

 Net Throughput(gal/yr):
 4,567,895.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Medium
Shell Condition Good
Roof Color/Shade: Gray/Medium

Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro T91019 Condensate 500 bbl - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

			aily Liquid S		Liquid Bulk Temp	Vano	r Pressure	(nsia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.7621	2.8062	4.9459	71.3396			92.98	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0004	0.0001	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0198	0.0098	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane						29.9323	23.3587	37.8099	58.1300	0.0062	0.0642	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0659	0.0336	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0057	0.0098	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.0059	0.0001	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0020	0.0001	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.2046	0.0539	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.1223	0.0978	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane						43.3083	34.4026	53.8185	58.1230	0.0131	0.1964	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0750	0.3081	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.1591	0.0380	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0381	0.0010	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1759	0.0108	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0626	0.1740	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0051	0.0007	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0384	0.0016	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d

Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro T91019 Condensate 500 bbl - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

Association Orleanistics	
Annual Emission Calcaulations	0.705.0554
Standing Losses (lb):	3,705.6551
Vapor Space Volume (cu ft):	1,728.6931
Vapor Density (lb/cu ft):	0.0475
Vapor Space Expansion Factor:	0.3498
Vented Vapor Saturation Factor:	0.3538
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,728.6931
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	9.1615
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	7.0000
Roof Outage (ft):	0.1615
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1615
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0475
Vapor Molecular Weight (lb/lb-mole):	71.3396
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3498
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	2.1396
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.8062
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.9459
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3538
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.7621
Vapor Space Outage (ft):	9.1615

Working Losses (lb):	8,653.3140
Vapor Molecular Weight (lb/lb-mole):	71.3396
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Annual Net Throughput (gal/yr.):	4,567,895.0000
Annual Turnovers:	231.1500
Turnover Factor:	0.2965
Maximum Liquid Volume (gal):	19,761.2500
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	1.0000

Total Losses (lb): 12,358.9691

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro T91019 Condensate 500 bbl - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Condensate	8,653.31	3,705.66	12,358.97					
Isobutane	1,699.65	727.85	2,427.49					
Butane	555.18	237.75	792.93					
Isopentane	2,666.16	1,141.74	3,807.90					
Pentane (-n)	1,506.02	644.93	2,150.95					
Cyclopentane	84.76	36.30	121.06					
Hexane (-n)	846.59	362.54	1,209.12					
Methylcyclohexane	328.44	140.65	469.10					
Cyclohexane	291.04	124.63	415.67					
Heptane (-n)	466.18	199.63	665.81					
Octane (-n)	93.29	39.95	133.24					
Nonane (-n)	8.96	3.84	12.79					
Decane (-n)	0.70	0.30	1.00					
Benzene	84.88	36.35	121.23					
Ethylbenzene	0.83	0.36	1.19					
2,2,4-Trimethylpentane (isooctane)	0.87	0.37	1.24					
Toluene	6.34	2.72	9.06					
Xylenes (mixed isomers)	13.43	5.75	19.18					

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: El Cedro T91020 & T91021 Condensate City: Rio Arriba Co., T30N, R06W, Sec01

State: NN

Company: Harvest Four Corners
Type of Tank: Vertical Fixed Roof Tank

Description: 12,000 gal Condensate storage tank 2,737,760 gpy throughput

Tank Dimensions

 Shell Height (ft):
 15.00

 Diameter (ft):
 12.00

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 7.00

 Volume (gallons):
 11,844.42

 Turnovers:
 231.14

 Net Throughput(gal/yr):
 2,737,760.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Medium
Shell Condition Good
Roof Color/Shade: Gray/Medium

Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro T91020 & T91021 Condensate - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.7621	2.8062	4.9459	71.3396			92.98	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0004	0.0001	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0198	0.0098	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane						29.9323	23.3587	37.8099	58.1300	0.0062	0.0642	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0659	0.0336	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0057	0.0098	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.0059	0.0001	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0020	0.0001	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.2046	0.0539	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.1223	0.0978	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane						43.3083	34.4026	53.8185	58.1230	0.0131	0.1964	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0750	0.3081	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.1591	0.0380	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0381	0.0010	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1759	0.0108	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0626	0.1740	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0051	0.0007	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0384	0.0016	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro T91020 & T91021 Condensate - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

Annual Emission Colonylations	
Annual Emission Calcaulations	0.405.4744
Standing Losses (lb):	2,125.1744
Vapor Space Volume (cu ft):	918.9159
Vapor Density (lb/cu ft):	0.0475
Vapor Space Expansion Factor:	0.3498
Vented Vapor Saturation Factor:	0.3817
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	918.9159
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	8.1250
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft): Roof Outage (ft):	7.0000 0.1250
	0200
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1250
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0475
Vapor Molecular Weight (lb/lb-mole):	71.3396
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3498
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	2.1396
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	2.8062
Surface Temperature (psia):	4.9459
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3817
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.7621
Vapor Space Outage (ft):	8.1250
Working Losses (lb):	5,186.4471
Vapor Molecular Weight (lb/lb-mole):	71.3396
Vapor Pressure at Daily Average Liquid	7 1.5550
Surface Temperature (psia):	3.7621
Annual Net Throughput (gal/yr.):	2,737,760.0000
	_, ,

 Annual Turnovers:
 231.1400

 Turnover Factor:
 0.2965

 Maximum Liquid Volume (gal):
 11,844.4200

 Maximum Liquid Height (ft):
 14.0000

 Tank Diameter (ft):
 12.0000

 Working Loss Product Factor:
 1.0000

Total Losses (lb): 7,311.6215

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro T91020 & T91021 Condensate - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Isopentane	1,597.99	654.78	2,252.77					
Pentane (-n)	902.65	369.86	1,272.51					
Cyclopentane	50.80	20.82	71.62					
Hexane (-n)	507.41	207.91	715.32					
Methylcyclohexane	196.86	80.66	277.52					
Cyclohexane	174.44	71.48	245.91					
Condensate	5,186.45	2,125.17	7,311.62					
Isobutane	1,018.70	417.42	1,436.12					
Butane	332.75	136.35	469.10					
Heptane (-n)	279.41	114.49	393.90					
Octane (-n)	55.91	22.91	78.82					
Nonane (-n)	5.37	2.20	7.57					
Decane (-n)	0.42	0.17	0.59					
Benzene	50.88	20.85	71.72					
Ethylbenzene	0.50	0.20	0.70					
2,2,4-Trimethylpentane (isooctane)	0.52	0.21	0.73					
Toluene	3.80	1.56	5.36					
Xylenes (mixed isomers)	8.05	3.30	11.35					

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: El Cedro T91028 Condensate
City: Rio Arriba Co., T30N, R06W, Sec01

State: NN

Company: Harvest Four Corners
Type of Tank: Vertical Fixed Roof Tank

Description: 500 bbl (21,000 gal) Condensate storage tank 3,516,586 gpy throughput

Tank Dimensions

 Shell Height (ft):
 20.00

 Diameter (ft):
 13.50

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 7.00

 Volume (gallons):
 14,990.59

 Turnovers:
 234.59

 Net Throughput(gal/yr):
 3,516,586.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Medium
Shell Condition Good
Roof Color/Shade: Gray/Medium

Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro T91028 Condensate - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

			aily Liquid S		Liquid Bulk Temp	Vano	r Pressure	(nsia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.7621	2.8062	4.9459	71.3396			92.98	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0004	0.0001	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0198	0.0098	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane						29.9323	23.3587	37.8099	58.1300	0.0062	0.0642	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0659	0.0336	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0057	0.0098	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.0059	0.0001	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0020	0.0001	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.2046	0.0539	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.1223	0.0978	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane						43.3083	34.4026	53.8185	58.1230	0.0131	0.1964	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0750	0.3081	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.1591	0.0380	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0381	0.0010	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1759	0.0108	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0626	0.1740	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0051	0.0007	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0384	0.0016	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d

Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro T91028 Condensate - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

Annual Emission Calcaulations	
Standing Losses (lb):	3,148.3203
Vapor Space Volume (cu ft):	1,880.9335
Vapor Density (lb/cu ft):	0.0475
Vapor Space Expansion Factor:	0.3498
Vented Vapor Saturation Factor:	0.2762
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,880.9335
Tank Diameter (ft):	13.5000
Vapor Space Outage (ft):	13.1406
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	7.0000
Roof Outage (ft):	0.1406
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1406
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	6.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0475
Vapor Molecular Weight (lb/lb-mole):	71.3396
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3498
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	2.1396
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	3.7621
Vapor Pressure at Daily Minimum Liquid	3.7021
Surface Temperature (psia):	2.8062
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.9459
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.2762
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.7621
Vapor Space Outage (ft):	13.1406

Working Losses (lb):	6,618.9717
Vapor Molecular Weight (lb/lb-mole):	71.3396
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7621
Annual Net Throughput (gal/yr.):	3,516,586.0000
Annual Turnovers:	234.5900
Turnover Factor:	0.2945
Maximum Liquid Volume (gal):	14,990.5900
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	13.5000
Working Loss Product Factor:	1.0000

Total Losses (lb): 9,767.2920

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro T91028 Condensate - Vertical Fixed Roof Tank Rio Arriba Co., T30N, R06W, Sec01, NM

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Isopentane	2,039.36	970.02	3,009.38
Pentane (-n)	1,151.96	547.93	1,699.89
Cyclopentane	64.84	30.84	95.68
Hexane (-n)	647.56	308.01	955.57
Methylcyclohexane	251.23	119.50	370.73
Cyclohexane	222.62	105.89	328.51
Heptane (-n)	356.58	169.61	526.19
Octane (-n)	71.36	33.94	105.30
Nonane (-n)	6.85	3.26	10.11
Decane (-n)	0.53	0.25	0.79
Benzene	64.93	30.88	95.81
Ethylbenzene	0.64	0.30	0.94
2,2,4-Trimethylpentane (isooctane)	0.66	0.32	0.98
Toluene	4.85	2.31	7.16
Xylenes (mixed isomers)	10.27	4.89	15.16
Condensate	6,618.97	3,148.32	9,767.29
Isobutane	1,300.07	618.38	1,918.45
Butane	424.66	201.99	626.65

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

El Cedro T20 (Gasoline) Navajo Dam User Identification:

City: State: New Mexico

Company: Type of Tank: Williams Four Corners LLC

Horizontal Tank

Description: 500 Gallon Gasoline Storage Tank

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 4.00 Volume (gallons): 500.00 Turnovers: 12.00 Net Throughput(gal/yr): 6,000.00

Is Tank Heated (y/n): Ν Is Tank Underground (y/n): Ν

Paint Characteristics

Shell Color/Shade: Gray/Light **Shell Condition** Good

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro T20 (Gasoline) - Horizontal Tank Navajo Dam, New Mexico

Mistage (Occupancy)	Manufa	Tem	Daily Liquid Surf. Temperature (deg F)		Liquid Bulk Temp	Vapor Pressure (psia)			Mol. Mass	Liquid Mass	Mass Mass	Mol.	Basis for Vapor Pressure
Mixture/Component Gasoline (RVP 13)	Month	Avg. 64.94	Min. 53.24	Max. 76.64	(deg F) 58.39	Avg. 7.6119	Min. 6.1130	9.3880	Weight. 62.0000	Fract.	Fract.	Weight 92.00	Calculations Option 4: RVP=13, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro T20 (Gasoline) - Horizontal Tank Navajo Dam, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	540,4915
Vapor Space Volume (cu ft):	40.0203
Vapor Density (lb/cu ft):	0.0838
Vapor Space Expansion Factor:	0.7975
Vented Vapor Saturation Factor:	0.5534
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	40.0203
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.0475
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0838
Vapor Molecular Weight (lb/lb-mole):	62.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7.6119
Daily Avg. Liquid Surface Temp. (deg. R):	524.6094
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	10.701
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.0642 0.5400
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,765.3167
racior (biu/sqriday).	1,703.3107
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.7975
Daily Vapor Temperature Range (deg. R):	46.7976
Daily Vapor Pressure Range (psia):	3.2750
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7.6119
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	6.1130
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	9.3880
Daily Avg. Liquid Surface Temp. (deg R):	524.6094
Daily Min. Liquid Surface Temp. (deg R):	512.9100
Daily Max. Liquid Surface Temp. (deg R):	536.3088
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5534
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	7.6119
Vapor Space Outage (ft):	2.0000
Working League (lb):	67.4400
Working Losses (lb):	67.4196 62.0000
Vapor Prossure at Daily Average Liquid	0∠.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	7.6119
Annual Net Throughput (gal/yr.):	6,000.0000
Annual 1402 Throughput (gary).	0,000.0000

Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000

Total Losses (lb): 607.9111

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro T20 (Gasoline) - Horizontal Tank Navajo Dam, New Mexico

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 13)	67.42	540.49	607.91						

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

El Cedro Tank 35 (Methanol) User Identification:

City: Blanco State: New Mexico

Company: Type of Tank: Williams Four Corners, LLC

Horizontal Tank

Description: 1,100 Gallon Methanol Tank

Tank Dimensions

Shell Length (ft): 12.00 Diameter (ft): 4.00 Volume (gallons): 1,100.00 Turnovers: 12.00 Net Throughput(gal/yr): 13,200.00

Is Tank Heated (y/n): Ν Is Tank Underground (y/n): Ν

Paint Characteristics

Shell Color/Shade: Gray/Light **Shell Condition** Good

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro Tank 35 (Methanol) - Horizontal Tank Blanco, New Mexico

		Ten	Daily Liquid Surf. Temperature (deg F)		Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Liquid Mol. Mass	Mass		Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	64.94	53.24	76.64	58.39	1.6820	1.1617	2.3895	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro Tank 35 (Methanol) - Horizontal Tank Blanco, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb): Vapor Space Volume (cu ft): Vapor Density (lb/cu ft): Vapor Space Expansion Factor:	57.1772 96.0487 0.0096 0.2008
Vented Vapor Saturation Factor:	0.8487
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Effective Diameter (ft): Vapor Space Outage (ft): Tank Shell Length (ft):	96.0487 4.0000 7.8196 2.0000 12.0000
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0096 32.0400
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	1.6820 524.6094 56.1542
(psia cuft / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	10.731 518.0642 0.5400
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	0.2008 46.7976 1.2278 0.0600 1.6820
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	2.3895 524.6094 512.9100 536.3088 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	0.8487
Surface Temperature (psia): Vapor Space Outage (ft):	1.6820 2.0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	16.9368 32.0400
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	1.6820 13,200.0000

12.0000
1.0000
4.0000
1.0000

Total Losses (lb): 74.1140

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro Tank 35 (Methanol) - Horizontal Tank Blanco, New Mexico

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	16.94	57.18	74.11					

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: El Cedro Tank 36 (Methanol)

City: Blanco State: New Mexico

Company: Williams Four Corners, LLC
Type of Tank: Vertical Fixed Roof Tank
Description: 12,600 Gallon Methanol Tank

Tank Dimensions

 Shell Height (ft):
 17.00

 Diameter (ft):
 12.00

 Liquid Height (ft):
 15.00

 Avg. Liquid Height (ft):
 8.00

 Volume (gallons):
 12,600.00

 Turnovers:
 12.00

 Net Throughput(gal/yr):
 151,200.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro Tank 36 (Methanol) - Vertical Fixed Roof Tank Blanco, New Mexico

			Daily Liquid Surf. Temperature (deg F)			Vapo	Vapor Pressure (psia)			Liquid Mass		Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	64.94	53.24	76.64	58.39	1.6820	1.1617	2.3895	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro Tank 36 (Methanol) - Vertical Fixed Roof Tank Blanco, New Mexico

Annual Emission Calcaulations	
Aimai Emission Galcaulations	
Standing Losses (lb): Vapor Space Volume (cu ft): Vapor Density (lb/cu ft): Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	399.1775 1,032.0132 0.0096 0.2008 0.5514
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Vapor Space Outage (ft): Tank Shell Height (ft): Average Liquid Height (ft): Roof Outage (ft):	1,032.0132 12.0000 9.1250 17.0000 8.0000 0.1250
Roof Outage (Cone Roof) Roof Outage (ft): Roof Height (ft): Roof Slope (ft/ft): Shell Radius (ft):	0.1250 0.0000 0.0625 6.0000
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0096 32.0400
Vapor Hessard at Daily Average Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	1.6820 524.6094 56.1542
(psia cuff / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation Factor (Btu/sqft day):	10.731 518.0642 0.5400 0.5400 1,765.3167
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.2008 46.7976 1.2278 0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	1.6820
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	1.1617
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	2.3895 524.6094 512.9100 536.3088 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.5514
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	1.6820

Vapor Space Outage (ft):	9.1250
Working Losses (lb):	194.0032
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	32.0400
Surface Temperature (psia):	1.6820
Annual Net Throughput (gal/yr.):	151,200.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	12,600.0000
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro Tank 36 (Methanol) - Vertical Fixed Roof Tank Blanco, New Mexico

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	194.00	399.18	593.18					

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

El Cedro T49 (Surfatron DN-100) User Identification:

City: Navajo Dam State: New Mexico

Company: Type of Tank: Williams Four Corners LLC

Horizontal Tank

Description: 65 Gallon Surfatron DN-100 Storage Tank

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 3.00 Volume (gallons): 65.00 Turnovers: 12.00 Net Throughput(gal/yr): 780.00

Is Tank Heated (y/n): Ν Is Tank Underground (y/n): Ν

Paint Characteristics

Shell Color/Shade: Gray/Medium **Shell Condition** Good

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro T49 (Surfatron DN-100) - Horizontal Tank Navajo Dam, New Mexico

		Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp	Vapor Pressure (psia)			Vapor Mol.		Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Surfatron DN-100	All	67.36	53.93	80.79	59.23	0.7416	0.5339	0.9747	79.6438			112.39	
1,2,4-Trimethylbenzene						0.0273	0.0160	0.0451	120.1900	0.3000	0.0156	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Isopropyl alcohol						0.6258	0.3835	0.9914	60.0900	0.0500	0.0595	60.09	Option 2: A=8.1177, B=1580.92, C=219.61
Isopropyl benzene						0.0631	0.0382	0.1009	120.2000	0.0500	0.0060	120.20	Option 2: A=6.93666, B=1460.793, C=207.78
Jet naphtha (JP-4)						1.5209	1.1180	1.9396	80.0000	0.4500	0.8681	120.00	Option 1: VP60 = 1.3 VP70 = 1.6
Naphthalene						0.0034	0.0019	0.0060	128.2000	0.0500	0.0003	128.20	Option 2: A=7.3729, B=1968.36, C=222.61
Toluene						0.4136	0.2726	0.6120	92.1300	0.0500	0.0393	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0500	0.0111	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro T49 (Surfatron DN-100) - Horizontal Tank Navajo Dam, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	10.9648
Vapor Space Volume (cu ft):	22.5114
Vapor Density (lb/cu ft):	0.0104
Vapor Space Expansion Factor:	0.1353
Vented Vapor Saturation Factor:	0.9443
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	22.5114
Tank Diameter (ft):	3.0000
Effective Diameter (ft):	4.3713
Vapor Space Outage (ft):	1.5000
Tank Shell Length (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0104
Vapor Molecular Weight (lb/lb-mole):	79.6438
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.7416
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R (psia cuft / (Ib-mol-deg R)):	10.731
	518.9042
Liquid Bulk Temperature (deg. R):	0.6800
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,765.3167
i actor (blu/sqrt day).	1,705.5107
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1353
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	0.4408
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.7416
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.5339
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.9747
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9443
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.7416
Vapor Space Outage (ft):	1.5000
	4.05==
Working Losses (lb):	1.0970
Vapor Molecular Weight (lb/lb-mole):	79.6438
Vapor Pressure at Daily Average Liquid	0.7440
Surface Temperature (psia):	0.7416
Annual Net Throughput (gal/yr.):	780.0000

Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	3.0000
Working Loss Product Factor:	1.0000

Total Losses (lb): 12.0618

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro T49 (Surfatron DN-100) - Horizontal Tank Navajo Dam, New Mexico

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Surfatron DN-100	1.10	10.96	12.06						
Naphthalene	0.00	0.00	0.00						
Xylenes (mixed isomers)	0.01	0.12	0.13						
Isopropyl benzene	0.01	0.07	0.07						
Toluene	0.04	0.43	0.47						
Isopropyl alcohol	0.07	0.65	0.72						
1,2,4-Trimethylbenzene	0.02	0.17	0.19						
Jet naphtha (JP-4)	0.95	9.52	10.47						

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

El Cedro T52 (Corrosion Inhibitor) User Identification:

City: Navajo Dam State: New Mexico

Company: Type of Tank: Williams Four Corners LLC

Horizontal Tank

Description: 325 Gallon Corrosion Inhibitor Storage Tank

Tank Dimensions

Shell Length (ft): 5.00 Diameter (ft): 3.25 Volume (gallons): 325.00 Turnovers: 12.00 Net Throughput(gal/yr): 3,900.00

Is Tank Heated (y/n): Ν Is Tank Underground (y/n): Ν

Paint Characteristics

Shell Color/Shade: Gray/Medium **Shell Condition** Good

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

El Cedro T52 (Corrosion Inhibitor) - Horizontal Tank Navajo Dam, New Mexico

			aily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component Month	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Corrision Inhibitor	All	67.36	53.93	80.79	59.23	1.1783	0.7953	1.6922	44.8406			77.18	
1,2,4-Trimethylbenzene						0.0273	0.0160	0.0451	120.1900	0.4500	0.0179	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Jet naphtha (JP-4)						1.5209	1.1180	1.9396	80.0000	0.3000	0.4443	120.00	Option 1: VP60 = 1.3 VP70 = 1.6
Methyl alcohol						1.8115	1.1881	2.6951	32.0400	0.2000	0.5292	32.04	Option 2: A=7.897, B=1474.08, C=229.13
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0500	0.0085	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

El Cedro T52 (Corrosion Inhibitor) - Horizontal Tank Navajo Dam, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	14.5741
Vapor Space Volume (cu ft):	26,4196
Vapor Density (lb/cu ft):	0.0093
Vapor Space Expansion Factor:	0.1782
Vented Vapor Saturation Factor:	0.9079
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	26.4196
Tank Diameter (ft):	3.2500
Effective Diameter (ft):	4.5498
Vapor Space Outage (ft):	1.6250
Tank Shell Length (ft):	5.0000
Vapor Density	0.0002
Vapor Density (lb/cu ft):	0.0093 44.8406
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	44.0400
Surface Temperature (psia):	1.1783
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	00.1012
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.1782
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	0.8969
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.1783
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.7953
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	1.6922
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9079
Vapor Pressure at Daily Average Liquid:	4.4700
Surface Temperature (psia):	1.1783
Vapor Space Outage (ft):	1.6250
Working Losses (lb):	4.9061
Vapor Molecular Weight (lb/lb-mole):	44.8406
Vapor Pressure at Daily Average Liquid	77.0400
Surface Temperature (psia):	1.1783
Annual Net Throughput (gal/yr.):	3,900.0000
0 1 10 7 7	

Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	3.2500
Working Loss Product Factor:	1.0000

Total Losses (lb): 19.4802

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

El Cedro T52 (Corrosion Inhibitor) - Horizontal Tank Navajo Dam, New Mexico

	Losses(lbs)			
Components	Working Loss Breathing Loss Total Emissions			
Corrision Inhibitor	4.91	14.57	19.48	
1,2,4-Trimethylbenzene	0.09	0.26	0.35	
Jet naphtha (JP-4)	2.18	6.48	8.66	
Methyl alcohol	2.60	7.71	10.31	
Xylenes (mixed isomers)	0.04	0.12	0.17	

Truck Loading (Condensate) Emissions Calculations

Unit Number: 38

Description: Truck Loading

Emission Factor

0.6 Saturation factor, S AP-42, Table 5.2-1 (submerged loading

& dedicated service)

1.4353 psia True vapor pressure of liquid, P TANKS 4.0 output file

83.3598 lb/lb-mole Molecular weight of vapors, M TANKS 4.0 output file

67.36 °F Temperature of liquid TANKS 4.0 output file

527.03 °R Temperature of liquid, T °F + 459.67

1.70 lb/10³ gal Emission factor, L AP-42, Section 5.2, Equation 1

 $L = 12.46 \frac{SPM}{T}$

Production Rate

8.82 lb/10³ gal Maximum hourly production rate Harvest Four Corners, LLC

13,560.00 lb/10³ gal Maximum annual production rate Harvest Four Corners, LLC

Steady-State Emission Rates

	Uncon	trolled
Pollutant	Emission Rates,	
	pph	tpy
VOC	14.97	11.51

Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

	Percent	Uncontrolled Emission Rates,	
Pollutants	of VOC,		
	%	pph	tpy
Benzene	0.98	1.47E-01	1.13E-01
Ethylbenzene	9.63E-03	1.44E-03	1.11E-03
n-Hexane	9.78	1.46	1.13
Isooctane	1.00E-02	1.50E-03	1.15E-03
Toluene	0.07	1.10E-02	8.44E-03
Xylenes	1.55E-01	2.32E-02	1.79E-02

Percent of VOC calculated from the TANKS 4.0 results

Percent of VOC (%) = $100 \times Pollutant Emission Rate (lb/yr) / Total VOC Emission Rate (lb/yr) Uncontrolled Emission Rates (pph) = VOC Uncontrolled Emission Rate (pph) x (% / <math>100$) Uncontrolled Emission Rates (tpy) = VOC Uncontrolled Emission Rate (tpy) x (% / 100)

Heater Exhaust Emissions Calculations

Unit Number: 37

Description: Exotherm Stabilizer Reboiler

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

0.80 MMBtu/hr Capacity Mfg. data 889 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC 7,008 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr 7.79 MMscf/yr scf/hr x hr/yr / 1,000,000 Annual fuel consumption 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Emission	Uncontrolled Emission Rates,	
Pollutants	Factors,		
	lb/MMscf	pph	tpy
NOX	100	8.89E-02	3.89E-01
CO	84	7.47E-02	3.27E-01
VOC	5.5	4.89E-03	2.14E-02
SO2	0.6	5.33E-04	2.34E-03
PM	7.60	6.76E-03	2.96E-02
PM10	7.60	6.76E-03	2.96E-02
PM2.5	7.60	6.76E-03	2.96E-02
Lead	5.00E-04	4.44E-07	1.95E-06

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2 Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

600 °F Exhaust temperature Mfg. data 71.86 acfm Stack flowrate ft/sec x ft^2 x 60 sec/min 0.50 ft Stack exit diameter Harvest Four Corners, LLC 0.20 ft^2 Stack exit area 3.1416 x ((ft / 2) ^2) 6.10 fps Stack exit velocity Estimate 18.00 ft Stack height Harvest Four Corners, LLC

Heater Exhaust Emissions Calculations

Unit Number: 39 & 45

Description: Water Tank Heater & Tech Shop Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

0.25 MMBtu/hr Capacity Mfg. data 278 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC 2,190 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr 2.43 MMscf/yr Annual fuel consumption scf/hr x hr/yr / 1,000,000 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Emission	Uncontrolled	
Pollutants	Factors,	Emission Rates,	
	lb/MMscf	pph	tpy
NOX	100	2.78E-02	1.22E-01
CO	84	2.33E-02	1.02E-01
VOC	5.5	1.53E-03	6.69E-03
SO2	0.6	1.67E-04	7.30E-04
PM	7.60	2.11E-03	9.25E-03
PM10	7.60	2.11E-03	9.25E-03
PM2.5	7.60	2.11E-03	9.25E-03
Lead	5.00E-04	1.39E-07	6.08E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2 Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Heater Exhaust Emissions Calculations

Unit Number: 40-44

Description: Tech Shop Heater, Maintenance Shop Heaters (3X) & Generator Building Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

0.125 MMBtu/hr Capacity Mfg. data 139 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC 1,095 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 1.22 MMscf/yr Annual fuel consumption 900 Btu/scf Field gas heating value Nominal heat content

Steady-State Emission Rates

	Emission	Uncontrolled	
Pollutants	Factors,	Emission Rates,	
	lb/MMscf	pph	tpy
NOX	100	1.39E-02	6.08E-02
CO	84	1.17E-02	5.11E-02
VOC	5.5	7.64E-04	3.35E-03
SO2	0.6	8.33E-05	3.65E-04
PM	7.60	1.06E-03	4.62E-03
PM10	7.60	1.06E-03	4.62E-03
PM2.5	7.60	1.06E-03	4.62E-03
Lead	5.00E-04	6.94E-08	3.04E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2 Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Truck Loading (Produced Water) Emissions Calculations

Unit Number: 46

Description: Truck Loading

Emission Factor

Saturation factor, S AP-42, Table 5.2-1 (submerged loading & dedicated service) 0.4581 psia (maximum) True vapor pressure of liquid, P Estimated using Antoine's Equation (see calculations below) 0.3045 psia (average) True vapor pressure of liquid, P Estimated using Antoine's Equation (see calculations below) Molecular weight of water vapor, M TANKS 4.0 Database 18.02 lb/lb-mole 77 °F (maximum) Temperature of liquid Estimated (see calculations below) 65 °F (average) Temperature of liquid Estimated (see calculations below) 536.67 °R (maximum) Temperature of liquid, T °F + 459 67 524.67 °R (average) Temperature of liquid, T °F + 459.67 AP-42, Section 5.2, Equation 1 Emission factor, L 0.11 lb/10³ gal (maximum) Emission factor, L AP-42, Section 5.2, Equation 1 0.08 lb/10³ gal (average) $L = 12.46 \frac{SPM}{T}$

Production Rate

3.36 10³ gal/hr

Maximum hourly production rate

Harvest Four Corners, LLC

2,822.40 10³ gal/yr

Maximum annual production rate

Harvest Four Corners, LLC

Steady-State Emission Rates

	Uncontrolled Emission Rates,	
Pollutant		
	pph	tpy
VOC	3.86E-01	1.10E-01

The short-term emission rates are calculated using the maximum true vapor pressure and maximum temperature of the liqu The annual emission rates are calculated using the average true vapor pressure and average temperature of the liquid Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr

Uncontrolled Emission Rate (tpy) = lb/10³ gal x 10³ gal/yr / 2,000 lb/ton

	Mass	Uncontrolled Emission Rates, pph tpy	
Pollutants	Fraction		
Benzene	0.0267	1.03E-04	2.95E-05
Ethylbenzene	0.0027	1.03E-05	2.95E-06
n-Hexane	0.0840	3.24E-04	9.27E-05
Toluene	0.0344	1.33E-04	3.79E-05
m-Xvlene	0.0229	8 85F-05	2 53F-05

HAP mass fractions are estimated from the produced water tank emission factors

HAP Mass Fraction = HAP Emission Factor (lb/bbl) / VOC Emission Factor (lb/bbl)

Emission Rates (pph) = VOC Emission Rate (pph) x HAP Mass Fraction

Emission Rates (tpy) = VOC Emission Rate (tpy) x HAP Mass Fraction

Vapor Pressure of Produced Water:

Maximorm

Because the produced water is assumed to be 99% water, it is estimated that the true vapor pressure of produced water is approximately equal to the true vapor pressure of pure water.

An estimate of the true vapor pressure for water is calculated using Antoine's equation (see AP-42, Section 7.1, Equation 1-25).

<u>waximum:</u>		Average:	
Temperature =	<mark>77</mark> °F	Temperature =	65 °F
$\log P = A - (B / (C + T))$))	$\log P = A - (B / (C + T))$))
A = 8.07131 B = 1730.63 C = 233.426 T = P = mmHg	25.00 °C	A = 8.07131 B = 1730.63 C = 233.426 T = P = mmHg	18.33 °C
P = 10^(A - (B / (C + T	¯))	$P = 10^{A} - (B / (C + T))$	·))
P = P =	23.69 mmHg 0.4581 psi	P = P =	15.75 mmHg 0.3045 psi
Note: 760 mmHg = 14	.7 psia		

Extended Gas Analysis

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	10.2645	44.01	1.191E-02
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.0578	28.01	4.267E-05
Methane	88.6428	16.04	3.748E-02
Ethane	0.8409	30.07	6.665E-04
Propane	0.1442	44.09	1.676E-04
Isobutane	0.0170	58.12	2.604E-05
n-Butane	0.0185	58.12	2.834E-05
Isopentane	0.0045	72.15	8.558E-06
n-Pentane	0.0041	72.15	7.797E-06
Cyclopentane	0.0001	70.14	1.849E-07
n-Hexane	0.0008	86.17	1.817E-06
Cyclohexane	0.0003	84.16	6.655E-07
Other hexanes	0.0011	86.18	2.499E-06
Heptanes	0.0006	100.20	1.585E-06
Methylcyclohexane	0.0008	98.19	2.070E-06
2,2,4-Trimethylpentane	0.0000	100.21	0.000E+00
Benzene	0.0002	78.11	4.118E-07
Toluene	0.0005	92.14	1.214E-06
Ethylbenzene	0.0000	106.17	0.000E+00
Xylenes	0.0002	106.17	5.597E-07
C8+ Heavies	0.0010	110.00	2.899E-06
Total	99.9999		
Total VOC			2.522E-04

Gas composition obtained from the El Cedro Trunk D Inlet [Manzanares] extended gas analysis dated Sept. 27, 2022. Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Extended Gas Analysis

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.0757	44.01	1.248E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3212	28.01	2.371E-04
Methane	82.5476	16.04	3.490E-02
Ethane	8.7394	30.07	6.927E-03
Propane	3.6714	44.09	4.267E-03
Isobutane	0.7166	58.12	1.098E-03
n-Butane	1.3192	58.12	2.021E-03
Isopentane	0.4032	72.15	7.668E-04
n-Pentane	0.2978	72.15	5.663E-04
Cyclopentane	0.0180	70.14	3.328E-05
n-Hexane	0.1476	86.17	3.352E-04
Cyclohexane	0.0458	84.16	1.016E-04
Other hexanes	0.3015	86.18	6.849E-04
Heptanes	0.1171	100.20	3.093E-04
Methylcyclohexane	0.1124	98.19	2.909E-04
2,2,4-Trimethylpentane	0.0072	100.21	1.902E-05
Benzene	0.0185	78.11	3.809E-05
Toluene	0.0515	92.14	1.251E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0174	106.17	4.869E-05
C8+ Heavies	0.0698	110.00	2.024E-04
Total			
Total VOC			1.091E-02

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022. Emission Factors (lb/scf) = $(\% / 100) \times lb/lb-mole / 379.4 scf/lb-mole$

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

CO₂, CH₄, and N₂O stack exhaust emissions for combustion sources were calculated using emission factors from 40 Code of Federal Regulations (CFR), Part C, Tables C-1 & C-2 and the combustion source higher heating value (HHV) design heat rates.

The SSM and malfunction CO₂ and CH₄ emissions from blowdown events were calculated from the annual blowdown volumes and gas composition.

CO₂ and CH₄ emissions from the condensate storage tanks is based on the flash gas stream data from the ProMax output file.

There are no GHG emissions associated with the produced water storage tank or its associated truck loading operations.

Emissions of CO₂ and CH₄ from equipment leaks were calculated using the TOC emission factors and the facility gas stream composition.

The reciprocating compressor and centrifugal compressor CO₂ and CH₄ emissions were calculated using a combination of equations W-26 & W-36 (from Subpart W).

CH₄ gas-driven pneumatic device emissions and non-routine emissions were calculated from the facility CH₄ gas stream composition using the emission factors and baseline CH₄ content from the API Compendium, Section 5.6.1, Table 5-15. CO₂ gas-driven pneumatic device emissions and non-routine emissions were calculated from the CH₄ emissions and facility gas stream CO₂ composition.

		Fac	ility Total Emiss	sions	
Sources	CO2,	N2O,	CH4,	GHG,	CO2e,
	tpy	tpy	tpy	tpy	tpy
Engine & Turbine Exhaust Emissions (w/o Unit 18a)	171,666.17	3.24E-01	3.24	171,669.73	171843.47
Engine & Turbine Exhaust Emissions (w/o Unit 18)	167,786.08	3.16E-01	3.16	167,789.55	167959.36
SSM Blowdown Emissions	145.09		570.51	715.60	14407.83
Reciprocating Compressor Venting Emissions	101.00		556.53	657.53	14014.30
Centrifugal Compressor Venting Emissions	95.26		300.29	395.55	7602.40
Heater & Boiler Exhaust Emissions	1,775.30	3.35E-03	3.35E-02	1,775.34	1777.13
Equipment Leak Emissions	5.74		29.04	34.78	731.82
Natural Gas Pneumatic Device Venting Emissions	16.83		52.91	69.74	1339.61
Natural Gas Driven Pneumatic Pump Venting Emissions	6.94E-01		2.18	2.87	55.22
Malfunction Emissions	472.08		1485.85	1,957.93	37618.40
Storage Tank Emissions	1.91E-01		2.95E-02	0.22	0.93
Total #1	174,278.35	3.27E-01	3,000.61	177,279.29	249,391
Total #2	170,398.26	3.20E-01	3,000.54	173,399.12	245,507

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Engine & Turbine Exhaust Emissions

Unit		E	Emission Factor	rs		Emissio	n Rates	
Numbers	Description	CO2,	N2O,	CH4,	CO2,	N2O,	CH4,	CO2e,
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	tpy
1	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
2	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
3	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
4	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
5	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
6	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
7	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
8	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
9	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
10	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
15	Solar MARS 90-T12000S	53.06	1.00E-04	1.00E-03	50,367.37	9.49E-02	9.49E-01	50,419.4
16	Solar MARS 90-T12000S	53.06	1.00E-04	1.00E-03	50,367.37	9.49E-02	9.49E-01	50,419.4
17	Waukesha L7042G	53.06	1.00E-04	1.00E-03	4,209.59	7.93E-03	7.93E-02	4,213.9
18	Waukesha L7042GSI	53.06	1.00E-04	1.00E-03	6,453.57	1.22E-02	1.22E-01	6,460.2
or 18a	Waukesha F2895GSIU	53.06	1.00E-04	1.00E-03	2,573.47	4.85E-03	4.85E-02	2,576.1
19	Waukesha F2895GSIU	53.06	1.00E-04	1.00E-03	163.75	3.09E-04	3.09E-03	163.9
	Total #1			_	171,666.17	3.24E-01	3.24	171,843
	Total #2				167,786.08	3.16E-01	3.16	167,959

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

				LHV	HI	-IV
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
2	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
3	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
4	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
5	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
6	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
7	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
8	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
9	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
10	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
15	Solar MARS 90-T12000S	Nat. Gas	8,760	88.66	98.51	862,957
16	Solar MARS 90-T12000S	Nat. Gas	8,760	88.66	98.51	862,957
17	Waukesha L7042G	Nat. Gas	8,760	7.41	8.23	72,124
18	Waukesha L7042GSI	Nat. Gas	8,760	11.36	12.62	110,571
or 18a	Waukesha F2895GSIU	Nat. Gas	8,760	4.53	5.03	44,092
19	Waukesha F2895GSIU	Nat. Gas	500	5.05	5.61	2,806

The fuel types and operating times are provided by Harvest Four Corners, LLC

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

Blowdown Emissions

Unit		Total	CO2 Emission	CH4 Emission		Emission Rates		
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,	CO2e,	
		scf/yr	lb/scf	lb/scf	tpy	tpy	tpy	
SSM	SSM (Units 1-5)	18,219,600	0.0119	0.0375	108.47	341.40	8643.4	
SSM	SSM (Units 6-10)	5,518,000	0.0012	0.0349	3.44	96.29	2410.6	
SSM	SSM (Units 15 & 16)	5,380,800	0.0119	0.0375	32.03	100.82	2552.7	
PR1	G-12 Pig Receiver	184,000	0.0012	0.0349	1.15E-01	3.21	80.4	
PR2	11-S Pig Receiver	1,650,000	0.0012	0.0349	1.03	28.79	720.8	
	Total				145.09	570.51	14407.8	

The annual blowdown volumes are calculated from data provided by Harvest Four Corners, LLC

The CO2 & CH4 emission factors for SSM (Units 1-5) and SSM (Units 15 & 16) were calculated from the Manzanares extended gas analysis

The CO2 & CH4 emission factors for SSM (Units 6-10) and 11-S Pig Receiver were calculated from the Trunk G extended gas analysis

The CO2 & CH4 emission factors for G-12 Pig Receiver were calculated from the Trunk L extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Reciprocating Compressor Venting Emissions

Unit		Emission Rates				
Numbers	Description	CO2,	CH4,	CO2e,		
		tpy	tpy	tpy		
1-5	Blowdown Valve Leakage	8.73	27.53	696.9		
1-5	Rod Packing Emissions	82.69	260.65	6,598.8		
1-5	Isolation Valve Leakage	0.00E+00	0.00E+00	0.0		
6-10	Blowdown Valve Leakage	0.92	25.63	641.8		
6-10	Rod Packing Emissions	8.67	242.72	6,076.8		
6-10	Isolation Valve Leakage	0.00E+00	0.00E+00	0.0		
	Total	101.00	556.53	14,014.3		

Operating or standby mode - includes blowdown valve leakage through blowdown vent stack

Operating mode - includes rod packing emissions

Non-operating depressurized mode - includes isolation valve leakage through open blowdown vents (without blind flanges)

Rod packing gas emissions assume 4 cylinders per compressor

A combination of equations W-26 & W-36 (Subpart W) is used to calculate reciprocating compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
1-5	Blowdown Valve Leakage	5	33.5	8,760	10.26	88.64	0.0526	0.0192
1-5	Rod Packing Emissions	5	317.2	8,760	10.26	88.64	0.0526	0.0192
1-5	Isolation Valve Leakage	5	10.5	0	10.26	88.64	0.0526	0.0192
6-10	Blowdown Valve Leakage	5	33.5	8,760	1.08	82.55	0.0526	0.0192
6-10	Rod Packing Emissions	5	317.2	8,760	1.08	82.55	0.0526	0.0192
6-10	Isolation Valve Leakage	5	10.5	0	1.08	82.55	0.0526	0.0192

The number of compressors and operatrig times are provided by Harvest Four Corners, LLC

Blowdown valve leakage (33.5 scf/hr) and rod packing emissions occur in operating mode

Blowdown valve leakage (10.5 scf/hr) occurs in standby pressurized mode

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The CO2 & CH4 mole percents for Units 1-5 are taken from the Manzanares extended gas analysis

The CO2 & CH4 mole percents for Units 6-10 are taken from the Trunk G extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Centrifugal Compressor Venting Emissions

Unit		Emission Rates					
Numbers	Description	CO2,	CH4,	CO2e,			
		tpy	tpy	tpy			
15 & 16	Blowdown Valve Leakage	17.45	55.02	1,393.0			
15 & 16	Oil Degassing Vents	77.81	245.26	6,209.4			
15 & 16	Isolation Valve Leakage	0.00E+00	0.00E+00	0.0			
	Total	95.26	300.29	7,602.4			

Operating mode - includes blowdown valve leakage (wet and dry seal) and the oil degassing vents (wet seal)

Non-operating depressurized mode - includes isolation valve leakage (wet & dry seal) through open blowdown vents (without blind flanges)

A combination of equations W-22 & W-36 (Subpart W) is used to calculate centrifugal compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
15 & 16	Blowdown Valve Leakage	2	167.4	8,760	10.26	88.64	0.0526	0.0192
15 & 16	Oil Degassing Vents	2	746.2	8,760	10.26	88.64	0.0526	0.0192
15 & 16	Isolation Valve Leakage	2	10.8	0	10.26	88.64	0.0526	0.0192

The number of compressors and operating times are provided by Harvest Four Corners, LLC

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The CO2 & CH4 mole percents for Units 15 & 16 are taken from the Manzanares extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Heater & Boiler Exhaust Emissions

Unit		Е	Emission Factors		Emission Rates			
Numbers	Description	CO2,	N2O,	CH4,	CO2,	N2O,	CH4,	CO2e,
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	tpy
20	Sivals Heater	53.06	1.00E-04	1.00E-03	284.05	5.35E-04	5.35E-03	284.3
28	Pesco Heater	53.06	1.00E-04	1.00E-03	397.67	7.49E-04	7.49E-03	398.1
37	Stabilizer Reboiler	53.06	1.00E-04	1.00E-03	454.48	8.57E-04	8.57E-03	454.9
39	Water Tank Heater	53.06	1.00E-04	1.00E-03	142.02	2.68E-04	2.68E-03	142.2
40	Tech Shop Heater	53.06	1.00E-04	1.00E-03	71.01	1.34E-04	1.34E-03	71.1
41	Maintenance Shop Heater	53.06	1.00E-04	1.00E-03	71.01	1.34E-04	1.34E-03	71.1
42	Maintenance Shop Heater	53.06	1.00E-04	1.00E-03	71.01	1.34E-04	1.34E-03	71.1
43	Maintenance Shop Heater	53.06	1.00E-04	1.00E-03	71.01	1.34E-04	1.34E-03	71.1
44	Generator Building Heater	53.06	1.00E-04	1.00E-03	71.01	1.34E-04	1.34E-03	71.1
45	Tech Shop Heater	53.06	1.00E-04	1.00E-03	142.02	2.68E-04	2.68E-03	142.2
	Total				1,775.30	3.35E-03	3.35E-02	1,777.1

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	HI	٦V
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
20	Sivals Heater	Nat. Gas	8,760	0.500	0.556	4,867
28	Pesco Heater	Nat. Gas	8,760	0.700	0.778	6,813
37	Stabilizer Reboiler	Nat. Gas	8,760	0.800	0.889	7,787
39	Water Tank Heater	Nat. Gas	8,760	0.250	0.278	2,433
40	Tech Shop Heater	Nat. Gas	8,760	0.125	0.139	1,217
41	Maintenance Shop Heater	Nat. Gas	8,760	0.125	0.139	1,217
42	Maintenance Shop Heater	Nat. Gas	8,760	0.125	0.139	1,217
43	Maintenance Shop Heater	Nat. Gas	8,760	0.125	0.139	1,217
44	Generator Building Heater	Nat. Gas	8,760	0.125	0.139	1,217
45	Tech Shop Heater	Nat. Gas	8,760	0.250	0.278	2,433

The fuel type and operating times are provided by Harvest Four Corners, LLC

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rate (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rate (MMBtu/hr) x hr/yr

Equipment Leaks Emissions

Unit			Emission Rates	5
Numbers	Description	CO2,	CH4,	CO2e,
		tpy	tpy	tpy
1-5, 15 & 16	Valves	3.97	12.53	317.2
1-5, 15 & 16	Connectors	5.70E-01	1.80	45.5
1-5, 15 & 16	Open-Ended Lines	2.63E-01	8.30E-01	21.0
1-5, 15 & 16	Pressure Relief Valves	4.93E-01	1.55	39.3
6-10	Valves	3.33E-01	9.33	233.7
6-10	Connectors	4.56E-02	1.28	32.0
6-10	Open-Ended Lines	2.25E-02	6.31E-01	15.8
6-10	Pressure Relief Valves	3.90E-02	1.09	27.4
	Total	5.74	29.04	731.8

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
1-5, 15 & 16	Valves	630	0.121	10.26	88.64	8,760	0.0526	0.0192
1-5, 15 & 16	Connectors	643	0.017	10.26	88.64	8,760	0.0526	0.0192
1-5, 15 & 16	Open-Ended Lines	163	0.031	10.26	88.64	8,760	0.0526	0.0192
1-5, 15 & 16	Pressure Relief Valves	49	0.193	10.26	88.64	8,760	0.0526	0.0192
6-10	Valves	504	0.121	1.08	82.55	8,760	0.0526	0.0192
6-10	Connectors	491	0.017	1.08	82.55	8,760	0.0526	0.0192
6-10	Open-Ended Lines	133	0.031	1.08	82.55	8,760	0.0526	0.0192
6-10	Pressure Relief Valves	37	0.193	1.08	82.55	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The CO2 & CH4 mole percents for components associated with Units 1-5, 15 & 16 are taken from the Manzanares extended gas analysis

The CO2 & CH4 mole percents for components associated with Units 6-10 are taken from the Trunk G extended gas analysis

The operating times are provided by Harvest Four Corners, LLC (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Natural Gas Pneumatic Device Venting Emissions

Unit	Unit		Emission	Operating	Emission Rates			
Numbers	Description	of Devices,	Factors,	Times,	CO2,	CH4,	CO2e,	
		#	scf/hr/device	hr/yr	tpy	tpy	tpy	
NA	Continuous High Bleed Pneumatic Devices	0	37.3	8,760	0.00	0.00	0.0	
NA	Intermittent Bleed Pneumatic Devices	17	13.5	8,760	11.97	37.64	952.9	
NA	Continuous Low Bleed Pneumatic Devices	67	1.39	8,760	4.86	15.27	386.7	
	Total				16.83	52.91	1,339.6	

The number of devices and operating times are provided by Harvest Four Corners, LLC

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

Equation W-1 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials

 ${\it CO2 Emission Rates (tpy) = \# \ x \ scf/hr/device \ x \ (CO2 \ Content \ (mole \ \%) \ / \ 100) \ x \ CO2 \ Conversion \ Factors \ (tonne \ CO2e/scf) \ x \ hr/yr} }$

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rates (tpy) = # x scf/hr/device x (CH4 Contents (mole %) / 100) x CH4 Conversion Factors (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factors,	Factors,	Potentials,	Potentials,
Numbers	Description	Contents,	Contents,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Continuous High Bleed Pneumatic Devices	10.26	88.64	5.262E-05	4.790E-04	1	25
NA	Intermittent Bleed Pneumatic Devices	10.26	88.64	5.262E-05	4.790E-04	1	25
NA	Continuous Low Bleed Pneumatic Devices	10.26	88.64	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Natural Gas Driven Pneumatic Pump Venting Emissions

Emission Rates

Unit		Number	Emission	Operating	Emission Rates		
Number	Description	of Pumps,	Factor,	Time,	CO2,	CH4,	CO2e,
		#	scf/hr/pump	hr/yr	tpy	tpy	tpy
NA	Pneumatic Pump Venting	1	13.3	8,760	6.94E-01	2.18	55.2

The number of pumps are provided by Harvest Four Corners, LLC

The emission factor is taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating time is provided by Harvest Four Corners, LLC (default is the entire year)

Equation W-2 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials

CO2 Emission Rate (tpy) = # x scf/hr/pump x (CO2 Content (mole %) / 100) x CO2 Conversion Factor (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rate (tpy) = # x scf/hr/pump x (CH4 Content (mole %) / 100) x CH4 Conversion Factor (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factor,	Factor,	Potential,	Potential,
Number	Description	Content,	Content,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Pneumatic Pump Venting	10.26	88.64	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The operating time is provided by Harvest Four Corners, LLC (the default is the entire year)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

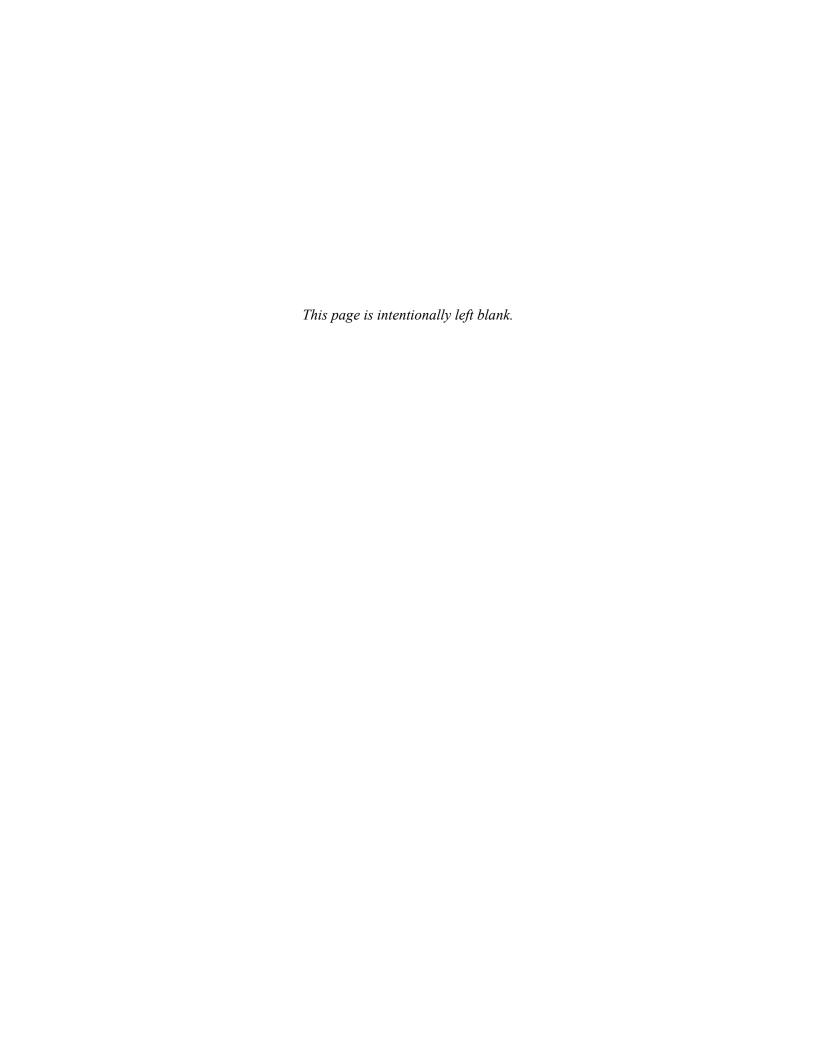
Malfunction Emissions

Unit		Emission Rates						
Number	Description	VOC,	CO2,	CH4,	CO2e,			
		tpy	tpy	tpy	tpy			
M1	Malfunctions	10.00	472.08	1,485.85	37,618.4			

The VOC emission rate is estimated (see calculations workbook)

CO2 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CO2 Weight % of Total (%) / 100)

CH4 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CH4 Weight % of Total (%) / 100)


		Total	VOC	CO2	CH4
Unit		Component	Component	Weight %	Weight %
Number	Description	Weight,	Weight,	of Total,	of Total,
		lb/lb-mole	lb/lb-mole	%	%
M1	Malfunctions	19.10	0.10	23.65	74.44

The total & VOC component weights and CO2 & CH4 weight % of totals are calculated from the facility extended gas analysis

Storage Tank Emissions

Unit					
Number	Description	CO2,		CH4,	CO2e,
		tpy		tpy	tpy
T91019	Condensate	6.45E-02	-	9.93E-03	0.3
T91020	Condensate	3.86E-02	-	5.95E-03	0.2
T91021	Condensate	3.86E-02	_	5.95E-03	0.2
T91028	Condensate	4.96E-02	-	7.64E-03	0.2
	Total	1.91E-01		2.95E-02	0.9

The emission rates are taken from ProMax output files, as applicable

Saved Date: 4/6/2023

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \square If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- \square Fuel specifications sheet.
- If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Please see the following pages.

STANDARD EQUIPMENT

AIR CLEANER - Two, 3" dry type filter with hinged rain shield and service indicator.

BARRING DEVICE - Manual.

BATTERY BOX – Ship loose battery box designed to accommodate two series 31 12 VDC batteries. Includes power disconnect switch and 20 foot (6.1 m) cable for connection to ESM Power Distribution Box.

BEARINGS - Heavy duty, replaceable, precision type.

BREATHER - Self regulating, closed system.

CONNECTING RODS - Drop forged steel, rifle drilled.

CONTROL SYSTEM – Waukesha Engine System Manager (ESM) integrates spark timing control, speed governing, detonation detection, start-stop control, diagnostic tools, fault logging and engine safeties. Engine Control Unit (ECU) is central brain of the control system and main customer interface. Interface with ESM is through 25 foot (7.6 m) harness to local panel, through MODBUS RTU slave connection RS-485 multidrop hardware, and through the Electronic Service Program (ESP). Customer connections are only required to the local

the Electronic Service Program (ESP). Customer connections are only required to the local panel, fuel valve, and 24V DC power supply. Compatible with Woodward load sharing module. ESM meets Canadian Standards Association Class I, Division 2, Group D, hazardous location requirements. ESM controlled prechamber logic.

CRANKCASE – Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors.

CRANKSHAFT – Counterweighted, forged steel, seven main bearings, and dynamically balanced.

CYLINDERS – Removable bainitic cast iron wet type cylinder liners, chrome plated on outer diameter.

CYLINDER HEADS – Twelve interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods. Includes pre

ENGINE ROTATION – Counterclockwise when facing flywheel.

ENGINE MONITORING DEVICES – Factory mounted and wired sensors for lube oil pressure and temperature; intake manifold temperature and pressure; overspeed; and jacket water temperature; all accessible through ESM®. ESM continually monitors combustion performance through accelerometers to provide detonation protection. Dual magnetic pick-ups are used for accurate engine speed monitoring. ESM provides predictive spark plug diagnostics as well as advanced diagnostics of engine and all ESM sensors and logs any faults into non-volatile flash memory.

EXHAUST THERMOCOUPLES – 14 K-type thermocouples. One for each individual cylinder and one pre-turbine for each bank and 25 foot (7.6 m) harness.

EXHAUST OUTLET – Single vertical at rear. Flexible stainless steel connection with 8" (203 mm) pipe flange.

FLYWHEEL – Approx. WR2 = 155000 lb-in2; with ring gear (208 teeth), machined to accept two drive adapters: 31.88" (810 mm) pilot bore, 30.25"(768 mm) bolt circle, (12) 0.75"–10 tapped holes; or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt circle, (12) 0.625"–11 tapped holes and (12) 0.75"–10 tapped holes.

FLYWHEEL HOUSING - No. 00 SAE.

FUEL SYSTEM – Single 3" ANSI flange fuel inlet connection. Dual natural gas, 4" (102 mm) duplex updraft carburetors. Two mounted Mooney Flowgrid 250, 2" (51 mm) gas regulators, 43 – 60 psi (296 – 414 kPa) gas inlet pressure required. Prechamber fuel system and control logic. 10 foot (3 m) harness provided for ESM control of customer supplied fuel shutoff valve.

GOVERNOR – Electric throttle actuator controlled by ESM with throttle position feedback. Governor tuning is performed using ESP. ESM includes option of a load-coming feature to improve engine response to step loads.

IGNITION SYSTEM – Ignition Power Module (IPM) controlled by ESM, with spark timing optimized for any speed-load condition. Dual voltage energy levels automatically controlled by ESM to maximize spark plug life.

INTERCOOLER - Air-to-water.

LEVELING BOLTS

LIFTING EYES - Requires 9.5 ton Working Load Limit (W.L.L.) anchor shackles.

LUBRICATION – Full pressure, gear type pump. Engine mounted full flow lube oil micro-fiberglass filters with mounted differential pressure gauge. MICROSPIN® bypass filter, engine mounted. Lube oil strainer, mounted. Air/gas motor driven prelube pump, requires final piping.

MANIFOLDS - Exhaust, (2) water cooled.

OIL COOLER – Shell and tube type, with thermostatic temperature controller and pressure regulating valve. Factory mounted

OIL PAN – Deep sump type. 190 gallon (719 L) capacity including filter and cooler.

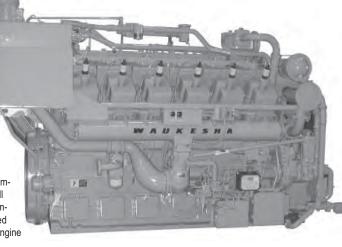
PAINT - Oilfield orange primer.

PISTONS - Aluminum with floating pin. Oil cooled.

SHIPPING SKID - For domestic truck or rail.

TURBOCHARGERS - Two, dry type. Wastegate controlled.

VIBRATION DAMPER - Two, viscous type. Guard included with remote mounted radiator or no radiator.


WATER CIRCULATING SYSTEM, AUXILIARY CIRCUIT – Belt driven water circulating high capacity pump for intercooler and lube oil cooler. See S6543-38 performance curve for use with standard 10" diameter crankshaft pulley. Includes thermostatic valve.

WATER CIRCULATING SYSTEM, ENGINE JACKET – Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet.

L7042GL

VHP® Gas Engine 886 - 1547 BHP

Engine shown without Extender Series Features.

Model L7042GL with ESM®

Turbocharged and Intercooled, Twelve Cylinder, Lean Combustion, Four-Cycle Gas Engine

SPECIFICATIONS

Cylinders V 12

Piston Displacement 7040 cu. in.

(115 L)

9.375" x 8.5"

Compression Ratio 10.5:1

Jacket Water System Capacity 107 gal. (405 L) Lube Oil Capacity 190 gal. (719 L)

Starting System
125 - 150 psi air/gas
24/32V electric

Dry Weight 21,000 lb. (9525 kg)

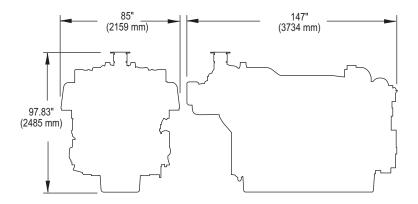
POWER RATINGS: L7042GL VHP® GAS ENGINES

	I.C. Water Inlet Temp.			Brake Hor	sepower (kWb Outpu	it)
Model	°F (°C) (Tcra)	C.R.	800 rpm	900 rpm	1000 rpm	1100 rpm	1200 rpm
L7042GL	85° (29°)	10.5:1	928 (692)	1160 (865)	1289 (961)	1418 (1057)	1547 (1154)
L7042GL	130° (54°)	10.5:1	886 (661)	1110 (828)	1233 (919)	1357 (1012)	1480 (1104)

Rating Standard: All models: Ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and auxiliary water temperature Tcra (clause 10.1) as specified above limited to ± 10° F (± 5° C). Ratings are also valid for SAE J1349, BS5514, DIN6271 and AP17B-11C standard atmospheric conditions.

ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours a day, seven days a week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or maximum load indicated by the intermittent rating, whichever is lower, for two hours in each 24 hour period.

All natural gas engine ratings are based on a fuel of 900 Btu/ft³ (35.3 MJ/nm³) SLHV value, with a 91 Waukesha Knock Index®.


For conditions or fuels other than standard, contact the Waukesha Engine Sales Engineering Department.

PERFORMANCE: L7042GL VHP® GAS ENGINES

	English	130° F	ICW	85° F	ICW		Metric	54° (CICW	29° (CICW
NO _x Settings	RPM	1200	1000	1200	1000	NO _x Settings	RPM	1200	1000	1200	1000
	Power (Bhp)	1480	1233	1547	1289		Power (kWb)	1104	919	1154	962
o N N	BSFC (Btu/bhp-hr)	7135	6850	7160	6865	o _x	BSFC (kJ/kW-hr)	10089	9686	10124	9707
g	NOx (grams/bhp-hr)	1.50	1.50	1.50	1.50	б	NOx (g/nm³)	0.62	0.62	0.62	0.62
1.5	CO (grams/bhp-hr)	2.65	2.65	2.65	2.65	1.5	CO (g/nm³)	1.09	1.09	1.09	1.09
	NMHC (grams/bhphr)	0.70	0.80	0.80	0.90		NMHC (g/nm³)	0.29	0.41	0.33	0.37

NOTES:

- 1) Fuel consumption and exhaust emissions are based on ISO 3046/1-1995 standard reference conditions and commercial quality natural gas of 900 Btu/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) saturated lower heat value, Waukesha Knock Index[®] of 91 and 93% methane content by volume. ISO 3046/1-1995 standard reference conditions are 77°F (25°C) ambient temperature, 29.54 inches Hg (100 kPa) barometric pressure, 30% relative humidity (1kPa/0.3 inches Hg water vapor pressure).
- 2) S.I. exhaust emissions are corrected to 5% O₂ (0°C and 101.325 kPa).
- 3) Data will vary due to variations in site conditions. For conditions and/or fuels other than standard, consult the Waukesha Engine Sales Engineering Department.
- 4) Fuel consumption based on ISO 3046/1-1995 with a +5% tolerance for commercial quality natural gas having a 900 Btu/ft³ saturated low heat valve

WAUKESHA ENGINE DRESSER, INC.

1101 West St. Paul Avenue Waukesha, WI 53188-4999

Phone: (262) 547-3311 Fax: (262) 549-2795

waukeshaengine.dresser.com

Bulletin 7005 0107

Consult your local Waukesha Distributor for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

DRESSER Waukesha

STANDARD EOUIPMENT

AIR CLEANER - Two, dry type with rain shield and service indicator.

BARRING DEVICE - Manual.

BEARINGS – Heavy duty, replaceable, precision type.

BREATHER - Closed system.

CONNECTING RODS – Drop forged steel, rifle drilled.

CONTROL SYSTEM - Pneumatic. Includes pilot operated valves for air start and prelube. Engine mounted control panel with two push button valves. Pilot operated air start valves omitted when starter is not furnished by Waukesha. Includes engine On/Off push button. One mounted on either side of the engine.

CRANKCASE - Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors

CRANKSHAFT - Counterweighted, forged steel, seven main bearings, and dynamically balanced.

CYLINDERS - Removable wet type cylinder liners, chrome plated on outer diameter. Induction hardened.

CYLINDER HEADS - Twelve interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods.

ENGINE ROTATION – Counterclockwise when facing flywheel.

ENGINE MONITOR DEVICES - Engine thermocouples, K-type, are wired to a common junction box for jacket water temperature, lube oil temperature and intake manifold temperature. Magnetic pickup wired for customer supplied tachometer. Lube oil pressure and intake manifold pressure sensing lines are terminated in a common bulk head.

EXHAUST OUTLET - Single vertical at rear. Flexible stainless steel connection with 8" (203 mm) pipe flange. **FLYWHEEL** – Approx. $WR^2 = 155000$ lb-in²; with ring gear (208 teeth), machined to accept two drive adapters: 31.88" (810 mm) pilot bore, 30.25" (768 mm) bolt circle, (12) 0.75"-10 tapped holes; or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt circle, (12) 0.625"-11 tapped holes and (12) 0.75"-10 tapped holes.

FUEL SYSTEM - Dual, natural gas, 4" (102 mm) updraft. Two Fisher Model S-201, 2" (51 mm) gas regulators, 13 psi (89 kPa) maximum inlet pressure.

FLYWHEEL HOUSING - No. 00 SAE.

GOVERNOR - Woodward UG-8 LD hydraulic lever type, with friction type speed control. Mounted on right hand

IGNITION - Waukesha Custom Engine Control Ignition Module. Electronic digital ignition system. 24V DC power required. LEVELING BOLTS

LIFTING EYES - Requires 9.5 ton Working Load Limit (W.L.L.) anchor shackles.

LUBRICATION - Full pressure. Gear type pump. Full flow filter, 36 gallon (136 litres) capacity, not mounted. Includes lube oil strainer (mounted on engine) and flexible connections (shipped loose). Air/gas motor driven prelube pump. Requires final prigia

MANIFOLDS - Exhaust, (2) water cooled.

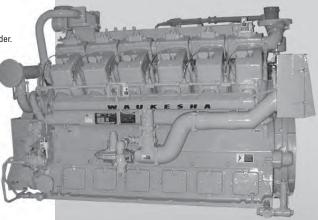
OIL COOLER - Shell and tube type, with thermostatic temperature controller and pressure regulating valve. Not mounted.

OIL PAN - Base type. 90 gallon (340 litres) capacity including filter and cooler.

PAINT - Oilfield orange primer.

PISTONS - Aluminum with floating pin. Standard 10:1 compression ratio. Oil cooled.

SHIPPING SKID - For domestic truck or rail.


VIBRATION DAMPER - Viscous type. Guard included with remote mounted radiator or no radiator.

WATER CIRCULATING SYSTEM, AUXILIARY CIRCUIT – For oil cooler. Pump is belt driven from crankshaft pulley.

WATER CIRCULATING SYSTEM, ENGINE JACKET – Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet.

732 - 1025 BHP (546 - 764 kWb)

Engine shown with options.

Model L7042G

Naturally Aspirated, Twelve Cylinder, Four-Cycle Gas Fueled Engine

SPECIFICATIONS

Cylinders

V 12

Piston

Displacement

7040 cu. in.

(115 L)

Bore & Stroke

9.375" x 8.5"

(238 x 216 mm)

Compression Ratio

10:1

Jacket Water

System Capacity

107 gal. (405 L)

Lube Oil Capacity

90 gal. (340 L)

Starting System

125 - 150

psi air/gas

24 V electric

Dry Weight 21,000 lb.

(9525 kg)

POWER RATINGS: L7042G VHP® SERIES GAS ENGINE

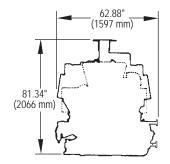
	I.C. Water Inlet Temp.		Bra	ke Horsepow	er (kWb Outp	out)
Model	°F (°C) (Tcra)	C.R.	800 rpm	900 rpm	1000 rpm	1200 rpm
L7042G	85° (29°)	10:1	732 (546)	818 (610)	896 (668)	1025 (764)

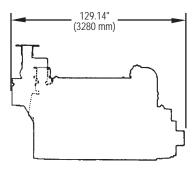
Rating Standard: All models: Ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and auxiliary water temperature Tcra (clause 10.1) as specified above limited to ± 10° F (± 5° C). Ratings are also valid for SAE J1349, BS5514, DIN6271 and AP17B-11C standard atmospheric conditions.

ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours a day, seven days a week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or maximum load indicated by the intermittent rating, whichever is lower, for two hours in each 24 hour period.

All natural gas engine ratings are based on a fuel of 900 Btu/ft3 (35.3 MJ/nm3) SLHV, with a 91 WKI®.

For conditions or fuels other than standard, contact the Dresser Waukesha Application Engineering Department.


PERFORMANCE: L7042G VHP® SERIES GAS ENGINE


	English 130° F I.	C. Water Temperature	Metric 54° C I.C. Water Temperature			
	RPM	1200 1000		RPM	1200	1000
	Power (Bhp)	1025 896		Power (kWb)	764	668
st	BSFC (Btu/bhp-hr)	7225 7135	st	BSFC (kJ/kW-hr)	10225	10095
Catalyst Settings	NOx (grams/bhp-hr)	16.0 16.0	Catalyst Settings	NOx (g/nm³)	5.9	5.9
S S	CO (grams/bhp-hr)	13.0 13.0	S. S.	CO (g/nm³)	4.8	4.8
	NMHC (grams/bhp-hr)	0.25 0.25		NMHC (g/nm³)	0.1	0.1

NOTES:

- 1) Fuel consumption and exhaust emissions are based on ISO 3046/1-1995 standard reference conditions and commercial quality natural gas of 900 Btu/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) saturated lower heat value, Waukesha Knock Index® of 91 and 93% methane content by volume. ISO 3046/1-1995 standard reference conditions are 77°F (25°C) ambient temperature, 29.54 inches Hg (100 kPa) barometric pressure, 30% relative humidity (1kPa/0.3 inches Hg water vapor pressure).
- S.I. exhaust emissions are corrected to 5% O₂ (0°C and 101.325 kPa).
- 3) Data will vary due to variations in site conditions. For conditions and/or fuels other than standard, consult the Dresser Waukesha Application Engineering Department.
- 4) Fuel consumption based on ISO 3046/1-1995 with a +5% tolerance for commercial quality natural gas having a 900 Btu/ft3 saturated low heat valve

Consult your local Waukesha Distributor for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

Bulletin 7011B 1008

2040 Afton Place Farmington, NM 87401 Office: 505.327.4945 | Direct: 307.675.5077

QUO-11395-S0H2

imartindale@emittechnologies.com

QUOTE:

Prepared For:

Mike Johnson

WILLIAMS FIELD SERVICES

CONTROL EQUIPMENT

Catalyst Housing

Model: ELS-3550-1212F-4CE0-241
Manufacturer: EMIT Technologies, Inc
Element Size: Rectangle 24" x 15" x 3.5"

Housing Type: 4 Element Capacity
Catalyst Installation: Accessible Housing
Construction: 10 gauge Carbon Steel

Sample Ports: 9 (0.5" NPT)

Inlet Connections: 12" Flat Face Flange
Outlet Connections: 12" Flat Face Flange
Configuration: End In / Side Out

Silencer: Integrated
Silencer Grade: Critical
Insertion Loss: 25-30 dBA

Catalyst Element

Element Size:

Model: RT-2415-T

Catalyst Type: NSCR, Standard Precious Group Metals

Substrate Type: BRAZED

Manufacturer: EMIT Technologies, Inc

Element Quantity: 2

Rectangle 24" x 15" x 3.5"

INFORMATION PROVIDED BY WAUKESHA

Engine: L7042G Horsepower: 1025 RPM: 1200 Compression Ratio: 10.0 4392 CFM **Exhaust Flow Rate:** 1058 °F Exhaust Temperature: Reference: 6124-5 Fuel: **Natural Gas Annual Operating Hours:** 8760

Uncontrolled Emissions

	g/bhp-hr	<u>Lb/Hr</u>	Tons/Year
NOx:	13.00	29.38	128.67
CO:	9.00	20.34	89.08
THC:	2.00	4.52	19.80
NMHC	0.30	0.68	2.97
NMNEHC:	0.15	0.34	1.48
HCHO:	0.05	0.11	0.49
O2:	0.30 %		

POST CATALYST EMISSIONS

	g/bhp-hr	<u>Lb/Hr</u>	Tons/Year
NOx:	<1.10	<2.49	<10.89
CO:	<2.00	<4.52	<19.80
VOC:	<0.11	<0.25	<1.10
HCHO:	<0.01	< 0.03	<0.12

2040 Afton Place Farmington, NM 87401 Office: 505.327.4945 | Direct: 307.675.5077

imartindale@emittechnologies.com

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate bublication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst be performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, non-ethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 100 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions, Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

L7042GSI

STANDARD EQUIPMENT

AIR CLEANER - Two, 3" dry type filter with hinged rain shield and service indicator.

AIR FUEL RATIO CONTROL (AFR) – Integrated ESM® - AFR catalyst rich-burn control, main fuel gas regulator actuators, exhaust 0_2 sensor(s), and post turbocharger exhaust thermocouple. Factory mounted and tested. AFR maintains emissions through load and speed changes. The ESM AFR meets Canadian Standards Association Class 1, Division 2, Group D hazardous location requirements. Note: For dual fuel applications, ESM AFR system will control the primary fuel source only.

BARRING DEVICE - Manual.

BATTERY BOX – Ship loose battery box designed to accommodate two Series 31 12 VDC batteries. Includes power disconnect switch and 20 foot (6.1 m) cable for connection to ESM® Power Distribution Box.

BEARINGS - Heavy duty, replaceable, precision type.

BREATHER - Self regulating, closed system.

CONNECTING RODS – Drop forged steel, rifle drilled.

CONTROL SYSTEM – Waukesha Engine System Manager (ESM®) integrates spark timing control, speed governing, detonation detection, start-stop control, diagnostic tools, fault logging and engine safeties. Engine Control Unit (ECU) is central brain of the control system and main customer interface. Interface with ESM is through 25 foot (7.6 m) harness to local panel, through MODBUS RTU slave connection RS-485 multidrop hardware, and through the Electronic Service Program (ESP). Customer connections are only required to the local panel, fuel valve, and 24V DC power supply. Compatible with Woodward load sharing module. ESM meets Canadian Standards Association Class I, Division 2, Group D, hazardous location requirements.

CRANKCASE – Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors.
Does not include sensors.

CRANKSHAFT - Counterweighted, forged steel, seven main bearings, and dynamically balanced.

CYLINDERS – Removable wet type bainitic cast iron cylinder liners, chrome plated on outer diameter.

CYLINDER HEADS – Twelve interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods.

ELECTRONIC SERVICE PROGRAM (ESP) – Microsoft® Windows-based program provided on CD-ROM for programming and interface to ESM. Includes E-Help for troubleshooting any ESM faults. Serial harness is provided for connection of a customer supplied laptop to the ECU RS-232 port.

ENGINE MONITORING DEVICES – Factory mounted and wired sensors for lube oil pressure and temperature; intake manifold temperature and pressure; overspeed; and jacket water temperature; all accessible through ESM®. ESM continually monitors combustion performance through accelerometers to provide detonation protection. Dual magnetic pick-ups are used for accurate engine speed monitoring. ESM provides predictive spark plug diagnostics as well as advanced diagnostics of engine and all ESM sensors and logs any faults into non-volatile flash memory.

ENGINE ROTATION - Counterclockwise when facing flywheel.

EXHAUST OUTLET – Single vertical at rear. Flexible stainless steel connection with 8" (203 mm) pipe flange.

FLYWHEEL – Approx. WR² = 155000 lb-in²; with ring gear (208 teeth), machined to accept two drive adapters: 31.88" (810 mm) pilot bore, 30.25" (768 mm) bolt circle, (12) 0.75"–10 tapped holes; or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt

circle, (12) 0.625"-11 tapped holes and (12) 0.75"-10 tapped holes.

FLYWHEEL HOUSING - No. 00 SAE.

FUEL SYSTEM – Single 3" ANSI flange fuel inlet connection. Two natural gas, 4" (102 mm) updraft carburetors and two mounted Mooney Flowgrid 250, 2" (51 mm) gas regulators, 30 – 60 psi (207 – 414 kPa) fuel inlet pressure required. 10 foot (3 m) harness provided for ESM control of customer supplied fuel shutoff valve

GOVERNOR – Electric throttle actuator controlled by ESM with throttle position feedback. Governor tuning is performed using ESP. ESM includes option of a load-coming feature to improve engine response to step loads.

IGNITION – Ignition Power Module (IPM) controlled by ESM, with spark timing. Dual voltage energy levels automatically controlled by ESM to maximize spark plug life.

INTERCOOLER - Air-to-water.

LEVELING BOLTS

LIFTING EYES - Requires 9.5 ton Working Load Limit (W.L.L.) anchor shackles.

LUBRICATION – Full pressure, gear type pump. Engine mounted full flow lube oil micro-fiberglass filters. MICROSPIN® bypass filter, engine mounted. Air/gas motor driven prelube pump, requires final piping.

MANIFOLDS - Exhaust, (2) water cooled.

OIL COOLER – Shell and tube type, with thermostatic temperature controller and pressure regulating valve. Factory

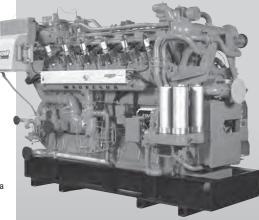
OIL PAN - Deep sump type. 190 gallon (719 L) capacity including filter and cooler.

PAINT – Oilfield orange primer.

PISTONS – Aluminum with floating pin. Oil cooled.

SHIPPING SKID – For domestic truck or rail.

TURBOCHARGERS – Two dry type. Wastegate controlled.


VIBRATION DAMPER – Viscous type. Guard included with remote mounted radiator or no radiator.

WATER CIRCULATING SYSTEM, AUXILIARY CIRCUIT — Belt driven water circulating high capacity pump for intercooler and lube oil cooler. See S6543-36 performance curve for use with standard 10 diameter crankshaft pulley.

WATER CIRCULATING SYSTEM, ENGINE JACKET – Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet.

VHP[®] Series Gas Engine Extender Series[®]

987 - 1547 BHP (736 - 1154 kWb)

Engine shown with options.

Model L7042GSI with ESM

Turbocharged and Intercooled, Twelve Cylinder, Four-Cycle Gas Fueled Engine

SPECIFICATIONS

Cylinders

V 12

Piston

Displacement

7040 cu. in.

(115 L)

Bore & Stroke

9.375" x 8.5"

(238 x 216 mm)

Compression Ratio

٥.

Jacket Water
System Capacity

107 gal. (405 L)

Lube Oil Capacity

190 gal. (719 L)

Starting System

125 - 150 psi air/gas

24 V electric

Dry Weight

21,000 lb. (9525 kg)

POWER RATINGS: L7042GSI VHP® GAS ENGINE

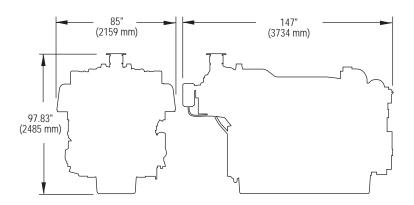
	I.C. Water Inlet Temp.		Bra	ke Horsepow	er (kWb Outp	ut)
Model	°F (°C) (Tcra)	C.R.	800 rpm	900 rpm	1000 rpm	1200 rpm
L7042GSI	85° (29°)	8:1	1031 (769)	1160 (865)	1289 (961)	1547 (1154)
	130° (54°)	8:1	987 (736)	1110 (828)	1233 (920)	1480 (1104)

Rating Standard: All models: Ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and auxiliary water temperature Tcra (clause 10.1) as specified above limited to ± 10° F (± 5° C). Ratings are also valid for SAE J1349, BS5514, DIN6271 and AP17B-11C standard atmospheric conditions.

ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours a day, seven days a week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or maximum load indicated by the intermittent rating, whichever is lower, for two hours in each 24 hour period.

All natural gas engine ratings are based on a fuel of 900 Btu/ft3 (35.3 MJ/nm3) SLHV, with a 91 WKI®.

For conditions or fuels other than standard, contact the Dresser Waukesha Application Engineering Department.


PERFORMANCE: L7042GSI VHP® GAS ENGINE

	English 130° F 1.0	C. Water Temperature	Metric 54° C I.C. Water Temperature			
	RPM	1200 1000		RPM	1200	1000
	Power (Bhp)	1480 1233		Power (kWb)	1104	920
st	BSFC (Btu/bhp-hr)	7675 7440	st Js	BSFC (kJ/kW-hr)	10860	10525
Catalyst Settings	NOx (grams/bhp-hr)	16.0 16.0	Catalyst Settings	NOx (g/nm³)	5.9	5.9
S S	CO (grams/bhp-hr)	13.0 13.0	S S	CO (g/nm³)	4.8	4.8
	NMHC (grams/bhp-hr)	0.25 0.25		NMHC (g/nm³)	0.1	0.1

NOTES:

- 1) Fuel consumption and exhaust emissions are based on ISO 3046/1-1995 standard reference conditions and commercial quality natural gas of 900 Btu/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) saturated lower heat value, Waukesha Knock Index® of 91 and 93% methane content by volume. ISO 3046/1-1995 standard reference conditions are 77°F (25°C) ambient temperature, 29.54 inches Hg (100 kPa) barometric pressure, 30% relative humidity (1kPa/0.3 inches Hg water vapor pressure).
- S.I. exhaust emissions are corrected to 5% O₂ (0°C and 101.325 kPa).
- 3) Data will vary due to variations in site conditions. For conditions and/or fuels other than standard, consult the Dresser Waukesha Application Engineering Department.
- 4) Fuel consumption based on ISO 3046/1-1995 with a +5% tolerance for commercial quality natural gas having a 900 Btu/ft3 saturated low heat valve

Consult your local Waukesha Distributor for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

Bulletin 7011 1008

2040 Afton Place Farmington, NM 87401

Office: 505.327.4945 | Direct: 307.675.5077 jmartindale@emittechnologies.com

QUOTE:

Prepared For:

Mike Johnson

WILLIAMS FIELD SERVICES

QUO-12840-G1T1

INFORMATION PROVIDED BY WAUKESHA

Engine: L7042GSI
Horsepower: 1480
RPM: 1200
Compression Ratio: 8.0

Exhaust Flow Rate: 7056 CFM
Exhaust Temperature: 1126 °F
Reference: 6124-63
Fuel: Natural Gas

Annual Operating Hours: 8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>	<u>Lb/Hr</u>	Tons/Year
NOx:	13.00	42.42	185.79
CO:	9.00	29.37	128.62
THC:	2.00	6.53	28.58
NMHC	0.30	0.98	4.29
NMNEHC:	0.15	0.49	2.14
HCHO:	0.05	0.16	0.71
O2:	0.30 %		

POST CATALYST EMISSIONS

	g/bhp-hr	<u>Lb/Hr</u>	Tons/Year
NOx:	<0.80	<2.60	<11.40
CO:	<1.53	< 5.00	<21.90
VOC:	<0.08	< 0.25	<1.10
HCHO:	<0.01	< 0.04	<0.17

CONTROL EQUIPMENT

Catalyst Housing

Model: ELS-3550-1212F-4CE0-241

Manufacturer: EMIT Technologies, Inc

Element Size: Rectangle 24" x 15" x 3.5"

Housing Type: 4 Element Capacity
Catalyst Installation: Accessible Housing
Construction: 10 gauge Carbon Steel

Sample Ports: 9 (0.5" NPT)

Inlet Connections: 12" Flat Face Flange
Outlet Connections: 12" Flat Face Flange
Configuration: End In / Side Out

Silencer: Integrated
Silencer Grade: Critical
Insertion Loss: 25-30 dBA

Catalyst Element

Model: RT-2415-T

Catalyst Type: NSCR, Standard Precious Group Metals

Substrate Type: BRAZED

Manufacturer: EMIT Technologies, Inc

Element Quantity: 2

Element Size: Rectangle 24" x 15" x 3.5"

2040 Afton Place Farmington, NM 87401 Office: 505.327.4945 | Direct: 307.675.5077

imartindale@emittechnologies.com

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

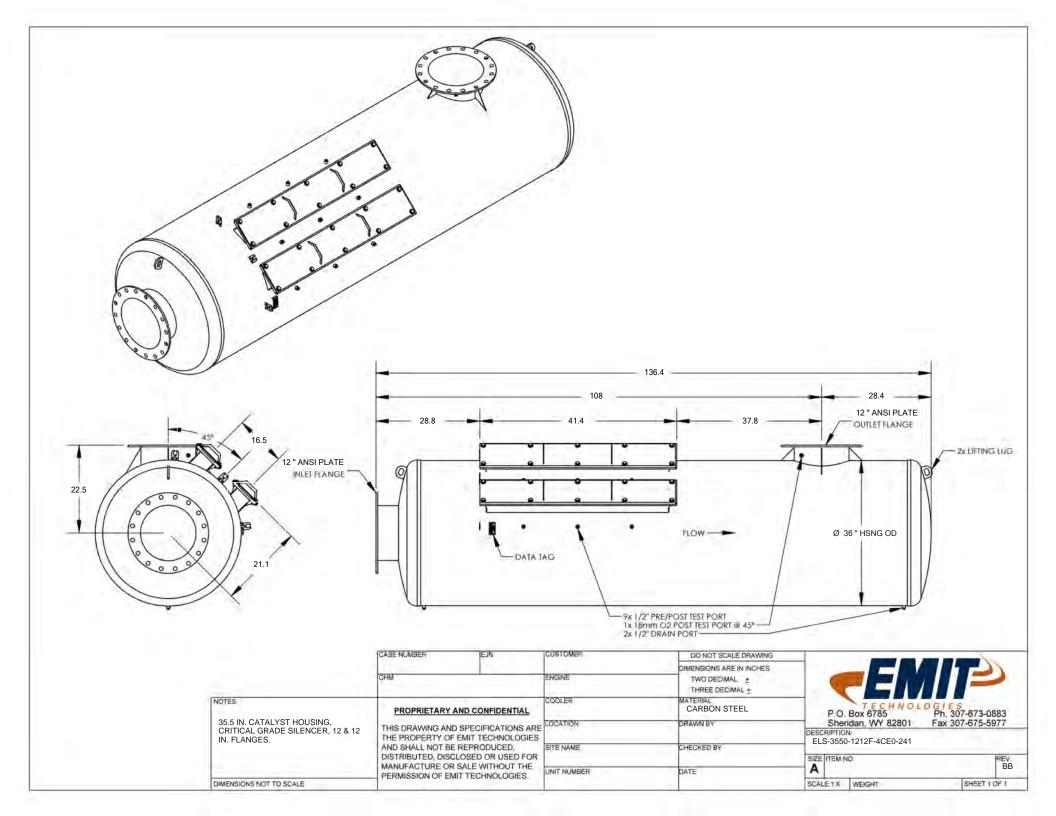
Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate bublication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, catalyst be performance is redeemable by means of proper washing (refer to EMIT Catalyst/Silencer Housing Manual for element wash information, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, non-ethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.


Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 100 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

ENVIRONMENTAL 9

AT-GL EMISSION LEVELS ‡

MODEL	CARBURETOR	GRAMS/BHP-HR			% OBSERVED DRY		MASS	VOLUME	EXCESS AIR	
WODEL	SETTING	NOx ⁽¹⁾	СО	NMHC (4)	THC	СО	O ₂	AFR ⁽²⁾	AFR (2)	RATIO
AT25GL	Standard	1.0	2.25	1.0	8.0	0.06	9.8	28.0:1	16.8:1	1.74
AT27GL	Standard	1.5	1.7	0.5	5.0	0.06	9.8	28.0:1	16.8:1	1.74
A12/GL	Ultra Lean	1.25	1.5	0.4	3.5	0.05	11.2	32.0:1	19.2:1	2.00

[‡] The AT-GL emission levels are based on 900 – 1000 rpm operation. For information at all other speeds contact Waukesha's Sales Engineering Department.

VHP EMISSION LEVELS

	CARBURETOR		GRAMS/BHP-HR			% OBSERVED DRY		MASS	VOLUME	EXCESS
MODEL	SETTING	NOx (1)	СО	NMHC (4)	THC	СО	O ₂	AFR (2)	AFR ⁽²⁾	AIR RATIO
	Lowest Manifold (Best Power)	8.5	32.0	0.35	2.3	1.15	0.30	15.5:1	9.3:1	0.97
	Equal NOx & CO	12.0	12.0	0.35	2.3	0.45	0.30	15.9:1	9.6:1	0.99
G, GSI	Catalytic Conv. Input (3-way ⁽³⁾)	13.0	9.0	0.30	2.0	0.38	0.30	15.95:1	9.6:1	0.99
	Standard (Best Economy)	22.0	1.5	0.25	1.5	0.02	1.35	17.0:1	10.2:1	1.06
	Equal NOx & CO	14.0	14.0	0.25	1.1	0.45	0.30	15.85:1	9.5:1	0.99
F3524GSI, L7044GSI	Catalytic Conv. Input (3-way ⁽³⁾)	15.0	13.0	0.20	1.0	0.38	0.30	15.95:1	9.6:1	0.99
2/0//00	Standard (Best Economy)	23.0	2.0	0.20	0.8	0.02	1.35	17.0:1	10.2:1	1.06
	Equal NOx & CO	13.5	13.5	0.45	3.0	0.45	0.30	15.85:1	9.5:1	0.99
L5794GSI	Catalytic Conv. Input (3-way ⁽³⁾)	14.5	11.0	0.45	2.9	0.38	0.30	15.95:1	9.6:1	0.99
	Standard (Best Economy)	22.0	3.0	0.35	2.4	0.02	1.35	17.0:1	10.2:1	1.06
GL	Standard	1.5	2.65	1.0	5.5	0.06	9.8	28.0:1	16.8:1	1.74
L5774LT#	Standard	2.6	2.0	0.60	4.0	0.04	8.0	24.7:1	14.8:1	1.54
L5794LT#	Standard	2.6	2.0	0.60	4.0	0.04	7.8	24.5:1	14.7:1	1.52

[#] L5774LT and L5794LT emission levels are based on 1000 – 1200 rpm operation. For information at all other speeds contact Waukesha's Sales Engineering Department.

NOTE: The above tables indicate emission levels that are valid for new engines for the duration of the standard warranty period and are attainable by an engine in good operating condition running on commercial quality natural gas of 900 BTU/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) SLHV, Waukesha Knock IndexTM of 91 or higher, 93% methane content by volume, and at ISO standard conditions. Emissions are based on standard engine timing at 91 WKITM with an absolute humidity of 42 grains/lb. Refer to engine specific WKITM Power & Timing curves for standard timing. Unless otherwise noted these emission levels can be achieved across the continuous duty speed range and from 75% to 110% of the ISO Standard Power (continuous duty) rating. *Contact your local Waukesha representative or Waukesha's Sales Engineering Department for emission values which can be obtained on a case-by-case basis for specific ratings, fuels, and site conditions.*

DRESSER Waukesha

GAS ENGINE	EN: 125515	Ref.
EXHAUST EMISSION LEVELS	DATE: 4/01	8483-4

Page 2 of 7

Prepared For: Date: September 19, 2017

Michael Hannan Williams

APPLICATION INFORMATION DRIVER

Make: Waukesha Model: F2895GSI Horsepower: 607 RPM: 1200 Compression Ratio: 8.2 **Exhaust Flow Rate:** 2829 Exhaust Temperature: 1083 Reference: N/A Fuel: Custom

UNCONTROLLED EMISSIONS DATA

Annual Operating Hours:

	g/bhp-hr	<u>lb/hr</u>	Tons/Year
NO _x :	13.00	17.40	76.20
CO:	9.00	12.04	52.75
THC:	2.00	2.68	11.72
NMHC:	0.30	0.40	1.76
NMNEHC:	N/A	N/A	N/A
HCHO:	0.05	0.07	0.29
Oxygen:	0.30%		

8760

CATALYST ELEMENT

Model: RT-2415-T

Catalyst Type: NSCR, Standard Precious Metals Group

Substrate Type: Brazed

Element Size: Rectangle, 24" x 15" x 3.5"

Element Quantity: 2

POST CATALYST EMISSIONS DATA

	<u>g/bhp-hr</u>	<u>lb/hr</u>	Tons/Year
NO _x :	< 0.50	0.67	2.93
CO	< 2.00	2.68	11.72
VOC	< 0.20	0.27	1.17

**POST CATALYST EMISSIONS ARE ONLY GUARANTEED FOR CATALYST ELEMENTS SUPPLIED BY EMIT

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with an HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures.

Unless otherwise stated the exhaust temperature operating range at the converter inlet is 600°F minimum for oxidation catalyst and 750°F for NSCR catalyst and 1250°F maximum.

If a high temperature shut down switch is not installed, thermal deactivation of catalyst at temperatures above 1300 °F is not covered.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent.

Engine lubrication oil shall contain less than 0.6% ash (by weight) with a maximum allowable specific oil consumption of 0.01 gal/bhp-hr. The maximum ash loading on the catalyst shall be limited to 350 g/m3. Phosphorous and zinc additives are limited to 0.03% (by weight).

The catalyst must not be exposed to the following known poisoning agents, including: iron, nickel, sodium, chromium, arsenic, zinc, lead, phosphorous, silicon, potassium, magnesium, copper, tin, and mercury. Total poison concentrations in the gas are limited to 0.3 ppm.

Shipment - Promised shipping dates are approximate and are not guaranteed and are from the point of manufacture. EMIT Technologies,Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies,Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions, Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

$_{ m HEAT}$ REJECTION $_{ m 3}$

HEAT REJECTION AND OPERATING DATA MODEL F2895GSI 130° F (54° C) INTERCOOLER WATER TEMPERATURE STOICHIOMETRIC AIR/FUEL RATIO

	BMEP			ENGI	NE SPEED	RPM		
·	(PSI)	600	700	800	900	1000	1100	1200
	172	377	440	503	566	628	691	754
POWER	152	334	390	446	501	557	613	668
	138	304	354	405	455	506	557	607
- -	125	274	320	365	411	457	502	548
(BHP)	100	219	256	292	329	365	402	438
	75	164	192	219	247	274	301	329
	50	110	128	146	164	183	201	219
	172	7285	7336	7386	7447	7507	7609	7711
	152	7419	7468	7516	7574	7632	7734	7836
BRAKE SPEC	138	7538	7584	7631	7687	7743	7845	7947
FUEL CONS.	125	7677	7722	7766	7820	7873	7976	8078
(BTU/BHP-HR)	100	8036	8075	8113	8161	8208	8311	8414
(213.211)	75	8634	8663	8692	8729	8767	8870	8973
	50	9830	9839	9849	9866	9884	9988	10092
	172	2745	3230	3715	4215	4720	5265	5815
	152	2480	2915	3350	3800	4250	4745	5235
FUEL	138	2290	2690	3090	3505	3920	4370	4825
CONSUMPTION	125	2105	2470	2840	3215	3595	4010	4430
(BTU/HR x 1000)	100	1760	2065	2370	2685	3000	3345	3690
	75	1420	1665	1905	2155	2405	2675	2950
	50	1078	1259	1439	1625	1805	2010	2215
	172	854	1007	1160	1304	1447	1570	1695
	152	781	920	1060	1190	1321	1435	1550
HEAT TO	138	729	858	988	1110	1232	1338	1445
JACKET WATER	125	678	799	919	1032	1145	1245	1345
(BTU/HR x 1000)	100	585	688	790	887	984	1072	1161
	75	492	577	662	743	823	900	976
	50	399	466	533	598	663	727	791
•	172	101	118	135	151	167	184	200
	152	96	112	127	143	159	174	190
HEAT TO	138	92	107	122	137	152	167	182
LUBE OIL	125	88	103	117	132	146	161	175
(BTU/HR x 1000)	100	81	95	108	122	135	148	161
	75	75	87	99	112	124	136	148
	50	68	79	90	101	113	124	134
	172	25	38	51	75	99	134	168
	152	16	26	36	52	68	94	120
HEAT TO	138	11	19	27	39	51	72	92
INTERCOOLER	125	7	14	20	29	37	54	70
(BTU/HR x 1000)	100	1	5	9	14	18	28	38
	75	-4	-1	1	4	7	12	17
	50	-10	-7	-4	-2	0	2	5

Page 1 of 6

HEAT REJECTION AND OPERATING DATA MODEL F2895GSI 130° F (54° C) I.C. WATER TEMPERATURE

EN: 114363 DATE: 5/00 Ref. S 6124-59

HEAT REJECTION 3

HEAT REJECTION AND OPERATING DATA MODEL F2895GSI 130° F (54° C) INTERCOOLER WATER TEMPERATURE STOICHIOMETRIC AIR/FUEL RATIO

	BMEP	ENGINE SPEED - RPM						
	(PSI)	600	700	800	900	1000	1100	1200
· -	172	226	236	245	257	269	296	322
	152	206	217	228	244	261	284	308
HEAT TO	138	194	205	217	234	252	275	299
RADIATION	125	185	196	207	225	243	266	289
(BTU/HR x 1000)	100	171	181	191	207	224	247	271
	75	159	168	177	191	206	227	249
	50	147	155	163	178	192	207	222
•	172	632	751	871	1005	1138	1337	1535
	152	535	645	756	883	1010	1181	1351
TOTAL ENERGY	138	479	581	683	801	920	1075	1231
IN EXHAUST	125	431	524	617	726	834	977	1120
(BTU/HR x 1000)	100	352	428	504	591	679	799	920
	75	277	335	393	461	528	623	718
	50	196	237	279	327	375	439	503
	172	955	977	999	1016	1033	1079	1125
	152	905	934	963	990	1016	1058	1101
EXHAUST TEMP	138	876	908	939	969	999	1041	1083
AFTER TURBINE	125	852	884	917	948	979	1022	1065
(±50° F)	100	812	844	876	906	937	983	1029
	75	772	804	835	864	893	939	985
	50	726	759	792	823	855	893	931
	172	520	615	705	800	895	1000	1105
	152	465	550	630	715	800	895	985
INDUCTION	138	430	505	580	655	735	820	905
AIR FLOW	125	395	460	530	600	670	750	825
(SCFM)	100	325	380	440	495	555	620	680
	75	260	305	350	395	440	490	540
	50	195	230	260	295	325	365	400
	172	2375	2795	3210	3645	4080	4555	5030
	152	2130	2500	2875	3265	3650	4075	4500
EXHAUST	138	1955	2300	2640	2995	3350	3735	4125
GAS FLOW	125	1790	2100	2415	2735	3060	3410	3765
(LBS/HR)	100	1485	1740	2000	2265	2525	2820	3110
	75	1185	1390	1590	1800	2005	2235	2465
	50	890	1040	1190	1340	1495	1660	1830

Ref.

Page 2 of 6

HEAT REJECTION 3

NOTES:

- All data are based on standard conditions of 29.54 inches Hg. (100 kPa) barometric pressure, 77° F (25° C) ambient and induction air temperature, 30% relative humidity (0.3 inches Hg. / 1 kPa water vapor pressure) and 180° F (82° C) engine jacket water outlet temperature.
- Data are average values at the standard conditions and will vary for individual engines and with operating and ambient conditions. An adequate reserve should be used for cooling system or heat recovery calculations. See also Cooling System Guidelines S-6699-7.
- For heat rejection changes due to engine jacket water outlet temperature different from standard (Note 1), refer to S-7613-3.
- 4. Exhaust flow (English): ACFM = (Exh. flow, lb/hr) x (Exh. temp. °F + 460°)
 2250
- 5. Stoichiometric, Lambda = 1.0, air/fuel ratio.
- 6. Reference C-238-8.

PREDICTED EMISSION PERFORMANCE

Customer Williams	
Job ID	
El Cedro 12000S	
Inquiry Number	
Run By	Date Run
David A Pocengal	24-Feb-14

Engine Model MARS 90-12000S CS/MD 59F MATCH	
Fuel Type	Water Injection
SD NATURAL GAS	NO
Engine Emissions Data	
REV OO	

	NOx EMISS	SIONS	CO EMISS	UHC EMISSIONS			
1 11647 HP 100	.0% Load Elev	. 6450 ft	Rel. Humidity	60.0%	Temp	erature	0 Deg. F
PPMvd at 15% O2	38.00		50.00		1 [25	5.00
ton/yr	58.92		47.20		1 🗀	13	3.52
lbm/MMBtu (Fuel LHV)	0.152		0.122		1 [0.0	035
lbm/(MW-hr)	1.55		1.24	0.36			
(gas turbine shaft pwr)			10 =0] [
lbm/hr ´	13.45		10.78	3.09			
g/(Hp-hr)	0.52		0.42		0.12		
(gas turbine shaft pwr)							
2 10686 HP 100	.0% Load Elev	. 6450 ft	Rel. Humidity	60.0%	Temp	erature	32.0 Deg. F
PPMvd at 15% O2	38.00		50.00		25.00		
ton/yr	54.49		43.65		12.50		
Ibm/MMBtu (Fuel LHV)	0.152		0.122		1 [0.0	035
lbm/(MW-hr)	1.56		1.25		0.36		
(gas turbine shaft pwr)							
lbm/hr	12.44		9.97		2.85		
g/(Hp-hr)	0.53		0.42		0.12		

Notes

(gas turbine shaft pwr)

- 1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED EMISSION PERFORMANCE

Customer Williams		
Job ID		
El Cedro 12000S		
Inquiry Number		
Run By	Date Run	
David A Pocengal	24-Feb-14	

Engine Model MARS 90-12000S CS/MD 59F MATCH	
Fuel Type	Water Injection
SD NATURAL GAS	NO
Engine Emissions Data	
REV. 0.0	

	NOx EMISSIO	CO EMISS	IONS	UHC E	MISSIONS		
3 9590 HP 100	.0% Load Elev.	6450 ft	Rel. Humidity	60.0%	Temperature	59.0 Deg. F	
PPMvd at 15% O2	38.00		50.00		2	5.00	
ton/yr	49.91		39.98		1	1.45	
Ibm/MMBtu (Fuel LHV)	0.151		0.121		0	.035	
lbm/(MW-hr)	1.59		1.28			0.37	
(gas turbine shaft pwr) Ibm/hr g/(Hp-hr) (gas turbine shaft pwr)	11.39 0.54		9.13 0.43		2.61 0.12		
4 8565 HP 100	.0% Load Elev.	6450 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F	
PPMvd at 15% O2	38.00		50.00		25.00		
ton/yr	45.80		36.69		1	0.51	
lbm/MMBtu (Fuel LHV)	0.150		0.120		0.034		
lbm/(MW-hr)	1.64		1.31		0.38		
(gas turbine shaft pwr) lbm/hr	10.46		8.38		2.40		
g/(Hp-hr)	0.55		0.44		0.13		

Notes

(gas turbine shaft pwr)

- 1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED EMISSION PERFORMANCE

Customer Williams		
Job ID		
El Cedro 12000S		
Inquiry Number		
Run By	Date Run	
David A Pocengal	24-Feb-14	

Engine Model MARS 90-12000S CS/MD 59F MATCH		
Fuel Type	Water Injection	
SD NATURAL GAS	NO	
Engine Emissions Data		
REV 00		

NOx EMISSIONS	CO EMISSIONS	UHC EMISSIONS

5	7485 HP	100.0% Load	Elev.	6450 ft	Rel. Humidity	60.0%	Tempe	rature	100.0 Deg. F
PPMvd at 15% O2		2	38.00		50.00		25.00		
	ton/yr		41.45		33.20	9.51			
lbm/MI	om/MMBtu (Fuel LHV)		0.147		0.118		0.034		0.034
	lbm/(MW-hr	·)	1.70		1.36				0.39
(gas t	urbine shaft pv	vr)							
(3	lbm/hr ′ 9.46		9.46		7.58				2.17
	g/(Hp-hı	r)	0.57		0.46				0.13
(gas t	urbine shaft pv	vr)							<u> </u>

Notes

- 1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer	
Williams	
Job ID El Cedro 12000S	
El Ceulo 120003	
Run By	Date Run
David A Pocengal	24-Feb-14
Engine Performance Code	Engine Performance Data
REV. 4.11.1.12.6	REV. 0.1

MARS 90-12000S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type SD NATURAL GAS	

5

100.0

80.0

DATA FOR NOMINAL PERFORMANCE

32.0

3

59.0

Elevation	feet	6450	
Inlet Loss	in H2O	4.0	
Exhaust Loss	in H2O	4.0	
Accessory on GP Shaft	HP	27.8	
		1	
Engine Inlet Temperature	dea F	0	

Relative Humidity	%	60.0	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	9079	8915	8730	8539	8326
Specified Load	HP	FULL	FULL	FULL	FULL	FULL
Net Output Power	HP	11647	10686	9590	8565	7485
Fuel Flow	mmBtu/hr	88.44	81.98	75.48	69.87	64.18
Heat Rate	Btu/HP-hr	7594	7672	7871	8158	8575
Therm Eff	%	33.507	33.167	32.326	31.191	29.673
Engine Exhaust Flow	lbm/hr	264142	249977	233644	218008	200722
PT Exit Temperature	deg F	845	859	878	898	923
Exhaust Temperature	deg F	845	859	878	898	923

Fuel Gas Composition (Volume Percent)

Methane (CH4)	92.79
Ethane (C2H6)	4.16
Propane (C3H8)	0.84
N-Butane (C4H10)	0.18
N-Pentane (C5H12)	0.04
Hexane (C6H14)	0.04
Carbon Dioxide (CO2)	0.44
Hydrogen Sulfide (H2S)	0.0001
Nitrogen (N2)	1.51

Fuel Gas Properties LHV (Btu/Scf) 939.2 Specific Gravity 0.5970 Wobbe Index at 60F 1215	Gas Properties	LHV (Btu/Scf) 939.2	Specific Gravity 0.5970	Wobbe Index at 60F 1215.
---	----------------	---------------------	-------------------------	--------------------------

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

	N	O _x ^b		СО
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_X emission factor. For temperature of the control of t

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{-d}	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM STATIONARY GAS TURBINES

Emission Factors ^a - Uncontrolled				
D 11	Natural Gas-Fired Turbines ^b		Distillate Oil-Fired Turbines ^d	
Pollutant (lb/MMBtu (Fuel Input		Emission Factor Rating	(lb/MMBtu) ^e (Fuel Input)	Emission Factor Rating
CO ₂ ^f	110	A	157	A
N ₂ O	0.003 ^g	E	ND	NA
Lead	ND	NA	1.4 E-05	С
SO_2	0.94S ^h	В	1.01S ^h	В
Methane	8.6 E-03	С	ND	NA
VOC	2.1 E-03	D	4.1 E-04 ^j	E
TOC^k	1.1 E-02	В	4.0 E-03 ¹	С
PM (condensible)	4.7 E-03 ¹	С	7.2 E-03 ¹	С
PM (filterable)	1.9 E-03 ¹	С	4.3 E-03 ¹	С
PM (total)	6.6 E-03 ^l	С	1.2 E-02 ¹	С

^a Factors are derived from units operating at high loads (≥80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/10³ gallons. To convert from (lb/MMBtu) to (lb/10³ gallons), multiply by 139.

Based on 99.5% conversion of fuel carbon to CO_2 for natural gas and 99% conversion of fuel carbon to CO_2 for distillate oil. CO_2 (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(%CON)(C)(D), where %CON = weight percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶scf. For distillate oil, CO_2 (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.

g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).

^h All sulfur in the fuel is assumed to be converted to SO_2 . S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).

^j VOC emissions are assumed equal to the sum of organic emissions.

^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.

¹ Emission factors are based on combustion turbines using water-steam injection.

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES^a (SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse	e Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	C
CO ^c <90% Load	5.57 E-01	В
CO_2^d	1.10 E+02	A
SO ₂ ^e	5.88 E-04	A
TOC ^f	1.47 E+00	A
Methane ^g	1.25 E+00	C
VOC^h	1.18 E-01	C
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	E
1,1,2-Trichloroethane ^k	<3.18 E-05	E
1,1-Dichloroethane	<2.36 E-05	E
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	C
1,2-Dichloroethane	<2.36 E-05	E
1,2-Dichloropropane	<2.69 E-05	E
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	E
2-Methylnaphthalene ^k	3.32 E-05	C
2,2,4-Trimethylpentane ^k	2.50 E-04	C
Acenaphthenek	1.25 E-06	С

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES $^{\rm a}$ (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating			
Criteria Pollutants and Greenhous	se Gases				
NO _x c 90 - 105% Load	2.21 E+00	A			
NO _x ^c <90% Load	2.27 E+00	С			
CO ^c 90 - 105% Load	3.72 E+00	A			
CO ^c <90% Load	3.51 E+00	С			
CO_2^{d}	1.10 E+02	A			
SO ₂ ^e	5.88 E-04	A			
TOC^{f}	3.58 E-01	С			
Methane ^g	2.30 E-01	С			
VOCh	2.96 E-02	С			
PM10 (filterable) ^{i,j}	9.50 E-03	Е			
PM2.5 (filterable) ^j	9.50 E-03	Е			
PM Condensable ^k	9.91 E-03	Е			
Trace Organic Compounds	Trace Organic Compounds				
1,1,2,2-Tetrachloroethane ¹	2.53 E-05	С			
1,1,2-Trichloroethane ¹	<1.53 E-05	Е			
1,1-Dichloroethane	<1.13 E-05	E			
1,2-Dichloroethane	<1.13 E-05	E			
1,2-Dichloropropane	<1.30 E-05	Е			
1,3-Butadiene ¹	6.63 E-04	D			
1,3-Dichloropropene ¹	<1.27 E-05	Е			
Acetaldehyde ^{l,m}	2.79 E-03	С			
Acrolein ^{l,m}	2.63 E-03	С			
Benzene	1.58 E-03	В			
Butyr/isobutyraldehyde	4.86 E-05	D			
Carbon Tetrachloride ¹	<1.77 E-05	Е			

615 N Price Road Pampa, TX 79065 (806)-662-4063 jessica.keller@wtalab.com

Client	Harvest Midstream
Sample Id.	El Cedro Compressor Station
Sample Source	Slug Receiver
Sample Type	Spot
Meter#	N/A
Sampled By	CL

	<u>Mol %</u>	<u>Vol. %</u>	Wt. %
Nitrogen	0.9889	0.2645	0.3045
Methane	1.1183	0.4608	0.1972
Carbon Dioxide	0.0753	0.0320	0.0365
Hydrogen sulfide	0.0000	0.0000	0.0000
Ethane	0.3864	0.2513	0.1277
Propane	0.2532	0.1696	0.1227
I-Butane	2.1272	1.6927	1.3590
n-Butane	0.9323	0.7147	0.5956
I-Pentane	9.5473	8.4907	7.5715
n-Pentane	7.9197	6.9807	6.2808
Cyclopentane	0.7381	0.5332	0.5690
I-Hexanes	4.8036	4.8047	4.5504
n-Hexane	8.0092	8.0703	7.5870
Methylcyclohexane	14.5803	14.3260	15.7364
2,2,4 Trimethylpentane	0.0310	0.0395	0.0390
Benzene	2.2917	1.5691	1.9676
Cyclohexane	7.0551	5.8729	6.5265
I-Heptanes	9.0991	10.2589	10.0217
n-Heptane	9.2783	10.4758	10.2190
Toluene	0.4994	0.4089	0.5057
I-Octanes	9.0794	11.1977	11.4002
n-Octane	4.7599	5.9594	5.9765
Ethylbenzene	0.1686	0.1591	0.1967
m+P Xylenes	3.2349	3.0626	3.7748
o-Xylene	0.0197	0.0183	0.0230
I-Nonanes	1.0057	1.4012	1.4177
n-Nonane	1.6650	2.2557	2.3104
I-Decanes	0.0475	0.0743	0.0742
N-Decane	0.2027	0.3044	0.3170
I-Undecane	0.0000	0.0000	0.0000
N-Undecane	0.0000	0.0001	0.0001
I-Dodecane	0.0000	0.0000	0.0000
Dodecane Plus	0.0823	0.1510	0.1917

16245-01	
Sample Pressure (psig)	235
Sample Temp. (°F)	55
Atm Temp. (°F)	38
Sample Date	11/18/2022
Report Date	12/29/2022
Analysis By	A.K.

SCF/Gal (C1-C5 Vapor)	5.8361
Specific Gravity	0.7010
Molecular Weight	90.9760
Vapor Pressure (psia)	65.81
Specific Gravity (C10+ Fraction)	0.7714
Molecular Weight (C10+ Fraction)	159.5314

2030 Afton Place Farmington, NM 87401 (505) 325-6622

Analysis No: HM20220088

Cust No: 33700-10420

Well/Lease Information

Customer Name: HARVEST MIDSTREAM

Well Name: El Cedro Station Manzanares Inlet

County/State: Rio Arriba NM

Location: Lease/PA/CA: Formation: Cust. Stn. No.: Source: STATION INLET
Well Flowing: Y

Pressure: **293 PSIG** Flow Temp: 72 DEG. F Ambient Temp: 66 DEG. F Flow Rate: 165 MCF/D Sample Method: Purge & Fill Sample Date: 09/27/2022 Sample Time: 10.15 AM Sampled By: Ryan Antonson Sampled by (CO): Harves Mid

Heat Trace: N

Remarks: Calculated Molecular Weight = 19.1034

Analysis

Component:	Mole%:	Unormalized %:	**GPM:	*BTU:	*SP Gravity:
Nitrogen	0.0578	0.0579	0.0060	0.00	0.0006
CO2	10.2645	10.2742	1.7550	0.00	0.1560
Methane	88.6428	88.7269	15.0580	895.29	0.4910
Ethane	0.8409	0.8417	0.2250	14.88	0.0087
Propane	0.1442	0.1443	0.0400	3.63	0.0022
Iso-Butane	0.0170	0.0170	0.0060	0.55	0.0003
N-Butane	0.0185	0.0185	0.0060	0.60	0.0004
Neopentane 2,2 dmc3	0.0000	0.0000	0.0000	0.00	0.0000
I-Pentane	0.0045	0.0045	0.0020	0.18	0.0001
N-Pentane	0.0041	0.0041	0.0010	0.16	0.0001
Neohexane	0.0001	N/R	0.0000	0.00	0.0000
2-3-Dimethylbutane	0.0001	N/R	0.0000	0.00	0.0000
Cyclopentane	0.0001	N/R	0.0000	0.00	0.0000
2-Methylpentane	0.0006	N/R	0.0000	0.03	0.0000
3-Methylpentane	0.0002	N/R	0.0000	0.01	0.0000
C6	0.0008	0.0058	0.0000	0.04	0.0000
Methylcyclopentane	0.0001	N/R	0.0000	0.00	0.0000
Benzene	0.0002	N/R	0.0000	0.01	0.0000
Cyclohexane	0.0003	N/R	0.0000	0.01	0.0000
2-Methylhexane	0.0000	N/R	0.0000	0.00	0.0000
3-Methylhexane	0.0000	N/R	0.0000	0.00	0.0000
2-2-4-Trimethylpentane	0.0000	N/R	0.0000	0.00	0.0000
i-heptanes	0.0001	N/R	0.0000	0.00	0.0000
Heptane	0.0005	N/R	0.0000		0.0000
•			0.0000	0.03	0.0000

Total	100.00	100.095	17.099	915.59	0.6596
C12P	0.0000	N/R	0.0000	0.00	0.0000
C11	0.0000	N/R	0.0000	0.00	0.0000
i-C11	0.0000	N/R	0.0000	0.00	0.0000
C10	0.0000	N/R	0.0000	0.00	0.0000
i-C10	0.0002	N/R	0.0000	0.01	0.0000
C9	0.0001	N/R	0.0000	0.01	0.0000
i-C9	0.0001	N/R	0.0000	0.01	0.0000
o Xylene (& 2,2,4 tmc7)	0.0000	N/R	0.0000	0.00	0.0000
m, p Xylene	0.0002	N/R	0.0000	0.01	0.0000
Ethylbenzene	0.0000	N/R	0.0000	0.00	0.0000
Octane	0.0003	N/R	0.0000	0.02	0.0000
i-Octanes	0.0000	N/R	0.0000	0.00	0.0000
4-Methylheptane	0.0001	N/R	0.0000	0.01	0.0000
2-Methylheptane	0.0002	N/R	0.0000	0.01	0.0000
Toluene	0.0005	N/R	0.0000	0.02	0.0000
Methylcyclohexane	0.0008	N/R	0.0000	0.04	0.0000

^{* @ 14.730} PSIA DRY & UNCORRECTED FOR COMPRESSIBILITY

^{**@ 14.730} PSIA & 60 DEG. F.

COMPRESSIBLITY FACTOR	(1/Z):	1.0023	CYLINDER #:	16
BTU/CU.FT IDEAL:		917.7	CYLINDER PRESSURE:	304 PSIG
BTU/CU.FT (DRY) CORRECTED FO	R (1/Z):	919.8	ANALYSIS DATE:	09/28/2022
BTU/CU.FT (WET) CORRECTED FO	PR (1/Z):	903.8	ANALYIS TIME:	09:43:55 AM
DRY BTU @ 15.025:		938.2	ANALYSIS RUN BY:	PATRICIA KING
REAL SPECIFIC GRAVITY:		0.6608		

GPM, BTU, and SPG calculations as shown above are based on current GPA constants.

GPA Standard: GPA 2286-14

GC: SRI Instruments 8610 Last Cal/Verify: 09/28/2022

GC Method: C12+BTEX Gas

HARVEST MIDSTREAM WELL ANALYSIS COMPARISON

Lease: El Cedro Station Manzanares Inlet STATION INLET
Stn. No.:

09/28/2022 33700-10420

Mtr. No.:

Smpl Date:	09/27/2022	02/07/2020
Test Date:	09/28/2022	02/12/2020
Run No:	HM20220088	HM200008
Nitrogen:	0.0578	0.0566
CO2:	10.2645	8.9772
Methane:	88.6428	89.7679
Ethane:	0.8409	0.9558
Propane:	0.1442	0.1715
I-Butane:	0.0170	0.0262
N-Butane:	0.0185	0.0266
2,2 dmc3:	0.0000	0.0000
I-Pentane:	0.0045	0.0073
N-Pentane:	0.0041	0.0056
Neohexane:	0.0001	0.0000
2-3-	0.0001	0.0001
Cyclopentane:	0.0001	0.0001
2-Methylpentane:	0.0006	0.0005
3-Methylpentane:	0.0002	0.0002
C6:	0.0008	0.0005
Methylcyclopentane: Benzene:	0.0001	0.0001
Cyclohexane:	0.0002 0.0003	0.0002 0.0003
2-Methylhexane:	0.0003	0.0003
3-Methylhexane:	0.0000	0.0000
2-2-4-	0.0000	0.0000
i-heptanes:	0.0001	0.0001
Heptane:	0.0005	0.0004
Methylcyclohexane:	0.0008	0.0008
Toluene:	0.0005	0.0006
2-Methylheptane:	0.0002	0.0002
4-Methylheptane:	0.0001	0.0001
i-Octanes:	0.0000	0.0001
Octane:	0.0003	0.0002
Ethylbenzene:	0.0000	0.0000
m, p Xylene:	0.0002	0.0002
o Xylene (& 2,2,4	0.0000	0.0000
i-C9:	0.0001	0.0001
C9:	0.0001	0.0001
i-C10:	0.0002	0.0000
C10:	0.0000	0.0000
i-C11:	0.0000	0.0000
C11:	0.0000	0.0000
C12P:	0.0000	0.0000
BTU:	919.8	934.7
GPM:	17.1020	17.1180
SPG:	0.6608	0.6495

A Thoras Education Alan 07407 - (1	505) 325-6622 SO4H
2030 Afton Place, Farmington, NM 87401 - (3 **10 PSIG Pre	charge**
AS AND PSIGNIC	212 RTEV THElium T
NALYSIS C6+ C9+ C12+ C	
S ERVICE Other	
Sampled By:(co.) Harvest Midstream	Time 10:15 DPM
Sampled by: (Person) Ryan Antonson	Well Flowing: Yes No
company: Harvest Midstream	Heat Trace:
Company: 1 1000 0	293
Well Name: El Cedro Station	Flow Pressure (PSIG): 293
Location: El Cedro Station	FlowTemp (°F):
County/State: Rio Arriba	Ambient Temp (°F):
	Flow Rate (MCF/D): 165
Formation:	
Source: Meter Run Tubing Casing Bradenhead Other	J14 1181-241-
Sample Type: Spot Composite Sample Method: Purge & Fill	Other
	Cylinder Number:
Meter Number:	
contact: Harvest Midstream	Celo Manzarary Inlet
Remarks: Extended Gas Analysis of El	230088
33700-10430 11110	0000-00

Description: TRUNK L CDP Company: HARVEST MIDSTREAM Field: WorkOrder: Meter Number: GPA Method: GPA 2286

Analysis Date/Time: 10/27/2022 2:51:36 Sampled By:

Date Sampled: Analyst Initials: 10/26/2022 ΕM

Sample Temperature: Instrument: 48 SRI 8610

Sample Pressure: 49

GRI GlyCalc Information

Component	Mol%	Normalized Weight %
Carbon Dioxide	1.0757	2.2952
Hydrogen Sulfide	N/R	0.0000
Nitrogen	0.3212	0.4362
Methane	82.5476	64.2051
Ethane	8.7394	12.7407
Propane	3.6714	7.8491
Iso-Butane	0.7166	2.0193
n-Butane	1.3192	3.7174
Iso-Pentane	0.4032	1.4104
n-Pentane	0.2978	1.0417
Cyclopentane	0.0180	0.0612
n-Hexane	0.1476	0.6460
Cyclohexane	0.0458	0.1869
Other Hexanes	0.3015	1.4647
Heptanes	0.1171	0.5689
Methylcyclohexane	0.1124	0.5351
2 2 4 Trimethylpentane	0.0072	0.0399
Benzene	0.0185	0.0701
Toluene	0.0515	0.2301
Ethylbenzene	0.0012	0.0062
Xylenes	0.0174	0.0896
C8+ Heavies	0.0698	0.3866
Subtotal	100.0001	
Oxygen	N/R	
Subtotal	100.0001	100.0000
Calculated Molecular Weight		20.6263

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T} \tag{1}$$

where:

 L_T = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)

T = temperature of bulk liquid loaded, ${}^{\circ}R$ (${}^{\circ}F$ + 460)

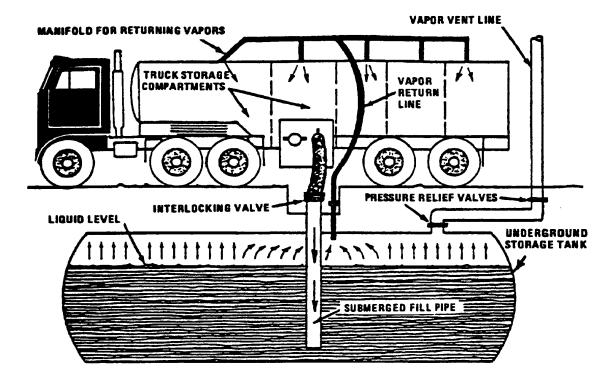


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source)b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT

Stationary Sources Program / Air Pollution Control Division

PS Memo 09-02

To: Stationary Sources Program, Local Agencies, and Regulated Community

From: Chris Laplante and Roland C. Hea, Colorado Air Pollution Control Division

Date: February 8, 2010

Subject: Oil & Gas Produced Water Tank Batteries

Regulatory Definitions and Permitting Guidance

This guidance document is intended to answer frequently asked questions concerning oil and gas industry produced water tank batteries. This document does not address any other equipment types that may be part of a common facility with a tank battery. Nothing in this guidance should be construed regarding Air Pollution Control Division (Division) permitting of evaporation ponds or water treatment facilities. Please consult with the Division for information regarding the permitting of evaporation ponds or water treatment facilities.

Revision History

October 1, 2009 Initial issuance.

February 8, 2010 First revision. This guidance document replaces the October 1, 2009

version. Revised language to clarify APEN fee structure, definition of

modification, APEN submittals, and produced water exemption.

To	pic	Page
1.	DEFINITIONS	2
2.	AIR POLLUTANT EMISSION NOTICE Q&A	4
3.	EMISSION FACTORS AND SITE SPECIFIC SAMPLING Q&A	7
4.	EMISSION CALCULATIONS Q&A	8
5.	CONSTRUCTION PERMIT Q&A	9
6.	OIL AND GAS INDUSTRY PRODUCED WATER TANK GP Q & A	10
7.	HOUSE BILL 07-1341	12

Document source:

https://www.colorado.gov/pacific/sites/default/files/AP_Memo-09-02-Oil-_-Gas-Produced-Water-Tank-Batteries-Regulatory-Definitions-and-Permitting-Guidance.pdf

3. EMISSION FACTORS AND SITE SPECIFIC SAMPLING Q&A

3.1. What are the State approved default emission factors for produced water tanks?

County	Produced Water Tank Default Emission Factors ¹ (lb/bbl) ²		
	VOC	Benzene	n-Hexane
Adams, Arapahoe, Boulder, Broomfield, Denver, Douglas, Jefferson, Larimer, & Weld	0.262	0.007	0.022
Garfield, Mesa, Rio Blanco, & Moffat	0.178	0.004	0.010
Remainder of Colorado ³	0.262	0.007	0.022

¹ Testing may be performed at any site to determine site-specific emissions factors. These default emission factors may be revised by the Division in the future, pending approved data and testing results.

3.2. What type of emissions are included in the produced water tank state default emission factors?

State default emission factors for produced water tanks include flash, working, and breathing losses.

3.3. Are there limits as to when produced water tank state default emission factors may be used?

State default emission factors may be used at all oil and gas industry tank batteries. The Division intends to work with industry to refine emission factors and may develop separate emission factors for E&P and non-E&P sites.

3.4. When are site-specific emission factors required for tank batteries?

Site-specific emission factors may be developed and used on a voluntary basis for any tank battery. The Division reserves the authority to require site-specific emission factors at any time. Site-specific emission factors may only be applied at the tank battery for which they were developed, unless otherwise approved by the Division.

3.5. How is a site-specific emission factor developed?

A site-specific emission factor for tank batteries is developed by performing a Division approved stack test. A test protocol must be submitted and approved by the Division prior to performing the test. Once a test protocol has been approved by the Division, subsequent testing may be performed following the approved protocol without submittal to the Division.

The Division must be notified of the site specific testing at least 30-days prior to the actual test date.

² Units of lb/bbl means pounds of emissions per barrel of produced water throughput

³ For counties not listed in this table, use the emissions factors listed as a conservative measure or perform testing to determine a site-specific emission factor

Emission Factor Determination for Produced Water Storage Tanks

TCEQ Project 2010-29

Prepared for:
Texas Commission on Environmental Quality
Austin, Texas

Prepared by: ENVIRON International Corporation Novato, California

Date: August 2010

ENVIRON Project Number: 06-17477T

Document source:

https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/ei/5820784005FY1024-20100830-environ-% 20EmissionFactorDeterminationForProducedWaterStorageTanks.pdf

Executive Summary

The overall purpose of this Study is to evaluate volatile organic compounds (VOC), speciated VOC and hazardous air pollutant (HAP) emissions from produced water and/or saltwater storage tanks servicing oil and gas wells and to develop appropriate VOC and HAP emission factors. The emission factors are to be used for emission inventory development purposes.

The primary source of information for this study was testing conducted by the Texas Commission on Environmental Quality (TCEQ) under Work Order 522-7-84005-FY10-25, *Upstream Oil & Gas Tank Measurements*, TCEQ Project 2010-39. As part of this referenced testing project, pressurized produced water samples were taken at seven different tank batteries located in Johnson, Wise and Tarrant Counties, Texas (all part of the Eastern Barnett Shale region) and analyzed for flash gas volume and composition. The sample collection and analysis conducted as part of TCEQ Project 2010-39 was done according to strict sampling and quality assurance procedures. In addition to TCEQ Project 2010-39 data, a thorough review of publically-available information sources identified a limited amount of data on produced water emissions. This was supplemented by data provided by two natural gas producers and one petroleum engineering services company. Other than TCEQ Project 2010-39 data, however, it could not be confirmed that any of the data had undergone a rigorous quality assurance process and therefore is considered secondary data, used to support conclusions drawn using the primary data but not used directly in deriving the produced water emission factors.

Emissions from produced water storage tanks consist of flash emissions, working losses and breathing losses. Flash emissions are determined using flash gas analysis. Working and breathing losses are estimated using EPA TANKS 4.09d software. Using this approach and the assumptions detailed within this report, it is determined that working and breathing losses associated with primary data source sites are very small compared to flash emissions and can be ignored without affecting the overall emission factor determination.

Table ES-1 presents the recommended emission factors for VOC and four HAPs – benzene, toluene, ethylbenzene and xylenes – derived from the primary data source sites. For comparative purposes, average emissions from Texas and non-Texas secondary sites are also presented in Table ES-1.

Table ES-1. Recommended Emission Factors and Comparative Data

	Average Produced Water Emission Factor by Data Set (lb/bbl)		
Pollutant	Recommended Emission Factor	Secondary Data – Texas	Secondary Data – Non- Texas
VOC	0.01	0.012	0.18
Benzene	0.0001	0.0012	0.004
Toluene	0.0003	0.0012	0.009
Ethylbenzene	0.000006	0.0001	0.0007
Xylenes	0.00006	0.0003	0.006

Table A-1 to Subpart A of Part 98—Global Warming Potentials

GLOBAL WARMING POTENTIALS

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO_2	1
Methane	74-82-8	CH ₄	^a 25
Nitrous oxide	10024-97-2	N_2O	^a 298
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH ₂ F ₂	^a 675
HFC-41	593-53-3	CH₃F	a92
HFC-125	354-33-6	C ₂ HF ₅	^a 3,500
HFC-134	359-35-3	C ₂ H ₂ F ₄	a1,100
HFC-134a	811-97-2	CH₂FCF₃	^a 1,430
HFC-143	430-66-0	$C_2H_3F_3$	a353
HFC-143a	420-46-2	$C_2H_3F_3$	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a	75-37-6	CH ₃ CHF ₂	a124
HFC-161	353-36-6	CH₃CH₂F	12
HFC-227ea	431-89-0	C ₃ HF ₇	a3,220
HFC-236cb	677-56-5	CH₂FCF₂CF₃	1,340
HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	$C_3H_2F_6$	a9,810
HFC-245ca	679-86-7	$C_3H_3F_5$	a693
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	1,030
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	794
HFC-43-10mee	138495-42-8	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Sulfur hexafluoride	2551-62-4	SF_6	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF ₄	a7,390
PFC-116 (Perfluoroethane)	76-16-4	C ₂ F ₆	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C_3F_8	a8,830
Perfluorocyclopropane	931-91-9	C-C₃F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C_4F_{10}	a8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	C_5F_{12}	a9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	C_6F_{14}	a9,300
PFC-9-1-18	306-94-5	$C_{10}F_{18}$	7,500
HCFE-235da2 (Isoflurane)	26675-46-7	CHF2OCHCICF3	350
HFE-43-10pccc (H-Galden 1040x, HG-11)	E1730133	CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂	1,870

	•	•	
HFE-125	3822-68-2	CHF ₂ OCF ₃	14,900
HFE-134 (HG-00)	1691-17-4	CHF ₂ OCHF ₂	6,320
HFE-143a	421-14-7	CH ₃ OCF ₃	756
HFE-227ea	2356-62-9	CF ₃ CHFOCF ₃	1,540
HFE-236ca12 (HG-10)	78522-47-1	CHF ₂ OCF ₂ OCHF ₂	2,800
HFE-236ea2 (Desflurane)	57041-67-5	CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-3	CF ₃ CH ₂ OCF ₃	487
HFE-245cb2	22410-44-2	CH ₃ OCF ₂ CF ₃	708
HFE-245fa1	84011-15-4	CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2	1885-48-9	CHF ₂ OCH ₂ CF ₃	659
HFE-254cb2	425-88-7	CH₃OCF₂CHF₂	359
HFE-263fb2	460-43-5	CF ₃ CH ₂ OCH ₃	11
HFE-329mcc2	134769-21-4	CF ₃ CF ₂ OCF ₂ CHF ₂	919
HFE-338mcf2	156053-88-2	CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338pcc13 (HG-01)	188690-78-0	CHF ₂ OCF ₂ CF ₂ OCHF ₂	1,500
HFE-347mcc3 (HFE-7000)	375-03-1	CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182-95-9	CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347pcf2	406-78-0	CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3	CH ₃ OCF ₂ CHFCF ₃	101
HFE-356pcc3	160620-20-2	CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	50807-77-7	CHF ₂ CH ₂ OCF ₂ CHF ₂	265
HFE-356pcf3	35042-99-0	CHF ₂ OCH ₂ CF ₂ CHF ₂	502
HFE-365mcf3	378-16-5	CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6	CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100)	163702-07-6	C ₄ F ₉ OCH ₃	297
Chemical blend	163702-08-7	(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200)	163702-05-4	$C_4F_9OC_2H_5$	59
Chemical blend	163702-06-5	(CF ₃) ₂ CFCF ₂ OC ₂ H ₅	
Sevoflurane (HFE-347mmz1)	28523-86-6	CH ₂ FOCH(CF ₃) ₂	345
HFE-356mm1	13171-18-1	(CF ₃) ₂ CHOCH ₃	27
HFE-338mmz1	26103-08-2	CHF ₂ OCH(CF ₃) ₂	380
(Octafluorotetramethy-lene) hydroxymethyl group	NA	X-(CF ₂) ₄ CH(OH)-X	73
HFE-347mmy1	22052-84-2	CH ₃ OCF(CF ₃) ₂	343
Bis(trifluoromethyl)-methanol	920-66-1	(CF ₃) ₂ CHOH	195
2,2,3,3,3-pentafluoropropanol	422-05-9	CF ₃ CF ₂ CH ₂ OH	42
PFPMIE (HT-70)	NA	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300

 $^{^{\}mathrm{a}}$ The GWP for this compound is different than the GWP in the version of Table A-1 to subpart A of part 98 published on October 30, 2009.

Table C-1 to Subpart C of Part 98—Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO₂/mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO₂/mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products	mmBtu/gallon	kg CO₂/mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02

		1
Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95^{3}	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092×10^{-3}	274.32
Coke Oven Gas	0.599×10^{-3}	46.85
Propane Gas	2.516×10^{-3}	61.46
Fuel Gas ⁴	1.388×10^{-3}	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO₂/mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485×10^{-3}	52.07
Other Biomass Gases	0.655×10^{-3}	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 $^{^2}Ethylene\ HHV$ determined at 41 °F (5 °C) and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴Reporters subject to subpart X of this part that are complying with §98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in \$98.243(d)(2)(i) and (d)(2)(ii) and \$98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_w = ((100 - M)/100)*HHV_d$ where $HHV_w = wet$ basis HHV, M = moisture content (percent) and $HHV_d = dry$ basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

Back to Top

Table C-2 to Subpart C of Part 98—Default CH₄ and N₂O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	$\begin{array}{c} \textbf{Default N}_2O \ emission \ factor \ (kg \\ \textbf{N}_2O/mmBtu) \end{array}$
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6×10^{-03}
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Municipal Solid Waste	3.2×10^{-02}	4.2×10^{-03}
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1×10^{-03}	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

Onshore petroleum and natural gas production	Emission factor (scf/hour/ component)
Eastern U.S.	
Population Emission Factors—All Con	nponents, Gas Service ¹
Valve	0.027
Connector	0.003
Open-ended Line	0.061
Pressure Relief Valve	0.040
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compo	nents, Light Crude Service ⁴
Valve	0.05
Flange	0.003
Connector	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Factors—All Compon	ents, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003
Western U.S.	
Population Emission Factors—All Cor	nponents, Gas Service ¹
Valve	0.121
Connector	0.017
Open-ended Line	0.031
Pressure Relief Valve	0.193
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compo	nents, Light Crude Service ⁴
Valve	0.05
Flange	0.003

Connector (other)	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Factors—All Components, He	avy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003

¹For multi-phase flow that includes gas, use the gas service emissions factors.

²Emission Factor is in units of "scf/hour/device."

³Emission Factor is in units of "scf/hour/pump."

 $^{^4} Hy drocarbon$ liquids greater than or equal to $20^{\circ} API$ are considered "light crude."

 $^{^{54}}$ Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

 $^{^6} Hydrocarbon$ liquids less than $20^{\circ} API$ are considered "heavy crude."

Material Safety Data Sheet

Section 1. Chemical Product and Company Identification			
Product Name	CGO49 CORROSION INHIBITOR	Code	CGO49
Supplier	Baker Petrolite A Baker Hughes Company 12645 W. Airport Blvd. (77478) P.O. Box 5050 Sugar Land, TX 77487-5050 For Product Information/MSDSs Call: 800-231-3606 (8:00 a.m 5:00 p.m. cst, Monday - Friday) 281-276-5400	Version	4.0
Material Uses	Corrosion Inhibitor	Effective Date	6/10/2004
24 Hour Emergency Numbers	CHEMTREC 800-424-9300 (U.S. 24 hour) Baker Petrolite 800-231-3606 (001)281-276-5400 CANUTEC 613-996-6666 (Canada 24 hours) CHEMTREC Int'l 01-703-527-3887 (International 24 hour)	Print Date	6/10/2004
	National Fire Protection Association (U.S.A.) Health 2 0 Reactivity Specific Hazard		

Section 2. Composition and Information on Ingredients			
Name	CAS#	% by Weight	Exposure Limits
1-Dodecanethiol	112-55-0	0.1-1	ACGIH TLV (United States, 2004). Sensitizer skin TWA: 0.1 ppm 8 hour(s).
Light aromatic naphtha	64742-95-6	10-30	Not available.
1,2,4-Trimethylbenzene	95-63-6	10-30	Not available.
1,2,3-Trimethylbenzene	526-73-8	1-5	Not available.
1,3,5-Trimethylbenzene	108-67-8	5-10	Not available.
Xylene	1330-20-7	1-5	ACGIH (United States). TWA: 434 mg/m³ STEL: 651 mg/m³ TWA: 100 ppm STEL: 150 ppm OSHA (United States). TWA: 100 ppm STEL: 150 ppm TWA: 435 mg/m³ STEL: 655 mg/m³
Methanol	67-56-1	10-30	ACGIH (United States). Skin TWA: 262 mg/m³ 8 hour(s). STEL: 328 mg/m³ 15 minute(s). TWA: 200 ppm 8 hour(s). STEL: 250 ppm 15 minute(s).
Continued on Next Page			

CGO49 CORROSION INHIBITOR		
	OSHA (United States). Skin TWA: 200 ppm 8 hour(s). STEL: 250 ppm 15 minute(s). TWA: 260 mg/m³ 8 hour(s). STEL: 325 mg/m³ 15 minute(s).	

While 1,2,4-trimethylbenzene does not have exposure limits, trimethylbenzene (mixed isomers)(CAS No. 25551-13-7) has TWA value of 25 ppm for both ACGIH and OSHA (revoked limit).

Section 3. Hazards	Identification
Physical State and Appearance	State: Liquid., Color: Light Amber., Odor: Mercaptan.
CERCLA Reportable Quantity	Xylene 1007 gal. Methanol 2586 gal.
Hazard Summary	WARNING. May cause chronic effects. Flammable liquid. Vapors can form an ignitable or explosive mixture with air. Can form explosive mixtures at temperatures at or above the flash point. Vapors can flow along surfaces to a distant ignition source and flash back. Static discharges can cause ignition or explosion when container is not bonded. May be irritating to eyes, skin and respiratory tract. May be toxic by skin absorption. May cause central nervous system (CNS) effects if inhaled.
Routes of Exposure	Skin (Permeator), Skin (Contact), Eyes, Inhalation.
Potential Acute Health Effects	
Eye	s May be severely irritating to the eyes.
Ski	n May be severely irritating to the skin. May cause burns on prolonged contact. May be toxic if absorbed through the skin.
Inhalatio	n May cause central nervous system (CNS) effects if inhaled. May be severely irritating to the lungs.
Ingestio	n Not considered a likely route of exposure, however, may be toxic if swallowed.
Medical Conditions aggravated by Exposure	Exposure to this product may aggravate medical conditions involving the following: blood system, kidneys, nervous system, liver, gastrointestinal tract, respiratory tract, skin/epithelium, eyes.
See Toxicological Infor	mation (section 11)
Additional Hazard Identification Remarks	May be harmful if ingested. This product may be aspirated into the lungs during swallowing or vomiting of swallowed material. Aspiration into the lungs may produce chemical pneumonitis, pulmonary edema, and hemorrhaging. Repeated or prolonged contact may cause dermatitis (inflammation) and defatting of the skin (dryness). Draize Test Eye (Rabbit): Moderate Irritant. Draize Test Skin (Rabbit): Extreme Irritant.

Section 4. First Aid Measures		
Eye Contact	Flush eyes with plenty of water for 15 minutes, occasionally lifting upper and lower eyelids. Get medical attention immediately.	
Skin Contact	Remove contaminated clothing and shoes immediately. Wash affected area with soap and mild detergent and large amounts of lukewarm, gently flowing water until no evidence of chemical remains (for at least 20-60 minutes). Get medical attention if irritation occurs.	
Inhalation	Remove to fresh air. Oxygen may be administered if breathing is difficult. If not breathing, administer artificial respiration and seek medical attention. Get medical attention if symptoms appear.	

CGO49 CORROSI	ON INHIBITOR F	Page: 3/9
Ingestion	Get medical attention immediately. If swallowed, do not induce vomiting unless so by medical personnel. Wash out mouth with water if person is conscious. vomiting or give anything by mouth to a victim who is unconscious or having con	Never induce
Notes to Physician	Not available.	
Additional First Aid Remarks	Not available.	

Section 5. Fire Figs	hting Measures
Flammability of the Product	Flammable liquid. Vapors can form an ignitable or explosive mixture with air. Can form explosive mixtures at temperatures at or above the flash point. Vapors can flow along surfaces to a distant ignition source and flash back. Static discharges can cause ignition or explosion when container is not bonded.
OSHA Flammability Class	IB
Autoignition temperature	Not available.
Flash Points	Closed cup: 11°C (51.8°F). (SFCC)
Flammable Limits	L.E.L. Not available. U.E.L. Not available.
Products of Combustion	These products are carbon oxides (CO, CO2) nitrogen oxides (NO, NO2) Sulfur oxides (SO2, SO3).
Fire Hazards in Presence of Various Substances	Open Flames/Sparks/Static. Heat.
Fire Fighting Media and Instructions	In case of fire, use foam, dry chemicals, or CO2 fire extinguishers. Evacuate area and fight fire from a safe distance. Water spray may be used to keep fire-exposed containers cool. Keep water run off out of sewers and public waterways. Note that flammable vapors may form an ignitable mixture with air. Vapors may travel considerable distances and flash back if ignited.
Protective Clothing (Fire)	Do not enter fire area without proper personal protective equipment, including NIOSH approved self-contained breathing apparatus.
Special Remarks on Fire Hazards	Not available.

Section 6. Accident	tal Release Measures
Spill	Put on appropriate personal protective equipment. Keep personnel removed and upwind of spill. Shut off all ignition sources; no flares, smoking, or flames in hazard area. Approach release from upwind. Shut off leak if it can be done safely. Contain spilled material. Keep out of waterways. Dike large spills and use a non-sparking or explosion-proof means to transfer material to an appropriate container for disposal. For small spills add absorbent (soil may be used in the absence of other suitable materials) scoop up material and place in a sealed, liquid-proof container. Note that flammable vapors may form an ignitable mixture with air. Vapors may travel considerable distances from spill and flash back, if ignited. Waste must be disposed of in accordance with federal, state and local environmental control regulations.
Other Statements	If RQ (Reportable Quantity) is exceeded, report to National Spill Response Office at 1-800-424-8802.
Additional Accidental Release Measures Remarks	Not available.

Section 7. Handling	and Storage
Handling and Storage	Put on appropriate personal protective equipment. Avoid contact with eyes, skin, and clothing. Avoid breathing vapors or spray mists. Use only with adequate ventilation. Store in a dry, cool and well ventilated area. Keep away from heat, sparks and flame. Keep away from incompatibles. Keep container tightly closed and dry. To avoid fire or explosion, ground container equipment and personnel before handling product.
Additional Handling and Storage Remarks	Not available.

Section 8. Exposur	Section 8. Exposure Controls/Personal Protection		
Engineering Controls	Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors or particles below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.		
These conditions are exp	pment recommendations are based on anticipated known manufacturing and use conditions. Dected to result in only incidental exposure. A thorough review of the job tasks and conditions by ecommended to determine the level of personal protective equipment appropriate for these job		
Eye	s Chemical safety goggles.		
Boo	y Wear long sleeves to prevent repeated or prolonged skin contact.		
Respirato	y Respirator use is not expected to be necessary under normal conditions of use. In poorly ventilated areas, emergency situations or if exposure levels are exceeded, use NIOSH approved full face respirator.		
Hand	s Chemical resistant gloves.		
Fed	et Chemical resistant boots or overshoes.		

Additional Exposure Control Remarks

Not available.

Other information Nitrile or neoprene gloves.

Section 9. Typical	Section 9. Typical Physical and Chemical Properties			
Physical State and Appearance	Liquid.	Odor	Mercaptan.	
pH	Not available.	Color	Light Amber.	
Specific gravity	0.854 - 0.866 @ 16°C (60°F)	•		
Density	7.11 - 7.21 lbs/gal @ 16°C (60°F)			
Vapor Density	>1 (Air = 1)			
Vapor Pressure	142.2 - mmHg @ 22°C (72°F)			
Evaporation Rate	Not Available or Not Applicable for S	Solids.		
VOC	Not available.			
Viscosity	7 - 8 cps @ 16°C (61°F)			
Pour Point	-40°C (-40°F)			
Solubility (Water)	Dispersible			
Boiling Point	Not available.			
Physical Chemical Comments	Not available.			

Stability and Reactivity	The product is stable.
Conditions of Instability	Not available.
Incompatibility with Various Substances	Oxidizing material.
Hazardous Decomposition Products	Not applicable.
Hazardous Polymerization	Hazardous polymerization is not expected to occur.
Special Stability & Reactivity Remarks	Not available.

Section 11. Toxicological Information

Component Toxicological Information

Acute Animal Toxicity

1-Dodecanethiol Not available.

Light aromatic naphtha ORAL (LD50): Acute: 2900 mg/kg [Rat]. 8400 mg/kg [Rat].

1,2,4-Trimethylbenzene ORAL (LD50): Acute: 5000 mg/kg [Rat]. VAPOR (LC50):

Acute: 18000 mg/m³ 4 hour(s) [Rat].

1,2,3-Trimethylbenzene Not available.

1,3,5-Trimethylbenzene VAPOR (LC50): Acute: 24000 mg/m³ 4 hour(s) [Rat].

Xylene ORAL (LD50): Acute: 4300 mg/kg [Rat]. 3523 mg/kg [Male

rat]. DERMAL (LD50): Acute: >1700 mg/kg [Rabbit]. VAPOR (LC50): Acute: 5000 ppm 4 hour(s) [Rat].

Methanol ORAL (LD50): Acute: 5628 mg/kg [Rat]. 7300 mg/kg

[Mouse]. DERMAL (LD50): Acute: 15800 mg/kg [Rabbit].

VAPOR (LC50): Acute: 64000 ppm 4 hour(s) [Rat].

Chronic Toxicity Data

1) 1-Dodecanethiol

1-Dodecanetriol is a component of this product. Workers exposed to a mixture of 1-dodecanethiol with polychloroprene latexes have shown a significant increase in frequency of chromosomal aberrations in the peripheral blood. [HSDB]

2) Light aromatic naphtha

Solvent naphtha (petroleum), light aromatic is a component of this product. Solvent naphtha (petroleum), light aromatic may cause damage to the peripheral nerves, resulting in numbness or tingling of the extremities with chronic (long term) exposure to high concentrations. (Micromedex) Rats exposed for 4 months to 1700 ppm of a solvent similar to this product showed evidence of mild damage to the liver, lungs and kidneys. These effects were not seen in rats exposed for one year to 350 ppm of another similar solvent. Rats exposed to vapors of a similar solvent during pregnancy showed embryo/fetotoxicity at concentrations producing maternal toxicity.

CGO49 CORROSION INHIBITOR

Page: 6/9

In response to a TSCA test rule, several studies of a solvent similar to this product were completed. Mutagenicity studies and a rat inhalation neurotoxicity study were negative. In a mouse developmental effects study, reduced fetal body weight was seen but no teratogenicity. A rat reproductive effects study demonstrated toxicity but little effect on reproductive parameters. (Vendor MSDS)

3) 1,2,4-Trimethylbenzene

Not available.

4) 1,2,3-Trimethylbenzene

Not available.

- 5) 1,3,5-Trimethylbenzene
- 1,3,5-Trimethylbenzene (Mysitylene) is a component of this product. Chronic asthmatic-like bronchitis may be a delayed chronic hazard (EPA, 1985; Laham, 1987; HSDB, 1997). Nervousness, tension, and anxiety have been noted in chronically exposed workers with exposure to a mixture of solvents including mesitylene (HSDB, 1997). Elevated alkaline phosphates and SGOT(liver enzymes) levels have been noted in chronic animal inhalation studies (Clayton & Clayton, 1994). These effects have not been reported in exposed humans. (Reprotext)

Thrombocytopenia (a lack of platelets in the blood) with bleeding from the gums and nose and mild anemia may occur with chronic exposure to mesitylene as a component of the commercial solvent mixture, "Fleet-X-DV-99" (Plunkett, 1976; Finkel, 1983; HSDB, 1997). Coagulation (clotting of the blood) times were delayed by about 40% in a group of workers chronically exposed to a mixture of solvents containing about 30% mesitylene (Laham, 1987). These hematological disorders may have been due to a contaminant, such as benzene (Hathaway et al, 1996). Thrombocytosis (an increase of platelets in the blood) and thrombocytopenia have been noted in rabbits (Clayton & Clayton, 1994). (Reprotext)

- 1,3,5-Trimethylbenzene has been positive in a mutagenicity assay (Lewis, 1992). (Reprotext)
- 6) Xylene

Xylene (mixed isomers) is a component of this product. Effects of chronic exposure to xylene are similar to those of acute exposure, but may be more severe. Chronic inhalation reportedly was associated with headache, tremors, apprehension, memory loss, weakness, dizziness, loss of appetite, nausea, ringing in the ears, irritability, thirst, anemia, mucosal bleeding, enlarged liver, and hyperplasia, but not destruction of the bone marrow (Clayton & Clayton, 1994; ILO, 1983). Some earlier reports of effects of chronic exposure to xylene have been questioned, as exposures were not limited to xylene alone.

Effects on the blood have been reported from chronic exposure to as little as 50 mg/m3 (Pap & Varga, 1987). Repeated exposure can damage bone marrow, causing low blood cell count and can damage the liver and kidneys (NJ Department of Health, Hazardous Substance Fact Sheet). Chronic xylene exposure (usually mixed with other solvents) has produced irreversible damage to the CNS (ILO, 1983). CNS effects may be exacerbated by ethanol abuse (Savolainen, 1980). Xylene may damage hearing or enhance sensitivity to noise in chronic occupational exposures (Morata et al, 1994), probably from neurotoxic mechanism. Tolerance to xylene can occur over the work week and disappear over the weekend. (ACGIH, 1992).

Inhalation exposure has produced fetotoxicity and postnatal developmental toxicity in laboratory animals. (API, 1978, Kensington, MD, EPA/OTS Document No. 878210350 and Hass, U., et al, 1995, Neurotoxicology and Teratology 17: 341-349 and 1997, Neurotoxicology 18: 547-552)

7) Methanol

Methanol is a component of this product. Because methanol is eliminated from the body more slowly than ethanol, it can have cumulative toxicity with repeated exposures (ACGIH, 1992).

Acute dermal, oral, and inhalation exposure to methanol can cause optic nerve effects, diminished vision, and brain effects (necrosis and hemorrhaging). (Bennett, I.L. et al, 1953)

CGO49 CORROSION INHIBITOR

Page: 7/9

Ingestion of methanol can cause Central Nervous System depression, blurred vision and blindness, and gastrointestinal effects. (Clayton, G.D. and Clayton, F.E., 1982, Patty's Industrial Hygiene and Toxicology, Vol2C) Dermal exposure to methanol can cause Central Nervous System depression, blurred vision, and gastrointestinal effects. (Downie, A et al, 1992, Occupational Medicine, 42, pp 47-9) Chronic inhalation of methanol can cause Central Nervous System depression, blurred vision, and gastrointestinal effects. (Frederick, L.J. et al, 1984, AIHA Journal, 45, pp 51-5)

Methanol has produced in vivo mutagenicity in animal studies. (Pereira, M.A. et al, 1982) and (Ward, J. B. et al, 1983)

Methanol was mutagenic in yeast (RTECS). Methanol has caused chromosome aberrations in yeast (RTECS) and grasshoppers (Saha & Khudabaksh, 1974).

Methanol has caused birth defects in rats exposed by the oral (Infurna et al, 1981) and inhalation (Nelson et al, 1984; Nelson et al, 1985) routes. Exencephaly (a defect in the skull bone structure that leaves the brain exposed) and cleft palate (a fissure or unformed bone structure in the roof of the mouth (palate), lip, or facial area, occurring during the embryonic stage of development) were increased in fetal mice exposed to methanol at an airborne concentration of 5,000 ppm or higher for 7 hours/day on days 6 to 15 of gestation.

Embryotoxicity and fetotoxicity were seen with maternal exposure to airborne concentrations of 7,500 ppm and above, and reduced fetal weights with concentrations of 10,000 ppm or greater. The NOAEL was 1,000 ppm. Effects similar to those seen in the 10,000 ppm dosage group were also seen in offspring of mice given a dose of 4 g/kg orally (Rogers et al, 1993).

Acute Animal Toxicity	ORAL (LD50): Acute: 10600 mg/kg [Rat]. DERMAL (LD50): Acute: >2000 mg/kg [Rabbit].
Target Organs	blood system, kidneys, nervous system, liver, gastrointestinal tract, respiratory tract, skin/epithelium, eyes.

Other Adverse Effects Not available.

Section 12. Ecological Information		
Ecotoxicity	Not available.	
BOD5 and COD	Not available.	
Biodegradable/OECD	Not available.	
Toxicity of the Products of Biodegradation	Not available.	
Special Remarks	Not available.	

Section 13. Disposal Considerations

Responsibility for proper waste disposal rests with the generator of the waste. Dispose of any waste material in accordance with all applicable federal, state and local regulations. Note that these regulations may also apply to empty containers, liners and rinsate. Processing, use, dilution or contamination of this product may cause its physical and chemical properties to change.

Additional Waste

Not available.

Remarks

DOT Classification	FLAMMABLE LIQUID, N.O.S. (Contains: Methanol, Light aromatic naphtha), 3, UN1993, II	FLAMMABLE LIQUID
DOT Reportable Quantity	Xylene 1007 gal. Methanol 2586 gal.	3
Marine Pollutant	Not applicable.	
Additional DOT information	Not available.	
Emergency Response Guide Page Number	128	

Section 15. Regulate	ory Information
HCS Classification	Target organ effects. Flammable liquid. Irritant.
U.S. Federal Regulations	
Environmental Regulations	Extremely Hazardous Substances: Not applicable to any components in this product. SARA 313 Toxic Chemical Notification and Release Reporting: 1,2,4-Trimethylbenzene; Xylene; Methanol; SARA 302/304 Emergency Planning and Notification substances: Not applicable to any components in this product. Hazardous Substances (CERCLA 302): Xylene 1007 gal.; Methanol 2586 gal.; SARA 311/312 MSDS distribution - chemical inventory - hazard identification: fire; immediate health hazard; delayed health hazard; Clean Water Act (CWA) 307 Priority Pollutants: Not applicable to any components in this product. Clean Water Act (CWA) 311 Hazardous Substances: Xylene; Clean Air Act (CAA) 112(r) Accidental Release Prevention Substances: Not applicable to any components in this product.
Threshold Planning Quantity (TPQ)	Not applicable.
TSCA Inventory Status	All components are included or are exempted from listing on the US Toxic Substances Control Act Inventory.
	This product contains the following components that are subject to the reporting requirements of TSCA Section 12(b) if exported from the United States: Xylene; Naphthalene.
State Regulations	State specific information is available upon request from Baker Petrolite.
International Regulations	
Canada	Not all components are included on the Canadian Domestic Substances List.
WHMIS (Canada)	B-2, D-1B, D-2A, D-2B
European Union	Not all components are included on the European Inventory of Existing Commercial Chemical Substances or the European List of Notified Chemical Substances.
Continued on Next	Page

CGO49 CORROSION INHIBITOR

International inventory status information is available upon request from Baker Petrolite for the following countries: Australia, China, Korea (TCCL), Philippines (RA6969), or Japan.

Page: 9/9

Harmonized Tariff Code Not available.

Other Regulatory Information

No further regulatory information is available.

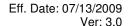
Section 16. Other Information

Other Special

123

Considerations

10/10/02 - Changes to Sections 2 and 9.


04/28/04 - Changes to Sections 2 and 15. 06/10/04 - Changes to Sections 8 and 15.

Baker Petrolite Disclaimer

NOTE: The information on this MSDS is based on data which is considered to be accurate. Baker Petrolite, however, makes no guarantees or warranty, either expressed or implied of the accuracy or completeness of this information.

The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of this product.

This MSDS was prepared and is to be used for this product. If the product is used as a component in another product, this MSDS information may not be applicable.

Material Safety Data Sheet

Surfatron® DN-100

1. PRODUCT AND COMPANY IDENTIFICATION

Product name Surfatron® DN-100

Product use Surfactant

Manufacturer Champion Technologies, Inc.

P.O. Box 450499 Houston, TX, 77245

USA

Telephone 1-281-431-2561 (Champion)

1-800-424-9300 (CHEMTREC) 1-703-527-3887 (CHEMTREC - International)

2. HAZARDS IDENTIFICATION

Physical state liquid

ColorClear. Brown.OdorHydrocarbon.

Emergency overview DANGER!

Flammable. Harmful. Irritant. Keep away from heat, sparks and flame. Contains material which may cause cancer. See toxicological information (section 11)

Potential health effects

In case of emergency

Inhalation Harmful by inhalation. Irritating to respiratory system.

Ingestion Harmful if swallowed. Irritating to mouth, throat and stomach.

Skin Irritating to skin.

Eyes Irritating to eyes.

Chronic effects No known significant effects or critical hazards.

Medical conditions

Frequent or prolonged contact with product may defat and dry the skin, leading to

aggravated by over- discomfort and dermatitis.

exposure

See toxicological information (section 11)

3. COMPOSITION/INFORMATION ON INGREDIENTS

<u>Name</u>	CAS no.	<u>wt. %</u>
Organic Acid Salt	Proprietary	10 - 30
Benzene, tetrapropylene-	25265-78-5	1 - 5
Naphthalene	91-20-3	1 - 5
Xylene	1330-20-7	1 - 5
Cumene	98-82-8	1 - 5
Diethylbenzene	25340-17-4	1 - 5
Toluene	108-88-3	1 - 5
1,3,5-Trimethylbenzene	108-67-8	1 - 5
Isopropyl Alcohol	67-63-0	1 - 5

Heavy aromatic solvent naphtha	64742-94-5	5 - 10
1,2,4-Trimethylbenzene	95-63-6	10 - 30
Light aromatic solvent naphtha	64742-95-6	30 - 60
Petroleum naphtha	64741-68-0	30 - 60

4. FIRST AID MEASURES

Eye contact Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids.

Check for and remove any contact lenses. Get medical attention.

Skin contact Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes.

Continue to rinse for at least 10 minutes. Get medical attention.

Inhalation Move exposed person to fresh air. If not breathing, if breathing is irregular or if respiratory

arrest occurs, provide artificial respiration or oxygen by trained personnel. Get medical attention. If unconscious, place in recovery position and get medical attention immediately.

Maintain an open airway.

Ingestion Wash out mouth with water. If material has been swallowed and the exposed person is

conscious, give small quantities of water to drink. Do not induce vomiting unless directed to do so by medical personnel. Get medical attention. Never give anything by mouth to an

unconscious person.

Protection of first-aiders

No action shall be taken involving any personal risk or without suitable training. It may be

dangerous to the person providing aid to give mouth-to-mouth resuscitation.

Notes to physician

No specific treatment. Treat symptomatically. Contact poison treatment specialist

immediately if large quantities have been ingested or inhaled.

5. FIRE-FIGHTING MEASURES

Flash point 74 °F (23.3 °C), Pensky-Martens. Closed cup

Flammability of the product

Flammable liquid. In a fire or if heated, a pressure increase will occur and the container may burst, with the risk of a subsequent explosion. Runoff to sewer may create fire or explosion

hazard.

Extinguishing media

Suitable Use dry chemical, CO2, water spray (fog) or foam.

Not suitable Do not use water jet.

Special exposure hazards

Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Move containers from fire area if this can be done without risk. Use water spray to keep fire-

exposed containers cool. This material is toxic to aquatic organisms. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway,

sewer or drain.

Hazardous combustion products

carbon dioxide, carbon monoxide

Special protective equipment for fire-fighters

Fire-fighters should wear appropriate protective equipment and self-contained breathing

apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Special remarks on fire hazards

Not available.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not

Surfatron® DN-100 Eff. Date: 07/13/2009

touch or walk through spilled material. Shut off all ignition sources. No flares, smoking or flames in hazard area. Avoid breathing vapor or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment (see section 8).

Environmental precautions

Avoid contact of spilled material with soil and prevent runoff entering surface waterways. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Methods for cleaning up

Small spill

Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water-soluble or absorb with an inert dry material and place in an appropriate waste disposal container. Use spark-proof tools and explosion-proof equipment. Dispose of via a licensed waste disposal contractor.

Large spill

Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see section 13). Use spark-proof tools and explosion-proof equipment. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see section 1 for emergency contact information and section 13 for waste disposal.

7. HANDLING AND STORAGE

Handling

Use only with adequate ventilation. Put on appropriate personal protective equipment (see section 8). Wear appropriate respirator when ventilation is inadequate. Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Do not get in eyes or on skin or clothing. Avoid breathing vapor or mist. Avoid release to the environment. Do not enter storage areas and confined spaces unless adequately ventilated. Eliminate all ignition sources. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. To avoid fire or explosion, dissipate static electricity during transfer by grounding and bonding containers and equipment before transferring material. Empty containers retain product residue and can be hazardous. Do not reuse container. Workers should wash hands and face before eating, drinking and smoking.

Storage

Store in accordance with local regulations. Store in a segregated and approved area. Keep container in a well-ventilated area. Store in the original container or an approved alternative made from a compatible material. Keep tightly closed when not in use. Separate from oxidizing materials. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Personal protection

Hands Use chemical-resistant, impervious gloves.

Eyes Safety eyewear should be used when there is a likelihood of exposure.

Body Personal protective equipment for the body should be selected based on the task being

performed and the risks involved and should be approved by a specialist before handling this

product.

Respiratory If during normal use the material presents a respiratory hazard, use only with adequate

ventilation or wear appropriate respirator. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the

selected respirator.

Occupational exposure limits

Component	<u>Source</u>	<u>Type</u>	<u>PPM</u>	MG/M3	<u>Notes</u>
Naphthalene					
	OSHA PEL	TWA	10 ppm	50 mg/m3	

	NIOSH REL	TWA	10 ppm	50 mg/m3	
	NIOSH REL	STEL	15 ppm	75 mg/m3	
	ACGIH TLV	TWA	10 ppm	52 mg/m3	
	ACGIH TLV	STEL	15 ppm	79 mg/m3	
Xylene					
,	OSHA PEL	TWA	100 ppm	435 mg/m3	
	ACGIH TLV	TWA	100 ppm	434 mg/m3	
	ACGIH TLV	STEL	150 ppm	651 mg/m3	
Cumene				· ·	
Camono	OSHA PEL	TWA	50 ppm	245 mg/m3	SKIN
	NIOSH REL	TWA	50 ppm	245 mg/m3	SKIN
	ACGIH TLV	TWA	50 ppm	_ 10 111g/1110	O. a.i.
Diethylhonzone	7.0 Gill 1 12 1		оо рр		
Diethylbenzene	AIHA WEEL	TWA	5 ppm		
	AINA WEEL	IVVA	5 ррпі		
Toluene	00114 DEL 70				
	OSHA PEL Z2	TWA	200 ppm		
	OSHA PEL Z2	CEIL	300 ppm		
	OSHA PEL Z2	CEIL	500 ppm	075 / 0	
	NIOSH REL	TWA	100 ppm	375 mg/m3	
	NIOSH REL	STEL	150 ppm	560 mg/m3	
	ACGIH TLV	TWA	20 ppm		
1,3,5-Trimethylbenzene					
	NIOSH REL	TWA	25 ppm	125 mg/m3	
	ACGIH TLV	TWA	25 ppm	123 mg/m3	
Isopropyl Alcohol					
,	OSHA PEL	TWA	400 ppm	980 mg/m3	
	NIOSH REL	TWA	400 ppm	980 mg/m3	
	NIOSH REL	STEL	500 ppm	1,225 mg/m3	
	ACGIH TLV	TWA	200 ppm	_	
	ACGIH TLV	STEL	400 ppm		
1,2,4-Trimethylbenzene					
-,_,,,,,	NIOSH REL	TWA	25 ppm	125 mg/m3	
	ACGIH TLV	TWA	25 ppm	123 mg/m3	
	· • • · · · · = •		-	.==g,	

SKIN - Skin absorption can contribute significantly to overall exposure.

Engineering measures

Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. The engineering controls also need to keep gas, vapor or dust concentrations below any lower explosive limits. Use explosion-proof ventilation equipment.

Hygiene measures

Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Wash contaminated clothing before reusing. Emergency baths, showers, or other equipment appropriate for the potential level of exposure should be located close to the workstation location.

Environmental exposure controls

Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical state liquid

Color Clear. Brown.

Odor Hydrocarbon.

Odor threshold Not available.

Surfatron® DN-100 Eff. Date: 07/13/2009

Boiling/condensation point Not available.

Pour point -40 °F (-40.0 °C)

Flash point 74 °F (23.3 °C), Pensky-Martens. Closed cup

Flammable limits Lower: Not available.

Upper: Not available.

Auto-ignition temperature Not available.

pH 7.0 - 9.0

Evaporation rate Not available.

Solubility oil

Vapor density Not available.

Relative density 0.9411 - 0.9811 @ 60 °F (15.6 °C)

Vapor pressure Not available.

Viscosity Dynamic: 50 - 150 cPs @ 75 °F (23.9 °C)

Octanol/water partition coefficient (LogPow)

Not available.

Note: Typical values only - not to be interpreted as sales specifications

10. STABILITY AND REACTIVITY

Stability The product is stable.

Hazardous polymerization

Under normal conditions of storage and use, hazardous polymerization will not occur.

Conditions to avoid Avoid all possible sources of ignition (spark or flame).

Do not pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat or

sources of ignition.

Avoid release to the environment. Refer to special instructions/safety data sheet.

Materials to avoid oxidizing materials

Hazardous decomposition products

Under normal conditions of storage and use, hazardous decomposition products should

not be produced.

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Substance	Test type	Species	<u>Dose</u>	Exposure
Naphthalene				
·	LD50 Oral	Mouse	316 mg/kg	-
	LD50 Oral	Rat	490 mg/kg	-
	LD50 Oral	Guinea pig	1,200 mg/kg	-
	LC50 inhalation	Rat	340 mg/m3	1 h
	LD50 Dermal	Rabbit	2,000 mg/kg	-
	LD50 Dermal	Rat	2,500 mg/kg	-
Xylene				
•	LD50 Oral	Mouse	2,119 mg/kg	-
	LD50 Oral	Rat	4,300 mg/kg	-
	LC50 inhalation	Rat	5000 ppm	4 h
	LD50 Dermal	Rabbit	1,700 mg/kg	-
Cumene				

	LD50 Oral LD50 Oral LC50 inhalation LC50 inhalation LD50 Dermal	Rat Mouse Mouse Rat Rabbit	1,400 mg/kg 12,750 mg/kg 15.3 g/m3 39 g/m3 12,300 mg/kg	- - 2 h 4 h -
Toluene			, 3 3	
	LD50 Oral LC50 inhalation LC50 inhalation LD50 Dermal	Rat Rat Mouse Rabbit	636 mg/kg 8000 ppm 30,000 mg/m3 14,100 mg/kg	- 4 h 2 h -
1,3,5-Trimethylbenzene				
•	LD50 Oral LC50 inhalation	Rat Rat	5,000 mg/kg 24,000 mg/m3	- 4 h
Isopropyl Alcohol	LDEO Ourl	Marra	0.000 //	
	LD50 Oral LD50 Oral LD50 Oral LC50 inhalation LD50 Dermal	Mouse Rat Rabbit Rat Rabbit	3,600 mg/kg 5,000 mg/kg 6,410 mg/kg 72,600 mg/m3 12,800 mg/kg	- - - -
Heavy aromatic solvent nap				
	LC50 inhalation LD50 Dermal	Rat Rabbit	590 mg/m3 2,000 mg/kg	4 h -
1,2,4-Trimethylbenzene	LDEO Ourl	Dat	F 000 mm m/l m	
	LD50 Oral LD50 Oral LC50 inhalation	Rat Mouse Rat	5,000 mg/kg 6,900 mg/kg 18,000 mg/m3	- - 4 h
Light aromatic solvent naph	tha			
-	LD50 Oral	Rat	8,400 mg/kg	-
Petroleum naphtha Conclusion/Summary	LD50 Oral LC50 inhalation Not available.	Rat Rat	4,800 mg/kg > 5 g/m3	- 4 h
Chronic toxicity				
Conclusion/Summary	Not available.			
Irritation/Corrosion Conclusion/Summary Skin Eyes Respiratory	Not available. Not available. Not available.			
Sensitizer Conclusion/Summary				
Skin Respiratory	Not available. Not available.			
Carcinogenicity Conclusion/Summary	Not available.			
Component Naphthalene		IARC 2B	<u>NTP</u> Possible	<u>OSHA</u>
2B - IARC Grou	up 2B, possibly carcinogenic to he carcinogenic to he	umans		

Mutagenicity

Conclusion/Summary Not available.

Surfatron® DN-100 Eff. Date: 07/13/2009

Teratogenicity

Conclusion/Summary Not available.

Reproductive toxicity

Conclusion/Summary Not available.

12. ECOLOGICAL INFORMATION

Environmental effectsToxic to aquatic organisms, may cause long-term adverse effects in the aquatic

environment.

Aquatic ecotoxicity

Conclusion/Summary Not available.

Other adverse effects No known significant effects or critical hazards.

13. DISPOSAL CONSIDERATIONS

Waste disposal

The generation of waste should be avoided or minimized wherever possible. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe way. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

Disposal should be in accordance with applicable regional, national and local laws and regulations. Refer to Section 7: HANDLING AND STORAGE and Section 8: EXPOSURE CONTROLS/PERSONAL PROTECTION for additional handling information and protection of employees.

14. TRANSPORT INFORMATION

Refer to the bill of lading or container label for DOT or other transportation hazard classification. Additionally, be aware that shipping descriptions may vary based on mode of transport, shipment volume or weight, container size or type, and/or origin and destination. Consult your company's Hazardous Materials / Dangerous Goods expert or your legal counsel for information specific to your situation.

15. REGULATORY INFORMATION

HCS Classification

<u>Component</u> <u>Classification</u>

Petroleum naphtha Harmful. Light aromatic solvent naphtha Harmful.

Organic Acid Salt Harmful., Irritant.

1,2,4-Trimethylbenzene Harmful., Irritant., Occupational exposure limits

Heavy aromatic solvent naphtha Harmful.

Isopropyl Alcohol Irritant., Occupational exposure limits 1,3,5-Trimethylbenzene Irritant., Occupational exposure limits

Toluene Harmful., Irritant., Target organ effects, Occupational

exposure limits

Diethylbenzene Irritant., Occupational exposure limits

Cumene Harmful., Irritant., Occupational exposure limits

Xylene Harmful., Irritant., Occupational exposure limits

Naphthalene Carcinogen, Harmful., Occupational exposure limits

Benzene, tetrapropylene- Irritant.

U.S. Federal regulations

CERCLA - Reportable quantity:

SUBSTANCE REPORTABLE QUANTITY

Naphthalene 100 lbs

Surfatron® DN-100 Eff. Date: 07/13/2009

Xylene 100 lbs Cumene 5000 lbs Toluene 1000 lbs

SUBSTANCE PRODUCT REPORTABLE QUANTITY

Xylene 8,226 lb, 1,031 gal US

Product spills equal to or exceeding the threshold above trigger the reporting requirements under CERCLA for the listed hazardous substance. Report the spill or release to the National Response Center (NRC) at (800) 424-8802.

TSCA 12(b) one-time export:

The following components are listed: Naphthalene.

SARA Title III Section 302 Extremely hazardous substances (40 CFR Part 355):

None of the components are listed.

SARA CERCLA: Hazardous substances:

None of the components are listed.

SARA 311/312 MSDS distribution - chemical inventory - hazard identification:

Immediate (acute) health hazard, Delayed (chronic) health hazard, Fire hazard

Clean Water Act (CWA) 307:

The following components are listed: Toluene. Naphthalene. Ethylbenzene. Benzene.

Clean Water Act (CWA) 311:

The following components are listed: Toluene. Xylene. Naphthalene. Potassium hydroxide. Ethylbenzene. Benzene.

Clean Air Act (CAA) 112 accidental release prevention:

None of the components are listed.

Clean Air Act (CAA) 112 regulated flammable substances:

None of the components are listed.

Clean Air Act (CAA) 112 regulated toxic substances:

None of the components are listed.

SARA 313 - Supplier notification

<u>Component</u>	CAS no.	<u>wt. %</u>
Naphthalene	91-20-3	1 - 5
Xylene	1330-20-7	1 - 5
Cumene	98-82-8	1 - 5
Toluene	108-88-3	1 - 5
Isopropyl Alcohol	67-63-0	1 - 5
1,2,4-Trimethylbenzene	95-63-6	10 - 30

State regulations

Massachusetts Substances: The following components are listed: 1,3,5-Trimethylbenzene. Toluene. Cumene. Xylene. Naphthalene. Isopropyl Alcohol. 1,2,4-Trimethylbenzene.

New Jersey Hazardous Substances: The following components are listed: 1,3,5-Trimethylbenzene. Toluene. Diethylbenzene. Cumene. Xylene. Naphthalene. Isopropyl Alcohol. 1,2,4-Trimethylbenzene.

Pennsylvania RTK Hazardous Substances: The following components are listed: 1,3,5-Trimethylbenzene. Toluene. Cumene. Xylene. Naphthalene. Isopropyl Alcohol. 1,2,4-Trimethylbenzene.

California Prop. 65

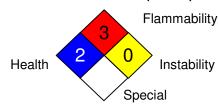
WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm.

<u>Component</u>	<u>Cancer</u>	<u>Reproductive</u>	No significant	Maximum acceptable
			risk level	dosage level
Toluene	No.	Yes.	No.	13000 μg/day
	No.	Yes.	No.	7000 μg/day
Naphthalene	Yes.	No.	5.8 μg/day	No.
	n	222 0 00		

Surfatron® DN-100 Eff. Date: 07/13/2009

Ethylbenzene	Yes.	No.	No.	No.
Benzene	Yes.	Yes.	6.4 μg/day	No.
	Yes.	Yes.	No.	24 μg/day
	Yes.	Yes.	No.	49 μg/day
	Yes.	Yes.	13 μg/day	No.

International regulations

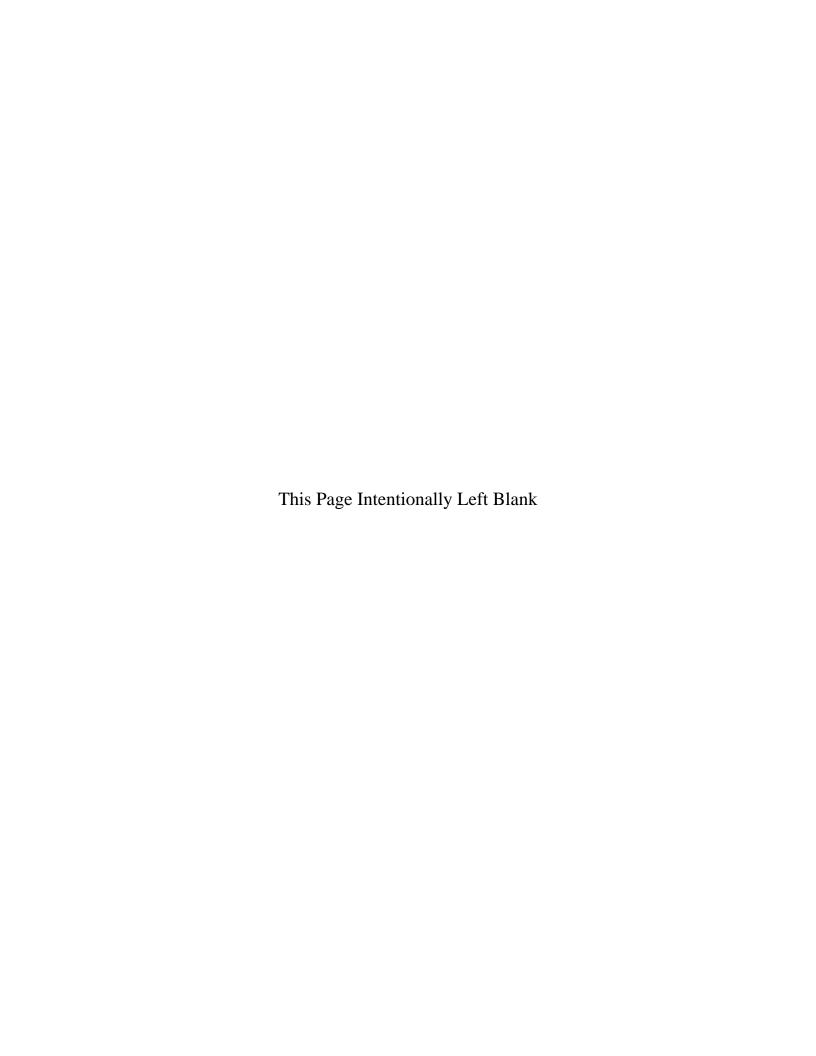

United States inventory (TSCA 8b): All components are listed or exempted.

Canada inventory (DSL): At least one component is not listed in DSL but all such components

are listed in NDSL.

16. OTHER INFORMATION

National Fire Protection Association (U.S.A.):


Date of issue07/13/2009Date of previous issue07/13/2009

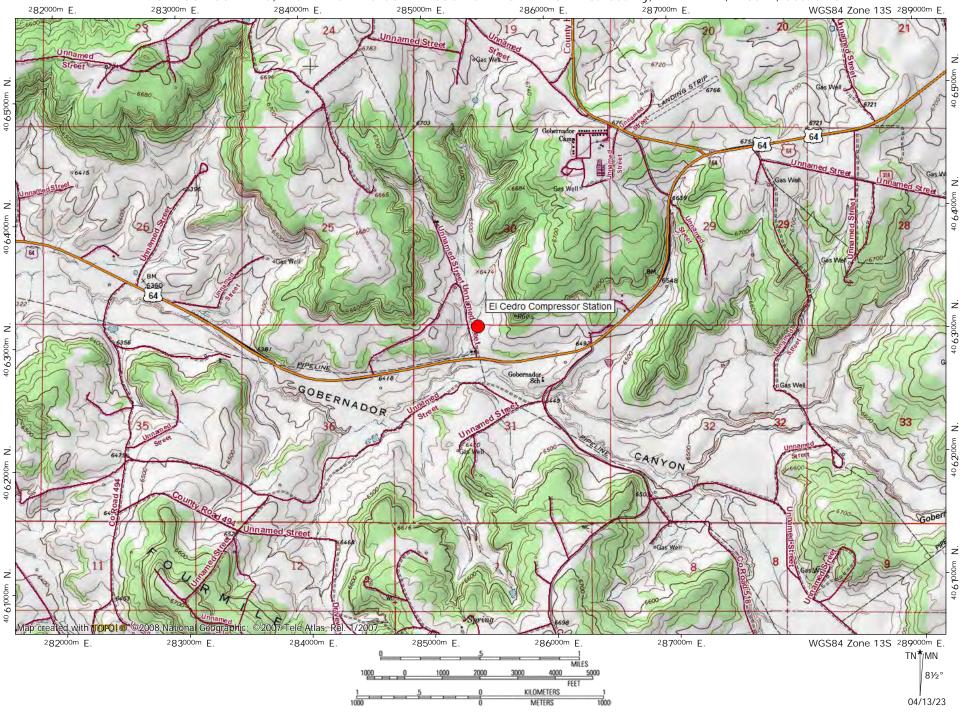
Version 3.0

Prepared by Product Stewardship

Disclaimer

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

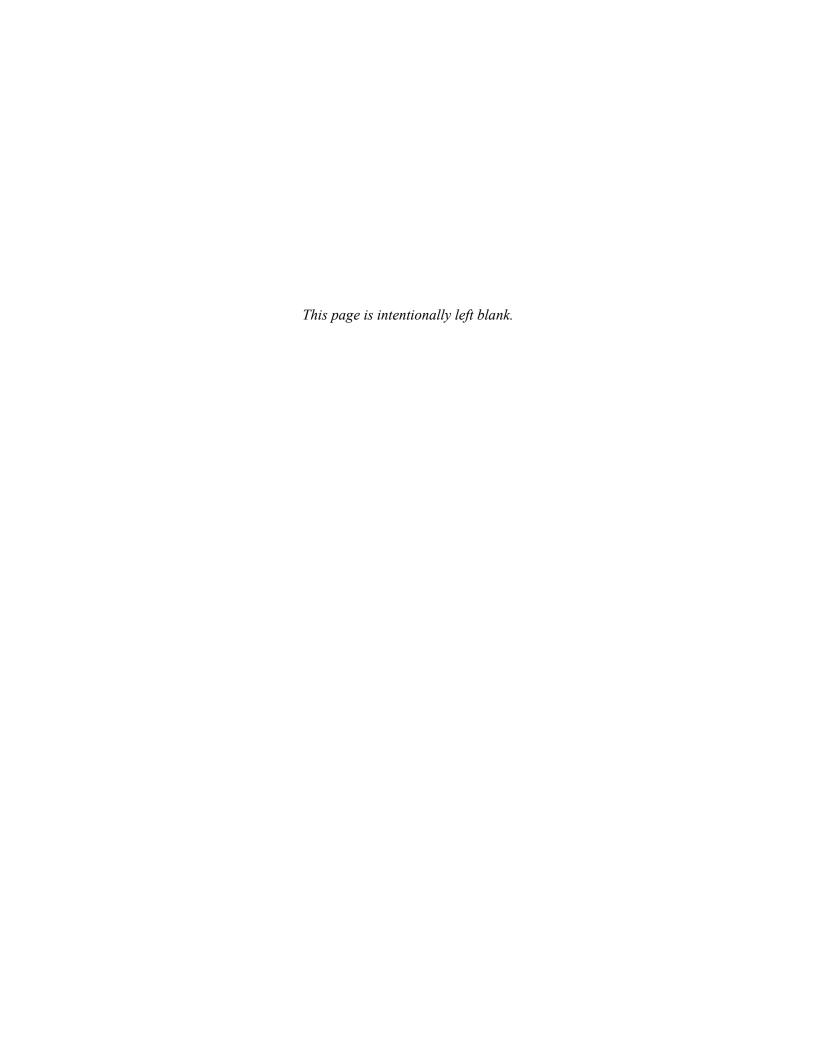
Map(s)


<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map of the area around the facility is provided in this section. Please see the following page.

HARVEST FOUR CORNERS, LLC - EL CEDRO COMPRESSOR STATION - Rio Arriba County, NM T 29 N, R 05 W, Section 31



Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

		I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.
	Noti	ess otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public fication. Please include this page in your proof of public notice submittal with checkmarks indicating which aments are being submitted with the application.
	Ne	w Permit and Significant Permit Revision public notices must include all items in this list.
	Te	chnical Revision public notices require only items 1, 5, 9, and 10.
	Per	the Guidelines for Public Notification document mentioned above, include:
1.		A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC).
2.		A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.).
3.		A copy of the property tax record (20.2.72.203.B NMAC).
4.		A sample of the letters sent to the owners of record.
5.		A sample of the letters sent to counties, municipalities, and Indian tribes.
6.		A sample of the public notice posted and a verification of the local postings.
7.		A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
8.		A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
9.		A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
10.		A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
11.		A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Not applicable, since this is a Title V application.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The El Cedro Compressor Station compresses and dehydrates natural gas for midstream pipeline transmission (i.e., prior to entering a fractionating gas plant) using natural gas-fired reciprocating engines and combustion turbines.

Natural gas from independent producers in the production fields is piped to the facility inlet via gathering pipelines. The natural gas stream contains entrained condensate liquid and produced water. The natural gas-produced water mixture goes to a pig receiver, where natural gas separates from the liquid stream and is routed back to the process pipeline for compression and transport downstream. A portion of the gas is routed to the compressor engines for use as fuel.

The liquids are routed to an inlet liquids receiver/ Vapor Recovery Unit ("Condensate Stabilizer"). The facility condensate stabilizer unit removes the flash emissions from most of the condensate before it is routed to the storage tanks. The flashed gases are inserted into the facility gas stream. The stabilized (post-flashed) condensate and the produced water are each routed to storage tanks where they are stored until they are transported offsite via a tank truck.

The El Cedro Compressor Station receives gas from two gathering systems: the San Juan Conventional (SJC) gathering system, and Manzanares gathering system. The SJC stream is a high BTU gas, rich in heavier hydrocarbon components.

SJC Stream

The SJC gas stream is ultimately routed to the Ignacio Plant following pressurization. This is currently accomplished using six (6) reciprocating compressor packages, each driven by Waukesha 7042GL engines. Due to the high condensate content of the SJC stream, routine "pigging" is required. The hydrocarbon liquids captured by "pigging" are treated in a stabilizer unit, then transferred to storage tanks where they await transport to market.

Manzanares Stream

The Manzaneres inlet gas stream is compressed using seven (7) compressor packages, driven by two (2) Solar MARS 90-12000S turbines and five (5) Waukesha 7042GL engines.

Form-Section 10 last revised: 8/15/2011 Section 10, Page 1 Saved Date: 4/6/2023

Note: Two of the six reciprocating compressor packages identified for use with the SJC Stream provide compression for both the SJC Stream and the Manzanares Stream, as required.

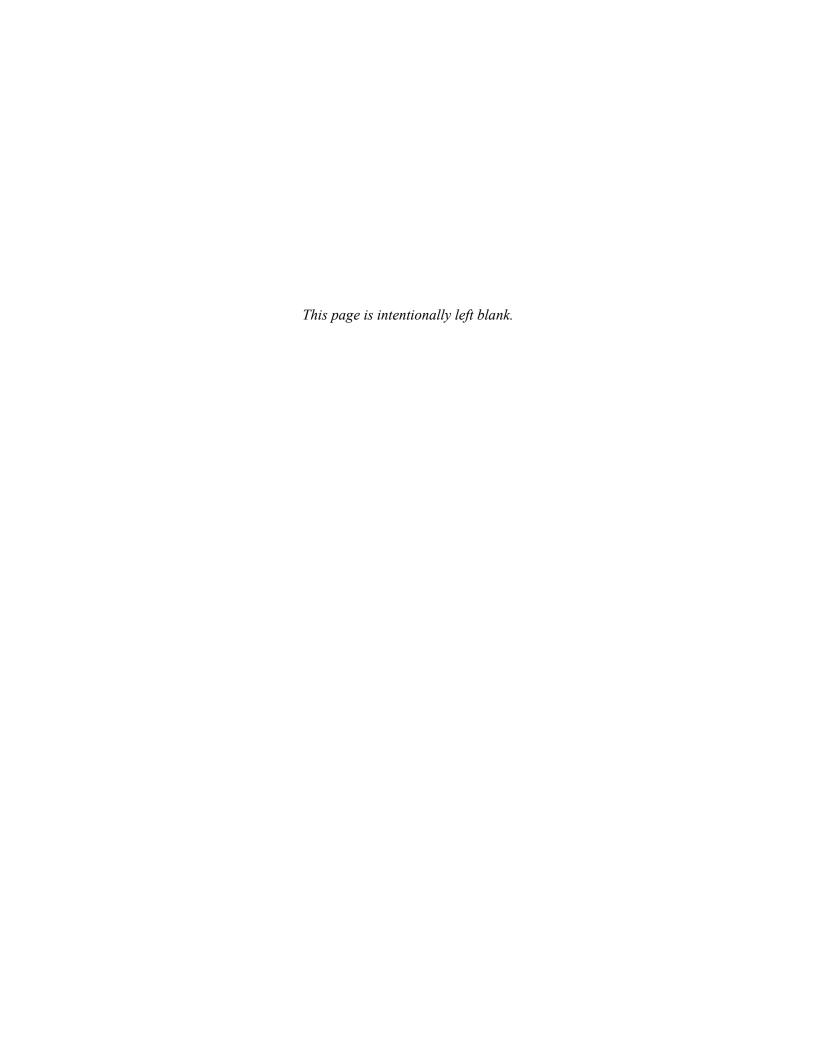
Facility Power

The El Cedro Compressor Station generates its own electrical power for use at the plant. It is permitted to operate two (2) generators: powered by one (1) Waukesha L7042G engine and one (1) Waukesha L7042GSI or one (1) F2895GSI engine. The plant is also equipped with one (1) emergency generator, driven by a Waukesha F2895GSI engine.

Fuel for the internal combustion engines, turbines and heaters is typically obtained from the Manzanares inlet gas stream.

Miscelleaneous

Waste water storage tanks collect storm water runoff and small amounts of heavy hydrocarbon residues resulting from any drips or spills that may occur from machinery, where it is stored until transport offsite via tank truck. The hydrocarbon residues are of low volatility. The lube oil and used lube oil tanks store heavy hydrocarbon machinery oils, also with low volatility. Similarly, the stored contents of the antifreeze and solvent tanks also have low volatility.


Other emission sources include: startups, shutdowns and routine maintenance (SSM) from the compressors and piping (both SSM-Eng and SSM-Tur), and fugitive emissions from process piping (valves, flanges, seals, etc.).

The facility is authorized to operate continuously.

Source Determination

(Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC)

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website. Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED. **A. Identify the emission sources evaluated in this section** (list and describe): **El Cedro Compressor Station** (production field natural gas gathering and boosting station) B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source. ☑ Yes □ No Common Ownership or Control: Surrounding or associated sources are under common ownership or control as this source. ✓ Yes □ No **Contiguous or Adjacent:** Surrounding or associated sources are contiguous or adjacent with this source. **☑** Yes □ No C. Make a determination: The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. ☐ The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

A. This facility is:

a minor PSD source before and after this modification (if so, delete C and D below).
a major PSD source before this modification. This modification will make this a PSD minor
source.
an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
an existing PSD Major Source that has had a major modification requiring a BACT analysis
a new PSD Major Source after this modification.

- B. This facility [is or is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [significant or not significant]. [Discuss why.] The "project" emissions listed below [do or do not] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: XX.X TPYb. CO: XX.X TPYc. VOC: XX.X TPY
 - d. SOx: XX.X TPY e. PM: XX.X TPY f. PM10: XX.X TPY
 - g. PM2.5: XX.X TPY h. Fluorides: XX.X TPY
 - i. Lead: XX.X TPY
 - j. Sulfur compounds (listed in Table 2): XX.X TPY
 - k. GHG: XX.X TPY
- C. Netting [is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.]
- D. BACT is [not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.]
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Not applicable for a Title V application.

Section 12.B

Special Requirements for a PSD Application

(Submitting under 20.2.74 NMAC)

Prior to Submitting a PSD application, the permittee shall: □ Submit the BACT analysis for review prior to submittal of the application. No application will be ruled complete until the final determination regarding BACT is made, as this determination can ultimately affect information to be provided in the application. A pre-application meeting is recommended to discuss the requirements of the BACT analysis. □ Submit a modeling protocol prior to submitting the permit application. [Except for GHG] □ Submit the monitoring exemption analysis protocol prior to submitting the application. [Except for GHG] For PSD applications, the permittee shall also include the following: □ Documentation containing an analysis on the impact on visibility. [Except for GHG] □ Documentation containing an analysis on the impact on vegetation, including state and federal threatened and endangered species. [Except for GHG] □ Documentation containing an analysis on the impact on water consumption and quality. [Except for GHG] □ Documentation that the federal land manager of a Class I area within 100 km of the site has been notified and provided a copy of the application, including the BACT and modeling results. The name of any Class I Federal area located

Not applicable, since this is a Title V application.

within one hundred (100) kilometers of the facility.

Apr. 2023; Rev.0

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants. Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation.** For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 4/6/2023

Apr. 2023; Rev.0

Saved Date: 4/6/2023

State Regulations

Applicable state requirements are embodied in the New Mexico SIP, the New Mexico Administrative Code (NMAC), and the terms and conditions of any preconstruction permits issued pursuant to regulations promulgated through rulemaking under Title I of the CAA.

Table for STATE REGULATIONS:

Table for STATE REGULATIONS:					
STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
20.2.1 NMAC	General Provisions	Yes	Facility	This regulation is applicable because it establishes procedures for protecting confidential information, procedures for seeking a variance, NMAQB's authority to require sampling equipment, severability, and the effective date for conformance with the NMACs, and prohibits the violation of other requirements in attempting to comply with the NMACs.	
				Although this regulation is applicable, it does not impose any specific requirements.	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	This is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentrations of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.	
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation is applicable because it prohibits excess emissions unless proper notification procedures are followed.	
20.2.8 NMAC	Emissions Leaving New Mexico	Yes	Facility	This regulation is applicable because it establishes prohibitions on the release of pollutants that cross New Mexico State boundaries.	
20.2.14 NMAC	Particulate Emissions from Coal Burning Equipment	No	N/A	This regulation is not applicable because the facility does not burn coal (see 20.2.14.5 NMAC).	
20.2.18 NMAC	Oil Burning Equipment - Particulate Matter	No	N/A	This regulation is not applicable because the facility does not burn oil (see 20.2.18.5 NMAC).	
20.2.31 NMAC	Coal Burning Equipment – Sulfur Dioxide	No	N/A	This regulation is not applicable because the facility does not burn coal (see 20.2.31.6 NMAC).	
20.2.32 NMAC	Coal Burning Equipment – Nitrogen Dioxide,	No	N/A	This regulation is not applicable because the facility does not burn coal (see 20.2.32.6 NMAC).	
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This regulation is not applicable because the facility is not equipped with external gas burning equipment which have heat input rates exceeding the trigger level (one million MMBtu/year) established by the regulation (see 20.2.33.108 NMAC).	
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This regulation is not applicable because the facility does not burn oil (see 20.2.34.6 NMAC).	
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This regulation is not applicable because the facility is not a natural gas processing plant (see 20.2.35.6 NMAC).	
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation is not applicable because the facility does not store hydrocarbons containing hydrogen sulfide, nor is there a tank battery storing hydrocarbon liquids with a capacity greater than or equal to 65,000 gallons (see 20.2.38.112 NMAC).	
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation is not applicable because the facility is not equipped with a sulfur recovery plant (see 20.2.39.6 NMAC).	

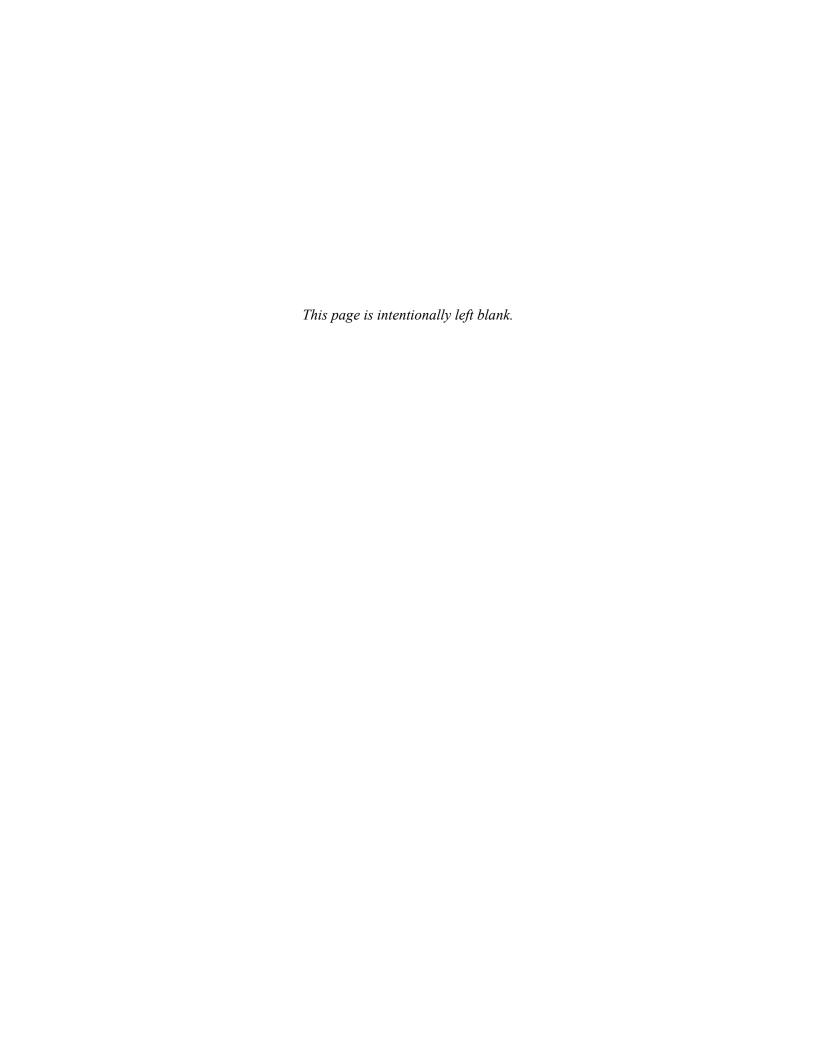
STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.50 NMAC	Oil and Gas Sector - Ozone Precursor Pollutants	Yes	RICE units 1-10, 17, 18 & 18a; Turbines 15 & 16; Compressor seals; Pneumatic Controllers & Pumps; Condensate storage tanks T91019 - T91021 & T91028 and Hydrocarbon Liquid Transfers; Pig Receivers PR1 & PR2; SSM; fugitives F1; and malfunctions M1	This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. The following 20.2.50 NMAC subparts apply to the facility: 113 – Engines and Turbines 114 – Compressor Seals 115 – Control Devices and Closed Vent Systems 116 – Equipment Leaks and Fugitive Emissions 120 – Hydrocarbon Liquid Transfers 121 – Pig Launching and Receiving 122 – Pneumatic Controllers and Pumps 123 – Storage Vessels
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	RICE units 1-10, 17, 18 & 18a; Turbines 15 & 16; Fuel gas heaters 20 & 28	This regulation is applicable because the facility is equipped with stationary combustion sources. Emissions from these combustion sources are limited to less than 20% opacity (see 20.2.61.109 NMAC). The regulation is not applicable to Title V insignificant heaters (see 20.2.61.111.D NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation is applicable because the facility is a major source of CO, VOC, and HAP emissions (see 20.2.70.200 NMAC).
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.70 NMAC (see 20.2.71.6 NMAC).
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation is applicable because the facility has potential emission rates (PER) greater than 10 pph or 25 tpy for pollutants subject to a state or federal ambient air quality standards (does not include VOCs or HAPs).
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The Notice of Intent requirements of this regulation were fulfilled with the construction permit application. The emissions inventory portion of this regulation is applicable since the facility is a Title V major source (see 20.2.73.300.B(1) & (2)).
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	Yes	Facility	This regulation is applicable because the facility PTE of NO _X and CO exceed the 250 tpy PSD threshold. Therefore, the facility is a PSD major source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.72 NMAC and it establishes the fee schedule associated with the filing of construction permits (see 20.2.75.6 NMAC).
20.2.77 NMAC	New Source Performance	Yes	Turbines 15 & 16	This regulation adopts by reference the federal NSPS codified in 40 CFR 60 (see 20.2.77.6 NMAC). The turbines are subject to 40 CFR 60, subparts A and GG. The regulation is potentially applicable if NSPS subpart JJJJ applies to RICE units 10 and/or 18.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This regulation is not applicable because it incorporates by reference the NESHAPs codified under 40 CFR 61 (see 20.2.78.6 NMAC). The facility is not subject to 40 CFR 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation is not applicable because the facility is neither located in nor has a significant impact on a nonattainment area (see 20.2.79.6 NMAC).
20.2.80 NMAC	Stack Heights	No	N/A	This regulation is not applicable because it establishes guidelines for the selection of an appropriate stack height for the purpose of atmospheric dispersion modeling (see 20.2.80.6 NMAC); however, it only imposes those requirements when modeling is required as a part of the application. This application does not require modeling.
20.2.82 NMAC	MACT Standards for Source Categories of HAPS	Yes	Turbines 15 & 16	This regulation is applicable because it adopts by reference the federal MACT Standards for source categories codified in 40 CFR 63 (see 20.2.82.6 NMAC). The turbines are subject to 40 CFR 63, subparts A and YYYY.

Federal Regulations

Federal standards and requirements are embodied in Title 40 (Protection of the Environment), Subchapter C (Air Programs) of the CFR, Parts 50 through 99.

FEDERAL REGULATIONS APPLICABILITY CHECKLIST


FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation is applicable because it applies to all sources in the state of New Mexico.
40 CFR 52	Approval and Promulgation of Implementation Plans	Yes	Facility	40 CFR 52.21 Prevention of Significant Deterioration of Air Quality is applicable because the facility is a major Prevention of Significant Deterioration source. The remainder of 40 CFR 52 is not applicable because it addresses approval and promulgation of implementation plans.
NSPS 40 CFR 60, Subpart A	General Provisions	No	Potentially to RICE units 10 & 18; Turbines 15 & 16	The regulation applies if 40 CFR Part 60 subpart is determined to be applicable. 40 CFR 60 subpart GG is applicable, and subpart JJJJ is potentially applicable.
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978	No	N/A	This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110(a)).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation is not applicable because the storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110a(a)).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This regulation is not applicable because all storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 75 cubic meters (19,812 gallons), or they have a capacity between 75 and 151 cubic meters (40,000 gallons) and store a liquid with a maximum true vapor pressure less than 15.0 kPa (2.2 psi) (see §60.110b(a) & §60.110b(b))).

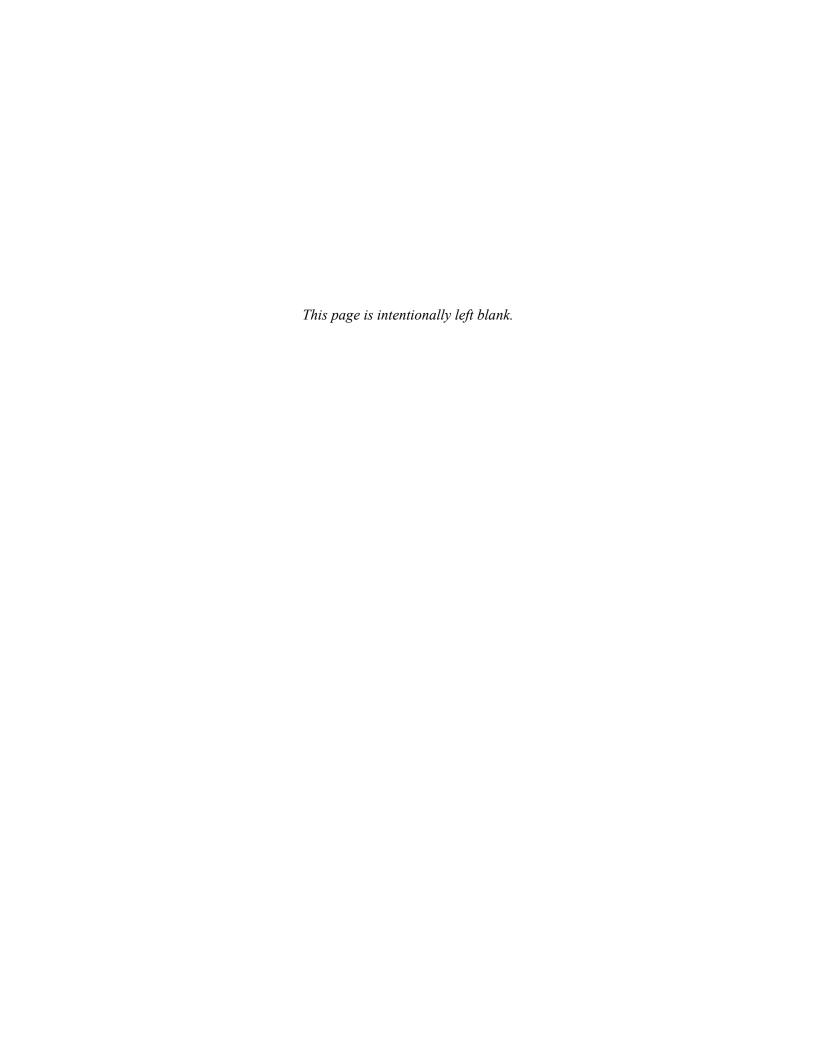
FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart KKK	Standards of Performance for Equipment Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation is not applicable because the facility is not an onshore natural gas processing plant as defined by the subpart (see §60.630(a)(1)). Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both (see §60.631).
NSPS 40 CFR 60, Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	This regulation is not applicable because the facility is not a natural gas processing plant as defined by the subpart. It is not equipped with a sweetening unit (see §60.640(a)).
NSPS 40 CFR 60, Subpart IIII	Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation is not applicable because the facility is not equipped with stationary compression ignition (CI) internal combustion engines (ICE) that commenced construction after July 11, 2005 and were manufactured after April 1, 2006 (see §60.4200(a)(2)(i)). For the purpose of this subpart, construction commences on the date the engine is ordered by the owner or operator (see §60.4200(a)).
NSPS 40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Potentially	RICE units 10 & 18	Under § 60.4230, the regulation is applicable to spark ignition (SI) internal combustion engines (ICE) constructed, modified, or reconstructed after June 12, 2006. Units 1-9, 19 and 18a were constructed prior to the applicability date and have not been modified or reconstructed. Therefore, the subpart does not apply to these RICE. None of the engines has undergone either a "modification" or "reconstruction" under NSPS. The applicability of the regulation to RICE units 10 and/or 18 will be evaluated upon installation. See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO below.
NSPS 40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which Construction, Modification or Reconstruction Commenced After August 23, 2011 and On or Before September 18, 2015	No	N/A	This regulation is not applicable because the facility is not equipped with "affected" sources that commenced construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (see §60.5365). Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430). "Commenced construction" means a continuous program of fabrication, erection or installation (see §60.2). "Modification" means any physical change in or change in the method of operation of an existing facility which increases emissions or results in new emissions (see §60.2). The following, by themselves, are not modifications: routine maintenance, repair or replacement, production increase without capital expenditure, increase in hours of operation, addition of emission controls, or the relocation or change in ownership of an existing facility (see §60.14). "Reconstruction" means the replacement of components of an existing facility such that the fixed capital cost of the new components exceeds 50 % of the fixed capital cost required to construct a comparable entirely new facility. Fixed capital cost means the capital needed to provide all the depreciable components (see §60.15).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
	Standards of Performance for			The regulation is applicable because the facility is equipped with one or more "affected" sources that commenced construction, modification or reconstruction after September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, storage vessels, pneumatic pumps, and equipment leaks (see §60.5365a).
NSPS 40 CFR 60.	Crude Oil and Natural Gas Facilities for which		Fugitive	In general, this regulation may apply if existing affected equipment is replaced or new affected equipment is installed. Affected sources at the facility were permitted and installed after the September 18, 2015 regulatory applicability date; therefore, the applicability of the subpart was triggered.
Subpart OOOOa	Construction, Modification or Reconstruction Commenced After September 18,	Yes	emissions components	The applicability of the regulation includes the fugitive emissions components at the facility. For the purpose of the fugitive components monitoring requirements specified by the regulation, "modification" of a compressor station includes the addition of (or replacement of) a compressor with a larger unit (greater total horsepower) (see §60.5365a(j)).
	2015			Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430a).
				See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO above.
NESHAP 40 CFR 61, Subpart A	General Provisions	No	N/A	This regulation is not applicable because no other 40 CFR Part 61 subparts apply (see §61.01(c)).
				This regulation is not applicable because none of the listed equipment at the facility is in VHAP service.
NESHAP 40 CFR 61, Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart (see §61.240(a)). VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated (see §61.241).
MACT 40 CFR 63, Subpart A	General Provisions	Yes	RICE units 17 & 18 or 18a	This regulation is applicable because 40 CFR 63, subpart ZZZZ applies.
MACT 40 CFR 63, Subpart HH	National Emission Standards for Hazardous Air Pollutants For Oil and Natural Gas Production Facilities	No	N/A	As the facility is a production field facility located prior to the point of custody transfer, only HAP emissions from glycol dehydration units and storage vessels (crude oil tanks, condensate tanks, intermediate hydrocarbon liquid tanks, and produced water tanks) are aggregated for a major source determination (see §63.761). As defined under the subpart, the facility is an area source of HAP. The facility is located in an area that is not within an UA plus offset and UC boundary (as defined in §63.761). At a HAP area source, the only affected unit is each dehydration unit (see §63.760(b)(2)). There are no dehydrators at the facility; therefore, the
	National Emission			regulation does not apply. This regulation is not applicable because the facility is not a natural gas
MACT 40 CFR 63, Subpart HHH	Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	transmission and storage facility as defined by the subpart. A compressor station that transports natural gas prior to the point of custody transfer or to a natural gas processing plant (if present) are not considered a part of the natural gas transmission and storage source category (see §63.1270(a)).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63, Subpart YYYY	National Emission Standards for Hazardous Air Pollutants From Stationary Combustion Turbines	No	N/A	The facility is a major HAP source as defined by the subpart (§63.6090(a)). As it is a production field facility, only HAP emissions from dehydrators, storage vessels with the potential for flash emissions, combustion turbines and RICE are aggregated for a major HAP source determination (see §63.6175).
				There are no applicable requirements for either of the turbines because, as indicated in Table 2-A, each was constructed or reconstructed prior to January 14, 2003 (see §63.6090(b)(4)).
MACT 40 CFR 63, Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	RICE units 17 & 18 or 18a	40 CFR 63, Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from existing, new, modified and reconstructed stationary reciprocating internal combustion engines (RICE) located at both major and area sources of HAP, including provisions for initial and continuous compliance demonstration.
				As defined at §63.6585(b), the station is a major source of HAP emissions. Under §63.6590(a)(1)(i), a stationary RICE greater than 500 horsepower (hp) located at a major source of HAP is considered an "existing" unit if construction or reconstruction commenced before December 19, 2002. ("Construction" does not include the reinstallation of an existing unit at another location.) Each of the engines that have been installed at the facility are an "existing" engine, as defined under the regulation.
				Under §63.6590(b)(3)(ii), existing 4SLB stationary RICE with site rating of more than 500 hp, located at a major source of HAP do not have to meet the requirements of the subpart and of subpart A, including initial notification requirements. Therefore, the subpart is not applicable to RICE units 1-10.
				Similarly, under §63.6590(b)(3)(iii) there are no requirements (including initial notification requirements) for the unit 19 emergency generator engine as it is an existing unit with a site rating greater than 500 hp located at a major source of HAP.
				The 4-stroke rich burn (4SRB) generator engines (units 17 & 18 or 18a) all have site ratings greater than 500 hp. Consequently, under §63.6600(a) they must comply with the applicable emission limitations in Table 1a, and the operating limitations in Table 1b of the subpart.
	National Emission Standards for Hazardous Air Pollutants From Stationary Combustion Turbines	Yes	Turbines 15 & 16	This regulation is applicable because the facility is both equipped with stationary combustion turbines (units 15 & 16) and is a HAP major source (see §63.6090(a)).
MACT 40 CFR 63, Subpart YYYY				The facility is a major HAP source as defined by the subpart. As it is a production field facility, only HAP emissions from dehydrators, storage vessels with the potential for flash emissions, combustion turbines and RICE are aggregated for a major HAP source determination (see §63.6175).
				However, there are no applicable requirements for the turbines because, as indicated in Table 2-A, each wss constructed or reconstructed prior to January 14, 2003 (see §63.6090(b)(4)).
MACT 40 CFR 63, Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This regulation is not applicable both because the facility is an area HAP source as defined by the subpart (see §63.7480) and is not equipped with boilers and process heaters.
				For natural gas production facilities, only HAP emissions from dehydrators and storage vessels with the potential for flash emissions are aggregated for a major source determination (see §63.7575).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
MACT 40 CFR 63, Subpart JJJJJJ	National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers at Area Sources	No	N/A	This regulation is not applicable because the facility is not equipped wit industrial, commercial, or institutional boilers. This regulation is not applicable because none of the equipment at the facility requires a control device to achieve compliance with emission limits or standards where pre control emissions equal or exceed the major source threshold (100 tons per year). (see §64.2(a)). This regulation is not applicable because the facility does not store any of the identified toxic and flammable substances in quantities exceeding the applicability thresholds (see §68.10(a), §68.115(a), and §68.130 Tables 1-4). This regulation is not applicable, as the requirements associated with Title V are delegated to the State of New Mexico and implemented under 20 NMAC 2.70. This regulation is not applicable because the facility does not produce transform, destroy, import, or export ozone-depleting substances (see §82.1(b),); does not service motor vehicle air conditioning units (see §82.30(b)); and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances (see §82.64).	
40 CFR 64	Compliance Assurance Monitoring	No	N/A		
40 CFR 68	Chemical Accident Prevention	No	N/A		
40 CFR 70	State Operating Permit Programs	No	N/A		
40 CFR 82	Protection of Stratospheric Ozone	No	N/A		

Section 14


Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

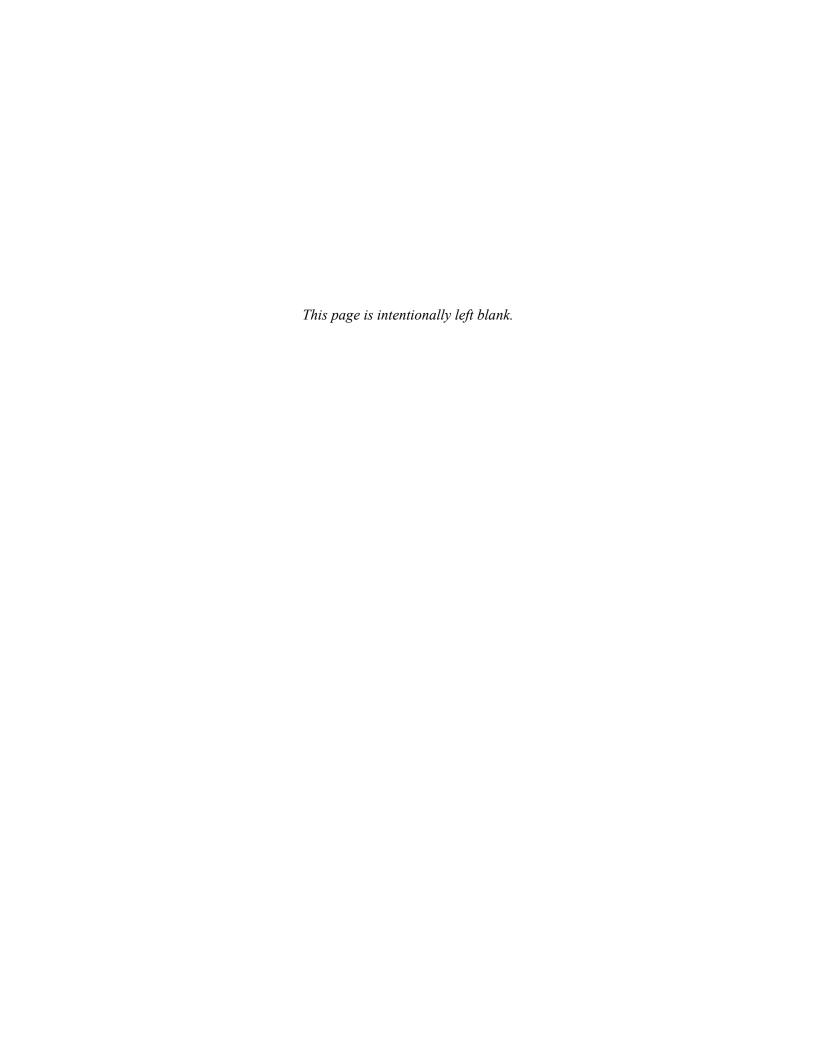
▼ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u>

 <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Section 15

Alternative Operating Scenarios


(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

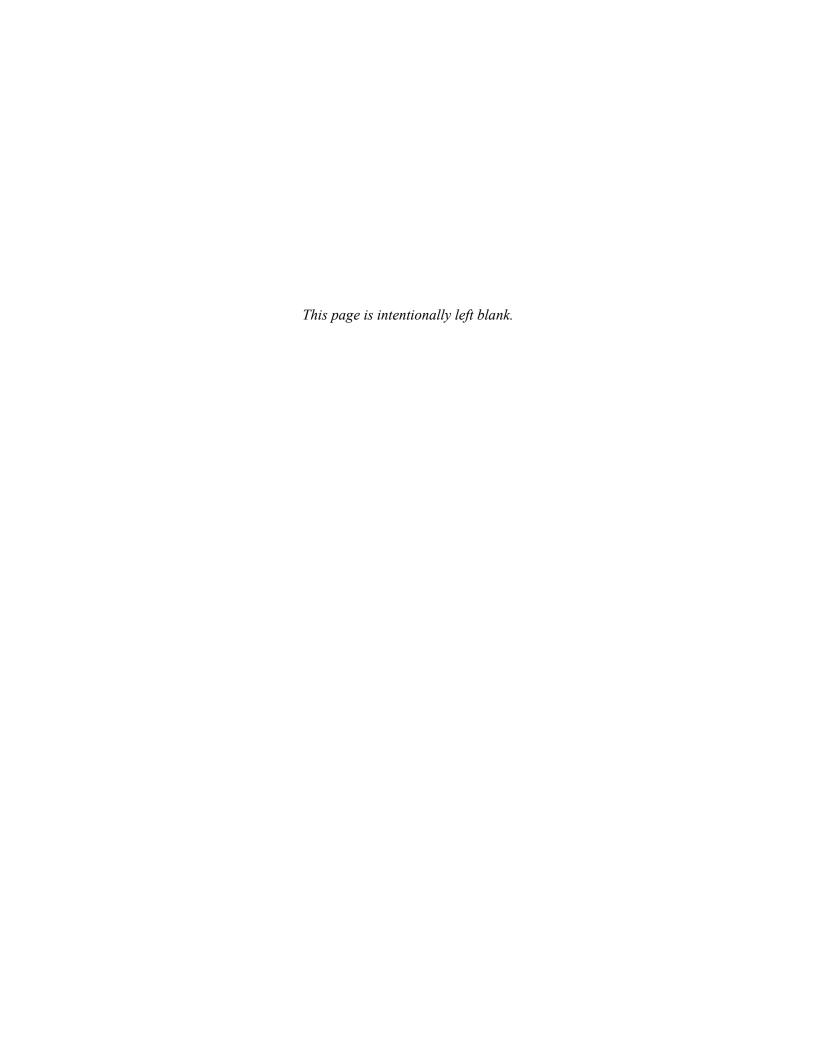
Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb-pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Not applicable, as there are no alternative operating scenarios at this facility.

Air Dispersion Modeling


- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

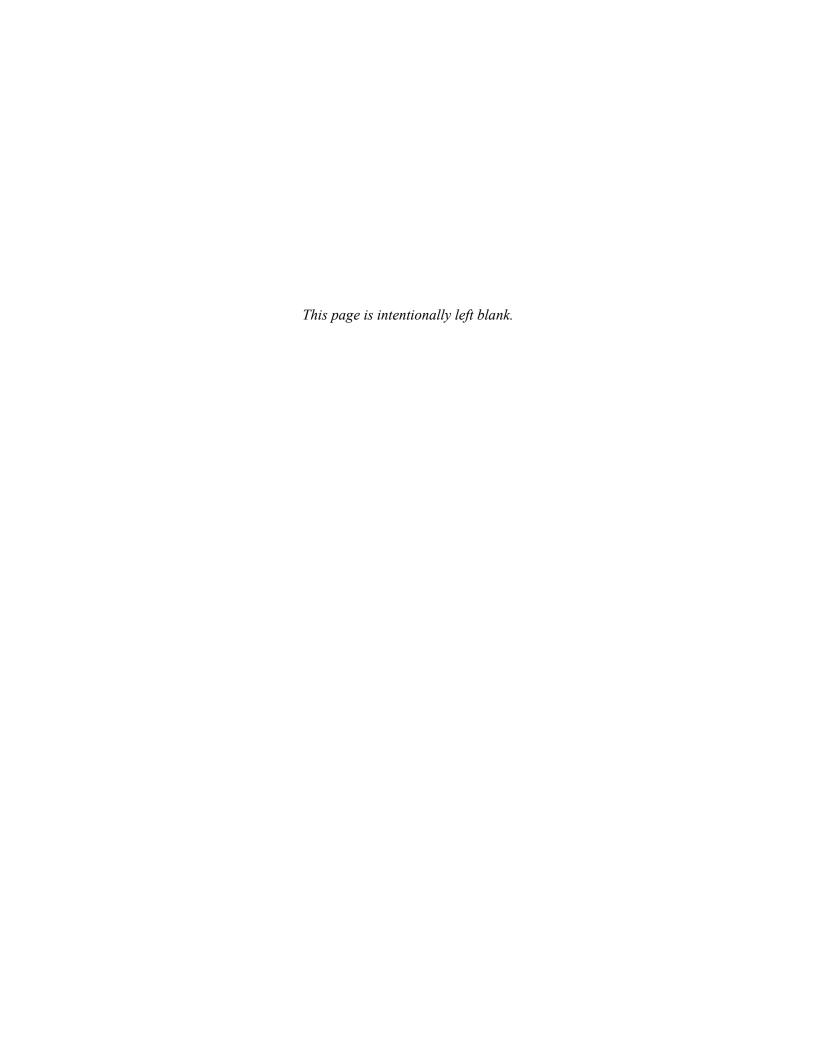
What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	X
above.	Λ
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

Ш	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
$\mathbf{\Lambda}$	No modeling is required.

Modeling was submitted for construction permit number 1327-M6.

Compliance Test History

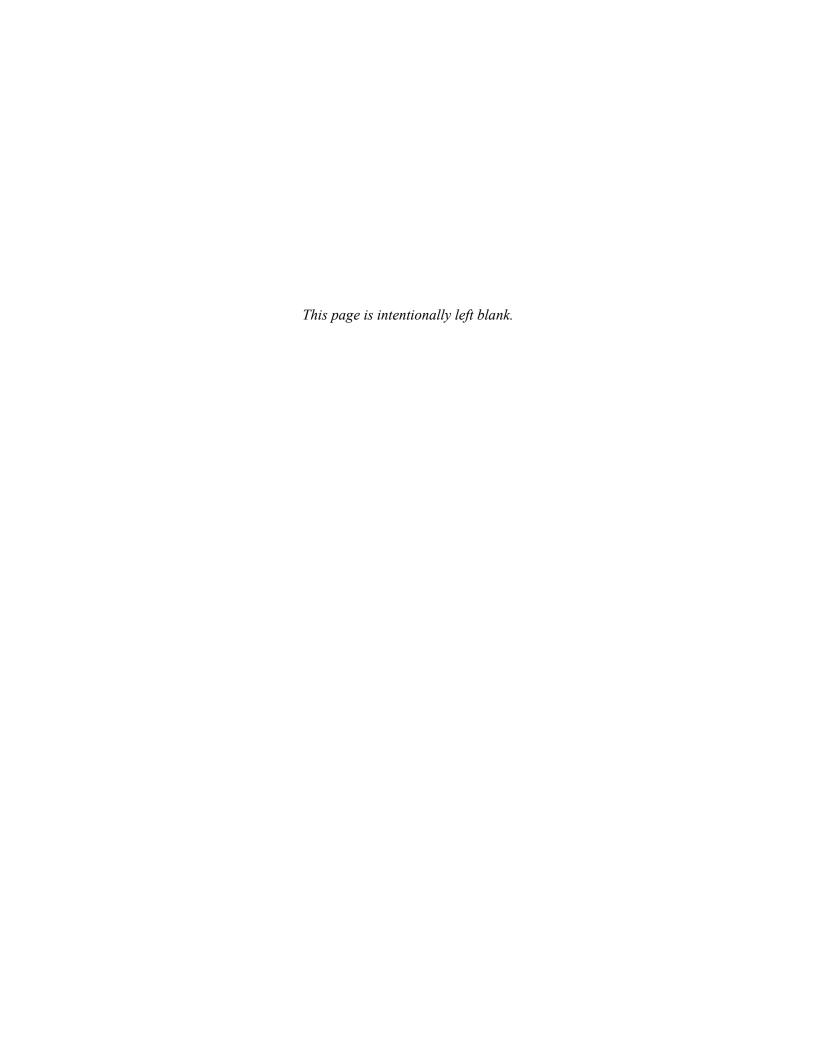

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permit conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
1	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 21, 2022
2	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	November 2, 2022
3	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 21, 2022
4	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	April 12, 2022
5	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 21, 2022
6	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 23, 2022
7	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 23, 2022
8	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 25, 2022
9	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	March 25, 2022
10	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(a)	Not installed
15	Compliance test for NO _X and CO, in accordance with Operating Permit condition A205.B	December 6, 2022
16	Compliance test for NO _X and CO, in accordance with Operating Permit condition A205.B	September 15, 2022
17	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(b)	Not installed
18	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(b)	Did Not Operate
18a	Compliance test for NO _X and CO, in accordance with Operating Permit condition A201.C(1)(b)	March 7, 2023

Addendum for Streamline Applications


Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

Not applicable, as this is not a Streamline Application.

Form-Section 18 last revised: 3/9/2012 (2nd sentence) Section 18, Page 1

Saved Date: 4/6/2023

Requirements for Title V Program

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

The facility is not subject to 40 CFR, Part 64, Compliance Assurance Monitoring (CAM); consequently, a monitoring protocol is not required with this application.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

The facility is in compliance with all applicable requirements, as has been demonstrated by the most recent semi-annual monitoring reports and annual compliance certification. It is assumed that compliance with the Title V operating permit ensures compliance with the construction permit and New Mexico regulations.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The facility will continue to be in compliance with applicable requirements for which it is in compliance at the time of this permit application. In addition, Harvest will, in a timely manner or consistent with such schedule expressly required by the applicable requirement, comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

The submittal of compliance certifications during the five-year term of the operating permit will occur annually.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances? ☐ Yes ☑ No
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 ☐ Yes
 ☑ No
 (If the answer is yes, describe the type of equipment and how many units are at the facility.)
- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? ☐ Yes ☑ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G). **None**

The facility does not produce, manufacture, transform, destroy, import, or export any stratospheric ozone-depleting substances (CFCs, HCFCs); does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale any product that may contain stratospheric ozone-depleting substances.

Harvest shall continue to maintain compliance with the conditions stipulated in 40 CFR 82, Subparts A-G of the Stratospheric Ozone Protection Program (Title VI of the Clean Air Act Amendments).

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The facility is in compliance with all applicable requirements; consequently, a compliance plan, a compliance schedule, and a schedule of certified progress reports is not required.

The facility is not equipped with any acid rain sources; consequently, compliance with the acid rain provisions is not required as a part of this permit application.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The facility is not subject to 40 CFR 68, Chemical Accident Prevention Provisions; consequently, a Risk Management Plan is not required.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

The facility is located within 80 kilometers of the following states, local pollution control programs, Indian tribes and pueblos:

Neighboring States, Local Pollution Control Programs, and Indian Tribes and Pueblos

	Approximate Distance to Facility (kilometers)
Neighboring States	
Colorado	32.2
Indian Lands	
Southern Ute Tribe	32.2
Jicarilla Apache Tribe	16.1
Ute Mountain Ute Tribe	77.2
Navajo Nation	75.6

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

The responsible official is Travis Jones, EH&S Manager.

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

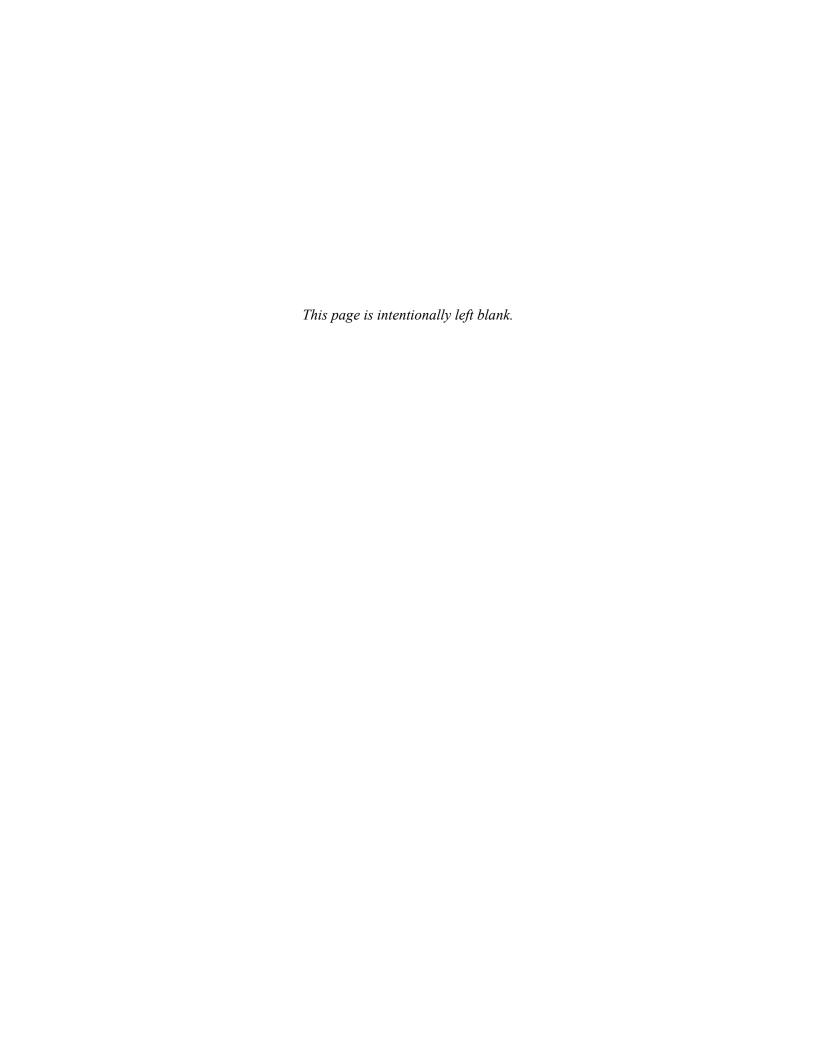
This section contains the NMAQB Compliance History Disclosure Form.

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ttee/Applicant Company Name		Expected Application Submittal Dat	te
Harves	st Four Corners, LLC		April 2023	
Permi	ttee/Company Contact	Phone	Email	
Jennif	er Deal	505-324-5128	jdeal@harvestmidstream.com	
Withir	the 10 years preceding the expected date	e of submittal of the applicat	ion, has the permittee or applicant:	
1	Knowingly misrepresented a material fact	t in an application for a permi	t?	☐ Yes ☒ No
2	Refused to disclose information required	by the provisions of the New	Mexico Air Quality Control Act?	☐ Yes ☒ No
3	Been convicted of a felony related to env	☐ Yes ☒ No		
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court		= =	☐ Yes ⊠ No
5a	Constructed or operated any facility for w the required air quality permit(s) under 2 20.2.84 NMAC?		= -	☐ Yes ⊠ No
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each air quality permit met at least one of the a. The unpermitted facility was discovered authorized by the Department; or b. The operator of the facility estimated the operator applied for an air permit with required for the facility.	following exceptions: d after acquisition during a tin hat the facility's emissions we	mely environmental audit that was buld not require an air permit, and	☐ Yes ☐ No
6	Had any permit revoked or permanently sor the United States?	suspended for cause under th	e environmental laws of any state	☐ Yes ⊠ No
7	For each "yes" answer, please provide an	explanation and documentat	ion.	

Section 21


Addendum for Landfill Applications

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

Not applicable, as the facility is not a landfill.

Section 22

Certification

Company Name: <u>Harvest Four Corners</u>	<u>, LLC</u>	
	, hereby certify that the information and d	
-	f my knowledge and professional expertise and upon my oath or affirmation, before a notary of	
*Signature	Date	
Printed Name	Title	
	day of,, of New Mexico expires on the day of _	
Notary's Signature	Date	
Notary's Printed Name		

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AD NMAC.

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model#	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
19	Reciprocating Engine	Waukesha	F2895GSI	361831	754 hp	699 hp	3/30/1981	N/A	20100253	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	4SRB	N/A
- 17	(Generator #4)	** dunesha		301031	75 i np	0)) hp	3/30/1981	19		☐ To Be Modified ☐ To be Replaced	15165	1,71
20	Fuel Gas Heater	BS&B Inc.	N/A	13634	0.5	0.5	1991	N/A	31000404	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
			- "		MMBtu/hr	MMBtu/hr	1994	20		☐ To Be Modified ☐ To be Replaced		
28	Fuel Gas Heater	Pesco	N/A	404851	0.7	0.7	2002	N/A	31000404	■ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
20	Tuel Gus Heater	1 6560	1071	101031	MMBtu/hr	MMBtu/hr		28		☐ To Be Modified ☐ To be Replaced	1771	1071
38	Truck Loading	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	■ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
36	(Condensate)	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	31000011	☐ To Be Modified ☐ To be Replaced	N/A	1 N / A
SSM	Startup, Shutdown	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000203	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
SSIVI	& Maintenance	IN/A	IN/A	IN/A	N/A	IN/A	N/A	N/A	31000203	☐ New/Additional ☐ Replacement Only ☐ To Be Modified ☐ To be Replaced	N/A	IN/A
E1	Equipment I sales	NI/A	N/A	NI/A	NI/A	NI/A	N/A	N/A	31088811	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	NI/A
F1	Equipment Leaks	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000011	☐ To Be Modified ☐ To be Replaced	IN/A	N/A
241	N. 10:	27/4	NT/A	3. 1/4	27/4	N T/A	N/A	N/A	24000200	☐ Existing (unchanged)	27/4	27/4
M1	Malfunctions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
DD 1	C 12 P; P ;	27/4	NT/A	N T/A	27/4	N T/A	N/A	N/A	21000200	☑ Existing (unchanged) ☐ To be Removed	27/4	27/4
PR1	G-12 Pig Receiver	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	 □ New/Additional □ To Be Modified □ To be Replaced 	N/A	N/A
PR2	11-S Pig Receiver	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000299	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
r KZ	11-3 Fig Receiver	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	31000299	☐ To Be Modified ☐ To be Replaced	N/A	1 N / A
T501	Produced Water	NATCO	N/A	9Y24701-01	200 bbl	200 bbl	10/2007	N/A	31000299	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
1301	Storage Tank	NATCO	IN/A	9124/01-01	200 001	200 001	Prior to 08/23/2011	N/A	31000299	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A
T91019	Condensate Storage	American Tank	N/A	8364	500 bbl	500 bbl	1981	N/A	31000299	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
191019	Tank	& Steel Corp.	IN/A	6304	300 001	300 001	Prior to 08/23/2011	N/A	310002))	☐ To Be Modified ☐ To be Replaced	N/A	IN/A
T91020	Condensate Storage	American Tank	N/A	3263	300 bb1	300 bbl	05/1969	N/A	31000299	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
191020	Tank	& Steel Corp.	IN/A	3203	300 001	300 001	Prior to 08/23/2011	N/A	31000299	 □ New/Additional □ To Be Modified □ To be Replaced 	IN/A	IN/A
T01021	Condensate Storage	American Tank	NI/A	2265	200 1.1.1	200 1.1.1	05/1969	N/A	21000200	☑ Existing (unchanged) ☐ To be Removed	NT/ A	NT/A
T91021	Tank	& Steel Corp.	N/A	3265	300 bbl	300 bbl	Prior to 08/23/2011	N/A	31000299	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
T01024	Produced Water	Continental	NI/A	5220	200 1.1.1	200 1.1.1	5/1957	N/A	21000200	☑ Existing (unchanged) ☐ To be Removed	NT/ A	NT/ 4
T91024	Storage Tank	Tank Co.	N/A	5229	300 bbl	300 bbl	Prior to 08/23/2011	N/A	31000299	 □ New/Additional □ To Be Modified □ To be Replaced 	N/A	N/A
T01025	Produced Water	NATCO	NI/A	03/01/701 04	200 1.1.1	200 1.1.1	5/2007	N/A	21000202	☑ Existing (unchanged) □ To be Removed	NI/A	NI/A
T91025	Storage Tank	NATCO	N/A	8Y91701-04	200 bbl	200 bbl	Prior to 08/23/2011	N/A	31000299	 □ New/Additional □ To Be Modified □ To be Replaced 	N/A	N/A

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	C	0	VO	OC	SO	Ox	P	M^1	PM	10 ¹	PM	2.51	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
2	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
3	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
4	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
5	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
6	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
7	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
8	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
9	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
10	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
15	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	-	9.13E-05	4.00E-04
16	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	-	9.13E-05	4.00E-04
17	30.79	134.87	25.02	109.58	4.81E-01	2.11	3.90E-03	1.71E-02	1.29E-01	5.65E-01	1.29E-01	5.65E-01	1.29E-01	5.65E-01	-	-	-	-
18	51.74	226.63	42.04	184.13	8.08E-01	3.54	6.75E-03	2.96E-02	2.23E-01	9.76E-01	2.23E-01	9.76E-01	2.23E-01	9.76E-01	-	-	-	-
or 18a	16.12	70.61	11.16	48.88	3.72E-01	1.63	2.66E-03	1.17E-02	8.78E-02	3.85E-01	8.78E-02	3.85E-01	8.78E-02	3.85E-01	-	-	-	-
19	33.89	8.47	49.29	12.32	5.39E-01	1.35E-01	3.20E-03	8.00E-04	1.06E-01	2.64E-02	1.06E-01	2.64E-02	1.06E-01	2.64E-02	-	-	-	-
20	5.56E-02	2.43E-01	4.67E-02	2.04E-01	3.06E-03	1.34E-02	3.33E-04	1.46E-03	4.22E-03	1.85E-02	4.22E-03	1.85E-02	4.22E-03	1.85E-02	-	-	2.78E-07	1.22E-06
28	7.78E-02	3.41E-01	6.53E-02	2.86E-01	4.28E-03	1.87E-02	4.67E-04	2.04E-03	5.9E-03	2.6E-02	5.91E-03	2.59E-02	5.91E-03	2.59E-02	-	-	3.89E-07	1.70E-06
38	-	-	-	-	14.97	11.51	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	Unspecified	43.05	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	1.58	6.94	-	-	-	-	-	-	-	-	-	-	-	-
PR1	-	-	-	-	Unspecified	9.63E-01	-	-	-	-	-	-	-	-	-	-	-	-
PR2	-	-	-	-	Unspecified	9.02	-	-	-	-	-	-	-	-	-	-	-	-
T501	-	-	-	-	Unspecified	8.80	-	-	-	-	-	-	-	-	-	-	-	-
T91019	-	-	-	-	1.82	26.08	-	-	-	-	-	-	-	-	-	-	-	-
T91020	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
T91021	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 10/21/2024 1:08 PM

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	C	О	VC	OC	SO	Ox	P	M^1	PM	[10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91024	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	-	-
T91025	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	-	-
T91028	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
BGT-1	-	-	-	-	Unspecified	1.8	-	-	-	-	-	-	-	-	-	-	-	-
Total #1	181.21	654.10	204.72	693.26	51.56	251.39	6.65E-01	2.90	2.46	10.34	2.46	10.34	2.46	10.34	-	-	1.83E-04	8.03E-04
Total #2	145.59	498.09	173.84	558.01	51.12	249.48	6.61E-01	2.88	2.32	9.74	2.32	9.74	2.32	9.74	-	-	1.83E-04	8.03E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Form Revision: 6/14/2019 Table 2-D: Page 2 Printed 10/21/2024 1:08 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	NO	Ox	C	О	VO	OC	S	Ox	PI	M ¹	PM	10 ¹	PM	2.51	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
2	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
3	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
4	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
5	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
6	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
7	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
8	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
9	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	1	-	-
10	3.78	16.54	6.67	29.21	2.52	11.02	4.85E-03	2.13E-02	8.24E-02	3.61E-01	8.24E-02	3.61E-01	8.24E-02	3.61E-01	-	-	-	-
15	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	-	9.13E-05	4.00E-04
16	13.45	59.10	10.78	47.30	3.09	13.60	3.01E-01	1.32	5.84E-01	2.56	5.84E-01	2.56	5.84E-01	2.56	-	-	9.13E-05	4.00E-04
17	2.12	9.27	3.85	16.86	3.85E-01	1.69	3.90E-03	1.71E-02	1.29E-01	5.65E-01	1.29E-01	5.65E-01	1.29E-01	5.65E-01	-	-	-	-
18	3.56	15.58	6.47	28.33	6.47E-01	2.83	6.75E-03	2.96E-02	2.23E-01	9.76E-01	2.23E-01	9.76E-01	2.23E-01	9.76E-01	-	-	-	-
or 18a	6.20E-01	2.72	2.48	10.86	2.48E-01	1.09	2.66E-03	1.17E-02	8.78E-02	3.85E-01	8.78E-02	3.85E-01	8.78E-02	3.85E-01	-	-	-	-
19	33.89	8.47	49.29	12.32	5.39E-01	1.35E-01	3.20E-03	8.00E-04	1.06E-01	2.64E-02	1.06E-01	2.64E-02	1.06E-01	2.64E-02	-	-	-	-
20	5.56E-02	2.43E-01	4.67E-02	2.04E-01	3.06E-03	1.34E-02	3.33E-04	1.46E-03	4.22E-03	1.85E-02	4.22E-03	1.85E-02	4.22E-03	1.85E-02	-	-	2.78E-07	1.22E-06
28	7.78E-02	3.41E-01	6.53E-02	2.86E-01	4.28E-03	1.87E-02	4.67E-04	2.04E-03	5.91E-03	2.59E-02	5.91E-03	2.59E-02	5.91E-03	2.59E-02	-	-	3.89E-07	1.70E-06
38	-	-	-	-	14.97	11.51	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	Unspecified	43.05	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	1.58	6.94	-	-	-	-	-	-	-	-	-	-	-	-
PR1	-	-	-	-	Unspecified	9.63E-01	-	-	-	-	-	-	-	-	-	-	-	-
PR2	-	-	-	-	Unspecified	9.02	-	-	-	-	-	-	-	-	-	-	-	-
T501	-	-	-	-	Unspecified	8.80	-	-	-	-	-	-	-	-	-	-	-	-
T91019	-	-	-	-	1.82	26.08	-	-	-	-	-	-	-	-	-	-	-	-
T91020	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
T91021	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
T91024	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	-	-
T91025	-	-	-	-	Unspecified	w/T501	-	-	-	-	-	-	-	-	-	-	-	-

Form Revision: 6/14/2019 Table 2-E: Page 1 Printed 10/21/2024 1:08 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	NO	Ox	C	О	VO	OC	SO	Ox	Pl	M^1	PM	[10 ¹	PM	2.51	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91028	-	-	-	-	Unspecified	w/T91019	-	-	-	-	-	-	-	-	-	-	-	-
BGT-1	-	-	-	-	Unspecified	1.8	-	-	-	-	-	-	-	-	-	-	-	-
Total #1	104.35	317.46	147.98	444.73	51.30	250.27	6.65E-01	2.90	2.46	10.34	2.46	10.34	2.46	10.34	-	-	1.83E-04	8.03E-04
Total #2	101.41	304.60	143.99	427.27	50.90	248.52	6.61E-01	2.88	2.32	9.74	2.32	9.74	2.32	9.74	-	-	1.83E-04	8.03E-04

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Form Revision: 6/14/2019 Table 2-E: Page 2 Printed 10/21/2024 1:08 PM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	C	0	VO	OC	S	Ox	Pl	M^2	PM	10^2	PM	2.5 ²	Н	2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
3	ı	-	-	1	-	-	-	-	-	-	-	-	1	-	1	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
or 18a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	Unspecified	43.05	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PR1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PR2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T501	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Form Revision: 6/14/2019Table 2-F: Page 1

Printed 10/21/2024 1:08 PM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	О	VO	OC	S	Ox	P	M^2	PM	10^2	PM	(2.5^2)	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91024	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
T91025	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T91028	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	-	1	-
BGT-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
													·				·	
Total	-	-	-	-	Unspecified	43.05	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 2 Printed 10/21/2024 1:08 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		dehyde or 🗆 TAP	Ben:	zene or 🗆 TAP	Formal	dehyde or 🗆 TAP	n-He ☑ HAP (exane or 🗆 TAP	Tolo	uene or 🗆 TAP		enes or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP		Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	1	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
2	2	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
3	3	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
4	4	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
5	5	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
6	6	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
7	7	0.4	2.0	ı	-	-	0.1	0.4	1.9	ı	-	-	-	-	-				
8	8	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
9	9	0.4	2.0	-	-	-	0.1	0.4	1.9	-	-	-	-	-	-				
10	10	0.4	2.0	ı	-	ı	0.1	0.4	1.9	1	-	-	-	-	-				
15	15	1.1	4.7	0.4	1.9	-	0.1	0.4	1.9	-	0.2	-	-	-	0.1				
16	16	1.1	4.7	0.4	1.9	-	0.1	0.4	1.9		0.2	-	-	-	0.1				
17	17	0.1	0.5	-	-	-	0.1	0.1	0.3	-	-	-	-	-	-				
18	18	0.2	0.9	-	-	0.1	0.3	0.1	0.5	-	-	-	0.1	-	-				
or 18a	or 18a	0.1	0.3	-	-	-	0.1	0.0	0.2		-	-	-	-	-				
19	19	2.2	0.5		-	0.6	0.1	1.1	0.3	-	-	0.2	-	-	-				
20	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
28	28	-	-	-	-	ı	-		-	-	-	-	-	-	-				
38	38	1.6	1.3	-	-	0.1	0.1	-	-	1.5	1.1	-	-	-	-				
SSM	SSM	1	2.1	-	-	-	0.1	-	-	-	1.3	-	0.5	-	0.2				
F1	F1	0.1	0.4	-	-	ı	-	-	-	-	0.2	-	0.1	-	-				
PR1	PR1	-	-	-	-		-	-	-	-	-	-	-	-	-				
PR2	PR2	-	0.5	-	-	-	-	-	-	-	0.3	-	0.1	-	-				
T501	T501	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1	-	-				

Form Revision: 10/9/2014Table 2-I: Page 1

Printed 10/21/2024 1:06 PM

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)		HAPs		dehyde or 🗆 TAP	Ben ☑ HAP (zene or 🗆 TAP		ldehyde or 🗆 TAP		exane or 🗆 TAP	Tol	uene or 🗆 TAP		enes or 🗆 TAP	Name	Pollutant Here or 🗆 TAP	Name	Pollutant Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
T91019	T91019	0.5	3.4	-	-	0.0	0.1	-	-	0.1	0.6	0.0	0.2	-	-				
T91020	T91020	0.1	0.4	-	-	-	-	-	-	0.1	0.4	-	-	-	-				
T91021	T91021	0.1	0.4	-	-	-	-	-	-	0.1	0.4	-	-	-	-				
T91024	T91024	-	0.9	-	-	-	-	-	-	-	0.4	-	0.2	-	0.1				
T91025	T91025	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1	-	-				
T91028	T91028	0.1	0.5	-	-	-	-	-	-	0.1	0.5	-	-	-	-				
BGT-1	BGT-1	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1	-	-				
Tota	al #1	11.3	39.6	0.9	3.9	1.0	2.1	6.4	23.4	2.0	6.3	0.3	1.7	0.2	1.1				
Tot	al #2	11.1	39.0	0.9	3.9	1.0	1.9	6.3	23.1	2.0	6.3	0.3	1.6	0.2	1.1				

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Form Revision: 10/9/2014 Table 2-I: Page 2 Printed 10/21/2024 1:06 PM

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²							Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3								
45	mass GHG	142.02	2.7E-04	2.7E-03									142.03	-
45	CO ₂ e	142.02	8.0E-02	6.7E-02									-	142.17
SSM	mass GHG	145.09	=	570.42									715.51	-
SSIVI	CO ₂ e	145.09	-	14260.56									-	14405.65
F1	mass GHG	219.52	-	940.95		F-1 Includes				rifugal comp	ressor		1160.47	-
1.1	CO ₂ e	219.52	-	23523.84		venting, pnet	ımatic device	es, and pneun	natic pumps.				-	23743.36
PR1	mass GHG	1.15E-01	1	3.21									3.33	-
TKI	CO ₂ e	1.15E-01	-	80.27									-	80.38
PR2	mass GHG	1.03	-	28.79									29.82	-
1112	CO ₂ e	1.03	-	719.79									-	720.82
T501	mass GHG	-	-	-									0.00	-
1001	CO ₂ e	-	-	-									-	0.00
T19019	mass GHG	6.45E-02	-	9.93E-03									0.07	-
11,01,	CO ₂ e	6.45E-02	-	2.48E-01									-	0.31
T19020	mass GHG	3.86E-02	-	5.95E-03									0.04	-
	CO ₂ e	3.86E-02	-	1.49E-01									-	0.19
T19021	mass GHG	3.86E-02	-	5.95E-03									0.04	-
	CO ₂ e	3.86E-02	-	1.49E-01									-	0.19
T19024	mass GHG	-	-	-									0.00	-
	CO ₂ e	-	-	-									-	0.00
T19025	mass GHG	-	-	-									0.00	-
	CO ₂ e	-	-	-									-	0.00
T19028	mass GHG	4.96E-02	-	7.64E-03									0.06	-
	CO ₂ e	4.96E-02	-	1.91E-01									-	0.24

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
BGT_1	mass GHG	-	-	-							0.00	-
BG1_I	CO ₂ e	-	-	-							-	0.00
	mass GHG											
	CO ₂ e											
Total #1	mass GHG	173807.4	0.3	1546.7							175,354.4	-
Total #1	CO ₂ e	173807.4	97.4	38666.7							-	212,571.7
Total #2	mass GHG	169927.3	0.3	1546.6							171,474.2	-
	CO ₂ e	169927.3	95.2	38665.1		1 T.1.1. A 164					-	208,687.6

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Compressor Blowdown Emissions Calculations

Unit Number: SSM (associated with the Units 6-10 compressors)
Description: Compressor & Piping Associated With Station

Throughput

5 # of units
Number of units
Harvest Four Corners, LLC
237 events/yr/unit
Blowdowns per year per unit
Harvest Four Corners, LLC
6,200 scf/event
Gas loss per blowdown
Harvest Four Corners, LLC

7,347,000 scf/yr Annual gas loss # of units x events/yr/unit x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.091E-02	40.08
Benzene	3.809E-05	1.40E-01
Ethylbenzene	3.358E-06	1.23E-02
n-Hexane	3.352E-04	1.23E+00
Isooctane	1.902E-05	6.99E-02
Toluene	1.251E-04	4.59E-01
Xylene	4.869E-05	1.79E-01

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
·	%	lb/lb-mole	lb/scf
Carbon dioxide	1.0757	44.01	1.248E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3212	28.01	2.371E-04
Methane	82.5476	16.04	3.490E-02
Ethane	8.7394	30.07	6.927E-03
Propane	3.6714	44.09	4.267E-03
Isobutane	0.7166	58.12	1.098E-03
n-Butane	1.3192	58.12	2.021E-03
Isopentane	0.4032	72.15	7.668E-04
n-Pentane	0.2978	72.15	5.663E-04
Cyclopentane	0.0180	70.14	3.328E-05
n-Hexane	0.1476	86.17	3.352E-04
Cyclohexane	0.0458	84.16	1.016E-04
Other hexanes	0.3015	86.18	6.849E-04
Heptanes	0.1171	100.20	3.093E-04
Methylcyclohexane	0.1124	98.19	2.909E-04
Isooctane	0.0072	100.21	1.902E-05
Benzene	0.0185	78.11	3.809E-05
Toluene	0.0515	92.14	1.251E-04
Ethylbenzene	0.0012	106.17	3.358E-06
Xylenes	0.0174	106.17	4.869E-05
C8+ Heavies	0.0698	110.00	2.024E-04
Total	100.0001		
Total VOC			1.091E-02

Gas stream composition obtained from the Trunk L extended gas analysis dated Oct. 26, 2022. Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Green House Gas Emissions Data and Calculations

		Fac	ility Total Emiss	sions	
Sources	CO2,	N2O,	CH4,	GHG,	CO2e,
	tpy	tpy	tpy	tpy	tpy
Engine & Turbine Exhaust Emissions (w/o Unit 18a)	171,666.17	3.24E-01	3.24	171,669.73	171843.47
Engine & Turbine Exhaust Emissions (w/o Unit 18)	167,786.08	3.16E-01	3.16	167,789.55	167959.36
SSM Blowdown Emissions	146.23		602.42	748.65	15206.85
Reciprocating Compressor Venting Emissions	101.00		556.53	657.53	14014.30
Centrifugal Compressor Venting Emissions	95.26		300.29	395.55	7602.40
Heater & Boiler Exhaust Emissions	1,775.30	3.35E-03	3.35E-02	1,775.34	1777.13
Equipment Leak Emissions	5.74		29.04	34.78	731.82
Natural Gas Pneumatic Device Venting Emissions	16.83		52.91	69.74	1339.61
Natural Gas Driven Pneumatic Pump Venting Emissions	6.94E-01		2.18	2.87	55.22
Storage Tank Emissions	1.91E-01		2.95E-02	0.22	0.93
Total #1	173,807.41	3.27E-01	1,546.68	175,354.41	212,572
Total #2	169,927.32	3.20E-01	1,546.60	171,474.24	208,688

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

Engine & Turbine Exhaust Emissions

Unit		Е	mission Factor	s		Emissio	n Rates	
Numbers	Description	CO2,	N2O,	CH4,	CO2,	N2O,	CH4,	CO2e,
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	tpy
1	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
2	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
3	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
4	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
5	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
6	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
7	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
8	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
9	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
10	Waukesha 7042GL	53.06	1.00E-04	1.00E-03	6,010.45	1.13E-02	1.13E-01	6,016.7
15	Solar MARS 90-T12000S	53.06	1.00E-04	1.00E-03	50,367.37	9.49E-02	9.49E-01	50,419.4
16	Solar MARS 90-T12000S	53.06	1.00E-04	1.00E-03	50,367.37	9.49E-02	9.49E-01	50,419.4
17	Waukesha L7042G	53.06	1.00E-04	1.00E-03	4,209.59	7.93E-03	7.93E-02	4,213.9
18	Waukesha L7042GSI	53.06	1.00E-04	1.00E-03	6,453.57	1.22E-02	1.22E-01	6,460.2
or 18a	Waukesha F2895GSIU	53.06	1.00E-04	1.00E-03	2,573.47	4.85E-03	4.85E-02	2,576.1
19	Waukesha F2895GSIU	53.06	1.00E-04	1.00E-03	163.75	3.09E-04	3.09E-03	163.9
	Total #1				171,666.17	3.24E-01	3.24	171,843
	Total #2				167,786.08	3.16E-01	3.16	167,959

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

Total #1 assumes Harvest Four Corners, LLC choses to operate Unit 18.

Total #2 assumes Harvest Four Corners, LLC choses to operate Unit 18a.

				LHV	HI	HV
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
2	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
3	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
4	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
5	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
6	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
7	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
8	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
9	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
10	Waukesha 7042GL	Nat. Gas	8,760	10.58	11.76	102,979
15	Solar MARS 90-T12000S	Nat. Gas	8,760	88.66	98.51	862,957
16	Solar MARS 90-T12000S	Nat. Gas	8,760	88.66	98.51	862,957
17	Waukesha L7042G	Nat. Gas	8,760	7.41	8.23	72,124
18	Waukesha L7042GSI	Nat. Gas	8,760	11.36	12.62	110,571
or 18a	Waukesha F2895GSIU	Nat. Gas	8,760	4.53	5.03	44,092
19	Waukesha F2895GSIU	Nat. Gas	500	5.05	5.61	2,806

The fuel types and operating times are provided by Harvest Four Corners, LLC

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

Green House Gas Emissions Data and Calculations

Blowdown Emissions

Unit		Total	CO2 Emission	CH4 Emission		Emission Rates	3
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,	CO2e,
		scf/yr	lb/scf	lb/scf	tpy	tpy	tpy
SSM	SSM (Units 1-5)	18,219,600	0.0119	0.0375	108.47	341.40	8643.4
SSM	SSM (Units 6-10)	7,347,000	0.0012	0.0349	4.58	128.20	3209.6
SSM	SSM (Units 15 & 16)	5,380,800	0.0119	0.0375	32.03	100.82	2552.7
PR1	G-12 Pig Receiver	184,000	0.0012	0.0349	1.15E-01	3.21	80.4
PR2	11-S Pig Receiver	1,650,000	0.0012	0.0349	1.03	28.79	720.8
	Total				146.23	602.42	15206.9

The annual blowdown volumes are calculated from data provided by Harvest Four Corners, LLC

The CO2 & CH4 emission factors for SSM (Units 1-5) and SSM (Units 15 & 16) were calculated from the Manzanares extended gas analysis

The CO2 & CH4 emission factors for SSM (Units 6-10) and 11-S Pig Receiver were calculated from the Trunk G extended gas analysis

The CO2 & CH4 emission factors for G-12 Pig Receiver were calculated from the Trunk L extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Reciprocating Compressor Venting Emissions

Unit			Emission Rates	3
Numbers	Description	CO2,	CH4,	CO2e,
		tpy	tpy	tpy
1-5	Blowdown Valve Leakage	8.73	27.53	696.9
1-5	Rod Packing Emissions	82.69	260.65	6,598.8
1-5	Isolation Valve Leakage	0.00E+00	0.00E+00	0.0
6-10	Blowdown Valve Leakage	0.92	25.63	641.8
6-10	Rod Packing Emissions	8.67	242.72	6,076.8
6-10	Isolation Valve Leakage	0.00E+00	0.00E+00	0.0
	Total	101.00	556.53	14,014.3

Operating or standby mode - includes blowdown valve leakage through blowdown vent stack

Operating mode - includes rod packing emissions

Non-operating depressurized mode - includes isolation valve leakage through open blowdown vents (without blind flanges)

Rod packing gas emissions assume 4 cylinders per compressor

A combination of equations W-26 & W-36 (Subpart W) is used to calculate reciprocating compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
1-5	Blowdown Valve Leakage	5	33.5	8,760	10.26	88.64	0.0526	0.0192
1-5	Rod Packing Emissions	5	317.2	8,760	10.26	88.64	0.0526	0.0192
1-5	Isolation Valve Leakage	5	10.5	0	10.26	88.64	0.0526	0.0192
6-10	Blowdown Valve Leakage	5	33.5	8,760	1.08	82.55	0.0526	0.0192
6-10	Rod Packing Emissions	5	317.2	8,760	1.08	82.55	0.0526	0.0192
6-10	Isolation Valve Leakage	5	10.5	0	1.08	82.55	0.0526	0.0192

The number of compressors and operatrig times are provided by Harvest Four Corners, LLC

Blowdown valve leakage (33.5 scf/hr) and rod packing emissions occur in operating mode

Blowdown valve leakage (10.5 scf/hr) occurs in standby pressurized mode

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The CO2 & CH4 mole percents for Units 1-5 are taken from the Manzanares extended gas analysis

The CO2 & CH4 mole percents for Units 6-10 are taken from the Trunk G extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Green House Gas Emissions Data and Calculations

Natural Gas Driven Pneumatic Pump Venting Emissions

Emission Rates

Unit		Number	Emission	Operating		Emission Rates	8
Number	Description	of Pumps,	Factor,	Time,	CO2,	CH4,	CO2e,
		#	scf/hr/pump	hr/yr	tpy	tpy	tpy
NA	Pneumatic Pump Venting	1	13.3	8,760	6.94E-01	2.18	55.2

The number of pumps are provided by Harvest Four Corners, LLC

The emission factor is taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating time is provided by Harvest Four Corners, LLC (default is the entire year)

Equation W-2 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rate (tpy) = # x scf/hr/pump x (CO2 Content (mole %) / 100) x CO2 Conversion Factor (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rate (tpy) = # x scf/hr/pump x (CH4 Content (mole %) / 100) x CH4 Conversion Factor (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factor,	Factor,	Potential,	Potential,
Number	Description	Content,	Content,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Pneumatic Pump Venting	10.26	88.64	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The operating time is provided by Harvest Four Corners, LLC (the default is the entire year)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Storage Tank Emissions

Unit		Emission Rates			
Number	Description	CO2,		CH4,	CO2e,
		tpy		tpy	tpy
T91019	Condensate	6.45E-02	-	9.93E-03	0.3
T91020	Condensate	3.86E-02	-	5.95E-03	0.2
T91021	Condensate	3.86E-02	-	5.95E-03	0.2
T91028	Condensate	4.96E-02	-	7.64E-03	0.2
	Total	1.91E-01		2.95E-02	0.9

The emission rates are taken from ProMax output files, as applicable