Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: **1130** in the amount of **\$500**

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> 2/.

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.200.A NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known: NA	Updating Permit/NOI #: NA		
1	High Life CTB	Plant primary SIC Code (4 digits): 1311			
1		Plant NAIC code (6 digits): 211120			
	Facility Street Address (If no facility street address, provide directions from a prominent landmark):): From Whites City: Drive 1.6 miles south on Hwy 180. Turn left onto Whites City Road. Follow Whites City Road east and then southeast for				

a approximately 1.2 miles. Turn right (south) on new access road and follow 0.2 miles to facility.

2	nt Operator Company Name: Tap Rock Operating, LLC Phone/Fax: (720) 772-5090				
а	Plant Operator Address: 523 Park Point Dr, Suite 200, Golden, CO 80401				
b	Plant Operator's New Mexico Corporate ID or Tax ID:				
3	Plant Owner(s) name(s): Tap Rock Operating, LLC	Phone/Fax: (720) 772-5090			
а	Plant Owner(s) Mailing Address(s): 523 Park Point Dr, Suite 200, Golden, CO 80401				
4	Bill To (Company): Tap Rock Operating, LLC	Phone/Fax: (720) 772-5090			
а	Mailing Address: 523 Park Point Dr, Suite 200, Golden, CO 80401	E-mail:			
5	 Preparer: Chris Martinez Consultant: CDH Consulting, LLC 	Phone/Fax: (303) 594-7951			
а	Mailing Address: 9446 Clermont St., Thornton, CO 80229	E-mail: cmartinez@cdhconsult.com			
6	Plant Operator Contact: Bill Ramsey	Phone/Fax: (720) 772-5090			
а	Address: 523 Park Point Dr, Suite 200, Golden, CO 80401	E-mail: bramsey@taprk.com			
7	Air Permit Contact: Bill Ramsey	Title: Sr. Environmental and Regulatory Specialist			
а	E-mail: bramsey@taprk.com	Phone/Fax: (720) 772-5090			
b	Mailing Address: 523 Park Point Dr, Suite 200, Golden, CO 80401				
с	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? I Lyes IXINO		1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☐ No
2	Intent (NOI) (20.2.73 NMAC) before submittal of this application? to		If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes No
3	Is the facility currently shut down? 🔲 Yes 🛛 No	If yes, give m	onth and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and con	ntinuously ope	rated since 1972? 🔲 Yes 🖾 No
5	If Yes to question 3, has this facility been modified (see ☐ Yes ☐ No ☑ N/A	e 20.2.72.7.P N	MAC) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☐ Yes ☑ No		If yes, the permit No. is: P-
7	Has this facility been issued a No Permit Required (NPR)?		If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)?		If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)?		? If yes, the permit No. is:
10	Is this facility registered under a General permit (GCP-: ☐ Yes ⊠ No	1, GCP-2, etc.)	If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)				
а	a Current Hourly: Daily: Annually:				
b	b Proposed Hourly: Daily: Annually:				
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)				
а	a Current Hourly: Daily: Annually:				

b	Proposed	Hourly:	Daily:	Annually:
		Oil: 160 bbl	Oil: 3,850 bbl	Oil: 1,405,250 bbl
		Produced Water: 890 bbl	Produced Water: 21,350 bbl	Produced Water: 7,792,750 bbl
		Natural Gas: 583 Mscf	Natural Gas: 14.0 MMscf	Natural Gas: 5,110 MMscf

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.142922	Longitude	(decimal degrees): -104.376364	County: Eddy	Elevation (ft): 3,510
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🖾 NAD 83 🔲 WGS 84		
а	UTM E (in meters, to nearest 10 meters): 558,814	1	UTM N (in meters, to nearest 10 me	ters): 3,556,559	
3	Name and zip code of nearest New Mexico	o town: Whi	tes City		
4	Detailed Driving Instructions from nearest south on Hwy 180. Turn left onto Whites 1.2 miles. Turn right (south) on new acces	City Road. F	ollow Whites City Road east an		
5	The facility is 2.3 (distance) miles South (d	irection) of	Whites City (nearest town).		
6	Land Status of facility (check one): 🔀 Priv	/ate 🔲 Indi	an/Pueblo 🔲 Government [BLM 🔲 Forest Se	ervice 🗌 Military
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr	ucted or ope	erated: Located within Eddy Co	unty	
8	 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/air-quality/modeling-publications/)? Yes No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: 2.4 km from Carlsbad Caverns NP 15.9 km from Texas border 			<u>/modeling-</u>	
9	Name nearest Class I area: Carlsbad Cave	rns NP			
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest Class	area (to the nearest 10	meters): 2.4 km
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: ~2,011 meters				
	Method(s) used to delineate the Restricted Area: Facility is constructed on a raised, leveled pad with steep grade and perimeter ditch and berm.			₽p grade and	
12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.				in with steep ing, a restricted
13	Does the owner/operator intend to opera Yes No A portable stationary source is not a mobi				
10	at one location or that can be re-installed sites.				
14	Will this facility operate in conjunction wit If yes, what is the name and permit numb			operty? 🛛 🕅 No	Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (^{hours}): 24	(<mark>days</mark>): 7	$(\frac{weeks}{year})$: 52	(<u>hours</u>): 8,760	
2	2 Facility's maximum daily operating schedule (if less than 24 $\frac{hours}{day}$)? Start: \Box AM \Box PM			End:	₽AM ₽PM
3	3 Month and year of anticipated start of construction: Upon permit approval ~April 2025				
4	4 Month and year of anticipated construction completion: 1 month after start				

5	Month and year of anticipated startup of new or modified facility: Upon construction completion		
6	Will this facility operate at this site for more than one year?	🔀 Yes 🔲 No	

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes Xo If yes, specify:			
а	If yes, NOV date or description of issue: NA			NOV Tracking No: NA
b	Is this application in response to any issue listed in 1-F, 1 c If Yes, provide the 1c & 1d info below:	r 1a above? 🔲 Yes	📉 No	
с	Document Title:	Date:	-	ment # (or nd paragraph #):
d	Provide the required text to be inserted in this permit:			
2	Is air quality dispersion modeling or modeling waiver being submitted with this application?			on? 🔲 Yes 🔀 No
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🔲 Yes 🔀 No			Tables A and/or B? 🔲 Yes 🛛 No
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🔀 Yes 🔲 No			
а	If Yes, what type of source? Major (□ ≥10 tpy of any single HAP OR ≥25 tpy of any combination of HAPS) OR Minor (□ <10 tpy of any single HAP AND <25 tpy of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? 🛛 Yes 🛛 No			
	If yes, include the name of company providing commercial electric power to the facility:			
а	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.			

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):		Phone:
а	R.O. Title:	R.O. e-mail:	
b	R. O. Address:		
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:
а	A. R.O. Title:	A. R.O. e-mail:	
b	A. R. O. Address:		
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship):		
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.):		
а	Address of Parent Company:		
5	Names of Subsidiary Companies ("Subsidiary Companies" means of owned, wholly or in part, by the company to be permitted.):	rganizations, branch	nes, divisions or subsidiaries, which are

6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations:
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name_Chris Martinez, Email_cmartinez@cdhconsult.com

Phone number (303) 594-7951 .

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1:	General Facility Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications (streamline applications only)
Section 19:	Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-	exemptions under 2.7		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)			(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ENG-1	Compressor Engine	Caterpillar	3516J	TBD	1380 HP	1380 HP	TBD	CATALYST	2-02-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	4SLB	
	compressor Engine	caterpilla	55105	100	1500 11	1500 11	TBD	ENG-1	002-54	To Be Modified	To be Replaced	1328	
ENG-2	Compressor Engine	Caterpillar	3516J	TBD	1380 HP	1380 HP	TBD	CATALYST	2-02-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	4SLB	
	compressor Engine	outerpina	00100		10001	1000111	TBD	ENG-2	002-54	To Be Modified	To be Replaced	1025	
GEN-1	Generator Engine	PSI	21.9L	TBD	581 HP	581 HP	TBD	CATALYST	2-02-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	4SRB	
OLIV I		131	21.52	100	501111	501111	TBD	GEN-1	002-53	To Be Modified	To be Replaced		
GEN-2	Generator Engine	PSI	21.9L	TBD	581 HP	581 HP	TBD	CATALYST	2-02-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	4SRB	
ULIN-2	Generator Engine	r Si	21.56	TUU	50111	56111	TBD	GEN-2	002-53	To Be Modified	To be Replaced	4310	
	Concreter Engine	DCI	21.01	TDD			TBD	CATALYST	2-02-	Existing (unchanged)	To be Removed	4600	
GEN-3	Generator Engine	PSI	21.9L	TBD	581 HP	581 HP	TBD	GEN-3	002-53	 New/Additional To Be Modified 	Replacement Unit To be Replaced	4SRB	
							TBD	CATALYST	2-02-	Existing (unchanged)	To be Removed		
GEN-4	Generator Engine	PSI	21.9L	TBD	581 HP	581 HP	TBD	GEN-4	002-53	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	4SRB	
							TBD		3-10-	Existing (unchanged)	To be Removed		
FUG-1	Equipment Fugitives	N/A	N/A	N/A	N/A	N/A	TBD	FUG-1	888-11	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 		
					1.5	1.5	TBD		3-10-	Existing (unchanged)	To be Removed		
HT-1	Heater Treater	TBD	TBD	TBD	MMBtu/hr	MMBtu/hr	TBD	HT-1	004-04	 ✓ New/Additional ☐ To Be Modified 	Replacement Unit To be Replaced		
					1.5	1.5	TBD		3-10-	Existing (unchanged)	To be Removed		
HT-2	Heater Treater	TBD	TBD	TBD	MMBtu/hr	MMBtu/hr	TBD	HT-2	004-04	New/Additional	Replacement Unit		
							TBD	111-2	3-10-	To Be Modified Existing (unchanged)	To be Replaced		
HT-3	Heater Treater	TBD	TBD	TBD	1.5 MMBtu/hr	1.5 MMBtu/hr		HT-3	004-04	New/Additional	Replacement Unit		
							TBD	П1-3		To Be Modified Existing (unchanged)	To be Replaced To be Removed		
HT-4	Heater Treater	TBD	TBD	TBD	1.5 MMBtu/hr	1.5 MMBtu/hr	TBD		3-10- 004-04	New/Additional	Replacement Unit		
							TBD	HT-4		To Be Modified Existing (unchanged)	To be Replaced		
HT-5	Heater Treater	TBD	TBD	TBD	1.5	1.5	TBD		3-10-	✓ New/Additional	Replacement Unit		
					MMBtu/hr	MMBtu/hr	TBD	HT-5	004-04	To Be Modified	To be Replaced		
HT-6	Heater Treater	TBD	TBD	TBD	1.5	1.5	TBD		3-10-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit		
					MMBtu/hr	MMBtu/hr	TBD	HT-6	004-04	To Be Modified	To be Replaced		
HT-7	Heater Treater	TBD	TBD	TBD	1.5	1.5	TBD		3-10-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit		
					MMBtu/hr	MMBtu/hr	TBD	HT-7	004-04	To Be Modified	To be Replaced		
HT-8	Heater Treater	TBD	TBD	TBD	1.5	1.5	TBD		3-10-	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit		
111-0		טטי	שטי	עטי	MMBtu/hr	MMBtu/hr	TBD	HT-8	004-04	To Be Modified	To be Replaced		
TK 1	Crudo Oil Tank	TPD	TPD	TPD	1000 661	9581.25	TBD	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed		
TK-1	Crude Oil Tank	TBD	TBD	TBD	1000 bbl	Mgal/yr	TBD	FL-LP	003-12	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 		
TK 2	Crude Off Table	TDD	TPD	TPD	1000111	9581.25	TBD	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed		
TK-2	Crude Oil Tank	TBD	TBD	TBD	1000 bbl	Mgal/yr	TBD	FL-LP	003-12	 ✓ New/Additional ☐ To Be Modified 	Replacement Unit To be Replaced		
						9581.25	TBD	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed		
TK-3	Crude Oil Tank	TBD	TBD	TBD	1000 bbl	Mgal/yr	TBD	FL-LP	003-12	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 		

Unit	Source Description	Make	Model #	Serial #	Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi- fication			RICE Ignition Type (CI, SI, 4SLB, 4SRB,	Replacing
Number ¹					Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Code (SCC)			2SLB) ⁴	Unit No.
TK-4	Crude Oil Tank	TBD	TBD	TBD	1000 bbl	9581.25	TBD	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed Replacement Unit		
	crude on runk	TOD	100	100	1000 001	Mgal/yr	TBD	FL-LP	003-12	To Be Modified	To be Replaced		
TK-5	Crude Oil Tank	TBD	TBD	TBD	1000 bbl	9581.25	TBD	VRU/FL-LP	4-04-	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
111.5		100	100	100	1000 551	Mgal/yr	TBD	FL-LP	003-12	To Be Modified	To be Replaced		
TK-6	Crude Oil Tank	TBD	TBD	TBD	1000 bbl	9581.25	TBD	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed Replacement Unit		
in o		TDD	100	100	1000 001	Mgal/yr	TBD	FL-LP	003-12	To Be Modified	To be Replaced		
PWTK-1	Produced Water	TBD	TBD	TBD	1000 bbl	59,403.75	TBD	VRU/FL-LP	4-04-	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
TWIRT	Tank	TDD	100	TOD	1000 001	Mgal/yr	TBD	FL-LP	003-15	To Be Modified	To be Replaced		
PWTK-2	Produced Water	TBD	TBD	TBD	1000 bbl	59,403.75	TBD	VRU/FL-LP	4-04-	Existing (unchanged)	To be Removed Replacement Unit		
	Tank	100	100	100	1000 001	Mgal/yr	TBD	FL-LP	003-15	To Be Modified	To be Replaced		
PWTK-3	Produced Water	TBD	TBD	TBD	1000 bbl	59,403.75	TBD	VRU/FL-LP	4-04-	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
1.0111.3	Tank	100	100	100	1000 001	Mgal/yr	TBD	FL-LP	003-15	To Be Modified	To be Replaced		
PWTK-4	Produced Water	TBD	TBD	TBD	1000 bbl	59,403.75	TBD	VRU/FL-LP	4-04-	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
	Tank	100	100	100	1000 001	Mgal/yr	TBD	FL-LP	003-15	To Be Modified	To be Replaced		
FL-1 LP	Low Pressure Flare	HERO	T60VT8	TBD	2.70	2.70	TBD		3-10-	Existing (unchanged)	To be Removed Replacement Unit		
1010	Low Tressure Thate	HERO	Dual Tip	TOD	MMScf/d	MMScf/d	TBD	FL-LP	001-60	To Be Modified	To be Replaced		
FL-1 LP	Low Pressure Flare -	HERO	T60VT8	TBD	2.70	2.70	TBD		3-10-	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
SSM	SSM	HERO	Dual Tip	TOD	MMScf/d	MMScf/d	TBD	FL-LP	001-60	To Be Modified	To be Replaced		
FL-2 HP	High Pressure Flare	HERO	T60VT8	TBD	23.00	23.00	TBD		3-10-	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
1 L-2 11F	Ingit ressure ridie	HERO	Dual Tip		MMscf/d	MMscf/d	TBD	FL-HP	001-60	To Be Modified	To be Replaced		
FL-2 HP	High Pressure Flare -	HERO	T60VT8	TBD	23.00	23.00	TBD		3-10-	Existing (unchanged)	To be Removed Replacement Unit		
SSM	SSM	HERO	Dual Tip	עסו	MMscf/d	MMscf/d	TBD	FL-HP	001-60	To Be Modified	To be Replaced		
VRT	Vapor Recovery	TBD	TBD	TBD	_		TBD	VRU/FL-LP	3-10-	Existing (unchanged)	To be Removed Replacement Unit		
VRI	Towers				-	-	TBD	FL-LP	888-11	To Be Modified	To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wpcontent/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Monufacture	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
			N/A	264,600	20.2.72.202.B.5 (< 0.5 tpy VOC)		Existing (unchanged) To be Removed
OILLOAD-1	Oil truck loading	N/A	N/A	gol/ur			New/Additional Replacement Unit
			-	gal/yr			To Be Modified To be Replaced
PWLOAD-1	Produced water truck loading	NI / A	N/A	191,100	20.2.72.202.B.5 (< 0.5 tpy VOC)		Existing (unchanged) To be Removed
PWLOAD-1	Produced water truck loading	N/A	N/A	gal/yr			New/Additional Replacement Unit To Be Modified To be Replaced
				877			Existing (unchanged) To be Removed
							New/Additional Replacement Unit
						i i	To Be Modified To be Replaced
							Existing (unchanged) To be Removed
				-			
						ĺ	New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							Existing (unchanged)
							New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit To Be Modified To be Replaced
	1						Existing (unchanged) To be Removed
							New/Additional Replacement Unit
						l i	To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							To Be Modified To be Replaced
							Existing (unchanged) To be Removed
							New/Additional Replacement Unit
							To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
CATALYST	Catalytic Reduction	TBD	со	ENG-1	77	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	со	ENG-2	77	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	VOCs	ENG-1	35	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	VOCs	ENG-2	35	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	NOx	GEN-1	91	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	со	GEN-1	88	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	NOx	GEN-2	91	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	СО	GEN-2	88	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	NOx	GEN-3	91	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	СО	GEN-3	88	Manufacturer Specification
CATALYST	Catalytic Reduction	TBD	NOx	GEN-4	91	Manufacturer
CATALYST	Catalytic Reduction	TBD	СО	GEN-4	88	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	ТК-1	90	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-1	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	ТК-2	90	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-2	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-3	90	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-3	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	ТК-4	90	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-4	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-5	90	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-5	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	TK-6	90	Design Calculation
FL-LP	Flare	TBD	VOCs	TK-6	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-1	90	Design Calculation
FL-LP	Flare	TBD	VOCs	PWTK-1	98	Manufacturer Specification

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-2	90	Design Calculation
FL-LP	Flare	TBD	VOCs	PWTK-2	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-3	90	Design Calculation
FL-LP	Flare	TBD	VOCs	PWTK-3	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	PWTK-4	90	Design Calculation
FL-LP	Flare	TBD	VOCs	PWTK-4	98	Manufacturer Specification
VRU	Vapor Recovery Unit	TBD	VOCs	VRT	90	Design Calculation
FL-LP	Flare	TBD	VOCs	VRT	98	Manufacturer Specification
¹ List each con	trol device on a separate line. For each control device, list all en	nission units c	ontrolled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox	C	0	v	ос	S	Ox	PI	Иı	PIV	10 ¹	PM	2.5 ¹	Н	₂S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	3.04	13.33	7.91	34.65	3.26	14.26	0.005	0.022	-	-	0.100	0.440	0.100	0.440	-	-	-	-
ENG-2	3.04	13.33	7.91	34.65	3.26	14.26	0.005	0.022	-	-	0.100	0.440	0.100	0.440	-	-	-	-
GEN-1	6.79	29.73	6.46	28.28	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
GEN-2	6.79	29.73	6.46	28.28	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
GEN-3	6.79	29.73	6.46	28.28	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
GEN-4	6.79	29.73	6.46	28.28	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
FUG-1	-	-	-	-	6.03	26.41	-	-	-	-	-	-	-	-	-	-	-	-
HT-1	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-2	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-3	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-4	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-5	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-6	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-7	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
HT-8	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05				
TK-1	-	-	-	-	33.17	145.29	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	33.17	145.29	-	-	-	-	-	-	-	-	-	-	-	-
ТК-3	-	-	-	-	33.17	145.29	-	-	-	-	-	-	-	-	-	-	-	-
ТК-4	-	-	-	-	33.17	145.29	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	-	-	-	-	33.17	145.29	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	33.17	145.29	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1					3.50	15.33												
PWTK-2					3.50	15.33												
PWTK-3					3.50	15.33												
PWTK-4					3.50	15.33												
FL-LP	0.004	0.019	0.020	0.086	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-LP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP	0.004	0.019	0.020	0.086	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-HP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VRT	-	-	-	-	-	1666.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	34.45	150.74	42.66	186.91	229.69	2672.07	0.02	0.09	0.00	0.00	0.67	2.98	0.67	2.98	0.00	0.00	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

	N	Ох	C	0	V	C	S	Эx	PI	Л ¹	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	1.52	6.66	1.83	8.00	2.75	12.03	0.005	0.022	-	-	0.100	0.440	0.100	0.440	-	-	-	-
ENG-2	1.52	6.66	1.83	8.00	2.75	12.03	0.005	0.022	-	-	0.100	0.440	0.100	0.440	-	-	-	-
GEN-1	0.64	2.81	0.77	3.37	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
GEN-2	0.64	2.81	0.77	3.37	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
GEN-3	0.64	2.81	0.77	3.37	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
GEN-4	0.64	2.81	0.77	3.37	1.01	4.44	0.002	0.011	-	-	0.097	0.426	0.097	0.426	-	-	-	-
FUG-1	-	-	-	-	6.01	26.32	-	-	-	-	-	-	-	-	-	-	-	-
HT-1	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-2	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-3	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-4	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-5	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-6	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-7	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
HT-8	0.15	0.64	0.12	0.54	0.01	0.04	-	-	-	-	0.01	0.05	0.01	0.05	-	-	-	-
TK-1	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
ТК-2	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
ТК-5	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1					0.00	0.00												
PWTK-2					0.00	0.00												
PWTK-3					0.00	0.00												
PWTK-4					0.00	0.00												
FL-1 LP	0.004	0.019	0.020	0.086	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
FL-1 LP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-2 HP	0.004	0.019	0.020	0.086	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-
FL-2 HP SSM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VRT	-	-	-	-	-	0.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	6.81	29.72	7.74	33.97	15.63	68.46	0.02	0.09	0.00	0.00	0.67	2.98	0.67	2.98	0.00	0.00	0.00	0.00
Totals (including SSM)	53.78	36.26	221.88	63.78	187.94	94.75	0.02	0.09	0.00	0.00	0.67	2.98	0.67	2.98	0.00	0.00	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/agb/permit/agb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

		Ox	C		V			Ox	PI	VI ²		10 ²		2.5 ²		₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ENG-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GEN-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HT-1	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
HT-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-1 LP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-1 LP SSM	1.0744	0.4881	4.8983	2.2251	11.91	5.21												
FL-2 HP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-2 HP SSM	45.8984	6.0495	209.243	27.5785	160.4	21.08												
VRT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals	46.9728	6.5376	214.141	29.8036	172.31	26.29	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

L have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	С	0	V	C	SC	Эх	Р	М	PN	110	PM	12.5	\Box H ₂ S or	🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL-1 LP	FL-1 LP, FL-1 LP SSM	1.08	0.51	4.92	2.31	11.91	5.21	-	-	-	-	-	-	-	-	-	-
FL-2 HP	FL-2 HP, FL-2 HP SSM	45.90	6.07	209.26	27.66	160.40	21.08										
_																	
	Totals:																

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF₅ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e											
Total	mass GHG											
	CO ₂ e					in Table A-1 of						

* GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG-1	ENG-1	V	No	25	902	43.90	-	-	125.90	0.67
ENG-1	ENG-1	V	No	25	902	43.90	-	-	125.90	0.67
GEN-1	GEN-1	V	No	15	1382	49.90	-	-	572.00	0.33
GEN-2	GEN-2	V	No	15	1382	49.90	-	-	572.00	0.33
GEN-3	GEN-3	V	No	15	1382	49.90	-	-	572.00	0.33
GEN-4	GEN-4	V	No	15	1382	49.90	-	-	572.00	0.33
HT-1	HT-1	v	No	15	460	7.80	-	-	10.00	1.00
HT-2	HT-2	V	No	15	460	10.40	-	-	13.30	1.00
HT-3	HT-3	v	No	15	460	7.80	-	-	10.00	1.00
HT-4	HT-4	V	No	15	460	7.80	-	-	10.00	1.00
HT-5	HT-5	V	No	15	460	7.80	-	-	10.00	1.00
HT-6	HT-6	V	No	15	460	7.80	-	-	10.00	1.00
HT-7	HT-7	V	No	15	460	7.80	-	-	10.00	1.00
HT-8	HT-8	V	No	15	460	7.80	-	-	10.00	1.00
FL-LP	FL-LP	V	No	60	1500	31.25	-	-	159.00	0.50
FL-LP SSM	FL-LP SSM	V	No	60	1500	31.25	-	-	159.00	0.50
FL-HP	FL-HP	v	No	60	1500	266.00	-	-	755.00	0.67
FL-HP SSM	FL-HP SSM	V	No	60	1500	266.00	-	-	755.00	0.67

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

					d amount		a abore.												
Stack No.	Unit No.(s)	Total	HAPs		dehyde r <mark></mark> TAP		dehyde r <mark></mark> TAP		r <mark></mark> TAP		r <mark></mark> TAP	-	enzene r <mark></mark> TAP		r TAP		r <mark></mark> TAP		ene r <mark></mark> TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	ENG-1	0.78	3.43	0.6	2.64	0.1	0.42	0.06	0.26	0.005	0.02	-	-	0.01	0.06	0.05	0.02	0.002	0.01
ENG-2	ENG-2	0.78	3.43	0.6	2.64	0.1	0.42	0.06	0.26	0.005	0.02	-	-	0.01	0.06	0.05	0.02	0.002	0.01
GEN-1	GEN-1	0.16	0.7	0.12	0.51	0.02	0.07	0.01	0.07	0.01	0.04	-	-	-	-	0.003	0.01	-	-
GEN-2	GEN-2	0.16	0.7	0.12	0.51	0.02	0.07	0.01	0.07	0.01	0.04	-	-	-	-	0.003	0.01	-	-
GEN-3	GEN-3	0.16	0.7	0.12	0.51	0.02	0.07	0.01	0.07	0.01	0.04	-	-	-	-	0.003	0.01	-	-
GEN-4	GEN-4	0.16	0.7	0.12	0.51	0.02	0.07	0.01	0.07	0.01	0.04	-	-	-	-	0.003	0.01	-	-
		-									-								
1	Totals:	2.2	9.66	1.68	7.32	0.28	1.12	0.16	0.8	0.05	0.2	0	0	0.02	0.12	0.112	0.08	0.004	0.02

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (MSCF/hr)	Annual Usage (MMSCF/y)	% Sulfur	% Ash
ENG-1	Natural Gas	Field Natural Gas	1157	8.710	76.300	0	0
ENG-2	Natural Gas	Field Natural Gas	1157	8.710	76.300	0	0
GEN-1	Natural Gas	Field Natural Gas	1157	4.320	37.843	0	0
GEN-2	Natural Gas	Field Natural Gas	1157	4.320	37.843	0	0
GEN-3	Natural Gas	Field Natural Gas	1157	4.320	37.843	0	0
GEN-4	Natural Gas	Field Natural Gas	1157	4.320	37.843	0	0
HT-1	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-2	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-3	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-4	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-5	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-6	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-7	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
HT-8	Natural Gas	Field Natural Gas	1157	1.300	11.388	0	0
FL-LP	Natural Gas	Field Natural Gas	1157	0.055	0.482	0	0
FL-HP	Natural Gas	Field Natural Gas	1157	0.055	0.482	0	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code		Composition	Liquid Density (Ib/gal)	Molecular Weight (Ib/Ib*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-1	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-2	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-3	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-4	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-5	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
TK-6	4-04-003- 12	Crude Oil	Mixed Hydrocarbons	6.5	45.03	77	10.65	77	10.65
PWTK-1	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99
PWTK-2	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99
PWTK-3	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99
PWTK-4	4-04-003- 15	Produced Water	99% Produced Water, 1% Oil	8.3	27.95	77	0.99	77	0.99

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 0.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Cap	acity	Diameter (M)	Vapor Space (M)	Color (from Table VI-C)		Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)		. ,	Roof	Shell	C)	(gal/yr)	(per year)
TK-1	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,836,750	234.00
TK-2	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,836,750	234.00
TK-3	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,836,750	234.00
TK-4	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,836,750	234.00
TK-5	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,836,750	234.00
TK-6	TBD	Crude Oil	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	9,836,750	234.00
PWTK-1	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	81,823,875	1948.00
PWTK-2	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	81,823,875	1948.00
PWTK-3	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	81,823,875	1948.00
PWTK-4	TBD	Produced Water	N/A	FX	1,000	159	6.6	4.65	Dark Green	Dark Green	Good	81,823,875	1948.00

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	/elded Tank Seal Type	Seal Type, Rive			
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
F: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
			-		MG: Medium Gray	
Note: 1.00 bbl = 0.159 N	1 ³ = 42.0 gal				BL: Black	
					OT: Other (specify)	

	Materi	al Processed		Γ	Aaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
				Crude Oil	Mixed Hydrocarbons	Liquid	3,850 bbl/d
				Produced Water	Produced Water	Liquid	21,350 bbl/d
				Natural Gas	Natural Gas	Gas	14 MMscf/d

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	N/A								

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

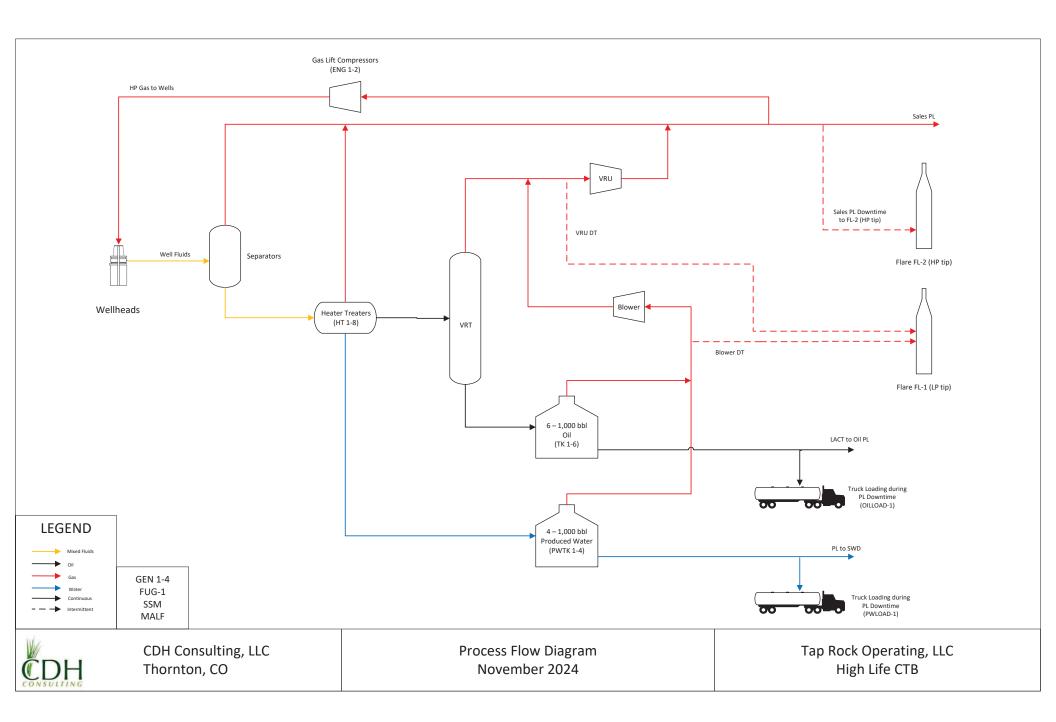
Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
	N/A							

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

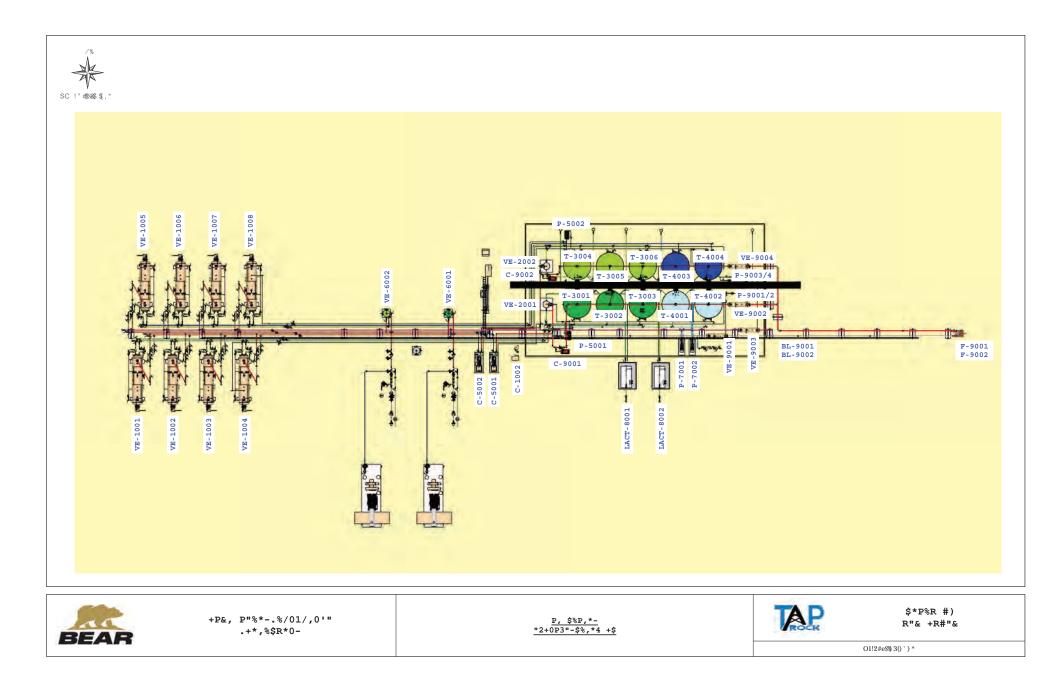
The **<u>Process Summary</u>** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.


Application Summary: This permit application is being submitted to authorize the construction and operation of the facility under 20.2.72.200.A.1 NMAC.

Process Summary: Well fluids are routed to individual initial separators where gas and liquids are separated. Liquids from the initial separators flow to heater treaters (HT 1-8). Oil from the heater treaters enters the vapor recovery towers (VRTs). Gas from the heater treaters joins the gas from the initial separators and is sent to the sales pipeline. Gas is sent to flare during short pipeline downtime periods (FL-2 (HP)). Prior to the sales point, a side stream of gas is removed and sent to gas lift compressors (ENG 1-2). The compressors direct the gas down hole to assist in bringing fluids to the surface. The compressor engines are gas fired and controlled with catalytic converters. Water from the heater treaters flows to atmospheric storage tanks (PWTK 1-4). Vapors from the water storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the low-pressure flare (FL-1 (BDT)). When enough water has accumulated in the tanks it is piped off-site for disposal. A small amount of truck loading is included for operational flexibility (PWLOAD-1, HR-1). Gas from the VRTs is routed to a Vapor Recovery Unit (VRU) and to the sales line. The oil from the VRTs is routed to the VRU and then to the sales pipeline. When the blower and routed to the VRU and then to the sales pipeline. When the blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors from the oil storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the flare (FL-1 (BDT)). When enough oil has accumulated in the tanks it is piped off-site for sale via LACT. A small amount of truck loading is included for operational flexibility (OILLOAD-1, HR-1). During periods of VRU downtime, the vapor stream is controlled by the flare (FL-1(VDT)).

<u>Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions:</u> VOCs during blower and VRU downtime are controlled by FL-LP. Sales gas pipeline downtime is routed to FL-HP.


Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

(4) The final result of the calculation shall be expressed in the units of the standard.

Form-Section 6 last revised: 5/3/16

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Control Devices:

- **Catalytic Converters** Engine emissions are controlled using catalytic converters to reduce NOx, CO, and VOCs.
- Low-Pressure Blower Tank flash, working, and breathing vapors are controlled by a low-pressure blower which routes to the VRU inlet and then to the sales line.
- Vapor Recovery Unit (VRU) VRT vapors are collected by the VRU and routed to the sales line.
- Flare (FL-1) During periods of Blower downtime, stream is routed to the flare for destruction (FL-1(BDT))
- Flare (FL-1) During periods of VRU downtime, stream is routed to the flare for destruction (FL-1(VDT))
- Flare (FL-2) During periods of sales line downtime, stream is routed to the flare for destruction (FL-2(HP))

AIR EMISSIONS CALCULATION TOOL

Instructions for Completing the Equipment Calculation Forms

- 1. Click the **Start Button** below to reset the form to begin data entry.
- 2. The *Air Emissions Calculation Tool* initially loads with the **Core Data Information Form.** Once all information is entered on this form, the necessary equipment calculation pages will be created based on the information entered on the Core Data Information Form. The customized *Air Emissions Calculation Tool* should now be saved to your computer before entering any other information on the equipment calculation pages. Warning, every time you click on the **Start Button b**elow, the *Air Emissions Calculation Tool* will reset and all data entered will be lost.
- 3. Green/Blue colored information boxes require users to enter the required information for the subject facility. Default values may be changed if not appropriate for the facility.
- 4. Yellow colored boxes represent calculated values based on user information entered and may not be changed.
- 5. Yellow boxes with green/blue cross-hatching represent calculated values based on user information entered, however users may input data in these boxes, if necessary.

Core	Data	Inform	ation

Mandatory - All appropriate Data Must Be Entered For All Boxes Below. This Data Will Automatically Create All Required Equipment Forms And Populate This Data In All Emissions Calculation Forms.

Date Field Nov 20, 2024	Permit/NOI/NPR Number NA
Company Name: Tap Rock Operating, LLC	Select Application Type NSR
Facility Name: High Life CTB	Al# if Known
Max. Facility Gas Production 14,000 (Mscf/d) 583 (Mscf/h)	Elevation (ft.) 3,510
Max. Facility Oil Production 3,850 (BOPD) 160 (BOPH)	
Max. Facility Produced Water 21,350 (BWPD) 890 (BWPH)	Sour Gas Streams at This Site? NO

Enter The Quantity Of All Air Emissions Sources Located At The Facility (Leave Blank For Each Equipment Type That Is Not Present)

Equipment	Quantity	Equipment	Quantity
Amine Unit(s)		Compressor Engine (s)	2
Dehydrator(s)		Enclosed Combustion Device(s) (ECD)	
Equipment Fugitives	\checkmark	Flare(s)	1
Flash Tower/Ultra-Low Pressure Separator(s) [^]	2	Generator Engine (s)	4
Gunbarrel Separator(s)/Tank(s)		Heater(s), Heater Treaters	8
Number of Paved Haul Roads Segments		Number of Unpaved Haul Road Segments	
Low Pressure Compressor(s)* & Compressor(s)*		Oil/Condensate Storage Tank(s)	6
Oil/Condensate Truck Loading		Produced Water Storage Tank(s)	4
Produced Water Truck Loading		Pumpjack Engine(s)	
Reboilers(s) (Amine Units)		Placeholder for Future Use	
Reboilers(s) (Glycol, others)		Startup, Shutdown & Maintenance and Malfunction	\checkmark
Skim Oil or Slop Oil Tank(s)		Thermal Oxidizer(s) (TO)	
Vapor Combustion Device(s) (VCU)		Vapor Recovery Unit(s) (VRU)^	2

Click Here to Generate Required Forms & Save to Your Computer

Complete all required forms that follow, for the equipment at the subject facility, based on the selections made above. Items with an * indicate an air emissions calculation form currently not required at this time and those with ^ indicate forms under construction at this time.

Date:	Nov 20, 2024	Permit Number:	NSR-NA
Company Name:	Tap Rock Operating, LLC	AI# if Known:	NA
Facility Name:	High Life CTB	Elevation (ft.):	3,510

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Compressor Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Emission Unit ID:	ENG 1			g. e e o e			Ouant				1	
Engine Manufacturer: Caterpillar							Quantity of Like-kind Engines:					
Engine Mode l :	G3516J						Engine	e Description	Compressor	ompressor Engine		
Engine Serial #:	TBD			Engine Deration			Hours/year		8,760			
Engine Manuf. Date	e: >7/1/2010			No Deration			Fuel T	Fuel Type:		Field Gas		
Engine Type: 4SLB				Stationary - N	laturally Aspi	rated No D	eration.					
Factory HP Rating			,380 🔘	Stationary - T	urbo Aspirat	ed						
Allowable HP Rating		1	, <mark>380</mark> 🔘 I	Portab l e - Na	turally Aspira	ited Note	es:					
Engine BSFC (Btu/(Hp*Hr))		7	,301	Portable - Tu	-							
Fuel LHV, (BTU/SCF)		XXX1	,157	Select Sou								
Fuel Sulfur (grains/dscf)		XXXX	.002		-42 Emission							
									a va Dalassi) av	Discal Tisy 1	2.2	
						-	s (Enter Appropriate Emission Factors Below) or Diesel Tier 1, 2, 3 or 4					
Annual Fuel Flow Ra	XXXX								1P			
		76.28208 ● NSPS JJJJ; Engine Manuf. On or after July 1, 2010 & Engine HP≥500HP										
Maximum Engine R		I ,	1,400									
Exhaust Temperature (°F)				02								
Exhaust Velocity (ft/sec)				25.9								
Exhaust Flow (ACFM) 2				636 ● NSPS JJJJ; Engine Manuf. on or after July 1, 2010 & LB Engine HP 500≤HP<1350								
Stack Diameter (ft)	0.67	.67 NSPS JJJJ; Engines < 100HP (Enter Appropriate Emission Factors Below)										
Stack Height (ft)			25	25 NSPS IIII; Stationary Diesel Engines								
					F /	Uncor	Uncontrolled JJJJ Emissions Controlled Emissions					
Emission Factors, Catalyst Cor			itrol Efficiency & Safety Factor			Emis	sions	1111 F.u.	(includes SF) ¹			
Pollutant	Uncontrld. EF g/hp-hr	% Contro l Efficiency	% Safety Factor	Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr	
NOx^	0.5	0	0	0.5	\sim	1.5212	6.6629	3.0423	13.3253	1.5212	6.6629	
СО	2.6	76.92	0	0.6	2	7.9101	34.6462	6.0847	26.651	1.8254	7.9953	
VOC*	1.07	34.58	0	0.7	0.7	3.2553	14.2582	2.1296	9.3276	2.8286	12.3893	
Formaldehyde			0	\times		0	0			0.6034	2.6429	
TSP/PM10/PM2.5	0.0331	0	0	0.0331	$\qquad \qquad $	0.1007	0.4411		0	0.1007	0.4411	
² SO ₂	0.002	0	0	0.002	\times	0.004976	0.021795			0.004976	0.021795	
AP-42 HAPs	lb/MMBtu											
Formaldehyde	0.0528	NA	NA	NA	NA	0.60343	2.64302	NA	NA	NA	NA	
Acetaldehyde	0.00836	NA	NA	NA	NA	0.09554	0.41847	NA	NA	NA	NA	
Acrolein	0.00514	NA	NA	NA	NA	0.05874	0.25728	NA	NA	NA	NA	
Benzene	0.00044	NA	NA	NA	NA	0.00503	0.02203	NA	NA	NA	NA	
Ethylbenzene n-Hexane	0.000397	NA NA	NA NA	NA NA	NA NA	0.00045	0.00197	NA NA	NA NA	NA NA	NA NA	
Toluene	0.0011	NA	NA	NA	NA	0.01257 0.00466	0.05506	NA	NA	NA	NA	
	0.000400	- TV7	1 11/1	1 11/1	1 1973	0.00400	0.02041	11/1	1 11/1	1 1/1	1 1 1 1 1	
Xylene	0.000184	NA	NA	NA	NA	0.0021	0.0092	NA	NA	NA	NA	

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. ¹ For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in lb/hp-hr for large gasoline & diesel engines. [^]NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Calculation Tool for Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Large Stationary Diesel (<600hp & >600hp) & Gasoline Compressor Engines (<600hp) Emissions

AP-42 Gas-Fired Engine Emission factors based on AP-42, Tables 3.2-1, 3.2-2 & 3.2-3 (July 2000)

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf

40 CFR Part 60 Subpart JJJJ Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.jjjj

AP-42 Diesel & Gasoline Fired Engine Emission factors based on AP-42, Tables 3.3-1, 3.2-2, 3.4-1, 3.4-2, 3.4-3 & 3.4-4

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

40 CFR Part 60 Subpart IIII Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.iiii

EPA Tier 1-4 Nonroad Compression Ignition Emission Standards (EPA-42--B-16-022)

https://nepis.epa.gov/Exe/ZvNET.exe/P100OA05.txt?ZvActionD=ZvDocument&Client=EPA&Index=2011%20Thru%

202015 & Docs = & Query = & Time = & End Time = & Search Method = 1 & TocRestrict = n & Toc = & TocEntry = & QField = & QField Month = & QField Day = & Use QField = & Int QField = & InIdOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5CZYFILES%5CINDEX%20DATA%5C11THRU15%5CTXT%5C00000019% 5CP100OA05.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/r150y150g16/

i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1 Emission factors for natural gas and field gas internal combustion engines may be based on AP-42, Tables 3.2-1, 3.2-2 or

3.2-3 or NSPS JJJJ emission standards or manufacturer specifications based on engine applicability.

NOx Sample Calculation Using AP-42 Emission Factors for a 500-HP 4-Stroke Rich Burn Engine

= NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable pph HP * 1/1000000 MMBtu/Btu

= 2.21 lb/MMBtu * 1020 Btu/scf/1020Btu/scf * 7500 MMBtu/hr *500 hp * 1/1000000 MMBtu/Btu =8.29 lb/hr

=NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable tpy HP * 1/1000000 MMBtu/Btu * 8760 hrs/yr * 1/2000 tons/lbs

= 2.21 lb/MMBtu * 1020 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/1020 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr *

- 1ton/2000 bs
- = 36.31 tpy

AP-42 SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO2 emission factor by the ratio of the site-specific sulfur content

(grains/10⁶ scf) to 2,000 grains/10⁶ scf. For all other engines not using AP-42, The SO₂ emissions are based on grains S/scf. Fuel Heat values for Diesel = 0.137 MMBtu/gal; LPG = 0.0905 MMBtu/gal and Gasoline = 0.13 MMBtu/gal per AP-42 Appendix A, pg 5 & 6. SO2 emissions for all diesel engines not using AP-42, equals Gal Diesel/hr * diesel wt (lb)/gal * 15 ppm S * 64 lb SO2/32 lb S, where diesel weighs 7.1089 lb/gal.

NOx Sample Calculation Using NSPS JJJJ Emission Factors for a July 1, 2010 500-HP 4-Stroke Rich Burn Engine

= NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP pph

- = 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp
 - $= 1.1 \, \text{lb/hr}$

=NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP * 8760 hrs/yr * 1/2000 tons/lbs tpy = 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp * 8760 hrs/yr * 1ton/2000lbs

- - = 4.82 tpy

Technical Disclaimer

This document is intended to help you accurately determine stationary compressor engine emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of stationary compressor engine emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Emission Unit ID:

ENG 2

Date:	Nov 20, 2024	Permit Number:	NSR-NA
Company Name:	Tap Rock Operating, LLC	AI# if Known:	NA
Facility Name:	High Life CTB	Elevation (ft.):	3,510

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Compressor Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Engino Manufacture	ri Catornilla						Quant	ity of Like-kir	nd Engines:		1
Engine Manufacture							Engine	e Description	Compressor	Engine	
Engine Model:	G3516J						Hours		8,760		
Engine Serial #:	TBD			-	Deration				Field Gas		
Engine Manuf. Date		0		No Deration			Fuel Ty	ype:	Field Gas		
Engine Type: 4SLB	·			Stationary - N			Deration.				
Factory HP Rating				Stationary - T							
Allowable HP Rating	9	1	,500	Portable - Na		ll 101	es:				
Engine BSFC (Btu/(H	Hp*Hr))	7	,301	Portable - Tui	-						
Fuel LHV, (BTU/SCF)	\sim	$\sim \sim \sim$	<mark>,157</mark>		lect Source ission Fact						
Fuel Sulfur (grains/d	lscf) 🚺	0	.002		-42 Emission						
							Appropriate E	mission Facto	ors Below) or	Diesel Tier 1.	2.3 or 4
Hourly Fuel Flow Ra	ate (MMSCF/I	hr) 🔀	0.008	700			etween July 1,				
Annual Fuel Flow Ra	ate (MMSCF/	'yr) 🚫	76.28	200	-		n or after July		-		
Maximum Engine R	PM		1	400	-		etween July 1,		-		HP<500
Exhaust Temperatur	ro (0E)		902		NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500						
·			125.9		-		v. Jan. 1, 2008-	-			<1350
Exhaust Velocity (ft/					-				-		<1330
Exhaust Flow (ACFN	1)		2,636		5		n or after July		5		
Stack Diameter (ft)			0.67		-		(Enter Appro	priate Emissi	ion Factors Be	elow)	
Stack Height (ft)			25	O NS	PS IIII; Statior	nary Diesel E	Engines				
Emission Fac	tors, Cataly	st Contro	l Efficien	cy & Safety	Factor		ntrolled ssions	JJJJ Em	nissions	Controlled (includ	
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency	% Safety Factor	Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^{\wedge}	0.5	0	0	0.5	\otimes	1.5212	6.6629	3.0423	13.3253	1.5212	6.6629
СО	2.6	76.92	0	0.6	2	7.9101	34.6462	6.0847	26.651	1.8254	7.9953
VOC*	1.07	34.58	0	0.7	0.7	3.2553	14.2582	2.1296	9.3276	2.8286	12.3893
Formaldehyde			0			0	0			0.6034	2.6429
TSP/PM10/PM2.5	0.0331	0	0	0.0331	$\langle \langle \rangle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle $	0.1007	0.4411		0	0.1007	0.4411
² SO ₂	0.002	0	0	0.002	\otimes	0.004976	0.021795			0.004976	0.021795
AP - 42 HAPs	lb/MMBtu										
Formaldehyde	0.0528	NA	NA	NA	NA	0.60343	2.64302	NA	NA	NA	NA
Acetaldehyde	0.00836	NA	NA	NA	NA	0.09554	0.41847	NA	NA	NA	NA
Acrolein	0.00514	NA	NA	NA	NA	0.05874	0.25728	NA	NA	NA	NA
Benzene	0.00044	NA	NA	NA	NA	0.00503	0.02203	NA	NA	NA	NA
Ethylbenzene	0.0000397	NA	NA	NA	NA	0.00045	0.00197	NA	NA	NA	NA
n-Hexane	0.0011	NA	NA	NA	NA	0.01257	0.05506	NA	NA	NA	NA
Toluene	0.000408	NA	NA	NA	NA	0.00466	0.02041	NA	NA	NA	NA
Xylene	0.000184	NA	NA	NA	NA	0.0021	0.0092	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.78252	3.42744	NA	NA	0.78	3.43

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. ¹ For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in lb/hp-hr for large gasoline & diesel engines. [^]NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Emission Unit ID:

Date:	Nov 20, 2024
Company Name:	Tap Rock Operating, LLC
Facility Name:	High Life CTB

GEN 1

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Engine Manufacture	Pri Power Sc	lutions Int	ernationa	l				Quant	ity of Like-kir	nd Engines:		1	
Engine Model:	21.9L			<u> </u>				Engine	e Description	Generator E	ngine		
Engine Serial #:	TBD			Engine	Deration			Hours	'year	8,760			
Engine Manuf. Date	: >7/1/201	0	•	No Deration				Fuel Ty	/pe:	Field Gas			
Engine Type: 4SRB				Stationary - N	laturally Aspi	irated No	o Dera	ation.					
Factory HP Rating			581	Stationary - T	urbo Aspirat	ed							
Allowable HP Rating	,		581	Portable - Na	turally Aspira	ated No	otes:						
Engine BSFC (Btu/(H	Hp*Hr))	8	,616	Portable - Tu	•	d							
Fuel LHV, (BTU/SCF)		<u></u>	<mark>,157</mark>		lect Source	11							
Fuel Sulfur (grains/d	lscf) 🚺	XXXX	.002		-42 Emission								
-												2.2.4	
Hourly Fuel Flow Ra	te (MMSCE	/hr) 🔽	0.00			-					r Diesel Tier 1, 2, 3 or 4		
Annual Fuel Flow Ra			37.9		-					-	jine HP≥500⊦	1P	
Maximum Engine R		, y ,)	<u> </u>	200	-			-		gine HP≥500l			
	- 101		1	,000 C NS	PS JJJJ; Engir	ne Manuf. I	Betw	een Ju l y 1,	2008-Dec. 31	, 2010 & Eng	ine HP 100≤ŀ	HP<500	
Exhaust Temperatur	re (°F)		1,382	O NS	PS JJJJ; Engir	ne Manuf.	on o	r after Jan.	l, 2011 & Eng	jine HP 100≤	HP<500		
Exhaust Velocity (ft/	sec)		572	O NS	PS JJJJ; Eng.	Manuf. Bet	tw. Ja	n. 1, 2008-	June 30, 201) & LB Engine	e HP 500≤HP∢	<1350	
Exhaust Flow (ACFN	1)		2,995	O NS	PS JJJJ; Engir	ne Manuf.	on o	r after Ju l y	1, 2010 & LB	Engine HP 50	0≤HP<1350		
Stack Diameter (ft)			0.33	O NS	PS JJJJ; Engir	nes < 100H	IP (Ei	nter Appro	priate Emissi	on Factors Be	e l ow)		
Stack Height (ft)			15	O NS	PS IIII; Statio	nary Diese	l Engi	ines					
Eurissian Erro					F	Unc	ontro	olled		••	Controlled	Emissions	
Emission Fact	tors, Cataly	/st Contro	ο Efficier	icy & Safety	Factor	En	nissio	ons	JJJJ Em	lissions	(includ	es SF)1	
Pollutant	Uncontrld. EF g/hp-hr			Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr		Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr	
NOx [^]	5.3	90.57	0	0.5	$\sim \sim $	6.7886		29.7341	1.2809	5.6103	0.6404	2.805	
со	5.04	88.1	0	0.6	2	6.4556		28.2755	2.5617	11.2202	0.7685	3.366	
VOC*	0.7	0	0	0.7	0.7	0.8966	,	3.9271	0.8966	3.9271	1.0288	4.5061	
Formaldehyde	<u> </u>		0			0		0			0.1164	0.5098	
TSP/PM10/PM2.5	0.0759	0	0	0.0759	$\langle \langle \rangle \rangle$	0.0972		0.4257		0	0.0972	0.4257	
² SO ₂	0.002	0	0	0.002	\times	0.00247	'3 C	0.010832			0.002473	0.010832	
AP-42 HAPs	lb/MMBtu	I											
Formaldehyde	0.0205	NA	NA	NA	NA	0.1164		0.50983	NA	NA	NA	NA	
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01584	t 🛛	0.06938	NA	NA	NA	NA	
Acrolein	0.00263	NA	NA	NA	NA	0.01493	3	0.06539	NA	NA	NA	NA	
Benzene	0.00158	NA	NA	NA	NA	0.00897	/	0.03929	NA	NA	NA	NA	
Ethylbenzene	0.0000248	-	NA	NA	NA	0.00014	1	0.00061	NA	NA	NA	NA	
n-Hexane		NA	NA	NA	NA	0		0	NA	NA	NA	NA	
Toluene	0.000558	NA	NA	NA	NA	0.00317	_	0.01388	NA	NA	NA	NA	
Xylene	0.000195	NA	NA	NA	NA	0.00111	_	0.00486	NA	NA	NA	NA	
Total HAPs	NA	NA	NA	NA	NA	0.16056		0.70324	NA	NA	0.16	0.7	

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. ¹ For NOI's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in lb/hp-hr for large gasoline & diesel engines. [^]NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Calculation Tool for Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Large Stationary Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp) Emissions

AP-42 Gas-Fired Engine Emission factors based on AP-42, Tables 3.2-1, 3.2-2 & 3.2-3 (July 2000) https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf

40 CFR Part 60 Subpart JJJJ Emission Factors based on §60.4233 & Table 1

```
http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.jjjj
```

AP-42 Diesel & Gasoline Fired Engine Emission factors based on AP-42, Tables 3.3-1, 3.2-2, 3.4-1, 3.4-2, 3.4-3 & 3.4-4

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

40 CFR Part 60 Subpart IIII Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.iiii

EPA Tier 1-4 Nonroad Compression Ignition Emission Standards (EPA-42--B-16-022)

https://nepis.epa.gov/Exe/ZyNET.exe/P100OA05.txt?ZyActionD=ZyDocument&Client=EPA&Index=2011%20Thru%

202015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&UseQFieldDay=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&UseQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&UseQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&

5CP100OA05.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/r150y150g16/ i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1

Emission factors for natural gas and field gas internal combustion engines may be based on AP-42, Tables 3.2-1, 3.2-2 or 3.2-3 or NSPS JJJJ emission standards or manufacturer specifications based on engine applicability.

NOx Sample Calculation Using AP-42 Emission Factors for a 500-HP 4-Stroke Rich Burn Engine

- pph = NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu
 - = 2.21 lb/MMBtu * 1020 Btu/scf/1020Btu/scf * 7500 MMBtu/hr *500 hp * 1/1000000 MMBtu/Btu =8.29 lb/hr
- tpy =NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu * 8760 hrs/yr * 1/2000 tons/lbs
 - = 2.21 lb/MMBtu * 1020 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/1020 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs
 - = 36.31 tpy

AP-42 SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO2 emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content

 $(\text{grains}/10^6 \text{ scf})$ to 2,000 $\text{grains}/10^6 \text{ scf}$. For all other engines not using AP-42, The SO₂ emissions are based on grains S/scf. Fuel Heat values for Diesel = 0.137 MMBtu/gal; LPG = 0.0905 MMBtu/gal and Gasoline = 0.13 MMBtu/gal per AP-42 Appendix A, pg 5 & 6. SO2 emissions for all diesel engines not using AP-42, equals Gal Diesel/hr * diesel wt (lb)/gal * 15 ppm S * 64 lb SO2/32 lb S, where diesel weighs 7.1089 lb/gal.

NOx Sample Calculation Using NSPS JJJJ Emission Factors for a July 1, 2010 500-HP 4-Stroke Rich Burn Engine

pph = NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP = 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp

= 1.1 lb/hr

tpy =NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP * 8760 hrs/yr * 1/2000 tons/lbs = 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp * 8760 hrs/yr * 1ton/2000lbs

= 4.82 tpv

Technical Disclaimer

This document is intended to help you accurately determine stationary generator engine emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of stationary generator engine emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Emission Unit ID:

Date:	Nov 20, 2024
Company Name:	Tap Rock Operating, LLC
Facility Name:	High Life CTB

GEN 2

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Engine Manufacture	er Power Sol	 lutions Int	ernationa				Quant	ity of Like-kir	nd Engines:		1		
Engine Model:				<u> </u>			Engin	e Description	Generator E	ngine			
Engine Serial #:				Engine	Deration		Hours	/year	8,760				
Engine Manuf. Date)		No Deration			Fue l T	ype:	Field Gas				
Engine Type: 4SRB				Stationary - N	laturally Aspi	irated No I	Deration.						
Factory HP Rating			581	Stationary - T	urbo Aspirat	ed 🛛							
Allowable HP Rating	ı 🔽		581	Portab l e - Na	turally Aspira	nted Not	es:						
Engine BSFC (Btu/(H	lp*Hr))	8	,616		rbo Aspirateo	11							
Fuel LHV, (BTU/SCF)		<u> </u>	,157		lect Source								
Fuel Sulfur (grains/d	scf) 🚺	XXXX			-42 Emission								
	Image: (v, v, v						Appropriate E	mission Fact	ors Bolow) or	Diocol Tior 1	23 or 1		
Hourly Fuel Flow Ra	te (MMSCF/	hr) 🔽	0.004				etween July 1,						
Annual Fuel Flow Ra		X	XXXX		-				-		16		
Maximum Engine RF					-		n or after July		-				
ing and ing include					-		etween July 1,		-		1P<500		
Exhaust Temperatur	re (°F)		1,382		-		n or after Jan.	-					
Exhaust Velocity (ft/	sec)		572	O NS	PS JJJJ; Eng. l	Manuf. Betw	. Jan. 1, 2008-	June 30, 201	0 & LB Engine	e HP 500≤HP∘	<1350		
Exhaust Flow (ACFM	I)		2,995	O NS	PS JJJJ; Engir	ne Manuf. o	n or after July	1, 2010 & LB	Engine HP 50	00≤HP<1350			
Stack Diameter (ft)			0.33	O NS	PS JJJJ; Engir	nes < 100HP	(Enter Appro	opriate Emissi	ion Factors Be	elow)			
Stack Height (ft)			15	O NS	PS IIII; Statior	nary Diese l E	Ingines						
Emission Fact	tors, Cataly	st Contro	l Efficien	cy & Safety	Factor		ntrolled ssions	JJJJ Em	nissions	Controlled (includ	Emissions es SF)1		
Pollutant				Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr		
NOx^	5.3	90.57	0	0.5	\otimes 1 \otimes	6.7886	29.7341	1.2809	5.6103	0.6404	2.805		
СО	5.04	88.1	0	0.6	2	6.4556	28.2755	2.5617	11.2202	0.7685	3.366		
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0288	4.5061		
Formaldehyde			0	\times		0	0			0.1164	0.5098		
TSP/PM10/PM2.5	0.0759	0	0	0.0759	$\qquad \qquad $	0.0972	0.4257		0	0.0972	0.4257		
² SO ₂	0.002	0	0	0.002	\otimes	0.002473	0.010832			0.002473	0.010832		
	b/MMBtu												
Formaldehyde	0.0205	NA	NA	NA	NA	0.1164	0.50983	NA	NA	NA	NA		
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01584	0.06938	NA	NA	NA	NA		
Acrolein	0.00263	NA	NA	NA	NA	0.01493	0.06539	NA	NA	NA	NA		
Benzene	0.00158	NA	NA	NA	NA	0.00897	0.03929	NA	NA	NA	NA		
Ethylbenzene n-Hexane	0.0000248	NA NA	NA NA	NA	NA	0.00014	0.00061	NA NA	NA NA	NA NA	NA NA		
Toluene	0.000558	NA NA	NA NA	NA NA	NA NA	0 0.00317	0.01388	NA	NA NA	NA NA	NA		
Xylene	0.000558	NA	NA	NA	NA	0.00317	0.01388	NA	NA	NA	NA		
Total HAPs	0.000195 NA	NA	NA	NA	NA	0.16056	0.70324	NA	NA	0.16	0.7		
		I	L		I		0.002		l				

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. ¹ For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in lb/hp-hr for large gasoline & diesel engines. ^ANOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Emission Unit ID:

Date:	Nov 20, 2024
Company Name:	Tap Rock Operating, LLC
Facility Name:	High Life CTB

GEN 3

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Engine Manufacture	r Power Sol	utions Int	ernationa				Quant	ity of Like-kir	nd Engines:		1	
Engine Model:	21.9L			<u> </u>			Engin	e Description	Generator E	ngine		
Engine Serial #:	TBD			Engine	Deration		Hours	/year	8,760			
Engine Manuf. Date	: >7/1/2010)		No Deration			Fuel T	ype:	Field Gas			
Engine Type: 4SRB		-		Stationary - N	laturally Aspi	irated No I	Deration.					
Factory HP Rating			581	Stationary - T	urbo Aspirat	ed 🛛						
Allowable HP Rating			581	Portab l e - Na	turally Aspira	ited Not	es:					
Engine BSFC (Btu/(H		8	,616	Portab l e - Tu	rbo Aspirateo	11						
Fuel LHV, (BTU/SCF)	·•• · · · //	<u> </u>	, <mark>157</mark>		lect Source	-						
Fuel Sulfur (grains/d	scf)	XXXX	.002		-42 Emission							
(j			.002									
Hourly Fuel Flow Pa	urly Fuel Flow Rate (MMSCF/hr) 0.00 nual Fuel Flow Rate (MMSCF/yr) 37.9 ximum Engine RPM 1 naust Temperature (°F) 1,382						Appropriate E					
		×_>	XXXX		PS JJJJ; Engir	ne Manuf. Be	etween July 1,	2007-June 3	0, 2010 & Eng	jine HP≥500⊦	ΙP	
		'yr) 🔀			PS JJJJ; Engir	ne Manuf. O	n or after Ju l y	1, 2010 & Eng	gine HP≥500l	HP		
Maximum Engine RP	ΡM		1	^{,800} 🔿 NS	PS JJJJ; Engir	ne Manuf. Be	etween July 1,	2008-Dec. 3	I, 2010 & Eng	ine HP 100≤ŀ	HP<500	
Exhaust Temperatur	e (°F)		1,382	O NS	◯ NSPS JJJJ; Engine Manuf. on or after Jan.1, 2011 & Engine HP 100≤HP<500							
Exhaust Velocity (ft/s	sec)		572	O NS	PS JJJJ; Eng.	Manuf. Betw	ı. Jan. 1, 2008-	June 30, 201	0 & LB Engine	e HP 500≤HP∢	<1350	
Exhaust Flow (ACFM)		2,995	O NS	PS JJJJ; Engir	ne Manuf. o	n or after July	1, 2010 & LB	Engine HP 50)0≤HP<1350		
Stack Diameter (ft)			0.33		PS JJJJ; Engir	nes < 100HP	(Enter Appro	opriate Emissi	on Factors Be	elow)		
Stack Height (ft)			15		PS IIII; Statio		••					
-							ntrolled			Controlled	Emissions	
Emission Fact	ors, Cataly	st Contro	l Efficien	cy & Safety	Factor		ssions	JJJJ En	hissions	(includ		
Pollutant	Uncontrld. EF g/hp-hr	% Contro l Efficiency		Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr	
NOx [^]	5.3	90.57	0	0.5	$\sim \sim $	6.7886	29.7341	1.2809	5.6103	0.6404	2.805	
co	5.04	88.1	0	0.6	2	6.4556	28.2755	2.5617	11.2202	0.7685	3.366	
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0288	4.5061	
Formaldehyde			0			0	0			0.1164	0.5098	
TSP/PM10/PM2.5	0.0759	0	0	0.0759	88888	0.0972	0.4257		0	0.0972	0.4257	
² SO ₂	0.002	0	0	0.002		0.002473	0.010832			0.002473	0.010832	
AP-42 HAPs	lb/MMBtu											
Formaldehyde	0.0205	NA	NA	NA	NA	0.1164	0.50983	NA	NA	NA	NA	
Acetaldehyde	0.00279	NA	NA	NA	NA	0.01584	0.06938	NA	NA	NA	NA	
Acrolein	0.00263	NA	NA	NA	NA	0.01493	0.06539	NA	NA	NA	NA	
Benzene	0.00158	NA	NA	NA	NA	0.00897	0.03929	NA	NA	NA	NA	
Ethylbenzene	0.0000248	NA	NA	NA	NA	0.00014	0.00061	NA	NA	NA	NA	
n-Hexane		NA	NA	NA	NA	0	0	NA	NA	NA	NA	
Toluene	0.000558	NA	NA	NA	NA	0.00317	0.01388	NA	NA	NA	NA	
Xylene S Total HAPs	0.000195	NA NA	NA	NA	NA	0.00111	0.00486	NA	NA	NA	NA	
	NA	NA	NA	NA	NA	0.16056	0.70324	NA	NA	0.16	0.7	

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. ¹ For NOJ's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in lb/hp-hr for large gasoline & diesel engines. ^ANOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

Date:	Nov 20, 2024
Company Name:	Tap Rock Operating, LLC
Facility Name:	High Life CTB

GEN 4

Permit Number: NSR-NA Al# if Known: NA Elevation (ft.): 3,510

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Generator Engines (100% Load) & Stationary & Non-Road Diesel (≤600hp & >600hp) & Gasoline Generator Engines (≤600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Emission Unit ID:	GEN 4			-		•	Ouant	itu of Liko kir	dEnginasi		1
Engine Manufacture	er: Power Sol	utions Inte	ernational					ity of Like-kir	-		I
Engine Mode l :	21.9L						Engine	e Description	Generator E	ngine	
Engine Serial #:	TBD			Engine	Deration		Hours	/year	8,760		
Engine Manuf. Date	e: >7/1/2010)	$\overline{\bullet}$	No Deration			Fuel T	ype:	Field Gas		
Engine Type: 4SRB	3			Stationary - N	laturally Aspi	rated No D	Peration.				
Factory HP Rating			581	Stationary - T	urbo Aspirate	ed					
Allowable HP Rating	9		581	Portab l e - Na	turally Aspira	ted Note	es:				
Engine BSFC (Btu/(H	Hp*Hr))	8	.616		rbo Aspirated						
Fuel LHV, (BTU/SCF)	. 🔀	<u>XXXX</u>	. <mark>157</mark>		lect Source	-					
Fuel Sulfur (grains/c	dscf) 🚺	0	.002		ission Fact						
		~~~~					Appropriate E	mission Facto	ore Bolow) or	Diacol Tior 1	23 or 1
Hourly Fuel Flow Ra	ate (MMSCF/ł	nr) 🚫	0.004								
Annual Fuel Flow R			37.90		5		tween July 1,		-		14
Maximum Engine R					-		n or after July	-			
			•		5		tween July 1,		5		HP<500
Exhaust Temperatu	re (°F)		1,382				n or after Jan.	5			
Exhaust Velocity (ft/	/sec)		572	O NS	PS JJJJ; Eng. N	Manuf. Betw	. Jan. 1, 2008-	June 30, 2010	) & LB Engine	e HP 500≤HP∢	<1350
Exhaust Flow (ACFM	/)		2,995	O NS	PS JJJJ; Engin	ne Manuf. or	n or after July	1, 2010 & LB	Engine HP 50	00≤HP<1350	
Stack Diameter (ft)			0.33	O NS	PS JJJJ; Engin	nes < 100HP	(Enter Appro	priate Emissi	on Factors Be	elow)	
Stack Height (ft)			15	O NS	PS IIII; Statior	nary Diese <b>l</b> E	ngines				
Emission Fac	tors Catalys	st Contro	l Efficien	cy & Safety	Factor	Uncor	ntrolled	JJJJ Em	issions		Emissions
	cors, cataly.					Emis	sions		13310113	(includ	es SF)1
Pollutant	Uncontrld. EF g/hp-hr		% Safety Factor	Contrld EF g/(hp-hr)	JJJJ EF g/hp- hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^	5.3	90.57	0	0.5	$\sim\sim\sim\sim\sim\sim$	6.7886	29.7341	1.2809	5.6103	0.6404	2.805
со	5.04	88.1	0	0.6	2	6.4556	28.2755	2.5617	11.2202	0.7685	3.366
VOC*	0.7	0	0	0.7	0.7	0.8966	3.9271	0.8966	3.9271	1.0288	4.5061
Formaldehyde			0			0	0			0.1164	0.5098
TSP/PM10/PM2.5	0.0759	0	0	0.0759	$\langle \langle \rangle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle $	0.0972	0.4257		0	0.0972	0.4257
² SO ₂											
-	0.002	0	0	0.002	$\times$	0.002473	0.010832			0.002473	0.010832
AP-42 HAPs	0.002 Ib/MMBtu	0	0	0.002	888888	0.002473	0.010832			0.002473	0.010832
Formaldehyde	<u> </u>	NA	NA	NA	NA	0.002473 0.1164	0.010832 0.50983	NA	NA	NA	NA
Formaldehyde Acetaldehyde	lb/MMBtu 0.0205 0.00279	NA NA	NA NA	NA NA	NA	0.1164 0.01584	0.50983 0.06938	NA	NA	NA NA	NA NA
Formaldehyde Acetaldehyde Acrolein	lb/MMBtu 0.0205 0.00279 0.00263	NA NA NA	NA NA NA	NA NA NA	NA NA	0.1164 0.01584 0.01493	0.50983 0.06938 0.06539	NA NA	NA NA	NA NA NA	NA NA NA
Formaldehyde Acetaldehyde Acrolein Benzene	lb/MMBtu 0.0205 0.00279 0.00263 0.00158	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	0.1164 0.01584 0.01493 0.00897	0.50983 0.06938 0.06539 0.03929	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA
Formaldehyde Acetaldehyde Acrolein Benzene Ethylbenzene	lb/MMBtu 0.0205 0.00279 0.00263	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	0.1164 0.01584 0.01493 0.00897 0.00014	0.50983 0.06938 0.06539 0.03929 0.00061	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
Formaldehyde Acetaldehyde Acrolein Benzene Ethylbenzene n-Hexane	Ib/MMBtu         0.0205         0.00279         0.00263         0.00158         0.000248	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	0.1164 0.01584 0.01493 0.00897 0.00014 0	0.50983 0.06938 0.06539 0.03929 0.00061 0	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
Formaldehyde Acetaldehyde Acrolein Benzene Ethylbenzene	lb/MMBtu 0.0205 0.00279 0.00263 0.00158	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	0.1164 0.01584 0.01493 0.00897 0.00014	0.50983 0.06938 0.06539 0.03929 0.00061	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. ¹ For NOI's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.5 in lb/hp-hr for large gasoline & diesel engines. [^]NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC



#### New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Date: Company Facility N	v Name:	ov 20, 202 Tap Rock High Life	Operatin	g, LLC									AI# if Kr	Number:N nown: N on (ft.): 3	IA			
					То	otal Reque	ested Em	issions Fo	r All Regu	ulated Eng	gines (NS	R Request	)					
UnitID	N	0 _X	C	0	V	C	S	Э _х	T	SP	PN	A ₁₀	PN	12.5	F	1 ₂ S	Tota	I HAP
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
ENG 1	1.52	6.66	1.83	8	2.83	12.39	0	0.02	0.1	0.44	0.1	0.44	0.1	0.44			0.78	3.43
ENG 2	1.52	6.66	1.83	8	2.83	12.39	0	0.02	0.1	0.44	0.1	0.44	0.1	0.44			0.78	3.43
ENG 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 1	0.64	2.81	0.77	3.37	1.03	4.51	0	0.01	0.1	0.43	0.1	0.43	0.1	0.43			0.16	0.7
GEN 2	0.64	2.81	0.77	3.37	1.03	4.51	0	0.01	0.1	0.43	0.1	0.43	0.1	0.43			0.16	0.7
GEN 3	0.64	2.81	0.77	3.37	1.03	4.51	0	0.01	0.1	0.43	0.1	0.43	0.1	0.43			0.16	0.7
GEN 4	0.64	2.81	0.77	3.37	1.03	4.51	0	0.01	0.1	0.43	0.1	0.43	0.1	0.43			0.16	0.7
GEN 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
Page Totals	5.6	24.56	6.74	29.48	9.78	42.82	0	0.08	0.6	2.6	0.6	2.6	0.6	2.6			2.2	9.66



Date:Nov 20, 2024Company Name:Tap Rock Operating, LLCFacility Name:High Life CTB

Permit Number:NA AI# if Known: NA Elevation (ft.): 3,510

#### Heaters, Heated Separators & Heater Treaters (Only for units rated <100 MMBTU/Hr)

Enter appropriate information in green boxes below changing default values as appropriate and adding additional rows for each heater unit.

Enter the Sulfur Content of Gas or use default value (grains/10 ⁶ scf).	2,000	grains/1000000 scf. Change default value of 2000 as needed based on	Enter the Site Fuel Heat Value of Gas or use default value (Btu/scf).	1,020
		gas analysis submitted with application.		

	Emissions From All Heaters, Heated Separators & Heater Treaters											
Add/Remove Rows	Unit ID	Heat Input	N	Э _х	C	0	VC	C	S	0 ₂	PM/PM1	0/PM2.5
		MMBtu/hr	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
+	HT- <mark>1</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+	HT- <mark>2</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+	HT- <mark>3</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+ -	HT- <mark>4</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+ -	HT- <mark>5</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+	HT- <mark>6</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+ -	HT- <mark>7</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
+ -	HT- <mark>8</mark>	1.5	0.147	0.644	0.124	0.543	0.008	0.035	0	0	0.011	0.048
	Totals		1.176	5.152	0.992	4.344	0.064	0.28	0	0	0.088	0.384



#### Calculation Tool for Heaters, Heated Separators & Heater Treater Emissions (Uncontrolled) for Oil & Gas Production Sites (Only for units rated <100 MMBTU/Hr) All emission factors based on AP-42, Table 1.4-1, Table 1.4-2 and Table 1.4-3 (July 1998) <u>https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf</u>

Emission factors for natural gas combustion in boilers and furnaces are presented in AP42, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4. The Tables present emission factors on a volume basis (lb/10⁶ scf). To convert to an energy basis (lb/MMBtu), divide by a heating value of 1,020 MMBtu/10⁶ scf. The emission factors may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value.

#### NOx Sample Calculation

- pph = AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat Value Btu/scf * 1000000/1Btu/MMBtu = 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1Btu/MMBtu =0.096 lb/hr
- tpy = AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat value Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000 lbs = 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs = 0.42 tpy

SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Technical Disclaimer

This document is intended to help you accurately determine heaters, heated separators & heater treaters emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of heaters, heated separators & heater treaters emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.



Date:Nov 20, 2024Company Name:Tap Rock Operating, LLCFacility Name:High Life CTB

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

# Flash Tower/Ultra-low Pressure Separators Air Emissions Calculations Form Under Development

Please submit all required calculations and supporting documentation for all Flash Tower/Ultra-low Pressure Separators emissions in the application.



Date:	Nov 20, 2024
<b>Company Name:</b>	Tap Rock Operating, LLC
Facility Name:	High Life CTB

Permit Number: NSR-NA Al# if Known: NA Elevation (ft.): 3,510

#### VRT/ULPS (Including the Low Pressure Compressor (LPC) or VRU) Process vs Control Determination

Please complete the Process vs. Control determination below for the VRT/ULPS, which addresses the three criteria referenced in the EPA Nov. 27, 1995 Process Guidance memo and enter appropriate Information in all green boxes.

#### **1.** Is the primary purpose of the equipment to control air pollution? (Check appropriate box)

No, the primary purpose of the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) is to recover flash gas vapors and route them into an available gas sales line.

Yes, the primary purpose of the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) is to control air pollution.

### **2.** Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment? (Check appropriate box)

Yes, the benefit-cost analysis below demonstrates a positive return on investment. The benefit-cost analysis of the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) compared to the product recovered is shown below:

No, the benefit- cost analysis below demonstrates a negative return on investment.

VRT/ULPS/LPC/VRU-1	VRT/ULPS/LPC/VRU-1 Benefit-Cost Analysis*					
Capital Cost of VRT/ULPS (\$)	\$5,000.00	Oil Production (BOPD)	3,850			
VRT/ULPS/LPC/VRU Rental Costs (\$/mo)	\$0.00	VRT/ULPS Vapor Production (Mcf/d)	60			
Capital Cost of LPC/VRU (\$)	\$5,000.00	Heating Value of Vapors (Btu/scf)	2,029			
Annual Maintenance & Service Costs (\$/yr)	\$5,000.00	Natural Gas Price (\$/MMBtu)	\$2.73			
Annual Electricity or Fuel Costs (\$/yr)		VRT/ULPS/LPC/VRU Life Expectancy (Yrs)	5			
VRT/ULPS/LPC/VRU Lifetime Costs (\$)	\$35,000.00	Lifetime VRT/ULPS/LPC/VRU Profit (Revenues-Costs) (\$/yr)	\$571,539.10			
Annual VRT/ULPS/LPC/VRU Revenue (\$/yr)	\$121,307.82	Payback Period (Yrs)	0.289			
VRT/ULPS/LPC/VRU Lifetime Revenue (\$)	<mark>\$606,539.10</mark>	Lifetime Benefit-Cost Ratio	17.33			

#### **3.** Would the equipment be installed if no air quality regulations are in place? (Check appropriate box)

Yes, the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) would still be installed regardless of air quality regulations, due to the significant cost benefits of product recovery.

No, the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) would not be installed if there were no air quality regulations in place.

Notes:

Footnote: All estimates based on current dollars unless specified otherwise; Tank vapor estimates based on flash calculation method noted in Tanks form based on oil throughput noted in p2 of AECT (this can be changed by user); Gas price based on EIA Natural Gas Weekly Update. * The time value of money is not taken into account.



Date:	Nov 20, 2024
<b>Company Name:</b>	Tap Rock Operating, LLC
Facility Name:	High Life CTB

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

#### VRT/ULPS (Including the Low Pressure Compressor (LPC) or VRU) Process vs Control Determination

Please complete the Process vs. Control determination below for the VRT/ULPS, which addresses the three criteria referenced in the EPA Nov. 27, 1995 Process Guidance memo and enter appropriate Information in all green boxes.

#### **1.** Is the primary purpose of the equipment to control air pollution? (Check appropriate box)

No, the primary purpose of the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) is to recover flash gas vapors and route them into an available gas sales line.

Yes, the primary purpose of the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) is to control air pollution.

### **2.** Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment? (Check appropriate box)

Yes, the benefit-cost analysis below demonstrates a positive return on investment. The benefit-cost analysis of the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) compared to the product recovered is shown below:

No, the benefit- cost analysis below demonstrates a negative return on investment.

VRT/ULPS/LPC/VRU-2	VRT/ULPS/LPC/VRU-2 Benefit-Cost Analysis*					
Capital Cost of VRT/ULPS (\$)	\$5,000.00	Oil Production (BOPD)	3,850			
VRT/ULPS/LPC/VRU Rental Costs (\$/mo)	\$0.00	VRT/ULPS Vapor Production (Mcf/d)	60			
Capital Cost of LPC/VRU (\$)	\$5,000.00	Heating Value of Vapors (Btu/scf)	2,029			
Annual Maintenance & Service Costs (\$/yr)	\$5,000.00	Natural Gas Price (\$/MMBtu)	\$2.73			
Annual Electricity or Fuel Costs (\$/yr)		VRT/ULPS/LPC/VRU Life Expectancy (Yrs)	5			
VRT/ULPS/LPC/VRU Lifetime Costs (\$)	\$35,000.00	Lifetime VRT/ULPS/LPC/VRU Profit (Revenues-Costs) (\$/yr)	\$571,539.10			
Annual VRT/ULPS/LPC/VRU Revenue (\$/yr)	\$121,307.82	Payback Period (Yrs)	0.289			
VRT/ULPS/LPC/VRU Lifetime Revenue (\$)	<mark>\$606,539.10</mark>	Lifetime Benefit-Cost Ratio	17.33			

#### **3.** Would the equipment be installed if no air quality regulations are in place? (Check appropriate box)

Yes, the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) would still be installed regardless of air quality regulations, due to the significant cost benefits of product recovery.

No, the VRT/ULPS equipment (including the low pressure compressor (LPC) or VRU) would not be installed if there were no air quality regulations in place.

Notes:

Footnote: All estimates based on current dollars unless specified otherwise; Tank vapor estimates based on flash calculation method noted in Tanks form based on oil throughput noted in p2 of AECT (this can be changed by user); Gas price based on EIA Natural Gas Weekly Update. * The time value of money is not taken into account.



Date:	Nov 20, 2024
	Tap Rock Operating, LLC
Facility Name:	High Life CTB

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

### Vertical Fixed Roof (VFR) Oil/Condensate VOC Flash Emissions Calculations Form

Select Tanks Flash Emission Calculation Method							
GOR	E & P Tanks	ProMax					
Vasquez-Beggs	HYSYS	VMGSim					

#### **ProMax Oil Tanks Emission Calculations**

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

#### **Tanks VOC Control Method**

Capture Efficiency	100	Represent Uncaptured/Uncollected VOC's at Tanks	YES
VOC Control Method ¹	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Tanks*	NO

Notes

#### Total VOC Flash Emissions From Oil/Condensate Storage Tanks Calculated with ProMax

Add/Remove Rows	dd/Remove Rows Tank ID		olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks		
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	TK-1	23.53	103.06	0.02	0.1	0	0	
+	TK-2	23.53	103.06	0.02	0.1	0	0	
+	TK-3	23.53	103.06	0.02	0.1	0	0	
+	TK-4	23.53	103.06	0.02	0.1	0	0	
+	TK-5	23.53	103.06	0.02	0.1	0	0	
+	TK-6	23.53	103.06	0.02	0.1	0	0	
	Totals	141.18	618.36	0.12	0.6	0	0	



Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.

2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;

3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;

4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;

5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

#### Sample Calculations

#### **GOR Methodology**

VOC pph = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70^oF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol

= 216.45 lbs/hr

VOC tpy = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-mole @ 70^OF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton = 948.05 tpy

INPUTS	Constraints				Constants					
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gr	avity
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. ( ⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	641.67	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				
Atmospheric Pressure (psia)		Patm	20	<rs></rs>	2070	scf/bbl				

#### Vasquez-Beggs Methodology

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

$$Rs = (C1 * SGx * Pi^{C2}) exp ((C3 * API) / (Ti + 460))$$
 for P + Patr

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC =THC * Frac. of C3+ in the Stock Tank Vapor

#### Technical Disclaimer

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:	Nov 20, 2024
<b>Company Name:</b>	Tap Rock Operating, LLC
Facility Name:	High Life CTB

#### Vertical Fixed Roof (VFR) Oil/Condensate VOC Working & Standing Emissions Calculations Form

AP-42 Chpt. 7		EPA Tanks 4.09d		ProMax		E & P Tanks	

#### **ProMax Oil Tanks W & S Emission Calculations**

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method							
apture Efficiency 100 Represent Uncaptured and/c VOC's at Tanks		Represent Uncaptured and/or Controlled VOC's at Tanks	YES				
VOC Control Method	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO				
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO				
Notes							

### Total VOC W & S Emissions From Oil/Condensate Storage Tanks Calculated with ProMax

Add/Remove Rows Tank ID		VOC Uncontrolled Emissions		VOC Emission	s after Control	VOC Emissions at the Tanks		
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	ТК-1	9.64	42.22	0.2	0.89	0	0	
+	TK-2	9.64	42.22	0.2	0.89	0	0	
+	TK-3	9.64	42.22	0.2	0.89	0	0	
+	TK-4	9.64	42.22	0.2	0.89	0	0	
+	TK-5	9.64	42.22	0.2	0.89	0	0	
+	TK-6	9.64	42.22	0.2	0.89	0	0	
	Totals	57.84	253.32	1.2	5.34	0	0	



Date:	Nov 20, 2024
<b>Company Name:</b>	Tap Rock Operating, LLC
Facility Name:	High Life CTB

Permit Number: NSR-NA Al# if Known: NA Elevation (ft.): 3,510

#### Startup, Shutdown & Maintenance and Malfunction

- No SSM emissions are expected from routine operations.
- Request up to 10 tpy of VOC SSM emissions.
- Request site specific VOC & H2S SSM and enter information below.
- Request site specific VOC & H2S SSM plus 10 tpy VOC and enter information below.
- Request site specific combustion SSM and those emissions are included in Section 4 (attach calculations.)
- Request 10 tpy VOC Malfunction emissions for GCP-O&G, GCP-6 or NSR permitting actions only.

		Blowdown	s	Engine Startups			
Unit Numbers							
Quantity of Like-kind Blowdown Units or Engines	1						
Total Volume of Each Blowdown or Engine Startup Vent (acf)							
Duration of Event (Minutes)							
Maximum Blowdowns or Startups/hr	1						
Frequency of Blowdowns or Engine Startups (Events/yr)							
Total Actual Volume of Gas Vented (acf/yr)	0			$\times\!\!\times\!\!\times\!\!\times$		$\times\!\!\!\times\!\!\!\times\!\!\!\times$	
Pressure of Gas Inside Unit Before Venting (psig)							
Final Pressure (psia)	14.7						
Gas Temperature Prior to Venting (°F)							
Vented Gas Molecular Weight (lb/lb-mol							
Vented Gas VOC wt %							
Vented Total HAP wt %							
Vented Gas Benzene wt %							
Vented Gas H ₂ S wt %							

Startup, Shutdown and Maintenance Emissions (SSM) and Malfunction Emissions

SSM	voc		Total HAP		Benzene		H ₂ S	
	PPH	TPY	РРН	TPY	PPH	TPY	РРН	TPY
SSM Blowdowns								
SSM Startups								
SSM Other (Attach Calculations)								
SSM Totals		10						
Malfunction Total		10						

Notes



#### **Planned SSM Emissions**

The venting emissions calculations herein should only be used when only gas (no liquids) is present in the unit. The calculation of the vented gas is based on the volume of the unit and assumes the unit is saturated with vapor at the pressure and temperature of the unit before venting occurs. If liquids are also present in the gas, please enter the calculated amounts in the SSM Other row only and submit separate calculations, since the calculations on this form do not account for the evaporation of liquids that may be present in the unit.

Calculations are based on the Ideal gas law: P(V) = n(R)(T)

VOC result = (((Pressure of Gas Inside the Unit Before Venting) * (Actual Volume of the Vented Unit)) / (Frequency of events) * (Molecular Weight) * VOC wt%)/(Ideal Gas Constant) * (Temperature of Gas Inside the Unit Before Venting)

Where the Ideal Gas Constant = 10.73159 (ft^{3*}psia)/R*lb-mol

For SSM combustion emissions, attach separate calculations.



New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:	Nov 20, 2024
<b>Company Name:</b>	Tap Rock Operating, LLC
Facility Name:	

### Vertical Fixed Roof (VFR) Produced Water VOC Flash Emissions Calculations Form

Jelett I										
GWR	E & P Tanks	ProMax								
Vasquez-Beggs	HYSIS	VMGSim								

#### ProMax Produced Water Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method								
Select % Oil in Water	1	VOC Uncontrolled emissions entered includes this percentage.						
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	YES					
VOC Control Method	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO					
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO					

Notes

Total VOC Emissions From Produced Water Storage Tanks Calculated with ProMax										
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks				
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy			
+	PWTK-1	1.56	6.85	0	0.01	0	0			
+	PWTK- 2	1.56	6.85	0	0.01	0	0			
+	PWTK- 3	1.56	6.85	0	0.01	0	0			
+	PWTK-4	1.56	6.85	0	0.01	0	0			
	Totals	6.24	27.4	0	0.04	0	0			



#### Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected ;

1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.

2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;

3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;

4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;

5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

#### Sample Calculations

#### **GWR Methodology**

VOC pph = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70^oF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * Percent Oil in Water

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 1/100

= 2.16 lbs/hr

VOC tpy = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lbmole @ 70^OF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton * Percent Oil in Water

^{= 40 (}scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton * 1/100 = 9.48 tpy

INPUTS				Const	traints		Constants			
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gra	avity
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. ( ⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Water/Day (BOPD)	5,337.5	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				
Atmospheric Pressure (psia)		Patm	20	<rs></rs>	2070	scf/bbl				

#### Vasquez-Beggs Methodology

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

$$Rs = (C1 * SGx * Pi^{C2}) exp ((C3 * API) / (Ti + 460)) for P + Patm$$

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

#### Technical Disclaimer

This document is intended to help you accurately determine produced water storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of produced water storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:	Nov 20, 2024
Company Name:	Tap Rock Operating, LLC
Facility Name:	High Life CTB

Permit Number: NSR-NA Al# if Known: NA Elevation (ft.): 3,510

#### Vertical Fixed Roof (VFR) Water Tanks VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method								
AP-42 Chpt. 7		EPA Tanks 4.09d		ProMax		E & P Tanks		

#### **ProMax Produced Water Tanks W & S Emission Calculations**

(Assumes W & S emissions are 1% of the emissions calculated based on oil properties and entered as uncontrolled emissions) Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

	Tanks VOC Con	trol Method	
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	YES
VOC Control Method	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO
Notes			

#### Total VOC W & S Emissions From Produced Water Storage Tanks Calculated with ProMax

Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emission	is at the Tanks
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy
+	PWTK-1	1.94	8.48	0.04	0.18	0	0
+	PWTK-2	1.94	8.48	0.04	0.18	0	0
+	PWTK-3	1.94	8.48	0.04	0.18	0	0
+	PWTK-4	1.94	8.48	0.04	0.18	0	0
	Totals	7.76	33.92	0.16	0.72	0	0



Date:Nov 20, 2024Company Name:Tap Rock Operating, LLCFacility Name:High Life CTB

Permit Number:NSR-NAAl# if Known:NAElevation (ft.):3,510

			<u>Fla</u>	nre			
Enter in	formation	in green bo	oxes below	changing default values as a	ppropriate	2.	
	Gas Stream	Gas Stream			Gas Stream	Gas Stream	
	1	2	3		1	2	3
Emission Unit ID	FL-1 (BDT)	FL-1 (VDT)	FL-2 (HP)	Hourly Gas Routed to Flare (MMBtu/hr)	5.53152	10.20587	674.91281
Hourly Gas Stream to Flare (Mscf/hr)	2.68	5.03	583.33	Annual Gas Routed to Flare (MMBtu/yr)	4,850.4	8,947.89	177,368.1
Annual Gas Stream to Flare (MMscf/yr)	2.35	4.41	153.3	Pilot Gas Routed to Flare (MMBtu/hr)	0.063635	0	0.063635
Max. Heat Value of Gas (Btu/scf)	2,064	2,029	1,157	Gas MW (lb/lbmol)	41.46	40.23	21.39
Field Gas Mol Fraction (Ibmol H2S/Ib-mol)				Gas Pressure (psia)	14.7	14.7	14.7
Field Gas Sulfur Content (S grains/100 scf)				Gas Temperature (°F)	70	70	70
Pilot Gas to Flare (Mscf/hr)	0.055		0.055	Field Gas H2S Wt.% to Flare (%)			
Max. Heat Value Pilot Gas (Btu/ scf)	1,157		1,157	Flare Control Efficiency	98	98	98
Pilot Gas Sulfur Content (S grains/100 scf)				Total VOC wt.% to Flare $(\%)^1$	72.72	71.53	24.36
Source of Flare Emission Factors		AP-42 Table	AP-42 Table	Safety Factor Applied to Total Emissions (%)			
Use Highest NOx & CO Emission Factors From AP-42 or TCEQ	NO	NO	NO				

					To	tal Emiss	sions to	Flare							
Pollutant		NOx			CO			VOC			SO2			H2S	
Gas Streams to Flare	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Uncontrolled (pph)	0	0	0	0	0	0	213.29	381.83	8,020	0	0	0	0	0	0
Uncontrolled (tpy)	0	0	0	0	0	0	93.42	167.24	1,053.83	0	0	0	0	0	0
Field Gas (pph)	0.3761	0.694	45.8941	1.7148	3.1638	209.223	4.27	7.64	160.4	0	0	0	0	0	0
Field Gas (tpy)	0.1649	0.3042	6.0305	0.7518	1.3869	27.4921	1.87	3.34	21.08	0	0	0	0	0	0
Pilot Gas (pph)	0.0043		0.0043	0.0197		0.0197	0	0	0	0	0	0	0	0	0
Pilot Gas (tpy)	0.019		0.019	0.0864		0.0864	0	0	0	0	0	0	0	0	0
Subtotal Flare (pph)	0.3804	0.694	45.8984	1.7345	3.1638	<mark>209.2427</mark>	4.27	7.64	160.4	0	0	0	0	0	0
Subtotal Flare (tpy)	0.1839	0.3042	6.0495	0.8382	1.3869	27.5785	1.87	3.34	21.08	0	0	0	0	0	0
Total Flare (pph)		46.97		214.14				172.31			0		0		
Total Flare (tpy)		6.54			29.8			26.29		0			0		

See reverse side for calculation notes.

1) Based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf; *) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012); #) Assumes H2S is converted to SO2 at selected control efficiency; SO2 emissions based on mass balance; +) Assumes H2S Destruction Efficiency equals flare destruction efficiency;



Calculation Tool for Flare Emissions for Oil & Gas Production Sites All emission factors based on AP-42, Emission factors for NOx, CO & VOC, Table 13.5-1, (December 2016); https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05_12-13-16.pdf or https://www.tceq.texas.gov/assets/ public/comm_exec/pubs/rg/rg360/rg36011/rg-360a.pdf 1) Information included in calculation tool must be based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas used has a negligible amount of VOC's and 0.25 grains H2S/100 scf; 3) SO₂ calculations assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance; 4) H₂S calculations assume H₂S Destruction Efficiency equals flare destruction efficiency;

#### Sample Calculations

NOx pph = hourly gas routed to flare (MMBtu/hr) * NOx Emission factor (lbs/MMBtu)

- = 1(MMBtu/hr) * 0.068 (lbs/MMBtu)
- = 0.068 lbs/hr

NOx tpy = annual gas routed to flare (MMBtu/yr) * NOx Emission factor (lbs/MMBtu) * 1/lbs/ton)

- = 1000 (MMBtu/yr) * 0.068 (lb/MMBtu) * 1/2000 (lbs/ton)
- = 0.034 tpy

SO₂ pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/lb

- -mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60⁰F, 1 atm * Conversion Rate of H₂S to SO₂ lb-mol SO₂/lb-mol H₂S * Molecular Weight of Sulfur Dioxide (64 lb SO₂/lb-mol SO₂)
- = 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * 0.95 lb-mol SO₂/lb-mol H₂S * 64 lb/lb-mol

#### Residual

H₂S pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/

lb-mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60⁰F, 1 atm * (100-(Flare Control Efficiency))/100) * Molecular Weight of Hydrogen Sulfide (34 lb H₂S/lb-mol H₂S)

= 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * (100-95%/100) * 34 lb/lb-mol

Flare	, Vapor Combustion D	evices & Enclosed Comb	oustion Devices Emission	n Factors
Contaminant	Assist Type	Waste Gas Stream Heat Value (Btu/scf)	AP-42 Emission Factor (Ib/MMBtu)	TCEQ Emission Factor (lb/MMBtu)
NOx	Steam	≥1000	0.068	0.0485
	Steam	<1000	0.068	0.068
	Air or Unassisted	≥1000	0.068	0.138
	Air or Unassisted	<1000	0.068	0.0641
CO	Steam	≥1000	0.31	0.3503
	Steam	<1000	0.31	0.3465
	Air or Unassisted	≥1000	0.31	0.2755
	Air or Unassisted	<1000	0.31	0.5496
VOC	Air & Steam Assist	≥300	0.66	

#### Technical Disclaimer

This document is intended to help you accurately determine flares, enclosed combustion devices and vapor combustion units emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of flares, enclosed combustion devices and vapor combustion units emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.



Date:Nov 20, 2024Company Name:Tap Rock Operating, LLCFacility Name:High Life CTB

Permit Number: NSR-NA Al# if Known: NA Elevation (ft.): 3,510

Emission	Unit ID:	FUG-1	Filla	all gre	en/bl	ue bo	xes c	hang	jing	defa	ault v	values	as al	opro	pria	te.			
Fugitive	Volatile	Organic	Com	npound	ls (VO					Ben:	zene	(CH6) 8	& Hye					Emiss	ions
				_			ontroll									olled			
						Total I		CH	•		H ₂ S	VC			al HA		CH ₆		H ₂ S
	6VOC %HA	P%CH ₆	%H ₂		TPY				TPY	PPH	TPY	_	TPY	PPH	_			' PPH	_
	4.36%	_		0.96		0 0		-		0	0	0	0	0	0	0	0	0	0
	100%			0		0 0				0	0	0	0	0	0	0	0	0	0
3	100%			5.07		0 0				0	0	0	0	0	0	0	0	0	0
Water/Oil	1%			0	0.01					0	0	0	0	0	0	0	0	0	0
	Totals	; 		6.03	26.41		ľ	ľ		0	0	0	0	0	0	0	0	0	0
						ntrollec	1						_				AP & CI	,	
Equipment Type	Service ^a	EF ^b PPH/So		No. of Sources	VOC PPH	VOC TPY	HAP PPH	HAF TPY		-	CH ₆ TPY	Contro Efficienc			/OC ГРҮ	HAP PPH	HAP TPY	CH ₆	CH ₆ TPY
Valves	Gas	0.00992	07	304	0.7347	3.218	0	0	0	0		0%	(	)	0	0	0	0	0
	Heavy Oil	0.00001	852	0	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
	Light Oil	0.00551	15	608	3.351	14.6774	0	0	0	0		0%	(	)	0	0	0	0	0
	Water/Oil	0.00021	605	101	0.0002	0.0009	0	0	0	0		0%	(	)	0	0	0	0	0
Subtotals					<mark>4.0859</mark>	17.896	0	0	0	0			(	)	0	0	0	0	0
Pump Seals	Gas	0.00529	104	0	0	0	0	0	0	0		0%	(	)	0	0	0		0
	Heavy Oil	0.028659	98	0	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
	Light Oil	0.02865	98	2	0.0573	0.251	0	0	0	0		0%	(	)	0	0	0	0	0
	Water/Oil	0.000052	291	2	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
Subtotals					0.0573	0.251	0	0	0	0			(	<b>)</b>	0	0	0	0	0
Connectors	Gas	0.000440	092	983	0.1056	0.4625	0	0	0	0		0%	(	)	0	0	0	0	0
	Heavy Oil	0.00001	653	0	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
	Light Oil	0.000462	297	1,967	0.9107	3.9889	0	0	0	0		0%	(	)	0	0	0	0	0
	Water/Oil	0.000242	251	328	0.0008	0.0035	0	0	0	0		0%	(	)	0	0	0	0	0
Subtotals						4.4549		0	0	0			(	)	0	0	0	0	0
Flanges	Gas	0.000859	979	37	0.0077	0.0337	0	0	0	0		0%	(	)	0	0	0	0	0
	Heavy Oil	0.00000	086	0	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
	Light Oil			74	<mark>0.0179</mark>	0.0784		0	0	0		0%	(	)	0	0	0	0	0
	Water/Oil	0.00000	639	12	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
Subtotals					0.0256	0.1121	0	0	0	0			(		0	0	0	0	0
Open Ends		0.00440		28	0.0301	0.1318		0	0	0		0%	(	)	0	0	0	0	0
	Heavy Oil			0	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
	Light Oil			55	<mark>0.1698</mark>	0.7437		0	0	0		0%	(	)	0	0	0	0	0
	Water/Oil	0.00055	115	9	0		0	0	0	0		0%	(	)	0	0	0	0	0
Subtotals					<mark>0.1999</mark>	0.8755	0	0	0	0			(	)	0	0	0	0	0
Other ^c	Gas	0.01940		17	0.0803	0.3517		0	0	0		0%	(	)	0	0	0	0	0
	Heavy Oil	0.00007	055	0	0	0	0	0	0	0		0%	(	)	0	0	0	0	0
	Light Oil			34	0.5622	2.4624	0	0	0	0		0%	(	)	0	0	0	0	0
	Water/Oil	0.03086	44	6		0.0083		0	0	0		0%	(	)	0	0	0	0	0
Subtotals						<mark>2.8224</mark>		0	0	0					0	0	0	0	0

Based on: 1995 Protocol for Equipment Leak Emission Estimates, Table 2.4 Version Date: 6/23/16; See next page for calculation notes.



Calculation Tool for Fugitive Emissions Oil & Gas Production Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), Table 2-4; available at the EPA Web site at <u>https://www3.epa.gov/ttn/chief/efdocs/equiplks.pdf</u>

a) Service categories are defined as follows:

1) Gas/vapor - material in a gaseous state at operating conditions;

2) Light liquid - material in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure over 0.3 kilopascals (kPa) at 200C is greater than or equal to 20 weight percent;

3) Heavy liquid - not in gas/vapor service or light liquid service.

4) Water/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

b) These factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

c) The "other" equipment type was derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

d) Note that the average factors generally determine total hydrocarbon emissions. Therefore, you may need to multiply the calculated emission rates by the stream's weight percentage of VOC compounds to determine total VOC emissions. Please attach a copy of the appropriate gas and oil analysis with the stream's weight percentage of VOC compounds identified.

VOC Sample Calculation

For 10 Valves in Gas Service with a gas stream weight percentage of 25% VOC

Emission Factor (EF) lb/hr=0.0045 kg/hr * 2.2046 lbs/kg

Gas Valves Uncontrolled Emissions

- pph EF (Valves in Gas Service) * Number of Valves in Gas Service & VOC wt% 0.0099207 lb/hr * 10 valves = 0.099207 lb/hr * 25%/100
- tpy EF (Valves in Gas Service) * Number of Valves in Gas Service * 8760 hrs/yr * 1ton/2000 lbs 0.0099207 lb/hr * 10 valves * 8760 hrs/yr * 1/2000 ton/lbs = 0.4345 tons/yr * 25%/100

Total Uncontrolled Fugitive Emissions for all Service types in Gas Service

- pph (Uncontrolled pph Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100
- tpy (Uncontrolled tpy Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100

Technical Disclaimer

This document is intended to help you accurately determine equipment leak fugitive emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how piping components work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of equipment leak fugitive emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.



#### New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Date: Company Facility N	/ Name:	ov 20, 202 Tap Rock High Life	Operatin	g, LLC									AI# if Kr	Number:N nown: N on (ft.): 3	IA			
					Total Re	equested	Emission	s For All R	legulated	Facility E	quipmen	nt (NSR Re	quest)					
Emission	N	Э _х	С	0	VC	C	S	Э _х	T	SP	PN	N ₁₀	PN	12.5	н	2S	Tota	IHAP
Unit	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Engines	5.6	24.56	6.74	29.48	9.78	42.82	0	0.08	0.6	2.6	0.6	2.6	0.6	2.6	-	-	2.2	9.66
Heaters	1.18	5.15	0.99	4.34	0.06	0.28	0	0	0.09	0.38	0.09	0.38	0.09	0.38	-	-		
Oil Tanks Flash	-	-	-	-	0	0	-	-	-	-	I	-	I	-				
Oil Tanks W & S	_	-	-	_	0	0	_	-	I	-	I	-	I	-				
Water Tks Flash	-	-	-	-	0	0	-	-	-	-	-	-	-	-				
Water Tks W & S	-	-	-	-	0	0	-	-	-	-	-	-	I	-				
Skim or Slop Tank	-	-	-	-			-	-	-	-	-	-	-	-				
GBS	-	-	-	-			-	-	-	-	-	-	-	-				
ECD	0	0	0	0	0	0	0	0										
νςυ	0	0	0	0	0	0	0	0			-							
то	0	0	0	0	0	0	0	0										
Flares	46.97	6.54	214.14	29.8	172.31	26.29	0	0										
Fugitives	-	-	-	-	6.03	26.41									0	0	0	0
SSM						10												
Malf.	-	-	-	-	-	10	-	-	-	-	l	-	I	-	_	-	_	-
Unpaved Haul Rds.	_	-	I	_	-	-	_	-	0	0	0	0	0	0	-	_	-	-
Paved Haul Rds.	-	-	-	-	-	-	_	-	0	0	0	0	0	0	-	-	0	0
Oil Load	-	-	-	-			-	-	-	-	-	-	-	-				
Water Loading	_	-	-	-			_	-	_	-	-	-	_	-				
Amine Unt	-	-	-	-	0	0	-	-	-	-	I	-	I	-	0	0	0	0
Amine Reb	0	0	0	0	0	0	0	0	0	0	0	0	0	0		-		
Dehy Unit	-	-	-	-			-	-	-	-	l	-	ļ	-				
Dehy Reb.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-		
Totals	53.75	36.25	221.87	63.62	188.18	115.8	0	0.08	0.69	2.98	0.69	2.98	0.69	2.98	0	0	2.2	9.66

A red-outlined cell indicates that the facility exceeds the allowable emission limits for that pollutant for the requested permitting action and the application cannot be approved as proposed.

#### Supplemental Calculations High Life CTB November 2024

turn/tank/yr

234

1,948

gal/yr/tank 9,836,750

81,823,875

#### Production

	bbl/yr	bbl/d	bbl/hr
Oil	1,405,250	3,850	160.4
Produced Water	7,792,750	21,350	889.6
-			
	MMscf/yr	MMscf/d	Mscf/hr
Gas	5,110	14.0	583.3

LP	Flare	Calcu	lations

LP Flare Calculations												DRE =	98%
			Uncontr	olled W&S						Total Unco	ntrolled to	Total Cont	rolled afte
Blower DT>	Uncontrolled Fla	ash Downtime	Dov	vntime	Total Uncontro	olled Downtime	Capture Efficiency	Total Uncontr	olled to Flare	Flare b	y fluid	Fla	are
Unit No.	pph	tpy	pph	tpy	pph	tpy	%	pph	tpy				
TK-1	23.53	103.06	9.64	42.22	33.17	145.29	100%	33.17	145.29				
TK-2	23.53	103.06	9.64	42.22	33.17	145.29	100%	33.17	145.29				
TK-3	23.53	103.06	9.64	42.22	33.17	145.29	100%	33.17	145.29				
TK-4	23.53	103.06	9.64	42.22	33.17	145.29	100%	33.17	145.29				
TK-5	23.53	103.06	9.64	42.22	33.17	145.29	100%	33.17	145.29				
TK-6	23.53	103.06	9.64	42.22	33.17	145.29	100%	33.17	145.29	199.02	871.72	3.98	17.43
PWTK-1	1.56	6.85	1.94	8.48	3.50	15.33	100%	3.50	15.33				
PWTK-2	1.56	6.85	1.94	8.48	3.50	15.33	100%	3.50	15.33				
PWTK-3	1.56	6.85	1.94	8.48	3.50	15.33	100%	3.50	15.33				
PWTK-4	1.56	6.85	1.94	8.48	3.50	15.33	100%	3.50	15.33	14.00	61.30	0.28	1.23
										213.02	933.02	4.26	18.66

	MMSCFD (from ProMax)	(scf/hr)	Mscf/hr	MMscf/yr	Btu/scf	MW (lb/lbmol)	VOC wt%	VOC lb/hr	VOC tpy	wt% Benzene	wt% Toluene	wt% Ethylbenz ene	wt% Xylene	wt% n-Hexane
Tank Blower DT (10%) (FL-LPa)	0.064352	2681.32	2.68	2.35	2064	41.46	72.72	213.29	93.42	0.0000	0.0000	0.0000	0.0000	0.0000
VRU DT (10%) (FL-LPb)	0.120698	5029.07	5.03	4.41	2029	40.23	71.53	381.83	167.24	0.0000	0.0000	0.0000	0.0000	0.0000
Total Uncontrolled FL-LP			7.71	6.75				595.12	260.66					
Total Controlled FL-LP								11.90	5.21					

HP Flare Calculations														
Sales Gas DT [3%] (FL-HP)	14.0	583333.33	583.33	153.30	1157	21.39	24.36	8020.00	1053.83	0.0000	0.0000	0.0000	0.0000	0.0000
Total Uncontrolled FL-HP								8020.00	1053.83					
Total Controlled FL-HP								160.40	21.08					
										_				
Total Controlled from Flares (F	L-LP + FL-HP)							172.30	26.29					

#### Flare HAP Calculations (uncontrolled tpv)

riale har calculations (uncontrolled tpy)									
Stream	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Acetaldehyde	Acrolein	Total HAP
Tank Blower DT to FL-LPa	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total VRU DT to FL-LPb	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total to FL-LP	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total to FL-HP	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Flare HAP Calculations (controlled tpy)									
Stream	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Acetaldehyde	Acrolein	Total HAP
Tanks (FL-LPa)	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total VRU DT to FL-LPb	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total from FL-LP	0.000	0.000	0.000	0.000	0.000	-	-	-	0.000
Total from FL-HP	0.000	0.000	0.000	0.000	0.000	-	-	-	0.0000
Other HAP Calculations (controlled tpy)									
Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Acetaldehyde	Acrolein	Total HAP
ENG-1 (G3516J)									
ENG-2 (G3516J)									
GEN-1 (21.9L)									
GEN-2 (21.9L)									
GEN-3 (21.9L)									
GEN-4 (21.9L)									
FUG-1									
Controlled HAPs Grand Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Truck Loading LACT to pipeline is Normal Operations

	Capacity	#/yr		Vo
Oil Trucks	180	35	5 trucks/day for 7 days	2
Water Trucks	130	35	5 trucks/day for 7 days	1
Total		70		

	Volume (gal)
/S	264,600
/S	191,100

#### Stack Parameters (General)

	MMBtu/hr	F-Factor (wscf/MMBtu)*	Temp (F)	Diam (ft)	Flow (acfh)	Flow (acfm)	Flow (acfs)	Velocity (fps)
HT-1	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-2	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-3	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-4	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-5	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-6	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-7	1.50	10610	460	1.0	28157	469	7.8	10.0
HT-8	1.50	10610	460	1.0	28157	469	7.8	10.0
ENG-1 (G3516J)			902	0.67		2636	43.9	125.9
ENG-2 (G3516J)			902	0.67		2636	43.9	125.9
GEN-1 (21.9L)			1382	0.33		2995	49.9	572.0
GEN-2 (21.9L)			1382	0.33		2995	49.9	572.0
GEN-3 (21.9L)			1382	0.33		2995	49.9	572.0
GEN-4 (21.9L)			1382	0.33		2995	49.9	572.0
FL-LP			1500	0.50		1875	31.3	159.2
FL-HP	IP		1500	0.67		15960	266.0	754.5

* 40 CFR 60, App A-7, Table 19-2

	F _d		Fw		Fc			
Fuel Type	dscm/J	dscf/10 ⁶ Btu	wscm/J	wscf/10 ⁶ Btu	scm/J	scf/10 ⁶ Btu		
Coal:								
Anthracit	e ² 2.71 × 10 ⁻⁷	10,100	2.83 × 10 ⁻⁷	10,540	0.530 × 10 ⁻⁷	1,97		
Bituminu	s ² 2.63 × 10 ⁻⁷	9,780	2.86 × 10 ⁻⁷	10,640	0.484 × 10 ⁻⁷	1,80		
Lignite	2.65 × 10 ⁻⁷	9,860	3.21 × 10 ⁻⁷	11,950	0.513 × 10 ⁻⁷	1,91		
Oil ³	2.47 × 10 ⁻⁷	9,190	2.77 × 10 ⁻⁷	10,320	0.383 × 10 ⁻⁷	1,42		
Gas:								
Natural	2.34 × 10 ⁻⁷	8,710	2.85 × 10 ⁻⁷	10,610	0.287 × 10 ⁻⁷	1,04		
Propane	2.34 × 10 ⁻⁷	8,710	2.74 × 10 ⁻⁷	10,200	0.321 × 10 ⁻⁷	1,19		
Butane	2.34 × 10 ⁻⁷	8,710	2.79 × 10 ⁻⁷	10,390	0.337 × 10 ⁻⁷	1,25		
Wood	2.48 × 10 ⁻⁷	9,240			0.492 × 10 ⁻⁷	1,83		
Wood Bark	2.58 × 10 ⁻⁷	9,600			0.516 × 10 ⁻⁷	1,92		
Municipal	2.57 × 10 ⁻⁷	9,570			0.488 × 10 ⁻⁷	1,82		
Solid Waste								

#### Fugitive Emissions

#### **EQUIPMENT & COMPONENT COUNTS¹**

Equipment Type	Count	Valves	Connectors	OELs	PRVs ³	Flanges ²	Pump Seals
Wellhead(s)	8	88	288	8	0	16	0
Separator(s)	8	272	848	48	16	32	0
Meter(s)/Piping	2	28	102	2	2	4	0
Compressor(s)	2	146	358	6	8	12	0
In-Line Heater(s)	8	112	520	16	8	16	0
Dehydrator(s)	0	0	0	0	0	0	0
Combustor(s) ⁴	2	28	102	2	2	4	0
Oil Tank(s) ⁵	6	204	636	6	12	24	0
Produced Water Tank(s) ⁵	4	136	424	4	8	16	0
TOTAL COMPONENTS:		1014	3278	92	56	124	0

#### COMPONENT COUNT BY PROCESS STREAM⁷

Process Stream Gas %:	30%
Process Stream Oil %:	60%
Process Stream Water %:	10%

Component	Gas	Heavy Oil	Light Oil	Water/Oil
Connectors	983	0	1967	328
Flanges	37	0	74	12
OELs	28	0	55	9
Pump Seals	0	0	0	0
Valves	304	0	608	101
Other ³	17	0	34	6

#### **NOTES**

- 1. Component counts estimated using Table W-1B of 40 CFR 98 Subpart W and conservative assumptions/estimates.
- 2. Flanges estimated as 3% of connector values.
- 3. PRVs are estimated under the "Other" category.
- 4. Combustor component counts are estimated using Table W-1B values under "Meters/Piping"
- 5. Storage tank component counts are estimated using Table W-1B values under "Separators"
- 6. Component count values allocated into process stream service using estimated average.

### Section 6.a

#### **Green House Gas Emissions**

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

**Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC)** applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

#### **Calculating GHG Emissions:**

**1.** Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

**2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

**4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

**5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

**6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following:

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

#### Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

#### Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

#### Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

### Section 7

### **Information Used to Determine Emissions**

#### Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- □ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

# **G3516J Gas Engine**

1029 bkW (1380 bhp) 1400 rpm 0.5 g/bhp-hr NOx (NTE)



Shown with optional equipment

### FEATURES AND BENEFITS

#### **Engine Design**

- Engine Design Built on G3500 LE proven reliability and durability
- Ability to burn a wide spectrum of gaseous fuels
- Robust diesel strength design prolongs life and lowers owning and operating costs
- Broad operating speed range at lower site air densitie (high altitude/ hot ambient temperatures)
- Higher power density improves fleet management
- Quality engine diagnostics
- Detonation-sensitive timing control for individual cylinders

#### Ultra Lean Burn Technology (ULB)

- ULB technology uses an advanced control system, a better turbo match, improved air and fuel mixing, and a more sophisticated combustion recipe to provide:
  - Lowest engine-out emissions
  - Highest fuel efficiency
  - Improved altitude and speed turndown
  - Stable load acceptance and load rejection

#### Emissions

- Meets U.S. EPA Spark Ignited Stationary NSPS emissions for 2010 and some non-attainment areas
- Lean air/fuel mixture provides best available emissions and fuel efficiency for engines of this bore size

#### **Advanced Digital Engine Management**

ADEM A3 engine management system integrates speed control, air/fuel ratio control, and ignition/detonation controls into a complete engine management system. ADEM A3 has improved: user interface, display system, shutdown controls, and system diagnostics.

#### **Full Range of Attachments**

Large variety of factory-installed engine attachments reduces packaging time

#### **Cat® Engine Specifications** V-16, 4-Stroke-Cycle

Bore 170 mm (6.7 in)

Stroke 190 mm (7.5 in)

**Displacement** 69 L (4211 cu. in)

Aspiration Turbocharged-2 Stage aftercooled

**Digital Engine Management Govenor and Protection** Electronic (ADEM[™] A3)

Combustion Lean Burn

#### Testing

Every engine is full-load tested to ensure proper engine performance.

#### **Gas Engine Rating Pro**

GERP is a PC-based program designed to provide site performance capabilities for Cat® natural gas engines for the gas compression industry. GERP provides engine data for your site's altitude, ambient temperature, fuel, engine coolant heat rejection, performance data, installation drawings, spec sheets, and pump curves.

#### **Product Support Offered Through Global Cat Dealer** Network

- More than 2,200 dealer outlets
- Cat factory-trained dealer technicians service every aspect of your petroleum engine
- Cat parts and labor warranty
- Preventive maintenance agreements available for repair beforefailure options
- S•O•S[™] program matches your oil and coolant samples against Caterpillar set standards to determine: - Internal engine component condition
  - Presence of unwanted fluids
  - Presence of combustion by-products
  - Site-specific oil change interval

#### Web Site

For all your petroleum power requirements, visit www.cat.com/oilandgas

#### **Cooling System Capacity** Total ...... 197.8 L (52.8 gal)

JW ..... 178 L (47.6 gal) SCAC ..... 19.8 L (5.2 gal)

Lube Oil System (refill) 423 L (112 gal)

**Oil Change Interval** 1000 hrs

**Rotation (from flywheel end)** Counterclockwise

**Flywheel** SAE No.21

**Flywheel Housing** SAE No.00

**Flywheel Teeth** 183



### STANDARD EQUIPMENT

## G3516J Gas Engine

#### Air Inlet System

Axial flow air cleaners Single element canister type with service indicator

#### **Cooling System**

Two-stage charge air cooling: First stage — JW + OC + 1st stage AC Second stage — 2nd stage AC Engine cooling and charge air cooling thermostats

**Exhaust System** Water-cooled exhaust manifolds Dry turbocharger housings Water-cooled exhaust elbow

#### **Flywheels and Housings**

SAE No. 21 flywheel SAE No. 00 flywheel housing SAE standard rotation

Fuel System

7-40 psig gas supply Electronic fuel metering valve Gas pressure regulator Gas shutoff valve Fuel System

### **OPTIONAL EQUIPMENT**

Air Inlet System Rain shield Round air inlet adapters

**Charging system** CSA alternator (24V.65A)

**Connections** Mechanical joint assembly connections

Exhaust System Flexible fittings Elbows Flanges Mufflers

Fuel System Fuel filter

#### Mounting

Rails

Instrumentation

Remote-mounted Advisor control panel Interconnect harness

#### **Lubrication System**

Crankcase breather - top mounted Oil cooler Oil filter - RH Shallow oil pan Oil sampling valve Turbo oil accumulator

#### **Power Take-Offs**

Front housing, two sided Front lower LH accessory drive

General

Paint — Cat yellow Crankshaft vibration damper and guard

#### Lubrication System

Lubricating oil Oil bypass filter Oil pan drain Deep sump oil pan Air prelube pump

**Power Take-Offs** Front stub shaft

**Starting System** 90 psi starter 150 psi starter

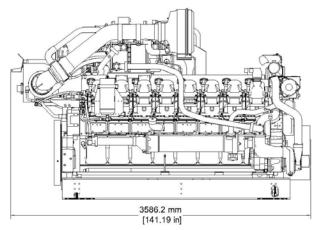
**General** Special paint

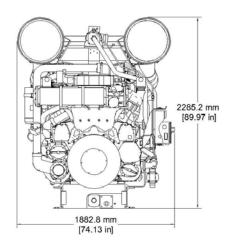
**EU Certification** EEC DOI certification

**Torsional Vibration Analysis** 

### **BUILT FOR IT.**




## **G3516J Gas Engine**


Performance Number		EM1495-01
Rating		0.5 g NOx NTE
Engine Power	bkW (bhp)	1029 (1380)
Engine Speed	rpm	1400
(100°F)	m (ft)	1405 (4610)
Speed Turndown @ Max Altitude, Rated		
Torque, and 38°C (100°F)	%	25
Aftercooler Temperature		
Stage 1 (JW)	°C (°F)	99 (210)
Stage 2 (SCAC)	°C (°F)	54 (130)
Emissions (NTE)*		
NOx	g/bkW-hr (g/bhp-hr)	0.67 (0.50)
CO	g/bkW-hr (g/bhp-hr)	3.26 (2.43)
CO ₂	g/bkW-hr (g/bhp-hr)	631 (471)
VOC**	g/bkW-hr (g/bhp-hr)	0.64 (0.48)
Fuel Consumption @ 100 % Load***	MJ/bkW-hr (Btu/bhp-hr)	10.33 (7301)
Heat Balance @ 100 % Load		
Heat Rejection to Jacket Water	bkW (Btu/min)	660 (37,553)
Heat Rejection to Oil Cooler	bkW (Btu/min)	79 (4472)
Heat Rejection to Aftercooler		
Stage 1 (JW)	bkW (Btu/min)	141 (8046)
Stage 2 (SCAC)	bkW (Btu/min)	89 (5067
Heat Rejection to Exhaust LHV To 25°C (77°F)	bkW (Btu/min)	903 (51,380)
Heat Rejection to Atmosphere	bkW (Btu/min)	93 (5313)
Exhaust System		
Exhaust Gas Flow Rate	m ³ /min (scfm)	228.52 (8070)
Exhaust Stack Temperature	°C (°F)	444 (830)
Intake System		
Air Inlet Flow Rate	m ³ /min (scfm)	88.07 (3110)
Gas Pressure	kPag (psig)	48-276 (7-40)

All technical data is based on 100% load and speed

** Volatile organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJJ *** ISO 3046/1







Note: General configuration not to be used for installation

Dimensions		
Length	3586.2 mm	141.19 in
Width	1882.8 mm	74.13 in
Height	2285.2 mm	89.97 in
Weight	9008.9 Kg	19,861lbs

#### **Rating Definitions and Conditions**

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions.

Conditions: Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in Hg) and 15°C (59°F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in Hg) and 15.6°C (60.1°F). Air flow is based on a cubic foot at 100 kPa (29.61 in Hg) and 25°C (77°F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in Hg) and stack temperature.

To find your nearest dealer, please visit: www.cat.com

Subject to change without notice. LEHW0318-00 © 2016 Caterpillar All Rights Reserved. CAT, CATERPILLAR, their respective logos, "Caterpillar Yellow" and the POWER EDGE trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.





### ICE CATALYST SIZING PROGRAM

rev 2.1.3

Report Date: 9/14/2023



Customer Sales Pers Project Engine Na		7	erpillar	G3516	Housing Element Contact 6J 1280bhp	ERZ- Kevir	1524-3-40 n Carter	D				
Engine Powe	r	1280.0	BHP	A	ACFM	7564.0	CU. F1	/MIN	Exhaust 02		8.8	%
Exhaust Mas	s Flow	13290.0	LBS/H	R A	ACFH	453840	CU. F	T/HR	Exhaust CO2		6.4	%
Process Tem	perature	852.0	F	S	SCFM	3002.7	CU. F1	/MIN	Exhaust H20		11.6	%
Exhaust Pres	sure	14.5	PSI	S	SCFH	180159	CU. F	T/HR	Exhaust N2		73.2	%
Exhaust Dens	sity	0.0293	LBS/FT	^3 5	Std Temp	68.0	F	:	Max Pressure D	rop	12.0	in wc
Molecular We	eight	28.43	AMU	S	Std Pressure	14.6959	PS	SI	Propane in Fuel		5.17	%
ACS Part N OEM Part Type Geometry X Y	Name	R14.875X23 ERZ-1524-3 Propane Ox Rectangular 14.875in 23.875in	-400 idation	500-400	0 Layers Modules Guard B		1 2 No		Cell Count Depth	t		00cpsi 500in
Op	en Area	4.408	ft^2		Part Volur	ne	0.643	ft^3	Part V	5	47	lbs
Linea	r Velocity	1716	ft/min		Total Volu		1.286	ft^3	Total Weight		95	lbs
Pres	sure Drop	3.1	in wc		Space Velo	-	140123	GHSV				
		g/bhp	-hr	lb/ł		s/year	ppm	V	ppmvd	рр	mvd%C	2
	NOx	0.50		1.4		.18	65.60		74.20	40.00		
	C0	2.60		7.3		2.16 560.25		-	633.76		341.63	
	/0C	1.07		3.0		3.23	146.4	4	165.66		89.30	
	min %DRE	g/bhp	hr	lb/ł	Target Ei	s/year	ppm	V	ppmvd	nn	mvd%C	12
NOx	0.00	0.50		1.4		.18	65.60		74.20	77	40.00	~~
CO	76.92	0.60		1.6		.42	129.2		146.25		78.84	
VOC	34.58	0.70		1.9	8 8	.66	95.80	)	108.37		58.42	
					Emissions w	ith Catal	yst					
	%DRE	g/bhp-	-hr	lb/ł	nr tons	/year	ppm	V	ppmvd	рр	mvd%C	)2
NOx	0.00	<0.50	)	<1.4	41 <6	.18	<65.6	D	<74.20		<40.00	
CO	76.92	<0.60		<1.6		.42	<129.2		<146.25		<78.84	
VOC	34.58	<0.70	)	<1.9	98 <8	.66	<95.8	0	<108.37	<58.42		

Safety Value: 2 VOC Molecular Weight: 44.1 O2 Reference Value: 15 Uptime (TPY): 100% (8760 hours)

<b>PSI</b> HEAVY-DUTY	Rev:	E		<u>21.</u>	<u>9</u> [	
	Ui	nits		21.9	9L	
	Std	Metric	15	500	180	00
General Engine Data						
Туре	N	√A		V-type 4	cvcle	
Number of cylinders		V/A		12		
Aspiration		V/A	Tur	bo Charge		d
Bore	in	mm	5.04	128	5.04	128
Stroke	in	mm	5.59	142	5.59	142
Displacement	in^3	IIIIII	1338	21.9	1338	21.9
Compression Ratio	N/A	L	1550	10.		21.9
Mean Piston Speed		(	4000			0.50
	ft/min	m/s	1398	7.1	1677	8.52
Gross Standby Power Rating ^{1,2,3} Per ISO 3046 at the Flywheel					-	
NG	Нр	kW	507	378	684	510
LP	Нр	kW	370	276	472	352
MEP (@ rated Load on NG)	psi	bar	200	13.8	225	15.5
MEP (@ rated Load on LP)	psi	bar	146	10.1	155	10.7
Gross Prime Power Rating ^{1,2,3} Per ISO 3046 at the Flywheel						
NG	Hp	kW	456	340	581	434
LP	Hp	kW	333	248	401	299
MEP (@ rated Load on NG)		bar	180	12.4	191	13.2
	psi					
MEP (@ rated Load on LP)	psi	bar	131	9.1	132	9.1
RPM Range (Min-Max)		PM		1500-		
Rotation Viewed from Flywheel		J/A		Counter C		
Firing Order	Ν	√A	1-12	2-5-8-3-10-	6-7-2-11-4	1-9
Dry Weight						
Fan to Flywheel	lb	kg	3638	1650	3638	1650
Rad to Flywheel	lb	kg	5238	2376	5238	2376
Wet Weight						
Fan to Flywheel	lb	kg	3813	1706	3813	1706
Rad to Flywheel	lb	kg	5760	2620	5760	2620
CG			0.00	2020	0.00	2020
Distance from FW housing	in	mm	24	602	24	602
Distance above center of crankshaft	in	mm	7	182	7	182
Engine Mounting			1	102		102
	lh ff	Nm	4425	6000	1105	6000
Maximum Allowable Bending Moment at Rear of Block	Ib ft	N m	4425	6000	4425	6000
Moment of Inertia About Roll Axis	lb ft^2			0.45		L
Flywheel housing		I/A		SAE N		
Flywheel		I/A		No.		
Number of Flywheel Teeth	Ν	I/A		16	0	
Exhaust System						
Туре			W	ater Coole	d Manifold	
Maximum allowable Back pressure	in HG	kPa	3	10.2	3	10.2
Standard Catalyst Back pressure	in HG	kPa	1.5	5.1	1.5	5.1
Exhaust Outlet Pipe Size		•		•	•	•
Maximum Turbine Inlet Temperature	F	С	1382	750	1382	750
Exhaust Flow at Rated Power	Ib/hr	kg/hr	3184	1444	4038	1832
Exhaust Flow at Rated Power @1350F	cfm	m^3/min	2427	68.7	2995	84.8
Air Induction System	GIII	11 3/11111	2721	00.1	2000	04.0
Maximum allowable Intake Air Restriction with Air Cleaner						
	in1100	kPa	F	1.04	F	1.04
Clean		кна	5	1.24	5	1.24
Distric	inH2O		45	074	45	074
Dirty	inH2O	kPa	15	3.74	15	3.74
Dirty Combustion Air required (entire engine) Combustion Air required (entire engine)			15 3004 763	3.74 1362 22	15 3810 968	3.74 1728 27

<b>PSI</b> HEAVY-DUTY	Rev:	E		21.	9L	1
		nits		21.9	וכ	
	_		45		180	<u>\</u>
	Std	Metric	15	00	180	0
ectrical System						
Minimum Recommended Battery Capacity		λH		20	0	
Cold Cranking Current						
Engine only	C	CA		100	00	
Engine with Drive train	C	CA		100	00	
Maximum Allowable Resistance of Starting Circuit	Oł	nms		0.00	)2	
Starting Motor Power	HP	kW	9.4	7	9.4	7
Battery Charging Alternator						
Voltage	V	olts		24	L	
Current		nps		45		
Coil primary Resistance		nns		0.59Ω ±		
Spark Plug p/n	0			IFR7F		
	inches	mm	015" ( 0			
Spark plug gap	inches	mm	.015 (-0	/+.008") .3	011111 (-0/+	·.∠mm)
boling System						
Coolant Capacity						
Engine only	gal	L	11.5	52.3	11.5	52.3
Engine with Radiator	gal	L	50.1	228	50.1	228
Engine Coolant Flow	gal/min	L/min	145	550	174	660
Water Pump Speed	R	PM	25	647	305	56
Heat rejected to Cooling water at rated Load	btu/min	kcal/sec	21451	90.1	25760	108.2
Maximum Intake Air Temperature (IAT)	F	C	155	68	155	68
ECU IAT Warning	F	Č	140	60	140	60
ECU IAT Shutdown	F	C	155	69	155	69
Maximum Coolant Friction Head External to the engine	psi	bar	5.8	0.4	5.8	0.4
Maximum Air Restriction Across a Radiator		mmH2O	0.5	12.8	0.5	12.8
Standard Thermostat Range	IIIHZO		0.5	12.0	0.5	12.0
	-		400	74	400	74
Cracking Temperature	F	C	160	71	160	71
Full Open Temperature	F	С	185	85	185	85
Maximum Output Pressure of Engine Water Pump		1				
Maximum Allowable Pressure Cap	psi	bar	14.7	1	14.7	1
Ambient Clearance Open Genset (water) (Air-to-Boil)						
Specified	F	С	142	61	142	61
Acutal	F	С			142	61
Ambient Clearance (Oil)						
Specified	F	С	142	61	142	61
Acutal	F	C		-	144	62
CAC Rise over Ambient (Charge)						02
Specified	F	С	15	9	15	9
Acutal	F	C	15	3	13	6
	F		000	140		-
Maximum Allowable Top Tank Temperature		C	230	110	230	110
ECU Warning	F	C	220	104	220	104
ECU Shutdown	F	С	230	110	230	110
Fan Power	HP	kW	24	17.9	42	31.3
Fan Diameter, including blades	in	mm	52	1321	52	1321
Fan Speed	R	PM	12	200	144	10
Cooling Fan Air Flow @ 1" Static H2O Pressure and 125F @ radiator	CFM	m^3/min	34,286	971	40,000	1,133
Charge Air Cooler						
Compressor Outlet Temperature	F	С	246	120	300	150
Compressor Flow Rate per CAC	lb/hr	kg/hr	1592	722	2019	916
Heat Rejection per CAC	btu/min		TBD		3040	53.5
	Dta/1111	11.4.4	100	1	0040	00.0

<b>IPSI HEAVY-DUTY</b>	Rev:	E	1	21,	.9L		
	1.01.	⊔∟		21.	QI		
	Std	Metric	15	00	-	1800	
ubrication System	ota	Metho	10		100	<u> </u>	
Oil Specification					Ash Gas er PI CD/CF o		
Oil Pressure							
Idle							
Min	Psi	Bar	13	0.9	13	0.9	
Мах	Psi	Bar	43.5	3	43.5	3	
Rated Speed		-			-		
Min	Psi	Bar	43.5	3	43.5	3	
Max	Psi	Bar	94.5	6.5	94.5	6.5	
Maximum Allowable Oil Temperature	F	С	250	121	250	121	
Engine Oil Capacity							
Min	Qts	L	34.75	33	34.75	33	
Max	Qts	L	42.25	40	42.25	40	
Oil Filter Capacity	Qts	L	7.5	7.1	7.5	7.1	
ECU Oil Pressure Warning ⁵	psi			30	0		
ECU Oil Pressure Shut Down ⁵	psi			2	5		
el System							
Fuel Consumption ⁶							
NG	Ft ³ /hr	kg/hr	3801	77	5400	110	
IP	Ft ³ /hr	kg/hr	1162	62	1511	81	
Maximum EPR Rated Pressure	psi	kPa	1.0	6.9	1.0	6.9	
Maximum Running pressure to Electronic Pressure Regulator (EPR)	inH2O	kPa	11.0	2.7	11.0	2.7	
Minimum Running pressure to EPR	inH2O	kPa	7.0	1.7	7.0	1.7	
Minimum Gas Supply Pipe Size				2 x 2"	NPT		
Maximum EPR Rated Pressure	psi	kPa	1.0	6.9	1.0	6.9	
Maximum Running Pressure to EPR	inH2O	kPa	11.0	2.7	11.0	2.7	
Minimum Running Pressure to EPR	inH2O	kPa	7.0	1.7	7.0	1.7	
Minimum LPG Supply Pipe Size ⁴				2 x 2"	NPT		
¹ Standby and overload ratings based on ISO3046	1		1				

¹Standby and overload ratings based on ISO3046.

² All ratings are gross flywheel horsepower corrected to 77°F at an altitude of 328feet with no cooling fan or alternator losses using heating value for NG of 1015 BTU/SCF.

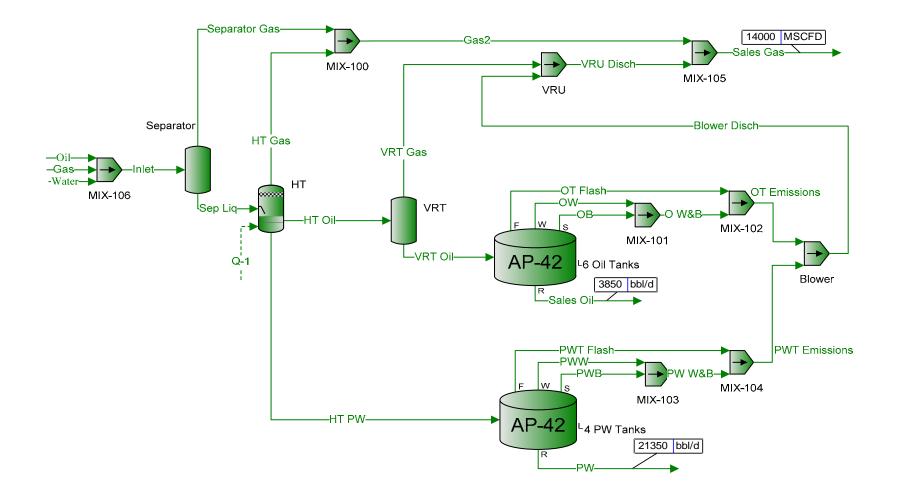
³ Production tolerances in engines and installed components can account for power variations of +/- 5%. Altitude, temperature and excessive exhaust and intake restrictions should be applied to power calculations.

 4  The preceeding pipe sizes are only suggestions and piping sizes may vary with temperature, pressure, distance from supply and application of local codes. Gas must be available at

adequate volume and pressure for engine at the EPR.

⁵ >1400RPM

⁶ See PSI HD Technical Spec. 56300002 - Fuel Specification. Gas properties for fuel consumption data: NG: Density =0.717 kg/m3, LHV = 927 BTU/scf; Propane: Density = 1.882 kg/m3, LHV = 2316 BTU/scf




Catalytic C	Converter (Tab	le 1A)			
Application	Power Generation				
Engine Model		Doosan 22L			
Engine Mechanical Power		581 HP			
Fuel	N	atural Gas (PQNG)			
Exhaust Flowrate	2050 lb/hr	x 2 exhausts = 4,099 lbs/hr			
Exhaust Temperature		1000 deg. F			
Catalyst Model		DC46			
Housing Part Number (2 per engine)	C390	05-LQ-010Y-0103-02			
Catalyst Part Number (4 per engine)	CBO	00-LQ-010Y-0103-01			
Catalyst Code		Y/300 cpsi			
Space Velocity (h-1)	118629 h-1				
Housing Material	304 Stainless steel				
Inlet Connection	3.5 inches				
Outlet Connection		3.5 inches			
Dimensions		Per drawing			
Back-pressure (Catalyst Only)		12 in. WC			
Back-pressure (Catalyst+ Housing)		19 in. WC			
Pre-Catalyst Emissions	NOx	5.3			
(g/bhp-h)	СО	5.04			
	NMNEHC	0.04			
Post-Catalyst (g/bhp-hr)	NOx	0.5			
	СО	0.6			
	VOC	0.7			
Limited Worrenty	(doc. X0000-0000-K2) one year or 8,000 hours of				
Limited Warranty		operation			
Guarantee By:		Brendan Filby			









Process Streams		Blower Disch	Gas	Gas2	HT Gas	HT Oil
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Blower		MIX-100	НТ	нт
	To Block:	VRU	MIX-106	MIX-105	MIX-100	VRT
Mole Fraction		%	%	%	%	%
Carbon Dioxide		0.532210	0.111202*	0.109404	0.197055	0.00509501
Nitrogen		0.00886744	0.499414*	0.496988	0.102075	0.000326215
Methane		12.9222	78.5947*	78.3983	46.0668	0.524105
Ethane		23.9522	10.8302*	10.9509	18.7407	1.05475
Propane		23.7751	4.70621*	4.87848	13.3761	2.24813
Isobutane		4.79613	0.819119*	0.818623	2.70098	0.913351
n-Butane		11.7311	1.69285*	1.78362	6.31831	3.04278
Isopentane		3.35131	0.540122*	0.480480	1.88973	2.00957
n-Pentane		3.75587	0.591751*	0.535077	2.18340	2.95665
i-Hexane		3.84934	1.61441*	0.552300	2.39280	6.67156
C7+		1.11197	0*	0.0986859	0.557622	80.0765
Water		10.2137 Ibmol/h	0* Ibmol/h	0.897122 Ibmol/h	5.47447	0.497223
Molar Flow					Ibmol/h	Ibmol/h
Carbon Dioxide		0.0371731	1.68360*	1.66732	0.0476927	0.0189496
Nitrogen		0.000619361	7.56115*	7.57411	0.0247049	0.00121328
Methane Ethane		0.902569	1189.93* 163.970*	1194.79 166.892	11.1494	1.94928 3.92288
		1.67298 1.66061			4.53576	
Propane Isobutane		0.334994	71.2522* 12.4015*	74.3482 12.4758	3.23738 0.653712	8.36136 3.39698
n-Butane		0.819379	25.6297*	27.1824	1.52920	11.3168
Isopentane		0.234078	8.17746*	7.32253	0.457366	7.47409
n-Pentane		0.262335	8.95913*	8.15460	0.528443	10.9965
i-Hexane		0.268863	24.4422*	8.41707	0.579123	24.8132
C7+		0.0776674	0*	1.50398	0.134960	297.825
Water		0.713395	0*	13.6722	1.32497	1.84930
Mass Fraction		%	%	%	%	%
Carbon Dioxide		0.566129	0.224523*	0.226867	0.279631	0.00186651
Nitrogen		0.00600413	0.641844*	0.656000	0.0922008	7.60691E-05
Methane		5.01062	57.8452*	59.2611	23.8292	0.0699886
Ethane		17.4081	14.9403*	15.5153	18.1700	0.264003
Propane		25.3398	9.52072*	10.1361	19.0185	0.825192
Isobutane		6.73781	2.18420*	2.24191	5.06192	0.441894
n-Butane		16.4804	4.51401*	4.88467	11.8412	1.47214
Isopentane		5.84426	1.78782*	1.63341	4.39622	1.20690
n-Pentane		6.54976	1.95872*	1.81902	5.07941	1.77569
i-Hexane		8.01779	6.38263*	2.24259	6.64876	4.78574
C7+		3.59191	0*	0.621432	2.40291	89.0819
Water		4.44745	0*	0.761526	3.18005	0.0745643
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide		1.63597	74.0942*	73.3779	2.09893	0.833964
Nitrogen		0.0173504	211.813*	212.177	0.692068	0.0339880
Methane		14.4794	19089.3*	19167.4	178.864	31.2712
Ethane		50.3050	4930.42*	5018.29	136.386	117.957
Propane		73.2257	3141.91*	3278.43	142.754	368.699
Isobutane		19.4706	720.801*	725.124	37.9952	197.440
n-Butane		47.6241	1489.66*	1579.90	88.8807	657.760 539.246
Isopentane		16.8884	589.994*	528.312	32.9984	
n-Pentane i-Hexane		18.9272	646.390* 2106.31*	588.345 725 344	38.1265	793.387
		23.1694 10.3797	2106.31* 0*	725.344	49.9061	2138.29
C7+ Water		10.3797 12.8520	0* 0*	200.996 246.308	18.0364 23.8697	39802.2 33 3156
יימוכו		12.0020	U	240.300	23.0097	33.3156

Process Streams		Blower Disch	Gas	Gas2	HT Gas	HT Oil
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Blower		MIX-100	НТ	НТ
	To Block:	VRU	MIX-106	MIX-105	MIX-100	VRT
Property	Units					
Temperature	°F	97.1416	85.8*	98.2449	135*	135
Pressure	psig	-1.43595	121.9*	32	32*	32
Mole Fraction Vapor	%	95.3697	100	100	100	0
Mole Fraction Light Liquid	%	0.682411	0	0	0	100
Mole Fraction Heavy Liquid	%	3.94789	0	0	0	0
Phase Mole Fraction	%	100	100	100	100	100
Molecular Weight	lb/lbmol	41.3727	21.7970	21.2231	31.0134	120.133
Mass Density	lb/ft^3	0.0974076	0.526947	0.167283	0.231303	46.9665
Molar Flow	lbmol/h	6.98467	1514.00	1524.00	24.2027	371.925
Mass Flow	lb/h	288.975	33000.7	32344.0	750.609	44680.4
Vapor Volumetric Flow	ft^3/h	2966.66	62626.3	193349	3245.14	951.324
Liquid Volumetric Flow	gpm	369.869	7807.96	24105.8	404.588	118.607
Std Vapor Volumetric Flow	MMSCFD	0.0636137	13.7890*	13.8800	0.220429	3.38735
Std Liquid Volumetric Flow	sgpm	1.13927	186.010	184.295	3.43651	114.273
Compressibility		0.942526	0.965237	0.989470	0.981088	0.0187160
Specific Gravity			0.752594	0.732777	1.07081	0.753046
API Gravity						47.9805
Enthalpy	Btu/h	-369775	-5.26710E+07	-5.30518E+07	-1.03208E+06	-3.09326E+07
Mass Enthalpy	Btu/lb	-1279.61	-1596.05	-1640.24	-1374.99	-692.308
Mass Cp	Btu/(lb*°F)	0.432106	0.497214	0.492703	0.468799	0.484911
Ideal Gas CpCv Ratio		1.12949	1.23418	1.23750	1.16051	1.04525
Dynamic Viscosity	cP		0.0108031	0.0109704	0.0105871	0.467303
Kinematic Viscosity	cSt		1.27985	4.09400	2.85743	0.621140
Thermal Conductivity	Btu/(h*ft*°F)		0.0179753	0.0182704	0.0164302	0.0629046
Surface Tension	lbf/ft					0.00148122?
Net Ideal Gas Heating Value	Btu/ft^3	2058.61	1187.44	1149.85	1596.10	5958.51
Net Liquid Heating Value	Btu/lb	18692.5	20608.8	20490.7	19381.9	18659.7
Gross Ideal Gas Heating Value	Btu/ft^3	2242.14	1307.72	1267.47	1746.21	6367.43
Gross Liquid Heating Value	Btu/lb	20376.4	22703.0	22594.3	21219.0	19951.4

Process Streams	HT PW	Inlet	O W&B	OB	Oil
Composition Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total From Bloc		MIX-106	MIX-101	6 Oil Tanks	
To Block		Separator	MIX-101 MIX-102	MIX-101	 MIX-106
Mole Fraction	%	%	%	<u>%</u>	<u>%</u>
Carbon Dioxide	0.000175739	0.00894659	0.116533	0.116533	0.009*
Nitrogen	2.96076E-06		0.000117418		0.009
Methane	0.00266193	6.23938	2.40080	2.40080	1.981*
Ethane	0.00126802	0.891368	33.1296	33.1296	1.923*
Propane	0.000618120	0.431609	31.7807	31.7807	3.148*
Isobutane	6.46057E-05	0.0827816	5.66780	5.66780	0.948*
n-Butane	0.000269869	0.200887	13.6725	13.6725	3.516*
Isopentane	4.57602E-05	0.0771558	3.87755	3.87755	1.804*
n-Pentane	3.32401E-05	0.0998387	4.37140	4.37140	2.776*
i-Hexane	1.57242E-05	0.173198	4.33480	4.33480	2.393*
C7+	0.000334930	1.56029	0.623065	0.623065	81.498*
Water	99.9945	90.1951	0.0251232	0.0251232	0*
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Carbon Dioxide	0.0303887	1.71666	0.00183153	6.93089E-05	0.0330619*
Nitrogen	0.000511971	7.57584	1.84545E-06	6.98355E-08	0.0146942*
Methane	0.460299	1197.20	0.0377331	0.00142789	7.27729*
Ethane	0.219265	171.034	0.520694	0.0197041	7.06422*
Propane	0.106885	82.8165	0.499493	0.0189018	11.5643*
Isobutane	0.0111716	15.8840	0.0890800	0.00337097	3.48252*
n-Butane	0.0466654	38.5459	0.214888	0.00813181	12.9162*
Isopentane	0.00791281	14.8045	0.0609429	0.00230620	6.62707*
n-Pentane	0.00574785	19.1569	0.0687048	0.00259992	10.1978*
i-Hexane	0.00271902	33.2330	0.0681295	0.00257815	8.79079*
C7+	0.0579158	299.386	0.00979263	0.000370572	299.386*
Water	17291.0	17306.5	0.000394859	1.49422E-05	0*
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.000429292	0.0194435	0.111062	0.111062	0.00332379*
Nitrogen	4.60369E-06				0.000940309*
Methane	0.00237031	4.94291	0.834061	0.834061	0.266686*
Ethane	0.00211633	1.32357	21.5728	21.5728	0.485226*
Propane	0.00151289	0.939844	30.3480	30.3480	1.16486*
Isobutane	0.000208425	0.237600	7.13390	7.13390	0.462376*
n-Butane	0.000870627	0.576586	17.2092	17.2092	1.71489*
Isopentane	0.000183254	0.274895	6.05838	6.05838	1.09222*
n-Pentane	0.000133116	0.355711	6.83000	6.83000	1.68071*
i-Hexane	7.52126E-05	0.737049	8.08952	8.08952	1.73050*
C7+	0.00248449	10.2973	1.80323	1.80323	91.3983*
Water	99.9896	80.2405	0.00980139	0.00980139	0*
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	1.33739	75.5492	0.0806049	0.00305025	1.45504*
Nitrogen	0.0143421		5.16973E-05		0.411634*
Methane	7.38433	19206.1	0.605331	0.0229069	116.746*
Ethane	6.59309	5142.84	15.6568	0.592483	212.414*
Propane	4.71315	3651.84	22.0255	0.833487	509.936*
Isobutane	0.649316	923.213	5.17753	0.195928	202.412*
n-Butane	2.71230	2240.37	12.4898	0.472638	750.717*
Isopentane	0.570900	1068.13	4.39695	0.166389	478.135*
n-Pentane	0.414700	1382.15	4.95696	0.187581	735.756*
i-Hexane	0.234313	2863.86	5.87108	0.222173	757.549*
C7+ Water	7.74004	40010.9	1.30872	0.0495244	40010.9*
Water	311502	311781	0.00/11349	0.000269189	0*

Process Streams		HT PW	Inlet	O W&B	OB	Oil
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	НТ	MIX-106	MIX-101	6 Oil Tanks	
	To Block:	4 PW Tanks	Separator	MIX-102	MIX-101	MIX-106
Property	Units					
Temperature	°F	135	104.394	106.738	106.738	105.4*
Pressure	psig	32	121.3	-1.43595	-1.43595	121.3*
Mole Fraction Vapor	%	0	7.81555	100	100	0
Mole Fraction Light Liquid	%	100	2.04212	0	0	100
Mole Fraction Heavy Liquid	%	0	90.1423	0	0	0
Phase Mole Fraction	%	100	100	100	100	100
Molecular Weight	lb/lbmol	18.0162	20.2502	46.1774	46.1774	119.167
Mass Density	lb/ft^3	61.4361	5.48748	0.102150	0.102150	47.9029
Molar Flow	lbmol/h	17291.9	19187.8	1.57169	0.0594757	367.354
Mass Flow	lb/h	311534	388558	72.5764	2.74643	43776.4
Vapor Volumetric Flow	ft^3/h	5070.86	70808.2	710.489	26.8863	913.858
Liquid Volumetric Flow	gpm	632.211	8828.03	88.5804	3.35206	113.936
Std Vapor Volumetric Flow	MMSCFD	157.488	174.756	0.0143143	0.000541682	3.34572
Std Liquid Volumetric Flow	sgpm	622.857	921.425	0.290878	0.0110074	112.142*
Compressibility		0.00214575	0.0829070	0.986147	0.986147	0.0557896
Specific Gravity		0.985047		1.59438	1.59438	0.768059
API Gravity		10.0023				47.7429
Enthalpy	Btu/h	-2.10718E+09	-2.20120E+09	-72969.1	-2761.29	-3.05566E+07
Mass Enthalpy	Btu/lb	-6763.90	-5665.05	-1005.41	-1005.41	-698.014
Mass Cp	Btu/(lb*°F)	0.978347	0.879284	0.422706	0.422706	0.464770
Ideal Gas CpCv Ratio		1.32671	1.28650	1.11401	1.11401	1.04820
Dynamic Viscosity	cP	0.495910		0.00868589	0.00868589	0.549836
Kinematic Viscosity	cSt	0.503916		5.30830	5.30830	0.716557
Thermal Conductivity	Btu/(h*ft*°F)	0.372528		0.0114512	0.0114512	0.0642567
Surface Tension	lbf/ft	0.00455302				0.00154427?
Net Ideal Gas Heating Value	Btu/ft^3	0.0948458	206.909	2412.78	2412.78	5913.48
Net Liquid Heating Value	Btu/lb	-1057.66	3003.35	19671.5	19671.5	18669.5
Gross Ideal Gas Heating Value	Btu/ft^3	50.4105	269.521	2620.60	2620.60	6318.04
Gross Liquid Heating Value	Btu/lb	2.16336	4176.72	21380.0	21380.0	19957.9

Process Streams	OT Emissions	OT Flash	OW	PW	PW W&B
Composition Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total From Block: To Block:	MIX-102 Blower	6 Oil Tanks MIX-102	6 Oil Tanks MIX-101	4 PW Tanks 	MIX-103 MIX-104
Mole Fraction	%	%	%	%	%
Carbon Dioxide	0.119264	0.120307	0.116533	2.82703E-20	3.66050
Nitrogen	0.00188782	0.00256369	0.000117418	1.73489E-22	0.0165809
Methane	7.77469	9.82625	2.40080	1.55109E-19	24.2337
Ethane	25.5550	22.6633	33.1296	1.65507E-19	14.0987
Propane	27.3131	25.6075	31.7807	2.82151E-20	5.65954
Isobutane	5.69249	5.70191	5.66780	2.67574E-21	0.455848
n-Butane	13.5836	13.5496	13.6725	2.14060E-20	2.34800
Isopentane	3.97577	4.01327	3.87755	2.15555E-21	0.310349
n-Pentane	4.51056	4.56369	4.37140	1.07777E-21	0.116570
-Hexane	4.67857	4.80981	4.33480	2.25587E-22	0.0243283
C7+	0.746926	0.794211	0.623065	0.000131504	4.16938
Water	6.04821	8.34761	0.0251232	99.9999	44.9065
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Carbon Dioxide	0.00678445	0.00495291	0.00176222	4.88811E-18	0.0282640
Nitrogen	0.000107390	0.000105545	1.77561E-06	2.99972E-20	0.000128027
Methane	0.442270	0.404537	0.0363052	2.68192E-17	0.187117
Ethane	1.45372	0.933025	0.500990	2.86172E-17	0.108861
Propane	1.55373	1.05423	0.480591	4.87856E-18	0.0436993
Isobutane	0.323822	0.234742	0.0857091	4.62653E-19	0.00351976
n-Butane	0.772714	0.557825	0.206757	3.70122E-18	0.0181297
Isopentane	0.226165	0.165222	0.0586367	3.72707E-19	0.00239632
n-Pentane	0.256587	0.187883	0.0661048	1.86354E-19	0.000900079
-Hexane	0.266144	0.198015	0.0655513	3.90053E-20	0.000187847
C7+	0.0424895	0.0326969	0.00942205	0.0227378	0.0321932
Nater	0.344057	0.343663	0.000379916	17290.6	0.346739
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.118018	0.120816	0.111062	6.90608E-20	5.78257
Nitrogen	0.00118909	0.00163877	7.12316E-05	2.69769E-22	0.0166728
Methane	2.80443	3.59704	0.834061	1.38122E-19	13.9549
Ethane	17.2777	15.5499	21.5728	2.76243E-19	15.2171
Propane	27.0805	25.7661	30.3480	6.90608E-20	8.95799
sobutane	7.43935	7.56222	7.13390	8.63261E-21	0.951035
n-Butane	17.7520	17.9703	17.2092	6.90608E-20	4.89863
sopentane	6.44972	6.60714	6.05838	8.63261E-21	0.803738
n-Pentane	7.31729	7.51331	6.83000	4.31630E-21	0.301891
-Hexane	9.06539	9.45795	8.08952	1.07908E-21	0.0752539
C7+	2.24447	2.42197	1.80323	0.000975529	20.0010
Water	2.44996	3.43154	0.00980139	99.9990	29.0392
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.298580	0.217975	0.0775546	2.15123E-16	1.24388
Nitrogen	0.00300836		4.97410E-05	8.40325E-19	0.00358647
Methane	7.09510	6.48977	0.582424	4.30246E-16	3.00182
Ethane	43.7119	28.0552	15.0643	8.60492E-16	3.27334
Propane	68.5126	46.4871	21.1920	2.15123E-16	1.92695
sobutane	18.8213	13.6437	4.98160	2.68904E-17	0.204576
n-Butane	44.9118	32.4220	12.0172	2.15123E-16	1.05374
Isopentane	16.3175	11.9206	4.23056	2.68904E-17	0.172891
n-Pentane	18.5125	13.5555	4.76938	1.34452E-17	0.0649396
-Hexane	22.9351	17.0640	5.64891	3.36130E-18	0.0161878
C7+ Water	5.67843	4.36971		3.03875	4.30240
	6.19829	6.19118	0.00684430	311495	6.24660

Process Streams		<b>OT Emissions</b>	OT Flash	OW	PW	PW W&B
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	MIX-102	6 Oil Tanks	6 Oil Tanks	4 PW Tanks	MIX-103
	To Block:	Blower	MIX-102	MIX-101		MIX-104
Property	Units					
Temperature	°F	106.734	106.738	106.738	83.5989	83.5989
Pressure	psig	-1.43595	-1.43595	-1.43595	-1.43595	-1.43595
Mole Fraction Vapor	%	100	100	100	0	53.2923
Mole Fraction Light Liquid	%	0	0	0	100	4.10791
Mole Fraction Heavy Liquid	%	0	0	0	0	42.5998
Phase Mole Fraction	%	100	100	100	100	100
Molecular Weight	lb/lbmol	44.4743	43.8242	46.1774	18.0154	27.8590
Mass Density	lb/ft^3	0.0982736	0.0967985	0.102150	62.1441	0.119403
Molar Flow	lbmol/h	5.68859	4.11690	1.51221	17290.6	0.772135
Mass Flow	lb/h	252.996	180.420	69.8299	311498	21.5109
Vapor Volumetric Flow	ft^3/h	2574.41	1863.87	683.603	5012.51	180.154
Liquid Volumetric Flow	gpm	320.965	232.378	85.2284	624.937	22.4607
Std Vapor Volumetric Flow	MMSCFD	0.0518095	0.0374952	0.0137726	157.476	0.00703231
Std Liquid Volumetric Flow	sgpm	0.990826	0.699948	0.279871	622.708	0.0772672
Compressibility		0.987247	0.987632	0.986147	0.000659341	0.530659
Specific Gravity		1.53558	1.51313	1.59438	0.996398	
API Gravity					9.99836	
Enthalpy	Btu/h	-285275	-212305	-70207.8	-2.12278E+09	-63159.3
Mass Enthalpy	Btu/lb	-1127.59	-1176.73	-1005.41	-6814.73	-2936.15
Mass Cp	Btu/(lb*°F)	0.424753	0.425586	0.422706	0.977649	0.579155
Ideal Gas CpCv Ratio		1.11821	1.11990	1.11401	1.32877	1.20874
Dynamic Viscosity	cP	0.00888349	0.00895981	0.00868589	0.843160	
Kinematic Viscosity	cSt	5.64320	5.77842	5.30830	0.847012	
Thermal Conductivity	Btu/(h*ft*°F)	0.0116835	0.0117784	0.0114512	0.353234	
Surface Tension	lbf/ft				0.00493086	
Net Ideal Gas Heating Value	Btu/ft^3	2265.73	2209.60	2412.78	0.00868486	956.258
Net Liquid Heating Value	Btu/lb	19157.2	18950.3	19671.5	-1059.57	12632.3
Gross Ideal Gas Heating Value	Btu/ft^3	2463.91	2404.09	2620.60	50.3192	1062.69
Gross Liquid Heating Value	Btu/lb	20848.5	20634.8	21380.0	0.193586	14082.4

Process Streams	PWB	<b>PWT Emissions</b>	PWT Flash	PWW	Sales Gas
Composition Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total From Blog	ck: 4 PW Tanks	MIX-104	4 PW Tanks	4 PW Tanks	MIX-105
To Block		Blower	MIX-104	MIX-103	
Mole Fraction	%	%	%	%	%
Carbon Dioxide	3.66050	2.34466	0.405512	3.66050	0.111550
Nitrogen	0.0165809	0.0395015	0.0732794	0.0165809	0.492841
Methane	24.2337	35.5147	52.1394	24.2337	77.8777
Ethane	14.0987	16.9175	21.0716	14.0987	11.0548
Propane	5.65954	8.24677	12.0596	5.65954	5.02660
Isobutane	0.455848	0.861949	1.46042	0.455848	0.851177
n-Butane	2.34800	3.60050	5.44631	2.34800	1.86411
Isopentane	0.310349	0.610518	1.05287	0.310349	0.504594
n-Pentane	0.116570	0.443479	0.925242	0.116570	0.562641
i-Hexane	0.0243283	0.209788	0.483099	0.0243283	0.581656
C7+	4.16938	2.71418	0.569655	4.16938	0.106656
Water	44.9065	28.4964	4.31305	44.9065	0.965631
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Carbon Dioxide	0.000254761	0.0303887	0.00212466	0.0280092	1.71472
Nitrogen	1.15398E-06	0.000511971		0.000126873	7.57583
Methane	0.00168660	0.460299	0.273182	0.185431	1197.12
Ethane	0.000981229	0.219265	0.110404	0.107880	169.932
Propane	0.000393888	0.106885	0.0631855	0.0433054	77.2675
Isobutane	3.17258E-05	0.0111716	0.00765180	0.00348804	13.0841
n-Butane	0.000163414	0.0466654	0.0285357	0.0179663	28.6546
Isopentane	2.15995E-05	0.00791281	0.00551649	0.00237472	7.75649
n-Pentane	8.11296E-06	0.00574785		0.000891966	8.64878
i-Hexane	1.69318E-06	0.00271902		0.000186154	8.94106
C7+	0.000290177	0.0351779	0.00298468	0.0319031	1.63949
Water	0.00312537	0.369337	0.0225980	0.343614	14.8434
Mass Fraction	%	%	%	%	%
Carbon Dioxide	5.78257	3.71716	0.646295	5.78257	0.229542
Nitrogen	0.0166728	0.0398625	0.0743410	0.0166728	0.645535
Methane	13.9549	20.5241	30.2913	13.9549	58.4159
Ethane	15.2171	18.3249	22.9456	15.2171	15.5424
Propane	8.95799	13.0998	19.2578	8.95799	10.3637
Isobutane	0.951035	1.80472	3.07397	0.951035	2.31317
n-Butane	4.89863	7.53860	11.4637	4.89863	5.06594
Isopentane	0.803738	1.58677	2.75097	0.803738	1.70223
n-Pentane	0.301891	1.15262	2.41749	0.301891	1.89805
i-Hexane	0.0752539	0.651252	1.50765	0.0752539	2.34367
C7+	20.0010	13.0668	2.75701	20.0010	0.666466
Water	29.0392	18.4934	2.81388	29.0392	0.813390
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.0112119	1.33739	0.0935053	1.23267	75.4639
Nitrogen	3.23270E-05	0.0143421	0.0107556	0.00355414	212.225
Methane	0.0270572	7.38433	4.38251	2.97476	19204.7
Ethane	0.0295046	6.59309	3.31974	3.24384	5109.70
Propane	0.0173687	4.71315	2.78621	1.90958	3407.16
Isobutane	0.00184397	0.649316	0.444740	0.202732	760.475
n-Butane	0.00949800	2.71230	1.65856	1.04424	1665.47
	0.00155837	0.570900	0.398008	0.171333	559.622
Isopentane					
Isopentane n-Pentane	0.000585340	0.414700	0.349761	0.0643543	623.999
n-Pentane		0.414700 0.234313		0.0643543 0.0160419	623.999 770.499
•	0.000585340		0.349761 0.218125 0.398882		

Process Streams		PWB	<b>PWT Emissions</b>	<b>PWT Flash</b>	PWW	Sales Gas
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	4 PW Tanks	MIX-104	4 PW Tanks	4 PW Tanks	MIX-105
	To Block:	MIX-103	Blower	MIX-104	MIX-103	
Property	Units					
Temperature	°F	83.5989	83.7058	83.5989	83.5989	95.4338
Pressure	psig	-1.43595	-1.43595	-1.43595	-1.43595	-1.43595
Mole Fraction Vapor	%	53.2923	72.0814	99.8234	53.2923	100
Mole Fraction Light Liquid	%	4.10791	2.54720	0.169357	4.10791	0
Mole Fraction Heavy Liquid	%	42.5998	25.3714	0.00726632	42.5998	0
Phase Mole Fraction	%	100	100	100	100	100
Molecular Weight	lb/lbmol	27.8590	27.7597	27.6134	27.8590	21.3872
Mass Density	lb/ft^3	0.119403	0.0880097	0.0632655	0.119403	0.0477534
Molar Flow	lbmol/h	0.00695972	1.29608	0.523946	0.765176	1537.17
Mass Flow	lb/h	0.193891	35.9788	14.4679	21.3170	32875.8
Vapor Volumetric Flow	ft^3/h	1.62384	408.805	228.685	178.530	688449
Liquid Volumetric Flow	gpm	0.202452	50.9679	28.5114	22.2583	85832.7
Std Vapor Volumetric Flow	MMSCFD	6.33865E-05	0.0118042	0.00477190	0.00696893	14.0000
Std Liquid Volumetric Flow	sgpm	0.000696456	0.148445	0.0711778	0.0765707	186.425
Compressibility		0.530659	0.717239	0.992698	0.530659	0.996907
Specific Gravity						0.738444
API Gravity						
Enthalpy	Btu/h	-569.293	-84500.3	-21341.0	-62590.0	-5.37191E+07
Mass Enthalpy	Btu/lb	-2936.15	-2348.61	-1475.06	-2936.15	-1634.00
Mass Cp	Btu/(lb*°F)	0.579155	0.526331	0.447500	0.579155	0.486736
Ideal Gas CpCv Ratio		1.20874	1.20197	1.19282	1.20874	1.23662
Dynamic Viscosity	cP					0.0108645
Kinematic Viscosity	cSt					14.2031
Thermal Conductivity	Btu/(h*ft*°F)					0.0179845
Surface Tension	lbf/ft					
Net Ideal Gas Heating Value	Btu/ft^3	956.258	1149.54	1434.38	956.258	1157.36
Net Liquid Heating Value	Btu/lb	12632.3	15425.2	19577.8	12632.3	20464.3
Gross Ideal Gas Heating Value	Btu/ft^3	1062.69	1268.81	1572.56	1062.69	1275.53
Gross Liquid Heating Value	Btu/lb	14082.4	17056.1	21477.4	14082.4	22561.4

Process Streams	Sales Oil	Sep Liq	Separator Gas	VRT Gas	VRT Oil
Composition Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total From Block:	6 Oil Tanks	Separator	Separator	VRT	VRT
To Block:		нт	MIX-100	VRU	6 Oil Tanks
Mole Fraction	%	%	%	%	%
Carbon Dioxide	0.000538297	0.000548568	0.107989	0.165328	0.00238492
Nitrogen	1.77645E-06	0.000149424	0.503361	0.0177741	3.11113E-05
Methane	0.0241205	0.0766563	78.9201	22.9580	0.144670
Ethane	0.306094	0.0490609	10.8252	22.0998	0.698807
Propane	1.54115	0.0661782	4.74135	20.3481	1.94200
Isobutane	0.777648	0.0229639	0.788247	4.41702	0.854092
n-Butane	2.74719	0.0728895	1.71044	10.5539	2.91574
Isopentane	1.95751	0.0448855	0.457738	3.23127	1.98890
n-Pentane	2.91851	0.0651894	0.508478	3.74785	2.94327
i-Hexane	6.74681	0.143572	0.522599	4.12437	6.71464
C7+	82.6895	1.68485	0.0912799	0.935107	81.4150
Water	0.290901	97.7731	0.823256	7.40153	0.380448
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Carbon Dioxide	0.00193814	0.0970310	1.61963	0.0102271	0.00872259
Nitrogen	6.39611E-06	0.0264301	7.54941	0.00109949	0.000113786
Methane	0.0868460	13.5590	1183.64	1.42016	0.529116
Ethane	1.10209	8.67791	162.356	1.36707	2.55581
Propane	5.54892	11.7056	71.1108	1.25871	7.10264
Isobutane	2.79993	4.06187	11.8221	0.273233	3.12375
n-Butane	9.89128	12.8927	25.6532	0.652856	10.6640
Isopentane n-Pentane	7.04804 10.5081	7.93937 11.5307	6.86517 7.62616	0.199884 0.231839	7.27421 10.7647
i-Hexane	24.2919	25.3950	7.83795	0.251039	24.5581
C7+	297.724	298.017	1.36902	0.255130	297.767
Water	1.04739	17294.1	12.3472	0.457852	1.39145
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.000193046	0.00119628	0.225613	0.185363	0.000863856
Nitrogen	4.05519E-07	0.000207415	0.669395	0.0126848	7.17307E-06
Methane	0.00315319	0.0609359	60.1029	9.38287	0.0191017
Ethane	0.0750010	0.0730986	15.4523	16.9293	0.172941
Propane	0.553774	0.144599	9.92509	22.8586	0.704799
Isobutane	0.368314	0.0661367	2.17491	6.54037	0.408571
n-Butane	1.30114	0.209923	4.71940	15.6274	1.39480
Isopentane	1.15087	0.160468	1.56777	5.93928	1.18104
n-Pentane	1.71586	0.233056	1.74156	6.88878	1.74775
i-Hexane	4.73777	0.613065	2.13791	9.05466	4.76241
C7+	90.0512	11.1574	0.579107	3.18375	89.5513
Water	0.0427050	87.2799	0.704066	3.39699	0.0564101
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.0852966	4.27029	71.2789	0.450087	0.383877
Nitrogen	0.000179177	0.740398	211.485	0.0308004	0.00318754
Methane	1.39322	217.520	18988.6	22.7829	8.48832
Ethane	33.1389	260.936	4881.90	41.1066	76.8508
Propane	244.683	516.167	3135.68	55.5037	313.196
Isobutane	162.738	236.085	687.128	15.8809	181.559
n-Butane	574.903	749.353	1491.02	37.9454	619.815
Isopentane	508.508	572.816	495.313	14.4214	524.825
n-Pentane	758.147	831.928	550.218	16.7269	776.660
i-Hexane	2093.37	2188.43	675.438	21.9859	2116.30
C7+	39788.8	39827.9	182.960	7.73057	39794.4
Water	18.8690	311559	222.438	8.24834	25.0673

Process Streams		Sales Oil	Sep Liq	Separator Gas	VRT Gas	VRT Oil
Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	6 Oil Tanks	Separator	Separator	VRT	VRT
	To Block:		нт	MIX-100	VRU	6 Oil Tanks
Property	Units					
Temperature	°F	106.738	104.390	104.390	133.431	133.431
Pressure	psig	-1.43595	121	121*	11*	11
Mole Fraction Vapor	%	0	0	100	100	0
Mole Fraction Light Liquid	%	100	2.21452	0	0	100
Mole Fraction Heavy Liquid	%	0	97.7855	0	0	0
Phase Mole Fraction	%	100	100	100	100	100
Molecular Weight	lb/lbmol	122.718	20.1811	21.0651	39.2527	121.501
Mass Density	lb/ft^3	47.9755	59.5951	0.486263	0.161192	47.1007
Molar Flow	lbmol/h	360.051	17688.0	1499.80	6.18591	365.739
Mass Flow	lb/h	44184.6	356965	31593.4	242.813	44437.6
Vapor Volumetric Flow	ft^3/h	920.982	5989.83	64971.9	1506.37	943.459
Liquid Volumetric Flow	gpm	114.824	746.785	8100.39	187.807	117.626
Std Vapor Volumetric Flow	MMSCFD	3.27920	161.096	13.6596	0.0563389	3.33101
Std Liquid Volumetric Flow	sgpm	112.292	740.566	180.859	0.990230	113.282
Compressibility		0.00558005	0.00759125	0.971114	0.983103	0.0104141
Specific Gravity		0.769224	0.955529	0.727322	1.35529	0.755197
API Gravity		47.4211	14.9984			47.7030
Enthalpy	Btu/h	-3.08744E+07	-2.14918E+09	-5.20197E+07	-297529	-3.06351E+07
Mass Enthalpy	Btu/lb	-698.760	-6020.71	-1646.54	-1225.34	-689.395
Mass Cp	Btu/(lb*°F)	0.465063	0.912279	0.506401	0.448650	0.483003
Ideal Gas CpCv Ratio		1.04658	1.29160	1.23747	1.12832	1.04488
Dynamic Viscosity	cP	0.573545	0.644684	0.0112068	0.00977499	0.480882
Kinematic Viscosity	cSt	0.746323	0.675329	1.43877	3.78576	0.637368
Thermal Conductivity	Btu/(h*ft*°F)	0.0644506	0.314085	0.0188857	0.0139950	0.0630680
Surface Tension	lbf/ft	0.00162260	0.00425785?			0.00150463?
Net Ideal Gas Heating Value	Btu/ft^3	6085.05	127.566	1142.65	1989.40	6025.64
Net Liquid Heating Value	Btu/lb	18654.7	1453.29	20517.1	19059.5	18657.5
Gross Ideal Gas Heating Value	Btu/ft^3	6501.25	185.558	1259.75	2167.82	6438.46
Gross Liquid Heating Value	Btu/lb	19941.7	2543.77	22627.0	20784.8	19946.9

Process Streams		VRU Disch	Water
Composition	Status:	Solved	Solved
	rom Block:	VRU	
	To Block:	MIX-105	MIX-106
Mole Fraction		%	%
Carbon Dioxide		0.359894	0*
Nitrogen		0.0130507	0*
Methane		17.6357	0*
Ethane		23.0822	0*
Propane		22.1655	0*
Isobutane		4.61807	0*
n-Butane		11.1782	0*
Isopentane		3.29493	0*
n-Pentane		3.75210	0*
i-Hexane		3.97851	0*
C7+		1.02890	0*
Water		8.89290	100*
Molar Flow		lbmol/h	lbmol/h
Carbon Dioxide		0.0474002	0*
Nitrogen		0.00171885	0*
Methane		2.32273	0*
Ethane		3.04006	0*
Propane		2.91932	0*
Isobutane		0.608227	0*
n-Butane		1.47223	0*
Isopentane		0.433962	0*
n-Pentane		0.494174	0*
i-Hexane		0.523993	0*
C7+		0.135512	0*
Water		1.17125	17306.5*
Mass Fraction		%	%
Carbon Dioxide		0.392272	0*
Nitrogen		0.00905452	0*
Methane		7.00698	0*
Ethane		17.1895	0*
Propane		24.2069	0*
Isobutane		6.64766	0*
n-Butane		16.0909	0*
Isopentane		5.88764	0*
n-Pentane		6.70456	0*
i-Hexane		8.49122	0*
C7+		3.40554	0*
Water		3.96781 <b>lb/h</b>	100* <b>Ib/h</b>
Mass Flow			
Carbon Dioxide		2.08606	0* 0*
Nitrogen		0.0481509	0* 0*
Methane		37.2623	
Ethane Propane		91.4116	0* 0*
Propane Isobutane		128.729 35.3515	0* 0*
			0* 0*
n-Butane		85.5695	0* 0*
Isopentane n-Pentane		31.3098	0* 0*
		35.6540 45.1553	0* 0*
i-Hexane C7+			0* 0*
-		18.1103	
Water		21.1003	311781*

Process Streams		VRU Disch	Water
Composition	Status:	Solved	Solved
Phase: Total	From Block:	VRU	
	To Block:	MIX-105	MIX-106
Property	Units		
Temperature	°F	103.144	105.4*
Pressure	psig	-1.43595	121.3*
Mole Fraction Vapor	%	98.4833	0
Mole Fraction Light Liquid	%	0.377837	100
Mole Fraction Heavy Liquid	%	1.13884	0
Phase Mole Fraction	%	100	100
Molecular Weight	lb/lbmol	40.3770	18.0153
Mass Density	lb/ft^3	0.0909767	61.8874
Molar Flow	lbmol/h	13.1706	17306.5
Mass Flow	lb/h	531.788	311781
Vapor Volumetric Flow	ft^3/h	5845.32	5037.88
Liquid Volumetric Flow	gpm	728.768	628.099
Std Vapor Volumetric Flow	MMSCFD	0.119953	157.621
Std Liquid Volumetric Flow	sgpm	2.12950	623.273*
Compressibility		0.974358	0.00652828
Specific Gravity			0.992282
API Gravity			9.98354
Enthalpy	Btu/h	-667304	-2.11798E+09
Mass Enthalpy	Btu/lb	-1254.83	-6793.15
Mass Cp	Btu/(lb*°F)	0.430783	0.976808
Ideal Gas CpCv Ratio		1.13096	1.32795
Dynamic Viscosity	cP		0.662536
Kinematic Viscosity	cSt		0.668323
Thermal Conductivity	Btu/(h*ft*°F)		0.362203
Surface Tension	lbf/ft		0.00476986
Net Ideal Gas Heating Value	Btu/ft^3	2026.11	0
Net Liquid Heating Value	Btu/lb	18860.1	-1059.76
Gross Ideal Gas Heating Value	Btu/ft^3	2207.24	50.3100
Gross Liquid Heating Value	Btu/lb	20562.9	0



14842 N Maple Drive Kellyville, OK 74039 918 941 2166 www.heroflare.com

Harker Megan Henke *Rev 0: 12/20/21* Flare Technology: Air Assist

Project Reference: Dual Tip Flare (FL-9110) Tap Rock Resources

Flare Model: T60VT8

Hero Flare is pleased to have the opportunity to provide a firm proposal for the supply of our A+ Series smokeless flare technology to handle VRT+Tank Vapors+Heater Treater as well as high pressure sales gas.

The A+ series technology is fully Quad O compliant. Our systems come complete with our Hotspot Ignition TM System which is a high stability pilot that can operate in the most extreme conditions. In addition, all flare systems are provided with a blower VFD to maximize efficiency smokeless capacity across the full operating range.

The Hero Flare system offers the following:

- 40 CFR 60.18 EPA Compliant
- 98% Destruction Efficency
- Continously Monitored Pilot Ignition System with automatic re-light
- Blower VFD allows for optimium energy and combustion efficency

We look forward to working with you as this project progresses.

Best regards,

Craig Rosencutter Office: (918) 941-2166 Ext. 101 Cell: (918) 344-4335 Email: craig.rosencutter@heroflare.com

Committed to providing reliable technology that you can count on!





# Design Data Sheet

### **Design Flow Rate**

Flow Rate Case	Flow Rate (MMSCFD)	MW	LHV (Btu/SCF)	Flare Inlet Pres. (psig)	Temp. (°F)
Inlet 1: H.P. Max Flow Rate	23	20	1200	30	
Inlet 1: H.P. Ringelmann 1 Smokeless	18	20	1200	20	Amb.
Inlet 2: L.P. Ringelmann 0 Smokeless	2.71	40	1,840	0.7	

### **Site Conditions**

### **Site Utilities Required**

Pilot Gas (per pilot)	Natural Gas: 55 scfh @ 18 psig OR Pro	opane: 25 scfh @ 9 psig (Clean, dry gas)
Plant Air	No Plant Air Required	
Pilot Panel Electricity	Powered by Converter Located Inside He	ro VFD Panel (480VAC to 120VAC)
Blower / VFD Electricity	480VAC / 3PH	Blower Size: 15 HP

### **Emission / Flare Performance**

Destruction	A 98% or greater hydrocarbon destruction efficiency will be achieved
Smokeless Rate	See Above Smokeless Rates
Max Radiation	Less than 500 Btu/hr/SF at normal & 1500 Btu/hr at max flow rates
Tip Velocity	Meets EPA regulations over full operating range

### **Pilot Construction**

Electrical / Classification	120VAC / Non-Classified Area
Control Panel Type	Nema 4 (Painted)
Pilot(s)	Two (2) Stainless Steel Gas Pilot with Easy Glide Retraction System
Pilot Construction	Stainless Steel
Pilot Monitoring	Type K Thermcouple
Pilot Gas Connection	1/2" FNPT Located at Base of Flare

### **Flare Construction**

Component	Dimension	Material
Stack Height	60'	A53B
Flare tip	2' Long	Stainless
HP Inlet	8" Flanged	Carbon
Tank Vapor Inlet	12" Flanged	Carbon



## Certificate of Analysis

Number: 6030-23010267-004A

Jan. 26, 2023

Alex Batista Taprock 602 Park Point Drive Ste. 200 Golden, CO 80401

Station Name:Schlitz Fed Com 211HStation Number:7060643Station Location:TaprockSample Point:Meter RunAnalyzed:01/23/2023 11:35:03 by EBH

Sampled By:Jason BealerSample Of:LiquidSpotSample Date:01/20/2023 08:13Sample Conditions: 121.3 psig, @105.4 °FMethod:GPA 2103MCylinder No:1111-002300

### Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.004	28.013	0.001	0.8069	0.001
Methane	1.981	16.043	0.267	0.3000	0.694
Carbon Dioxide	0.009	44.010	0.003	0.8172	0.003
Ethane	1.923	30.069	0.485	0.3563	1.063
Propane	3.148	44.096	1.165	0.5072	1.793
Iso-butane	0.948	58.122	0.462	0.5628	0.641
n-Butane	3.516	58.122	1.715	0.5842	2.291
Iso-pentane	1.804	72.149	1.092	0.6251	1.364
n-Pentane	2.776	72.149	1.681	0.6307	2.080
Hexanes	2.393	86.175	1.731	0.6658	2.028
Heptanes Plus	81.498	133.643	91.398	0.8103	88.042
	100.000		100.000		100.000
Calculated Physica	al Properties		То	tal	C7+
Specific Gravity at 6	60°F		0.78	06	0.8103
API Gravity at 60°F			49.7	81 4	43.124
Molecular Weight			119.1	67 13	33.643
Pounds per Gallon (	(in Vacuum)		6.5	07	6.756
Pounds per Gallon (	(in Air)		6.5	00	6.748
Cu. Ft. Vapor per G	allon @ 14.69	6 psia	20.7	23	19.183

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.



### Certificate of Analysis

Number: 6030-23010274-002A

Jan. 25, 2023

Alex Batista Taprock 602 Park Point Drive Ste. 200 Golden, CO 80401

Station Name: Schlitz Fed Com B Sales Station Number: 7060652 Sample Point: Meter Run Formation: Spot Eddy, NM County: Type of Sample: Spot-Cylinder Heat Trace Used: N/A Sampling Method: Fill and Purge Sampling Company: SPL

Sampled By: Sample Of: Gas Spot Sample Date: 01/21/2023 10:38 Sample Conditions: 121.9 psig, @ 85.8 °F Ambient: 50 °F 01/21/2023 10:38 Effective Date: GPA-2261M Method: Cylinder No: 5030-03796 Instrument: 6030_GC6 (Inficon GC-3000 Micro) Last Inst. Cal.: 01/24/2023 0:00 AM Analyzed: 01/25/2023 08:14:43 by EBH

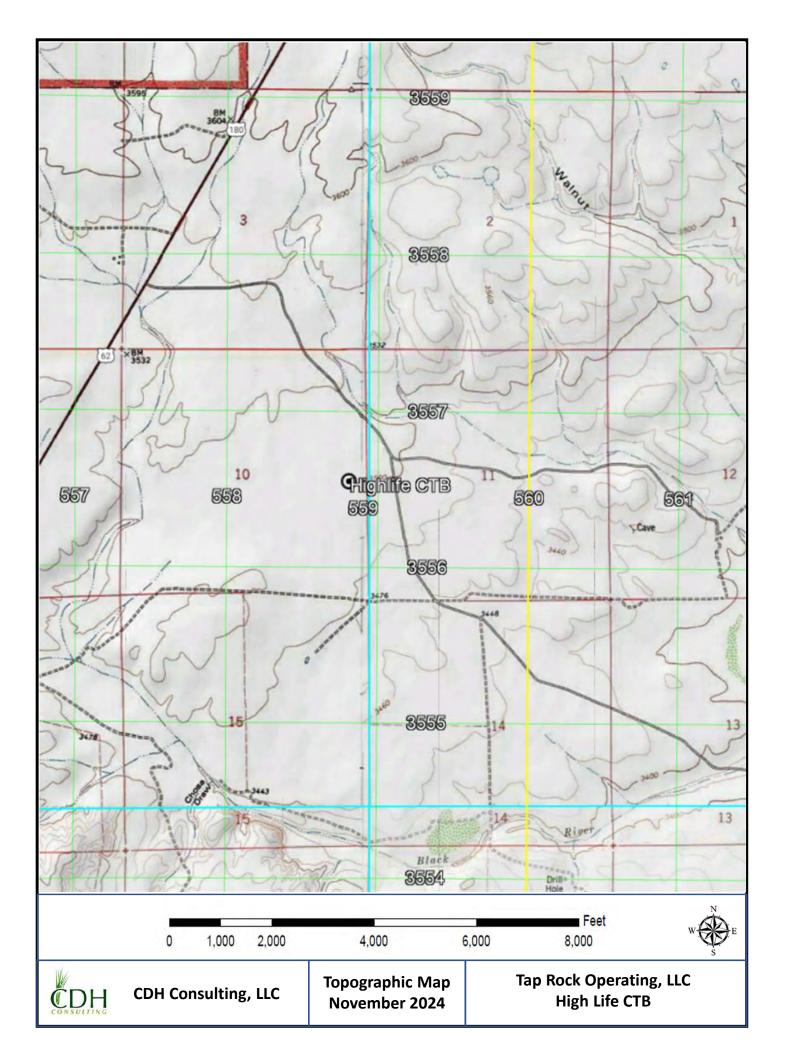
Jason Bealer

### Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.73 psia		
Nitrogen	0.503	0.499	0.638		GPM TOTAL C2+	6.133
Methane	79.159	78.596	57.549		GPM TOTAL C3+	3.226
Carbon Dioxide	0.112	0.111	0.223		GPM TOTAL iC5+	1.120
Ethane	10.908	10.830	14.863	2.907		
Propane	4.740	4.706	9.471	1.301		
lso-butane	0.825	0.819	2.173	0.269		
n-Butane	1.705	1.693	4.491	0.536		
Iso-pentane	0.544	0.540	1.778	0.198		
n-Pentane	0.596	0.592	1.949	0.215		
Hexanes Plus	1.626	1.614	6.865	0.707		
	100.718	100.000	100.000	6.133		
Calculated Physica	I Properties	Тс	otal	C6+		
Relative Density Rea	al Gas	0.75	593	3.2176		
Calculated Molecula	r Weight	21	.91	93.19		
Compressibility Fact	or	0.99	959			
GPA 2172 Calculati	on:					
Calculated Gross B	TU per ft ³ @ 14.73 ps	sia & 60°F				
Real Gas Dry BTU		13	322	5141		
Water Sat. Gas Base	e BTU	13	300	5052		
Ideal, Gross HV - Dr	y at 14.73 psia	131	6.9	5141.1		
Ideal, Gross HV - We	et	129	4.0	5051.6		
Net BTU Wet Gas - I	real gas	11	180			

Hydrocarbon Laboratory Manager

Quality Assurance:


The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

# Section 8

# Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	



# **Section 9**

# **Proof of Public Notice**

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications"

This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3.  $\square$  A copy of the property tax record (20.2.72.203.B NMAC).
- 4.  $\square$  A sample of the letters sent to the owners of record.
- 5. 🛛 A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6.  $\square$  A sample of the public notice posted and a verification of the local postings.
- 7. 🛛 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🛛 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.



November 14, 2024

John Arthur Ballard 80 Ballard Ranch Road Carlsbad, NM 88220

CERTIFIED MAIL - 7022 2410 0000 2510 9342

Subject: Air Permit Application Notice

Dear Mr. Ballard,

On behalf of Tap Rock Operating, LLC (Tap Rock), CDH Consulting, LLC (CDH) is providing this notice of air permit application. Comments can be submitted via methods provided in the attached Notice.

Please do not hesitate to contact me at (303) 594-7951 or <u>cmartnez@cdhconsult.com</u> if you have any questions or require additional information.

Sincerely,

**CDH CONSULTING, LLC** 

Matine

Chris Martinez Senior Air Quality Engineer

Attachment – Air Permit Notice



# NOTICE OF AIR QUALITY PERMIT APPLICATION

Tap Rock Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the construction of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is November 29, 2024.

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364. The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale.

The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM ₁₀	0.7	3.0
PM _{2.5}	0.7	3.0
Sulfur Dioxide (SO ₂ )	0.02	0.08
Nitrogen Oxides (NO _X )	53.6	36.2
Carbon Monoxide (CO)	221.1	63.5
Volatile Organic Compounds (VOC)	183.9	115.1
Sum of all Hazardous Air Pollutant (HAPs)	2.2	9.6
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO2e	-	25,000 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: <a href="http://www.env.nm.gov/air-quality/permitting-section-home-page/">www.env.nm.gov/air-quality/permitting-section-home-page/</a>. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

#### **Notice of Non-Discrimination**



November 14, 2024

Berry and Janice Lucas P.O. Box 96, Whites City, NM 88268

CERTIFIED MAIL - 7022 2410 0000 2510 9359

Subject: Air Permit Application Notice

Dear Berry & Janice,

On behalf of Tap Rock Operating, LLC (Tap Rock), CDH Consulting, LLC (CDH) is providing this notice of air permit application. Comments can be submitted via methods provided in the attached Notice.

Please do not hesitate to contact me at (303) 594-7951 or <u>cmartnez@cdhconsult.com</u> if you have any questions or require additional information.

Sincerely,

**CDH CONSULTING, LLC** 

his Matinez

Chris Martinez Senior Air Quality Engineer

Attachment – Air Permit Notice

359	U.S. Postal Service [™] CERTIFIED MAIL [©] RECEIPT Domestic Mail Only
E	For delivery information, visit our website at www.usps.com®.
510	White FIT MC 826 AL USE
25.	Certified Mail Fee \$4.85 \$ U161 Extra Services & Fees (check box, add fee as comprise) Return Receipt (francour) S 12
0000	Strin Services & Fees (check box, add fee as point of the service)     12       Return Receipt (trandcopy)     \$       Return Receipt (dectronic)     \$       Certilied Mail Restricted Delivery     \$       Adult Signature Restricted Delivery     \$       Adult Signature Restricted Delivery     \$
2410	Postage \$0.73
E L L	SENT TO BERRY AND JANICE LUCAS
70	Street and Apt. No., or FO Box No. P. O. BOX 96 Othy State, 219-49 WHITES CITY, NM 88268 PS Form 3800. April 2015 PSN 7250 02 0005027 See Reverse for Instructions

720.431.7468 / www.CDHConsult.com

# NOTICE OF AIR QUALITY PERMIT APPLICATION

Tap Rock Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the construction of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is November 29, 2024.

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364. The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale.

The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM ₁₀	0.7	3.0
PM _{2.5}	0.7	3.0
Sulfur Dioxide (SO ₂ )	0.02	0.08
Nitrogen Oxides (NO _X )	53.6	36.2
Carbon Monoxide (CO)	221.1	63.5
Volatile Organic Compounds (VOC)	183.9	115.1
Sum of all Hazardous Air Pollutant (HAPs)	2.2	9.6
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO2e	-	25,000 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: <a href="http://www.env.nm.gov/air-quality/permitting-section-home-page/">www.env.nm.gov/air-quality/permitting-section-home-page/</a>. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

#### **Notice of Non-Discrimination**



November 14, 2024

Eddy County Clerk c/o Cara Cooke 101 W Green Street Carlsbad, NM 88220

CERTIFIED MAIL - 7022 2410 0000 2510 9366

Subject: Air Permit Application Notice

Dear Eddy County Clerk,

On behalf of Tap Rock Operating, LLC (Tap Rock), CDH Consulting, LLC (CDH) is providing this notice of air permit application. Comments can be submitted via methods provided in the attached Notice.

Please do not hesitate to contact me at (303) 594-7951 or <u>cmartnez@cdhconsult.com</u> if you have any questions or require additional information.

Sincerely,

**CDH CONSULTING, LLC** 

Chris Martinez Senior Air Quality Engineer

Attachment – Air Permit Notice

9966	U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only
5	For delivery information, visit our website at www.usps.com ^o .
	Carisbat ND 88220 AL USE
2510	Corified Mail Fee \$4.85
0000	Extra Services & Fees (check box, add fee is appropriate) Return Receipt (hardcopy) Return Receipt (lardcopy) Return Receipt (electronic) Certited Nail Restricted Delivery Adult Signature Required Adult Signature Required
DITHS	Postage \$0.73 \$ 11/14/2024
	\$5.58 \$5.58
2022	Sent TO EDDY COUNTY CLERK % CARA COUKE Street and Apt. No. or FO Box No. 101 W GREENE ST City State, 21844
	CARLSBAD, NM 98220 PS Form 3800, April 2015 PSV 7530-02-020 0047 See Reverse for Instructions
	Standard Stand

720.431.7468 / www.CDHConsult.com

# NOTICE OF AIR QUALITY PERMIT APPLICATION

Tap Rock Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the construction of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is November 29, 2024.

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364. The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale.

The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM ₁₀	0.7	3.0
PM _{2.5}	0.7	3.0
Sulfur Dioxide (SO ₂ )	0.02	0.08
Nitrogen Oxides (NO _X )	53.6	36.2
Carbon Monoxide (CO)	221.1	63.5
Volatile Organic Compounds (VOC)	183.9	115.1
Sum of all Hazardous Air Pollutant (HAPs)	2.2	9.6
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO2e	-	25,000 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: <a href="http://www.env.nm.gov/air-quality/permitting-section-home-page/">www.env.nm.gov/air-quality/permitting-section-home-page/</a>. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

#### **Notice of Non-Discrimination**

### 70222410000025109342



### Latest Update

Your item has been delivered to an agent and left with an individual at the address at 12:02 pm on November 18, 2024 in CARLSBAD, NM 88220.

Get More Out of USPS Tracking:

Co USPS Tracking Plus®

**Text & Email Updates** 

**USPS Tracking Plus®** 

**Product Information** 

See Less A

Tracking Number:

# 70222410000025109359

Copy 🛠 Add to Informed Delivery

### Latest Update

Your item has been delivered and is available at a PO Box at 11:15 am on November 18, 2024 in WHITES CITY, NM 88268.

Get More Out of USPS Tracking: Co USPS Tracking Plus®

### Openion Delivered

**Delivered**, PO Box WHITES CITY, NM 88268 November 18, 2024, 11:15 am

See All Tracking History

Or Delivered to Agent

CARLSBAD, NM 88220

See All Tracking History

November 18, 2024, 12:02 pm

What Do USPS Tracking Statuses Mean?

**Delivered to Agent, Left with Individual** 

What Do USPS Tracking Statuses Mean?

See More ∨

### **Tracking Number:** 70222410000025109366

Copy 🛠 Add to Informed Delivery

### Latest Update

Your item was delivered to the front desk, reception area, or mail room at 11:47 am on November 18, 2024 in CARLSBAD, NM 88220.

Get More Out of USPS Tracking: USPS Tracking Plus®

✓ Delivered

Delivered, Front Desk/Reception/Mail Room CARLSBAD, NM 88220 November 18, 2024, 11:47 am

See All Tracking History

What Do USPS Tracking Statuses Mean?

### **COUNTY NOTICE**

November 14, 2024

Eddy County Clerk c/o Cara Cooke 101 W Greene Street Carlsbad, NM 88220

### LANDOWNER NOTICE (within ½ mile)

November 14, 2024

Berry and Janice Lucas P.O. Box 96, Whites City, NM 88268

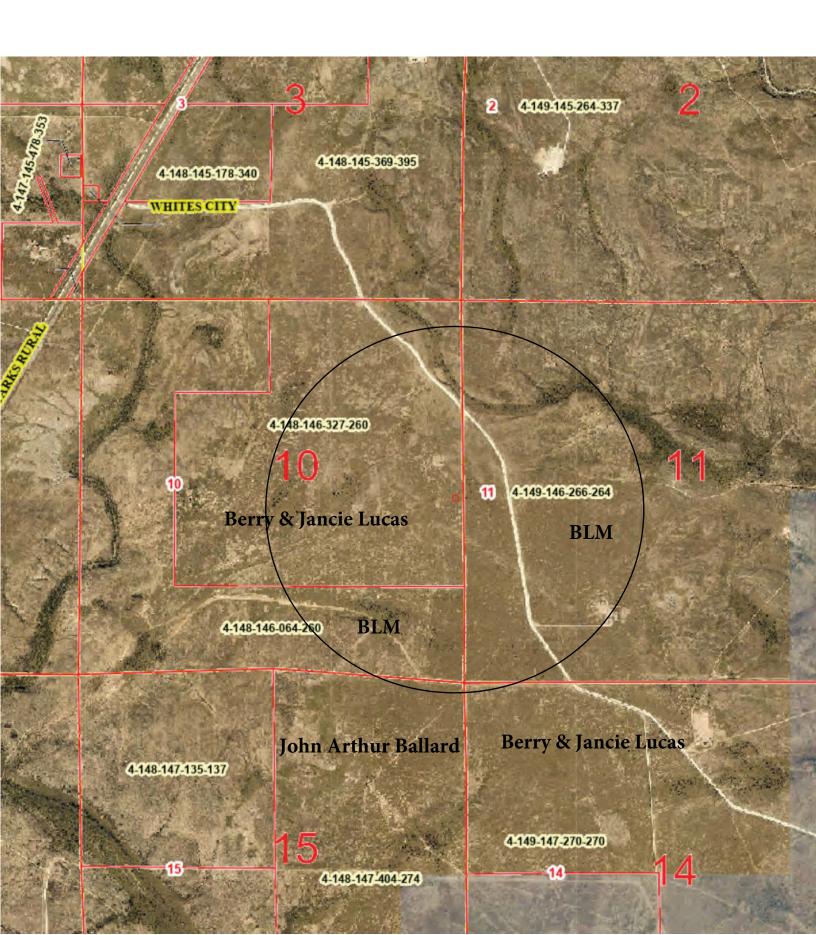
John Arthur Ballard 80 Ballard Ranch Road Carlsbad, NM 88220

### **NEWSPAPER PUBLICATION**

Carlsbad News-Argus (November 16, 2024)

- Legal Notice
- Display Ad

### **POSTINGS**


November 19, 2024

Site location – High Life CTB

US Post Office 23 Carlsbad Cavern Hwy Whites City, NM 88268

Carlsbad Municipal Building 101 N Halagueno St Carlsbad, NM 88220

Carlsbad Public Library 101 S Halagueno St Carlsbad, NM 88220



# **General Posting of Notices – Certification**

I, Bill Ramsey _, the undersigned, certify that on November 19, 2024, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in Carlsbad & Whites City of Eddy County, State of New Mexico on the following dates:

- 1. Facility entrance November 19, 2024
- 2. US Post Office November 19, 2024

23 Carlsbad Cavern Hwy

Whites City, NM 88268

3. Carlsbad Municipal Building November 19, 2024 101 N Halagueno St.

Carlsbad, NM 88220

4. Carlsbad Public Library November 19, 2024 101 S Halagueno St. Carlsbad, NM 88220

Signed this 19 day of November , 2024,

Signature

Bill Ramsey	
Printed Name	4.6
1	1

Sr. Environmental and Regulatory Specialist Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

# NOTICE

Tap Rock Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the construction of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is November 29, 2024.

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364. The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale.

The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
$PM_{10}$	0.7	3.0
PM _{2.5}	0.7	3.0
Sulfur Dioxide (SO ₂ )	0.02	0.08
Nitrogen Oxides (NO _X )	53.6	36.2
Carbon Monoxide (CO)	221.1	63.5
Volatile Organic Compounds (VOC)	183.9	115.1
Sum of all Hazardous Air Pollutant (HAPs)	2.2	9.6
Toxic Air Pollutant (TAP)	-	-
Green House Gas Emissions as Total CO2e	-	25,000 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

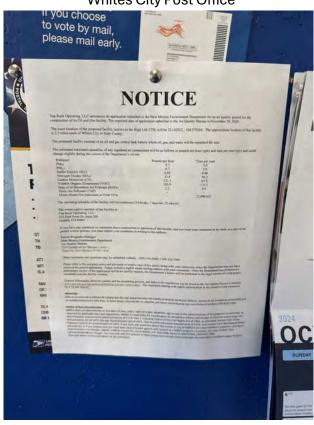
Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: <u>www.env.nm.gov/air-quality/permitting-section -home-page/</u>. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

#### **Notice of Non-Discrimination**


### Facility Entrance



Carlsbad Municipal Building

	OTICE	
	and the local data and the	
Tay Rock Operating, LLC annualment construction of the CH and Oper Society of the objected state of the evant location of the programmed Soc We, Amount as the H	a difference of the second second second	The state of the s
is 1.1 miles such of White City in h / Comp.		
The surround maximum parallel of the registered set too	second will be a follow is possible	
Nampi slightly daring the costs of the Department Learning Publishers PM-a	Pressile per lesse	
PMa PMas Nother Dissuids (NDA)	81 27 847	10 10 10
Nitrogen Oxide (MDy) Carbon Monomide (202) Volatile Organic Compressili (2020)		96,3- 61,5 100,1
Ness of all Passerdows Are Publisher of MPV Yorks Air Publisher (TSP)		10
Constitution (in Enderson in Tank 1979) The spectrum which is in facility of the restances (i)	Tanks Taurus Towns	1.mal
The renor mality opposed of the Paulty of Th		
CD Part Proce Dr. Rado 200 Golden, CD 95400		
I yes here my positive a communication of the second second second process, you make added for the second s		the second to be such as a part of the
April Program Hanger		
Or Canada Raman Dr Canada de San Manada, Nam S. Mala Na, Nam Wanan, Childh (1998)		
	out on our 1 sector to 1	1- G3
Name or the subscription of the state of the subscription of the particul sector of the subscription of th		
related are to being matter		and a set of a set of a second
and Messler Are a path of a person pro-	the splitter in the splitters on a 1	tion or the for Castley Ballou's solution complete as for pressed moder pressed in
_		
other star is a data in the set in the set	or such as boy provided as	and states in he sentence and other per
to the doctors in the lot one one of	the second se	
NAMES OF TAXABLE PARTY OF TAXABLE PARTY.	I wanted from the lot fight to	the last movies of reaction constraining team
where the other has been as an in the second state and	section, must be present of the	and the design of the lateral black
		Concernant Property

Whites City Post Office



Carlsbad Public Library

	1	NOT	ICI	E	
Tap Rock Open construction of					
The exact locar is 2.3 miles son	rating, LLC associates in application (in Oil and Gas facility, The course tion of the proposed facility, known off of Whites City in Eddy County	es die High Life CTR. will	Her H2.1 K24221	ality Barrow is November 29, 200 M.376264. The expensional loca	L.
The proposed it	Detility commins of an uit and gas com	the media second from large			
change alightly	maximum quantities of any regulate during the course of the Department	ad air containinant will be a	follows in pass	in our sequenced for sale.	r (tpy) and constat
PMu			per base	Tim per your	
PM _{C1}	and a second sec		0.7	1.0	
Sulfur Duroide Nitrogen Oxid	Ins (NOv)		10.02	0.08	
			221.1	362	
Volatile Organ	nic Compounds (VOC) mardous Air Pollutani (IIAPo)		143.9	112.1	
			2.2	9.6	
Oreen House	Gas Emissions as Total COpr			25,900 mT	
The operating a	chechaic of the facility will be com	itmines (24 heides, 7 dass/s	6.51 alumn		
523 Park Point I Golden, CO 804	Dr. Suite 200		a facility and an	a success of the second se	a a source of the
permit review p	questions or comments about com rocess, you must submit your com	ements in writing to this ad	dense:	a water poor communities to be made	and the second
Permit Program	a Managar				
New Mexico Ile	evironment Department				
Air Quality Bur	ten kes Manquice, Suite L				
Santa Fe, New M	Mexico, 87505-1816				
Other comments	and questions may be submitted	verbally. (505) 476-4000	1 800 224-7009		
Please refer to the received the pen preliminary revia circulated near th	be company name and site name o mit application. Please include a any of the application and its sit q the facility location.	e aced a copy of this nexus legible return wailing and pakity impacts, the Depart	e along with you man with your or manif's solice wi	roomponta, since the Department manuscula. Once the Department I be published in the legal wetting	e of a secondaria
20.7 77 206 NM	the facility location. then about air quality and the peri- wing-quality-permitting-neuron- IAC.				
	de la oficina de Calidad del Aire d nito en esta área. Si usted desea i				
required by appli discrimination re Rehabilitation Al	Noclimination discriminate on the basis of rate, licable laws and regulations. Net optimeness invalementation by 40 cl of 1973, the Age Oscimunito I Ack Anendments of 1972. If you ryou believe barry us have barr- oordinator, NMID, 11908. Fran Beeler, Imagev, You may also visit, to follow a standard of discrimination	C.F.R. Part 7, including Ti in Act of 1975, Title IX of a have any questions also	the vit of the cru the Education A suit this restact a	mendervents of 1972, and Sector rany of NMED's non-discrimin	In 13 of the Federal Weter ation programs, policies or may contact: Non-
nd.coordinator@ how and where t	Pediv rum.gov. You may also visit i to file a complaint of discriminat	our website in this of the			

### Public Service Announcement (November 2024)

Tap Rock Operating, LLC is applying for an air permit with the New Mexico Environmental Department's Air Quality Bureau. The permit is for construction and operation of the High Life central tank battery located approximately 2.3 miles south of Whites City, in Eddy County. Notices required by the Bureau have been posted at the following locations.

The Carlsbad Municipal Building,

The Carlsbad Public Library, and

The U.S. Post Office in Whites City.

Comments may be directed to the New Mexico Environmental Department via telephone at (505) 476-4300 or (800) 224-7009.

# Submittal of Public Service Announcement – Certification

I, <u>Bill Ramsey</u>, the undersigned, certify that on November 14, 2024, a public service announcement was submitted to KATK 92.1 FM that serves the Carlsbad and Whites City area of Eddy County, New Mexico, in which the source is or is proposed to be located and that KATK 92.1 FM responded that it would air the announcement.

Signed this 19 day of November, 2024,

Signature

Bill Ramsey
Printed Name

<u>Sr. Environmental and Regulatory Specialist</u> Title {APPLICANT OR RELATIONSHIP TO APPLICANT} AFFIDAVIT OF PUBLICATION

CARLSBAD CURRENT-ARGUS PO BOX 507 HUTCHINSON, KS 67504-0507

STATE OF NEW MEXICO } SS COUNTY OF EDDY }

Account Number: 1015

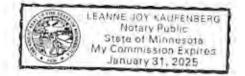
Ad Number: 22430 Description: Air Quality Permit Application Ad Cost: \$295.34

Sherry Groves, being first duly sworn, says:

That she is the Agent of the the Carlsbad Current-Argus, a Weekly newspaper of general circulation, printed and published in Carlsbad, Eddy County, New Mexico; that the publication, a copy of which is attached hereto, was published in said newspaper on the following dates:

November 16, 2024

That said newspaper was regularly issued and circulated on those dates. SIGNED:


Sherry Dance

Agent

Subscribed to and sworn to me this 18th day of November 2024.

Leanne Kaufenberg, Norary Public, Redwood County Minnesota

> CHRIS MARTINEZ CDH CONSULTING LLC 9446 CLERMONT ST DENVER, CO 80229 cmartinez@cdhconsult.com



### NOTICE OF AIR QUALITY PERMIT APPLICATION

Tap Rock Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the construction of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is November 29, 2024.

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364. The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale.

The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM10	0.7	3.0
PM2.5	0.7	3.0
Sulfur Dioxide (SO2)	0.02	0.08
Nitrogen Oxides (NOX)	53.6	36.2
Carbon Monoxide (CO)	221.1	63.5
Volatile Organic Compounds (VOC)	183.9	115.1
Sum of all Hazardous Air Pollutant (HAPs)	2.2	9.6
Toxic Air Pollutant (TAP)		
Green House Gas Emissions as Total CO2e	17	25,000 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: <u>www.env.nm.gov/air-quality/permitting-section -home-page/</u>. 'The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-629-3395.

#### Notice of Non-Discrimination

NMED does not discriminate on the basis of race, colot, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

# Welcoming the alien

Rev. David Rogers

in Mary's song, a scrip-tural song commonly called the "Magnificat," prophetically proclaims the power of God for those who are the "least In the first Chapter of Luke's Gospel, the vir-gin Mary journeys to her cousin Elizabeth and the reality of her pregnan-cy with Jesus Christ is confirmed as the unborn of these" in God's realm, as would be ultimately proclaimed by the fruit of Christ in her womb leaps her womb, Jesus Christ. According to faithfully for joy in the presence biblical pronouncements, such are the orphans, wid-ows, immigrants, poor, oppressed, and those put his unborn cousin, John the Baptizer. In response, Mary then sings a beautiful song of praise to God down by the power es-tablishment of culture. Ultimately, the fruit of in joy for the blessing God has bestowed upon her. Consistent with her faithful Jewish faith, the song is a faithful echo of Mary's womb would pro-claim that those who were the ancient Jewish song of Hanna, the mother of excluded from human equality and justice would Samuel, the great judge be blessed by God, and of Israel from more than a those who sought power millennium earlier. over the victims of human

In Mary's song, a scripcruelty, discrimination and hatred would be eventually cursed and destroyed by God for their idolatrous disrespect of God's word.

At the hear to of the prayer, Mary sings, "God has shown strength with has shown strength with the Divine arm; God has scattered the proud in the thoughts of their hearts. God has brought down the powerful from their thrones, and lifted up the lowly; God has filled the hungry with good things, and sent the rich away empty." All of this pro-phetic vision is proclaimed in the ultimate birth and reign of Jesus Christ! Jesus reiterates the significance of this prayer through his life, ministry,

neglect to show hospi-tality to strangers, for by doing that some have enand teaching while on the earth. Perhaps the most significant illustration of tertained angels without knowing it." Other passage of Old Testament scrip this reality is told in the 25th chapter of Matthew. The great Apostle James ture reminds the faithful of God that denying justice to the stranger in a strange echoes the sentiment in the first Chapter of his epistle when he reminds land seeking a new or bet-ter life is a denial of God's providential love, grace, and peace. Deuteronomy 10, 24, and 27, as well as Isaiah 1 and Jeremiah 22 explicitly call for the faith-ful to honor the sojourner the faithful that "Religion that is pure and undefiled before God, the Father, is this: to care for orphans and widows in their distress, and to keep oneself unstained by the world." in a foreign land. At the heart of God's teaching is

the reality that the people of God were once the so journers in a foreign land who ultimately benefited from God's grace and were obligated in faith to extend the same grace to those who were to follow.

When Christian teach-ing, doctrine, practice, or proclamation demonizes the stranger, curses the alien, or castigates the foreigner to less-than human dignity because they are somehow deemed a threat to the prevailing cultural or religious norm, such a proclamation is contrary to the Bible and an affron to Biblical Christianity

The Rev. David Wilson Rogers, Minister of the First Christian Church (Disciples of Christ), has been serving in Carlsbad for almost 23 years and has been contributing to the Current-Argus for the past 22 years.

### Celebrate National Hiking Day with a trip to Guadalupe Mountains



As we celebrate National Hiking Day, there's no better time to lace up your boots, grab celebrate vour backpack, and

Mountains National Park is a stunning expanse of rugged terrain, featuring

the highest peaks in Texas. This diverse landscape, national park in our backvard. Did vou know that rich in geological history and vibrant ecosystems, we have a backpack for checkout that was created beckons hikers of all skill by the rangers from the Guadalupe Mountains? It levels. From the moment you step into the park, will help you explore the you're greeted by tower-ing limestone cliffs, exmountains. Discover the exciting world of geology pansive desert vistas, and at Guadalupe Mountains National Park. The backthe rich tapestry of flora and fauna that thrives in this unique environment. pack includes a thumb drive with lesson plans and One of the park's crown jewels is the Guadalupe Peak Trail, which leads to field trip activity guides, a compass and instruction booklet, a cleaning cloth the summit of Guadalupe for a compass, binoculars, Peak, the highest point in Texas at 8,749 feet. and a flexible ruler. This challenging 8.4-mile round trip offers pan-oramic views that reward

For those looking for a shorter hike, the McKittrick Canyon Trail provides an equally enchanting experience. This 4.8-mile round trip trail takes you through a pic-turesque canyon adorned with colorful rock formations and lush vegetation. The canyon is par-ticularly breathtaking in the fall when the leaves change, transforming the landscape into a vibrant

the story of ancient seas and shifting earth, makactivities for outdoor enthusiasts. Birdwatching ing every step a journey through time. Hiking in the Guadalupe Mountains is not just about physical activity; it's also an opportunity for connection—with nature and with ourselves. The serenity of the wilderness allows for moments of reflection, peace, and re-juvenation. There's something incredibly ground-

ing about stepping away from the hustle and bustle of daily life and immersing oneself in the quiet majesty of the mountains. In addition to hiking,

is particularly popular, as the park is home to a wide variety of species. Photography enthusiasts will find endless inspiration in the stunning landscapes, especially during sunrise and sunset when the mountains are bathed in golden light. As we observe National

Hiking Day, let's remem-ber the importance of preserving these natural spaces. Engaging with the outdoors fosters a deep appreciation for our en-vironment, encouraging us to protect it for future Practicing No Trace

principles ensures that we can continue to enjoy the beauty of places like the Guadalupe Mountains while minimizing our impact. The

Guadalupe Mountains offer an in Mountains offer an in-credible opportunity to celebrate National Hiking Day. This rugged land-scape invites you to step outside, embrace the adoutside, embrace the ad-venture, and reconnect with nature. So pack your gear, hit the trails, and let the spirit of exploration guide you through one of Texas's most spectacular reconstructions the spectacular treasures. Happy hiking! Sarah Jones is the di-rector of Carlsbad Public

the Guadalupe Mountains generations. Leave N Library. offer numerous other CURRENT-ARGUS **Ribbon Cutting** 

### pen House When: Tuesday, November 19th, 2024

9:00 AM to 3:00 PM Ribbon Cutting: 10:00 AM Where: 400-2 Cascades Ave. Ste. 101,

Carlsbad

We would like to invite the entire community to join us in celebrating our beautiful new LOCAL office, here in Carlsbad.

Stop by to learn more about your LOCAL paper and subscribe. "Your News, Your Town, Your Paper"

Refreshments will be served

400-2 Cascades Ave., Suite 101 Carlsbad, NM 88220



hit the trails. This special day reminds us of the beauty of nature, the importance of outdoor activities, and the thrill of exploration. One of the most breathtaking destinations to embrace this spirit is the Guadalupe Mountains in West Texas, a hidden gem

NO Tap Roc for an ai

The exac The app The prop for sale. The estin (pph) ar

Pollutai PM10 PM2.5 Sulfur I

Nitroger Carbon Volatile Sum of : Toxic Ai Green H

The ope

The own Tap Roc 523 Parl

lf you l Permit l

Air Qua 525 Car Santa Fe

Other co

quality i facility l

General the Air dealing



your effort at the top. The trail winds through stun-

TICE OF AIR QUA	LITY PERM	IT APPLICATION
k Operating, LLC announces its applic quality permit for the construction of l to the Air Quality Bureau is Novemb	its Oil and Gas facility. T	
t location of the proposed facility, know oximate location of this facility is 2.3 r		
oosed facility consists of an oil and gas	entral tank battery where	oil, gas, and water will be separated
nated maximum quantities of any regu d tons per year (tpy) and could change		
1: ioxide (SO2) Monoxide (CO) Organic Compounds (VOC) Il Hazardous Air Pollutant (HAPs)	Pounds per hour 0.7 0.02 53.6 221.1 183.9 2.2	Tons per year 3.0 3.0 0.08 36.2 63.5 115.1 9.6
r Pollutant (TAP) ouse Gas Emissions as Total CO2e	-	- 25,000 mT
ating schedule of the facility will be co	ntinuous (24 hr/day, 7 day	/s/wk, 52 wks/yr)
er and/or operator of the Facility is: k Operating, LLC : Point Dr, Suite 200 CO 80401		
ave any questions or comments about ts to be made as a part of the permit re		
rograms Manager xico Environment Department iry Bureau nino de los Marquez, Suite 1, New Mexico, 87505-1816		
mments and questions may be submit	ted verbally. (505) 476-43	300; 1 800 224-7009
fer to the company name and site nam artment may not have received the per ir comments. Once the Department h mpacts, the Department's notice will be reation.	mit application. Please in as performed a prelimina	clude a legible return mailing address ry review of the application and its air
information about air quality and the Quality Bureau's website: <u>www.env.nm.</u> vith public participation in the permit	gov/air-quality/permitting	section -home-page/. The regulation
<b>n</b> n aviso de la oficina de Calidad del Aire	del Departamento del Me	dio Ambiente de Nuevo México, acerca

es producidas por un establecimiento en esta área. Si usted desea información en español, por fave con esa oficina al teléfono 505-629-3395.

comuniquese con esa oficina al eléfono 505-629-3395. Natice of Non-Discrimination NMED Jace and Discrimination of is programs or activities, as required by applicable base and regulations. NMED is responsible for conditation of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.R.R. part, including Title VI of the Civil Rights Acc of 1964, as amended. Section 504 of the Habilitizion Acc of 1973; the Age Discrimination Acc of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about thi notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have ben discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 st. Francis De, Suite N4050, P.O. Bos 5469, Santa Fe, NM 87502, (509) 827 - 2555, nd.coordinatorden.mr.mgoV, You may also visit on vebsite at https://www.cnm.mgov/non-employee discrimination-complaint-page! to learn how and where to file a complaint of discrimination.

In Genesis 18, Abraham

received and blessed

aliens journeying through the land. Thousands of

years later, the author of Hebrews would herald the

compassionate and faith-ful gesture in Chapter 13

righteousness.

a true sign of faithful hteousness. "Do not

#### AFFIDAVIT OF PUBLICATION

CARLSBAD CURRENT-ARGUS PO BOX 507 HUTCHINSON, KS 67504-0507

STATE OF NEW MEXICO } SS COUNTY OF EDDY }

Account Number: 1015

Ad Number: 22440 Description: Air Quality Permit Application Ad Cost: \$295.34

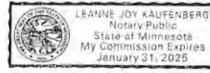
Sherry Groves, being first duly sworn, says:

That she is the Agent of the the Carlsbad Current-Argus, a Weekly newspaper of general circulation, printed and published in Carlsbad, Eddy County, New Mexico; that the publication, a copy of which is attached hereto, was published in said newspaper on the following dates:

November 16, 2024

That said newspaper was regularly issued and circulated on those dates. SIGNED:

Sherry Dence


Agent

Subscribed to and sworn to me this 18th day of November 2024.

Leanne Kaufenberg, Notary Public, Redwood County

Leanne Kaufenberg, Notary Públic, Redwód County Minnesota

> CHRIS MARTINEZ CDH CONSULTING LLC 9446 CLERMONT ST DENVER, CO 80229 cmartinez@cdhconsult.com



### NOTICE OF AIR QUALITY PERMIT APPLICATION

Tap Rock Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the construction of its Oil and Gas facility. The expected date of application submittal to the Air Quality Bureau is November 29, 2024.

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364. The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale.

The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM10	0.7	3.0
PM2.5	0.7	3.0
Sulfur Dioxide (SO2)	0.02	0.08
Nitrogen Oxides (NOX)	53.6	36.2
Carbon Monoxide (CO)	221.1	63.5
Volatile Organic Compounds (VOC)	183.9	115.1
Sum of all Hazardous Air Pollutant (HAPs)	2.2	9.6
Toxic Air Pollutant (TAP)		
Green House Gas Emissions as Total CO2e	-	25,000 mT

The operating schedule of the facility will be continuous (24 hr/day, 7 days/wk, 52 wks/yr)

The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401

If you have any questions or comments about construction or operation of this facility, and you want your comments to be made as a part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816

Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009

Please refer to the company name and site name or send a copy of this notice along with your comments, since the Department may not have received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: <a href="http://www.env.nm.gov/air-quality/permitting-section-home-page/">www.env.nm.gov/air-quality/permitting-section -home-page/</a>. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

#### Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.E.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@ env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

=CURRENT-ARGUS= To ADVERTISE: Classifieds: classifieds@currentargus.com Public Notices/Legals: legals@currentargus.com Phone: 575.628.5501 All classifieds are subject to applicable rate card, copies of which are available from our Advertising Dept. All ads are subject th Errors must be reported in the first day of publication. Current Argus shall not be liable for any loss or expense that results fr pproval before publication. Current-Argus reserves the right to edit, refuse, reject, classify or cancel any at any time. an error in or omission of an advertisement. No refunds for early cancellations of order.

PUBLIC NOTICE PUBLIC NOTICE **PUBLIC NOTICE PUBLIC NOTICE PUBLIC NOTICE** 

K KANE Buying Mineral Rights. WE BUY MINERALS: We are interested in buying minerals in Eddy and Lea County, New Mexico. We pay referrals for any

lease or minerals. Please email alex@kaneresources.com or call (432) 203-5510

**Auction Displays** Noon 22310

com

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>



**OPEN UNTIL FILLED:** COUNTY MANAGER - Salary DOE/DOQ



available at: https://www.co.eddy.nm.us Grants Administrator - \$28.23 - \$31.15 per hour DOE IT Specialist I - \$24,35 - \$26,87 per hour DOE

Facilities Manager - \$78,916 - \$87,096 Annually DOE DWI Preventionist / Compliance - \$22.06 - \$24.35 per hour DOE Code Enforcement Officer - \$21,53 - \$23,75 per hour DOE MVD Office Clerk - FT - \$22.06 - \$24.35 per hour DOE Detention Officer - \$23.75 - \$26.21 per hour DOE Sian-on Incentive of \$5,000 - call HR for Details

Detention Officer - PRN - \$23.75 - \$26.21 per hour DOE Detention Nurse – FT - \$39.86 - \$43.99 per hour DOE Firefighter/EMT - Certified - \$21.53 - \$23.75 per hour DOE Firefighter/EMT -- Uncertified - \$20.49 per hour Deputy Sheriff I – Uncertified - \$24.35 per hour Deputy Sheriff II - Certified - \$28.23 - \$31.15 per hour DOE Light Equipment Operator - Artesia - \$19.99 - \$22.06 per hour DOE Light Equipment Operator - Carlsbad - \$19.99 - \$22.06 per hour DOE Light Equipment Roll/Off Operator - Carlsbad - \$19.99 - \$22.06 per hour DOE

Truck Driver/Labor - Carlsbad - \$19.03 - \$21.53 per hour DOE Mechanic - Carlsbad - \$23.18 - \$25.58 per hour DOF Heavy Equipment Operator – Carlsbad - \$22.61 - \$25.58 per hour DOE

Excellent Benefits - paid vacation, sick leave and holiday pay; PERA

retirement plans; health insurance paid at 100% for full-time employees and at

60% for their dependents. Detailed job specifications and applications may be obtained

at www.eddycounty.org. EQUAL OPPORTUNITY EMPLOYER M/F V/D

the S/2 S/2 of Section 13, Township 20 South, Range 27 East, Eddy County, New Mexico; and (2) pooling all uncommitted interests in the Bone Spring interval of Sect Fed Com. 14-31 34H well, which will be drilled from a surface hole location in the NE4 SW4 (Unit K) of Section 14 to a bottom hole location in 0.17 ACRE PROPERTY LOCATED AT 2307 W TEXAS STREET A copy of the Ordinance is available to all interested persons during normal and regular business hours at the Municipal Building, 101 N. Halagueno Street, Carlsbad, NM. Copies of the Ordinance will be available at a fee of fifty (50) cents per page or on the City of Carl surface hole location in the NE/4 SW/4 (Juli K) of Section INE/4 SW/4 (Juli K) of Section the SE/4 SE/4 (Juli F) of Section 13. The completed interval of the Draw Set wells will be onthodor. Further, Case Section 13. The completed interests from the top of the Third Bone Spring interval at a stratigraphic equivalent of attratigraphic equivalent of shown on the Oxy Hopsing Federal #2 (API No. 30-015-20032) well log to the base of the Bone Spring federal #2 (API No. 30-015-20032) well log to the base of the Bone Spring and completing the wells and the allocation of the costs, the designation of Applicant as 200% charge for the risk 200% charge fifty (50) cents per page or on the City of Carlsbad official website:www.cityofcarlsbadnm. Published in the Carlsbad Current-Argus November 16, at PERMIAN DRUM SET 24972 and 24973

Published inthe Carlsbad Current-Argus on November 16,2024 22470

PERMIAN DRUM SET 24972 AND 24973

This is to notify all interested parties, including: EVG Re-ward & Lemay Exploration Ltd.; Harvard & Lemay Ex-ploration Ltd.Scries 1977-A; Harvard & Lemay Ex-loss abulk the second second on Conservation Division will conduct a hearing on applica-tions subnitude by Pernian Reservec Operiting, Ltd. The hearing will be conducted on December 5, 2024, in a hybrid fashion, both virtually minerale, Natural Resources Department, Wendell Chino Building, Pecco Hall, 1220 South Si, Francis Drive, 165 Participate virtually, see the instructions posted on the OCD Harings website: http://www. emard.am.gov/co/th.cring. Hurt 2007/co/th.cring. Permin Resources Operating, LtC. ("Applicant") applies for an order: (1) establishing a default the opt of the Bone Spring formation to the Sase of Mercon 11, Township 200 Section 14 and the NZ S2 of Section 13, Township 200 Section 14 and the NZ S2 of Section 14, The Sector 14 to a bottom hole location in the NH/4 (Unit K) of Section 14 to a bottom hole location 13, Township 20 South, Range 27 Last, Edd Conn 14, 13 L2H well, which we lob bottom hole location 13, Township 20 South, Range 27 Last, Edd Conn 14, 13 L2H well, Whit K) of Section 13, Township 20 South, Range 27 Last, Edd Conn 14, 13 L2H well, Whith K) of Section 14, both A Sector 13, The completed for the S2 SE/4 of Section 14, Nick Set 62 (10) 14, 13, 12H well, which will be dedicated to the Drum Sector 14, and Sector 14, 13, 12H well, which will be dedicated of the pro-sector 14, and the allocation of popolarity and 2007 charges for the S25 L24 (10) Kin K) of Section 14, both constined the S2004 Bon

PERMIAN DRUM SET 24976 Notice is hereby given that at its regular meeting at the Municipal Annex Building at 6:00 p.m. on December 10, 2024 the Carlsbad City Council will consider the adoption of the following ordinance: This is to notify all interested partice, including: EOC Re-Warphy Mineral Corp. Har-vard & Lemay Exploration Ldt; Harvard & Lemay Ex-ploration Lid.Series 1977-A; Lid. Harvard & Lemay Ex-ploration Lid.Series 1977-A; Lid. Series 2078: A; Veirsen Oil & Gas Co.; Northern Oil & Gas Inc; Tom Boyd Drilling Co.; and their successors and source to the Network of the series of the Control of the Series 1977-A; LiC in Cast Co.; Northern Oil & Gas Inc; Tom Boyd Drilling Co.; and their successors and source to the Network of the series of the Series 1978 A; Veirsen Oil & Cast Co.; Northern Oil & Gas Inc; Tom Boyd Drilling Co.; and their successors and context and the Network of the series of the December 5, 2024, in a hybrid fashion, both virtually and in-person at the Energy, Min-crals. Natural Resources Building, Percos Hall, 1220 South St. Francis Drive, 1st Floor, Santa Fe, NM 8705. To participate volved/hearing. info/. In Case No. 24976, Applicant applies for an order pooling all uncomprised of the SE/4 of Soction 1.3. The Weil Sci South, Rang 27 East, Eddy County, New Mexico ("Unit"). The Unit will be declaced to the Drum Set Veid Com 14.15 South Rang 27 East, Eddy County, New Mexico ("Unit"). The Unit will be declaced to the Well will be declaced within 330 of the gamma set of the Well and the despiration of the Costs, the despiration of the Carlsbad. AN ORDINANCE REZONING PART OF "R-2" RESIDENTIAL 2 DISTRICT TO "C-1" COMMERCIAL 1 DISTRICT FOR AN APPROXIMATELY 0.53 ACRE PROPERTY LOCATED AT 1109 W FOX STREET Published in the Carlsbad Current-Argus November 16, 2024 22270 Published in the Carlsbad Current-Argus November Current 16,2024 22450

# ORDINANCE ORDINANCE NO. 2024-XX AN ORDINANCE REZONING PART OF "R-2" RESIDENTIAL 2 DISTRICT TO "C-1" COMMERCIAL 1 DISTRICT FOR AN APPROXIMATELY 0.22 ACRE PROPERTY LOCATED AT 311 N MESA STREET Need privacy and speed? Ask about our "blind boxes."

NOTICE OF AIR QUALITY PERMIT APPLICATION Tap Rock Operating, LLC announces its application submittal to the New Mexico En Department for an air quality permit for the construction of its Oil and Gas facility. The expec application submittal to the Air Quality Bureau is November 29, 2024. nvironmen cted date o

The exact location of the proposed facility, known as the High Life CTB, will be 32.142922, -104.376364 The approximate location of this facility is 2.3 miles south of Whites City in Eddy County.

The proposed facility consists of an oil and gas central tank battery where oil, gas, and water will be separated for sale. The estimated maximum quantities of any regulated air contaminant will be as follows in pounds per hour

(ppn) and tons per year (tpy) and could chan	ge singhtiy during the co	uise of the Department's review:
(pp) and tons per year (pp) and counc claim PM10 PM25 Suffur Diotacts (SO2) Nitrogen Oxides (NOX) Carbon Monoxide (CO) Sum of all Hazardones Air Pollurant (HAPs) Toxic Air Pollurant (TAP) Green House Gas Emission as Toal CO2e The operating schedule of the facility will be	Pounds per hour 0.7 0.7 53.6 221.1 183.9 2.2	Tons per year 3.0 0.08 36.2 63.5 115.1 9.6 25,000 mT
The owner and/or operator of the Facility is: Tap Rock Operating, LLC 523 Park Point Dr, Suite 200 Golden, CO 80401		
If you have any questions or comments about comments to be made as a part of the permit to this address:		
Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Čamino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816		
Other comments and questions may be subm	itted verbally. (505) 47	6-4300; 1 800 224-7009
Please refer to the company name and site na since the Department may not have received 1 address with your comments. Once the Depa and its air quality impacts, the Department's circulated near the facility location.	he permit application. P rtment has performed a	lease include a legible return mailing oreliminary review of the application
General information about air quality and t found at the Air Quality Bureau's website: <u>w</u> The regulation dealing with public participati	ww.env.nm.gov/air-qual	ity/permitting-section -home-page/.
Attención Este es un aviso de la oficina de Calidad del Ai acerca de las emisiones producidas por un e	stablecimiento en esta a	írea. Si usted desea información en

español, por favor comuniquese con esa oficina al teléfono 505-629-3395. Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.ER, Part 7, induding Title VI of the Civil Rights Act of 1964, as amended, Section 504 of the Rehabilitation Act of 1975, the Age Discrimination Act of 1975, Trile US of the Education Amendments of 1972, and Section 13 of the Federal Water Pollation Control Act Amendments of 1972, Hyou have any questions about this notice or any of NMED y non-discrimination to a NMED program or activity, you may contact: Non-Discrimination Coordinator@ exrumagos. You may also visit our website at https://www.erw.magov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. Base and the section of the results of the activity of the complaint of discrimination.

A copy of the ordinance is available to all interested persons during normal and regular business hours at the Municipal Building, 101 N. Halagueno Street, Carlsbad, NM. Copies of the ordinance will be available at a fee of fifty (50) cents per page.

TO WHOM IT MAY CONCERN:

NOTICE OF PROPOSED ORDINANCE

ORDINANCE NO 2024-XX

Copies of the ordinance will be available at a fee of fifty (50) cents per page.

TO WHOM IT MAY CONCERN:

Notice is hereby given that at its regular meeting at the Municipal Annex Building at 6:00 p.m. on December 10, 2024 the Carlsbad City Council will consider the adoption of the following ordinance:

NOTICE OF PROPOSED ORDINANCE

Published i the Carlsbac Current-Argus Noivember 16 2024 22290

#### TO WHOM IT MAY CONCERN:

Notice is bereby given that at its regular meeting at the Municipal Annex Building at 6:00 p.m. on December 10, 2024 the Carlsbad City Council will consider the adoption of the following ordinance:

A copy of the ordinance is available to all interested persons during normal and regular business hours at the Municipal Building, 101 N. Halagueno Street, Carlsbad, NM. NOTICE OF PROPOSED ORDINANCE

ORDINANCE NO 2024-XX

AN ORDINANCE NO. 5024AX AN ORDINANCE CORRECTING ORDINANCE 2024-26 REGARDING SECTION 50-4(a) OF THE CITY OF CARLSBAD CODE OF ORDINANCES REGARDING PENALTY ASSESSMENTS FOR THE NEW MEXICO UNIFORM TRAFFIC ORDINANCE, 2010 COMPILATION

A copy of the ordinance is available to all interested persons during normal and regular business hours at the Municipal Building, 101 N. Halagueno Street, Carlsbad, NM. Copies of the ordinance will be available at a fee of fifty (50) cents per page.

Published in the Carlsbas Current-Argus November Current 16,2024 22300

### **Public Notices**

sons of Jolene Coleman. Oil Royalties. Call 580-606-0253 Published in the

Current-Argus November 9,12,14,16,19,21,23,26,28,30, December 3&5, 2024 #20780

Classified shoppers aren't desperate... just smart consumers that like to save money.

### Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

#### Facility Routine Operations:

Well fluids are routed to individual initial separators where gas and liquids are separated. Liquids from the initial separators flow to heater treaters (HT 1-8). Oil from the heater treaters enters the vapor recovery towers (VRTs). Gas from the heater treaters joins the gas from the initial separators and is sent to the sales pipeline. Gas is sent to flare during short pipeline downtime periods (FL-2 (HP)). Prior to the sales point, a side stream of gas is removed and sent to gas lift compressors (ENG 1-2). The compressors direct the gas down hole to assist in bringing fluids to the surface. The compressor engines are gas fired and controlled with catalytic converters. Water from the heater treaters flows to atmospheric storage tanks (PWTK 1-4). Vapors from the water storage tanks are captured by the tank blower and routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the low-pressure flare (FL-1 (BDT)). When enough water has accumulated in the tanks it is piped off-site for disposal. A small amount of truck loading is included for operational flexibility (PWLOAD-1, HR-1). Gas from the VRTs is routed to a Vapor from the oil storage tanks are captured by the tank blower and routed is down for maintenance, the vapors from the blower is down for maintenance, the vapors from the oil storage tanks are captured by the tank blower and routed to the sales line. The oil from the VRTs is routed to the VRU and then to the sales line. The oil from the VRTs is routed to the VRU and then to the sales pipeline. When the blower is down for maintenance, the vapors are controlled by the flare (FL-1 (BDT)). When enough oil has accumulated in the tanks it is piped off-site for operational flexibility (OILLOAD-1, HR-1). During periods of VRU downtime, the vapor stream is controlled by the flare (FL-1(VDT)).

### **Source Determination**

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

### A. Identify the emission sources evaluated in this section (list and describe): High Life CTB – no other facilities within 1 mile.

### B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🛛 Yes 🛛 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🛛 Yes 🛛 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🛛 Yes 🛛 🗆 No

### C. Make a determination:

☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

### **PSD Applicability Determination for All Sources**

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
  - a minor PSD source before and after this modification (if so, delete C and D below).
  - □ a major PSD source before this modification. This modification will make this a PSD minor source.
  - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
  - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
  - □ a new PSD Major Source after this modification.
- B. This facility <u>is not</u> one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are <u>not significant</u>. The "project" emissions listed below only result from changes described in this permit application, thus no emissions from other apply to this facility. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
  - a. NOx: 36.2 TPY
  - b. CO: 63.5 TPY
  - c. VOC: 115.1 TPY
  - d. SOx: 0.08 TPY
  - e. PM: 2.98 TPY
  - f. PM10: 3.0 TPY
  - g. PM2.5: 3.0 TPY
  - h. Fluorides: -- TPY
  - i. Lead: -- TPY
  - j. Sulfur compounds (listed in Table 2): -- TPY
  - k. GHG: <25,000 TPY

### **Determination of State & Federal Air Quality Regulations**

## This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

#### **Required Information for Specific Equipment:**

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

#### Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

#### Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

#### **Regulatory Citations for Emission Standards:**

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

#### Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

#### EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC states maximum allowable concentrations of various regulated air pollutants in the atmosphere. This application includes a demonstration for meeting the NAAQS requirements.
20.2.7 NMAC	Excess Emissions	Yes	Facility	20.2.7 NMAC states procedures and requirements for notifying the NMED of excess emissions during malfunction, startup, or scheduled maintenance activities.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	Facility is not located in an area requiring a mitigation plan per 40 CFR Part 51.930
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does have gas-fired heaters, but they are < 1,000,000 MMBTU per unit.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have any oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This facility is not a natural gas processing plant.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	TK 1-6	This facility's total hydrocarbon storage capacity is greater than 65,000 gallons. The facility also lies within AQCR 155. Subparts 112 and 113 apply.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This facility is not a sulfur recovery plant.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	All New	<ul> <li>This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below:</li> <li>Include the construction status of applicable units as "New", "Existing", "Relocation of Existing", or "Reconstructed" as defined by this Part in your justification:</li> <li>Check the box for the subparts that are applicable:</li> <li>≥ 113 – Engines and Turbines</li> <li>≥ 114 – Compressor Seals</li> <li>≥ 115 – Control Devices and Closed Vent Systems</li> <li>≥ 116 – Equipment Leaks and Fugitive Emissions</li> <li>= 117 – Natural Gas Well Liquid Unloading</li> <li>= 118 – Glycol Dehydrators</li> <li>= 120 – Hydrocarbon Liquid Transfers</li> <li>= 121 – Pig Launching and Receiving</li> <li>= 122 – Pneumatic Controllers and Pumps</li> <li>&gt; 123 – Storage Vessels</li> <li>= 124 – Well Workovers</li> <li>= 125 – Small Business Facilities</li> <li>= 126 – Produced Water Management Unit</li> <li>&gt; 127 – Flowback Vessels and Preproduction Operations</li> </ul>

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	HT 1-8, ENG 1- 2, GEN 1-4, FL- 1, FL-2	These units are stationary combustion equipment and are therefore subject to the requirements of 20.2.61.109 NMAC.
20.2.70 NMAC	Operating Permits	No	N/A	This facility is a minor source that does not have the potential to emit (PTE) 100 tpy or more of any regulated air pollutant. This facility is not a major source of HAPs.
20.2.71 NMAC	Operating Permit Fees	No	N/A	This facility is not subject to 20.2.70 NMAC because it is a minor source facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility has a potential emission rate (PER) greater than 10 pph or 25 tpy for some regulated air contaminants.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility is subject to Emissions Inventory Reporting because it is permitted under 20.2.72 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a PSD major source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation applies if you are submitting an application pursuant to 20.2.72 NMAC.
20.2.77 NMAC	New Source Performance	Yes	FUG-1, ENG 1- 2, GEN 1-4	This is a stationary source which is subject to the requirements of 40 CFR Part 60. FUG-1: Subject to Subpart OOOOb ENG 1-2, GEN 1-4: Subject to Subpart JJJJ
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The is a minor source facility located in an attainment area.
20.2.80 NMAC	Stack Heights	Yes	HT 1-8, ENG 1- 2, GEN 1-4, FL- 1, FL-2	Stacks do not exceed GEP height and will be evaluated in the NSR permit.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG 1- 2, GEN 1-4	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. ENG 1-2, GEN 1-4: Subject to Subpart ZZZZ

Federal <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	The facility and units within the facility emit criteria pollutants that are subject to the NAAQS. The facility is subject to 20.2.72 NMAC.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR			FUG-1,	Applies if any other Subpart in 40 CFR 60 applies.
60, Subpart A	General Provisions	Yes	ENG 1-2, GEN 1-4	FUG-1: Subject to Subpart OOOOb ENG 1-2, GEN 1-4: Subject to Subpart JJJJ
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This facility does not have any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This facility does not have any electric utility steam generating units.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This facility does not have any electric utility steam generating units.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The facility was not constructed during the applicable timeframe.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	Does not apply to vessels with a design capacity less than or equal to 1,589.874 m^3 used for petroleum or condensate stored, processed, or treated prior to custody transfer.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not have any gas turbines.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility is not a gas plant.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	The facility is not a gas processing plant.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	Facility commenced construction after September 18th, 2015, and therefore this subpart does not apply.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015 and before December 6, 2022,	No	N/A	Facility commenced construction after December 6th, 2022, and therefore this subpart does not apply.
NSPS 40 CFR Part 60 Subpart OOOOb	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After December 6, 2022	Yes	FUG-1	This subpart applies to the fugitive emissions at this facility due to the construction of the facility occurring after December 6, 2022.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	No applicable units at this facility.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal	Yes	ENG 1-2, GEN 1-4	Due to the engine size and date of manufacture, these units are subject to this subpart.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	Combustion Engines			
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	No applicable units at this facility.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	No applicable units at this facility.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	Facility is not a MSW landfill.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No subparts of 40 CFR 61 apply.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for <b>Mercury</b>	No	N/A	The facility does not process mercury ore to recover mercury, use mercury chlor- alkali cells to produce chlorine gas and alkali metal hydroxide, or incinerate or dry wastewater treatment plant sludge.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for <b>Equipment Leaks</b> (Fugitive Emission Sources)	No	N/A	No applicable units at this facility.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	ENG 1-2, GEN 1-4	Applies if any other Subpart in 40 CFR 63 applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	The facility is not subject to this subpart as there are no glycol dehydrators.
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This subpart does not apply because the facility is not a major source or HAPs nor a natural gas transmission and storage facilities.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	Facility is not a major source of HAPs.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	No applicable units at this facility.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	ENG 1-2, GEN 1-4	These units are applicable to the subpart and will demonstrate compliance by complying with 40 CFR 60 Subpart JJJJ.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	Facility is not a TV major source.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not have more than the threshold quantity of any of the regulated substances as determined under §68.115.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not generate commercial electric power or electric power for sale.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not use refrigerants.

### **Operational Plan to Mitigate Emissions**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

□ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ☑ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- □ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

### **Alternative Operating Scenarios**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

**Construction Scenarios**: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: <a href="https://www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/">www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/</a>. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

This facility does not have any alternative operating scenarios.

### **Air Dispersion Modeling**

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

#### Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

# **Universal Application 4**

### **Air Dispersion Modeling Report**

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification					
1	Name of facility:	High Life CTB			
2	Name of company:	Tap Rock Operating, LLC			
3	Current Permit number:	ΝΑ			
4	Name of applicant's modeler:	Chris Martinez – CDH Consulting, LLC			
5	Phone number of modeler:	(303) 594-7951			
6	E-mail of modeler:	cmartinez@cdhconsult.com			

16	16-B: Brief									
1	Was a modeling protocol submitted and approved?	Yes□	No⊠							
2	2 Why is the modeling being done? New Facility									
3	Describe the permit changes relevant to the modeling.									
	New minor source facility within 3 miles of Class I Area.									
4	4 What geodetic datum was used in the modeling? NAD83									
5	How long will the facility be at this location?									
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠							

7	Identify the Air Quality Control Region (AQCR) in which the fac	155						
	List the PSD baseline dates for this region (minor or major, as appropriate).							
8	NO2	03/16/1988						
0	SO2	03/16/1988						
	PM10	02/20/1979	)/1979					
	PM2.5	11/13/2013						
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).							
9	Carlsbad Caverns NP: 2.4 km Guadalupe Mountains NP: 38.0 km							
10	Is the facility located in a non-attainment area? If so describe b	pelow	Yes□	No⊠				
	Describe any special modeling requirements, such as streamling	ne permit requirements.						
11	None							

16-	16-C: Modeling History of Facility								
	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).								
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments					
	CO	CO None							
	NO ₂	None							
1	SO ₂	None							
	H ₂ S	None							
	PM2.5	None							
	PM10	None							
	Lead	None							
	Ozone (PSD only)	None							
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	None							

16-	16-D: Modeling performed for this application									
1	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.									
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.				

СО	$\boxtimes$			
NO ₂	$\boxtimes$	$\boxtimes$		
SO ₂				$\boxtimes$
H ₂ S				$\boxtimes$
PM2.5	$\boxtimes$	$\boxtimes$		
PM10	$\boxtimes$	$\boxtimes$		
Lead				$\boxtimes$
Ozone				$\boxtimes$
State air toxic(s) (20.2.72.402 NMAC)				

#### **16-E: New Mexico toxic air pollutants modeling** List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this 1 application. NA List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required. Emission Rate Emission Rate Screening Emission Rate/ Stack Height Pollutant **Correction Factor** 2 (pounds/hour) Level (pounds/hour) (meters) **Correction Factor** NA

16-F: Modeling options								
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□					

16	16-G: Surrounding source modeling								
1	Date of surround	ing source retrieval	October 31, 2024						
2	sources modeled	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.							
	AQB Source ID	Description of Corrections							
	PM10 – 1767E1	UTMs incorrect – moved to lat/long provided for Facility (James Hamilton Construction Crusher No. 2)							

16	16-H: Building and structure downwash									
1	How many buildings are present at the facility?	None								
2	How many above ground storage tanks are present at the facility?	10								
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□						
4	Building comments	Tank farm was modeled as a solid build	ing.							

16-	I: Recept	ors and <b>i</b>	modeled	property bour	dary					
1	<ul> <li>"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility.</li> <li>Describe the fence or other physical barrier at the facility that defines the restricted area.</li> </ul>									
2	Receptors must be placed along publicly accessible roads in the restricted area.       Yes□       No⊠									
3	Are restricted	l area bounda	ry coordinates	included in the modelin	ng files?		Yes⊠	No□		
	Describe the	receptor grids	and their space	cing. The table below m	ay be used, adding ro	ws as ne	eded.			
	Grid Type	Start distance from End distance from			Commo	Comments				
4	RISK	Square	50 m	0 m	500 m					
	RISK	Square	100 m	500 m	1,000 m					
	RISK	Square	250 m	1,000 m	2,500 m					
	RISK	Square	500 m	2,500 m	5,000 m					
	RISK	Square	1,000 m	5,000 m	10,000 m					
	Describe rece	ptor spacing a	along the fence	e line.						
5	50 m spacing									
6	Describe the	PSD Class I are	ea receptors.							
6	Receptors on analysis.	500 m spacin	g on area bour	ndary (Eastern portion)	as well as 1,000 m gri	d inside (	Class I area fo	or increment		

16-	16-J: Sensitive areas									
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠							
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠							

16	-K: Mo	deling	Scenar	ios							
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).										
	Flare SSM	emissions	modeled a	s they pro	duce the l	highest N(	Dx and CO	rates			
2	Which sce	nario prod	uces the hi	ghest con	centratior	ns? Why?					
	NA										
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)Yes□No ⊠										
4									fore the facto K if it makes fo		
	Hour of Day	Factor	Hour of Day	Factor							
	1		13								
	2		14								
	3		15								
	4		16								
	5		17								
	6		18								
5	7		19								
	8		20								
	9		21								
	10		22								
	11		23								
	12		24								
	If hourly, v	variable em	nission rate	s were us	ed that we	ere not de	scribed ab	ove, descr	ibe them belo	w.	

6	Were different emission rates used for short-term and annual modeling? If so describe below.	Yes□	No⊠

16-	16-L: NO ₂ Modeling						
	Which type Check all th	s of NO ₂ modeling were used? at apply.					
	$\boxtimes$	ARM2					
1		100% NO _{$X$} to NO ₂ conversion					
		D PVMRM					
		Other:					
	Describe the NO ₂ modeling.						
2	in levels be	cility for SIL impacts. Exceeded SIL for NAAQS and Class I area. Initial resulted with low the NAAQS. Refined model for Class I increment used with surrounding source . Results below Class I increment.	-				
3		It NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not d justify the ratios used below.	Yes⊠	No□			
4	Describe th	e design value used for each averaging period modeled.					
		h percentile as calculated by AERMOD hest Annual Average of Three Years					

16-	16-M: Particulate Matter Modeling				
	Select the p	ollutants for which plume depletion modeling was used.			
1		PM2.5			
		PM10			
	$\boxtimes$	None			
2	Describe th	e particle size distributions used. Include the source of information.			
2					
3	Sources tha	cility emit at least 40 tons per year of $NO_X$ or at least 40 tons per year of $SO_2$ ? It emit at least 40 tons per year of $NO_X$ or at least 40 tons per year of $SO_2$ are to emit significant amounts of precursors and must account for secondary of PM2.5.	Yes□	No⊠	
4	Was second	lary PM modeled for PM2.5?	Yes□	No⊠	
5	If MERPs w below.	ere used to account for secondary PM2.5 fill out the information below. If another	method was us	ed describe	

NO _x (ton/yr)	SO ₂ (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-hour}

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	NA
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	NA

16	O: PSD Increme	ent and Source II	Ds				
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unitYesnumbers if they do not match below.					Yes□	No⊠
	Unit Number in UA-2			Unit Numbe	er in Modeling Files		
	FL-2 HP SSM     FL-HP       EL-1 LP-SSM     EL-LP						
	FL-1 LP-SSM			FL-LP			
2	The emission rates in the these match? If not, exp	ne Tables 2-E and 2-F shoul blain why below.	d match the	ones in the n	nodeling files. Do	Yes⊠	No□
3	Have the minor NSR exe been modeled?	empt sources or Title V Insi	ignificant Act	tivities" (Tabl	e 2-B) sources	Yes□	No⊠
	Which units consume increment for which pollutants?						
	Unit ID	NO ₂	SC	D ₂	PM10		PM2.5
	FL-HP	Х	-	-	-		-
	FL-LP	Х	-	-	-		-
	ENG-1	Х	-	-	Х		Х
	ENG-2	Х	-	-	Х		Х
4	GEN-1	Х	-	-	Х		Х
	GEN-2	Х	-	-	Х		Х
	GEN-3	Х	-	-	Х		Х
	GEN-4	Х	-	-	Х		Х
	HT-1	Х	-	-	Х		Х
	HT-2	Х	-	-	Х		Х
	HT-3	Х	-		Х		Х
	HT-4	Х	-	-	Х		Х

	HT-5	Х	-	Х		Х
	HT-6	Х	-	Х		Х
	HT-7	Х	-	Х		Х
	HT-8	Х	-	Х		Х
<ul> <li>PSD increment description for sources.</li> <li>(for unusual cases, i.e., baseline unit expanded emissions after baseline date).</li> </ul>						
6Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.Yes 🖂				Yes⊠	No□	
	Not yet installed/construction	uction.				

16-	16-P: Flare Modeling							
1	¹ For each flare or flaring scenario, complete the following							
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)				
	FL-HP	21.28	47,109,208	6.05624				
	FL-LP	42.61	1,091,026	0.865551				

16-	16-Q: Volume and Related Sources				
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes□	No⊠		
	If not please explain how increment consumption status is determined for the missing installation dates below.				
	NA				
_	Describe the determination of sigma-Y and sigma-Z for fugitive sources.				
2	ΝΑ				
	Describe how the volume sources are related to unit numbers.				
3	Or say they are the same.				
	NA				
	Describe any open pits.				
4	ΝΑ				
5	Describe emission units included in each open pit.				
	ΝΑ				

16	16-R: Background Concentrations					
	used below. that was used	provided background concentrations used? Identify the background station f non-NMED provided background concentrations were used describe the data d.	Yes⊠	No□		
	CO: N/A NO ₂ : Outside Carlsbad (350151005)					
1	PM2.5: Hobbs-Jefferson (350450019)					
	PM10: Hobbs-Jefferson (350250008)					
	SO ₂ : Choose an item.					
	Other:					
	Comments:					
2	Were backgr	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠		

16-	16-S: Meteorological Data				
	Was NMED provided meteorological data used? If so select the station used.				
1	Carlsbad	Yes⊠	No□		
If NMED provided meteorological data was not used describe the data set(s) used below. Discus handled, how stability class was determined, and how the data were processed.		uss how missing	data were		
	ΝΑ				

16-	16-T: Terrain				
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□		
2	What was the source of the terrain data?				
	WebGIS – NED 1/3 (USA ~30m)				

16-	U: Modeling Files
1	Describe the modeling files: AERMOD input/output, BPIPPRIME input/output.

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
High_Life_NOx_SIL	NO2	SIA
High_Life_NOx_CL1	NO2	Class I Increment
High_Life_CO_SIL	СО	SIA
High_Life_PM10_SIL	PM10	SIA
High_Life_PM10_NQS_CL2	PM10	Cumulative NAAQS and Class II Increment
High_Life_PM25_SIL	PM2.5	SIA
High_Life_PM25_NQS_CL2	PM2.5	Cumulative NAAQS and Class II Increment

16-	16-V: PSD New or Major Modification Applications - Not Applicable							
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□					
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□					
3	Describe how preconstruction monitoring has been addressed or attach the approved precor monitoring exemption.	nstruction monito	oring or					
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□					

16-W: Mo	delin	g Res	ults								
1		If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.							Yes□ No⊠		
2		-	the maximum co s necessary.	ncentrations	from the modeli	ng analysis. Row	s may be mo	odified, add	ed and remov	ed from the t	able
Pollutant, Time Period and		deled cility	Modeled Concentratio n with	Secondary PM	Background Concentratio	Cumulative Concentratio	Value of Percent	Location			
Standard	d Conce	entratio g/m3)	Surrounding Sources (μg/m3)	(ug/m3) $n(ug/m3)$ $n(ug/m3)$ $Standard$	of Standard	UTM E (m)	UTM N (m)	Elevatio n (ft)			
NO₂ 1-hr NAAQS	12	3.72	-	-	54.5	178.22	188.03	95%	558,866	3,556,623	1,068.3
NO₂ annual Class I Increment	C	0.38	1.16	-	-	1.16	2.5	46%	558,109	3,559,023	1,097.9
NO₂ annual Class II Increment	1	1.01	-	-	9.3	20.31	25	81%	558,776	3,556,624	1,069.0
CO 8-hr SIL	27	'1.19	-	-	-	271.19	500	54%	558,912	3,556,531	1,067.4
CO 1-hr SIL	1,5	98.55	-	-	-	1,598.55	2,000	80%	558,912	3,556,531	1,067.4
PM ₁₀ annual NAAQS	C	).96	-	-	-	-	1.0	96%	558,776	3,556,624	1,069.0
PM ₁₀ 24-hr NAAQS	5	5.62	5.62	-	100.7	106.35	150	71	558,776	3,556,624	1,069.0
PM ₁₀ annual Class I	C	0.03	-	-	-	0.03	0.2	15%	558,776	3,556,624	1,069.0
PM ₁₀ 24-hr Class I	C	).22	-	-	-	0.22	0.3	73%	558,776	3,556,624	1,069.0
PM ₁₀ annual Class II	C	).96	1.24	-	-	1.24	17	7%	558,776	3,556,624	1,069.0

Tap Rock Operating, LLC

Pollutant, Time	Modeled Facility Concentratio n (µg/m3)	Modeled Concentratio n with Surrounding Sources (μg/m3)	Secondary	Background Concentratio n (μg/m3)	Cumulative Concentratio n (μg/m3)	Value of Standard (μg/m3)	Percent of Standard	Location		
Period and Standard			PM (μg/m3)					UTM E (m)	UTM N (m)	Elevatio n (ft)
PM ₁₀ 24-hr Class II	5.62	5.65	-	-	5.65	30	19%	558,776	3,556,624	1,069.0
PM _{2.5} annual NAAQS	0.96	1.14	-	7.1	8.24	12	69%	558,776	3,556,624	1,069.0
PM _{2.5} 24-hr NAAQS	4.34	4.44	-	16.5	20.94	35	60%	558,912	3,556,623	1,067.9
PM _{2.5} Annual Class I	0.03	-	-	-	0.03	0.05	60%	557,825	3,559,074	1,103.9
PM _{2.5} 24-hr Class I	0.15	-	-	-	0.15	0.27	56%	557,825	3,559,074	1,103.9
PM _{2.5} Annual Class II	0.96	1.14	-	-	1.14	4.0	28%	558,776	3,556,624	1,069.0
PM _{2.5} 24-hr Class II	4.34	4.44	-	-	4.44	9.0	49%	558,912	3,556,623	1,067.9

1	.6-X: Summary/conclusions					
	A statement that modeling requirements have been satisfied and that the permit can be issued.					
1						

Modeling requirements have been met and all concentrations are below applicable standards.

### **Compliance Test History**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

### **Compliance Test History Table (Modify this sample table to suit your facility)**

Unit No.	Test Description	Test Date
NA	NA	NA

### **Other Relevant Information**

**Other relevant information**. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.



### Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	ittee/Applicant Company Name	Expected Application Submittal Date				
Tap R	lock Operating, LLC	November 2024				
Permi	Permittee/Company Contact Phone Email					
Bill Ra	Bill Ramsey (720) 360-4032 bramsey@taprk.com					
Withi	n the 10 years preceding the expected date					
1	Knowingly misrepresented a material fact	in an application for a permi	t?	🗆 Yes 🔀 No		
2	Refused to disclose information required	by the provisions of the New	Mexico Air Quality Control Act?	🗆 Yes 🖂 No		
3	Been convicted of a felony related to envi	ironmental crime in any cour	t of any state or the United States?	🗆 Yes 🖂 No		
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court			🗆 Yes 🗵 No		
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?					
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether each facility that was constructed or operated without the required air quality permit met at least one of the following exceptions: a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was					
	authorized by the Department; or b. The operator of the facility estimated that the facility's emissions would not require an air permit, <b>and</b> the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.					
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?					
7	For each "yes" answer, please provide an	explanation and documentat	tion.			
	TAP-Multi-2001 was issued to Tap Rock for failure to apply for and obtain a construction permit for 4 facilities before commencing construction under 20.2.72.200.A & E. These violations have been rectified.					

High Life CTB

# **Section 22: Certification**

Company Name: ______ Tap Rock Operating, LLC

I, Bill Ramsey , hereby certify that the information and data submitted in this application are true and as accurate

as possible, to the best of my knowledge and professional expertise and experience.

Signed this 19 day of November, 2029, upon my oath or affirmation, before a notary of the State of

Colorado

19/2024

9-2024

Bill Ramsey Printed Name

<u>Sr. Environmental and Regulatory Specialist</u> Title

Scribed and sworn before me on this 19 day of MVEmber 2024

My authorization as a notary of the State of Colovado expires on the

day of October

Notary's Signature

Notary's Printed Name

Date ERICA ROCHELLE SHEWMAKER Notary Public State of Colorado Notary ID # 20174044145 My Commission Expires 10-28-2025

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.