

February 4, 2025

New Mexico Environment Department Air Quality Bureau, Permits Section 525 Camino de los Marquez, Ste. 1 Santa Fe, New Mexico 87505 (505) 476-4300

RE: Application for Significant Revision NSR Permit No. 0274-M8 Bitter Lake Compressor Station Chaves County, New Mexico IACX Roswell LLC

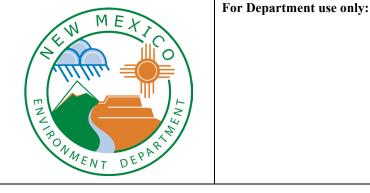
Dear Sir/Madam:

On behalf of IACX Roswell LLC (IACX), Altamira-US, LLC (Altamira) is submitting the enclosed Application for a Significant Revision to NSR Permit No. 0274-M8 for the Bitter Lake Compressor Station (Facility). The Facility is located approximately 13.31 miles northeast of Roswell in Chaves County, New Mexico.

With this application, IACX plans to add one (1) natural gas compressor engine and one (1) flare to control SSM events. The remaining equipment will remain unchanged.

The enclosed application has been prepared in accordance with the requirements set forth in Title 20 New Mexico Administrative Code, Section 2.72.219. (NMAC 20.2.72.219.D.1.a.).

If you have any questions or comments, please contact Justin Wheeler of IACX at (972) 960-3219 or justinwheeler@iacx.com.


Sincerely, Altamira-US, LLC

Laura Worthen Lodes Chief Engineer

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply):
Request for a No Permit Required Determination (no fee)

□ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: □ Not Constructed □ Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: □ Title V (new) □ Title V renewal □ TV minor mod. □ TV significant mod. TV Acid Rain: □ New □ Renewal PSD Major Source: □ PSD major source (new) □ minor modification to a PSD source □ a PSD major modification

Acknowledgements:

 \Box I acknowledge that a pre-application meeting is available to me upon request. \Box Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

X \$500 NSR application Filing Fee enclosed OR \Box The full permit fee associated with 10 fee points (required w/ streamline applications).

X Check No.: 12351 in the amount of \$500

X I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. X I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/. This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.XX.XXX.X.X NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 14	Updating Permit/NOI #:0274-M8	
1	Facility Name: Bitter Lake Compressor Station	Plant primary SIC Cod	e (4 digits): 1311	
1	Dittel Lake compressor blatton	Plant NAIC code (6 digits): 211130		
a	Facility Street Address (If no facility street address, provide directions from	n a prominent landmark)	:	
2	Plant Operator Company Name: IACX Roswell LLC	Phone/Fax: 972-960-32	219 / NA	
а	Plant Operator Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244			
b	Plant Operator's New Mexico Corporate ID or Tax ID:			

3	Plant Owner(s) name(s): IACX Roswell LLC	Phone/Fax: Phone/Fax: 972-960-3219 / NA								
a	Plant Owner(s) Mailing Address(s): 5001 LBJ Freeway, Suite 300, Dallas, TX 75244									
4	Bill To (Company): IACX Roswell LLC	Phone/Fax: Phone/Fax: 972-960-3219 / NA								
a	Mailing Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244	E-mail: justinwheeler@iacx.com								
5	Preparer: Consultant: Laura Worthen-Lodes	Phone/Fax: 405-702-1618								
а	Mailing Address: 525 Central Park Dr., Suite 500, Oklahoma City, OK 73105	E-mail: laura.worthen-lodes@altamira-us.com								
6	Plant Operator Contact: Justin Wheeler	Phone/Fax: 972-679-2147 / NA								
a	Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244	E-mail: justinwheeler@iacx.com								
7	Air Permit Contact: Justin Wheeler	Title: Director of Environmental, Health and Safety								
a	E-mail: justinwheeler@iacx.com	Phone/Fax: 972-679-2147 / NA								
b	Mailing Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244									
c	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.									

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ■Yes □No	1.b If yes to question 1.a, is it currently operating in New Mexico?
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application?
3	Is the facility currently shut down? □ Yes	If yes, give month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? 🗆 Yes 🛛 No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA) \Box Yes \Box No \Box N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? □ Yes	If yes, the permit No. is: P-
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ⊠ No	If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)? \Box Yes \blacksquare No	If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 0274-M8
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ⊠ No	If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)											
а	Current	Hourly: 1.25 MMSCF/hr	Daily: 30 MMSCFD	Annually: 10,950 MMSCF/yr									
b	Proposed	Hourly: 1.25 MMSCF/hr	Daily: 30 MMSCFD	Annually: 10,950 MMSCF/yr									
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)									
a	Current	Hourly: 1.25 MMSCF/hr	Daily: 30 MMSCFD Annually: 10,950 MMSCF/yr										
b	b Proposed Hourly: 1.25 MMSCF/hr Daily: 30 MMSCFD Annually: 10,950 MM												

Section 1-D: Facility Location Information

1	Section: 14	Range: 24 E	Township: 11S	County: Chaves	Elevation (ft): 3,558							
		_	•	•								
2	UTM Zone:	□ 12 or ⊠ 13	3	Datum: 🖾 NAD 27 🗆 NAD 83 🗆 WGS 84								
a	UTM E (in mete	ers, to nearest 10 meter	s): 556,500	UTM N (in meters, to nearest 10 meters):	3,712,770							
b	AND Latitude	(deg., min., sec.):	33.553056	Longitude (deg., min., sec.): -104.3	90833							
3	Name and zip	code of nearest Ne	ew Mexico town: Roswell	88201								
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary):											
5	The facility is 13.31 (distance) miles northeast (direction) of Roswell (nearest town).											
6	Status of land at facility (check one): I Private I Indian/Pueblo I Federal BLM I Federal Forest Service I Other (specify)											
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated:											
8		l miles) to other st	ates, Bernalillo County, or	hich the facility is proposed to be com- a Class I area (see <u>www.env.nm.gov</u> C) If yes, list all with corresponding	/air-quality/modeling-							
9	Name nearest	Class I area: Salt C	Creek Wilderness									
10	Shortest distan	ice (in km) from fa	cility boundary to the bour	ndary of the nearest Class I area (to the	e nearest 10 meters): 1.80							
11				ions (AO is defined as the plant site i est residence, school or occupied stru								
12	"Restricted A continuous wa that would req	lands, including mining overburden removal areas) to nearest residence, school or occupied structure: Method(s) used to delineate the Restricted Area: "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area										
13	Does the owne Yes X A portable stat one location or	within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ⊠ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.										
14		v 1 5	nction with other air regul nit number (if known) of tl	ated parties on the same property? he other facility?	🛛 No 🗌 Yes							

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $\left(\frac{\text{hours}}{\text{day}}\right)$: 24	(days/week): 7	$\left(\frac{\text{weeks}}{\text{year}}\right)$: 52	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8760				
2	Facility's maximum daily operating schedule (if les	s than $24 \frac{\text{hours}}{\text{day}}$)? Start:	□AM □PM	End:	□AM □PM			
3	3 Month and year of anticipated start of construction:							
4	Month and year of anticipated construction complet	ion:						
5	Month and year of anticipated startup of new or mo	dified facility:						
6	Will this facility operate at this site for more than or	ne year? 🛛 🛛 Yes	🗆 No					

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? \Box Yes \blacksquare No If yes, specify:										
а	If yes, NOV date or description of issue: NOV Tracking No:										
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? 🗆 Yes 🖾 No If Yes, provide the 1c & 1d info below:										
с	Document Title:	Date:	-	ment # (or nd paragraph #):							
d	Provide the required text to be inserted in this permit:										
2	Is air quality dispersion modeling or modeling waiver being	submitted with this	applicatio	n? 🛛 Yes 🗆 No							
3	Does this facility require an "Air Toxics" permit under 20.2	.72.400 NMAC & 2	0.2.72.502	2, Tables A and/or B? 🛛 Yes 🛛 No							
4	Will this facility be a source of federal Hazardous Air Pollu	tants (HAP)?	Yes □No	,							
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of anyOR \boxtimes Minor ($\Box < 10$ tpy of any			tpy of any combination of HAPS) ty of any combination of HAPS)							
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Ves No										
	If yes, include the name of company providing commercial electric power to the facility:										
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically o	loes not include power generated on							

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):	, <i>"</i>	Phone:					
а	R.O. Title: R.O. e-mail:							
b	R. O. Address:							
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:					
а	a A. R.O. Title: A. R.O. e-mail:							
b	A. R. O. Address:							
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship):		· 1					
4	Name of Parent Company ("Parent Company" means the primary r permitted wholly or in part.):	name of the organiza	tion that owns the company to be					
а	Address of Parent Company:							
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.):							
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations:					

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

□ CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name_Laura Worthen Lodes__,

Email ____ laura.worthen-lodes@altamira-us.com _____ Phone number _405-919-4129_____

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling summary report only should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service.

Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Change Log – Do **not** submit this page with your application.

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

¥1*4					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi			RICE Ignition Type				
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Eq	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.				
C-891	Compressor Engine	Cooper	GMVH-10C	48778	2250 hp	1414 hp	4/7/1981	N/A	20200202	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	2SLB				
C-891	Compressor Engine	Bessemer	01/1/11-100	40//0	2230 np	1414 lip	11/15/1987	C-891	20200202	20200202	20200202	20200202	To Be Modified	To be Replaced	2325	
C-893	Compressor Engine	Cooper	GMVH-10C	48776	2250 hp	1391 hp	4/7/1981	N/A	20200202	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	2SLB				
0 075	compressor Engine	Bessemer		10770	2200 np	1591 пр	12/1/1989	C-893	20200202	To Be Modified	To be Replaced	2520				
C-894	Compressor Engine	CAT	3408C LE	BAZ0230	425 hp	425 hp	5/15/2006	N/A	20200202	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	4SLB				
0.07.	e empresser Engine	0.11	21000 22	3	.20 np	.20 np	3/7/2020	C-894	20200202	To Be Modified	To be Replaced	1525				
C-895	Compressor Engine	CAT	3408C LE	BAZ0017	425 hp	425 hp	6/5/2002	N/A	20200202	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	4SLB				
				9	r		3/7/2020	C-895		To Be Modified	To be Replaced					
C-896	Compressor Engine	CAT	3408C LE	TBD	425 hp	425 hp	TBD	N/A	20200203	Existing (unchanged) X New/Additional	To be Removed Replacement Unit	4SLB				
0.010	e empresser Engine	0.11	01000 22		.20 np	.20 np	TBD	C-896	20200203	20200203	To Be Modified	To be Replaced	1525			
DEHY	Glycol Dehydrator	Lakota	N/A	N/A	30	30	1/1/1980	N/A	31000301	31000301	31000301	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A		
DEIII	Sijeor Denyalator	Lukou	1011	1071	MMscf/d	MMscf/d	1/1/1980	N/A	51000501	To Be Modified	To be Replaced	1011				
RB-1	Dehydrator Reboiler	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000404	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A				
100 1		1.011	1011	1011	1011	1	N/A	N/A		21000101	51000101		To Be Modified		To be Replaced	1.011
RB-2	Dehydrator Reboiler	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000404	31000404	31000404	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A		
100 2		1.011	1.011	1011	1011	1	N/A	N/A	21000101	To Be Modified	To be Replaced	1.011				
TK-1	Condensate Tank	N/A	N/A	19428	100	100	1/2/2008	N/A	40400311	40400311	40400311	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A		
		1.011	1.011	17.120	bbl/day	bbl/day	1/23/2008	N/A	10100011	X To Be Modified	To be Replaced	1.011				
TK-2	Condensate Tank	N/A	1415	19349	100	100	1/17/2008	N/A	40400311	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A				
		1.011	1.10	17017	bbl/day	bbl/day	1/17/2008	N/A	10100011	X To Be Modified	To be Replaced	11/71				
TK-2a	Condensate Tank	N/A	N/A	19342	100	100	1/16/2008	N/A	40400311	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A				
		1.011	1.011	19012	bbl/day	bbl/day	1/16/2008	N/A	10100011	X To Be Modified	To be Replaced	1.011				
FLARE-	Flare	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000205	Existing (unchanged) X New/Additional	To be Removed Replacement Unit	N/A				
1							N/A	N/A	51000205	To Be Modified	To be Replaced					
FUG	Facility Fugitive	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000220	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A				
100	Emissions	1.011	1.011	1011	1011	1	N/A	N/A	21000220	To Be Modified	To be Replaced	1.011				
Load-1	Condensate Loading	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40600132	40600132	40600132	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A		
	Emissions						N/A	N/A		X To Be Modified	To be Replaced					
Load-2	Produced Water	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40600132	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A				
2	Loading Emissions						N/A	N/A		X To Be Modified	To be Replaced					

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type	
Unit Number ¹	Source Description	Make		vented to (SCC)		Emissions vented to (SCC)			uipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.		
SSM	Startup, Shutdown,	N/A	N/A	N/A	N/A	N/A	N/A	N/A	310888811	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A	
331/1	and Maintenance	IN/A	IN/A	IN/A	IN/A	N/A	N/A	N/A	510666611	X To Be Modified	To be Replaced	IN/A	
М	Malfunction	N/A	N/A	N/A	N/A	N/A	N/A	N/A	310888811	X Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A	
111	Wallunction	11/24	11/24	11/24	1N/PA	11/74	N/A	N/A	510888811	To Be Modified	To be Replaced	11/74	

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of E	quipment, Check Onc
	•		Serial No. Capacity Units		Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²		
DD 1	Delester Delector	Element	SB24-12	0.75	20.2.72.202.B.5 NMAC	1980	X Existing (unchanged) New/Additional	To be Removed
RB-1	Dehydrator Reboiler	Flameco	0509-415	MMBtu/hr		1980	To Be Modified	Replacement Unit To be Replaced
RB-2	Debudenten Bebeilen	Flameco	SB24-12	0.75	20.2.72.202.B.5 NMAC	1980	X Existing (unchanged) New/Additional	To be Removed
KB-2	Dehydrator Reboiler	Flameco	0411-688	MMBtu/hr		1980	To Be Modified	Replacement Unit To be Replaced
TV 2	Laha Oʻl Taula	N 1/A	N/A	N/A	20.2.72.202.B.2 NMAC	N/A	X Existing (unchanged)	To be Removed
TK-3	Lube Oil Tank	N/A	N/A	N/A		N/A	New/Additional To Be Modified	Replacement Unit To be Replaced
		21/4	N/A	N/A	20.2.72.202.B.2 NMAC	N/A	X Existing (unchanged)	To be Removed
TK-6	Used Lube Oil Tank	N/A	N/A	N/A		N/A	New/Additional To Be Modified	Replacement Unit To be Replaced
TK 10	Laha Oʻl Taula	21/4	N/A	N/A	20.2.72.202.B.2 NMAC	N/A	X Existing (unchanged) New/Additional	To be Removed Replacement Unit
TK-10	Lube Oil Tank	N/A	N/A	N/A		N/A	To Be Modified	To be Replaced
TK 10	Used Laber O'l Teals	21/4	N/A	N/A	20.2.72.202.B.2 NMAC	N/A	X Existing (unchanged) New/Additional	To be Removed Replacement Unit To be Replaced
TK-12	Used Lube Oil Tank	N/A	N/A	N/A		N/A	To Be Modified	
UDU	II.1'	21/4	N/A	N/A	20.2.72.202.B.5 NMAC	N/A	X Existing (unchanged) New/Additional	To be Removed
HRU	Helium Recovery Unit	N/A	N/A	N/A		N/A	To Be Modified	Replacement Unit To be Replaced
Haul	Facility Have Decide	NI/A	N/A	N/A	20.2.72.202.B.5 NMAC	N/A	X Existing (unchanged) New/Additional	To be Removed
Haui	Facility Haul Roads	N/A	N/A	N/A		N/A	To Be Modified	Replacement Unit To be Replaced
PIG-TANK	Temporary Tank for Pigging	N/A	N/A	N/A	20.2.72.202.B.5 NMAC	N/A	Existing (unchanged) New/Additional	To be Removed Replacement Unit
PIG-TAINK	Liquids		N/A	N/A		N/A	To Be Modified	To be Replaced
							Existing (unchanged) New/Additional	To be Removed Replacement Unit
							To Be Modified	To be Replaced
							Existing (unchanged) New/Additional	To be Removed Replacement Unit
							To Be Modified	To be Replaced
							Existing (unchanged) New/Additional	To be Removed Replacement Unit
							To Be Modified	To be Replaced
						Existing (t		To be Removed Replacement Unit
							New/Additional To Be Modified	To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
VRU	Vapor Recovery Unit	3/13/2009	VOCs and HAPs	TK-1, TK-2, Tk-2a	95% VOCs and HAPs	Manufacturer
					ļ	
¹ List each co	ntrol device on a separate line. For each control device, list all er	nission units o	controlled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

11	N	Ox	С	0	V	DC	S	Ox	PI	M	PM	[10 ¹	PM	2.5 ¹	Н	2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C-891	12.47	54.61	7.79	34.13	1.87	8.19	0.13	0.57	-	-	0.46	2.03	0.46	2.03	-	-	-	-
C-893	12.27	53.74	7.67	33.58	1.84	8.06	0.13	0.56	-	-	0.46	2.00	0.46	2.00	-	-	-	-
C-894	0.94	4.1	1.72	7.55	0.5	2.18	0.046	0.2	-	-	0.034	0.15	0.034	0.15	-	-	-	-
C-895	0.94	4.1	1.72	7.55	0.5	2.18	0.046	0.2	-	-	0.034	0.15	0.034	0.15	-	-	-	-
C-896	0.94	4.1	1.72	7.55	0.5	2.18	0.046	0.2	-	-	0.034	0.15	0.034	0.15	-	-	-	-
DEHY	-	-	-	-	180.40	790.20	-	-	-	-	-	-	-	-	-	-	-	-
RB-1	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	-	-	-	-	-	-	-	-	-	-
RB-2	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	-	-	-	-	-	-	-	-	-	-
TK-1	-	-	-	-	67.12	2.05	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	67.12	2.05	-	-	-	-	-	-	-	-	-	-	-	-
TK-2a	-	-	-	-	67.12	2.05	-	-	-	-	-	-	-	-	-	-	-	-
FLARE-1	0.69	3.02	1.38	6.03	0.00	0.001	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	-	-	-	-	0.55	2.41	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	13.5	0.60			-	-	-	-	-	-	-	-	-	-
LOAD-2	-	-	-	-	13.5	0.60	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	15.89	-	-	-	-	-	-	-	-			-	-
М	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	28.3971	124.314	22.1235	96.9311	414.528	848.676	0.40103	1.74325	-	-	1.022	4.48	1.022	4.48	*	0	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Un:4 No	N	Ox	С	0	V	C	SC	Dx	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C-891	10.43	45.67	6.38	27.94	1.87	8.19	0.13	0.57	-	-	0.46	2.03	0.46	2.03	-	-	-	-
C-893	5.87	25.71	7.69	33.69	1.84	8.06	0.13	0.56	-	-	0.46	2	0.46	2	-	-	-	-
C-894	0.94	4.10	1.72	7.55	0.50	2.18	0.05	0.2	-	-	0.03	0.15	0.03	0.15	-	-	-	-
C-895	0.94	4.10	1.72	7.55	0.50	2.18	0.05	0.2	-	-	0.03	0.15	0.03	0.15	-	-	-	-
C-896	0.94	4.10	1.72	7.55	0.50	2.18	0.05	0.2	-	-	0.03	0.15	0.03	0.15	-	-	-	-
DEHY	-	-	-	-	0.55	2.40	-	-	-	-	-	-	-	-	0.001	0.002	-	-
RB-1	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	-	-	0.01	0.02	0.01	0.02				
RB-2	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	-	-	0.01	0.02	0.01	0.02	-	-	-	-
TK-1	-	-	-	-	1.34	0.04	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	1.34	0.04	-	-	-	-	-	-	-	-	-	-	-	-
TK-2a	-	-	-	-	1.34	0.04	-	-	-	-	-	-	-	-	-	-	-	-
FLARE-1	1.67	7.30	3.33	14.58	93.80	0.32	0.90	3.93	-	-	-	-	-	-	3.38	0.01	-	-
FUG-1	-	-	-	-	0.55	2.41	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	13.50	0.60	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-2	-	-	-	-	13.50	0.60	-	-	-	-	-	-	-	-	-	-	-	-
М	-	-	-	-	*	10	-	-	-	-	-	-	-	-	-	-	-	-
						39.2817			-	-	0.988	4.33	0.988	4.33	*	2	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance $(SSM)^{I}$, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.pm.gov/ach/nermit/ach.nel.htm) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41 ± 41 or 1.41 ± 4).

(https://www.	.env.nm.gc	ov/aqb/pern	nit/aqb pc	ol.ntml) for	more deta	ned instruc	tions. Nui	mbers shall	be expres	sed to at le	ast 2 decir	nal points (e.g. 0.41,	1.41, or 1.4	41E-4).	C	·	<u> </u>
Unit No.		Ox		20		DC		Ox		M ²		10 ²		2.5 ²		$_2$ S		ead
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
М	-	-	-	-	*	10	-	-	-	-	-	-	-	-	*	1	-	-
																		L
					_										_			
																		L
Totals	-	-	-	-	*	10	-	-	-	-	-	-	-	-	*	1	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

X I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	DC	SO	Ox	Р	М	PN	110	PN	12.5	H ₂ S or	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
,	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
Engine	C-891	Vertical	No	60.99	230	118			37.7	2.00
Engine	C-893	Vertical	No	60.99	230	114			36.4	2.00
Engine	C-894	Vertical	No	18.11	880	43			54.5	1.00
Engine	C-895	Vertical	No	18.11	880	43			54.5	1.00
Engine	C-896	Vertical	No	18.11	880	43			54.5	1.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formal X H	dehyde [AP	Acetal X H		Acrolein H	X AP		zene IAP		enzene IAP		exane IAP	Tole X H	uene IAP		'lene HAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C-891	C-891	0.7	3.1	0.5	2.3	0.1	0.3	0.1	0.3	0.02	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C-893	C-893	0.7	3.1	0.5	2.3	0.1	0.3	0.1	0.3	0.02	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C-894	C-894	0.2	1.0	0.2	0.8	0.03	0.1	0.02	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C-895	C-895	0.2	1.0	0.2	0.8	0.03	0.1	0.02	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C-896	C-896	0.2	1.0	0.2	0.8	0.00	0.1	0.00	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DEHY	DEHY	0.2	0.8	-	-	-	-	-	-	0.09	0.39	0.01	0.02	0.01	0.04	0.07	0.29	0.02	0.07
RB-1	RB-1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
RB-2	RB-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TK-1	TK-1	0.3	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ТК-2	TK-2	0.3	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-2a	TK-2a	0.3	0.004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FLARE-1	FLARE-1	0.01	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG-1	FUG-1	0.1	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LOAD -1	LOAD-1	0.62	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-2	LOAD-2	0.62	0.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			10.1																
Tot	als:	4.4	10.4	1.6	7.0	0.2	1.0	0.2	0.9	0.1	0.6	0.0	0.0	0.0	0.1	0.1	0.4	0.0	0.1

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue		Specif	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
C-891	Natural Gas	Pipeline Quality Natural Gas	1020		82.4 MMScf		
C-893	Natural Gas	Pipeline Quality Natural Gas	1020		81.1 MMscf		
C-894	Natural Gas	Pipeline Quality Natural Gas	1020		29.2 MMscf		
C-895	Natural Gas	Pipeline Quality Natural Gas	1020		29.2 MMscf		
C-896	Natural Gas	Pipeline Quality Natural Gas	1020		29.2 MMscf		
RB-1	Natural Gas	Pipeline Quality Natural Gas	1020		6.4 MMscf		
RB-2	Natural Gas	Pipeline Quality Natural Gas	1020		6.4 MMscf		

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-1	40400311	Condensate Tank	Mixed Hydrocarbons	0.0001847	18.313	65.6	0.3196	92.88	0.5887
TK-2	40400311	Condensate Tank	Mixed Hydrocarbons	0.0041704	48.127	65.6	12.03	92.88	11.8
TK-2a	40400311	Condensate Tank	Mixed Hydrocarbons	0.019418	51.887	65.6	12.03	92.88	11.8

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сар	acity	Diameter (M)	Vapor Space	Co (from Ta	lor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			LK below)	LK below)	(bbl)	(M ³)		(M)	Roof	Shell	(from Table VI-C)	(gal/yr)	(per year)
TK-1	1/23/2008	Condensate	N/A	Vertical-Fixed Roof (FX)	500		49.22	0.609	Beige	Beige	Average	511,000	24.33
TK-2	1/17/2008	Condensate	N/A	Vertical-Fixed Roof (FX)	500		49.22	0.609	Beige	Beige	Average	511,000	24.33
TK-2a	1/16/2008	Condensate	N/A	Vertical-Fixed Roof (FX)	500		49.22	0.609	Beige	Beige	Average	511,000	24.33

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	'elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color WH: White AS: Aluminum (specular) AD: Aluminum (diffuse) LG: Light Gray MG: Medium Gray	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$1^3 = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as r	ecessary.)
---	------------

	Materi	al Processed		Ν	Aaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Field Gas				Helium, Condensate			

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²						Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3							
C-891	mass GHG	1262.8	0.0024	0.024									
C-891	CO ₂ e	1262.8	0.7152	0.6									
C-893	mass GHG	1242.28	0.0023	0.023									
C-893	CO ₂ e	1242.28	0.6854	0.575									
C-894	mass GHG	84.96	1.59E-04	1.59E-03									
C-074	CO ₂ e	84.96	4.74E-02	3.98E-02									
C-895	mass GHG	84.96	1.59E-04	1.59E-03									
C-075	CO ₂ e	84.96	4.74E-02	3.98E-02									
C-896	mass GHG	84.96	1.59E-04	1.59E-03									
C-070	CO2e	84.96	4.74E-02	3.98E-02									
BL-	mass GHG	46.06	8.68E-05	8.68E-04									
GDR-1a	CO ₂ e	46.06	6.21E-05	5.21E-04									
BL-	mass GHG	46.06	8.68E-05	8.68E-04									
GDR-2b	CO ₂ e	46.06	6.21E-05	5.21E-04									
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e								-	-			
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO ₂ e												
	mass GHG												
	CO2e												
Total	mass GHG		0.0053506										
	CO ₂ e	2852.08	1.5428702	1.2952916									

GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Application Summary

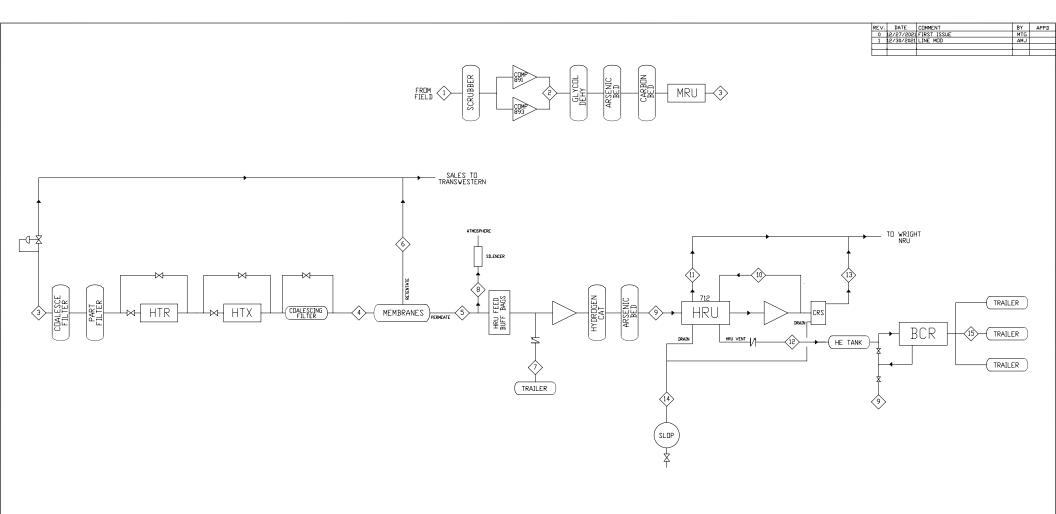
The <u>Application</u> <u>Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, debottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

IACX Roswell LLC (IACX) is submitting an application to authorize the addition of one (1) natural gas-fired compressor engine and one (1) flare. The facility is a natural gas compressor station. Bitter Lake is located approximately 13.31 miles northeast of Roswell in Chaves County, New Mexico.

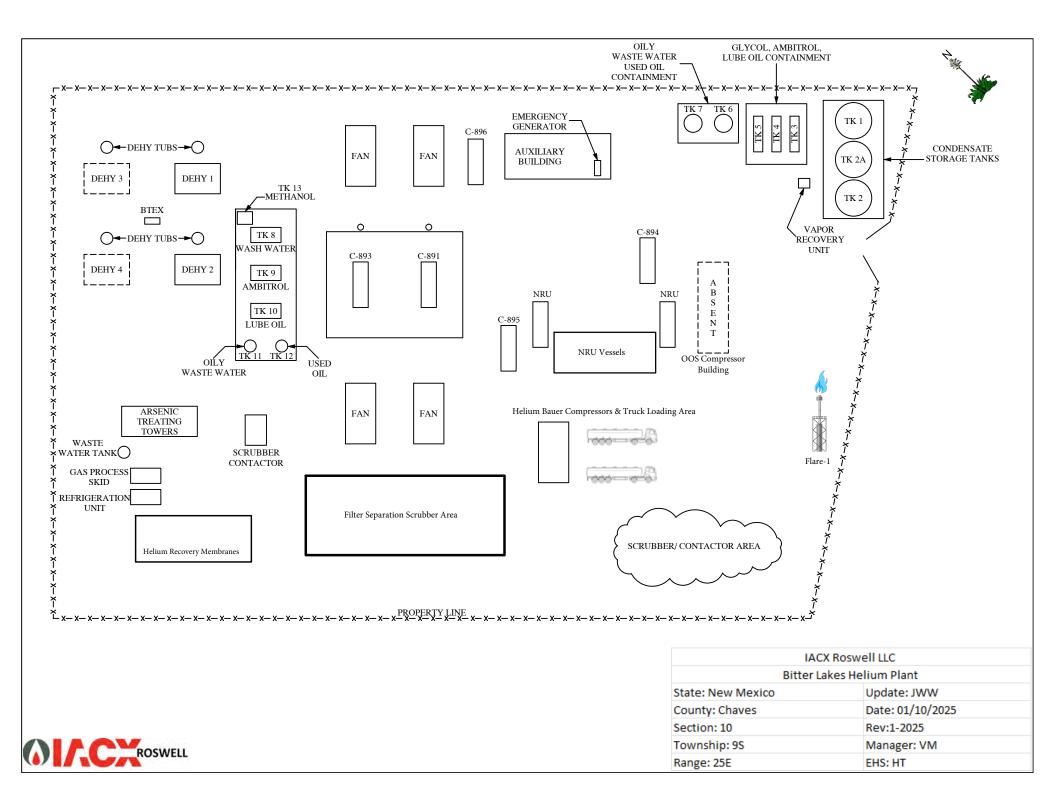
Bitter Lake is an extension of a local gas transportation system that gathers casinghead gas from multiple wells in the area. The facility compresses the gas for delivery to a main line. The site operates natural gas-fired engines (Units C-891, C-893, C-894, C-895, and C-896) to raise the discharge pressure of the gas in the pipeline to overcome the effect of frictional losses in the pipeline upstream of the station or from pressure losses/changes within the facility in order to maintain the required suction pressure at the next downstream facility. The volume of gas flowing and the amount of subsequent frictional losses in the pipeline are dependent on field conditions and downstream plant conditions causing pressure variations. The glycol dehydrator (Unit DEHY) has a capacity of 30 MMscf/day and the two associated reboilers operate a 0.75 MMBtu/hr (Units RB-1 and RB-2). Only one of the two reboilers operates under normal operating conditions. The second reboiler may be used either as a backup unit or as a second unit in series to accommodate higher production rates and the resultant increased heat load on the glycol system. The helium recovery unit (Unit HRU) re-injects gas into the pipeline for further separation at another facility further downstream; therefore, there are no emissions associated with the unit. There are three condensate tanks located at the facility (Units TK-1, TK-2, and TK-2a), which contain hydrocarbons and water that drop out of the line prior to compression. There are also lube oil tanks (Units TK-3 and TK-10) along with used lube oil tanks (Units TK-6 and TK-12).


Additional emissions result from facility-wide fugitives (Unit FUG), haul roads (Unit Haul), flaring of emissions during Startup, Shutdown, and Maintenance (Unit SSM), and Malfunction emissions (Unit M).

1

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.


STREAM NUMBER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DESCRIPTION	FIELD GAS	COMPRESSED FEED	MRU DUTLET	MEMBRANE INLET	MEMB. PERMEATE	MEMB. RETENTATE	HRU TRAILER RECYCLE	HRU FEED VENT	HRU FEED	HRU RINSE	HRU DEPRESS	HRU HE VENT	HRU RINSE VENT	DRAIN/LIQUIDS	HELIUM SALES
TEMPERATURE	AMBIENT	AMBIENT	AMBIENT	50degF	50degF	50degF	AMBIENT	AMBIENT	80degF	100degF	AMBIENT	AMBIENT	AMBIENT	AMBIENT	AMBIENT
PRESSURE	100 PSIG	900 PSIG	900 PSIG	900 PSIG	ATMOSPHERIC	850 PSIG	ATMOSPHERIC	ATMOSPHERIC	75 PSIG	55-90PSIG	ATMOSPHERIC	0-20PSIG	ATMOSPHERIC		0-3200PSIG
PHASE	GASEDUS	GASEDUS	GASEDUS	GASEDUS	GASEDUS	GASEDUS	GASEOUS	GASEDUS	GASEDUS	GASEDUS	GASEDUS	GASEDUS	GASEDUS		GASEOUS
COMMENT	He FEED	He FEED	He FEED	He FEED	He RICH	He POOR	90% He PURITY	He RICH	He RICH	He POOR	He POOR	He RICH	98% He PURITY	DIL & RAIN	98% He PURITY
								WASTED - VENTED							

DESCRIPTION	BITTER LAKES PROCESS FLOW DIAGRAM DRAWING #1
CUSTOMER	IACX ENERGY

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached.

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the

IACX Roswell LLC

Bitter Lake Compressor Station

application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Heaters and Reboilers

The facility will be equipped with several heaters and reboilers of various heat input capacities. For units RB-1 and RB-2 Chapter 1.4 *Natural Gas Combustion* was used to determine emissions of Nitrogen oxides (NO_x), carbon monoxide (CO)volatile organic compounds (VOC), particulate matter (PM), and hazardous air pollutants (HAPs). Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum H₂S content of 5 ppm based on pipeline specifications.

Greenhouse gas emissions from all heaters and reboilers were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2.

TEG Glycol Dehydrators

BR&E ProMax was used to determine emissions from the glycol still vent and non-condensable overheads from the BTEX condenser. The glycol dehydrator is controlled by a condenser and reboiler equipped with a glow plug.

Flares

The flare at the facility (FLARE) will flare both inlet gas. The expected composition and maximum expected volumes of inlet gas were used as the basis of the flare calculation. TNRCC RG-109 flare emission factors for low Btu gas were used to calculate emissions of nitrogen oxides (NO_x) and carbon monoxide (CO). VOC, H₂S, and SO₂ emissions are calculated based on the VOC and H₂S content of the inlet and residue gas. An assumed 98% destruction efficiency is applied to the VOC and H₂S emissions.

Greenhouse gas emissions from the flares were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2 with the methodology outlined in 40 CFR 98.233(n).

Condensate Storage Tanks

Emissions from various storage tanks were determined using BR&E ProMax.

Condensate Loading

Condensate loading emissions were calculated using the loading loss equation and variables from AP-42 Section 5.2, *Transportation and Marketing of Petroleum Liquids*. True vapor pressure of loaded liquid, molecular weight of vapor, temperature of bulk liquid, and volatile organic compound (VOC), hazardous air pollutants (HAP), and hydrogen sulfide (H₂S) mass percentage were determined with BR&E ProMax. Condensate loading is vapor balanced with the condensate tanks with a 70% capture efficiency.

Fugitives

The emissions from fugitive components associated with this project are calculated using emission factors from Table 2-4 of the EPA Protocol for Equipment Leak Emission estimates, November 1995. Site specific analyses for inlet gas, residue gas, and condensate were used.

Miscellaneous MSS

Miscellaneous MSS emissions include routine pigging activities, routine replacement of glycol solution used in dehydration units, use of aerosol lubricants, piping components, and calibration activities.

MSS Blowdowns

MSS Blowdown emissions include venting emissions from blowdowns, starter vents, and any gas operated controllers present at the facility, if any.

IACX Roswell LLC, Bitter Lake Compressor Station

Emissions Summary

Unit	Uncontrolled Strady-State Emissions																															
	Description		10 _x		co		00	S			SP		PM 10		A2.5	CO ₂ e	Total HAP		H2S	Formale			dehyde									
		lb/hr	tons/yr	lb/hr		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	tpy	lb/hr t		/hr tpy	lb/hr	tpy	lb/hr	tpy									
	Compressor Engine (Cooper Bessemer GMVH-10C)	12.47	54.63	7.79		1.87	8.19	0.01	0.02	0.46	2.03	0.46	2.03	0.46	2.03	4943.73	0.71 3.			0.53	2.32	0.07	0.33									
C-893	Compressor Engine (Cooper Bessemer GMVH-10C)	12.27	53.74	7.67	33.58	1.84	8.06	0.01	0.02	0.46	2.00	0.46	2.00	0.46	2.00	4863.31	0.70 3.			0.52	2.28	0.07	0.32									
C-894	Compressor Engine Caterpillar G3408C LE)	0.94	4.10	1.72	7.55	0.50	2.18	0.002	0.01	0.03	0.15	0.03	0.15	0.03	0.15	1750.91	0.23 1.			0.18	0.78	0.03	0.12									
C-895	Compressor Engine Caterpillar G3408C LE)	0.94	4.10	1.72	7.55	0.50	2.18	0.002	0.01	0.03	0.15	0.03	0.15	0.03	0.15	1750.91		- 10		0.18	0.78	0.03	0.12									
C-896	Compressor Engine Caterpillar G3408C LE)	0.94	4.10	1.72	7.55	0.50	2.18	0.002	0.01	0.03	0.15	0.03	0.15	0.03	0.15	1750.91	0.23 1.			0.18	0.78	0.03	0.12									
FUG	Facility Fugitives	-	-		-	0.55	2.41		-	-	-	-	-	-	-	-	- 0.		0002 0.0001	-		-	-									
DEHY	Glycol Dehydrator	-	-		-	180.4	790.2		-	-	-	-	-	-	-	-	121.45 531		03 0.13	-		-	-									
RB-1	Dehydrator Reboiler	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	0.01	0.02	0.01	0.02	0.01	0.02	388.77	0.001 0.			5.51E-05	0.0002	1.32E-03	0.006									
RB-2	Dehydrator Reboiler	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	0.01	0.02	0.01	0.02	0.01	0.02	388.77	0.001 0.			5.51E-05	0.0002	1.32E-03	0.006									
TK-1	Condensate Tanks	-	-		-	67.12	2.05	-	-	-	-	-	-	-	-		13.47 0.		04 0.001	-		-										
TK-2	Condensate Tanks	-	-		-	67.12	2.05		-	-	-	-	-	-	-		13.47 0.		04 0.001	-		-	-									
TK-2a	Condensate Tanks	-	-		-	67.12	2.05		-	-	-	-	-	-	-		13.47 0.	22 0.0	04 0.001	-		-	-									
FLARE-1		0.69	3.02	1.38	6.03	0.0002	0.001		-	-	-	-	-	-	-		-			-		-	-									
	Load-out of Condensate	-	-	-		13.50	0.60	-		-		-		-	-	10.26	2.07 0.		E-05 1.03E-06	-		-	-									
LOAD-2	Load-out of Produced Water	-	-			13.50	0.60	-		-		-		-	-	4.90	2.07 0.		E-05 1.03E-06	-		-	-									
i i	Compressors Blowdowns	-	-	-	-		5.53	-	-	-	-	-	-		-	-	- 2.			-		-										
SSM	Dehydrator Blowdowns	-	-		-		1.32	-	-	-	-	-	-		-	-	- 0.			-		-										
1	Vessel Blowdowns	-	-				2.86	-		-		-		-	-		- 0.			-		-	-									
<u> </u>	Pipeline/Pigging Blowdowns	-	-				6.18	-		-		•		-	-	•	- 0.		002 0.38	-			-									
L	Totals	28.39	124.35	22.13	96.94	414.53	832.49	0.02	0.09	1.03	4.52	1.03	4.52	1.03	4.52	15852.443	168.13 545	.22 0.2	25 0.14	1.58	6.94	0.24	1.03									
Controllor	Steady State Emissions																															
		N	IO _x	1	co	v	OC	S	0,	1 1	SP	P	Ma	PI	h.	CO ₂ e	Total HAP	8	H2S	Formale	iehvde	Acetalo	dehvde	Acr	olein	Benz	rene	Ethylbe	nzene	n-Hex	xane	Toluer
Unit	Description	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	tpy	lb/hr tj	y Ib/	/hr tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr
C-891	Compressor Engine (Cooper Bessemer GMVH-10C)	10.43	45.68	6.38	27.94	2.47	10.84	0.01	0.02	0.46	2.03	0.46	2.03	0.46	2.03	4943.73	0.71 3.	13 -		0.53	2.32	0.07	0.33	0.07	0.33	0.02	0.08	0.001	0.005	0.004	0.02	0.01
C-893	Compressor Engine (Cooper Bessemer GMVH-10C)	5.87	25.71	7.69	33.69	2.43	10.66	0.01	0.02	0.46	2.00	0.46	2.00	0.46	2.00	4863.31	0.70 3.	- 80		0.52	2.28	0.07	0.32	0.07	0.32	0.02	0.08	0.001	0.004	0.004	0.02	0.01
C-894	Compressor Engine Caterpillar G3408C LE)	0.94	4.10	1.72	7.55	0.57	2.50	0.002	0.01	0.03	0.15	0.03	0.15	0.03	0.15	1750.91	0.23 1.	- 11		0.18	0.78	0.03	0.12	0.02	0.08	0.001	0.01	0.0001	0.001	0.004	0.02	0.001
C-895	Compressor Engine Caterpillar G3408C LE)	0.94	4.10	1.72	7.55	0.57	2.50	0.002	0.01	0.03	0.15	0.03	0.15	0.03	0.15	1750.91	0.23 1.	- 11		0.18	0.78	0.03	0.12	0.02	0.08	0.001	0.01	0.0001	0.001	0.004	0.02	0.001
C-896	Compressor Engine Caterpillar G3408C LE)	0.94	4.10	1.72	7.55	0.57	2.50	0.002	0.01	0.03	0.15	0.03	0.15	0.03	0.15	1750.91	0.23 1.	- 11		0.18	0.78	0.03	0.12	0.02	0.08	0.001	0.01	0.0001	0.001	0.004	0.02	0.001
FUG	Facility Fugitives	-	-		-	0.55	2.41		-	-	-	-	-		-	-	0.07 0.	30 0.00	0.0002 0.0001	-		-		-	-	0.01	0.06			0.00	0.01	0.03
DEHY	Glycol Dehydrator	-	-			0.55	2.40	-	-	-		-		-	-	-	0.19 0.		0.002	-	-	-	-	-	-	-	-	-	-			
RB-1	Dehydrator Reboiler	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	0.01	0.02	0.01	0.02	0.01	0.02	388.77	0.001 0.			0.0001	0.0002	0.001	0.006		0.00E+00		6.76E-06		-			-
RB-2	Dehydrator Reboiler	0.07	0.32	0.06	0.27	0.004	0.02	0.002	0.01	0.01	0.02	0.01	0.02	0.01	0.02	388.77	0.001 0.			0.0001	0.0002	0.001	0.006	0.00E+00	0.00E+00	6.76E-06	0.00E+00		-			-
TK-1	Condensate Tanks	-	-		-	1.34	0.04		-	-	-	-	-	-	-	-	0.27 0.0	04 8.07	E-04 2.46E-05	-		-	-	-	-	-			-			-
TK-2	Condensate Tanks	-	-		-	1.34	0.04		-	-	-	-	-		-	-	0.27 0.0	04 8.07	E-04 2.46E-05	-		-		-	-	-						-
TK-2a	Condensate Tanks	-	-			1.34	0.04	-	-	-		-		-	-	-	0.27 0.0		E-04 2.46E-05	-	-	-	-	-	-	-	-	-	-		-	
FLARE	Flare - Pilot + SSM	1.67	7.30	3.33	14.58	93.80	0.32	0.90	3.93	-	-	-	-	-	-	-	3.38 0.		E-03 4.26E-02											1		
LOAD-1	Load-out of Condensate	-	-		-	13.50	0.60		-	-	-	-	-	-	-	10.26	0.62 0.		E-06 3.10E-07	-		-	-	-	-	-		0.06	0.003	0.01	0.001	0.25
LOAD-2	Load-out of Produced Water	-	-		-	13.50	0.60		-	-	-	-	-	-	-	4.90	0.62 0.		E-06 3.10E-07	-		-	-	-	-	-		0.19	0.01	0.62	0.03	0.06
1	Compressors Blowdowns	-	-	-	-	-	5.53	-	-	-	-	-		-	-		- 2.		75 0.203	-		-	-	-	-	-		-	-			
1	Dehydrator Blowdowns	-	-	-		-	1.32	-	-	-		-		-	-	-	- 0.		.57 0.0389	-	-	-	-	-	-	-	-	-	-		-	
SSM							2.86	-	-	-	-	-		-	-	-	- 0.			-		-	-	-	-	-	-		-		-	-
SSM	Vessel Blowdowns	-	-	-	-	-																										
	Vessel Blowdowns Pipeline/Pigging Blowdowns	1	1	-	-	-	6.18	-		-		-		-	-		- 0.	22 0.00	002 0.38	-	-	-		-	-	-		-	-	-		
	Vessel Blowdowns Pipeline/Pigging Blowdowns Malfunction			-			6.18 10.00	1			-	-	1	-	-					1	-			-	1	-				-	1	-
	Vessel Blowdowns Pipeline/Pigging Blowdowns	20.92	91.64 91.64	22.69	- 99.40	- 132.57 132.02	6.18	- - 0.92 0.92	- 4.02 4.02	- - 1.03 1.03	- 4.52 4.52	- - 1.03 1.03	- - 4.52 4.52	- - 1.03 1.03	- 4.52 4.52	- 15852.44	- 7.80 13	22 0.00 57 32. 27 32.		- 1.58 1.58	- - 6.94 6.94	- 0.24 0.24	- - 1.03 1.03	- 0.20 0.20	- - 0.88 0.88	- 0.05 0.05	- - 0.24 0.24	0.25	- 0.02 0.02	- - 0.66 0.66	0.13	- 0.36 0.36

 Xylene

 lb/hr
 tpy

 0.003
 0.01

 0.003
 0.01

 0.001
 0.003

 0.001
 0.003

 0.001
 0.003

 0.01
 0.003

 0.02
 0.08

0.19 0.01 0.01 0.001 - -

0.12

0.23 0.22 0.23 0.22

Uncontrolled Steady-State Emissions

Cooper Bessemer Compressor Engines Unit: C-891 Description: Cooper Bessemer GMVH-10C Control Equipment: Type: 2SLB

Engine I	Data
----------	------

Engine Data				
Horsepower:	1414	hp	MFG Data	
Fuel consumption:	6785	Btu/hp-hr	MFG Data	
Fuel heat value:	1020	Btu/scf	Engineer Estimate	
Heating rate:	9.6	MMBtu/hr		
Fuel usage:	0.009	MMscf/hr		
	82.4	MMscf/yr		
Operating hours:	8760.0	hours/yea	r	
Safety Factor	10%			

Emission Rates

Uncontrolled Emissions

NOx CO VOC1 SO2 ² PM ³ HCHO Acctaldehyde ⁴ Acrolein ⁴ Benzene ⁴ Ethylbenzene ⁴ n-hexane ⁴ Toluene ⁴ Xylene ⁴ HAPs ⁴ 4.001 2.5 0.60				AECTool Total													
0.000588 0.04831 0.0552 0.00776 0.00778 0.00194 0.000108 0.000445 0.000963 0.000268 lb/NMBtu AP- gr/scf				HAPs⁴	Xylene ⁴	Toluene ⁴	n-hexane ⁴	Ethylbenzene ⁴	Benzene ⁴	Acrolein ⁴	Acetaldehyde ⁴	нсно	PM ³	SO22	VOC ¹	со	NOx
gr/scf	lyst Manufacturer	Catalyst Man	g/hp-hr												0.60	2.5	4.001
	2 Table 3.2-3	AP-42 Table	lb/MMBtu		0.000268	0.000963	0.000445	0.000108	0.00194	0.00778	0.00776	0.0552	0.04831	0.000588			
12.47 7.79 1.87 0.01 0.46 0.53 0.07 0.07 0.02 0.001 0.004 0.01 0.003 0.71 lb/hr			gr/scf														
			lb/hr	0.71	0.003	0.01	0.004	0.001	0.02	0.07	0.07	0.53	0.46	0.01	1.87	7.79	12.47
54.63 34.13 8.19 0.02 2.03 2.32 0.33 0.33 0.08 0.005 0.02 0.04 0.01 3.13 tpy			tpy	3.13	0.01	0.04	0.02	0.005	0.08	0.33	0.33	2.32	2.03	0.02	8.19	34.13	54.63

Controlled Emissions

ons													AECTool Total		
NOx	со	VOC ¹	SO22	PM ³	нсно	Acetaldehyde4	Acrolein ⁴	Benzene ⁴	Ethylbenzene ⁴	n-hexane4	Toluene ⁴	Xylene ⁴	HAPs⁴		
3.04	1.86	0.600												g/hp-hr	Catalyst Manufacturer
24.0%	25.6%	0.0%												%	Control Efficiency
			0.000588	0.04831	0.0552	0.00776	0.00778	0.00194	0.000108	0.000445	0.000963	0.000268		lb/MMBtu	AP-42 Table 3.2-3
														gr/scf	
10.43	6.38	1.87	0.01	0.46	0.53	0.07	0.07	0.02	0.001	0.004	0.01	0.003	0.71	lb/hr	
45.68	27.94	8.19	0.02	2.03	2.32	0.33	0.33	0.08	0.005	0.02	0.04	0.01	3.13	tpy	
CO2	СН₄	N ₂ O	CO ₂ e												
120000	2.3	2.2		lb/MMscf	AP-42 Tabl	e 1.4-2									
4943.73	0.09	0.09	4973.10	tpy											
1	25	298		GWP											

Notes

¹ Formaldehyde and Acetaldehyde have been added into the VOC on the summary page
 ² SO2 is calculated based on the default fuel sulfur content from AECT of 0.002 grains total sulfur per scf.
 ³ It is assumed that TSP = PM₁₀ = PM₂₅. PM emissions are dervied from AP 42 emissions factors and converted to g/hp-hr using engine specifications.
 ⁴ Total HAPs were calculated using AP42 emissions factors for a 4-Stroke Lean Burn Engine and here includes only those HAPs listed in the AECTool.

Uncontrolled Steady-State Emissions

Cooper Bessemer Compressor Engines Unit: C-893 Cooper Bessemer GMVH-10C Description: Control Equipment: Type: 2SLB

Engine Data

Engino Bata			
Horsepower:	1391	hp	MFG Data
Fuel consumption:	6785	Btu/hp-hr	MFG Data
Fuel heat value:	1020	Btu/scf	Engineer Estimate
Heating rate:	9.4	MMBtu/hr	
Fuel usage:	0.009	MMscf/hr	
	81.1	MMscf/yr	
Operating hours:	8760.0	hours/yea	r

Emission Rates

Uncontrolled Emissions

1115510	NOx	со	VOC ¹	SO2 ²	PM ³	нсно	Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	Ethylbenzene ⁴	n-hexane ⁴	Toluene ⁴	Xylene ⁴	AECTOOI Total HAPs ⁴		
-	4.001	2.5	0.60	0.000588	0.04831	0.0552	0.00776	0.00778	0.00194	0.000108	0.000445	0.000963	0.000268		g/hp-hr lb/MMBtu gr/scf	Catalyst Manufacturer AP-42 Table 3.2-3
-	12.27 53.74	7.67 33.58	1.84 8.06	0.01 0.02	0.46 2.00	0.52 2.28	0.07 0.32	0.07 0.32	0.02 0.08	0.001 0.004	0.004 0.02	0.01 0.04	0.003 0.01	0.70 3.08	lb/hr tpy	

Controlled Emissions

													Total		
NOx	со	VOC1	SO22	PM ³	нсно	Acetaldehyde4	Acrolein ⁴	Benzene ⁴	Ethylbenzene ⁴	n-hexane4	Toluene ⁴	Xylene⁴	HAPs⁴		
1.91	2.51	0.600												g/hp-hr	Catalyst Manufacturer
52.2%	-0.3%	0.0%												%	Control Efficiency
			0.000588	0.04831	0.0552	0.00776	0.00778	0.00194	0.000108	0.000445	0.000963	0.000268		lb/MMBtu	AP-42 Table 3.2-3
														gr/scf	
5.87	7.69	1.84	0.01	0.46	0.52	0.07	0.07	0.02	0.001	0.004	0.01	0.003	0.70	lb/hr	
25.71	33.69	8.06	0.02	2.00	2.28	0.32	0.32	0.08	0.004	0.02	0.04	0.01	3.08	tpy	
CO2	СН₄	N₂O	CO ₂ e												
120000	2.3	2.2		lb/MMscf	AP-42 Tabl	le 1.4-2									
4863.31	0.09	0.09	4892.21	tpy											
1	25	298		GWP											

AECTOOI

Notes

¹ Formaldehyde and Acetaldehyde have been added into the VOC on the summary page
 ² SO2 is calculated based on the default fuel sulfur content from AECT of 0.002 grains total sulfur per scf.
 ³ It is assumed that TSP = PM₁₀ = PM₂₅, PM emissions are dervied from AP 42 emissions factors and converted to g/hp-hr using engine specifications.
 ⁴ Total HAPs were calculated using AP42 emissions factors for a 4-Stroke Lean Burn Engine and here includes only those HAPs listed in the AECTool.

Uncontrolled Steady-State Emissions

Caterpillar G3608C LE Compressor Engines

C-894, C-895, C-896 Caterpillar G3408C LE Unit: Description: Control Equipment: Oxidation Catalyst Type: 4SLB

Engine Data			
Horsepower:	425	hp	MFG Data
Fuel consumption:	7995	Btu/hp-hr	MFG Data
Fuel heat value:	1020	Btu/scf	Engineer Estimate
Heating rate:	3.4	MMBtu/hr	
Fuel usage:	0.003	MMscf/hr	
	29.2	MMscf/yr	
Operating hours:	8760.0	hours/yea	r

Emission Rates Uncontrolled Emissions

Uncontrolled Emission			v a a1	2	PM ³		4	4	_ 4			4	v. 4	AECTool Total HAPs ⁴		
-	NOx	со	VOC ¹	SO22	PM-	нсно	Acetaldehyde	Acrolein	Benzene	Ethylbenzene ⁴	n-hexane ⁴	Toluene⁴	Xylene⁴	HAPS		
	1	1.84	0.53			0.19									g/hp-hr	Catalyst Manufacturer Data
				0.000588	0.009987		0.00836	0.00514	0.00044	0.0000397	0.00111	0.000408	0.000184			AP-42 Table 3.2-3
-															_gr/scf	
	0.94	1.72	0.50	0.002	0.03	0.18	0.03	0.02	0.001	0.0001	0.004	0.001	0.001	0.23	lb/hr	
	4.10	7.55	2.18	0.01	0.15	0.78	0.12	0.08	0.01	0.001	0.02	0.01	0.003	1.01	tpy	
Controlled Emissions														AECTool		
	NOx	со	VOC ¹	SO22	PM ³	нсно	Acetaldehyde ⁴	Acrolein ⁴	Benzene ⁴	Ethylbenzene ⁴	n-hexane⁴	Toluene ⁴	Xylene⁴	Total HAPs ⁴		
-	1.00	1.84	0.530			0.050									g/hp-hr	Catalyst Manufacturer Data
	0.0%	0.0%	0.0%			73.7%									%	Control Efficiency
				0.000588	0.009987		0.00836	0.00514	0.00044	0.0000397	0.00111	0.000408	0.000184		lb/MMBtu gr/scf	AP-42 Table 3.2-3
-	0.94	1.72	0.50	0.002	0.03	0.05	0.03	0.02	0.001	0.0001	0.004	0.001	0.001	0.10	lb/hr	
	4.10	7.55	2.18	0.01	0.15	0.21	0.12	0.08	0.01	0.001	0.02	0.01	0.003	0.44	tpy	
_	CO₂	CH₄	N ₂ O	CO₂e												

120000 1750.91 lb/MMscf AP-42 Table 1.4-2 1761.31 tpy 2.3 0.03 2.2 0.03

1 25 298 GWP

Notes

¹ Formaldehyde and Acetaldehyde have been added into the VOC on the summary page
 ² SO2 is calculated based on the default fuel sulfur content from AECT of 0.002 grains total sulfur per scf.
 ³ It is assumed that TSP = PM₁₀ = PM₂₅, PM emissions are dervied from AP 42 emissions factors and converted to g/hp-hr using engine specifications.
 ⁴ Total HAPs were calculated using AP42 emissions factors for a 4-Stroke Lean Burn Engine and here includes only those HAPs listed in the AECTool.

FUGITIVE EMISSIONS Uncontrolled Steady-State Emissions Unit: FUG

EPN	I: FUG																			
COMPONENT	COUNT ¹	EPA FACTOR ² (lb/hr-src)	REDUCTION ALLOWED FOR LDAR	VOC CONTENT IN STREAM	TOTAL VOC EMISSIONS (lb/hr)	TOTAL VOC EMISSIONS (tpy)	H₂S CONTENT IN STREAM ⁴	TOTAL H2S EMISSIONS (lb/hr)	TOTAL H ₂ S EMISSIONS (tpy)	HAP CONTENT IN STREAM	TOTAL HAP EMISSIONS (lb/hr)	TOTAL HAP EMISSIONS (tpy)	Benzene (Ib/hr)	n-Hexane (Ib/hr)	Toluene (Ib/hr)	Xylene (lb/hr)	Benzene (tpy)	n-Hexane (tpy)	Toluene (tpy)	Xylene (tpy)
GAS																				
VALVES	60	0.0099207	0%	22.63%	0.1347	0.5899	0.002%	1.39E-05	6.11E-05	0.83%	0.005	0.02	0.0010	0.0018	0.0012	0.0006	0.0045	0.0081	0.0054	0.0027
FLANGES	20	0.00086	0%	22.63%	0.0039	0.0170	0.002%	4.03E-07	1.76E-06	0.83%	0.000	0.001	0.0000	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002	0.0001
CONNECTORS	20	0.00044	0%	22.63%	0.0020	0.0087	0.002%	2.06E-07	9.03E-07	0.83%	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0000
LIGHT OIL																				
FLANGES	20	0.000243	0%	100.00%	0.0049	0.0212	0.0023%	1.14E-07	4.98E-07	15.33%	0.00	0.00	0.0001	0.0000	0.0003	0.0002	0.0006	0.0001	0.0013	0.0010
CONNECTORS	15	0.00046	0%	100.00%	0.0069	0.0304	0.0023%	1.63E-07	7.13E-07	15.33%	0.00	0.00	0.0002	0.0000	0.0004	0.0003	0.0009	0.0001	0.0018	0.0014
PUMP SEALS	4	0.02866	0%	100.00%	0.1146	0.5021	0.0023%	2.69E-06	1.18E-05	15.33%	0.02	0.08	0.0032	0.0003	0.0069	0.0053	0.0142	0.0014	0.0304	0.0230
OTHER ³	17	0.016535	0%	100.00%	0.2811	1.2312	0.0023%	6.59E-06	2.88E-05	15.33%	0.04	0.19	0.0079	0.0008	0.0170	0.0129	0.0348	0.0035	0.0745	0.0565
WATER/OIL																				
CONNECTORS	5	0.000243	0%	100.00%	0.0012	0.0053	0.0023%	2.85E-08	1.25E-07	15.3294%	0.000186252	0.000815785					0.0000	0.0000	0.0000	0.0000
PUMP SEALS	4	0.0000529	0%	100.00%	0.0002	0.0009	0.0023%	4.96E-09	2.17E-08	15.3294%	3.24E-05	1.42E-04					0.0000	0.0000	0.0000	0.0000
TOTAL EMISSIONS		1	1	L	0.55	2.41		2.41E-05	1.06E-04		0.07	0.30	0.01	0.00	0.03	0.02	0.055	0.013	0.11	0.085

¹ Fugitive emission source counts were calculated based on information provided by the facility.
 ² Factors are from TCEO's "Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives," (October 2000). Emission factors pulled from Facility/Compound Specific Fugitive Emission Factors Table for Oil and Gas Production Operations.
 ³ Includes compressors and sample points

DEHYDRATOR EMISSIONS Uncontrolled Steady-State Emissions Unit: DEHY

Uncontrolled Regenerator Emissions^{1,2}

VOC		H ₂	S	Tota	I HAP	n-He	xane	Ben	zene	Tol	uene	Ethylb	enzene	Xyle	enes	
_	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Dehy Still Vent	180.41	790.21	0.03	0.13	121.45	531.93	1.66	7.25	26.75	117.17	49.39	216.31	11.24	49.22	32.41	141.97
Flash Tank	49.36	216.19	0.02	0.08	3.17	13.91	0.85	3.73	0.93	4.06	0.92	4.05	0.13	0.55	0.35	1.51
	229.77	1006.40	0.05	0.21	124.62	545.84	2.51	10.98	27.68	121.23	50.31	220.36	11.37	49.78	32.76	143.49

Controlled Regenerator Emissions³

	VOC		VOC		H ₂ S Total HAP		n-He	n-Hexane Benze		nzene Toluene		Ethylbenzene		Xylenes		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Post-Condenser Emissions	27.40	120.03	0.03	0.12	9.28	40.67	0.46	2.01	4.51	19.74	3.30	14.44	0.27	1.16	0.76	3.31
Post-Combustion Emissions	0.55	2.40	0.001	0.002	0.19	0.81	0.01	0.04	0.09	0.39	0.07	0.29	0.01	0.02	0.02	0.07

Notes

¹Emissions are calculated using a Promax simulation.

²Flash tank off gas emissions are sent to the inlet or fuel.

³Dehydrator vent gas is controlled by a condenser and reboiler equiped with a glow plug, with a control efficiency of

98%

DEHYDRATOR REBOILER EMISSIONS Uncontrolled Steady-State Emissions Unit: H-1

Unit No(s):	RB-1, RB-2
Description:	Dehydrator Reboiler

Heater Data

Heating rate:	0.75 MMBtu/hr	
Fuel heat value:	1020 Btu/scf	
Fuel usage:	0.0007 MMscf/hr	MMBtu/hr * MMscf/MMBtu
	6.4 MMscf/yr	
Operating hours:	8760 hours/year	

Emission Rates

es							
	NOx	со	voc	SO ₂ ¹	PM ²		
_	100	84	5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.098	0.082	0.005		0.0075	lb/MMBtu ³	
_	0.07	0.06	0.004	0.002	0.006	lb/hr	
	0.32	0.27	0.018	0.008	0.024	tpy	
	нсон	Benzene	Toluene	Hexane	Total HAPs		
_	0.075	0.0021	0.0034	1.8	1.88	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	7.4E-05	2.1E-06	3.3E-06	1.8E-03	1.8E-03	lb/MMBtu ³	
	0.00006	0.00000	0.00000	0.00132	0.001	lb/hr	
	0.0002	0.0000	0.0000	0.0058	0.0061	tpy	
_	CO2	CH₄	N ₂ O	CO ₂ e			
_	120000	2.3	2.2		lb/MMscf	AP-42 Table	e 1.4-2
	386.47	0.007	0.007	388.77	tpy		
	1	25	298		GWP		

Notes

 1 SO₂ emissions are based on the conversion of H₂S to SO₂ during the combustion process and a 1:1 molar ratio conversion of H₂S to SO₂. The fuel gas concentration is based on 15 ppm of H₂S.

² It is assumed that TSP = $PM_{10} = PM_{2.5}$

³ Emission factor divided by 1,020 to normalize per footnote a to AP-42 Tables 1.4-1 and 1.4-2.

STORAGE TANK EMISSION TOTALS Uncontrolled Steady-State Emissions Storage Tanks

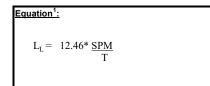
Number of Tanks

VOC Emissions												
EPN	Tank Description	Annual Throughput (gal/hr)	Breathing Losses ¹ (lb/hr)	Working Losses ¹ (Ib/hr)	Flash Losses ¹ (Ib/hr)	Total VOC Losses (Ib/hr)	Total H2S Losses (lb/hr)	Uncontrolled HAP emissions (Ib/hr)	Control Efficiency (%)	Controlled Annual VOC Emissions (Ib/hr)	Controlled H2S Emissions (Ib/hr)	Controlled Annual HAP emissions (lb/hr)
TK-1	Storage Tank	14,194		32.7990	34.32	67.1169	0.0403	13.47	98.0%	1.34	0.0008	0.27
TK-2	Storage Tank	14,194		32.7990	34.32	67.1169	0.0403	13.47	98.0%	1.34	0.0008	0.27
TK-2a	Storage Tank	14,194	32.7990		34.32	67.1169	0.0403	13.47	98.0%	1.34	0.0008	0.27

¹Breathing, working, and flash losses for the condensate tanks are calculated from ProMax

3

STORAGE TANK EMISSION TOTALS Uncontrolled Steady-State Emissions Storage Tanks


Number of Tanks VOC Emiseir

VOC Emissions													
EPN	Tank Description	Annual Throughput (gal/yr)	Breathing Losses ¹ (lb/yr)	Working Losses ¹ (Ib/yr)	Flash Losses ¹ (Ib/yr)	Total Losses (Ib/yr)	Uncontrolled Annual VOC Emissions (tpy)	Uncontrolled Annual H ₂ S Emissions (tpy)	Uncontrolled Annual HAP emissions (tpy)	Control Efficiency (%)	Controlled Annual VOC Emissions (tpy)	Controlled Annual H ₂ S emissions (tpy)	Controlled Annual HAP emissions (tpy)
TK-1	Storage Tank	229,950	3	051.4179	1,044.95	4,096.3701	2.048	0.0012	0.22	98.0%	4.10E-02	2.46E-05	4.33E-03
TK-2	Storage Tank	229,950	3	051.4179	1,044.95	4,096.3701	2.048	0.0012	0.22	98.0%	4.10E-02	2.46E-05	4.33E-03
TK-2a	Storage Tank	229,950	3	051.4179	1,044.95	4,096.3701	2.048	0.0012	0.22	98.0%	4.10E-02	2.46E-05	4.33E-03

¹Breathing, working, and flash losses for the condensate tanks are calculated from ProMax

3

CONDENSATE LOADING EMISSIONS Uncontrolled Steady-State Emissions Condensate Tanks

Variables¹:

L_L - Loading Loss (lbs/1000 gal loaded)

L - Loading Loss (ibs) foot gai losed)
S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2)
P - True Vapor Pressure of Loaded Liquid (psia)
M - Molecular Weight of Vapor (lb/lb mol)
T - Temperature of Bulk Liquid (°R = [°F + 460])

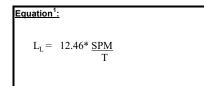
VOC Emissions

							Max Hourly		Max Hourly
EPN			P _{max} ³	M ³	T ³	LL	Throughput⁴		Emissions
	Loading Method	S ²	(psia)	(lb/lbmol)	(°R)	(lbs/1000 gal)	(gal/hr)	% Capture⁵	(lb/hr)
LOAD-1	Submerged	0.60	12.88	32.43	555.00	5.63	8,000	70	13.50

EPN			P _{max}	М	т	L	Annual Throughput		Annual Emissions
	Loading Method	S ²	(psia)	(lb/lbmol)	(°R)	(lbs/1000 gal)	(gal/yr)	% Capture⁵	(tpy)
LOAD-1	Submerged	0.60	12.88	32.43	535.32	5.83	689,850	70	0.60

¹ Loading Loss Equation and Variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

² The S-factor is based on submerged loading in dedicated normal service


³ Vapor pressure and molecular weight obtained from ProMax storage tank simulations.

⁴ The maximum hourly throughput is based on the capability of the tank truck to load liquids in one hour's time.

⁵ Truck Loading Emissions are routed to the combustor.

HAPs	Uncontrolled Loa	adout Emission	Controlled Loadout Emission			
	lb/hr	tpy	lb/hr	tpy		
Benzene	0.38	0.02	0.11	0.01		
Toluene	0.82	0.04	0.25	0.01		
Ethylbenzene	0.21	0.01	0.06	0.003		
Xylenes	0.62	0.03	0.19	0.01		
n-Hexane	0.04	0.002	0.01	0.001		
TOTAL HAPs	2.07	0.09	0.62	0.03		
H2S	2.31E-05	1.03E-06	6.93E-06	3.10E-07		

PRODUCED WATER LOADING EMISSIONS Uncontrolled Steady-State Emissions Produced Water Tanks

Variables¹:

L _L - Loading Loss (lbs/1000 gal loaded)	
S - Saturation Eactor (From Table 5.2-1 of AP-12	<u> </u>

S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2) P - True Vapor Pressure of Loaded Liquid (psia)

 $\begin{array}{l} M &= Molecular Weight of Vapor (lb/lb mol) \\ T &= Temperature of Bulk Liquid (<math>^{\circ}R = [^{\circ}F + 460]) \end{array}$

VOC Emissions

							Max Hourly		Max Hourly
EPN			P _{max} ³	M ³	T ³	LL	Throughput ⁴		Emissions
	Loading Method	S ²	(psia)	(lb/lbmol)	(°R)	(lbs/1000 gal)	(gal/hr)	% Capture⁵	(lb/hr)
LOAD-1	Submerged	0.60	12.88	32.43	555.00	5.63	8,000	70	13.50

EPN	Loading Method	S²	P _{max} (psia)	M (lb/lbmol)	T (°R)	L _L (Ibs/1000 gal)	Annual Throughput (gal/yr)	% Capture⁵	Annual Emissions (tpy)
LOAD-1	Submerged	0.60	12.88	32.43	535.32	5.83	689,850	70	0.60

¹ Loading Loss Equation and Variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

² The S-factor is based on submerged loading in dedicated normal service

³ Vapor pressure and molecular weight obtained from ProMax storage tank simulations.

⁴ The maximum hourly throughput is based on the capability of the tank truck to load liquids in one hour's time.

⁵ Truck Loading Emissions are routed to the combustor.

HAPs	Uncontrolled Loa	Controlled Loadout Emission		
	lb/hr	tpy	lb/hr	tpy
Benzene	0.38	0.02	0.11	0.01
Toluene	0.82	0.04	0.25	0.01
Ethylbenzene	0.21	0.01	0.06	0.00
Xylenes	0.62	0.03	0.19	0.01
n-Hexane	0.04	0.00	0.01	0.00
TOTAL HAPs	2.07	0.09	0.62	0.03
H2S	0.00	0.00	0.00	0.00

Unit(s): HAUL

Description: Truck haul road emissions

Input Data

Empty vehicle weight ¹	16	tons
Load weight ²	31.5	tons
Loaded vehicle ³	47.5	tons
Mean vehicle weight ⁴	31.8	tons
Vehicle frequency	1.0	trips/hour
Round-trip distance	0.20	mile/trip
Operating hours	8760	hours/yr
Surface silt content ⁵	4.8	%
Annual wet days ⁶	70	days/yr
Vehicle miles traveled ⁷	0.2	mile/hr
Control percentage	0%	nominal, base course chemical treatment

Emission Factors and Constants

Parameter	PM ₃₀	PM ₁₀	PM _{2.5}
k, lb/VMT ⁸	4.9	1.5	0.15
a, lb/VMT ⁸	0.70	0.90	0.90
b, lb/VMT ⁸	0.45	0.45	0.45
Hourly EF, lb/VMT ⁹	7.46	1.90	0.19
Annual EF, lb/VMT ¹⁰	6.03	1.54	0.15

Uncontrolled Emissions

PM ₃₀	PM ₁₀	PM _{2.5}	
1.49	0.38	0.038	lb/hr ¹¹
5.50E-02	0.01	0.001	ton/yr ¹²

Notes

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Cargo, transported materials, etc. (5.7 lb/gal RVP5 *7560 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ AP-42 Table 13.2.2-1, Sand and gravel processing

⁶ AP-42 Figure 13.2.2-1

⁷ VMT/hr = Vehicle Miles Traveled per hour = Trips per hour * Segment Length

⁸ Table 13.2.2-2, Industrial Roads

⁹ AP-42 13.2.2, Equation 1a

¹⁰ AP-42 13.2.2, Equation 2

¹¹ lb/hr = Hourly EF (lb/VMT) * VMT (mile/hr)

¹² ton/yr = Annual EF (lb/VMT) * Truck/day * Mile/truck * 365day/yr * 1ton/2000lb

¹³ Uncontrolled emissions * (1 - Control%)

COMBUSTOR EMISSIONS Uncontrolled Steady-State Emissions Unit: FLARE

Unit No(s): Description: Flow Rate:		te - Pilot Gas ⁄ISS Flaring			-			
	ţ	41.7 scf/hr 0010 MMscf/d 1020 BTU/scf 5.000 MMBtu/hr 9444 Mscf/hr 100 % 7.08 MMBtu/hr		weet natural	3 SCF/MMscl gas	T		
Emission Calcul					Veet			
Pilot Emissio		CO	SO ₂	H₂S	5.50	HAPs	Units	
	0.138	0.2755		60	5.50		lb/MMBtu ppm	TNRCC RG-109 (high Btu; other)/VOC factor in lb/MMscf Fuel H2S content of 60 ppm H2S.
				00	-	-	mol%	Assume no VOC content fuel (methane)
	0.690	1.38			0.0002		lb/hr	lb/MMBtu * MMBtu/hr
			0.0004	4.5E-06	-	-	lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂
	3.02	6.03	0.002	0.00002	0.001	-	tpy	8760 hrs/yr
MSS Flari	ng NO _x	со	SO ₂	H₂S	voc	HAPs		
	0.1380	0.2755					lb/MMBtu	RG-109 Emission Factors for high-Btu, non-steam assisted
				0.486	4,689.96	169.20	lb/hr	Compressor, Dehy, Vessel, and Pipeline Blowdowns See Individual Tabs for Details
				0.002	15.9	0.58	tpy	Estimated control efficiency for H ₂ S and VOC
				98%	98%	98%		Estimated H ₂ S conversion to SO ₂ (1-1 molar ratio)
	0.98	1.95	100% 0.896	0.00971	93.80	3.38	lb/hr	Based on pilot plus combusted gas
	4.28	8.55	3.93	0.00971	93.80	3.38 0.01	tpy	Based on pilot plus combusted gas
Total Pilot					200			
Flarii		<u> </u>	SO ₂	H₂S	VOC	HAPs		
	1.67 7.30	3.33 14.58	0.90 3.93	0.01 0.04	93.80 0.32	3.38 0.01	lb/hr tpy	
	7.30	14.00	5.55	0.04	0.52	0.01	.63	

	Basis of Calculation:			
	Emissions from blowdowns are calculated based on a mass	balance as follows		
	Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume o stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# (units)] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]			
	Maximum Uncontrolled Annual Emissions (tpy) = [Volume of (lb/lb-mol)] x [wt % VOC or speciated constituent] x [# compr [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2	essors blowndown		
Co	ompressor Blowdown Emissions Sent to Flare			
	timated Gas Vented per BlowDown Event for E1-3 ^{1,2} =	1,725	scf/event	
Сс	mpressors at Site	3	units	
Es	timated Gas Vented per BlowDown Event for E4-7 ^{1,2} =	1,071	scf/event	
Cc	mpressors at Site	4	units	
Cc	mpressors Blowndown Simultaneously =	7	units	
As	sumed BlowDown Duration =	1	hrs/event	

90 events/yr/unit 21.80 lb/lb-mol

Compressor BlowDowns in One Year =
Molecular Weight of Stream =

Compound	Composition (wt fraction)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)
H2S	2.34E-05	7.76E-03	5.73E-04
Nitrogen	0.02	7.59	0.56
Carbon Dioxide	0.04	14.15	1.05
Methane	0.56	184.51	13.63
Ethane	0.15	48.92	3.61
Propane	0.11	37.16	2.74
i-Butane	0.02	6.32	0.47
n-Butane	0.04	14.36	1.06
i-Pentane	0.01	4.30	0.32
n-Pentane	0.01	4.01	0.30
2,2-Dimethylbutane	1.46E-04	0.05	3.57E-03
Cyclopentane	9.79E-04	0.32	0.02
2-Methylpentane	2.86E-03	0.95	0.07
3-Methylpentane	1.67E-03	0.55	0.04
n-Hexane	3.10E-03	1.03	0.08
2,2-Dimethylpentane	3.39E-04	0.11	8.29E-03
Methylcyclopentane	1.58E-03	0.52	0.04
2,2,3-Trimethylbutane			
Benzene	1.73E-03	0.57	0.04
Cyclohexane	2.23E-03	0.74	0.05
2-Methylhexane	4.12E-04	0.14	0.01
3-Methylhexane	7.02E-04	0.23	0.01
1,1-Dimethylcyclopentane	2.05E-04	0.23	5.02E-03
Heptane	1.05E-04	0.35	0.03
Methylcyclohexane	1.89E-03	0.63	0.05
2,5-Dimethylhexane	6.11E-05	0.03	1.49E-03
Toluene	2.08E-03	0.69	0.05
2-Methylheptane	4.74E-04	0.09	0.03
Octane	1.38E-03	0.46	0.01
Ethylcyclohexane	2.97E-04	0.40	7.26E-03
Ethylbenzene	3.76E-04	0.10	9.21E-03
p-Xylene	7.98E-04	0.12	9.21E-03 0.02
o-Xylene	2.23E-04	0.20	5.45E-03
Cyclooctane	2.23E-04 5.66E-05	0.07	5.45E-03 1.38E-03
Nonane	7.51E-04	0.02	0.02
Isopropylbenzene	9.57E-05	0.23	2.34E-03
Propylbenzene	4.82E-05	0.02 0.03	1.18E-03
1,3,5-Trimethylbenzene	1.03E-04		2.53E-03
Isobutylbenzene	1.04E-05	3.45E-03	2.55E-04
Butylbenzene	2.16E-05	7.15E-03	5.28E-04
Decane	8.47E-04	0.28	0.02
TOTAL VOC	0.23	74.94	5.53
	2.34E-05	7.76E-03	5.73E-04
TOTAL HAPs	8.31E-03	2.75	0.20

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows: Maximum Uncontrolled Hourly Emissions (Ib/hr) = [Volume of blowdown (sct/event/unit)] x [MW of stream (Ib/lb-mol)] x [wt % VOC or speciated constituent] / [event duration (hr/event)] / [379.5 (sct/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)]/ [2,000 (lb/ton)]

Filter Change Blowdown Emissions Sent to Flare Vessel Blowdown Volume¹ = Assumed Blowdown Duration = Site-wide Blowdowns in One Year=

Molecular Weight of Stream =

33,196 hrs/event events/yr/site 1 5 21.80 lb/lb-mol

scf/event

Compound	Composition	Maximum Uncontrolled Hourly Emissions	Maximum Uncontrolled Annual Emissions
	(wt fraction)	(lb/hr)	(tpy)
H2S	2.34E-05	0.04	1.12E-04
Nitrogen	0.02	43.70	0.11
Carbon Dioxide	0.04	81.49	0.20
Methane	0.56	1062.50	2.66
Ethane	0.15	281.74	0.70
Propane	0.11	213.98	0.53
i-Butane	0.02	36.38	0.09
n-Butane	0.04	82.72	0.21
i-Pentane	0.01	24.79	0.06
n-Pentane	0.01	23.12	0.06
2,2-Dimethylbutane	1.46E-04	0.28	6.96E-04
Cyclopentane	9.79E-04	1.87	4.67E-03
2-Methylpentane	2.86E-03	5.45	0.01
3-Methylpentane	1.67E-03	3.18	7.96E-03
n-Hexane	3.10E-03	5.92	0.01
2,2-Dimethylpentane	3.39E-04	0.65	1.62E-03
Methylcyclopentane	1.58E-03	3.01	7.52E-03
2,2,3-Trimethylbutane			
Benzene	1.73E-03	3.30	8.25E-03
Cyclohexane	2.23E-03	4.25	0.01
2-Methylhexane	4.12E-04	0.79	1.97E-03
3-Methylhexane	7.02E-04	1.34	3.35E-03
1,1-Dimethylcyclopentane	2.05E-04	0.39	9.79E-04
Heptane	1.05E-03	2.01	5.02E-03
Methylcyclohexane	1.89E-03	3.60	9.00E-03
2,5-Dimethylhexane	6.11E-05	0.12	2.91E-04
Toluene	2.08E-03	3.98	9.94E-03
2-Methylheptane	4.74E-04	0.90	2.26E-03
Octane	1.38E-03	2.64	6.60E-03
Ethylcyclohexane	2.97E-04	0.57	1.41E-03
Ethylbenzene	3.76E-04	0.72	1.79E-03
p-Xylene	7.98E-04	1.52	3.81E-03
o-Xylene	2.23E-04	0.43	1.06E-03
Cyclooctane	5.66E-05	0.11	2.70E-04
Nonane	7.51E-04	1.43	3.58E-03
Isopropylbenzene	9.57E-05	0.18	4.56E-04
Propylbenzene	4.82E-05	0.09	2.30E-04
1,3,5-Trimethylbenzene	1.03E-04	0.20	4.93E-04
Isobutylbenzene	1.04E-05	0.02	4.97E-05
Butylbenzene	2.16E-05	0.04	1.03E-04
Decane	8.47E-04	1.62	4.04E-03
TOTAL VOC	0.23	431.57	1.08
H ₂ S	2.34E-05	0.04	1.12E-04
TOTAL HAPs	8.16E-03	15.57	0.04

¹ This is a representative estimate of the amount of gas vented per blow down event.

TANK DEGASSING EMISSIONS CALCULATIONS Uncontrolled Steady-State Emissions

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (Ib/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (Ib/lb-mol)] x [wt % VOC or speciated constituent] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [MV % VOC or speciated constituent] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/lon)]

Storage Tank Degassing Emissions Sent to	Flare	
Vessel Blowdown Volume ¹ =	7,308	scf/event
Assumed Blowdown Duration =	1	hrs/event
Site-wide Blowdowns in One Year=	5	events/yr/site
Molecular Weight of Stream =	21.8	lb/lb-mol

Compound	Composition	Maximum Uncontrolled Hourly Emissions	Maximum Uncontrolled Annual Emissions
	(wt fraction)	(lb/hr)	(tpy)
H2S	2.34E-05	9.84E-03	2.46E-05
Nitrogen	0.02	9.62	0.02
Carbon Dioxide	0.04	17.94	0.04
Methane	0.56	233.91	0.58
Ethane	0.15	62.02	0.16
Propane	0.11	47.11	0.12
i-Butane	0.02	8.01	0.02
n-Butane	0.04	18.21	0.05
i-Pentane	0.01	5.46	0.01
n-Pentane	0.01	5.09	0.01
2,2-Dimethylbutane	1.46E-04	0.06	1.53E-04
Cyclopentane	9.79E-04	0.41	1.03E-03
2-Methylpentane	2.86E-03	1.20	3.00E-03
3-Methylpentane	1.67E-03	0.70	1.75E-03
n-Hexane	3.10E-03	1.30	3.26E-03
2,2-Dimethylpentane	3.39E-04	0.14	3.56E-04
Methylcyclopentane	1.58E-03	0.66	1.65E-03
2,2,3-Trimethylbutane			
Benzene	1.73E-03	0.73	1.82E-03
Cvclohexane	2.23E-03	0.94	2.34E-03
2-Methylhexane	4.12E-04	0.17	4.33E-04
3-Methylhexane	7.02E-04	0.29	7.36E-04
1,1-Dimethylcyclopentane	2.05E-04	0.09	2.15E-04
Heptane	1.05E-03	0.44	1.10E-04
Methylcyclohexane	1.89E-03	0.79	1.98E-03
2,5-Dimethylhexane	6.11E-05	0.03	6.41E-05
Toluene	2.08E-03	0.88	2.19E-03
2-Methylheptane	4.74E-04	0.20	4.97E-04
Octane	1.38E-03	0.58	1.45E-03
Ethylcyclohexane	2.97E-04	0.38	3.11E-04
Ethylbenzene	2.97E-04 3.76E-04	0.12	3.95E-04
p-Xylene	7.98E-04	0.18	8.38E-04
o-Xylene	7.98E-04 2.23E-04	0.34	8.38E-04 2.34E-04
Cyclooctane	2.23E-04 5.66E-05	0.09	2.34E-04 5.94E-05
Nonane	5.66E-05 7.51E-04	0.02	5.94E-05 7.88E-04
Isopropylbenzene	9.57E-05	0.04	1.00E-04
Propylbenzene	4.82E-05	0.02	5.06E-05
1,3,5-Trimethylbenzene	1.03E-04	0.04	1.09E-04
Isobutylbenzene	1.04E-05	4.38E-03	1.09E-05
Butylbenzene	2.16E-05	9.06E-03	2.27E-05
Decane	8.47E-04	0.36	8.89E-04
TOTAL VOC	0.23	95.01	0.24
H2S	2.34E-05	9.84E-03	2.46E-05
TOTAL HAPs	8.16E-03	3.43	8.57E-03

1 This is a representative estimate of the amount of gas vented per blow down event.

Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:

Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]

Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Total Volume of blowdown accounts for volume from the vessel, process skid, and extension skids, as applicable.

Sources Sent to Flare

Coalescer Blowdown Emissions		
Coalescer Blowdown Volume ¹ =	5,739	scf/event
Assumed Blowdown Duration =	1	hrs/event
Site-wide Blowdowns in One Year=	12	events/yr/site
Scrubber Blowdown Emissions		
Scrubber Blowdown Volume ¹ =	24,684	scf/event
Assumed Blowdown Duration =	1	hrs/event
Site-wide Blowdowns in One Year=	15	events/yr/site
Pump Blowdown Emissions		
Scrubber Blowdown Volume ¹ =	16	scf/event
Assumed Blowdown Duration =	1	hrs/event
Site-wide Blowdowns in One Year=	40	events/yr/site
Molecular Weight of Stream =	21.80	lb/lb-mol

Compound	Composition (wt fraction)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)
H2S	2.34E-05	0.04	2.96E-04
Nitrogen	0.02	40.07	0.29
Carbon Dioxide	0.04	74.72	0.54
Methane	0.56	974.25	7.04
Ethane	0.15	258.34	1.87
Propane	0.11	196.21	1.42
i-Butane	0.02	33.36	0.24
n-Butane	0.04	75.85	0.55
i-Pentane	0.01	22.73	0.16
n-Pentane	0.01	21.20	0.15
2,2-Dimethylbutane	1.46E-04	0.26	1.84E-03
Cyclopentane	9.79E-04	1.71	0.01
2-Methylpentane	2.86E-03	5.00	0.04
3-Methylpentane	1.67E-03	2.92	0.04
n-Hexane	3.10E-03	5.43	0.04
2,2-Dimethylpentane	3.39E-04	0.59	4.28E-03
Methylcyclopentane	1.58E-03	2.76	0.02
2,2,3-Trimethylbutane	1.002-00	2.70	
Benzene	1.73E-03	3.03	0.02
Cyclohexane	2.23E-03	3.90	0.02
2-Methylhexane	4.12E-04	0.72	5.21E-03
3-Methylhexane	7.02E-04	1.23	8.86E-03
1,1-Dimethylcyclopentane	2.05E-04	0.36	2.59E-03
Heptane	1.05E-03	1.84	0.01
Methylcyclohexane	1.89E-03	3.30	0.02
2,5-Dimethylhexane	6.11E-05	0.11	7.72E-04
Toluene	2.08E-03	3.65	0.03
2-Methylheptane	4.74E-04	0.83	5.99E-03
Octane	1.38E-03	2.42	0.02
Ethylcyclohexane	2.97E-04	0.52	3.75E-03
Ethylbenzene	3.76E-04	0.66	4.76E-03
p-Xylene	7.98E-04	1.40	0.01
o-Xylene	2.23E-04	0.39	2.82E-03
Cyclooctane	5.66E-05	0.10	7.15E-04
Nonane	7.51E-04	1.31	9.49E-03
Isopropylbenzene	9.57E-05	0.17	1.21E-03
Propylbenzene	4.82E-05	0.08	6.09E-04
1,3,5-Trimethylbenzene	1.03E-04	0.18	1.31E-03
Isobutylbenzene	1.04E-05	0.10	1.32E-04
Butylbenzene	2.16E-05	0.02	2.73E-04
Decane	8.47E-04	1.48	0.01
TOTAL VOC	0.23	395.73	2.86
H ₂ S	2.34E-05	0.04	2.96E-04
TOTAL HAPs	2.34E-05 8.16E-03	14.27	0.10
IUTAL HAPS	0.10E-U3	14.2/	0.10

¹ This is a representative estimate of the amount of gas vented per blow down event.

ſ	Basis of Calculation: Emissions from blowdowns are calculated based on a mass balance as follows:
	Maximum Uncontrolled Hourly Emissions (lb/hr) = [Volume of blowdown (scf/event/unit)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] / [event duration (hr/event)] / [379.5 (scf/lb-mol)]
	Maximum Uncontrolled Annual Emissions (tpy) = [Volume of blowdown (scf/event)] x [MW of stream (lb/lb-mol)] x [wt % VOC or speciated constituent] x [frequency of events (events/yr/unit)] / [379.5 (scf/lb-mol)] / [2,000 (lb/ton)]

Total Volume of blowdown accounts for volume from the vessel, process skid, and extension skids, as applicable.

Pipeline Blowdown Emissions to Flare Coalescer Blowdown Volume¹ = Assumed Blowdown Duration = 281,946 scf/event hrs/event 1 Site-wide Blowdowns in One Year= events/yr/site 3 **Pigging Emissions to Flare** Scrubber Blowdown Volume¹ = 2,096 scf/event Assumed Blowdown Duration = hrs/event 1 Site-wide Blowdowns in One Year= 50 events/yr/site Molecular Weight of Stream = 21.80 lb/lb-mol

Compound	Composition (wt fraction)	Maximum Uncontrolled Hourly Emissions (lb/hr)	Maximum Uncontrolled Annual Emissions (tpy)
H2S	2.34E-05	0.38	6.40E-04
Nitrogen	0.02	373.95	0.63
Carbon Dioxide	0.04	697.27	1.17
Methane	0.56	9091.26	15.21
Ethane	0.15	2410.67	4.03
Propane	0.11	1830.93	3.06
i-Butane	0.02	311.29	0.52
n-Butane	0.04	707.81	1.18
i-Pentane	0.01	212.09	0.35
n-Pentane	0.01	197.82	0.33
2,2-Dimethylbutane	1.46E-04	2.38	3.98E-03
Cyclopentane	9.79E-04	15.98	0.03
2-Methylpentane	2.86E-03	46.61	0.08
3-Methylpentane	1.67E-03	27.24	0.05
n-Hexane	3.10E-03	50.64	0.08
2,2-Dimethylpentane	3.39E-04	5.53	9.26E-03
Methylcyclopentane	1.58E-03	25.73	0.04
2,2,3-Trimethylbutane			
Benzene	1.73E-03	28.24	0.05
Cyclohexane	2.23E-03	36.38	0.06
2-Methylhexane	4.12E-04	6.73	0.01
3-Methylhexane	7.02E-04	11.45	0.02
1,1-Dimethylcyclopentane	2.05E-04	3.35	5.60E-03
Heptane	1.05E-03	17.18	0.03
Methylcyclohexane	1.89E-03	30.82	0.05
2,5-Dimethylhexane	6.11E-05	1.00	1.67E-03
Toluene	2.08E-03	34.01	0.06
2-Methylheptane	4.74E-04	7.73	0.01
Octane	1.38E-03	22.57	0.04
Ethylcyclohexane	2.97E-04	4.84	8.10E-03
Ethylbenzene	3.76E-04	6.14	0.01
p-Xvlene	7.98E-04	13.03	0.02
o-Xylene	2.23E-04	3.64	6.09E-03
Cyclooctane	5.66E-05	0.92	1.55E-03
Nonane	7.51E-04	12.26	0.02
Isopropylbenzene	9.57E-05	1.56	2.61E-03
Propylbenzene	4.82E-05	0.79	1.32E-03
1,3,5-Trimethylbenzene	1.03E-04	1.69	2.82E-03
Isobutylbenzene	1.04E-05	0.17	2.85E-04
Butylbenzene	2.16E-05	0.35	5.90E-04
Decane	8.47E-04	13.83	0.02
TOTAL VOC	0.23	3692.72	6.18
H ₂ S	2.34E-05	0.38	6.40E-04
TOTAL HAPs	8.16E-03	133.19	0.22
	0.102-03	100.10	0.22

¹ This is a representative estimate of the amount of gas vented per blow down event.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO_2), nitrous oxide (N_2O), methane (CH_4), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

ESTIMATION OF FACILITY-WIDE GHG EMISSIONS IACX Roswell LLC, Bitter Lake Compressor Station

	Total GHG En	nissions
GHG Emission Source	(m.t. CO ₂ e)	(tons CO ₂ e)
Natural Gas Combustion	40,796	44,970
Fugitives	14	15
Dehy Unit	151	166
Estimated Facility Emissions	40,961	45,152

Ce	onversion	Factors	Global Warm	ing Potential
1.1	10231	ton/m.t.	CO ₂	1
0	.001	m.t./kg	CH ₄	25
8	,760	Hrs/yr	N ₂ O	298

CO ₂	CH ₄	C ₂ H ₃	C ₃ H ₈	C ₄ H ₁₀	C5+
(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)
2.35886	73.89146	11.56952	6.24368	2.75657	1.20219

* Processing emissions for compressor, venting and flaring estimated using EPA's 40 CFR Subpart W Onshore Natural Gas Processing Screening T Mole % CO₂ for Acid gas venting used for screening obtained from process simulation data.

Note: Carbon Dioxide Equivalent (CQe) emissions are calculated in the tables below by multiplying emissions by global warming potentials for each pollutant. Emissions estimates converted to short tons in the tables below using conversion factor from 40 CFR 98 Subpart A for comparison to PSD/TV thresho Global Warming Potentials obtained from 40 CFR 98 Supart A, Table A-Mol % values obtained from the gas analysis from a representative facili

Natural Gas Combustion Emissions

	Emission			Emis	ssions Factors ¹			Emissions			Emissions		Total E	missions
	Point	Rated	Capacity	CO2	CH₄	N ₂ O		(m.t.)			(m.t. CO ₂ e)			
Emissions Source	Identification	Horsepower	(MMBtu/hr)	(kg/MMBtu)	(kg/MMBtu)	(kg/MMBtu)	CO ₂	CH₄	N ₂ O	CO2	CH₄	N ₂ O	(m.t. CO ₂ e)	(tons CO ₂ e)
Compressor Engine (Cooper Bess	C-891	919	11.97	73.96	0.0030	0.00060	7,757.63	0.31	0.063	7,757.63	7.87	18.75	7,784	8,581
Compressor Engine (Cooper Bess	C-893	919	11.97	73.96	0.0030	0.00060	7,757.63	0.31	0.063	7,757.63	7.87	18.75	7,784	8,581
Compressor Engine Caterpillar G3	C-894	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Compressor Engine Caterpillar G3	C-895	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Compressor Engine Caterpillar G3	C-896	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Dehydrator Reboile	RB-1		0.75	53.06	0.0010	0.00010	348.60	0.007	0.0007	348.60	0.16	0.20	349	385
Dehydrator Reboile	RB-2		0.75	53.06	0.0010	0.00010	348.60	0.007	0.0007	348.60	0.16	0.20	349	385
										Total	Natural Gas C	Combustion:	39,619	43,673

Notes: 1. Emission factors for GHG obtained from 40 CFR 98 Supart C, Tables C-1 and C-

			Annual Gas	Annual Gas			Emission Factor		Emissions		Glol	oal Warming Po	tential		Emissions		Total Er	missions
Source ID Number	Description	Maximum Hours of Operation	Usage (scf/hr)	Processed (scf/yr)	CO ₂ (mol %)	CH₄ (mol %)	N ₂ O (m.t./MMscf)	CO ₂ (m.t.)	CH ₄ (m.t.)	N ₂ O (m.t.)	CO ₂	CH₄	N ₂ O	CO ₂ (m.t. CO ₂ e)	CH ₄ (m.t. CO ₂ e)	N ₂ O (m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
Tank-1	Flare 1: Steady State	8,760	49	425,833	0.043	0.56	7.10E-07	1,174.71	0.0908	0.0000003	1	25	298	1,174.71	2.27	0.00009	1,176.98	1,297.40
Note - CO2 and N2O Emissions est	imated using API Compendium Sec	ction 4.6													Total Flare	Combustion:	#REF!	1,297.40

Dehy Units															
						Emissions ¹		Glo	bal Warming Po	tential		Emissions		Total Emi	issions
			Annual Gas												
		Maximum Days of	Processed	Conversion Factor	CO ₂	CH₄	N ₂ O				CO ₂	CH4	N ₂ O		
Source ID Number	Description	Operation	(MMscf/yr)	(m.t./ton)	(tons)	(tons)	(tons)	CO ₂	CH ₄	N ₂ O	(m.t. CO2e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO2e)	(tons CO ₂ e)
DEHY	GLYCOL DEHYDRATOR	365	27,754	1.10231	25.82	5.63	-	1	25	298	23.42	127.59	-	151.01	166.46

¹ Emissions estimated using process simulation and a natural gas feed rate of 150 MMcf/day.

Fugitive Sources

		Annual	Annual	Default	Emission	Emis	ssions	Control	Controlled	Emissions ²	Total E	missions
	Emission	Condensate	Condensate	Liquid CH₄	Factor			(%)		(m.t.)		
	Point	Production	Production	Content ¹	VOC	VOC	VOC		VOC			
Emissions Source	Identification	(bbl/yr)	(1,000 gal/yr)	(mol %)	(lb/1,000 gal)	(tons)	(m.t.)		(m.t.)	CH₄	(m.t. CO ₂ e)	(tons CO ₂ e)
Condensate Truck Loading 1	LOAD1	16,425	690	27.40	4.79	1.65	1.50	0%	1.50	0.41	10.26	10.26
Produced Water Loading	LOAD2	17,520	736	28.40	-	0.76	0.69	0%	0.69	0.20	4.90	4.90

Notes: 1. Default CH_t content for crude oil per API compendium Section 5.4 and Appendix B. 2. Emissions estimated using API Compendium, Section 5.1

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- \boxtimes Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

```
Heaters and Reboilers (RB-1, RB-2)

• AP-42 Chapter 1.4 Natural Gas Combustion

• 40 CFR 98 Subpart C Table C-1 and Table C-2

TEG Glycol Dehydrators (DEHY)

• BR&E ProMax

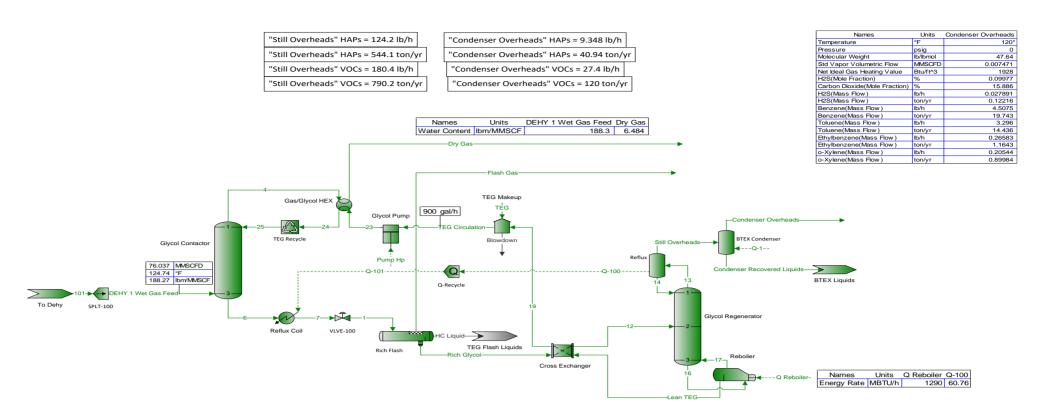
Flares (FLARE)

• TNRCC RG-109 Emission Factors

Condensate Tanks (TK-1. TK-2, TK-2a)

• BR&E ProMax

Condensate Loading (LOAD-1 and LOAD-2)

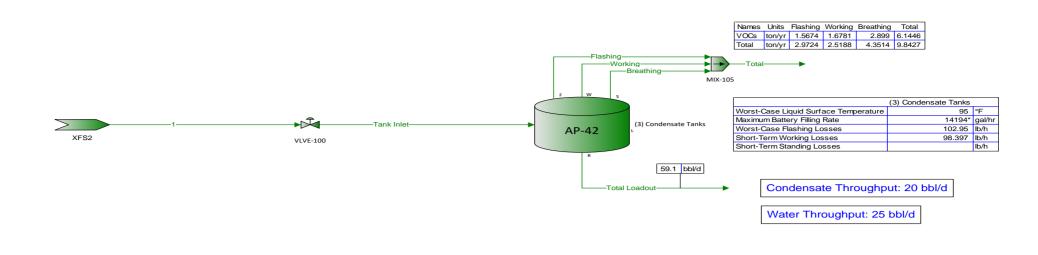

• AP-42 Chapter 5.2, Transportation and Marketing of Petroleum Liquids

• BR&E ProMax

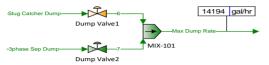
Fugitives (FUG)

• Site Specific Analyses

• Table 2-4 of the EPA Protocol for Equipment Leak Emission Estimates, November 1995
```



Names	Units	Flash Gas	Dry Gas	Condenser Overheads	Condenser Recovered Liquids	Still Overheads
H2S(Mass Flow)	lb/h	0.0172	4.22	0.0279	0.00265	0.0305
H2S(Mass Flow)	lb/h	0.0172	4.22	0.0279	0.00265	0.0305
Benzene(Mass Flow)	lb/h	0.926	287	4.51	22.2	26.8
Benzene(Mass Flow)	lb/h	0.926	287	4.51	22.2	26.8
Toluene(Mass Flow)	lb/h	0.925	329	3.3	46.1	49.4
Toluene(Mass Flow)	lb/h	0.925	329	3.3	46.1	49.4
Ethylbenzene(Mass Flow)	lb/h	0.127	57.2	0.266	11	11.2
Ethylbenzene(Mass Flow)	lb/h	0.127	57.2	0.266	11	11.2
o-Xylene(Mass Flow)	lb/h	0.0737	31.4	0.205	8.92	9.13
o-Xylene(Mass Flow)	lb/h	0.0737	31.4	0.205	8.92	9.13


Names	Units	Condenser Recovered Liquids	Condenser Overheads	Still Overheads
Temperature	°F	120	120*	204
Pressure	psig	0	0	0.5
Volume Fraction Vapor	%	0	100	100
Volume Fraction Light Liquid	%	24.6	0	0
Volume Fraction Heavy Liquid	%	75.4	0	0
Molecular Weight	lb/lbmol	21.7	47.6	22.4
Mass Flow	lb/h	724	39.1	763
Std Vapor Volumetric Flow	MMSCFD	0.303	0.00747	0.311
Std Liquid Volumetric Flow	sgpm	1.51	0.124	1.63
Specific Gravity		0.945	1.64	0.772
API Gravity		15.6		

Composition	Blowdown	Condenser Overheads	Condenser Recovered Liquids	DEHY 1 Wet Gas Feed	Dry Gas	Flash Gas	Still Overheads
Phase: Total	Status: Solved From Block: TEG Makeup	Solved BTEX Condenser	Solved BTEX Condenser	Solved SPLT-100	Solved Gas/Glycol HEX	Solved Rich Flash	Solved Reflux
	To Block:	-	BTEX Liquids	Glycol Contactor			BTEX Condenser
Mole Fraction H2S	8.89784E-09	% 0.0997702	% 0.000233849	% 0.00149900	% 0.00148899	% 0.0130124	% 0.00262688
Nitrogen	3.06354E-14	0.0192060	7.38384E-07	1.78352	1.79149	0.367562	0.000462467
Carbon Dioxide	2.96058E-08	15.8858	0.0108915	2.11681	2.12068	8.98434	0.392553
Methane	2.37925E-10	9.70374	0.00140475	75.7151	76.0371	49.4992	0.234667
Ethane	3.25596E-09	10.8980	0.00822145	10.7114	10.7515	16.6975	0.270031
Propane	1.78173E-08	13.8997	0.0299817	5.54760	5.56592	11.8567	0.363434
i-Butane n-Butane	6.44437E-09 6.06857E-08	2.31135 9.23247	0.00982055 0.0620420	0.715573 1.62705	0.717839 1.63118	1.57838 4.59521	0.0651535 0.282516
i-Pentane	6.31991E-08	2.60013	0.0460913	0.392757	0.393587	1.12014	0.282516
n-Pentane	1.07323E-07	2.77818	0.0639821	0.366328	0.366934	1.15145	0.129236
2,2-Dimethylbutane	5.28508E-09	0.0284646	0.000954089	0.00369116	0.00369604	0.0114808	0.00161549
Cyclopentane	1.47999E-06	1.16179	0.0499071	0.0304425	0.0301876	0.169914	0.0766389
2-Methylpentane	2.37659E-07	0.618326	0.0290037	0.0722722	0.0723153	0.235672	0.0431721
3-Methylpentane	2.87258E-07	0.445487	0.0238544	0.0422289	0.0422129	0.148787	0.0339912
n-Hexane	4.40947E-07	0.650384	0.0416778	0.0785072	0.0785159	0.254590	0.0563122
2,2-Dimethylpentane Methylcyclopentane	1.82487E-08 2.63424E-06	0.0504544 1.14343	0.00397377 0.0865811	0.00737673 0.0408428	0.00737890 0.0404765	0.0228030 0.199731	0.00509125 0.111990
2,2,3-Trimethylbutane	2.03424E-00	1:14343	0.0005011	0.0406428	0.0404765	0.199731	0.111990
Benzene	0.000596952	7.03507	0.855223	0.0482962	0.0442534	0.305490	1.00380
Cyclohexane	7.00661E-06	1.36844	0.142532	0.0577559	0.0571896	0.265809	0.172005
2-Methylhexane	4.47941E-08	0.0590975	0.00702867	0.00897245	0.00896618	0.0284335	0.00828050
3-Methylhexane	1.32367E-07	0.114538	0.0154422	0.0152664	0.0152391	0.0511744	0.0178247
1,1-Dimethylcyclopentane	5.15272E-07	0.0958659	0.0125804	0.00455760	0.00450926	0.0199218	0.0145828
Heptane	2.54510E-07	0.142407	0.0246186	0.0229048	0.0228630	0.0723656	0.0274505
Methylcyclohexane	7.16928E-06	0.602130	0.117387	0.0419360	0.0415214	0.163884	0.129041
2,5-Dimethylhexane Toluene	8.13084E-09 0.00310551	0.00408065 4.36107	0.000978856 1.50230	0.00116617 0.0493219	0.00116570 0.0429768	0.00314204 0.258644	0.00105343 1.57103
2-Methylheptane	2.03506E-07	0.0368242	0.0129036	0.00904461	0.00901818	0.238044	0.0134787
Octane	1.13371E-06	0.0927182	0.0456263	0.0264042	0.0262986	0.0735397	0.0467585
Ethylcyclohexane	5.91782E-06	0.0410686	0.0262215	0.00576429	0.00567324	0.0177371	0.0265785
Ethylbenzene	0.00173576	0.305257	0.310398	0.00773125	0.00647821	0.0307125	0.310275
p-Xylene	0.00344440	0.631465	0.643222	0.0163955	0.0137996	0.0660031	0.642939
o-Xylene	0.00268735	0.235917	0.252340	0.00457826	0.00355607	0.0178777	0.251945
Cyclooctane	0.0333694	0.0741868	0.119500	0.00109970	0.000617632	0.00474227	0.118411
Nonane	2.14459E-06 0.000389297	0.0269822 0.0357704	0.0331078 0.0675726	0.0127693 0.00173583	0.0126785	0.0297887 0.00593637	0.0329605 0.0668080
Isopropylbenzene Propylbenzene	0.000374983	0.0357704	0.0409174	0.000173583	0.00146665 0.000711227	0.00593637	0.0668080
1,3,5-Trimethylbenzene	0.00146014	0.0343484	0.105377	0.00187634	0.00145632	0.00596734	0.103669
Isobutylbenzene	0.000106118	0.00209493	0.00805411	0.000169284	0.000137339	0.000486183	0.00791084
Butylbenzene	0.000608714	0.00332729	0.0225107	0.000350690	0.000261482	0.000910701	0.0220494
Decane	9.38198E-06	0.0142124	0.0473009	0.0129840	0.0128409	0.0246682	0.0465054
TEG	93.7631	1.43451E-10	1.87391E-05	0	0.000182979		1.82885E-05
Water Molar Flow	6.18900	13.1393 Ibmol/h	95.1182 Ibmol/h	0.395007 Ibmol/h	0.0136570 Ibmol/h	1.61638 Ibmol/h	93.1473 Ibmol/h
H2S	0	0.000818375	7.78667E-05	0.125147	0.123746	0.000505033	0.000896241
Nitrogen	0	0.000157539	2.45866E-07	148.901	148.887	0.0142657	0.000157785
Carbon Dioxide	0	0.130305	0.00362663	176.727	176.245	0.348698	0.133931
Methane	0	0.0795959	0.000467751	6321.26	6319.26	1.92115	0.0800636
Ethane	0		0.000401101	004.070			
Propane	0	0.0893917	0.00273756	894.270	893.530	0.648059	0.0921293
	0	0.0893917 0.114013	0.00273756 0.00998323	463.155	462.570	0.460179	0.123997
i-Butane	0	0.0893917 0.114013 0.0189591	0.00273756 0.00998323 0.00327003	463.155 59.7413	462.570 59.6578	0.460179 0.0612598	0.123997 0.0222291
n-Butane	0 0 0	0.0893917 0.114013 0.0189591 0.0757302	0.00273756 0.00998323 0.00327003 0.0206586	463.155 59.7413 135.838	462.570 59.6578 135.563	0.460179 0.0612598 0.178348	0.123997 0.0222291 0.0963888
n-Butane i-Pentane	0 0 0 0	0.0893917 0.114013 0.0189591 0.0757302 0.0213278	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474	463.155 59.7413 135.838 32.7902	462.570 59.6578 135.563 32.7101	0.460179 0.0612598 0.178348 0.0434747	0.123997 0.0222291 0.0963888 0.0366752
n-Butane i-Pentane n-Pentane	0 0 0 0 0	0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046	463.155 59.7413 135.838 32.7902 30.5838	462.570 59.6578 135.563 32.7101 30.4950	0.460179 0.0612598 0.178348 0.0434747 0.0446896	0.123997 0.0222291 0.0963888 0.0366752 0.0440929
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane	0 0 0 0	0.0893917 0.114013 0.0189591 0.0757302 0.0213278	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474	463.155 59.7413 135.838 32.7902	462.570 59.6578 135.563 32.7101	0.460179 0.0612598 0.178348 0.0434747	0.123997 0.0222291 0.0963888 0.0366752
n-Butane i-Pentane n-Pentane	0 0 0 0 0 0	0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690	463.155 59.7413 135.838 32.7902 30.5838 0.308165	462.570 59.6578 135.563 32.7101 30.4950 0.307169	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane	0 0 0 0 0 0 0 0	0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.284770	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.284770 0.0474598	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00227883 0.000233483 0.00952973 0.00507188 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.284770 0.0474598 0.00234039	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00233483 0.00952973 0.00507188 0.000533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.000939511 0.000786349 0.00116810	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.000939511 0.000786349 0.00116810 0.00493903	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.0098108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00636062	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.000939511 0.000786349 0.00116810 0.00493903 3.34719E-05	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00977468 0.0098108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00636062 0.000121948	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.2884770 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00636062 0.000121948 0.0100384	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00636062 0.000121948 0.0100384 0.00103328	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane Octane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.2884770 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00636062 0.000121948 0.0100384 0.0100384 0.00103328 0.00285420	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,3,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.284770 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00636062 0.000121948 0.0100384 0.00103328	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Dimethylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane Ethylcyclohexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.000336869	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0.284770 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.000280863 0.00636062 0.000121948 0.0100384 0.0103328 0.00285420 0.000688408	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.00459867 0.0159531 0.00906806
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 1,2-Dimethylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane Ethylcyclohexane Ethylcyclohexane Ethylcyclohexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.00036869 0.00250390	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0284770 0.0284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.000445589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.000280863 0.00036062 0.000121948 0.0100384 0.00103328 0.00285420 0.000688408 0.00119201	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Methylheptane 0ctane Ethylcyclohex		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.000250390 0.00517965 0.00193513 0.00068524	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00036062 0.000121948 0.00008408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055	0.123997 0.022291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 5,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.000250390 0.00517965 0.00193513 0.00068524 0.000221324	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.0608	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00036062 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.00439409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Methylheptane Octane Ethylcyclohexane Ethylcycl		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.00250390 0.00517965 0.00193513 0.000608524 0.000221324 0.000293410	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242 0.0225002	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.06608 0.144920	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368 0.121889	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00038662 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615 0.000230401	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455 0.0227936
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Methylheptane Octane Ethylcyclohexane Proylbenzene Propylbenzene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.000233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.000336869 0.00250390 0.00517965 0.00193513 0.00068524 0.000293410 0.000140614	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242 0.0225002 0.0136246	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.06608 0.144920 0.0729916	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368 0.121889 0.0591083	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.00988108 0.000885024 0.00775191 0 0.0118566 0.01103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00036062 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615 0.000230401 0.000112200	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455 0.0227936 0.0137652
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane Ethylcyclohexane Ethylbenzene p-Xylene o-Xylene Cyclooctane Nonane Isopropylbenzene Propylbenzene Propylbenzene Propylbenzene Propylbenzene Propylbenzene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.000336869 0.00250390 0.00517965 0.00193513 0.00068524 0.000293410 0.000140614 0.000281746	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.028296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242 0.0225002 0.0136246	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.06608 0.144920 0.0729916 0.156651	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368 0.121889 0.0591083 0.121031	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.000885024 0.00775191 0 0.0118566 0.0103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00038662 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615 0.000230401 0.000231603	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455 0.0227936 0.0137652 0.0353699
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 5,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane Ethylcyclohexane Ethylcyclohexane Ethylbenzene p-Xylene o-Xylene Cyclooctane Nonane Isopropylbenzene Propylbenzene Propylbenzene 1,3,5-Trimethylbenzene Isobutylbenzene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.00250390 0.00517965 0.00193513 0.00068524 0.000281746 1.71838E-05	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242 0.0225002 0.0136246 0.0350881 0.00268184	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.06608 0.144920 0.0729916 0.156651 0.0141331	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368 0.121889 0.0591083 0.121031 0.0114139	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.00988108 0.000885024 0.00775191 0 0.0118566 0.01103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00036062 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615 0.000230401 0.000231603 1.88696E-05	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455 0.0227936 0.0137652 0.0353699 0.00269902
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Methylhextane 3-Methylhextane 3-Methylhextane 3-Methylhextane 3-Methylhextane 2,5-Dimethylhextane Toluene 2-Methylheptane Octane Ethylcyclohexane Ethylcyclohexane Ethylbenzene p-Xylene o-Xylene Cyclooctane Nonane Isopropylbenzene Propylbenzene 1,3,5-Trimethylbenzene Isobutylbenzene Butylbenzene Butylbenzene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.00233483 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.000336869 0.00250390 0.00517965 0.00193513 0.00068524 0.000281746 1.71838E-05 2.72924E-05	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.028296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242 0.0225002 0.0136246 0.0350881 0.00268184 0.00749555	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.06608 0.144920 0.0729916 0.156651 0.0141331 0.0292782	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368 0.121889 0.0591083 0.121031 0.0114139 0.0217312	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.00988108 0.000885024 0.00775191 0 0.0118566 0.01103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00036062 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615 0.000230401 0.000231603 1.88696E-05 3.53459E-05	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455 0.0227936 0.0137652 0.0353699 0.00269902 0.00752284
n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Joluene 2,5-Dimethylhexane Toluene 2-Methylheptane Octane Ethylcyclohexane Forpylbenzene Propylbenzene		0.0893917 0.114013 0.0189591 0.0757302 0.0213278 0.0227883 0.00952973 0.00507188 0.00365415 0.00533483 0.000413857 0.00937909 0 0.0577058 0.0112248 0.000484753 0.00039511 0.000786349 0.00116810 0.00493903 3.34719E-05 0.0357721 0.000302054 0.000760530 0.00250390 0.00517965 0.00193513 0.00068524 0.000281746 1.71838E-05	0.00273756 0.00998323 0.00327003 0.0206586 0.0153474 0.0213046 0.000317690 0.0166180 0.00965758 0.00794298 0.0138778 0.00132318 0.0288296 0 0 0.284770 0.0474598 0.00234039 0.00514191 0.00418900 0.00819746 0.0390871 0.000325937 0.500233 0.00429661 0.0151925 0.00873119 0.103356 0.214178 0.0840236 0.0397909 0.0110242 0.0225002 0.0136246 0.0350881 0.00268184	463.155 59.7413 135.838 32.7902 30.5838 0.308165 2.54156 6.03382 3.52558 6.55436 0.615864 3.40986 0 4.03212 4.82189 0.749086 1.27455 0.380502 1.91226 3.50113 0.0973601 4.11776 0.755111 2.20442 0.481245 0.645462 1.36882 0.382227 0.0918108 1.06608 0.144920 0.0729916 0.156651 0.0141331	462.570 59.6578 135.563 32.7101 30.4950 0.307169 2.50882 6.00995 3.50821 6.52527 0.613242 3.36390 0 3.67779 4.75289 0.745158 1.26648 0.374754 1.90009 3.45074 0.0968788 3.57169 0.749479 2.18561 0.471489 0.538388 1.14685 0.295536 0.0513299 1.05368 0.121889 0.0591083 0.121031 0.0114139 0.0217312	0.460179 0.0612598 0.178348 0.0434747 0.0446896 0.00045589 0.00659465 0.00914684 0.00577468 0.00988108 0.00988108 0.000885024 0.00775191 0 0.0118566 0.01103165 0.00110355 0.00198617 0.000773200 0.00280863 0.00036062 0.000121948 0.000088408 0.00103328 0.00285420 0.000688408 0.00119201 0.00256169 0.000693864 0.000184055 0.00115615 0.000230401 0.000231603 1.88696E-05	0.123997 0.0222291 0.0963888 0.0366752 0.0440929 0.000551174 0.0261477 0.0147295 0.0115971 0.0192126 0.00173703 0.0382087 0 0 0.342476 0.0586846 0.00282514 0.00608142 0.00497535 0.00936556 0.0440262 0.000359409 0.536006 0.00459867 0.0159531 0.00906806 0.105860 0.219358 0.0859588 0.0403995 0.0112455 0.0227936 0.0137652 0.0353699 0.00269902

Process Streams	Charles -				DEHY 1 Wet Gas Feed			Still Overheads
Composition Phase: Total	Status: From Block:	Solved TEG Makeup	Solved BTEX Condenser	Solved BTEX Condenser	Solved SPLT-100	Solved Gas/Glycol HEX	Solved Rich Flash	Solved Reflux
	To Block:			BTEX Liquids	Glycol Contactor	 %	%	BTEX Condenser
ass Fraction 2S		2.13592E-09	% 0.0713727	0.000366620	0.00234301	0.00232800	0.0147666	0.0040036
trogen		6.04477E-15	0.0112934	9.51518E-07	2.29143	2.30230	0.342854	0.00057936
arbon Dioxide lethane		9.17724E-09 2.68844E-11	14.6749 3.26761	0.0220497 0.00103667	4.27260 55.7079	4.28157 55.9599	13.1658 26.4413	0.77258 0.16835
thane		6.89586E-10	6.87838	0.0113720	14.7717	14.8309	16.7180	0.3631
ropane		5.53386E-09	12.8653	0.0608164	11.2193	11.2594	17.4090	0.71667
Butane		2.63822E-09	2.81987	0.0262571	1.90748	1.91404	3.05470	0.16934
-Butane Pentane		2.48438E-08 3.21166E-08	11.2637 3.93772	0.165881 0.152974	4.33717 1.29962	4.34936 1.30272	8.89327 2.69102	0.73432 0.34683
Pentane		5.45394E-08	4.20736	0.212352	1.21217	1.21450	2.76622	0.41698
,2-Dimethylbutane		3.20793E-09	0.0514883	0.00378217	0.0145885	0.0146117	0.0329434	0.0062257
yclopentane -Methylpentane		7.31089E-07 1.44254E-07	1.71030 1.11846	0.161010 0.114976	0.0979186 0.285639	0.0971252 0.285887	0.396793 0.676246	0.24030 0.16633
-Methylpentane		1.74359E-07	0.805821	0.0945628	0.265659	0.265887	0.426935	0.13099
-Hexane		2.67645E-07	1.17645	0.165218	0.310282	0.310400	0.730531	0.2170
,2-Dimethylpentane		1.28794E-08	0.106120	0.0183167	0.0339003	0.0339194	0.0760820	0.022814
lethylcyclopentane ,2,3-Trimethylbutane		1.56152E-06 0	2.01991 0	0.335193 0	0.157646 0	0.156274 0	0.559709 0	0.42148
enzene		0.000328432	11.5347	3.07302	0.173019	0.158578	0.794561	3.506
yclohexane		4.15337E-06	2.41741	0.551802	0.222927	0.220801	0.744879	0.6473
Methylhexane		3.16145E-08	0.124298	0.0323980	0.0412335	0.0412159	0.0948681	0.03710
Methylhexane		9.34215E-08 3.56349E-07	0.240906 0.197576	0.0711794 0.0568217	0.0701577 0.0205234	0.0700512 0.0203112	0.170743 0.0651317	0.079873 0.06403
eptane		1.79626E-07	0.299521	0.113477	0.105261	0.105097	0.241447	0.1230
lethylcyclohexane		4.95809E-06	1.24097	0.530197	0.188843	0.187026	0.535796	0.5666
5-Dimethylhexane		6.54184E-09	0.00978418	0.00514355	0.00610940	0.00610863	0.0119509	0.005381
oluene Methylheptane		0.00201541 1.63735E-07	8.43440 0.0882935	6.36748 0.0678039	0.208422 0.0473836	0.181658 0.0472579	0.793520 0.101261	6.473 0.06885
ctane		9.12151E-07	0.222310	0.239750	0.138328	0.137812	0.279711	0.2388
thylcyclohexane		4.67727E-06	0.0967325	0.135353	0.0296655	0.0292048	0.0662733	0.1333
thylbenzene		0.00129796	0.680249	1.51590	0.0376439	0.0315513	0.108570	1.473
Xylene Xylene		0.00257564 0.00200954	1.40718 0.525728	3.14131 1.23236	0.0798308 0.0222918	0.0672094 0.0173194	0.233324 0.0631985	3.052 1.196
yclooctane		0.0263742	0.174739	0.616850	0.00565950	0.00317945	0.0177191	0.5942
onane		1.93735E-06	0.0726394	0.195332	0.0751114	0.0745971	0.127215	0.1890
opropylbenzene		0.000329568	0.0902439	0.373606	0.00956851	0.00808687	0.0237579	0.3590
ropylbenzene .3,5-Trimethylbenzene		0.000317450 0.00123611	0.0432487 0.0866566	0.226230 0.582624	0.00481936 0.0103431	0.00392160 0.00802991	0.0115696 0.0238819	0.2168 0.5572
obutylbenzene		0.000120011	0.00590201	0.0497277	0.00104206	0.000845643	0.00217282	0.04748
utylbenzene		0.000575458	0.00937394	0.138985	0.00215873	0.00161003	0.00407006	0.1323
ecane		9.40227E-06	0.0424461	0.309590	0.0847267	0.0838157	0.116869	0.2959
EG /ater		99.1775 0.785328	4.52185E-10 4.96861	0.000129452 78.8268	0 0.326370	0.00126059 0.0112870	0.00177165 0.969614	0.0001228 75.04
lass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
2S		0	0.0278909	0.00265376	4.26513	4.21737	0.0172120	0.03054
itrogen		0	0.00441320	6.88753E-06	4171.22	4170.82	0.399631	0.004420
arbon Dioxide Iethane		0	5.73465 1.27691	0.159606 0.00750387	7777.68 101409	7756.44 101376	15.3460 30.8200	5.894 1.284
thane		0	2.68792	0.0823158	26889.8	26867.6	19.4865	2.770
ropane		0	5.02749	0.440217	20423.1	20397.3	20.2919	5.467
Butane Butane		0	1.10194 4.40160	0.190061 1.20072	3472.30 7895.21	3467.44 7879.24	3.56056 10.3660	1.292 5.602
Pentane		0	1.53878	1.20072	2365.78	2359.99	3.13665	2.646
Pentane		0	1.64415	1.53710	2206.58	2200.18	3.22430	3.181
2-Dimethylbutane		0	0.0201205	0.0273771	26.5563	26.4704	0.0383988	0.04749
yclopentane Mathulaentana		0	0.668348	1.16547	178.247	175.951	0.462502	1.833
Methylpentane Methylpentane		0	0.437071 0.314897	0.832246 0.684489	519.967 303.818	517.909 302.321	0.788232 0.497635	1.269 0.9993
Hexane		0	0.459731	1.19592	564.824	562.317	0.851506	1.655
2-Dimethylpentane		0	0.0414693	0.132585	61.7108	61.4481	0.0886812	0.1740
ethylcyclopentane		0	0.789339 0	2.42628	286.972	283.104	0.652396	3.215
2,3-Trimethylbutane enzene		0	4.50751	22.2439	0 314.957	0 287.279	0 0.926139	26.75
yclohexane		0	0.944671	3.99419	405.808	400.000	0.868230	4.938
Methylhexane		0	0.0485732	0.234512	75.0599	74.6662	0.110578	0.2830
Methylhexane		0	0.0941409 0.0772085	0.515230 0.411301	127.712 37.3600	126.904 36.7956	0.199018 0.0759175	0.6093 0.4885
1-Dimethylcyclopentane eptane		0	0.0772085	0.411301 0.821401	37.3600 191.613	36.7956 190.393	0.0759175 0.281431	0.4885
ethylcyclohexane		0	0.484944	3.83781	343.762	338.815	0.624524	4.322
5-Dimethylhexane		0	0.00382345	0.0372313	11.1213	11.0663	0.0139299	0.04105
oluene Methylheptane		0	3.29598 0.0345032	46.0907 0.490796	379.404 86.2552	329.090 85.6119	0.924926 0.118030	49.38 0.5252
Methylheptane ctane		0	0.0345032 0.0868742	0.490796 1.73542	86.2552 251.808	85.6119 249.659	0.118030 0.326031	0.5252
hylcyclohexane		0	0.0378010	0.979750	54.0018	52.9070	0.0772481	1.017
hylbenzene		0	0.265827	10.9728	68.5255	57.1580	0.126549	11.23
Xylene Xylene		0	0.549897	22.7383	145.321	121.756	0.271962	23.28
Xylene /clooctane		0	0.205443 0.0682841	8.92037 4.46505	40.5791 10.3023	31.3756 5.75986	0.0736641 0.0206534	9.125 4.533
onane		0	0.0283859	1.41390	136.730	135.139	0.148282	1.442
opropylbenzene		0	0.0352654	2.70433	17.4181	14.6501	0.0276922	2.739
opylbenzene		0	0.0169006	1.63756	8.77298	7.10433	0.0134855	1.654
3,5-Trimethylbenzene obutylbenzene		0	0.0338635 0.00230638	4.21730 0.359952	18.8281 1.89692	14.5469 1.53196	0.0278367 0.00253264	4.251 0.3622
itylbenzene		0	0.00366313	1.00604	3.92966	2.91672	0.00233204	1.009
ecane		0	0.0165870	2.24096	154.233	151.840	0.136222	2.257
G		0	1.76704E-10	0.000937033	0	2.28367	0.00206503	0.000937
ater		U U	1.94163	570.584	594.110	20.4473	1.13018	572.
rocess Streams		Blowdown C	ondenser Overheads	Condenser Recovered Liquids	DEHY 1 Wet Gas Feed	Dry Gas	Flash Gas	Still Overhead
roperties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved
nase: Total	From Block:	TEG Makeup	BTEX Condenser	BTEX Condenser		Gas/Glycol HEX	Rich Flash	Reflux BTEX Condense
operty	To Block: Units			BTEX Liquids	Glycol Contactor			BTEX Condense
	°F		120*	120	124.742	134.240	141.396	203.9
emperature		10.04	12.91	12.91	1003.62	1007.91	57.91	13
•	psia	12.91	12.91	12101			0.101	
emperature ressure olecular Weight	lb/lbmol	141.975	47.6409	21.7386	21.8040	21.7981	30.0321	22.36
essure blecular Weight ass Density	lb/lbmol lb/ft^3	141.975	47.6409 0.100020	21.7386 58.9596	21.8040 4.20107	21.7981 4.09254	30.0321 0.274699	22.30 0.0424
essure	lb/lbmol		47.6409	21.7386	21.8040	21.7981	30.0321	22.36 0.04245 762.9 0.3107

Max Hourly Liquid Rates

NormN	Process Streams Composition Status:	Breathing	Flashing M	ax Dump Rate S	Slug Catcher Dump	Tank Inlet Total	Total Loadout	Working 1 3	chase Sep Dump 6 7 Solved Solved Solved
	Phase: Total From Block:	(3) Condensate Tanks	(3) Condensate Tanks	MIX-101	-	VLVE-100 MIX-105 (3)		3) Condensate Tanks XFS2	Dump Valve1 Dump Valve2
And Method And Met		%	%	% 2.88668E-06	%	%%	% 0.000118921	% % 0.0821630 0.000235150	% %
	Nitrogen Carbon Dioxide	0.0208279	0.346221	4.55722E-05	0.000343451*	0.000228717 0.137064	0 0	0.0208279 0.000228717	0* 0.000343451 0
	Methane Ethane						0 0	9.93299 0.0352658	
	Propane	23.7067	13.8678	0.279041	2.10297*	0.0882693 20.1921		23.7067 0.0882693	0* 2.10297 (
	n-Butane	9.29868	5.63893	0.345456	2.60350*	0.120396 7.99135	0.107240	9.29868 0.120396	0* 2.60350
NameNormNo	n-Pentane	2.14170	1.35174	0.296273	2.23283*	0.110544 1.85952	0.107621	2.14170 0.110544	0* 2.23283 0
Name Integ	Cyclopentane	0.579295	0.370284	0.0416604	0.313970*	0.0554973 0.504632	0.0547466	0.579295 0.0554973	0* 0.313970
Alter Note Note Note Note	2-Methylpentane 3-Methylpentane	0.275590	0.178277	0.0973715		0.0388363 0.240828	0.0384986	0.275590 0.0388363	
	n-Hexane 2,2-Dimethylpentane								
Annu Intro	Methylcyclopentane 2,2,3-Trimethylbutane								
Orderan. 1 1 1 1 </td <th>Benzene Cyclohexane</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzene Cyclohexane								
Alternation Bubble Bu	2 ⁻ Methylhexane 3-Methylhexane								
Marcharm 1.000 <	1,1-Dimethylcyclopentane	0.0434110	0.0287965	0.0263481	0.198570*	0.0164785 0.0381904	0.0164423	0.0434110 0.0164785	0* 0.198570
Mart150715091509150915001	Methylcyclohexane	0.288955	0.194430	0.402397	3.03263*	0.178451 0.255188	0.178322	0.288955 0.178451	0* 3.03263
	Toluene	1.59871	1.08841	0.552584	4.16450*	1.55702 1.41642	1.55726	1.59871 1.55702	0* 4.16450
Harmony Harmony <t< td=""><th>Octane</th><td>0.0877945</td><td>0.0613817</td><td>0.833636</td><td>6.28262*</td><td>0.176219 0.0783593</td><td>0.176382</td><td>0.0877945 0.176219</td><td>0* 6.28262</td></t<>	Octane	0.0877945	0.0613817	0.833636	6.28262*	0.176219 0.0783593	0.176382	0.0877945 0.176219	0* 6.28262
Anno Append Append Append Append	Ethylbenzene	0.0997812	0.0704795	0.312229	2.35309*	0.352937 0.0893141	0.353377	0.0997812 0.352937	0* 2.35309
Simple 1 <th>p-Xylene o-Xylene</th> <td>0.0712408</td> <td>0.0503698</td> <td>0.236728</td> <td>1.78408*</td> <td>0.284219 0.0637853</td> <td>0.284587</td> <td>0.0712408 0.284219</td> <td>0* 1.78408</td>	p-Xylene o-Xylene	0.0712408	0.0503698	0.236728	1.78408*	0.284219 0.0637853	0.284587	0.0712408 0.284219	0* 1.78408
Marting MartingMarting MartingMarting Marting MartingMarting Marting Marting MartingMarting Marting Marting MartingMarting Marting Marting Marting Marting Marting Marting MartingMarting Marting Marting Marting Marting MartingMarting Marting Marting Marting Marting MartingMarting Marting Marting Marting Marting Marting Marting MartingMarting Marting Marting Marting Marting Marting Marting Marting Marting Marting Marting Marting 	Cyclooctane Nonane	0.0390762		1.32965			0.242515	0.0390762 0.242169	
All Anton-Low July 200	Isopropylbenzene Propylbenzene						0.0553035	0.00577665 0.0552199	0* 0.725641
Chem Distance Parte <	1,3,5-Trimethylbenzene Isobutylbenzene	0.0114852	0.00839385	0.279626	2.10737*	0.147204 0.0103809	0.147432	0.0114852 0.147204	0* 2.10737
Yar 1 Mar 1	Butylbenzene Decane	0.00135392	0.00101535	0.131787	0.993199*	0.0428122 0.00123298	0.0428817	0.00135392 0.0428122	0* 0.993199
A Interface Intefface Interface Interf	Water	4.80857	3.42329	86.7328	0.0131577*	93.0543 4.31372	93.2026	4.80857 93.0543	100* 0.0131577 100
	H2S	1.89984E-05	9.63226E-06	9.39937E-05	9.39937E-05*	8.00370E-05 3.96279E-05		1.09972E-05 8.00370E-05	0* 9.39937E-05 (
There 0 0.0000	Nitrogen Carbon Dioxide	0.00194690	0.00149306	0.146915	0.146915*	0.00456693 0.00456693	0 0	0.00112696 0.00456693	0* 0.146915 0
Shart () () () (Methane Ethane	0.00626097	0.00352051	2.85536	2.85536*	0.0134056 0.0134056	0 0	0.00362416 0.0134056	0* 2.85536 0
Aking charge charge charge chargeName charge charge chargeName charge charge chargeName charge charge chargeName charge charge charge chargeName charge charge chargeName charge charge charge chargeName 	Propane i-Butane	0.00548167	0.00281359	9.08590	9.08590*	0.0300439 0.0114683		0.00317306 0.0300439	
Hahar Company Labor Labor <thlabor< th=""> Labor Labor <t< td=""><th>n-Butane i-Pentane</th><td>0.00215012</td><td>0.00114406</td><td>11.2485</td><td>11.2485*</td><td>0.0409788 0.00453878</td><td>0.0364400</td><td>0.00124460 0.0409788</td><td>0* 11.2485 0</td></t<></thlabor<>	n-Butane i-Pentane	0.00215012	0.00114406	11.2485	11.2485*	0.0409788 0.00453878	0.0364400	0.00124460 0.0409788	0* 11.2485 0
Nature Distriction Column Column <thcolumn< th=""> <thcolumn< th=""> Colu</thcolumn<></thcolumn<>	n-Pentane	0.000495223	0.000274251	9.64698	9.64698*	0.0376255 0.00105613	0.0365693	0.000286660 0.0376255	0* 9.64698 0
definition description description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>	Cyclopentane	0.000133950	7.51257E-05	1.35651	1.35651*	0.0188894 0.000286612	0.0186028	7.75367E-05 0.0188894	0* 1.35651 0
Schenky-mine Model of a start of a st	3-Methylpentane	6.37243E-05	3.61700E-05	3.17053	3.17053*	0.0132185 0.000136781	0.0130818	3.68867E-05 0.0132185	0* 3.17053 0
>2)-0.00000000000000000000000000000000000	2,2-Dimethylpentane	8.54449E-06	4.90438E-06	0.931103	0.931103*	0.00286673 1.83949E-05	0.00284833	4.94597E-06 0.00286673	0* 0.931103 0
spin-star 0.5000000 0.5000000 0.500000 0.500000	Methylcyclopentane 2,2,3-Trimethylbutane	0	0	0	0*	0 0	0	0 0	0* 0 0
desc. desc. <th< td=""><th>Benzene Cyclohexane</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Benzene Cyclohexane								
diam diam <th< td=""><th>2-Methylhexane 3-Methylhexane</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2-Methylhexane 3-Methylhexane								
bits outstand 65.04.047 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000000000 0.00000000000000000000000000000000000	1,1-Dimethylcyclopentane Heptane		5.84242E-06	0.857925	0.857925*	0.00560873 2.16907E-05	0.00558704	5.81041E-06 0.00560873	
Name Objective Obj	Methylcyclohexane	6.68146E-05	3.94472E-05	13.1025	13.1025*	0.0607385 0.000144937	0.0605936	3.86756E-05 0.0607385	0* 13.1025 0
blanc 13.0006 80 13.4187 60 7.142 7.142 0.0007 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 1.1781 62 0.0007 </td <th>Toluene</th> <td>0.000369668</td> <td>0.000220823</td> <td>17.9928</td> <td>17.9928*</td> <td>0.529957 0.000804474</td> <td>0.529152</td> <td>0.000213982 0.529957</td> <td>0* 17.9928 0</td>	Toluene	0.000369668	0.000220823	17.9928	17.9928*	0.529957 0.000804474	0.529152	0.000213982 0.529957	0* 17.9928 0
Interservi 1.2.272.8.6 1.2.272.8.6 1.2.272.8.6 1.2.272.8.6 1.2.272.8.6 1.2.272.8.6 1.2.27.8.6 1	Octane	2.03006E-05	1.24535E-05	27.1442	27.1442*	0.0599789 4.45051E-05	0.0599344	1.17510E-05 0.0599789	0* 27.1442
where 1 <th>Ethylbenzene</th> <td>2.30723E-05</td> <td>1.42994E-05</td> <td>10.1666</td> <td>10.1666*</td> <td>0.120128 5.07270E-05</td> <td>0.120077</td> <td>1.33554E-05 0.120128</td> <td>0* 10.1666 0</td>	Ethylbenzene	2.30723E-05	1.42994E-05	10.1666	10.1666*	0.120128 5.07270E-05	0.120077	1.33554E-05 0.120128	0* 10.1666 0
increa 1.82922-93 C.780LL-95 C.780LL-95 C.780LL-95 C.780LL-95 <th>o-Xylene</th> <td>1.64729E-05</td> <td>1.02194E-05</td> <td>7.70816</td> <td></td> <td>0.0967385 3.62276E-05</td> <td>0.0967022</td> <td>9.53533E-06 0.0967385</td> <td>0* 7.70816 0</td>	o-Xylene	1.64729E-05	1.02194E-05	7.70816		0.0967385 3.62276E-05	0.0967022	9.53533E-06 0.0967385	0* 7.70816 0
https://www.second 1.33719-5.66 1.34719-5.66 1.0472900 7.75198-77 0.0472900 0 3.554.4 biglassing 2.2000516 1.75164.00 1.0404 0.117800 2.40027 1.04789-77 0.047890 0 8.554.4 biglassing 3.13584-77 2.08057-07 2.08057-07 2.08057-07 2.08057-07 2.09385-07 0.044791 1.81784-77 0.041871 1.81784-77 0.041871 0.041871 0.041871 0.041871 0.041871 0.041871 0.041871 0.011871 0.011871 0.011871 0.011871 0.011871 0.011871 0.011871 0.011871 0.001871 0.011871 0.011871 0.011871 0.00187	Cyclooctane Nonane								
ch.org/secure 1.18588-07 0.58517 0.585175 0.505175 1.18008-07 0.0005786 0 0.505175 Comparing 0.505100 2.50500-07 2.517 0.505175 1.50507 0.0005786 0 0.505175 Comparing 0.505110 0.505270 0.505175 0.505270 0.505175 0.505270 0.505175 0.505270 0.505175 0.505270 0.505175	Isopropylbenzene Propylbenzene								
Maddemarch 3.130026 b7 2.00026 b7 4.2913 4.2914 2.00149 b7 0.001471 1.121216 0 0.01471 0.01471 0.01471 0.01471 0.01471 0.01471 0.001714 0 0.01171 0.001471 0.001714 0 0.01171 0.01171 0.001714 0.01171 0.001714 0.01171 0.001714 0.01171 0.001714 0.01171 0.001714 0.01171 0.001714 0.01171 0.001714	1,3,5-Trimethylbenzene Isobutylbenzene	2.65570E-06	1.70300E-06	9.10494	9.10494*		0.0500972	1.53725E-06 0.0501031	0* 9.10494 0
Name 0.00111100 0.0056101 0.0011100 0.0056101 0.0012100 0.0012100 0.0001200 0.0001200 0.0001200 0.0001200 0.0001200 0.0001200 0.0001200 0.0001200 0.0001200 0.0001200 0.00001200 0.0001200 0.000000 0.00001200 0.0	Butylbenzene	3.13066E-07	2.06002E-07	4.29113	4.29113*	0.0145718 7.00285E-07	0.0145711	1.81218E-07 0.0145718	0* 4.29113 (
PS 0.064173 0.1054778 0.105778 0.005778	Water								
sinch (bode) 8,6245 0,024072 8,8447 0 8,8245 0,024072 0,02	H2S						0.000171107		
state18.84715.87900.0581470.1718570.04942817.875018.9470.0494280017.1857State2.338418.28220.0370380.0381701.226550.0581484.49480.087703000.171857State3.496453.49720.088070.188080.0381704.226550.0581484.49480.087708000.171857Partiar3.3710872.27750.088771.138020.0385180.0381484.49480.038778001.13802Partiar3.369620.0381180.0481280.0381180.0381180.0141170.0284580.160080.0482280.058178001.3382Scherking0.0482820.0381180.0381180.0141170.0284580.160080.0381180.0481780.0482890.1611700.0482890.1611700.0482890.1611700.0482890.161170.0481780.0381180.0481780.052740000.16178Varing interm0.0527400.0481780.0381180.0284570.0481780.0481780.0381180.052740000.16178Varing interm0.0481780.0284570.0481780.0284570.0481780.0284570.0481780.0284570.0481780.052740000.16778Varing interm0.0527400.0485790.0284570.0481780.0284570.0481780.0284570.048178<	Carbon Dioxide	8.62445	9.68268	0.00641172	0.0129404*	0.0249022 8.94402	0 0	8.62445 0.0249022	0* 0.0129404 0
blane 4.5464 3.40702 0.18300 0.370367 0.0687741 4.22353 0.0651741 0.25706 0.7 0.370367 Pertane 3.71067 2.27757 0.056274 1.44842 0.276868 3.4842 0.248544 3.7107 0.228068 0.7 1.3302 Pertane 3.5842 2.37757 0.65627 1.43482 0.248544 0.248544 3.7107 0.228068 0.7 1.3302 Vehtsine 0.045656 0.077058 0.077058 0.0645747 0.0170767 0.054276 0.18777 0.18777 0.054276 0.18777 0.187776 0.86288 0.181678 0.862876 0.187776 0.86288 0.187776 0.86288 0.187776 0.86288 0.187776 <th>Methane Ethane</th> <td>18.9497</td> <td>15.5990</td> <td>0.0851417</td> <td>0.171837*</td> <td>0.0499429 17.9378</td> <td>0 0</td> <td>18.9497 0.0499429</td> <td>0* 0.171837 0</td>	Methane Ethane	18.9497	15.5990	0.0851417	0.171837*	0.0499429 17.9378	0 0	18.9497 0.0499429	0* 0.171837 0
ebatam 11.2570 0.27899 0.648352 1.39847 0.238946 1.7383 0.23164 1.25700 0.252695 0" 1.1484 -Ibrians 3.5862 2.41572 0.480212 1.38021 0.35766 3.4842 0.2285781 3.5868 0.325392 0" 1.1484 -Ibrians 0.86522 0.778752 0.984572 0.041783 0.34845 0.12026 0.615320 0.161799 0.952749 0.140265 0.141746 0.52249 0.141799 0" 0.461799 0" 0.461799 0" 0.461799 0" 0.461799 0" 0.461799 0" 0.461799 0" 0.461799 0" 0.46189 0.26275 0.46189 0.26275 0.46189 0.26275 0.46199 0.26197 0.46199 0.26275 0.26285 0.26110 0.26285 0.26110 0.26285 0.26110 0.26285 0.26110 0.26285 0.26110 0.262875 0" 0 0 0 0 0 0.461775 0.261611 <td< td=""><th>Propane i-Butane</th><td>4.54645</td><td>3.49702</td><td>0.183509</td><td>0.370366*</td><td>0.0667704 4.22953</td><td>0.0551480</td><td>4.54645 0.0667704</td><td>0* 0.370366 0</td></td<>	Propane i-Butane	4.54645	3.49702	0.183509	0.370366*	0.0667704 4.22953	0.0551480	4.54645 0.0667704	0* 0.370366 0
-iPentame 5.5.6842 2.91574 0.680212 1.3.802 0.328338 0.327211 3.3.8842 0.338338 0 0.232814 2-comenty 0.0442502 0.041415 0.0402245 0.0083672 0.041280 0.0383672 0.16136 0-comenty 0.0415140 0.776552 0.043445 0.016146 0.86452 0.16208 0.036580 0.041318 0.141378 0.016146 0-comenty 0.0161457 0.023115 0.141378 0.86827 0.16108 0.035501 0.016147 2-comenty/opentame 0.086173 0.025505 0.023116 0.025501 0.036110 0.15728 0.05611 0.056201 0.05728 Lefty-compatibility 0.086173 0.036114 0.43534 0.70335 0.036113 0.158618 0.0365141 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617 0.235617	n-Butane i-Pentane	12.5790	9.79859		1.30849*		0.263146	12.5790 0.295099	0* 1.30849 0
yclopentane0.0456520.07450820.04540650.01401370.0844690.162080.0450920.1613700.019006Methylgentane0.05572490.4477850.0220150.0220150.0141340.524530.1400640.0557240.1411340.252015Methylgentane0.0568690.02627240.0450730.0250510.0250510.0262720.0260510.0262720.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260720.027070.0260710.027070.0260710.027070.0260710.027080.0270710.0260710.027080.0270710.0260710.027080.0270710.026071<	n-Pentane 2,2-Dimethylbutane	3.59642	2.91574	0.690212	1.39302*	0.336339 3.39086	0.327811	3.59642 0.336339	0* 1.39302 (
Hethighentane 0.552749 0.414134 0.552749 0.141134 0.7 0.56828 .2.01methybentane 0.0681783 0.0724358 0.042305 0.032050 0.028109 0.0281783 0.055501 0.728378 .2.201methybentane 1.05224 0.878050 0.328642 0.058191 0.088172 0.055501 0.088172 0.055501 0.088172 0.055501 0.088172 0.055501 0.088173 0.055501 0.055574 0.055574 0.055574 0.055574 0.055574 0.055574 0.055574 0.055574 0.055574 0.055574 0.055724 0.055774	Cyclopentane	0.945592	0.776392	0.0943425	0.190406*	0.164137 0.894495	0.162098	0.945592 0.164137	0* 0.190406 0
22-Dimetybenane 0.068173 0.078173 0.078173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.0386173 0.065725 2.3-Trinterybutane 0 0 0 0 0 0 0 0 0 0.070235 sterame 1.32716 1.4443 0.408200 1.37725 0.656413 0.0666413 0.0666413 0 0.036040 Authybeane 0.072235 0.158361 0.036040 0.0665613 0.0666413 0.666313 0 0.636617 -Methybeane 0.072235 0.158536 0.168561 0.066613 0.0666313 0 0.636637 -Ibmetybyboane 0.023118 0.241184 0.241803 0.17273 0.341640 0.25737 -Ibmetybyboane 0.026511 0.064224 0.036014 0.062332 0.168531 0.640393 0.064331 0 0.168551 -Ibmetybybo	3-Methylpentane	0.552749	0.459306	0.270942	0.546828*	0.141134 0.524531	0.140064	0.552749 0.141134	0* 0.546828 0
2.3-Tringhybutane 0 0 0 0	2,2-Dimethylpentane	0.0861793	0.0724155	0.0925201	0.186728*	0.0355901 0.0820228	0.0354604	0.0861793 0.0355901	0* 0.186728 (
yclohzane1.237161.044530.6824001.37725'0.0581370.6346221.27160.0581370'1.37725Methyhsane0.0570370.05680110.1727130.1484460.3402980.686807'0.131130.1533650.1580680.05681410.0570370.05681410.0670370.05681410.0670370.05681430.0570380.05816380.05815680.09820440.06843390'0.5868070.311130.149600.0821040.0682040.06853380.168591'0.06815910.06815980.09820440.06823390'0.37031'0.2491800.0221170.242180.2231180.2419800''1.37031'0.2491800.2231180.211180.2419800''1.37031'0.2491800.0221810.0231180.2419800''1.37031'0.2491800.0217810.0211810.0238110''0.3317910.317910.318310'''0.3317910.317910.317810.202280.0843190.01748550'''0''''3.317910.317810.2022810.0843910.0225810.031810''''0.3317910.317810.202280.0843190.0225810.031810'''''0.313731'0.31830''''''''''''''''''''''''''''''''''''	2,2,3-Trimethylbutane	0	0	0	0*	0 0	0	0 0	0* 0 0
Hehrtymbrane 0.172713 0.148454 0.04209 0.688807* 0.134153 0.165385 0.134066 0.172713 0.134153 0 0.688807 L-Dimethylopotentae 0.0392044 0.0845366 0.0845366 0.0882399 0.047711 0.048616 0.0992044 0.0682309 0 0.137031 Lepholycolobexae 0.60103055 0.0095014 0.062329 0.0178455 0.0109555 0.017855 0.017855 0.017855 0.017855 0.017855 0.017855 0.017855 0.017855 0.017855 0.017855 0.019955 0.017855 0.02586 0.0111 0.020258 0.01777 0.20564 0.498866 0.225272 0.02777 0.236769 0.01777 0.237679 0.01777 0.248065 0.238961 <	Benzene Cyclohexane	1.23716	1.04453	0.682400	1.37725*	0.636137 1.17899	0.634622	1.23716 0.636137	0* 1.37725 0
1-Dimethyloyclopentane0.09820440.08823080.08853380.0685310.08825380.09877310.08815680.09815480.082309000.185011hethyloyclohexane0.0603300.5707381.275752.57478'0.2419800.02218770.7391860.6603300.73891002.57478.5-Dimethylhexane0.01098550.00961010.06239620.1253310.01748550.01054920.01754920.01784950.01784950.01784920.01784950.01784920.01784950.01784920.01784920.025880.017780.0258820.067773.428426.0493933.2298496.05773.428426.0493930.22588001.37031-Methylipetane0.0433190.07482520.8675211.33778'0.0285820.0815110.2029280.087773.228496.05773.228490.0225880.0815180.73831-Methylipetane0.03431910.07482520.8675211.33778'0.2287580.0817110.2029280.08172770.25876306.13731Ustan0.036172770.05617370.65610371.33141'0.2576590.0594050.2287210.6177270.25747801.32761Ustan0.04657570.256760.0594050.2582120.06172770.2584531.38104004.8430Ustan0.0465770.258730.617770.5614730.6619770.568470.6107200.3286511.58710.568037U	2-Methylhexane 3-Methylhexane	0.172713	0.148446	0.340299	0.686807*	0.134153 0.165385	0.134066	0.172713 0.134153	0* 0.686807 0
dehlycychexane 0.660330 0.57738 1.27575 2.57478' 0.738891 0.633274 0.799166 0.60330 0.738891 0* 2.578 S-Dmethylhexane 0.0109555 0.0096101 0.062392 0.125931 0.016452 0.016955 0.0174852 0.017863 0.738891 0.425931 oluene 3.42842 2.99817 1.64400 3.31799' 6.04989 3.29849 6.05757 3.42842 6.04989 0* 0.31799 -Methylheptane 0.233112 0.209655 0.067511 0.202528 0.0605 0.233412 0.48489 0.235783 0.235783 0.257659 0.65773 2.57659 0.6 2.33179 ottak 0.246554 0.2209623 0.757783 0.561473 0.661037 0.33160 0.242524 0.6017277 0.257659 0.31604 0.495967 vylene 0.4510702 0.161907 0.461909 2.42007 0.661477 0.610720 0.058012 0.6007 0.54847 vylene 0.116646 0.108298	1,1-Dimethylcyclopentane Heptane	0.0992044						0.0992044 0.0682309	
'oluene'3.428422.998171.644003.31799'6.049893.298496.057573.428426.049890.63.31799Methylheptane0.08439190.07485250.6875211.38758'0.202580.08151110.2029260.08439190.20258801.38758Octane0.2334120.00812770.05514730.6610371.33413'0.2576590.05974050.2826120.06172770.2576590.61.33413'Ubbersene0.06172770.05514730.6610371.33413'0.2576590.05974050.2826120.06172770.2576590.61.33413'Valorence0.2465540.2265320.6610371.61013'1.580120.2586310.5107023.16014'0'4.88430'Valorence0.1760320.1598730.8115101.63783'1.272470.1711521.27540.1760321.272470'1.63783Valorence0.05802120.0589330.2715710.548097'0.609177'0.568470.610700.05802120.691770'1.1344Sopropylbenzene0.01166460.00252240.0315650.5798241.17023'0.4545410.03284150.4557190.0326620.4545410'1.17023'royblenzene0.03212870.01504870.01504870.754165'0.2798870.132420.2486540.040'2.19021'royblenzene0.03212870.00356430.01615970.0326430.0274780.0326676'0.0080.00247456<	Methylcyclohexane	0.660330	0.570738	1.27575	2.57478*	0.738891 0.633274	0.739186	0.660330 0.738891	0* 2.57478 0
bctane0.2334120.2096233.074776.0554470.8488660.2262280.8500550.2334120.8488660*6.20564ithylopclohexane0.06172770.05514730.6610371.33413*0.2576590.05974050.2582120.06172770.2576590*1.33413*ithylbenzene0.2465540.24615540.2237021.070332.16018*1.580120.2396531.583860.2646541.580120*1.6108-Xylene0.5107020.5107020.5107023.316040.94.88430*3.316040.4959673.323910.5107023.06040*4.88430*vylene0.0560210.0560230.1751320.611770.054847*0.6107270.05648470.6107021.7274*0.7274* <th>Toluene</th> <td>3.42842</td> <td>2.99817</td> <td>1.64400</td> <td>3.31799*</td> <td>6.04989 3.29849</td> <td>6.05757</td> <td>3.42842 6.04989</td> <td>0* 3.31799 0</td>	Toluene	3.42842	2.99817	1.64400	3.31799*	6.04989 3.29849	6.05757	3.42842 6.04989	0* 3.31799 0
thylen0.2465540.2237021.070332.16018*1.580120.2396531.583860.2465541.580120*2.16018-Xylene0.5107020.4619092.420074.88430*3.316040.4959673.323910.5107023.316040*4.88430-Xylene0.0750320.0170320.0599730.8115101.63783*1.272470.171521.275540.1760320.6091770*0.548097Cyclooctane0.05802120.05293330.2715710.548097*0.6091770.05648470.6107200.05802120.6091770*0.548097Jonane0.1166640.1082985.506491.17023*0.454510.0328150.4557190.03356920.4545410*0.111134sopropylbenzene0.01615970.01504870.0754165*0.2798870.1182420.2806240.01615970.2798870*0.754165sobutylbenzene0.003212870.03016201.085212.19021*0.7461140.03153480.7481100.03212870.7461140*2.19021sobutylbenzene0.00252240.002622480.002364330.1277480.26667*0.0708080.02474560.07099160.02022480.00262240.02423410*0.256676sobutylbenzene0.0332020.1277432.57014.5520*4.927880.131544.941270.1332024.927830*4.5520*	Octane	0.233412	0.209623	3.07477	6.20564*	0.848866 0.226228	0.850605	0.233412 0.848866	0* 6.20564 0
-Xylene0.1760320.1598730.8115101.63783*1.272470.1711521.275540.1760321.272470*1.63783Cyclooctane0.05802120.05293330.2715710.548097*0.6091770.05648470.6107200.05802120.6091770*0.548097Jonane0.1166460.1082985.5064911.1134*1.309800.1141251.313140.1166461.309800*11.1134sopropylbenzene0.03356920.03115950.5798241.77023*0.4545410.03284150.2806240.013615970.2798870*0.754165Propylbenzene0.03212870.01504870.3736740.754165*0.2798870.01584220.02806240.013212870.72798770*0.754165sobutylbenzene0.002522240.002364330.1271780.256676*0.07081080.002474560.0709160.004229480.2423210*0.256676Sutylbenzene0.0332020.1277432.570145.550*4.927880.131544.941270.1332024.927880*45.550*	Ethylbenzene	0.246554	0.223702	1.07033	2.16018*	1.58012 0.239653	1.58386	0.246554 1.58012	0* 2.16018
Nonane0.1166460.1082985.5064911.1134*1.309800.1141251.313140.1166461.309800*11.1134sopropylbenzene0.03356920.03115950.03115950.5798241.17023*0.4545410.03284150.4557190.03356920.4545410*1.17023opylbenzene0.01615970.01504870.03376740.754165*0.2798870.01582420.2806240.01615970.2798870*0.754165.3,5-Trimethylbenzene0.03212870.03016201.085212.19021*0.7461140.03153480.7481100.03212870.7461140*2.19021sobutylbenzene0.002522240.002364330.1271780.256676*0.07080080.002474560.07099160.004229480.2423210*0.256676Butylbenzene0.004229480.004074300.5711431.15271*0.2423210.004182620.2429860.004229480.2423210*1.15271Decane0.1332020.12774322.570145.5520*4.927880.1315544.941270.1332024.927880*45.5520*	p-Xylene o-Xylene	0.176032	0.159873	0.811510	1.63783*	1.27247 0.171152	1.27554	0.176032 1.27247	0* 1.63783 0
sopropylbenzene0.03356920.03115950.5798241.17023*0.4545410.03284150.4557190.03356920.4545410*1.17023propylbenzene0.01615970.01504870.03306200.03306920.4545410.03286240.2806240.01615970.2798870*0.754165,3,5-Trimethylbenzene0.03212870.03016201.085212.19021*0.7461140.03153480.7481100.03212870.7461140*2.19021sobutylbenzene0.002522240.002364330.1271780.256676*0.07080080.002474560.07099160.002522240.07080080*0.256676Butylbenzene0.004229480.004074300.5711431.15271*0.2423210.004182620.2429860.004229480.2423210*1.15271Decane0.1332020.12774322.570145.550*4.927880.1315544.941270.1332024.927880*45.550*	Cyclooctane Nonane			5.50649		1.30980 0.114125	1.31314		0* 11.1134 (
3,3,5-Trimethylbenzene0.03212870.03016201.085212.19021*0.7461140.03153480.7481100.03212870.7461140*2.19021sobutylbenzene0.00252240.002364330.1271780.256676*0.07080080.002474560.07099160.00252240.07080080*0.256676Butylbenzene0.004229480.004074300.5711431.15271*0.2423210.004182620.2429860.004229480.2423210*1.15271Decane0.1332020.12774322.570145.5520*4.927880.1315544.941270.1332024.927880*45.5520*	Isopropylbenzene Propylbenzene	0.0335692	0.0311595	0.579824	1.17023*	0.454541 0.0328415	0.455719	0.0335692 0.454541	0* 1.17023
Butylbenzene0.004229480.004074300.5711431.15271*0.2423210.004182620.2429860.004229480.2423210*1.15271Decane0.1332020.12774322.570145.5520*4.927880.1315544.941270.1332024.927880*45.5520*	1,3,5-Trimethylbenzene Isobutylbenzene	0.0321287	0.0301620	1.08521	2.19021*	0.746114 0.0315348	0.748110	0.0321287 0.746114	0* 2.19021
	Butylbenzene Decane	0.00422948	0.00407430	0.571143	1.15271*	0.242321 0.00418262	0.242986	0.00422948 0.242321	0* 1.15271 (
	Water								

Process Streams		Breathing	Flashing	Max Dump Rate	Slug Catcher Dump	Tank Inlet	Total	Total Loadout	Working	1	3phase Sep Dump	6	7
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	(3) Condensate Tanks	(3) Condensate Tanks	MIX-101	-	VLVE-100	MIX-105	(3) Condensate Tanks	(3) Condensate Tanks	XFS2	-	Dump Valve1	Dump Valve2
	To Block:	MIX-105	MIX-105		Dump Valve1	(3) Condensate Tanks		<u> </u>	MIX-105	VLVE-100	Dump Valve2	MIX-101	MIX-101
lass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
12S		0.000647483	0.000328276	0.00320339	0.00320339*	0.00272773	0.00135055	0.00137718	0.000374795	0.00272773	0*	0.00320339	
litrogen		0.000134913	0.00196776	0.0415686	0.0415686*	0.00218077	0.00218077	0	7.80941E-05	0.00218077	0*	0.0415686	
Carbon Dioxide		0.0856823	0.0657090	6.46565	6.46565*	0.200988	0.200988	0	0.0495971	0.200988	0*	6.46565	
lethane		0.0368462	0.134388	11.6946	11.6946*	0.192562	0.192562	0	0.0213284	0.192562	0*	11.6946	
Ethane		0.188261	0.105858	85.8579	85.8579*	0.403094	0.403094	0	0.108975	0.403094	0*	85.8579	
Propane		0.241718	0.124067	400.648	400.648*	1.32480	0.505703	0.819099	0.139918	1.32480	0*	400.648	
Butane		0.0451681	0.0237316	185.053	185.053*	0.538912	0.0950453	0.443866	0.0261455	0.538912	0*	185.053	
n-Butane		0.124970	0.0664956	653.786	653.786*	2.38178	0.263804	2.11797	0.0723387	2.38178	0*	653.786	
-Pentane		0.0368668	0.0202064	571.340	571.340*	2.08127	0.0784136	2.00285	0.0213403	2.08127	0*	571.340	
n-Pentane		0.0357298	0.0197869	696.018	696.018*	2.71463	0.0761988	2.63843	0.0206821	2.71463	0*	696.018	
2,2-Dimethylbutane		0.000425488	0.000237610	14.2641	14.2641*	0.0512574	0.000909392	0.0503480	0.000246293	0.0512574	0*	14.2641	
Cyclopentane		0.00939428	0.00526878	95.1361	95.1361*	1.32477	0.0201009	1.30467	0.00543787	1.32477	0*	95.1361	
2-Methylpentane		0.00845790	0.00477946	411.218	411.218*	1.51734	0.0181332	1.49920	0.00489585	1.51734	0*	411.218	
3-Methylpentane		0.00549146	0.00311696	273.222	273.222*	1.13911	0.0117872	1.12733	0.00317873	1.13911	0*	273.222	
n-Hexane		0.00861248	0.00494266	653.758	653.758*	2.28150	0.0185405	2.26296	0.00498533	2.28150	0*	653.758	
2,2-Dimethylpentane		0.000856175	0.000491429	93.2984	93.2984*	0.287251	0.00184320	0.285408	0.000495596	0.287251	0*	93.2984	
Methylcyclopentane		0.0104539	0.00595866	328.382	328.382*	2.97164	0.0224637	2.94918	0.00605120	2.97164	0*	328.382	
2,2,3-Trimethylbutane		0	0	0	0*	0	0	0	0	0	0*	0	
Benzene		0.0577621	0.0333294	350.921	350.921*	22.8268	0.124527	22.7023	0.0334355	22.8268	0*	350.921	
Cyclohexane		0.0122910	0.00708845	688.140	688.140*	5.13434	0.0264941	5.10784	0.00711463	5.13434	0*	688.140	
2-Methylhexane		0.000972655	0.000567377	179.943	179.943*	0.532220	0.00210305	0.530117	0.000563021	0.532220	0*	179.943	
3-Methylhexane		0.00171587	0.00100739	343.162	343.162*	1.08277	0.00371649	1.07905	0.000993231	1.08277	0*	343.162	
1,1-Dimethylcyclopentane		0.000985578	0.000573644	84.2363	84.2363*	0.550700	0.00212972	0.548570	0.000570501	0.550700	0*	84.2363	
Heptane		0.00229612	0.00136075	684.671	684.671*	1.95289	0.00498598	1.94790	0.00132911	1.95289	0*	684.671	
Methylcyclohexane		0.00656026	0.00387316	1286.49	1286.49*	5.96367	0.0142308	5.94944	0.00379740	5.96367	0*	1286.49	
2,5-Dimethylhexane		0.000108841	6.52165E-05	62.9211	62.9211*	0.141127	0.000237061	0.140890	6.30027E-05	0.141127	0* 0*	62.9211	
Toluene 2-Methylheptane		0.0340607 0.000838418	0.0203463 0.000507967	1657.83 693.304	1657.83* 693.304*	48.8294 1.63511	0.0741230 0.00183170	48.7552 1.63328	0.0197160 0.000485318	48.8294 1.63511	0*	1657.83 693.304	
Octane		0.000838418	0.00142255	3100.64	693.304 3100.64*	6.85130	0.00183170	6.84621	0.000485318	6.85130	0 0*	3100.64	
Ethylcyclohexane		0.000231891	0.000142233	666.598	666.598*	2.07960	0.00134248	2.07826	0.000354981	2.07960	0*	666.598	
Ethylbenzene		0.000813234	0.000374243	1079.33	1079.33*	12.7533	0.00538543	12.7480	0.00141787	12.7533	0*	1079.33	
p-Xylene		0.00244947	0.00131809	2440.43	2440.43*	26.7641	0.00338543	26.7530	0.00293693	26.7641	0*	2440.43	
p-Xylene		0.00174885	0.00108494	818.337	818.337*	10.2702	0.00384610	10.2664	0.00101232	10.2702	0*	818.337	
Cyclooctane		0.000576429	0.000359218	273.856	273.856*	4.91673	0.00126931	4.91546	0.000333666	4.91673	0*	273.856	
Vonane		0.00115885	0.000734935	5552.81	5552.81*	10.5716	0.00256459	10.5690	0.000670801	10.5716	0*	5552.81	
sopropylbenzene		0.000333503	0.000211456	584.701	584.701*	3.66865	0.000738007	3.66792	0.000193048	3.66865	0*	584.701	
Propylbenzene		0.000160543	0.000102124	376.818	376.818*	2.25900	0.000355597	2.25864	9.29303E-05	2.25900	0*	376.818	
I,3,5-Trimethylbenzene		0.000319193	0.000204686	1094.34	1094.34*	6.02198	0.000708644	6.02127	0.000184765	6.02198	0*	1094.34	
sobutylbenzene		2.50580E-05	1.60449E-05	128.248	128.248*	0.571441	5.56077E-05	0.571386	1.45048E-05	0.571441	0*	128.248	
Butylbenzene		4.20191E-05	2.76492E-05	575.948	575.948*	1.95580	9.39910E-05	1.95571	2.43227E-05	1.95580	0*	575.948	
Decane		0.00132334	0.000866894	22760.0	22760.0*	39.7735	0.00295625	39.7705	0.000766014	39.7735	0*	22760.0	
Water		0.0200308	0.0125123	50877.4	1.02413*	570.589	0.0441380	570.545	0.0115948	570.589	50876.4*	1.02413	50876

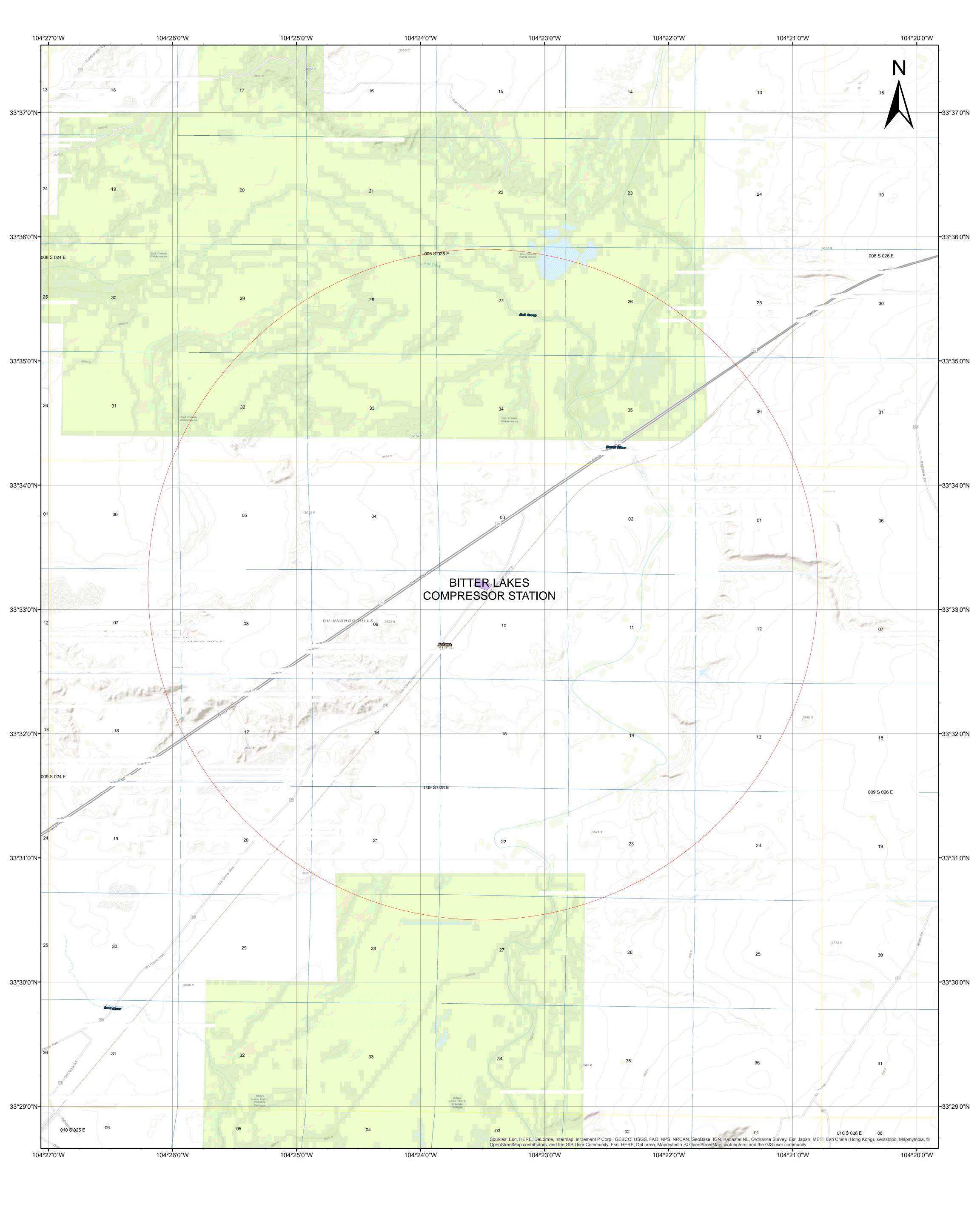
Process Streams		Breathing	Flashing	Max Dump Rate	Slug Catcher Dump	Tank Inlet	Total	Total Loadout	Working	1	3phase Sep Dump	6	7
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block: To Block:	(3) Condensate Tanks MIX-105	(3) Condensate Tanks MIX-105	MIX-101 	 Dump Valve1	VLVE-100 (3) Condensate Tanks	MIX-105 	(3) Condensate Tanks 	(3) Condensate Tanks MIX-105	XFS2 VLVE-100	 Dump Valve2	Dump Valve1 MIX-101	Dump Valve2 MIX-101
Property	Units												
Temperature	°F	75.6517	75.6517	70.3587	70*	116.094	75.1974	75.6517	75.6517	116.094	70*	70.7913	70.2026
Pressure	psia	12.88	12.88	12.91	132.91	12.91*	12.88	12.88	12.88	12.91	82.91*	12.91*	12.91*
Molecular Weight	lb/lbmol	42.9653	33.4484	30.9698	115.646	23.7130	39.5657	23.6866	42.9653	23.7130	18.0153	115.646	18.0153
Mass Density	lb/ft^3	0.100216	0.0755546	52.9085	46.3342	19.9497	0.0912305	58.0709	0.100216	19.9497	62.2854	45.7438	62.2797
Mass Flow	lb/h	0.993481	0.678624	100841	49964.8	807.111	2.24718	804.864	0.575076	807.111	50876.4	49964.8	50876.4
Std Vapor Volumetric Flow	MMSCFD	0.000210594	0.000184782	29.6555	3.93496	0.309992	0.000517278	0.309475	0.000121902	0.309992	25.7205	3.93496	25.7205
Std Liquid Volumetric Flow	sgpm	0.00376643	0.00286666	236.559	134.853	1.73291	0.00881328	1.72409	0.00218019	1.73291	101.706	134.853	101.706

			ses Report		
		(3) Conden	sate Tanks		
Stream	Connection Type	Other Block	onnections Stream	Connection Type	Other Block
Tank Inlet	Inlet	VLVE-100	Flashing	Flashing Losses Stream	MIX-105
Working Total Loadout	Working Losses Stream Residual Liquid Stream	MIX-105	Breathing	Standing Losses Stream	MIX-105
Tank Geometry	Vertical Cylinder	Working and Standing I	Properties : Scalar Data Roof Type	Cone	
Shell Length	20* ft		Slope of Coned Roof	0.0625	
Shell Diameter	12* ft		Breather Vent Pressure	0.25* psig	
Number of Storage Tanks	3*		Breather Vacuum Pressure	-0.0300000 psig	
Maximum Fraction Fill of Tank	90 %		Operating Pressure	0 psig	
Average Fraction Fill of Tank	50 %		Location	Roswell, NM*	
Minimum Fraction Fill of Tank	10 %		Time Frame	Year	
Material Category	Light Organics*		Known Liquid Bulk Temperature?	FALSE	
Insulation	Uninsulated		Liquid Bulk Temperature	64.2313 °F	
Bolted or Riveted Construction?	FALSE		Use AP 42 Raoult's Vapor Pressure?	FALSE	
Vapor Balanced Tank?	FALSE		Flashing Temperature	75.6517 °F	
Known Sum of Increases in Liquid Level?	FALSE		Average Daily Maximum Ambient Temperature	75.8 °F	
Sum of Increases in Liquid Level	357.849 ft/yr		Average Daily Minimum Ambient Temperature	47.6 °F	
Shell Color	Tan*		Atmospheric Pressure at Tank Location	12.88 psia	
Shell Paint Condition	Average*		Daily Solar Insolation	1722 Btu/(day*ft^2)	
Roof Color Roof Paint Condition	Tan* Average*		Average Wind Speed Include Short Term Emissions	8.7 mph TRUE	
	Average			INCE	
	100	Composition Subset P			
Component Subset Atomic Basis	VOCs FALSE		Species in Results Fraction Denominator	Selected Species Selected Species	
	FALSE		Fraction Denominator	Selected Species	
		Composition Subset Pro	operties : Tabulated Data		
in the second	Selected Components				
H2S	FALSE				
Nitrogen	FALSE				
Carbon Dioxide	FALSE				
Methane	FALSE				
Ethane					
	FALSE				
Propane	FALSE TRUE				
i-Butane	FALSE TRUE TRUE				
i-Butane n-Butane	FALSE TRUE TRUE TRUE				
i-Butane n-Butane i-Pentane	FALSE TRUE TRUE TRUE TRUE				
i-Butane n-Butane i-Pentane n-Pentane	FALSE TRUE TRUE TRUE TRUE TRUE				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU				
i-Butane n-Butane i-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU				
i-Butane n-Butane i-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane	FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU				
i-Butane n-Butane i-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylhexane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane 2,2-Dimethylpentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane Toluene	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 2-Methylhexane 1,1-Dimethylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 3-Methylhexane 1,1-Dimethylcyclohexane 2,5-Dimethylhexane Toluene 2-Methylheptane Octane	FALSE TRUE TRUE <				
i-Butane n-Butane i-Pentane n-Pentane 2,2-Dimethylbutane Cyclopentane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,2,3-Trimethylbutane Benzene Cyclohexane 2-Methylhexane 3-Methylhexane 1,1-Dimethylcyclopentane Heptane Methylcyclohexane 2,5-Dimethylhexane 2-Methylhexane 1,000000000000000000000000000000000000	FALSE TRUE TRUE <				

Ethylochizono	INGE
p-Xylene	TRUE
o-Xylene	TRUE
Cyclooctane	TRUE
Nonane	TRUE
Isopropylbenzene	TRUE
Propylbenzene	TRUE
1,3,5-Trimethylbenzene	TRUE
Isobutylbenzene	TRUE
Butylbenzene	TRUE
Decane	TRUE
Water	FALSE

		Details Properties : Scalar Data		
Vapor Space Volume	1145.11 ft^3	Liquid Height	10 ft	
Vapor Density	0.0672708 lb/ft^3	Roof Outage	0.125 ft	
Vapor Space Expansion Factor	1 1/day	Tank Roof Height	0.375 ft	
Vented Vapor Saturation Factor	0.136811	Tank Shell Radius	6 ft	
Vapor Space Outage	10.125 ft	Vapor Molecular Weight	32.4320 lb/lbmol	
Average Daily Vapor Temperature Range	37.0819 °R	Average Vapor Temperature	528.201 °R	
Average Daily Vapor Pressure Range	2.14467 psi	Average Daily Ambient Temperature	521.37 °R	
Breather Vent Pressure Setting Range	0.28 psi	Net Working Loss Throughput	40471.8 ft^3/yr	
Vapor Pressure at Average Daily Liquid Surface Temperature	11.7575 psia	Working Loss Turnover (Saturation) Factor	1	
Average Daily Liquid Surface Temperature	526.051 °R	Number of Turnovers per Year	22.3656	
Average Daily Ambient Temperature Range	28.2 °R	Annual Net Throughput	21627.3 bbl/yr	
Tank Roof Surface Solar Absorptance	0.49	Maximum Liquid Height	18 ft	
Tank Shell Surface Solar Absorptance	0.49	Minimum Liquid Height	2 ft	
Vapor Pressure at Maximum Liquid Surface Temperature	12.8800 psia	Working Loss Product Factor	1	
Vapor Pressure at Minimum Liquid Surface Temperature	10.7353 psia	Vent Setting Correction Factor	0.817848	
Maximum Liquid Surface Temperature	535.322 °R	Annual Net Throughput Per Tank	7209.08 bbl/yr	
Minimum Liquid Surface Temperature	516.781 °R			
		Results Properties : Scalar Data		
Flashing Losses	1.56743 ton/yr	Standing Losses per Tank	0.966342 ton/yr	
Working Losses	1.67810 ton/yr	Flashing Losses per Tank	0.522476 ton/yr	
Standing Losses	2.89903 ton/yr	Working and Standing Losses	4.57713 ton/yr	
Working Losses per Tank	0.559367 ton/yr	Working and Standing Losses per Tank	1.52571 ton/yr	

Results Properties : Tabulated DataFlashing Losses Mass Flows ton/yrStanding Losses Mass Flows ton/yrWorking and Standing Losses Mass Flows ton/yrIndexFlashing Losses Mass Flows ton/yrStanding Losses Mass Flows ton/yrWorking and Standing Losses Mass Flows ton/yrPropane0.01/yr0.01/yr0.01/yr0.01/yrPropane0.01/yr0.01/yr0.01/yr0.01/yri-Butane0.02/912510.03168430.5473680.864211i-Pentane0.08850400.099347070.1614770.254947n-Pentane0.08666660.09058780.1564960.0294240Q.2-Dimethylbutane0.001040730.001078770.001863640.00294240Q.Ydetpertane0.02030730.02144380.03704560.05848943-Methylpentane0.01365230.01392280.03704560.0370456
Indexton/yrton/yrton/yrton/yrPropane0.5434140.6128411.058721.67156i-Butane0.1039440.1145170.1978360.312354n-Butane0.2912510.3168430.5473680.864211i-Pentane0.08850400.09347070.1614770.254947n-Pentane0.08666660.09058780.1564960.2470842,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.06496482-Methylpentane0.02093400.02144380.03704560.0584894
Propane0.5434140.6128411.058721.67156i-Butane0.1039440.1145170.1978360.312354n-Butane0.2912510.3168430.5473880.864211i-Pentane0.08850400.09347070.1614770.254947n-Pentane0.08666660.09058780.1564960.2470842,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.06496482-Methylpentane0.02093400.02144380.03704560.0584894
i-Butane0.1039440.1145170.1978360.312354n-Butane0.2912510.3168430.5473680.864211i-Pentane0.08850400.09347070.1614770.254947n-Pentane0.08666660.09058780.1564960.2470842,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.06496482-Methylpentane0.02093400.02144380.03704560.0584894
n-Butane0.2912510.3168430.5473680.864211i-Pentane0.08850400.09347070.1614770.254947n-Pentane0.08666660.09058780.1564960.2470842,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.6496482-Methylpentane0.02093400.02144380.03704560.0584894
i-Pentane0.08850400.09347070.1614770.254947n-Pentane0.08666660.09058780.1564960.2470842,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.06496482-Methylpentane0.02093400.02144380.03704560.0584894
n-Pentane0.08666660.09058780.1564960.2470842,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.06496482-Methylpentane0.02093400.02144380.03704560.0584894
2,2-Dimethylbutane0.001040730.001078770.001863640.00294240Cyclopentane0.02307730.02381790.04114690.06496482-Methylpentane0.02093400.02144380.03704560.0584894
Cyclopentane 0.0230773 0.0238179 0.0411469 0.0649648 2-Methylpentane 0.0209340 0.0214438 0.0370456 0.0584894
2-Methylpentane 0.0209340 0.0214438 0.0370456 0.0584894
3-Methylpentane 0.0136523 0.0139228 0.0240526 0.0379754
n-Hexane 0.0216489 0.0218357 0.0377227 0.0595584
2,2-Dimethylpentane 0.00215246 0.00217071 0.00375005 0.00592076
Methylcyclopentane 0.0260989 0.0265043 0.0457879 0.0722921
2,2,3-Trimethylbutane 0 0 0 0 0
Benzene 0.145983 0.146448 0.252998 0.399445
Cyclohexane 0.0310474 0.0311621 0.0538345 0.0849966
2-Methylhexane 0.00248511 0.00246603 0.00426023 0.00672626
3-Methylhexane 0.00441236 0.00435035 0.00751552 0.0118659
1,1-Dimethylcyclopentane 0.00251256 0.00249879 0.00431683 0.00681562
Heptane 0.00596010 0.00582149 0.0100570 0.0158785
Methylcyclohexane 0.0169645 0.0166326 0.0287339 0.0453665
2,5-Dimethylhexane 0.000285648 0.000275952 0.000476725 0.000476725 0.000752677
Toluene 0.0891168 0.0863561 0.149186 0.235542
2-Methylheptane 0.00222490 0.00212569 0.00367227 0.00579796
Octane 0.00623076 0.00587927 0.0101568 0.0160361
Ethylcyclohexane 0.00163918 0.00155482 0.00268605 0.00424087
Ethylbenzene 0.00664924 0.00621028 0.0107287 0.0169390
p-Xylene 0.0137297 0.0128637 0.0222229 0.0350867
o-Xylene 0.00475203 0.00443395 0.00765995 0.0120939
Cyclooctane 0.00157337 0.00146146 0.00252476 0.00398622
Nonane 0.00321901 0.00293811 0.00507577 0.00801388
Isopropylbenzene 0.000926177 0.000845551 0.00146074 0.00230630
Propylbenzene 0.000447303 0.000407035 0.000703179 0.00111021
1,3,5-Trimethylbenzene 0.000896526 0.000809269 0.00139806 0.00220733
Isobutylbenzene 7.02766E-05 6.35311E-05 0.000109754 0.000173285
Butylbenzene 0.000121103 0.000106534 0.000184044 0.000290577
Decane 0.00379699 0.00335514 0.00579623 0.00915137


	Tank Losses Report (3) Condensate Tanks						
		Short Term Properties : Scalar Data					
ximum Battery Filling Rate	337.952* bbl/hr	Worst-Case Flashing Losses per Tank	34.3179 lb/h				
ort-Term Number of Storage Tanks	3	Short-Term Working Losses per Tank	32.7990 lb/h				
orst-Case Liquid Surface Temperature	95 °F	Short-Term Vapor Molecular Weight	38.1017 lb/lbmol				
orst-Case Flashing Losses	102.954 lb/h	Vapor Pressure at Worst-Case Temperature	12.8800 psia				
ort-Term Working Losses	98.3971 lb/h						
		Short Term Properties : Tabulated Data					
Index		ing Losses Mass Flows Ib/h					
Propane	30.4159	29.0698					
i-Butane	6.33996	6.05937					
n-Butane	18.4913	17.6729					
i-Pentane	6.06123	5.79297					
n-Pentane	6.07183	5.80310					
2,2-Dimethylbutane	0.0743585	0.0710676					
Cyclopentane	1.66466	1.59099					
2-Methylpentane	1.53391	1.46602					
3-Methylpentane	1.00942	0.964747					
n-Hexane	1.63575	1.56336					
2,2-Dimethylpentane	0.162836	0.155629					
Methylcyclopentane	1.94835	1.86212					
2,2,3-Trimethylbutane	0	0					
Benzene	11.1609	10.6669					
Cyclohexane	2.37236	2.26737					
2-Methylhexane	0.194179	0.185586					
3-Methylhexane	0.349086	0.333636					
1,1-Dimethylcyclopentane	0.195568	0.186913					
Heptane	0.480357	0.459098					
Methylcyclohexane	1.35786	1.29777					
2,5-Dimethylhexane	0.0235217	0.0224807					
Toluene	7.30055	6.97745					
2-Methylheptane	0.187321	0.179030					
Octane	0.537472	0.513685					
Ethylcyclohexane	0.140015	0.133818					
Ethylbenzene	0.585397	0.559490					
p-Xylene	1.20181	1.14862					
o-Xylene	0.419277	0.400721					
Cyclooctane Nonane	0.140094 0.296375	0.133894					
Isopropylbenzene	0.296375 0.0852397	0.283258 0.0814672					
Propylbenzene	0.0852397	0.0396075					
1,3,5-Trimethylbenzene	0.0414416	0.0806573					
Isobutylbenzene	0.0843923	0.00630790					
Butylbenzene	0.0119862	0.0114558					
Decane	0.372278	0.355802					

Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

Legend	0 0.375 0.75 1.5 2.25 3 Miles
Occupied Structures	Coordinate System: WGS_1984
Bitter Lakes Compressor Station	Unit: Degrees Minutes Seconds County: Chaves
Radius	State: New Mexico
Township lines	Drafting: A. Anderson
Section lines	Date: 8/17/2016 Scale: 1:24000

THIS MAP HAS BEEN CAREFULLY COMPILED AND PRINTED BY IACX ROSWELL LLC FROM AVAILABLE INFORMATION. IACX ROSWELL LLC DOES NOT GUARANTEE THE ACCURACY OF THIS MAP OR INFORMATION DELINEATED THEREON. NOR DOES IACX ROSWELL LLC ASSUME RESPONSIBILITY FOR ANY RELIANCE THEREON. RECIPIENT AGREES NOT TO COPY, DISTRIBUTE OR DIGITIZE THIS MAP WITHOUT EXPRESS CONSENT FROM IACX ROSWELL LLC OR ITS AFFILLIATES.

BITTER LAKES COMPRESSOR STATION 7.5 MINUTE QUADRANGLE MAP

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. 🛛 A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. 🛛 A sample of the public notice posted and a verification of the local postings.
- 7. 🛛 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🛛 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

NOTICE OF AIR QUALITY PERMIT APPLICATION

IACX Roswell LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas plant. The expected date of application submittal to the Air Quality Bureau is February 4, 2025

The exact location for the facility, known as Bitter Lake Compressor Station, is at latitude 33 deg, 33 min, 11.001 sec and longitude -104 deg, 23 min, 26.9988 sec. The approximate location of this facility is 13.31 miles northeast of Roswell in Chaves County.

The proposed modification consists of adding one (1) natural gas compressor engine and one (1) flare to control SSM events.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.2	5.0
PM ₁₀	1.2	5.0
PM _{2.5}	1.2	5.0
Sulfur Dioxide (SO ₂)	1.1	4.5
Nitrogen Oxides (NO _x)	23. 2	99
Carbon Monoxide (CO)	25.0	99.40
Volatile Organic Compounds (VOC)	133.0	68.0
Total sum of all Hazardous Air Pollutants (HAPs)	8.6	15.0
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	4,000	16,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: IACX Roswell LLC; 5001 LBJ Freeway, Suite 300, Dallas, TX 75244

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, <u>*Lomev vinilla*</u>, the undersigned, certify that on <u>2-7-25</u>, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in, or near, **Roswell**, **Chaves** County, state of New Mexico on the following dates:

- 1. IACX Roswell LLC Bitter Lake Compressor Station Date: <u>2-7-25</u>
- Roswell Public Library
 301 N Pennsylvania Ave.
 Roswell, NM 88201
 Date: <u>2-7-25</u>
- Roswell Public Health Division
 200 E Chisum St.
 Roswell, NM 88203
 Date: <u>2-7-2-5</u>

Signed this 2025

Signature Date Title

PUBLIC SERVICE ANNOUNCEMENT

Targa Midstream Services LLC announces its application to the New Mexico Environment Department for an air quality permit for the modification of its gas plant. The proposed modification consists of adding one (1) natural gas compressor engine and one (1) flare to control SSM events. The expected date of application submittal to the Air Quality Bureau is February 4, 2024. This notice is a requirement according to New Mexico air quality regulations.

The exact location for the facility, known as Bitter Lake Compressor Station, is at latitude 33 deg, 33 min, 11.001 sec and longitude -104 deg, 23 min, 26.9988 sec. The approximate location of this facility is 13.31 miles northeast of Roswell in Chaves County.

The owner and/or operator of the Facility is: IACX Roswell LLC 5001 LBJ Freeway, Suite 300 Dallas, TX 75244

Notices were posted at the Bitter Lake Compressor Station site and the following three locations:

Roswell Fire Station #4 10 E Challenger St. Roswell, NM 88203

Roswell Public Library 301 N Pennsylvania Ave. Roswell, NM 88201

Roswell Public Health Division 200 E Chisum St. Roswell, NM 88203

The address for submitting comments to the NMED is as follows:

New Mexico Environment Department Air Quality Bureau – Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505

<u>Submittal of Public Service Announcement – Certification</u>

I, <u>Angie Dawson</u>, the undersigned, certify that on <u>February 4, 2025</u>, submitted a public service announcement to KMOU, KOOL FM, Hot 97, KSF Radio that serves the City\Town\Village of Roswell and the surrounding areas, Chaves County, New Mexico, in which the source is or is proposed to be located and that KMOU, KOOL FM, Hot 97, KSF Radio has not responded that it will air the announcement.

Signed this <u>4th</u> day of <u>February</u>, <u>2025</u>,

Angie Dawson

Signature

<u>2/4/2025</u> Date

Angie Dawson Printed Name

<u>Consultant</u> Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Hondo Resources Account # R045426

33.553056,-104.390833 Bitter Lakes Plant

BLM Account # R042873

Image © 2025 Airbus

Gary LKey R012444 Account: R012444

Hondo Resources Hondo Resources ROA5426

Acourted

110100200

February 4, 2025

Bureau Of Land Management 2909 W 2nd ST. Roswell, NM 88201 (575) 627-0272

Certified Mail 9589 0710 5270 2046 1850 21

Dear Mr. Williams,

IACX Roswell LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its compressor station. The expected date of application submittal to the Air Quality Bureau is February 4, 2025.

The exact location for the facility, known as Bitter Lake Compressor Station, is at latitude 33 deg, 33 min, 11.001 sec and longitude -104 deg, 23 min, 26.9988 sec. The approximate location of this facility is 13.31 miles northeast of Roswell in Chaves County.

The proposed modification consists of adding one (1) natural gas compressor engine and one (1) flare to control SSM events.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.2	5.0
PM ₁₀	1.2	5.0
PM _{2.5}	1.2	5.0
Sulfur Dioxide (SO ₂)	1.1	4.5
Nitrogen Oxides (NO _x)	23. 2	99
Carbon Monoxide (CO)	25.0	99.40
Volatile Organic Compounds (VOC)	133.0	68.0
Total sum of all Hazardous Air Pollutants (HAPs)	8.6	15.0
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	4,000	16,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: IACX Roswell LLC; 5001 LBJ Freeway, Suite 300, Dallas, TX 75244

ANGLETON • HOUSTON • IRVING • OKLAHOMA CITY • TULSA

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Sincerely, Altamira-US, LLC

4MM W

Laura Worthen Lodes Chief Engineering Officer

	U.S. Postal Service [™]	
06	CERTIFIED MAIL® REC	EIPT
51	Domestic Mail Only	
цл Ш	For delivery information, visit our website	at www.usps.com®.
1.6	OFFIGIAL	USE
2046	S U.85	
	Extra Services & Fees (check box, add fee as appropriate) Return Receipt (hardcopy) \$	
	Return Receipt (electronic) \$	Postmark
2	Certified Mail Restricted Delivery \$	Here
5270	Adult Signature Restricted Delivery \$	111/15
	s 0 60	LIGILS
0770	Total Postage and Fees	-1 11
	Sent To Careta N	
	Street and Apt. No., or PO Box No.	
589	1012 E 10 St	
r	DOSNELL NM BBIDI	
	PS Form 3800, January 2023 PSN 7530-02-000-9047	See Reverse for Instructions

February 4, 2025

Gary L. Key 1012 E 2nd St. Roswell, NM 88201

Certified Mail 9589 0710 5270 2046 1851 06

Dear Mr. Williams,

IACX Roswell LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its compressor station. The expected date of application submittal to the Air Quality Bureau is February 4, 2025.

The exact location for the facility, known as Bitter Lake Compressor Station, is at latitude 33 deg, 33 min, 11.001 sec and longitude -104 deg, 23 min, 26.9988 sec. The approximate location of this facility is 13.31 miles northeast of Roswell in Chaves County.

The proposed modification consists of adding one (1) natural gas compressor engine and one (1) flare to control SSM events.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.2	5.0
PM ₁₀	1.2	5.0
PM _{2.5}	1.2	5.0
Sulfur Dioxide (SO ₂)	1.1	4.5
Nitrogen Oxides (NO _x)	23. 2	99
Carbon Monoxide (CO)	25.0	99.40
Volatile Organic Compounds (VOC)	133.0	68.0
Total sum of all Hazardous Air Pollutants (HAPs)	8.6	15.0
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	4,000	16,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: IACX Roswell LLC; 5001 LBJ Freeway, Suite 300, Dallas, TX 75244

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Sincerely, Altamira-US, LLC

4MM W

Laura Worthen Lodes Chief Engineering Officer

February 4, 2025

Chaves County Manager Bill Williams 1 St. Mary's Place Roswell, NM 88203 (575) 624-6602

Certified Mail 9589 0710 5270 2046 1850 90

Dear Mr. Williams,

IACX Roswell LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its compressor station. The expected date of application submittal to the Air Quality Bureau is February 4, 2025.

The exact location for the facility, known as Bitter Lake Compressor Station, is at latitude 33 deg, 33 min, 11.001 sec and longitude -104 deg, 23 min, 26.9988 sec. The approximate location of this facility is 13.31 miles northeast of Roswell in Chaves County.

The proposed modification consists of adding one (1) natural gas compressor engine and one (1) flare to control SSM events.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.2	5.0
PM ₁₀	1.2	5.0
PM _{2.5}	1.2	5.0
Sulfur Dioxide (SO ₂)	1.1	4.5
Nitrogen Oxides (NO _x)	23. 2	99
Carbon Monoxide (CO)	25.0	99.40
Volatile Organic Compounds (VOC)	133.0	68.0
Total sum of all Hazardous Air Pollutants (HAPs)	8.6	15.0
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	4,000	16,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: IACX Roswell LLC; 5001 LBJ Freeway, Suite 300, Dallas, TX 75244

 $\mathsf{Angleton} \bullet \mathsf{Houston} \bullet \mathsf{Irving} \bullet \mathsf{Oklahoma} \, \mathsf{City} \bullet \mathsf{Tulsa}$

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Sincerely, Altamira-US, LLC

4MM W

Laura Worthen Lodes Chief Engineering Officer

Ē	U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only
50	For delivery information, visit our website at www.usps.com [®] .
н П П	OFFICIAL USE
2046	Certified Mail Fee
5270	Return Receipt (electronic) S Certified Mail Restricted Delivery Adult Signature Restricted Delivery S Adult Signature Restricted Delivery S Postage
0170	s 0.69 C/ 1/ CJ s 0.64 Sent To 0
9589	Hondo hesources Inc. Streep and Adv. No., or FU BORNO PO BOX City, State, 219+10 HOSWAID, NM B8202
	PS Form 3800, January 2023 PSN 7530-02-000-9047 See Reverse for Instructions

February 4, 2025

Hondo Resources Inc. PO Box 2623 Roswell, NM 88202 (575) 623-9555

Certified Mail 9589 0710 5270 2046 1850 83

Dear Mr. Williams,

IACX Roswell LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its compressor station. The expected date of application submittal to the Air Quality Bureau is February 4, 2025.

The exact location for the facility, known as Bitter Lake Compressor Station, is at latitude 33 deg, 33 min, 11.001 sec and longitude -104 deg, 23 min, 26.9988 sec. The approximate location of this facility is 13.31 miles northeast of Roswell in Chaves County.

The proposed modification consists of adding one (1) natural gas compressor engine and one (1) flare to control SSM events.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.2	5.0
PM ₁₀	1.2	5.0
PM _{2.5}	1.2	5.0
Sulfur Dioxide (SO ₂)	1.1	4.5
Nitrogen Oxides (NO _x)	23. 2	99
Carbon Monoxide (CO)	25.0	99.40
Volatile Organic Compounds (VOC)	133.0	68.0
Total sum of all Hazardous Air Pollutants (HAPs)	8.6	15.0
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	4,000	16,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: IACX Roswell LLC; 5001 LBJ Freeway, Suite 300, Dallas, TX 75244

ANGLETON • HOUSTON • IRVING • OKLAHOMA CITY • TULSA

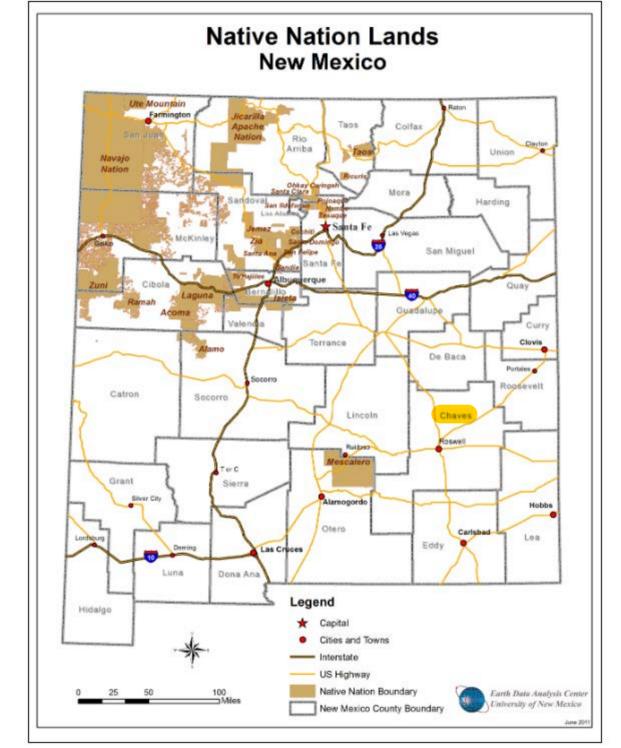
If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination


NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Sincerely, Altamira-US, LLC

4MM W

Laura Worthen Lodes Chief Engineering Officer

Municipalities in New Mexico

Search for your municipality to reference population and housing data sourced from the U.S. Census Bureau. If you can't find your municipality in the table below, please contact <u>mmp@re-trac.com</u>.

		1 Unit (Detached)	1 Unit (Attached) 🗢	2 Units ≑	3 to 4 Units ♦	5 to 9 Units 🕈	10 to 19 Units	20+ Units ≑	Mobile Homes ≑	Boats, RVs, [:] Vans
Alamogordo city	30963	10309	169	142	992	322	376	99	2498	31
Albuquerque city	556718	152173	14177	4192	14652	11492	14017	23198	9284	217
Angel Fire village	743	1701	27	15	86	216	293	156	44	0
Anthony city	9397	1480	57	74	130	184	18	28	980	0
Artesia city	11842	4003	87	242	182	148	0	106	457	0
Aztec city	6635	1645	93	99	96	124	49	25	745	41
Bayard city	2571	868	0	62	0	0	17	30	290	0
Belen city	7125	2063	47	151	208	49	70	47	587	25
Bernalillo town	8991	2150	197	38	66	76	45	13	1088	33
Bloomfield city	8039	1501	88	78	20	128	25	41	1108	27
Bosque Farms village	3819	1154	0	0	0	0	0	0	434	0
Capitan village	1321	268	0	26	0	0	0	0	488	0
Carlsbad city	28393	8786	125	205	420	407	237	627	1173	0
Carrizozo town	878	454	0	6	29	0	0	0	78	0
Causey village	68	24	9	0	0	0	0	0	10	0
Chama village	1068	400	16	9	21	9	0	0	316	0
Cimarron village	974	311	3	33	0	0	0	3	175	0
Clayton town	2987	1101	0	64	2	15	0	0	135	0
Cloudcroft village	613	843	46	26	21	31	6	8	26	0
Clovis city	39255	12415	281	439	1110	628	330	262	969	114
Columbus village	995	275	0	6	24	5	0	0	324	0
Corona village	145	105	0	2	0	0	0	0	15	0
Corrales village	8463	3325	222	9	19	0	0	9	353	0
Cuba village	660	147	2	20	15	0	0	0	166	0
Deming city	14339	3550	98	173	245	255	193	546	1236	60
Des Moines village	56	46	0	0	0	0	0	0	23	0

Municipality 🔶	Population 🗢	1 Unit (Detached) ♀	1 Unit (Attached) ♀	2 Units ♥	3 to 4 Units ✦	5 to 9 Units ♀	¹⁰ to ¹⁹ Units ♦	20+ Units ≑	Mobile Homes ◆	Boats, RVs, Vans
Dexter town	1159	307	0	24	18	0	4	23	63	0
Dora village	124	49	0	0	0	0	0	0	25	0
Eagle Nest village	279	191	19	4	16	0	0	0	94	0
Edgewood town	3845	1221	0	0	73	9	0	0	222	0
Elephant Butte city	1393	587	10	0	10	0	0	0	919	5
Elida town	153	80	0	0	0	0	0	0	4	0
Encino village	61	78	0	0	0	0	0	0	33	0
Española city	10069	2266	83	223	147	173	19	72	1561	0
Estancia town	1657	382	12	14	0	0	0	0	147	0
Eunice city	3065	889	12	22	11	19	0	0	219	7
Farmington city	45857	10917	632	407	1076	452	535	342	3325	34
Floyd village	126	40	0	0	0	0	0	0	6	0
Folsom village	41	26	0	0	0	0	0	0	14	0
Fort Sumner village	1181	457	0	8	31	0	0	0	92	0
Gallup city	22063	4848	165	320	696	548	67	195	1500	0
Grady village	185	39	0	0	0	0	0	0	27	3
Grants city	9094	2167	78	28	221	279	85	217	664	0
Grenville village	16	17	0	0	0	0	0	0	5	0
Hagerman town	863	324	0	0	0	0	0	10	68	0
Hatch village	1637	372	11	10	0	0	0	0	247	0
Hobbs city	37427	9183	393	147	389	565	289	1111	1771	60
Hope village	79	24	0	0	0	0	0	0	10	7
House village	33	30	0	0	0	0	0	0	8	0
Hurley town	1412	558	0	0	0	0	0	0	137	0
Jal city	2071	849	0	19	0	0	0	0	59	26
Jemez Springs village	280	116	0	0	0	0	0	0	19	0
Kirtland town	718	239	0	0	0	0	40	0	18	0
Lake Arthur town	452	132	0	0	0	0	0	0	41	0
Las Cruces city	101014	26133	2055	2059	2773	2840	1842	2668	4226	8
Las Vegas city	13445	3519	190	435	491	192	46	116	1175	0
Logan village	924	477	3	0	0	0	0	0	740	0
Lordsburg city	2689	884	25	6	10	0	0	12	356	10

Lotunasvillage1528462836012431117397156633Lokgarquevallage6972325165274497176999969Lovingvillage133360000010996910Magalanavillage63332840000001010Maxeli village19063078000101010Markeli village63230960000010<	Municipality 🔶	Population 🗢	1 Unit (Detached) ♀	1 Unit (Attached) ♀	2 Units ♥	^{3 to 4} Units ◆	5 to 9 Units ◆	^{10 to 19} Units ≑	20+ Units ≑	Mobile Homes 🗢	Boats, RVs, Vans
Albuquerque village13313860000110176Lovington city11558284737176480999659Magdalena village693328400000101Maxwell village1906307800066Merices village192309600000101Mesilla town24559016751434400061Moriarty city27670153200000101	Lunas village	15258	4628	306	124	311	173	57	156	653	0
Lovington city 11558 2847 37 176 48 0 9 99 659 Magdalena village 693 328 4 0 0 0 0 0 0 171 Maxwell village 190 63 0 7 8 0 0 0 66 Meirose village 632 309 6 0 0 0 0 0 0 0 0 101 Meirose village 632 309 6 0 0 0 0 0 0 316 Moriarty city 2276 701 5 20 0 0 0 0 181 Mountainair town 1128 430 3 0 57 11 11 0 0 433 Peralta town 3590 1067 0 0 0 0 0 0 142 152 12 41 438 <		6097	2325	105	27	44	97	126	130	210	0
Magdalena village 693 328 4 0 0 0 0 0 171 Maxwell village 190 63 0 7 8 0 0 0 66 Melrose village 632 309 6 0 0 0 0 0 0 101 Mesilia town 2485 901 67 51 43 14 0 0 31 Main village 3644 529 10 0 63 43 15 12 616 Moriarty city 2276 701 5 20 0 20 0 9 0 18 Mountainair town 1128 430 3 0 57 11 11 0 0 433 Perclas city 12123 3635 47 403 441 152 12 41 438 Questa village 256 781 14 24 0<	ing village	1331	386	0	0	0	0	11	0	176	0
Maxwell village 190 63 0 7 8 0 0 0 66 Melrose village 632 309 6 0 0 0 0 0 0 101 Melrose village 632 309 6 0 0 0 0 0 31 Melrose village 3644 529 10 0 63 43 15 12 616 Moriarty city 2276 701 5 20 0 0 0 9 292 Mosquero willage 95 72 0 0 0 0 0 11 11 0 433 Perata town 3590 1067 0 0 0 0 0 310 442 Parata town 3590 1067 11 11 15 12 41 438 Questa village 2266 781 14 24 0 0	ington city	11558	2847	37	176	48	0	9	99	659	79
Meirose village632309600000101Mesilla town2485901675143140031Milar village364452910063431512616Moriarty city227670152002009292Mosquero village957200000018Mountainair town112843030090433Peralta town35901067000000433Peralta town3590106700000423Questa village2266781142400310402Rator city624925151181111768500123Red River town408389352151122645667Red River town408389241047579232916879Red River town481631556770045354133826611211651Red Roncho city93317311849302441047579232916879Robard Light156770045354133826611211651Robard Light2674161520 <td< td=""><td>gdalena village</td><td>693</td><td>328</td><td>4</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>171</td><td>0</td></td<>	gdalena village	693	328	4	0	0	0	0	0	171	0
Mesilla town2485901675143140031Milar village364452910063431512616Moriarty city227670152002009292Mosquero village957200000018Mountainair town112843030090433Peralta town35901067000000433Peralta town35901067000000541Portales city121233635474034411521241438Questa village2266781142400310402Raton city624925151181111768500123Reserve village57118704000123164Rio Communities city93317311849302441047579232916879Roserve village2121110200012625625Roserve village21641615201321901255625Roserve village212111020002625625Roserve village216	well village	190	63	0	7	8	0	0	0	66	0
Milan village364452910063431512616Moriarty city227670152002009292Mosquero village957200000018Mountainair town1128430300900433Perata town35901067000000433Perata town359010670000040433Questa village2266781142400310402Raton city624925151181111768500123Reserve village57118704000123166Ro Communities city93317311849302441047579232916879Ro Savell city481631556770045354133829611211051Ro Village21211102000162San ta City26662060002562Santa Clara village1742460010178150339Santa Fe city8280238563686121925042389189324853448	rose village	632	309	6	0	0	0	0	0	101	0
Andriarty city 2276 701 5 20 0 20 0 9 292 Mosquero village 95 72 0 0 0 0 0 0 0 18 Mountainair town 1128 430 3 0 57 11 11 0 0 433 Percos village 1545 337 0 57 11 11 0 0 433 Percos village 1545 337 0 57 11 11 0 0 433 Percos village 1545 337 0 57 11 11 0 0 433 Percos village 1545 167 0 0 0 0 0 402 Questa village 2266 781 14 24 0 0 0 123 Raton city 6249 2515 118 111 176 85 0 1	silla town	2485	901	67	51	43	14	0	0	31	0
Mosquero village 95 72 0 0 0 0 0 0 0 18 Mountainair town 1128 430 3 0 0 9 0 0 191 Pecos village 1545 337 0 57 11 11 0 0 433 Peralta town 3590 1067 0 0 0 0 0 0 541 Portales city 12123 3635 47 403 441 152 12 41 438 Questa village 2266 781 14 24 0 0 3 10 402 Raton city 6249 2515 118 111 176 85 0 0 123 Red River town 408 389 35 21 51 122 64 56 67 Rio Communities city 4593 1631 233 11 27 28 <td>an village</td> <td>3644</td> <td>529</td> <td>10</td> <td>0</td> <td>63</td> <td>43</td> <td>15</td> <td>12</td> <td>616</td> <td>0</td>	an village	3644	529	10	0	63	43	15	12	616	0
Mountainair town 1128 430 3 0 0 9 0 0 191 Pecos village 1545 337 0 57 11 11 0 0 433 Peralta town 3590 1067 0 0 0 0 0 541 Portales city 12123 3635 47 403 441 152 12 41 438 Questa village 2266 781 14 24 0 0 3 10 402 Raton city 6249 2515 118 111 176 85 0 0 123 Red River town 408 389 35 21 51 122 64 56 67 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Ro communities city 48163 15567 700 453 541 338 296<	iarty city	2276	701	5	20	0	20	0	9	292	0
Pecos village 1545 337 0 57 11 11 0 0 433 Peralta town 3590 1067 0 0 0 0 0 0 541 Portales city 12123 3635 47 403 441 152 12 41 438 Questa village 2266 781 14 24 0 0 3 10 402 Raton city 6249 2515 118 111 176 85 0 0 71 Red River town 408 389 35 21 51 122 64 56 67 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 9317 31184 930 244 1047 579 232 916 879 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 San Ysidro village 136 49 <td< td=""><td>squero village</td><td>95</td><td>72</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>18</td><td>0</td></td<>	squero village	95	72	0	0	0	0	0	0	18	0
Peralta town 3590 1067 0 0 0 0 0 0 541 Portales city 12123 3635 47 403 441 152 12 41 438 Questa village 2266 781 14 24 0 0 3 10 402 Raton city 6249 2515 118 111 176 85 0 0 71 Red River town 408 389 35 21 51 122 64 56 67 Reserve village 571 187 0 4 0 0 0 123 Rio Communities city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 San Ysidro village 136 49 0	untainair town	1128	430	3	0	0	9	0	0	191	0
Portales city 12123 3635 47 403 441 152 12 41 438 Questa village 2266 781 14 24 0 0 3 10 402 Raton city 6249 2515 118 111 176 85 0 0 791 Red River town 408 389 35 21 51 122 64 56 67 Reserve village 571 187 0 4 0 0 0 0 123 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Roy village 210 111 0 2 0	os village	1545	337	0	57	11	11	0	0	433	0
Questa village 2266 781 14 24 0 0 3 10 402 Raton city 6249 2515 118 111 176 85 0 0 791 Red River town 408 389 35 21 51 122 64 56 67 Reserve village 571 187 0 4 0 0 0 0 123 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Roidoso Downs city 2607 416 15 20 132 190 12 55 625 San Ysidro village 136 49 0 2 0	alta town	3590	1067	0	0	0	0	0	0	541	0
Raton city 6249 2515 118 111 176 85 0 0 791 Red River town 408 389 35 21 51 122 64 56 67 Reserve village 571 187 0 4 0 0 0 0 123 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Royvillage 212 111 0 2 0 0 1 62 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 San Mice 226 62 0 6 0 0 0 25 San Mice 136 49 0 2 0 0 <td>tales city</td> <td>12123</td> <td>3635</td> <td>47</td> <td>403</td> <td>441</td> <td>152</td> <td>12</td> <td>41</td> <td>438</td> <td>29</td>	tales city	12123	3635	47	403	441	152	12	41	438	29
Red River town 408 389 35 21 51 122 64 56 67 Reserve village 571 187 0 4 0 0 0 0 123 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Roy village 212 111 0 2 0 0 1 62 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 San YSidro village 136 49 0 2 0 0 0 25 Santa Clara village 1742 460 0 10 17 8 15	esta village	2266	781	14	24	0	0	3	10	402	0
Reserve village 571 187 0 4 0 0 0 0 123 Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Roy village 212 111 0 2 0 0 0 1 62 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 San Miles 7740 5367 380 134 302 429 118 1484 San Miles 136 49 0 2 0 0 0 25 San Ysidro village 136 49 0 2 0 0 0 339 Santa Fee city 82980 23856 3686 1219 250	on city	6249	2515	118	111	176	85	0	0	791	0
Rio Communities city 4593 1631 233 11 27 28 41 12 166 Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Roy village 212 111 0 2 0 0 0 1 62 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 Ruidoso Village 7740 5367 380 134 302 429 198 116 1484 San Mile 136 49 0 2 0 0 0 25 Santa Clara village 136 49 0 2 0 0 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 <t< td=""><td>River town</td><td>408</td><td>389</td><td>35</td><td>21</td><td>51</td><td>122</td><td>64</td><td>56</td><td>67</td><td>0</td></t<>	River town	408	389	35	21	51	122	64	56	67	0
Rio Rancho city 93317 31184 930 244 1047 579 232 916 879 Roswell city 48163 15567 700 453 541 338 296 1121 1051 Roy village 212 111 0 2 0 0 0 1 62 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 San Miles 7740 5367 380 134 302 429 198 116 1484 San Miles 136 49 0 2 0 0 0 25 Santa Clara village 136 49 0 2 0 0 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 <td>erve village</td> <td>571</td> <td>187</td> <td>0</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>123</td> <td>0</td>	erve village	571	187	0	4	0	0	0	0	123	0
Roswell city481631556770045354133829611211051Roy village21211102000162Ruidoso Downs city260741615201321901255625Ruidoso village774053673801343024291981161484San JMMRe226620600025San Ysidro village136490200036Santa Clara village1742460010178150339Santa Fe city82980238563686121925042389189324853448Santa Rosa city31357020581250764428	Communities city	4593	1631	233	11	27	28	41	12	166	0
Roy village 212 111 0 2 0 0 0 1 62 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 Ruidoso village 7740 5367 380 134 302 429 198 116 1484 San Miles 226 62 0 6 0 0 0 25 San Miles 136 49 0 2 0 0 0 0 36 Santa Clara village 1742 460 0 17 8 15 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64	Rancho city	93317	31184	930	244	1047	579	232	916	879	16
Ruidoso Downs city 2607 416 15 20 132 190 12 55 625 Ruidoso village 7740 5367 380 134 302 429 198 116 1484 San Mile 226 62 0 6 0 0 0 25 San Mile 136 49 0 2 0 0 0 0 25 San Ysidro village 136 49 0 2 0 0 0 0 36 Santa Clara village 1742 460 0 10 17 8 15 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64 428	well city	48163	15567	700	453	541	338	296	1121	1051	23
Ruidoso village 7740 5367 380 134 302 429 198 116 1484 San Mile 226 62 0 6 0 0 0 25 San Ysidro village 136 49 0 2 0 0 0 0 36 Santa Clara village 1742 460 0 10 17 8 15 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64 428	village	212	111	0	2	0	0	0	1	62	0
San Mine 226 62 0 6 0 0 0 25 San Ysidro village 136 49 0 2 0 0 0 0 36 Santa Clara village 1742 460 0 10 17 8 15 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64 428	doso Downs city	2607	416	15	20	132	190	12	55	625	0
San MMPe 226 62 0 6 0 0 0 25 San Ysidro village 136 49 0 2 0 0 0 0 36 Santa Clara village 1742 460 0 10 17 8 15 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64 428		7740	5367	380	134	302	429	198	116	1484	0
Santa Clara village 1742 460 0 10 17 8 15 0 339 Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64 428	JMMBe	226	62	0	6	0	0	0	0	25	0
Santa Fe city 82980 23856 3686 1219 2504 2389 1893 2485 3448 Santa Rosa city 3135 702 0 58 125 0 7 64 428	Ysidro village	136	49	0	2	0	0	0	0	36	0
Santa Rosa city 3135 702 0 58 125 0 7 64 428	ita Clara village	1742	460	0	10	17	8	15	0	339	0
-	ita Fe city	82980	23856	3686	1219	2504	2389	1893	2485	3448	4
Silver City town 9882 2828 120 195 248 141 62 127 1050	ita Rosa city	3135	702	0	58	125	0	7	64	428	0
	er City town	9882	2828	120	195	248	141	62	127	1050	0
Socorro city 8608 1822 53 167 53 36 64 242 1138	orro city	8608	1822	53	167	53	36	64	242	1138	7

Municipality 🗢	Population 🗢	1 Unit (Detached) ♀	1 Unit (Attached) 🗢	2 Units ♥	3 to 4 Units ◆	5 to 9 Units ◆	10 to 19 Units	20+ Units ✦	Mobile Homes 🔶	Boats, RVs, ♦ Vans
Springer town	952	385	9	58	27	0	0	0	145	0
Sunland Park city	16051	2843	150	115	206	141	78	144	1163	12
Taos Ski Valley village	152	163	2	2	2	16	92	46	0	0
Taos town	5687	1634	272	352	355	170	120	39	416	0
Tatum town	664	207	0	0	0	6	0	0	88	0
Texico city	1284	275	13	8	21	5	0	0	145	0
Tijeras village	596	240	0	2	12	0	0	0	10	0
Truth or Consequences city	6029	1863	35	33	251	234	168	89	1261	75
Tucumcari city	5004	2141	10	140	36	84	52	0	255	0
Tularosa village	2902	1105	0	0	0	53	0	0	371	0
Vaughn town	310	214	0	7	0	0	0	0	59	0
Virden village	165	33	3	0	0	0	0	0	32	0
Wagon Mound village	394	176	7	6	0	0	0	0	53	0
Willard village	214	68	0	0	0	0	0	0	50	0
Williamsburg village	374	131	0	0	0	0	0	0	167	13
Showing 1 to 105 of 105	entries									

© 2010 - 2025 <u>Emerge Knowledge Design Inc.</u> All Rights Reserved. Trademarks and servicemarks are the property of their respective owners.

Privacy Policy

 Select Classification Year(per statute, done biennially on even years)
 2024

 Select Valuation Data(most current final tax year valuations)
 2022-23 Final

 Select Population Data(most current annual data or estimate from US census)
 2022

 Select Square Mileage Data(most current info available)
 2010 data

2024 County Classification

			Ма	ximum Allowa	able Salaries	Maximum Allowable Salaries					
County	CLASSIFICATION	Commissioners	Treasurer	Assessor	Sheriff	Clerk	Probate Judge				
Bernalillo	Α	\$39,106	\$86,626	\$86,626	\$90,338	\$86,626	-				
Catron	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844					
Chaves	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Cibola	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Colfax	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Curry	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
De Baca	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Dona Ana	А	\$39,106	\$86,626	\$86,626	\$90,338	\$86,626	\$38,114				
Eddy	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Grant	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Guadalupe	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Harding	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Hidalgo	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Lea	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Lincoln	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Los Alamos	H	n/a	\$75,733	\$75,733	\$78,952	\$75,733	n/a				
Luna	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
McKinley	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Mora	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Otero	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Quay	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Rio Arriba	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Roosevelt	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
San Juan	А	\$39,106	\$86,626	\$86,626	\$90,338	\$86,626	\$38,114				
San Miguel	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Sandoval	А	\$39,106	\$86,626	\$86,626	\$90,338	\$86,626	\$38,114				
Santa Fe	А	\$39,106	\$86,626	\$86,626	\$90,338	\$86,626	\$38,114				
Sierra	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Socorro	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Taos	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75,733	\$26,482				
Torrance	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75 <i>,</i> 733	\$26,482				
Union	B-Intermediate	\$21,534	\$64,844	\$64,844	\$67,814	\$64,844	\$15,098				
Valencia	B-High	\$30,196	\$75,733	\$75,733	\$78,952	\$75 <i>,</i> 733	\$26,482				
(Counties will be reclassified April 2026)											
In accordance with Section 4-44-1, 4-44-	<mark>2, 4-44-3, 4-44-4, 4-44-4.1, 4-44-5, 4-44-</mark> 1	2.3, 4-44-14 NMSA 19	78.								
Pursuant to Section 4-44-14A "the gover	ning body of an H class county shall desi	gnate whether the off	ice of treasurer,	assessor, sher	iff or county cle	rk is part-tin	ne or full-				
		Maximum	Allowable Salar	ies for Part-Ti	me (applies to H	class - Los A	Alamos)				
		Commissioners	Treasurer	Assessor	Sheriff	Clerk	Probate Judge				
		\$15,844	\$7,922	\$7,922	\$7,922	\$7,922	\$4,636				

Account: R042812 * Tax Rate does not include the Pecos Valley Artesian Conservancy District

<-Prev 3 of 9 Results <u>Next-></u>

	Location	Owner Info	ormation	Assessment History	÷
Parcel Number 4-143-050-179-06 Tax Area 11N_8_10 - 11N-FC-CSV Situs Address Legal Summary S: 10 T: 9S R: 25	9-000000	Owner Name IACX ROSWELL, LLC Owner Address 5001 LBJ FREEWAY, SUITE 300 DALLAS, TX 75244		Actual Value (2024) Primary Taxable Tax Area: 11N_8_10 Tax Rate Type Actual Asses	\$(\$(e: 0.022276
				Exempt Land	5.100
			Images		
	Tax Year	Taxes GIS			
	*2025 2024	\$0.00 \$0.00			
* Estimated					

Account: R042873 * Tax Rate does not include the Pecos Valley Artesian Conservancy District

ALL

Location	Owner Information
Parcel Number 4-144-052-068-322-000000 Tax Area 11N_8_10 - 11N-FC-CSW Situs Address Legal Summary S: 1 T: 9S R: 25E ALL LESS LOT 4 S: 2 T: 9S R: 25E SW4SE4 S: 10 T: 9S R: 25E SE4NW4-NE4SW4-S2NE4-NW4SE4 LESS HWY & RR R/W'S (ADDED TO ACCOUNT) S: 11 T: 9S R:	Owner Name UNITED STATES OF AMERICA In Care Of Name BUREAU OF LAND MANAGEMENT-ROSWELL FIELD OFFICE Owner Address 2809 W 2ND ST ROSWELL, NM 88201-2019 UNITED STATES OF AMERICA
25E NE4-NE4SE4-S2SE4 S: 12 T: 9S R: 25E ALL S: 13 T: 9S R: 25E ALL S: 14 T: 9S R: 25E ALL LESS S2SW4SE4-W2NE4NW4-NW4NW4 S: 15 T: 9S R: 25E ALL LESS NW4NW4 S: 20 T: 9S R: 25E E2 LESS HWY & RR R/W S: 21 T: 9S R: 25E N2-W2SW4-E2SE4 S: 22 T: 9S R: 25E ALL LESS N2NE4-N2SW4SE4 S: 23 T: 9S R: 25E ALL S: 24 T: 9S R: 25E ALL S: 25 T: 9S R: 25E ALL S: 26 T: 9S R: 25E ALL S: 27 T: 9S R: 25E ALL S: 28 T: 9S R: 25E E2-SE4SW4 S: 32 T: 9S R: 25E NE4NE4- S2NE4-SE4-E2SW4 S: 33 T: 9S R: 25E ALL S: 34 T: 9S R: 25E N2-SE4-SE4SW4 S: 35 T: 9S R: 25E	

Actual Va	alue (2024))		\$33,208
Primary 1	Taxable			\$11,070
Exempt				(\$11,070)
Adjusted	Taxable T	otal		\$0
Tax A	rea: 11N_8	B_10 T	fax Rate: 0.02	2276
Туре	Actual	Asses	sed Acres	SQFT
Exempt Land	\$32,906	\$10	969 10445.85	0.000
Tax A	rea: 11N_8	8_15 T	ax Rate: 0.02	1276
Туре	A	ctual	Assessed	Acres
Exempt L	and	\$302	\$101	95,839

Account: R012444 * Tax Rate does not include the Pecos Valley Artesian Conservancy District

Location	Owner Information		As	sessment l	<u>History</u>		
Parcel Number 4-143-049-114-198-000000 Tax Area 11N_8_10 - 11N-FC-CSW Situs Address Legal Summary S: 3 T: 9S R: 25E NE4 - SE4NW4 - SW4 N & W OF HWY 70 - N2NW4 - SW4NW4 S: 4 T: 9S R: 25E E2E2 N & W OF HWY 70 - W2 S: 5 T: 9S R: 25E SE4NE4 - E2SE4 S: 6 T: 9S R: 25E NW4 (LOTS 3 4 5) S: 8 T: 9S R: 25E N2N2 - SE4NE4 - S2 THAT PT N & W OF HWY 70 S: 9 T: 9S R: 25E NW4 - NW4SW4 N & W OF HWY 70 - E2NE4 N & W OF HWY 70 S: 17 T: 9S R: 25E NW4 N & W OF HWY 70 S: 18 T: 9S R: 25E E2 N & W OF HWY 70 BK 731 PG 1793 WD		Actual Value Primary Tax Tax Type Agriculture Land Non- Residential Improvement	able Area: 111 Actual \$6,041 \$21,407	N_8_10 Ta Assessed \$2,0141 \$7,136		SQFT 0.000	Units

Tax Year Taxes 2025 \$203.82 2024 \$203.82 * Estimated

Account: R045425 * Tax Rate does not include the Pecos Valley Artesian Conservancy District

Location	Owner Information	Assessment History
Parcel Number 4-143-050-031-338-000000 Tax Area 11N_8_10 - 11N-FC-CSW Situs Address Legal Summary S: 9 T: 9S R: 25E SE1/4SE1/4 S & E OF OLD CLOVIS HWY & N & W OF AT & SF RR R/W S: 10 T: 9S R: 25E W1/2W1/2 S & E OF OLD CLOVIS HWY & N & W OF AT & SF RR R/W BK: 425 PG: 488 WD	Owner Name HONDO RESOURCES INC Owner Address PO BOX 2623 ROSWELL, NM 88202-2623 UNITED STATES OF AMERICA	Actual Value (2024) \$506 Primary Taxable \$169 Tax Area: 11N_8_10 Tax Rate: 0.022276 Type Actual Assessed Acres SQFT Non- Residential \$506 \$169 20.227 0.000 Land \$506 \$169 20.227 0.000

Account: R045426 * Tax Rate does not include the Pecos Valley Artesian Conservancy District

Location	Owner Information	Assessment History
Parcel Number 4-143-050-061-098-000000 Tax Area 11N_8_10 - 11N-FC-CSW Situs Address Legal Summary S: 3 T: 9S R: 25E S1/2N1/2 & S1/2 S & E OF HWY 70 & N & W OF OLD CLOVIS HWY. S: 9 T: 9S R: 25E E2E2 S & E OF HWY 70 & N & W OF OLD CLOVIS HWY S: 10 T: 9S R: 25E W1/2 N & W OF OLD CLOVIS HWY LESS 5.10 AC IN NE4NW4 BK: 425 PG: 488 WD	Owner Name HONDO RESOURCES INC Owner Address PO BOX 2623 ROSWELL, NM 88202-2623 UNITED STATES OF AMERICA	Actual Value (2024) \$10,593 Primary Taxable \$3,531 Tax Area: 11N_8_10 Tax Rate: 0.022276 Type Actual Assessed Acres SQFT Non- Residential \$10,593 \$3,531 321.582 0.000 Land \$3,531 321.582 0.000 \$3,531 321.582 0.000

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Bitter Lake is an extension of a local gas transportation system that gathers casinghead gas from multiple wells in the area. The facility compresses the gas for delivery to a main line. The site operates natural gas-fired engines (Units C-891, C-893, C-894, C-895, and C-896) to raise the discharge pressure of the gas in the pipeline to overcome the effect of frictional losses in the pipeline upstream of the station or from pressure losses/changes within the facility in order to maintain the required suction pressure at the next downstream facility. The volume of gas flowing and the amount of subsequent frictional losses in the pipeline are dependent on field conditions and downstream plant conditions causing pressure variations. The glycol dehydrator (Unit DEHY) has a capacity of 30 MMscf/day and the two associated reboilers operate a 0.75 MMBtu/hr (Units RB-1, RB-2). Only one of the two reboilers operates under normal operating conditions. The second reboiler may be used either as a backup unit or as a second unit in series to accommodate higher production rates and the resultant increased heat load on the glycol system. The helium recovery unit (Unit HRU) re-injects gas into the pipeline for further separation at another facility further downstream; therefore, there are no emissions associated with the unit. There are three condensate tanks located at the facility (Units TK-1, TK-2, and TK-2a), which contain hydrocarbons and water that drop out of the line prior to compression. There are associated loading emissions with the three condensate and produced water tanks (Unit LOAD-1 and LOAD-2). There are also lube oil tanks (Units TK-3 and TK-10) along with used lube oil tanks (Units TK-6 and TK-12). Additional emissions result from facilitywide fugitives (Unit FUG), haul roads (Unit Haul), venting emissions during Startup, Shutdown, and Maintenance (Unit SSM), and Malfunction emissions (Unit M).

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

□ Yes ⊠ No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

□ Yes ⊠ No

C. Make a determination:

■ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

□ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **X** a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant. Project increase are less than 250 tpy. The "project" emissions listed below do only result from changes described in this permit application, thus no emissions from other revisions or modifications, past or future to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. Debottlenecked emissions are not accounted for since the source is an existing minor NSR site. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: 91.64 TPY
 - b. CO: 99.4 TPY
 - c. VOC: 61.39TPY
 - d. SOx: 4.02 TPY
 - e. PM: 4.52 TPY
 - f. PM10: 4.52 TPY
 - g. PM2.5: 4.52 TPY
 - h. Fluorides: 0 TPY
 - i. Lead: 0 TPY
 - j. Sulfur compounds (listed in Table 2): 0.77 TPY
 - k. GHG: XX.X TPY
- B. Netting N/A
- C. BACT N/A
- D. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered. N/A

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Example of a Table for State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.23 NMAC	Fugitive Dust Control	No for permitted facilities, possible for NOIs	Facility	 This regulation may apply if, this is an application for a notice of intent (NOI) per 20.2.73 NMAC, if the activity or facility is a fugitive dust source listed at 20.2.23.108.A NMAC, and if the activity or facility is located in an area subject to a mitigation plan pursuant to 40 CFR 51.930. As of January 2019, the only areas of the State subject to a mitigation plan per 40 CFR 51.930 are in Doña Ana and Luna Counties. Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC. 20.2.23.108 APPLICABILITY: A. This part shall apply to persons owning or operating the following fugitive dust sources in areas requiring a mitigation plan in accordance with 40 CFR Part 51.930: (1) disturbed surface areas or inactive disturbed surface areas, or a combination thereof, encompassing an area equal to or greater than one acre; (2) any commercial or industrial bulk material processing, handling, transport or storage operations. B. The following fugitive dust sources are exempt from this part: (1) agricultural facilities, as defined in this part; (2) roadways, as defined in this part; (3) operations issued permits pursuant to the state of New Mexico Air Quality Control Act, Mining Act or Surface Mining Act; and (4) lands used for state or federal military activities. [20.2.23.108 NMAC - N, 01/01/2019]
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	 This regulation does not apply to internal combustion equipment such as engines. It only applies to external combustion equipment such as heaters or boilers. Choose all that apply: This facility has new gas burning equipment (external combustion emission sources, such as gas fired boilers and heaters) having a heat input of greater than 1,000,000 million British Thermal Units per year per unit This facility has existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit Note: "New gas burning equipment" means gas burning equipment, the construction or modification of which is commenced after February 17, 1972.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This regulation does not apply to internal combustion equipment such as engines. It only applies to external combustion equipment such as heaters or boilers.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				This facility has oil burning equipment (external combustion emission sources, such as oil fired boilers and heaters) having a heat input of greater than 1,000,000 million British Thermal Units per year per unit.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	Facility	This regulation could apply to existing (prior to July 1, 1974) or new (on or after July 1, 1974) natural gas processing plants that use a Sulfur Recovery Unit to reduce sulfur emissions. No SRU is at the site. See 'Guidance and Clarification Regarding Applicability of 20.2.35 NMAC' located with the Air Quality Bureau's Permit Section website guidance documents.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	The Bitter Lake Compressor Station is not a petroleum processing facility, therefore, this section is not applicable.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The Bitter Lake Compressor Station is not a sulfur recover plant; therefore, this section is not applicable.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants			This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below: Include the construction status of applicable units as "New", "Existing", "Relocation of Existing", or "Reconstructed" as defined by this Part in your justification: Check the box for the subparts that are applicable: $\boxtimes 113$ – Engines and Turbines $\square 114$ – Compressor Seals $\boxtimes 115$ – Control Devices and Closed Vent Systems $\boxtimes 116$ – Equipment Leaks and Fugitive Emissions $\square 117$ – Natural Gas Well Liquid Unloading $\boxtimes 118$ – Glycol Dehydrators $\square 119$ – Heaters $\square 120$ – Hydrocarbon Liquid Transfers $\square 121$ – Pig Launching and Receiving $\boxtimes 122$ – Pneumatic Controllers and Pumps $\square 123$ – Storage Vessels $\square 124$ – Well Workovers $\square 125$ – Small Business Facilities $\square 126$ – Produced Water Management Unit $\square 127$ – Flowback Vessels and Preproduction Operations
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	C-891, C-893, C-894, C-895, C-986	The visible emissions from the stationary combustion equipment at the Bitter Lake Compressor Station will not exceed an opacity of 20 percent.
20.2.70 NMAC	Operating Permits	No	N/A	The Facility is not a major source. Therefore, this section is not applicable.
20.2.71 NMAC	Operating Permit Fees		Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	No	N/A	The Bitter Lake Compressor Station has previously been issued a construction permit.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The Bitter Lake Compressor Station has been issued a construction permit and therefore, will submit an emission inventory report every 3 years upon request by the department.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This regulation establishes requirements for obtaining a prevention of significant deterioration permit. The facility currently does not have the potential to emit greater than 250 tons per year of any criteria pollutant and, therefore, is not subject to this regulation.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	his is a 20.2.73 NMAC application and it is subject to the filing fee at 20.2.75.10 NMAC.
20.2.77 NMAC	New Source Performance	Yes	C-891, C893, C-894, C-895, C-896	This is a stationary source which is subject to the requirements of 40 CFR Part 60
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	Facility is not subject to the requirements of 40 CFR part 61; therefore, the Bitter Lake Compressor Station is exempt from this rule.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	C-891, C-893, C-894, C-895, C-896	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63.

Example of a Table for Applicable Federal Regulations (Note: This is not an exhaustive list):

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	The Bitter Lake Compressor Station complies with the national primary and secondary ambient air quality standards
NSPS 40 CFR 60, Subpart A	General Provisions	Yes		New stationary sources at the Facility will comply with the standards of performance in 40 CFR 60, Subpart A.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation does not apply because the facility does not operate any electric utility steam generating units.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	The facility does not have aby boilers.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	Except as provided in paragraph (b) of this section, the affected facility to which this subpart applies is each storage vessel with a storage capacity greater than 151,416 liters (40,000 gallons) that is used to store petroleum liquids for which construction is commenced after May 18, 1978 and prior to July 23, 1984. The condensate tanks at this facility were constructed after July 23, 1984, therefore, this subpart does not apply.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	Except as provided in paragraph (b) of this section, the affected facility to which this subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m3) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. The tanks at this facility have a design capacity less than or equal to 1,589.874 m3 used for petroleum or condensate stored, processed, or treated prior to custody transfer. The tanks are not subject.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired. The facility does not contain the affected units. This regulation does not apply.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The compressor station is not located at an onshore natural gas processing plant; therefore, this section is not applicable

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	The facility is not a natural gas processing plant.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	The Facility does not have equipment that is subject to 40 CFR 60, Subpart OOOO.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015 and before December 6, 2022	Yes	FUG	The Facility does not have equipment that is subject to 40 CFR 60, Subpart OOOOa.
NSPS 40 CFR Part 60 Subpart OOOOb	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After December 6, 2022	Yes	FUG	Since the modification of the Bitter Lake Compressor Station started after the December 6, 2022 applicability date, the fugitive emission components are subject to NSPS OOOOb (per 60.5365b(j)). The facility will follow all applicable standards.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This facility has stationary spark ignition (SI) internal combustion engines (ICE) which do not meet the criteria listed in the subpart and therefore they are not subject to this regulation.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	N/A	This regulation establishes standards of performance for stationary spark ignition internal combustion engines. Units 894 and 895 were reconstructed and are subject this standard. If the new engine is subject, IACX will comply as required.
NSPS 40 CFR 60	Standards of Performance for	No	N/A	The facility does not operate an affected source under this subpart.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units			
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate an affected source under this subpart
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate an affected source under this subpart.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	NSPS 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate an affected source under this subpart.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	C-891, C-893, C-894, C-895, C-896	The engines will comply with MACT 40 CFR 63, Subpart A
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY	This subpart applies to owners and operators of emissions points including glycol dehydration units, and storage vessels with the potential for flash emissions This facility is subject to the requirements of 40 CFR 63 Subpart HH, which includes requirements applicable to area sources with TEG Dehydrators. The site is not a major source of hazardous air pollutants (HAPs) but an area source of HAPs and therefore subject to this subpart. The dehydrator has the potential to emit less than 1 tpy (0.90 megagram per year) of benzene, and it is therefore subject to the operating requirements of §63.764(e)(1)(ii).
MACT 40 CFR 63 Subpart HHH				This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	Facility is not a major source of hazardous air pollutants and hence not subject to this regulation.

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	Facility is does not have a coal and oil fire electric utility steam generating unit.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	C-891, C-893, C-894, C-895, C-896	The engine(s) meet the requirements of MACT ZZZZ.
40 CFR 64	Compliance Assurance Monitoring			Applies only to Title V Major Sources Emissions for Unit XX are major in and of itself (XXXX TPY SO2). OR SRU is actually exempt because of 40 CFR64.2 (b) (vI) (b) Exemptions—(1) Exempt emission limitations or standards. The requirements of this part shall not apply to any of the following emission limitations or standards: (vi) Emission limitations or standards for which a part 70 or 71 permit specifies a continuous compliance determination method, as defined in §64.1. The exemption provided in this paragraph (b)(1)(vi) shall not apply if the applicable compliance method includes an assumed control device emission reduction factor that could be affected by the actual operation and maintenance of the control device (such as a surface coating line controlled by an incinerator for which continuous compliance is determined by calculating emissions on the basis of coating records and an assumed control device efficiency factor based on an initial performance test; in this example, this part would apply to the control device and capture system, but not to the remaining elements of the coating line, such as raw material usage).
40 CFR 68	Chemical Accident Prevention	No	N/A	This regulation defines compliance assurance monitoring. This regulation does not apply to this facility because the units do not have potential pre-control device emissions that are equal to or greater than 100 tons per year.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not operate an affected source under this subpart.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not operate an affected source under this subpart.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This part does not apply because the facility is not the type covered by this regulation [40 CFR Part 73.2].
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	Except as provided in paragraphs (b) through (d) of this section, the provisions apply to each coal-fired utility unit that is subject to an Acid Rain emissions limitation or reduction requirement for SO2 under Phase I or Phase II pursuant to sections 404, 405, or 409 of the Act.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone		N/A	This regulation establishes an acid rain nitrogen oxides emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO2. This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].

Federal <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
		No		

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- □ **Title V Sources** (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- □ **Title V** (20.2.70 NMAC), **NSR** (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.
 - The Bitter Lake Compressor Station has an NGL Flash Drum planned to ensure offloading of the process streams. In the event that the 3rd party pipeline offloads have issues or outages, and they cannot take the residue gas or NGL, the inlet gas will be appropriately curtailed to ensure that gas is not flared.
 - Emission from the condensate tanks and produced water tanks are controlled by the vapor recovery unit (VRU) to reduce VOC emissions.
 - The Bitter Lake Compressor Station has modern process and safety systems in place that monitor fire and hazardous gases continuously. The Bitter Lake Compressor Station has fulltime monitors to observe and locate any safety and/or process issues that could result in an incident. This safeguards health and safety of not only the employees working at the facility but the surrounding area and environment.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternative operating scenarios at Bitter Lake Compressor Station.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification			
1	Name of facility:	Bitter Lake Compressor Station		
2	Name of company:	IACX Roswell LLC		
3	Current Permit number:	0274-M8		
4	Name of applicant's modeler:	Christopher Mendiola-Coignet		
5	Phone number of modeler:	210-239-8948		
6	E-mail of modeler:	Chris.Mendiola@Altamira-US.com		

16	16-B: Brief					
1	Was a modeling protocol submitted and approved?	Yes⊠	No□			
2	Why is the modeling being done?	Adding New E	quipment			
3	Describe the permit changes relevant to the modeling.					
	Installation of an engine and a flare.					
4	What geodetic datum was used in the modeling? NAD83					
5	How long will the facility be at this location?	Permanent				
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠			

7	Identify the Air Quality Control Region (AQCR) in which the facility is located			155		
	List the PSD baseline dates for this region (minor or major, as appropriate).					
8	NO2	March 16, 1988				
	SO2	July 28, 1978				
	PM10	February 20, 1979				
	PM2.5	November 13, 2013				
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).					
9	The nearest Class I area is Salt Creek Wilderness located approximately 1.8 km from the facility.					
10	Is the facility located in a non-attainment area? If so describe below		Yes□	No⊠		
	Describe any special modeling requirements, such as streamline permit requirements.					
11	There are no special modeling requirements.					

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

	nodeling wavels).				
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments	
	CO	0274M8	03/02/2022		
1	NO ₂	0274M8	03/02/2022		
	SO ₂	0274M8	03/02/2022		
	H ₂ S	0274M8	03/02/2022		
	PM2.5	0274M8	03/02/2022		
	PM10	0274M8	03/02/2022		
	Lead	N/A	N/A		
	Ozone (PSD only)	N/A	N/A	Not a PSD facility	
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A	N/A	Facility does not require TAL modeling	

16-D: Modeling performed for this application						
1	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.					
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	CO	\boxtimes				

NO ₂	\boxtimes	\boxtimes		
SO ₂	\boxtimes			
H ₂ S				\boxtimes
PM2.5	\boxtimes			
PM10	\boxtimes			
Lead				\boxtimes
Ozone				\boxtimes
State air toxic(s) (20.2.72.402 NMAC)				

16	16-E: New Mexico toxic air pollutants modeling								
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. N/A								
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required. N/A								
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor			

16-F: Modeling options						
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□			

16-	16-G: Surrounding source modeling								
1	Date of surround	ing source retrieval	N/A background concentrations were used.						
	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.								
2	AQB Source ID	Description of Corrections							

16-	16-H: Building and structure downwash						
1	How many buildings are present at the facility?	3					
2	How many above ground storage tanks are present at the facility?	There are a number of Tanks/Process Vessels of varied sizes, however, non were within receptors reach.					

3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□
4	Building comments	N/A		

16-	I: Recepto	ors and m	nodeled	property boun	dary			
1	 "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a stee grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restrict Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, t receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. 						ith a steep a restricted A Restricted	
	The restricted a	area is define	d by a fence w	vith an entry gate.				
2				ccessible roads in the re e restricted area?	estricted area.		Yes□	No⊠
3	Are restricted a	area boundary	y coordinates	included in the modelir	ng files?		Yes⊠	No□
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.							
	Grid Type	Grid Type Shape Spacing Start distance from restricted area or center of facility center of facility			Comme	ments		
4			100m	0m	1000m			
	Fanadina	Fenceline	250m	1000m	2500m			
	Fenceline	Following	500m	2500m	5000m			
			1000m	5000m	10,000m			
	Describe recep	tor spacing al	ong the fence	line.				
5	50m along the fence line.							
	Describe the PS							
6	Receptors are s	spread out th	roughout the	Class 1, Salt Creek Wild	erness, area due to p	roximity	to site	

16-J: Modeling Scenarios N/A

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production
 rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

	Sources are intended to run loads as close to 100 percent.											
2	Which scenario produces the highest concentrations? Why?											
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) If so, describe factors for each group of sources. List the sources in each group before the factor table for that group.											
4	(Modify or Sources:	duplicate	table as ne	ecessary. I	t's ok to pi	ut the tabl	e below se	ction 16-K	if it makes fo	ormatting	g easier	.)
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
	6		18									
5	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	lf hourly, v	ariable em	nission rate	s were us	ed that we	ere not des	cribed abo	ove, descrit	be them belo	w.		
	N/A											
6	Were different emission rates used for short-term and annual modeling? If so describe below.YesNo											

16-	16-K: NO ₂ Modeling							
	Which types of NO ₂ modeling were used? Check all that apply.							
	\boxtimes	ARM2						
1		100% NO _x to NO ₂ conversion						
		PVMRM						
		OLM						
		Other:						
	Describe the NO ₂ modeling.							

2	NO2 emissions from all sources were modeled, using the ARM2 method.				
3	Were default NO_2/NO_x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below.	Yes⊠	No□		
4	Describe the design value used for each averaging period modeled.				
1-hour: 98th percentile as calculated by AERMOD					
	Annual One Year Annual Average:				

16-	L: Ozone Analy	sis		N/A						
	-	• .	it demonstrates sources that	at are minor with respect to	PSD do not cause	or				
	contribute to any violat									
1			Guidance on Significant							
			<u>Permitting Program</u> , EPA,	-						
			o this permit record by refe	•						
		-	ded in the New Mexico Air (· · ·	_	elines.				
	•		Table 11 of the NM AQB N	•	•					
			ing no more than 250 tons/	year of NO _x and no more the	nan 250 tons/year	of VOCs				
	will cause less formatio	on of O_3 than the O_3 s	significance level.							
			(and ton and	ton \						
_		[0]	$-\left(\begin{array}{c}250 \overline{yr}\\yr\end{array}\right)$	\overline{yr} $x 1.06 \mu g / m^3$						
2		$[U_3]_{8-hour}$	$[O_3]_{8-hour} = \left(\frac{250\frac{ton}{yr}}{340_{MERP_{NOX}}} + \frac{250\frac{ton}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \mu\text{g/m}^3$							
		=1.546	ug/m ³ , which is below the si	ignificance level of 1.96 μg,	/m³.					
			below the ozone SIL do not	t cause or contribute to air	contaminant level	IS				
	exceeding the ozone NAAQS.									
	Does the facility emit a	t least 250 tons per v	ear of NO _x or at least 250 t	ons per year of						
3			er year of NO _x or at least 25		l No⊠]				
	VOCs are covered by th	e analysis above and	d require an individual analy	/sis.						
	For new PSD Major Sou	irces or PSD major m	odifications, if MERPs were	e used to account for ozone	fill out the inform	ation				
	below. If another meth	below. If another method was used describe below.								
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERPVOC	[O ₃] _{8-hour}					
э										
				·	•					

16-	16-M: Particulate Matter Modeling						
	ollutants for which plume depletion modeling was used.						
1		PM2.5					
		PM10					
	\boxtimes	None					
2	Describe the particle size distributions used. Include the source of information.						
2	N/A – No particle size distributions were used.						

3	Does the facility emit at least tons per year of SO ₂ ? Source NO _x or at least 40 tons per y significant amounts of precu formation of PM2.5.	es that emit at le ear of SO ₂ are c	east 40 tons per year of onsidered to emit	Yes⊠ No□			
4	Was secondary PM modelec	l for PM2.5?	Yes□ No⊠				
	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method was used describe below.						
	Pollutant	NO _x	SO ₂	[PM2.5] _{24-hour}			
5	MERPannual	359	1820	0.01833			
	MERP _{24-hour}	2649	10397	[PM2.5] _{annual}			
	Emission rate (ton/yr)	11.4	3.94	0.00065			
	Emission rates represented	above are proje	ct increases only for compa	rison to the SIL.			

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	N/A

16-	16-O: PSD Increment and Source IDs							
1	modeling files. Do these	numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the files. Do these match? If not, provide a cross-reference table between unit if they do not match below.					No□	
	Unit Number in UA-2	ber in UA-2 Unit Number in Modeling Files						
2	The emission rates in th these match? If not, exp		2-F should match the	ones in the modeling files. Do	Yes	\boxtimes	No□	
3	Have the minor NSR exe been modeled?	empt sources or T	itle V Insignificant Ac	tivities" (Table 2-B) sources	Yes		No⊠	
_	Which units consume in pollutants.	crement for whic	h pollutants? All sou	rces were modeled to consum	ne increr	nent for a	ll applicable	
4	Unit ID NO ₂ SO ₂ PM10					PM2.5		

5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).	PSD Increment was modeled b (3/16/1988 for NO2, 7/28/1978 PM10, and 11/13/2013 for PM2 established, the pollutants were (Annual, 24-Hour, and/or 3-Ho modeled for comparison to the under this level, so no further P	for SO2, 2/20/ 2.5). Once those run for their re our). Project inci SIL and all poll	1979 for e were spective time reases were utants were
6	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.			No□

16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following						
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)			
	FLARE	18.72840817	350000	0.5266			

16-	16-Q: Volume and Related Sources N/A						
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□				
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
3	Describe how the volume sources are related to unit numbers. Or say they are the same.						
4	Describe any open pits.						
5	Describe emission units included in each open pit.						

16-	16-R: Background Concentrations				
1	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□		

	CO: Del Norte High School (350010023)						
	NO ₂ : Outside Carlsbad (350151005)						
	PM2.5: Hobbs-Jefferson (350450019)						
PM10: Hobbs-Jefferson (350250008)							
	SO ₂ : Amarillo (483751025)						
	Other:						
	Comments:						
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠				

16-	16-S: Meteorological Data						
1	Was NMED provided meteorological data used? If so select the station used. Carlsbad	Yes⊠	No□				
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discurbandled, how stability class was determined, and how the data were processed.	uss how missing	data were				

16-T: Terrain						
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
	What was the source of the terrain data?					
2	USGS National Elevation Data (NED) 1 Arc Second n34w105 TIFF					

16-U: Modeling Files Describe the modeling files: Purpose (ROI/SIA, cumulative, File name (or folder and file name) Pollutant(s) culpability analysis, other) ROI Significant Impact Level (SIL) SIL (folder) CO, SO2, NOX, PM10, PM2.5 Analysis NAAQS/Increment (folder) NOX, PM2.5 **ROI NAAQS Analysis** ROI Significant Impact Level (SIL) 1 Class I CO, SO2, NOX, PM10, PM2.5 Analysis

16-	V: PSD New or Major Modification Applications	N/A			
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes	No		
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□		
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.				
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.				
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□		

16-W: Mod	deling R	esults											
1	required	for the source to nce levels for the	o show that th	e contribution f	ding sources, a c rom this source i pility analysis per	s less than th	ne .	Yes□	No□				
2	Identify 1	he maximum co	ncentrations	from the modeli	ng analysis. Rows	s may be mo	dified, add	ed and remo	ved from the	e table			
	below as	necessary.											
Pollutant, Time Period and	Modeled Facility Concentr	Modeled Concentratio n with	Secondary PM	Background Concentratio	Cumulative Concentratio	Value of	Percent		Location	I			
Standard	ation (µg/m3)	Surrounding Sources (μg/m3)	(µg/m3)	n (μg/m3)	n (µg/m3)	Standard (μg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (m)			
NOx – 1hr - Class II SIL	106.75				106.7	7.52	1419.53	556551.5 3	3712819.1	1082.4			
NOx-24-hr- Class II SIL	68.66				68.7	5	1373.11	556551.5 3	3712819.1	1082.4			
NOx - annual- Class II SIL	6.70				6.7	1	669.90	556551.5 3	3712819.1	1082.4			
NOx - annual- Class I SIL	0.08				0.1	0.1	81.69	556498	3714605	3576			
CO-1 hr- SIL	222.09				222.1	2,000.00	11.10	556551.5 3	3712819.1	1082.4			
CO-8 hr- SIL	182.21				182.2	500.00	36.44	556551.5 3	3712819.1	1082.4			
PM10 – 24hr- Class I SIL	0.05				0.1	0.3	17.16	556498	3714605	3576			
PM10 – Annual- Class I SIL	0.01				0.0	0.2	2.66	556498	3714605	3576			
PM10 – 24hr- Class II SIL	2.78				2.8	5	55.66	556551.5 3	3712819.1	1082.4			
PM10 – Annual- Class II SIL	0.30				0.3	1	29.73	556507.3 9	3712839.49	1082.33			
PM2.5 – 24hr- Class	0.05		0.0174		0.1	0.27	25.52	556498	3714605	3576			
PM2.5 – Annual- Class I SIL	0.01		0.0007		0.0	0.05	12.10	556498	3714605	3576			
PM2.5 – 24hr- Class II SIL	2.78		0.0174		2.8	1.2	233.38	556551.5 3	3712819.1	1082.4			

Pollutant, Time Period and Standard	Modeled Facility Concentr ation (μg/m3)	Modeled Concentratio n with Surrounding Sources (µg/m3)	Secondary PM (µg/m3)	Background Concentratio n (μg/m3)	Cumulative Concentratio n (μg/m3)	Value of Standard (µg/m3)	Percent of Standard	Location		
								UTM E (m)	UTM N (m)	Elevation (m)
PM2.5 – Annual- Class II SIL	0.30		0.0007		0.3	0.13	229.27	556507.39	3712839.49	1082.33
SO2-1hr- Class II SIL	0.98				1.0	7.8	12.54	556463.25	3712859.88	1082.4
SO2-3hr- Class II SIL	0.65				0.7	25	2.61	556463.25	3712859.88	1082.4
SO2-24hr- Class II SIL	0.33				0.3	5	6.58	556463.25	3712859.88	1082.4
SO2-Annual- Class II SIL	0.05				0.0	1	4.56	556463.25	3712859.88	1082.4
SO2-3hr- Class I SIL	0.03				0.0	1	2.96	556498	3714605	3576
NOx – 1hr- NMAAQS	106.03			54.5	160.5	188.03	85.37	556551.5 3	3712819.1	1082.4
NOx-24-hr- NMAAQS	71.95				71.9	188.03	38.26	556551.5 3	3712819.1	1082.4
NOx - annual- NMAAQS	9.91			9.3	19.2	94.02	20.43	556551.5 3	3712819.1	1082.4
PM2.5 – 24hr- NMAAQS	1.97	1.97	0.0174	16.5	18.5	35	52.83	556551.5 3	3712819.1	1082.4
PM2.5 – Annual- NMAAQS	0.42	0.42	0.0007	7.1	8.0	9	88.89	556500	3712900	1082.25
NOx - annual- Class II PSD	9.91			9.3	19.21	25	76.83	556551.5 3	3712819.1	1082.4
PM2.5 – 24hr- Class II PSD	1.97	1.97	0.0174		1.99	9	22.13	556551.5 3	3712819.1	1082.4
PM2.5 – Annual- Class II PSD	0.42	0.42	0.0007		0.42	4	10.49	556500	3712900	1082.25

16	16-X: Summary/conclusions				
	A statement that modeling requirements have been satisfied and that the permit can be issued.				
1	Project emissions of CO, SO2, PM10, and PM2.5 are below significant impacts levels. Sitewide NO2 levels, combined with background concentration values, are below the NAAQS and NMAAQS.				

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Unit No.	Test Description	Test Date
C-891, C-893	Tested in accordance with EPA test methods for NOx and CO as required by Title V permit P500.	4/13/2004
C-894	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	5/12/2005
C-891	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	5/16/2018
C-893	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	6/22/2018
C-893	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	9/25/2019
C-891	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	1/28/2020
C-895	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	4/6/2021
C-894	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	4/6/2021
C-891	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	4/7/2021
C-893	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	5/3/2021
C-895	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	9/9/2021
C-894	Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 2923M1.	9/9/2021

Compliance Test History Table

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Section 22: Certification

Company Name: IACX Roswell LLC

Justin Wheeler , hereby certify that the information and data submitted in this application are true

and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this <u>31</u> day of <u>Schwwy</u>, <u>2025</u>, upon my oath or affirmation, before a notary of the State of

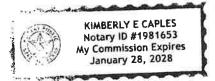
Justin Wheeler *Signature

Printed Name

1/31/25 Date Director of EHS

Scribed and sworn before me on this 3/8 day of January 2025.

My authorization as a notary of the State of 7.8×44 _____ expires on the


28th day of Janany 2028

Notary's Signature

Capter Kimberly Notary's Printed Name

1-31-2025

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Form-Change Log last revised: 3/7/2016

Saved Date: 1/31/2025