NMED AIR QUALITY INITIAL TITLE V APPLICATION DLK BLACK RIVER MIDSTREAM, LLC BLACK RIVER GAS PROCESSING PLANT

Prepared By:

Jason Conway - Regulatory, Environmental and Safety Specialist

DLK Black River Midstream, LLC

5400 LBJ Freeway Suite 1500 Dallas, TX 75240

Jaimy Karacaoglu – Consultant

TRINITY CONSULTANTS

9400 Holly Ave NE Bldg 3, Suite B Albuquerque, NM 87122 (505) 266-6611

December 2023

Project 233201.0144

December 11, 2023

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: Initial Title V Application DLK Black River Midstream, LLC – Black River Gas Processing Plant

Permit Programs Manager:

On the behalf of DLK Black River Midstream LLC, we are submitting an initial Title V application for the existing Black River Gas Processing Plant. The facility is currently authorized under NSR 6567-M8 and is located approximately 2.6 miles southwest of Loving, New Mexico. This application is being submitted pursuant to 20.2.70.300.B(1) NMAC as a result of the facility exceeding Title V thresholds in the NSR 6567-M7 application. Details are included in Section 3 of the application.

The format and content of this application are consistent with the Bureau's current policy regarding Title V applications; it is a complete application package using the most current Universal Application forms. Enclosed is a hard copy of the application, including the original certification. Please feel free to contact either myself at (505) 266-6611 or by email at Jaimy.Karacaoglu@trinityconsultants.com if you have any questions regarding this application. Alternatively, you may contact Jason Conway, Regulatory, Environmental, and Safety Specialist for DLK Black River Midstream, LLC, at (972) 619-1607 or by email at Jason.conway@matadorresources.com.

Sincerely,

Jaimy Karacaoglu Consultant

CC: Kha Mach (Environmental and Regulatory Engineer, Kha.Mach@matadorresources.com)

Trinity Project File: 233201.0144

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🛛 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: ____ in the amount of _____

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> <u>2/.</u>

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B(1) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	<mark>AI #</mark> if known: 36133	<mark>Updating</mark> Permit/NOI #: N/A			
Facility Name:1Black River Gas	Facility Name: Black River Gas Processing Plant	Plant primary SIC Code (4 digits): 1321				
		Plant NAIC code (6 digits): 211112				
а	Facility Street Address (If no facility street address, provide directions from 978 Bounds Road, Loving, New Mexico.	n a prominent landmark):			
2	Plant Operator Company Name: DLK Black River Midstream, LLC	Phone/Fax: (972) 371-5439/ N/A				
а	a Plant Operator Address: 5400 LBJ Freeway, Suite 1500, Dallas, Texas 75240					

b	Plant Operator's New Mexico Corporate ID or Tax ID: 32-0591911								
3	Plant Owner(s) name(s): DLK Black River Midstream, LLC	Phone/Fax: (972) 371-5439/ N/A							
а	a Plant Owner(s) Mailing Address(s): 5400 LBJ Freeway, Suite 1500, Dallas, Texas 75240								
4	Bill To (Company): DLK Black River Midstream, LLC	Phone/Fax: (972) 371-5439/ N/A							
а	Mailing Address: 5400 LBJ Freeway, Suite 1500, Dallas, Texas 75240	E-mail:							
5	 Preparer: Jaimy Karacaoglu Consultant: Trinity Consultants Inc. 	Phone/Fax: (505) 266-6611 / N/A							
а	Mailing Address: 9400 Holly Ave NE, Bldg. 3, Ste B, Albuquerque, NM 87122.	E-mail: Jaimy.Karacaoglu@trinityconsultants.com							
6	Plant Operator Contact: Mr. Casey Snow	Phone/Fax: (972) 371-5439							
а	Address: 5400 LBJ Freeway, Suite 1500, Dallas, Texas 75240	E-mail: csnow@matadorresources.com							
7	Air Permit Contact: Kha Mach	Title: Regulatory and Environmental Engineer							
а	E-mail: kha.mach@matadorresources.com	Phone/Fax: (972) 371-5472							
b	Mailing Address: 5400 LBJ Freeway, Suite 1500, Dallas, Texas 75240								
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.							

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🛛 Yes 🔲	1.b If yes to question 1.a, is it currently operating in New Mexico?						
2	If yes to question 1.a, was the existing facility subject to Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes X No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes No						
3	Is the facility currently shut down? 🔲 Yes 🛛 No	onth and year of shut down (MM/YY): N/A						
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? 🔲 Yes 🖾 No							
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?							
6	Does this facility have a Title V operating permit (20.2.) ☐ Yes ⊠ No	70 NMAC)?	If yes, the permit No. is: N/A					
7	Has this facility been issued a No Permit Required (NPF	If yes, the NPR No. is: N/A						
8	Has this facility been issued a Notice of Intent (NOI)?	🗌 Yes 🛛 No	If yes, the NOI No. is: N/A					
9	Does this facility have a construction permit (20.2.72/2 ☑ Yes □ No	? If yes, the permit No. is: NSR 6567-M8						
10	Is this facility registered under a General permit (GCP-1	1, GCP-2, etc.)?)? If yes, the register No. is: N/A					

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)									
а	Current	Hourly: 21.25 MMSCF/hr	Daily: 510 MMSCFD	Annually: 186,150 MMSCF/yr						
b	Proposed	Hourly: 21.25 MMSCF/hr	Daily: 510 MMSCFD	Annually: 186,150 MMSCF/yr						
2	What is the	facility's maximum production rate, sp	Decify units (reference here and list capacities in	n Section 20, if more room is required)						
а	Current	Hourly: 21.25 MMSCF/hr	Daily: 510 MMSCFD	Annually: 186,150 MMSCF/yr						
b	Proposed Hourly: 21.25 MMSCF/hr		Daily: 510 MMSCFD	Annually: 186,150 MMSCF/yr						

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.26459	Longitude	(decimal degrees): -104.13198	County: Eddy	Elevation (ft): 3139					
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🛛 NAD 83 🗌 WGS	84						
а	UTM E (in meters, to nearest 10 meters): 581,75	0	UTM N (in meters, to nearest 10 meters): 3,570,090						
3	Name and zip code of nearest New Mexico	o town: Lovi	ng, NM 88256.							
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Loving, NM head south on N 4th Street toward W. Cedar St. (0.2 mi), Turn right at the 3rd cross street onto W Ash Road (0.3 mi), turn left onto US-285 S/S 8th St. (0.8 mi), turn right onto Higby Hole road (0.4 mi), turn right onto Bounds Road (1.8 mi), facility entrance will be on the right.									
5	The facility is 2.6 miles southwest of Loving, NM .									
6	Land Status of facility (check one): 🔀 Priv	vate 🔲 Ind	ian/Pueblo 🗌 Government 🔲 B	LM 🔲 Forest Ser	rvice 🔲 Military					
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr				e property on					
8	20.2.72 NMAC applications only : Will the than 50 km (31 miles) to other states, Bern publications/)? Yes No (20.2.72.2)	nalillo Count	y, or a Class I area (see <u>www.env.n</u>	m.gov/air-quality/	modeling-					
9	Name nearest Class I area: Carlsbad Caver	rns National	Park							
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest Class I are	a (to the nearest 10 n	neters): 24.2 km					
11	Distance (meters) from the perimeter of t lands, including mining overburden remov									
	Method(s) used to delineate the Restricte	d Area: Cont	inuous fencing							
12	" Restricted Area " is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? ☐ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.									
14	Will this facility operate in conjunction will this facility operate in conjunction will fyes, what is the name and permit numb			erty? 🛛 No	Yes					

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(<mark>days</mark>): 7	(weeks): 52	(<u>hours</u>): 8760		
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start: N/A	□AM □PM	End: N/A	₽AM ₽PM	
3	Month and year of anticipated start of construction	n: N/A				
4	Month and year of anticipated construction comple	etion: N/A				
5	Month and year of anticipated startup of new or modified facility: N/A					
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? 🔲 Yes 🔀 No If yes, specify:							
а	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A				
b	Is this application in response to any issue listed in 1-F, 1 c If Yes, provide the 1c & 1d info below:	or 1a above? 🔲 Yes	No No					
с	Document Title: N/A	Date: N/A		nent # (or nd paragraph #): N/A				
d	Provide the required text to be inserted in this permit: N//	4						
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	applicatio	n? 🗌 Yes 🔀 No				
3	Does this facility require an "Air Toxics" permit under 20.2	.72.400 NMAC & 20.	2.72.502, T	ables A and/or B? 🔲 Yes 🛛 No				
4	Will this facility be a source of federal Hazardous Air Pollu	tants (HAP)? 🔀 Yes	🗌 No					
а	If Yes, what type of source? Major (>10 tpy of a OR Minor (<10 tpy of any			tpy of any combination of HAPS) py of any combination of HAPS)				
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes	☑ No						
а	If yes, include the name of company providing commercia Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	-		bes not include power generated				

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Mr. Casey Snow		Phone: (972) 371-5439	
а	R.O. Title: VP – Regulatory, Environmental, and Safety	R.O. e-mail: <u>csnow</u>	@matadorresources.com	
b	R. O. Address: 5400 LBJ Freeway, Suite 1500, Dallas, Texas 75240			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Mr. Sean O'Grady		Phone: (972) 371-5284	
а	A. R.O. Title: Vice President of Operations	A. R.O. e-mail: sogrady@sanmateomidstream.com		
b	A. R. O. Address: 5400 LBJ Freeway, Suite 1500, Dallas, Texas 7524	0		
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): N/A			
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): San Mateo Midstream, LLC.	name of the organiz	ation that owns the company to be	
а	Address of Parent Company: One Lincoln Centre, 5400 LBJ Freewa	y, Suite 1500, Dallas	, Texas 75240	
5	Names of Subsidiary Companies ("Subsidiary Companies" means or owned, wholly or in part, by the company to be permitted.): N/A	rganizations, branch	nes, divisions or subsidiaries, which are	
6	Telephone numbers & names of the owners' agents and site conta 619-1607	cts familiar with pla	nt operations: Jason Conway; (972)	

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes:
 Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: 37 km from Texas

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name Jaimy Karacaoglu, Email Jaimy.Karacaoglu@trinityconsultants.com Phone number (505) 266-6611.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1:	General Facility Information
Section 2:	Tables
Section 3:	Application Summary
Section 4:	Process Flow Sheet
Section 5:	Plot Plan Drawn to Scale
Section 6:	All Calculations
Section 7:	Information Used to Determine Emissions
Section 8:	Map(s)
Section 9:	Proof of Public Notice
Section 10:	Written Description of the Routine Operations of the Facility
Section 11:	Source Determination
Section 12:	PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
Section 13:	Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
Section 14:	Operational Plan to Mitigate Emissions
Section 15:	Alternative Operating Scenarios
Section 16:	Air Dispersion Modeling
Section 17:	Compliance Test History
Section 18:	Addendum for Streamline Applications (streamline applications only)
Section 19:	Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
Section 20:	Other Relevant Information
Section 21:	Addendum for Landfill Applications
Section 22:	Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

		correspond throug			Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition																																												
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of E	quipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.																																											
ENC 4	Inlet Gas	Marilia de a	D0304 CCI	5202705246	2250 km	2250 km	2016	Catalyst-1	20200254	Existing (unchanged)	To be Removed	401 D																																												
ENG-1	Compressor Engine	Waukesha	P9394 GSI	5283705346	2250 hp	2250 hp		ENG-1	20200254	 New/Additional To Be Modified 	Replacement Unit To be Replaced	4SLB	N/A																																											
ENG-2	Inlet Gas	Waukesha	P9394 GSI	5283705365	2250 hp	2250 hp	2016	Catalyst-2	20200254	20200254	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	4SLB	N/A																																										
ENG-2	Compressor Engine	waukesha	F 9394 (13)	5285705505	2230 np	2230 Hp		ENG-2		To Be Modified	To be Replaced	43LB	IN/A																																											
ENG-3	Inlet Gas	Waukesha	P9394 GSI	5283705405	2250 hp	2250 hp	2016	Catalyst-3	20200254	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	4SLB	N/A																																											
	Compressor Engine	Waukesha	F 9394 031	5285705405	2230 hp	2230 hp		ENG-3	20200234	To Be Modified	To be Replaced	43ED	11/14																																											
ENG-4	Inlet Gas	Waukesha	P9394 GSI	5283705381	2250 hp	2250 hp	2016	Catalyst-4	20200254	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	4SLB	N/A																																											
	Compressor Engine	Waukesha	F 9394 031	5285705581	2230 hp	2230 hp		ENG-4	20200234	To Be Modified	To be Replaced	JSED	11/14																																											
AM-1	Plant 2 - Amine Unit	Zeeco	N/A	N/A	290 MMSCFD	290 MMSCFD	2018	TO-1	31000201	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
Alvi-1		2000	N/A	N/A	290 IVIIVISCED	290 IVIIVISCED		TO-1		To Be Modified	To be Replaced	IVA	IN/A																																											
AR-1	Plant 2 - Amine	Tulsa Heaters	N/A	N/A	21.09	21.09	2018	N/A	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
AU-1	Reboiler	Tuisa Heaters	N/A	N/A	MMBtu/hr	MMBtu/hr		AR-1	51000228	To Be Modified	To be Replaced		IN/A																																											
DEHY-1	Plant 2 - Dehydrator	Tryer	Custom	N/A	290 MMSCFD	290 MMSCFD	2017	FL-2	31000227 □ Existing (unchanged) ☑ New/Additional To Be Modified			To be Removed Replacement Unit	N/A	N/A																																										
DLIII-I	Unit	пует	Custom	NA	230 101013010	230 101101361 D		FL-2		To be Replaced		IVA																																												
DR-1	Plant 2 - Dehydrator	Tryer	Custom	N/A	2.9 MMBtu/hr	2.9 MMBtu/hr	2017	N/A	31000228 [□]	31000228 ☑ New	31000228	31000228	31000228	31000228	31000228	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																				
DIVI	Reboiler	iryei	Custom	N/A	2.5 1010000/11	2.5 1010000711		DR-1			To Be Modified	To be Replaced	10/11	10/1																																										
AM-2	Plant 3 - Amine Unit	Zeeco	N/A	N/A	220 MMSCFD	220 MMSCFD	2019	TO-2	31000201	31000201	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																										
7.001 2		2000	1,77		220 11113010	220 Millioci D		TO-2	51000201	To Be Modified	To be Replaced	IN/A	1011																																											
AR-2	Plant 3 - Amine	Tulsa Heaters	N/A	N/A	23.92	23.92	2019	N/A	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
7.11 2	Reboiler	Tuisa fielders	1,77		MMBtu/hr	MMBtu/hr		AR-2	51000220	To Be Modified	To be Replaced	1011	1011																																											
DEHY-2	Plant 3 - Dehydrator	Tryer	Custom	N/A	220 MMSCFD	220 MMSCFD	2019	TO-2	31000227	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
DEITI Z	Unit	iryei	custom	N/A	220 101013010	220 10101301 0		TO-2	51000227	To Be Modified	To be Replaced	10/11	10/2																																											
DR-2	Plant 3 - Dehydrator	Tryer	Custom	N/A	2.5 MMBtu/hr	2.5 MMBtu/hr	2019	N/A	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
DNZ	Reboiler	inyei	custom	N/A	2.5 1010000	2.5 1010000/11	DR-2				DR-2		DR-2				51000228	31000228	51000228	51000228	31000228		31000228	31000228	31000220	31000220	31000228	31000228	31000228	31000228	51000228	31000228	31000220	51000220	31000228	31000228	51000228	31000228	31000228	31000220	31000228	31000228	31000228	31000228		51000228	31000228	51000228	51000228	51000220			To Be Modified	To be Replaced	10/11	10/21
HT-101	Plant 1 - Mole Sieve	Heat Recovery	N/A	N/A	6 97 MMBtu/br	6.97 MMBtu/hr	2016	N/A	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
	Heater	Corp	11/7				ŀ	HT-101	51000220	To Be Modified	To be Replaced	IN/A	11/A																																											
HT- 801	Plant 1 - Stabilizer	Heat Recovery	N/A	N/A	6 97 MMRtu/br	6.97 MMBtu/hr	2019	N/A	31000228	31000229	31000228	31000228	31000228	31000228	31000229	31000229	31000228	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																		
	Heater	Corp	17.5	17/5				HT-801		To Be Modified	To be Replaced	IN/A	11/21																																											
HT - 102	Plant 2 - Mole Sieve	Heat Recovery	N/A	N/A	9 74 MMBtu/br	9.74 MMBtu/hr	2016	N/A	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A																																											
102	Heater	Corp	17/7	17/7				HT - 102	51000220	To Be Modified	To be Replaced	11/21	11/2																																											

							÷								
					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition			
Unit Number ¹	Source Description	Make	Make Model # Serial # Rated Capacity ³ Permitted Capacity ³ Capacity ³ (Specify Date of Emissions fice	fication Code (SCC)	For Each Piece of Ec	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.								
HT - 103	Plant 3 - Mole Sieve	Heat Recovery	N/A	N/A	9.74 MMBtu/hr	9.74 MMBtu/hr	2019	N/A	31000228	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit	N/A	N/A		
	Heater	Corp	,	,	517 1 1111 2 00,111	5.7 1 1.1.1.5 (4) 1.1		HT - 103	HT - 103	51000220	To Be Modified	To be Replaced	1.011	1.011	
HT - 802	Plant 3 - Stabilizer Heater 1	Heat Recovery Corp	N/A	N/A	6.2 MMBtu/hr	6.2 MMBtu/hr	2019	N/A HT - 802	31000228	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A		
	Plant 3 - Stabilizer	Heat Recovery					TBD	N/A		Existing (unchanged)	To be Removed				
HT - 803	Heater 2	Corp	N/A	N/A	6.2 MMBtu/hr	6.2 MMBtu/hr		HT - 803	31000228	 New/Additional To Be Modified 	Replacement Unit To be Replaced	N/A	N/A		
TO - 1	Plant 2 - Thermal	Zeeco	N/A	N/A	9.9 MMBtu/hr	9.9 MMBtu/hr	2018	N/A	40400312	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A	N/A		
10-1	Oxidizer	Zeeco	N/A	N/A	3.5 WIVIBLU/III	9.9 WIWBtu/III		TO - 1	40400312	To Be Modified	To be Replaced	IN/A	IN/A		
TO - 2	Plant 3 - Thermal Oxidizer	Zeeco	N/A	N/A	9.9 MMBtu/hr	9.9 MMBtu/hr	2018	N/A TO - 2	40400312	 □ Existing (unchanged) ☑ New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A		
FL - 1	Plant 1 - Flare SSM/M	Zeeco	N/A	N/A	85 MMBtu/hr	85 MMBtu/hr	2016	N/A FL-1	30600904	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A		
	Plant 2 - Dehy -1 /						2016	N/A		 Existing (unchanged) 	To be Removed				
FL - 2	Plant 2 - SSM/M	Zeeco	N/A	N/A	85 MMBtu/hr	85 MMBtu/hr		FL-2	30600904	30600904 Ø New/Additional To Be Modified	Replacement Unit To be Replaced	N/A	N/A		
FL - 3	Plant 3 - SSM/M	Zeeco N/A	N/A	N/A	85 MMBtu/hr	85 MMBtu/hr	2019	N/A	30600904	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A	N/A		
_	,		,	,	,			FL-3		To Be Modified	To be Replaced				
VCU - 1	Vapor Combustion Unit	Kimark Inc	N/A	N/A	7.11 MMBtu/hr	7.11 MMBtu/hr	2016	N/A VCU-1	30600904	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A	N/A		
TK - 702							2016	VCU-1		To Be Modified	To be Replaced				
A-F	Condensate Tanks	N/A	N/A	N/A	500 bbl each	500 bbl each		VCU-1	40400312	☑ New/Additional To Be Modified	Replacement Unit To be Replaced	N/A	N/A		
	Dreduced Weter						2016	VCU-1		 Existing (unchanged) 	To be Removed				
TK 701	Produced Water Tank	N/A	N/A	N/A	500 bbl each	500 bbl each		VCU-1	40400315	☑ New/Additional To Be Modified	Replacement Unit To be Replaced	N/A	N/A		
T 1 4	Condensate Tanks						2016	N/A	10000100	Existing (unchanged)	To be Removed	27/4			
TL - 1	Truck Loading	N/A	N/A	N/A	N/A	N/A		N/A	40600132			 New/Additional To Be Modified 	Replacement Unit To be Replaced	N/A	N/A
TL - 2	Produced Water	N/A	N/A	N/A	N/A	N/A	2016	N/A	40600132	 □ Existing (unchanged) ☑ New/Additional 	To be Removed Replacement Unit		N/A		
	Tanks Truck Loading			,,				N/A	40000132	To Be Modified	To be Replaced	- 1/2 1	1.011		

					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FUG	Fugitives	N/A	N/A	N/A	N/A	N/A	2016	N/A	31088811	 □ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit 	N/A	N/A
FUG	rugitives	N/A	N/A	N/A	N/A	N/A		N/A	51066611	To Be Modified To be Replaced	IN/A	IN/A
CRYO - 1	Cryo Unit - 1	N/A	N/A	N/A	70 MMSCFD	70 MMSCFD	2016	N/A	31000299	 □ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit 	N/A	N/A
		N/A	N/A	N/A	70 10101361 0	70 10101361 0		N/A	51000233	To Be Modified To be Replaced	IN/A	IV/A
CRYO - 2	Cryo Unit - 2	N/A	N/A	N/A	220 MMSCFD	220 MMSCFD	2017	N/A	31000299	 □ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit 	N/A	N/A
CKTO - Z		N/A	N/A	N/A	220 101101301 D	220 101101301 D		N/A	51000233	To Be Modified To be Replaced	IN/A	IV/A
	RYO - 3 Cryo Unit - 3	N/A	N/A	N/A	220 MMSCFD	220 MMSCFD	2019	N/A	31000299	 □ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit 	N/A	N/A
CI(10 - 3		N/A	N/A	N/A	220 WIVISCED			N/A	51000299	To Be Modified To be Replaced	IN/A	IN/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check One
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Field of Equipment, Check One
ST-1	Glycol Storage Tanks	N/A	N/A	100			□ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
51-1	Glycol Stolage Talks	N/A	N/A	bbl	IA List Item #5		To Be Modified To be Replaced
ST-2	Amine Storage Tanks	N/A	N/A	300			□ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
51-2	Amme Storage Tarks	N/A	N/A	bbl	IA List Item #5		To Be Modified To be Replaced
ST-3	Methanol Tanks	N/A	N/A	500			□ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
51-5		N/A	N/A	bbl	IA List Item #5		To Be Modified To be Replaced
ST-4	Lube Oil Tanks	N/A	N/A	500 & 2000			□ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
51-4	Lube OII Tallks	N/A	N/A	gallons	IA List Item #5		To Be Modified To be Replaced
ST-5	Antifreeze Tanks	N/A	N/A	1000			□ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
31-5	Antineeze Taliks	IN/A	N/A	gallons	IA List Item #5		To Be Modified To be Replaced
Haul Road	Haul Raod Emissions	N/A	N/A	N/A			□ Existing (unchanged) To be Removed ☑ New/Additional Replacement Unit
		N/A	N/A	N/A	IA List Item #1.a		To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
BTEX-1	Condenser	2018	VOC, HAP	DEHY-1	Varies	ProMax Simulation
BTEX-2	Condenser	2019	VOC, HAP	DEHY-2	Varies	ProMax Simulation
TO-1	Thermal Oxidizer	2018	VOC, HAP	AM-1	98%	Manufacturer Spec
TO-2	Thermal Oxidizer	2019	VOC, HAP	AM-2 and DEHY-2	98%	Manufacturer Spec
FL-1	Flare	2016	VOC, H ₂ S, HAP	Plant 1- SSM/M	98%	Manufacturer Spec
FL-2	Flare	2016	VOC, H ₂ S, HAP	DEHY-1 and Plant 2 - SSM/M	98%	Manufacturer Spec
FL-3	Flare	2019	VOC, H ₂ S, HAP	Plant 3 - SSM/M	98%	Manufacturer Spec
VCU-1	Vapor Combustion Unit	2016	VOC, H ₂ S, HAP	TK-702 A-F & TK 701	98%	Manufacturer Spec
ENG-1	Catalyst, AFR	2016	NO _x , CO, VOC, HCOH	Catalyst 1	Varies	Manufacturer Spec
ENG-2	Catalyst, AFR	2016	NO _x , CO, VOC, HCOH	Catalyst 2	Varies	Manufacturer Spec
ENG-3	Catalyst, AFR	2016	NO _X , CO, VOC, HCOH	Catalyst 3	Varies	Manufacturer Spec
ENG-4	Catalyst, AFR	2016	NO _x , CO, VOC, HCOH	Catalyst 4	Varies	Manufacturer Spec

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Black River Gas Processing Plant

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

11 % N	N	Эx	С	0	V)C	S	Ox	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	72.42	317.21	47.12	206.4	2.58	11.3	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.0059	0.026	-	-
ENG-2	72.42	317.21	47.12	206.4	2.58	11.3	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.0059	0.026	-	-
ENG-3	72.42	317.21	47.12	206.4	2.58	11.3	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.0059	0.026	-	-
ENG-4	72.42	317.21	47.12	206.4	2.58	11.3	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.0059	0.026	-	-
HT-101	0.64	2.82	0.54	2.37	0.04	0.16	0.00	0.02	0.05	0.21	0.05	0.21	0.04	0.16	-	-	-	-
HT-801	0.64	2.82	0.54	2.37	0.04	0.16	0.00	0.02	0.05	0.21	0.05	0.21	0.04	0.16	-	-	-	-
HT-102	0.9	3.94	0.76	3.31	0.05	0.22	0.01	0.02	0.07	0.30	0.07	0.30	0.05	0.22	-	-	-	-
AR-1	1.95	8.54	1.64	7.17	0.11	0.47	0.01	0.05	0.15	0.65	0.15	0.65	0.11	0.49	-	-	-	-
DR-1	0.27	1.17	0.23	0.99	0.01	0.06	0.00	0.01	0.02	0.09	0.02	0.09	0.02	0.07	-	-	-	-
HT-103	0.9	3.94	0.76	3.31	0.05	0.22	0.01	0.02	0.07	0.30	0.07	0.30	0.05	0.22	-	-	-	-
HT-802	0.57	2.51	0.48	2.11	0.03	0.14	0.00	0.02	0.04	0.19	0.04	0.19	0.03	0.14	-	-	-	-
AR-2	2.21	9.68	1.86	8.14	0.12	0.53	0.01	0.06	0.17	0.74	0.17	0.74	0.13	0.55	-	-	-	-
DR-2	0.23	1.01	0.19	0.85	0.01	0.06	0.00	0.01	0.02	0.08	0.02	0.08	0.01	0.06	-	-	-	-
HT-803	0.57	2.51	0.48	2.11	0.03	0.14	0.00	0.02	0.04	0.19	0.04	0.19	0.03	0.14	-	-	-	-
DEHY-1	-	-	-	-	193.81	848.88	-	-	-	-	-	-	-	-	0.05	0.23	-	-
AM-1	-	-	-	-	19.49	85.35	-	-	-	-	-	-	-	-	6.54	28.64	-	-
DEHY-2	-	-	-	-	190.32	833.59	-	-	-	-	-	-	-	-	0.05	0.23	-	-
AM-2	-	-	-	-	18.95	2.99	-	-	-	-	-	-	-	-	4.93	21.58	-	-
TO-1						No	o emission	s from this	unit in ar	uncontro	lled scena	ario.						
TO-2								s from this										
TO-1 SSM								s from this										
TO-2 SSM								s from this										
DEHY-1 SSM								s from this										
FL-1								s from this										
FL-2 FL-3								s from this s from this										
VCU-1								s from this										
TK-702 A-F	-	-	-	-	17.94	78.58	-	-	-	-	-	-	-	-	0.00	0.00	-	-
TK-701	-	-	-	-	387.6	1697.69	-	-	-	-	-	-	-	-	0.00	0.00	-	-
TL-1	-	-	-	-	69.36	4.07	-	-	-	-	-	-	-	-	0.00	0.00	-	-
TL-2	-	-	-	-	129.71	0.22	-	-	-	-	-	-	-	-	0.00	0.00	-	-
FUG	-	-	-	-	7.89	34.54	-	-	-	-	-	-	-	-	0.040	0.16	-	-
SSM	-	-	-	-	66.43	12.12	-	-	-	-	-	-	-	-	-	-	-	-
MAL	517.79	6.21	1033.7	12.4	498.35	5.95	3.00	0.04	-	-	-	-	-	-	0.03	0.00	-	-
Totals	816.37	1314.01	1229.67	870.73	1610.64	3731.34	3.89	3.94	1.32	5.76	1.32	5.76	1.15	5.02	11.67	50.94	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² Combustion emissions from pilot fuel combustion only

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Ox	C	0	V	DC	S	Эx	Pl	M1	PM	[10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	3.10	13.58	3.10	13.58	1.36	5.97	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.006	0.026	-	-
ENG-2	3.10	13.58	3.10	13.58	1.36	5.97	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.006	0.026	-	-
ENG-3	3.10	13.58	3.10	13.58	1.36	5.97	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.006	0.026	-	-
ENG-4	3.10	13.58	3.10	13.58	1.36	5.97	0.21	0.92	0.16	0.70	0.16	0.70	0.16	0.70	0.006	0.026	-	-
HT-101	0.64	2.82	0.54	2.37	0.04	0.16	0.004	0.02	0.05	0.21	0.05	0.21	0.04	0.16	-	-	-	-
HT-801	0.64	2.82	0.54	2.37	0.04	0.16	0.004	0.02	0.05	0.21	0.05	0.21	0.04	0.16	-	-	-	-
HT-102	0.90	3.94	0.76	3.31	0.05	0.22	0.005	0.02	0.07	0.30	0.07	0.30	0.05	0.22	-	-	-	-
AR-1	1.95	8.54	1.64	7.17	0.11	0.47	0.01	0.05	0.15	0.65	0.15	0.65	0.11	0.49	-	-	-	-
DR-1	0.27	1.17	0.23	0.99	0.01	0.06	0.002	0.01	0.02	0.09	0.02	0.09	0.02	0.07	-	-	-	-
HT-103	0.90	3.94	0.76	3.31	0.05	0.22	0.01	0.02	0.07	0.30	0.07	0.30	0.05	0.22	-	-	-	-
HT-802	0.57	2.51	0.48	2.11	0.03	0.14	0.003	0.02	0.04	0.19	0.04	0.19	0.03	0.14	-	-	-	-
AR-2	2.21	9.68	1.86	8.14	0.12	0.53	0.01	0.06	0.17	0.74	0.17	0.74	0.13	0.55	-	-	-	-
DR-2	0.23	1.01	0.19	0.85	0.01	0.06	0.001	0.01	0.02	0.08	0.02	0.08	0.01	0.06	-	-	-	-
HT-803	0.57	2.51	0.48	2.11	0.03	0.14	0.003	0.02	0.04	0.19	0.04	0.19	0.03	0.14	-	-	-	-
DEHY-1						Emission	ns are cont	rolled by F	L-2. Emiss	sions are re	epresente	d under Fl	L-2.					
AM-1					Emissic	ons are con	trolled by	thermal ox	idizer, TO	-1. Emissio	ons are rep	presented	under TO	-1.				
DEHY-2					Emissic	ons are con	trolled by	thermal ox	idizer, TO	-2. Emissic	ons are rep	presented	under TO	-2.				
AM-2					Emissic	ons are con	trolled by	thermal ox	idizer, TO	-2. Emissio	ons are rep	presented	under TO	-2.	-			
TO-1	1.39	6.28	1.29	5.81	0.363	1.59	12.29	53.84	0.49	2.16	0.49	2.16	0.37	1.62	0.13	0.58	-	-
TO-2	2.17	9.71	2.02	9.00	3.78	16.55	9.36	41.01	0.42	1.84	0.42	1.84	0.31	1.38	0.10	0.44	-	-
FL-1 ²	0.04	0.16	0.03	0.13	0.002	0.01	0.0002	0.001	-	-	-	-	-	-	0.0001	0.001	-	-
FL-2	1.70	7.44	3.33	14.60	3.49	15.29	0.100	0.43	-	-	-	-	-	-	0.001	0.01	-	-
FL-3 ²	0.05	0.20	0.04	0.17	0.003	0.01	0.0003	0.001	-	-	-	-	-	-	0.0001	0.001	-	-
VCU-1	1.24	5.42	2.47	10.81	8.11	35.53	0.0006	0.0025	0.02	0.10	0.02	0.10	0.02	0.07	0.00001	0.00004	-	-
TK-702 A-F				Em	issions are	controlled	by VCU-1.	Controlled	emission	s are prese	ented und	er VCU-1.						
TK-701				Em	issions are	controlled	by VCU-1.	Controlled	emission	s are prese	ented und	er VCU-1.						
TL-1	-	-	-	-	69.36	4.07	-	-	-	-	-	-	-	-	0.000	0.000	-	-
TL-2	-	-	-	-	129.71	0.22	-	-	-	-	-	-	-	-	0.000	0.000	-	-
FUG	-	-	-	-	7.89	34.54	-	-	-	-	-	-	-	-	0.04	0.16	-	-
MAL (FL-1,2,3)	517.79	6.21	1033.70	12.40	498.35	5.98	3.000	0.04	-	-	-	-	-	-	0.032	0.0004	-	-
Malfunction	-	-	-	-	-	4.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	545.66	128.70	1062.75	139.97	726.99	143.82	25.64	99.23	2.25	9.86	2.25	9.86	1.85	8.09	0.33	1.30	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC). ² Pilot and sweep gas emissions only

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/adb/permit/adb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	2	Ox		0	VOC			Ox		M^2		(10 ²		2.5 ²		₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
TO-1 SSM	-	-	-	-	19.49	1.71	-	-	-	-	-	-	-	-	6.54	0.57	-	-
TO-2 SSM	-	-	-	-	190.32	16.67	-	-	-	-	-	-	-	-	0.05	0.00	-	-
DEHY-1 SSM	-	-	-	-	193.81	16.98	-	-	-	-	-	-	-	-	0.05	0.005	-	-
FL-1	103.56	4.97	206.74	9.92	99.67	4.78	0.60	0.01	-	-	-	-	-	-	0.01	0.0003	-	-
FL-2	173.8	9.34	346.97	18.64	168.06	9.68	1.03	0.080	-	-	-	-	-	-	0.01	0.001	-	-
FL-3	143.78	7.94	287.04	15.86	139.34	8.32	10.11	0.89	-	-	-	-	-	-	0.11	0.009	-	-
VCU-1 SSM	-	-	-	-	405.54	13.85	-	-	-	-	-	-	-	-	0.0003	0.00001	-	-
SSM	-	-	-	-	66.43	12.12	-	-	-	-	-	-	-	-	0.003	0.0006	-	-
Totals	421.19	22.48	840.79	44.61	1282.65	84.12	11.74	0.97	-	-	-	-	-	-	6.77	0.59	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG-1	ENG-1	V	No	26.00	1085.00	172.77	N/A	N/A	130.16	1.29
ENG-2	ENG-2	V	No	26.00	1085.00	172.77	N/A	N/A	130.16	1.29
ENG-3	ENG-3	V	No	26.00	1085.00	172.77	N/A	N/A	130.16	1.29
ENG-4	ENG-4	V	No	26.00	1085.00	172.77	N/A	N/A	130.16	1.29
HT-101	HT-101	V	No	33.00	624.00	54.88	N/A	N/A	26.30	1.63
HT-801	HT-801	V	No	33.00	624.00	58.50	N/A	N/A	28.04	1.63
HT-102	HT-102	V	No	50.67	624.00	82.82	N/A	N/A	17.71	2.44
AR-1	AR-1	V	No	33.83	624.00	145.37	N/A	N/A	40.42	2.14
DR-1	DR-1	V	No	25.00	624.00	19.99	N/A	N/A	6.36	2.00
HT-103	HT-103	V	No	49.92	624.00	82.83	N/A	N/A	17.71	2.44
HT-802	HT-802	V	No	42.40	624.00	42.73	N/A	N/A	14.16	1.96
AR-2	AR-2	V	No	32.25	624.00	164.87	N/A	N/A	37.06	2.38
DR-2	DR-2	V	No	25.79	624.00	17.23	N/A	N/A	12.98	1.30
HT-803	HT-803	V	No	42.40	624.00	58.50	N/A	N/A	19.39	1.96
TO-1	TO-1	V	No	42.50	1600.00	274.45	N/A	N/A	7.21	6.96
TO-2	TO-2	V	No	61.17	1600.00	252.82	N/A	N/A	53.19	2.46
TO-1 SSM	TO-1 SSM	V	No	40.00	120.00	22.99	N/A	N/A	467.35	0.25
TO-2 SSM	TO-2 SSM	V	No	16.00	120.00	0.60	N/A	N/A	7.02	0.33
DEHY-1 SSM	DEHY-1 SSM	V	No	11.00	120.00	1.65	N/A	N/A	19.34	0.33
FL-1	FL-1	V	No	76.83	1832.00	209.62	N/A	N/A	65.62	34.37
FL-2	FL-2	V	No	90.75	1832.00	9.20	N/A	N/A	65.62	38.46
FL-3	FL-3	V	No	55.00	1832.00	82.48	N/A	N/A	65.62	27.37
VCU-1	VCU-1	v	No	33.17	1400.00	3.23	N/A	N/A	0.14	5.33
TK-702 A-F	ТК-702 А-F	V	No	32.00	Ambient	1.12	N/A	N/A	0.0033	0.003
TK-701	ТК-701	v	No	32.00	Ambient	0.003	N/A	N/A	0.0033	0.003
TL-1	TL-1	V	No	12.00	Ambient	0.98	N/A	N/A	0.0033	0.25
TL-2	TL-2	V	No	12.00	Ambient	0.001	N/A	N/A	0.0033	0.25
FUG	FUG	V	No	3.28	Ambient	0.38	N/A	N/A	0.0033	0.003

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. In the short excess of this pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formak Ø H		Benz ☑ H		Tolu ☑ H		Acetale I E		Acro I H			lene HAP	Provide Polluta HAP or		Provide Pollutan HAP or	nt Name Here TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG-1	ENG-1	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01				
ENG-2	ENG-2	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01				
ENG-3	ENG-3	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01				
ENG-4	ENG-4	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01				
HT-101	HT-101	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
HT-801	HT-801	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
HT-102	HT-102	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
AR-1	AR-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
DR-1	DR-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
HT-103	HT-103	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
HT-802	HT-802	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
AR-2	AR-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
DR-2	DR-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
HT-803	HT-803	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
DEHY-1	DEHY-1			Emi	ssions a	e control	led by fla	are, FL-2.	Emissior	ns are pre	sented un	der FL-2a							
AM-1	AM-1		E	missions	are cont	trolled by	thermal	oxidizer,	TO-1. Er	nissions a	re presen	ted under	r TO-1.						
DEHY-2	DEHY-2		E	missions	are cont	trolled by	thermal	oxidizer,	TO-2. Er	nissions a	re presen	ted under	r TO-2.						
AM-2	AM-2		I	Emissions	are con	trolled by	thermal	oxidizer,	TO-2. Er	missions a	re presen	ted unde	r TO-2.						
TO-1	TO-1	0.15	0.65	-	-	0.15	0.65	-	-	-	-	-	-	-	-				
TO-2	TO-2	0.60	2.64	-	-	0.60	2.64	-	-	-	-	-	-	-	-				
TO-1 SSM	TO-1 SSM	7.44	0.65	-	-	7.44	0.65	-	-	-	-	-	-	-	-				
TO-2 SSM	TO-2 SSM	22.02	1.93	-	-	22.02	1.93	-	-	-	-	-	-	-	-				
DEHY-1 SSM	DEHY-1 SSM	18.75	1.64	-	-	18.75	1.64	-	-	-	-	-	-	-	-				
FL-1	FL-1	0.05	0.00	-	-	0.05	0.00	-	-	-	-	-	-	-	-				
FL-2	FL-2	0.09	0.01	-	-	0.47	1.66	-	-	-	-	-	-	-	-				
FL-3	FL-3	0.24	0.03	-	-	0.24	0.03	-	-	-	-	-	-	-	-				
VCU-1	VCU-1	0.05	0.22	-	-	0.05	0.22	-	-	-	-	-	-	-	-				
TK-702 A-F	TK-702 A-F		Emissi	ons are co	ontrolled	by Vapor	Combu	stion Unit	, VCU-1.	Emission	s are repr	esented u	under VC	J-1.					
TK-701	TK-701		Emissi	ons are co	ontrolled	by Vapor	Combu	stion Unit	, VCU-1	Emission	s are repr	esented u	under VC	J-1.					
TL-1	TL-1	0.66	0.05	-	-	0.66	0.05	-	-	-	-	-	-	-	-				
TL-2	TL-2	8.94	0.01	-	-	8.94	0.01	-	-	-	-	-	-	-	-				
FUG	FUG	0.01	0.03	-	-	0.01	0.03	-	-	-	-	-	-	-	-				
SSM	SSM	8.94	0.01	-	-	0.02	0.00	-	-	-	-	-	-	-	-				
MAL	MAL	0.24	0.00	-	-	0.24	0.00	-	-	-	-	-	-	-	-				
Total	s:	69.61	14.11	0.50	2.17	59.67	9.61	0.03	0.11	0.53	2.33	0.33	1.43	0.01	0.05				

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Specif	y Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (MMSCF/hr)	Annual Usage (MMSCF/yr)	% Sulfur	% Ash
ENG-1	Natural Gas	Pipeline Quality Natural Gas	1081.8	14.69	128.69	N/A	N/A
ENG-2	Natural Gas	Pipeline Quality Natural Gas	1081.8	14.69	128.69	N/A	N/A
ENG-3	Natural Gas	Pipeline Quality Natural Gas	1081.8	14.69	128.69	N/A	N/A
ENG-4	Natural Gas	Pipeline Quality Natural Gas	1081.8	14.69	128.69	N/A	N/A
HT-101	Natural Gas	Pipeline Quality Natural Gas	1081.8	6.44	56.44	N/A	N/A
HT-801	Natural Gas	Pipeline Quality Natural Gas	1081.8	6.44	56.44	N/A	N/A
HT-102	Natural Gas	Pipeline Quality Natural Gas	1081.8	9.00	78.87	N/A	N/A
AR-1	Natural Gas	Pipeline Quality Natural Gas	1081.8	19.50	170.78	N/A	N/A
DR-1	Natural Gas	Pipeline Quality Natural Gas	1081.8	2.68	23.48	N/A	N/A
HT-103	Natural Gas	Pipeline Quality Natural Gas	1081.8	9.00	78.87	N/A	N/A
HT-802	Natural Gas	Pipeline Quality Natural Gas	1081.8	5.73	50.21	N/A	N/A
AR-2	Natural Gas	Pipeline Quality Natural Gas	1081.8	22.11	193.69	N/A	N/A
DR-2	Natural Gas	Pipeline Quality Natural Gas	1081.8	2.31	20.24	N/A	N/A
HT-803	Natural Gas	Pipeline Quality Natural Gas	1081.8	5.73	50.21	N/A	N/A
TO-1	Natural Gas	Pipeline Quality Natural Gas	1081.8	0.47	4.12	N/A	N/A
TO-2	Natural Gas	Pipeline Quality Natural Gas	1081.8	0.47	4.12	N/A	N/A
FL-1	Natural Gas	Pipeline Quality Natural Gas	1081.8	0.36	3.15	N/A	N/A
FL-2	Natural Gas	Pipeline Quality Natural Gas	1081.8	0.51	4.47	N/A	N/A
FL-3	Natural Gas	Pipeline Quality Natural Gas	1081.8	0.46	4.03	N/A	N/A
VCU-1	Natural Gas	Pipeline Quality Natural Gas	1081.8	0.01	0.11	N/A	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-702-A	40400311	Oil	Mixed Hydrocarbons	0.55	72.44	65	4.47	100	8.96
ТК-702-В	40400311	Oil	Mixed Hydrocarbons	0.55	72.44	65	4.47	100	8.96
TK-702-C	40400311	Oil	Mixed Hydrocarbons	0.55	72.44	65	4.47	100	8.96
TK-702-D	40400311	Oil	Mixed Hydrocarbons	0.55	72.44	65	4.47	100	8.96
ТК-702-Е	40400311	Oil	Mixed Hydrocarbons	0.55	72.44	65	4.47	100	8.96
TK-702-F	40400311	Oil	Mixed Hydrocarbons	0.55	72.44	65	4.47	100	8.96
TK-701	40400311	Produced Water	Water	8.30	56.01	65	21.67	100	12.23

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Cap	acity	Diameter (M)	Vapor Space	Co (from Ta		Paint Condition (from Table	Annual Throughput	Turn- overs
			LK below)	LK below)	(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
TK-702-A	2016	Oil			500	79.49	3.66		WH	WH	Good	15,330,000	906
ТК-702-В	2016	Oil			500	79.49	3.66		WH	WH	Good	15,330,000	906
TK-702-C	2016	Oil			500	79.49	3.66		WH	WH	Good	15,330,000	906
TK-702-D	2016	Oil			500	79.49	3.66		WH	WH	Good	15,330,000	906
TK-702-E	2016	Oil			500	79.49	3.66		WH	WH	Good	15,330,000	906
TK-702-F	2016	Oil			500	79.49	3.66		WH	WH	Good	15,330,000	906
TK-701	2016	Produced Water			500	79.49	3.66		WH	WH	Good	2,301,523	133

Description

Natural Gas

Quantity

(specify units) 510 MMSCFD

6,000 BPD

75,000 BPD

Phase

Gas

Liquid

Liquid

Mixed Hydrocarbons

Natural Gas Liquids

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Internals Frocesseu and Froduceu (Use additional sheets as necessary.)											
	Materi	al Processed		Μ	Iaterial Produced						
	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition						
	Mixed Hydrocarbons	Gas	510 MMSCFD	Natural Gas	Mixed Hydrocarbons	Γ					

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Oil

Natural Gas Liquids

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy			
N/A - No Continuous Emissions Measurement equipment at this facility.												

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time					
	N/A - No Parametric Emissions Measurement equipment at this facility.												

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO2 ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
ENG-1	mass GHG	9768.01	0.02	0.18								
-	CO ₂ e	9768.01	5.49	4.60								
ENG-2	mass GHG CO ₂ e	9768.01 9768.01	0.02 5.49	0.18 4.60								
ENG-3	mass GHG	9768.01	0.02	0.18								
EING-5	CO ₂ e	9768.01	5.49	4.60								
ENG-4	mass GHG	9768.01	0.02	0.18								
ENG-4	CO ₂ e	9768.01	5.49	4.60								
UT 101	mass GHG	3571.12	0.01	0.07								
HI-101	CO ₂ e	3571.12	2.01	1.68								
LIT-901	mass GHG	3571.12	0.01	0.07								
HI-801	CO ₂ e	3571.12	2.01	1.68								
HT-102	mass GHG	4990.34	0.01	0.09								
111-102	CO ₂ e	4990.34	2.80	2.35								
AR-1	mass GHG	10805.57	0.02	0.20								
AN-1	CO ₂ e	10805.57	6.01	5.09								
DR-1	mass GHG	1485.83	0.00	0.03				 	 			
	CO ₂ e	1485.83	0.83	0.70								
HT-103	mass GHG	4990.34	0.01	0.09								
	CO ₂ e	4990.34	2.80	2.35								
HT-802	mass GHG	3176.60	0.01	0.06				 	 	 		
	CO ₂ e	3176.60	1.78	1.50								
HT-101 HT-801 HT-102 AR-1 DR-1 HT-103 HT-802 AR-2 DR-2 HT-803 HT-803	mass GHG	12255.54	0.02	0.23								
	CO ₂ e	12255.54	6.88	5.77								
DR-2	mass GHG	1280.89	0.00	0.02	-				 -			
	CO ₂ e mass GHG	1280.89	0.72	0.60								
HT-803	CO ₂ e	3176.60 3176.60	1.78	1.50					 			
	mass GHG	5021.08	0.01	0.09								
TO-1	CO ₂ e	5021.08	2.82	2.37					 			
	mass GHG	5021.08	0.01	0.09								
TO-2	CO ₂ e	5021.08	2.56	2.37	-				 -			
	mass GHG	30.18	0.00	0.00								
FL-1	CO ₂ e	30.18	0.02	0.00								
	mass GHG	5200.20	0.01	0.10								
FL-2	CO ₂ e	5200.20	2.92	2.45								
	mass GHG	1895.71	0.00	0.00								
FL-3	CO ₂ e	1895.71	1.06	0.89								
	mass GHG	3642.85	0.01	0.07								
VCU-1	CO ₂ e	3642.85	2.05	1.72								

TK-702	mass GHG	2.08	0.11	42.32						
A-F	CO ₂ e	2.80	32.63	1057.88						
-	mass GHG	0.91	0.00	9.59						
TL-1	CO ₂ e	0.91	0.00	239.70						
T L 2	mass GHG	0.03	0.00	0.02						
TL-2	CO ₂ e	0.03	0.00	0.44						
FUC	mass GHG	2.08	0.00	99.47						
FUG	CO ₂ e	2.08	0.00	2486.65						
Total	mass GHG	109192.17	0.31	111.06						
	CO ₂ e	109192.17	93.69	3836.11						

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

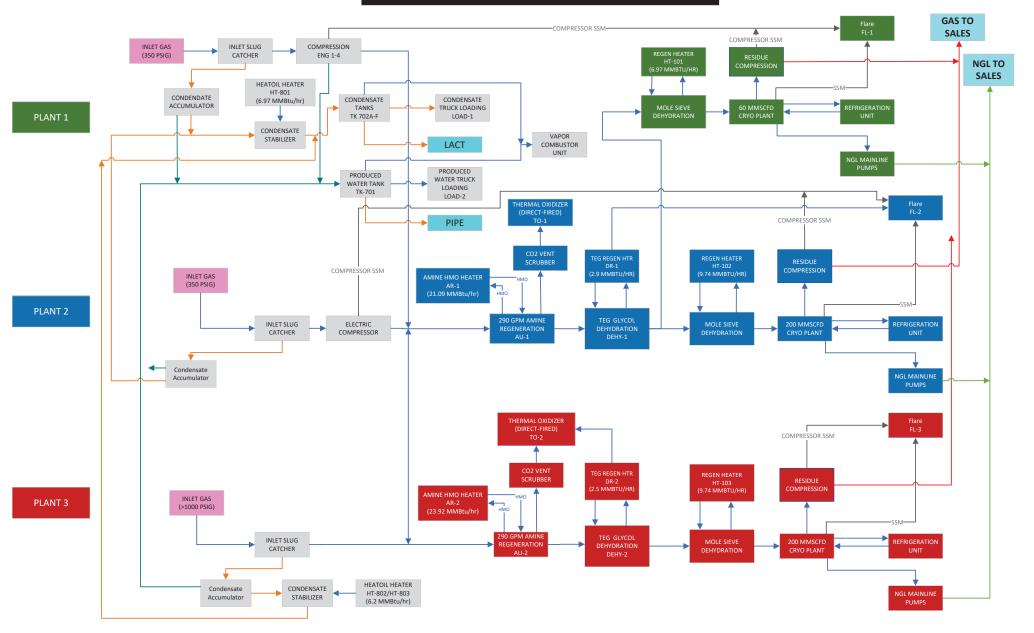
The **<u>Process Summary</u>** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

DLK Black River Midstream, LLC (DLK) owns and operates the Black River Gas Processing Plant, located 2.1 miles southwest of Loving, New Mexico in Eddy County. The facility is currently permitted under NSR #6567-M8. With the issuance of this NSR permit, the facility exceeds the Title V operating thresholds, and therefore DLK is submitting this initial Title V application pursuant 20.2.70.300.B(1) within twelve (12) months after the source commences operation as a Part 70 source.

Black River Gas Processing Plant consists of Plants 1, 2, and 3. The facility utilizes amine sweetening units to remove hydrogen sulfide (H₂S) and carbon dioxide (CO₂) from raw natural gas, followed by dehydration to eliminate moisture. The sweetened gas then enters cryogenic units, where it is cooled to separate valuable natural gas liquids (NGLs) from the gas stream and transported in a sales line. Produced water and condensate are transported off the site via truck loadout.

Flares (FL-1, FL-2b, FL-3) control the startup, shutdown, maintenance, and upset conditions. SSM emissions from the flare result from maintenance activities per manufacturer recommendations or other preventative measures. The maintenance activities include, but are not limited to compressor catalyst changes, blowdowns for associated maintenance throughout the facility, instrument calibrations, and process safety device maintenance.

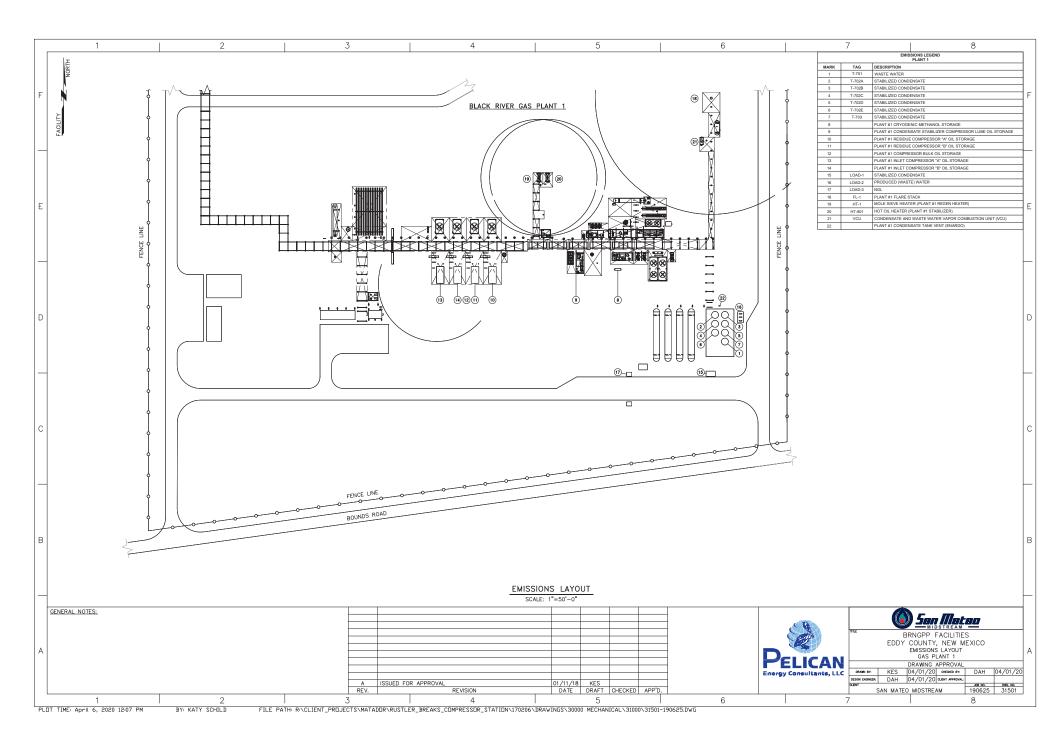

Section 4

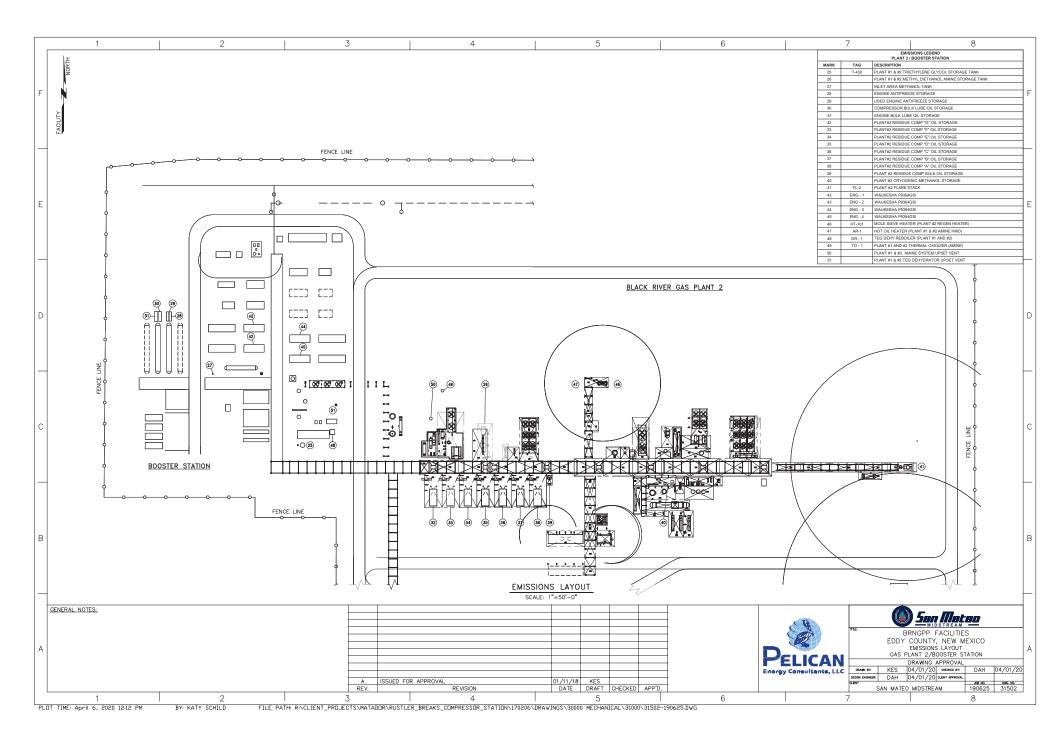
Process Flow Sheet

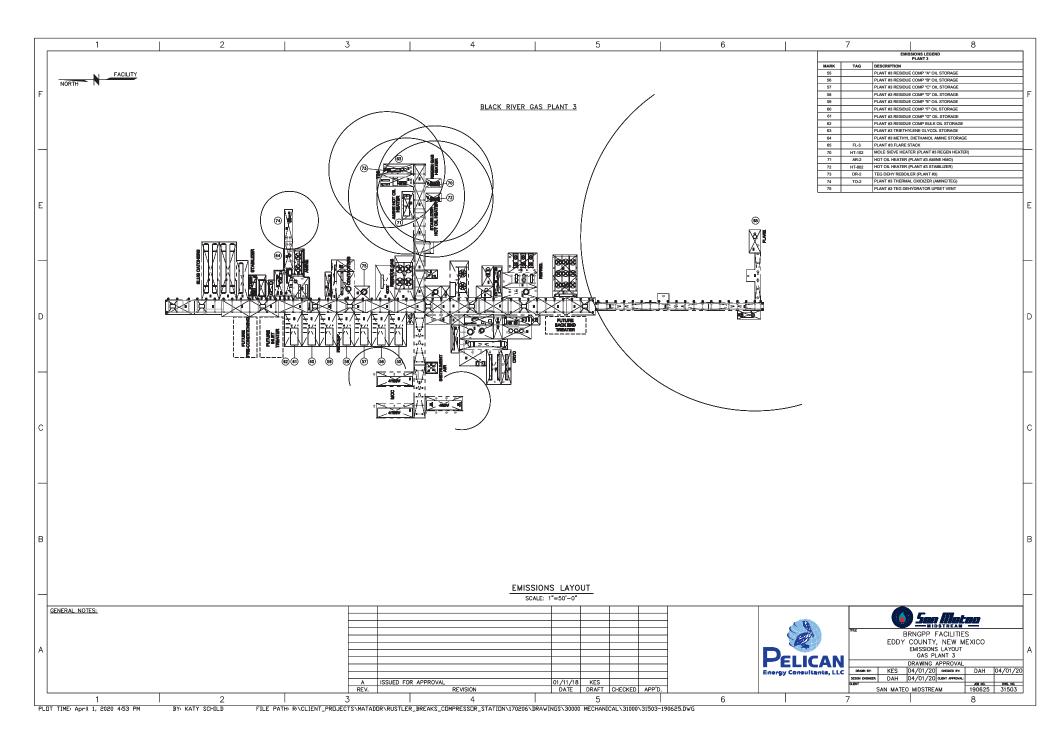
A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is attached to this application.

BLACK RIVER GAS PROCESSING PLANT




Section 5


Plot Plan Drawn to Scale

A **plot plan drawn to scale** showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached to the application.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and € NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutant.

Engines (Units ENG-1, ENG-2, ENG-3, ENG-4)

NO_x, CO, and VOC were calculated using emission factors provided by the manufacturer and catalyst specifications. PM, SO₂, and hazardous emissions were calculated using AP-42 factors for internal natural gas combustion sources in Table 3.2-2. As a conservative measure, it was assumed that PM(Total) = PM₁₀ and PM (condensable) = PM_{2.5}. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Heaters (Units HT-101, HT-801, HT-102, HT-103, HT-802, HT-803)

NO_x, CO, VOC, PM, SO₂, and hazardous emissions were calculated using AP-42 factors for external natural gas combustion sources in Tables 1.4-1, 1.4-2, and 1.4-3. As a conservative measure, it was assumed that PM(Total) = PM_{10} and PM (condensable) = $PM_{2.5}$. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Reboilers (Units AR-1, AR-2, DR-1, DR-2)

NO_x, VOC, PM, SO₂, and hazardous emissions were calculated using AP-42 factors for external natural gas combustion sources in Tables 1.4-1, 1.4-2, and 1.4-3. The CO emissions were calculated based on the manufacturer spec sheet with a safety factor of 50%. As a conservative measure, it was assumed that PM(Total) = PM_{10} and PM (condensable) = $PM_{2.5}$. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Glycol Dehydrators (Units DEHY-1, DEHY-2)

All emissions from these units are calculated using ProMax. Flash emissions from glycol dehydrators will be routed to the facility fuel system or back to the process. The regenerator emissions from DEHY-1 are routed to the FL-2. Controlled emissions from this unit will be represented under FL-2a. The regenerator emissions from DEHY-2 are routed to the TO-2. Controlled emissions from this unit will be represented under TO-2. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Glycol Dehydrator SSM (DEHY-1 SSM)

This accounts for emissions during startup shutdown and maintenance and upset conditions from the vapor combustion unit. VOC, H₂S, and HAP emissions were calculated using streams from ProMax.

Amine Vents (Units AM-1, AM-2)

All emissions from these units are calculated using ProMax. The amine flash is routed back to the process. The regenerator emissions from both amine units are routed to the thermal oxidizers, TO-1 and TO-2 respectively. Controlled emissions are represented under units TO-1 and TO-2. Emissions during maintenance and malfunction are accounted for in the thermal oxidizer SSM (TO-1 SSM/M and TO-2 SSM/M). Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Flare (Unit FL-2a)

This flare controls the DEHY-1 condenser stream. The basis of the flaring calculations is the expected composition and maximum expected volumes of the gas. The SO₂ composition is based on a 98% molar conversion of H_2S to SO₂. NO_X and CO emissions for both scenarios are calculated using AP-42 Table 13.5-1 emission factors. VOC emissions are calculated from the VOC volume fraction of the inlet gas to the flare, the specific volume of the VOC fraction of the inlet gas, and a 98% destruction removal efficiency. The ProMax inlet gas analysis can be found in Section 7. Emissions of greenhouse gases are calculated using methodology from 40 CFR Subpart 98.233(n).

Flare SSM (Units FL-1, FL-2b, FL-3)

The plant flares are used for flaring during startup, shutdown, maintenance and upset conditions. The only steady state conditions associated with these flares are from the pilot and purge gas streams. SSM from the plant flares is due to various

DLK Black River Midstream, LLC

Black River Gas Processing Plant

maintenance activities throughout the facility per manufacturer-recommended maintenance schedules. These maintenance activities include but are not limited to compressor catalyst changes, blowdowns for associated maintenance throughout the facility, instrumental calibrations, and process safety device maintenance.

The basis of the flaring calculations is the expected composition and maximum expected volumes of the gas. The SO₂ composition is based on a 98% molar conversion of H_2S to SO₂. NO_X and CO emissions for both scenarios are calculated using AP-42 Table 13.5-1 emission factors. VOC emissions are calculated from the VOC volume fraction of the inlet gas to the flare, the specific volume of the VOC fraction of the inlet gas, and a 98% destruction efficiency. The ProMax inlet gas analysis can be found in Section 7. Emissions of greenhouse gases are calculated using methodology from 40 CFR Subpart 98.233(n).

Thermal Oxidizers (Units TO-1 and TO-2)

NO_x and CO emissions were updated using the manufacturer specification sheet. PM and SO₂ emissions were calculated using AP-42 factors for external natural gas combustion sources in Tables 1.4-1 and 1.4-2. HAP and VOC emissions were calculated using streams from ProMax. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Thermal Oxidizers SSM (Unit TO-1 SSM, TO-2 SSM)

This accounts for emissions during startup shutdown and maintenance and upset conditions from the thermal oxidizer. VOC, H₂S, and HAP emissions were calculated using streams from ProMax. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Vapor Combustion Unit (Unit VCU-1)

NO_x, CO, and SO₂ emissions were calculated using AP-42 factors for external natural gas combustion sources in Tables 1.4-1 and 1.4-2. HAP and VOC emissions were calculated using streams from ProMax. Greenhouse gas emissions were estimated using methodology from 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Condensate Storage Tanks (Unit TK-702-A-F)

These units represent six (6) connected 500 bbl condensate storage tanks. Uncontrolled emissions are calculated using ProMax and an annual throughput of 6,000 bbl/day. Emissions will be routed to the vapor combustion unit, unit VCU-1.

Produced Water Tank (Unit TK-701)

Unit TK-701 represents one (1) 500 bbl produced water tank. Uncontrolled emissions are calculated using ProMax and an annual throughput of 80 bbl/day. Emissions will be routed to the vapor combustion unit, unit VCU-1.

Loading Emissions (Unit TL-1, TL-2)

Condensate and produced water are transferred out of the facility via LACT. Loading emissions are calculated for 7 days of condensate and produced water loading in case the LACT is down. Emissions from the loading of condensate and produced water out of the facility by truck were estimated using Equation 1 in AP-42 Section 5.2-4.

SSM (Units SSM-1, SSM-2)

SSM from the pig receiver and launchers blowdowns. Emissions are based on the volume, temperature, and pressure of the gas vented to the atmosphere during these operations.

Fugitive Emissions (Unit FUG)

Fugitive emissions were estimated using emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, November 1995, EPA-453/R-95-017. Component counts were estimated as previously permitted. The percent VOC and HAPs are from the inlet gas analysis dated 8/22/2012. The percent VOC in liquids is conservatively assumed to be 100%. The percent H₂S in liquids is zero. The percent of HAPs in the liquids is estimated based on the ratio of VOC and HAP in the previous gas analysis. Total HAPs is the sum of n-Hexane, Benzene, Toluene, Ethylbenzene, and Xylene.

Haul Road Emissions (Unit HAUL)

Unpaved haul road emissions were estimated based on Equations 1a and 2 of AP-42 Section 13.2.1 (1/11). Particle size multipliers and constants for these equations are found in AP-42 Table 13.2.2-2, Industrial Roads. Silt content is taken from AP-42 Table 13.2.2-1 and annual wet days is from AP-42 Figure 13.2.2-1. The control efficiency is based on the NMED guidance document entitled Department Accepted Values For: Aggregate Handling, Storage Pile, and Haul Road Emissions. The length of the haul road is estimated from Google Earth.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMA_

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following I By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

Manufacturer's Data

•AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html

•EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

•40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
 Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions).

Uncontrolled Emissions																																		
		N	IO _X	0	0	VC	00	Т	SP	PN	И ₁₀	P	M _{2.5}	S	6O ₂	H	₂S	Tota	I HAP	Forma	ldehyde	Ben	zene	Τοι	ulene	Acetal	dehyde	Acr	olein	Xyl	ene	CO ₂	N ₂ O	CH ₄
Unit ID	Equipment Description	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ton/yr	ton/yr	ton/yr
ENG-1	Waukesha P9394GSI	72.42	317.21	47.12	206.40	2.58	11.30	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	1.07	4.70	0.84	3.69	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01	9768.01	0.02	0.18
ENG-2	Waukesha P9394GSI	72.42	317.21	47.12	206.40	2.58	11.30	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	1.07	4.70	0.84	3.69	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01	9768.01	0.02	0.18
ENG-3	Waukesha P9394GSI	72.42	317.21	47.12	206.40	2.58	11.30	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	1.07	4.70	0.84	3.69	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01	9768.01	0.02	0.18
ENG-4	Waukesha P9394GSI	72.42	317.21	47.12	206.40	2.58	11.30	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	1.07	4.70	0.84	3.69	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.01	9768.01	0.02	0.18
HT-101	Plant 1 - Mole Sieve Heater	0.64	2.82	0.54	2.37	0.04	0.16	0.05	0.21	0.05	0.21	0.04	0.16	0.004	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3571.12	0.01	0.07
HT-801	Plant 1 - Stabilizer Heater	0.64	2.82	0.54	2.37	0.04	0.16	0.05	0.21	0.05	0.21	0.04	0.16	0.004	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3571.12	0.01	0.07
HT-102	Plant 2 - Mole Sieve Heater	0.90	3.94	0.76	3.31	0.05	0.22	0.07	0.30	0.07	0.30	0.05	0.22	0.01	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4990.34	0.01	0.09
AR-1	Plant 2 - Amine Reboiler	1.95	8.54	1.64	7.17	0.11	0.47	0.15	0.65	0.15	0.65	0.11	0.49	0.01	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10805.57	0.02	0.20
DR-1	Plant 2 - Dehy Regen Heater	0.27	1.17	0.23	0.99	0.01	0.06	0.02	0.09	0.02	0.09	0.02	0.07	0.002	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1485.83	0.00	0.03
HT-103	Plant 3 - Mole Sieve Heater	0.90	3.94	0.76	3.31	0.05	0.22	0.07	0.30	0.07	0.30	0.05	0.22	0.01	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4990.34	0.01	0.09
HT-802	Plant 3 - Stabilizer Heater 1	0.57	2.51	0.48	2.11	0.03	0.14	0.04	0.19	0.04	0.19	0.03	0.14	0.003	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3176.60	0.01	0.06
AR-2	Plant 3 - Amine Reboiler	2.21	9.68	1.86	8.14	0.12	0.53	0.17	0.74	0.17	0.74	0.13	0.55	0.01	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11118.15	0.023	0.23
DR-2	Plant 3 - Dehy Regen Heater	0.23	1.01	0.19	0.85	0.01	0.06	0.02	0.08	0.02	0.08	0.01	0.06	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1162.01	0.00	0.02
HT-803	Plant 3 - Stabilizer Heater 2	0.57	2.51	0.48	2.11	0.03	0.14	0.04	0.19	0.04	0.19	0.03	0.14	0.00	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3176.60	0.01	0.06
DEHY-1	Plant 2 - Dehy Unit	-	-	-	-	193.81	848.88	-	-	-	-	-	-	-	-	0.0521	0.228	18.75	82.12	-	-	18.75	82.12	-	-	-	-	-	-	-	-	0.00	0.00	0.00
AM-1	Plant 2 - Amine Unit	-	-	-	-	19.49	85.35	-	-	-	-	-	-	-	-	6.54	28.64	7.58	33.22	-	-	7.58	33.22	-	-	-	-	-	-	-	-	0.00	0.00	0.00
DEHY-2	Plant 3 - Dehy Unit	-	-	-	-	190.32	833.59	-	-	-	-	-	-	-	-	0.0519	0.2275	18.68	81.82	-	-	18.68	81.82	-	-	-	-	-	-	-	-	0.00	0.00	0.00
AM-2	Plant 3 - Amine Unit	-	-	-	-	18.95	82.99	-	-	-	-	-	-	-	-	4.93	21.58	7.53	33.00	-	-	7.53	33.00	-	-	-	-	-	-	-	-	0.00	0.00	0.00
TO-1	Plant 2 -Thermal Oxidizer		•	-	•	-		-		-	-	-	•	No emis	sions from	n these unit i	n an uncon	trolled sc	enario	-		-	-	-		-	-	-	•	-	-	5021.08	0.01	0.09
TO-2	Plant 3 - Thermal Oxidizer													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													5021.08	0.01	0.09
TO-1 SSM	Plant 2 -Thermal Oxidizer SSM													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													0.00	0.00	0.00
TO-2 SSM	Plant 3 -Thermal Oxidizer SSM													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													0.00	0.00	0.00
DEHY-1 SSM	Plant 2 - Dehy Overhead SSM													No emis	sions from	n these unit i	n an uncon	trolled sc	enario															
FL-1	Plant 1 - SSM													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													84.92	0.00	0.00
FL-2	Plant 2 - Dehy-1 Control and SSM/M													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													5200.20	0.01	0.10
FL-3	Plant 3 - SSM													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													1895.71	0.00	0.04
VCU-1	Tanks Control													No emis	sions from	n these unit i	n an uncon	trolled sc	enario													3642.85	0.01	0.07
VCU-1 SSM	VCU-1 Downtime													No emis	sions from	n these unit i	n an uncon	trolled sc	enario															
TK-702A-F	Condensate Tanks	-	-	- 1	-	17.94	78.58	-	-	-	-	-	-	-	-	0.00	0.00	0.12	0.53	-	-	0.12	0.53	-	-	-	-	-	-	-	-	2.08	0.11	42.32
TK-701	Produced Water Tanks	-	-	-	-	387.60	1697.69	-	-	_	-	_	-	-	-	0.00	0.00		28.03	-	-	6.40	28.03	-	-	-	-	-	-	-	-	0.002	0.00	0.03
TL-1	Condensate Truck Loading	-	-	-	-	69.36	4.07	-	-	-	-	-	-	-	-	0.00	0.00	0.56	0.03	-	-	0.56	0.03	-	-	-	-	-	-	-	-	0.91	0.00	9.59
TL-2	Produced Water Truck Loading	-	-	-	-	129.71	0.22	-	-	-	-	-	-	-	-	0.00	0.00	2.15	0.00	-	-	2.15	0.00	-	-	-	-	-	-	-	-	0.03	0.00	0.02
FUG	Fugitives	-	-	-	-	7.89	34.54	-	-	-	-	-	-	-	-	0.04	0.16	0.01	0.03	-	-	-	-	-	-	-	-	-	-	-	-	2.08	0.00	99.47
SSM	Pig Launcher/Receiver (SSM 1 & 2)	-	-	-	-	66.43	12.12	-	-	-	-	-	-	-	-	0.003	0.001	0.02	0.00	-	-	0.02	0.004	-	-	-	-	-	-	-	-		-	-
MAL	Malfunction (FL-1, FL-2, FL-3)	517.79	6.21	1033.70	12.40	498.35	5.98	-	_	_	-	-	-	3.00	0.04	0.03	0.0004	0.24	0.003	_	-	0.24	0.003	-	-	-	-	-	-	-	-	_	-	-
	Totals				870.73		3731.34	1.32	5.76	1.32	5.76	1.15	5.02	3.89		11.67				3.37	14.77		258.88	0.03	0.11	0.53	2.33	0.33	1.43	0.01	0.05	107990.65	0.31	153.47

		N	Ox	C	0	VC	C	TS	SP	PN	I ₁₀	PN	M _{2.5}	S	O ₂	H	₂S	Tota	I HAP	Formal	dehyde	Ben	zene	Τοι	ulene	Acetal	dehyde	Acro	lein	Ху	lene	CO ₂	N ₂ O	CH ₄
Unit ID	Equipment Description	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr		ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	_	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ton/yr	ton/yr	ton/y
ENG-1	Waukesha P9394GSI	3.10	13.58	3.10	13.58	1.36	5.97	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.013	9768.01	0.02	0.18
ENG-2	Waukesha P9394GSI	3.10	13.58	3.10	13.58	1.36	5.97	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.013	9768.01	0.02	0.18
ENG-3	Waukesha P9394GSI	3.10	13.58	3.10	13.58	1.36	5.97	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.013	9768.01	0.02	0.18
ENG-4	Waukesha P9394GSI	3.10	13.58	3.10	13.58	1.36	5.97	0.16	0.70	0.16	0.70	0.16	0.70	0.21	0.92	0.01	0.03	0.35	1.55	0.12	0.54	0.01	0.03	0.01	0.03	0.13	0.58	0.08	0.36	0.003	0.013	9768.01	0.02	0.18
HT-101	Plant 1 - Mole Sieve Heater	0.64	2.82	0.54	2.37	0.04	0.16	0.05	0.21	0.05	0.21	0.04	0.16	0.004	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3571.12	0.01	0.07
HT-801	Plant 1 - Stabilizer Heater	0.64	2.82	0.54	2.37	0.04	0.16	0.05	0.21	0.05	0.21	0.04	0.16	0.004	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3571.12	0.01	0.07
HT-102	Plant 2 - Mole Sieve Heater	0.90	3.94	0.76	3.31	0.05	0.22	0.07	0.30	0.07	0.30	0.05	0.22	0.005	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4990.34	0.01	0.09
AR-1	Plant 2 - Amine Reboiler	1.95	8.54	1.64	7.17	0.11	0.47	0.15	0.65	0.15	0.65	0.11	0.49	0.01	0.05	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10805.57	0.02	0.20
DR-1	Plant 2 - Dehy Regen Heater	0.27	1.17	0.23	0.99	0.01	0.06	0.02	0.09	0.02	0.09	0.02	0.07	0.002	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1485.83	0.00	0.03
HT-103	Plant 3 - Mole Sieve Heater	0.90	3.94	0.76	3.31	0.05	0.22	0.07	0.30	0.07	0.30	0.05	0.22	0.01	0.02	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4990.34	0.01	0.09
HT-802	Plant 3 - Stabilizer Heater 1	0.57	2.51	0.48	2.11	0.03	0.14	0.04	0.19	0.04	0.19	0.03	0.14	0.003	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3176.60	0.01	0.06
AR-2	Plant 3 - Amine Reboiler	2.21	9.68	1.86	8.14	0.12	0.53	0.17	0.74	0.17	0.74	0.13	0.55	0.01	0.06	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12255.54	0.02	0.23
DR-2	Plant 3 - Dehy Regen Heater	0.23	1.01	0.19	0.85	0.01	0.06	0.02	0.08	0.02	0.08	0.01	0.06	0.001	0.01	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1280.89	0.00	0.02
HT-803	Plant 3 - Stabilizer Heater 2	0.57	2.51	0.48	2.11	0.03	0.14	0.04	0.19	0.04	0.19	0.03	0.14	0.003	0.02	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3176.60	0.01	0.06
DEHY-1	Plant 2 - Dehy Unit		1	8	I		1	• •							rolled by fla	re, FL-2. E	missions ar	e represe	ented und	er FL-2.					1		1		•			0.00	0.00	0.00
AM-1	Plant 2 - Amine Unit														by thermal of			•			D-1.											0.00	0.00	0.00
DEHY-2	Plant 3 - Dehy Unit											Emissi	ions are c	ontrolled I	oy thermal o	oxidizer, TC	D-2. Emissi	ons are re	epresente	ed under TO)-2.											0.00	0.00	0.0
AM-2	Plant 3 - Amine Unit											Emissi	ions are c	ontrolled I	y thermal c	oxidizer, TC	D-2. Emissi	ons are re	epresente	ed under TO)-2.											0.00	0.00	0.00
TO-1	Plant 2 -Thermal Oxidizer	1.39	6.28	1.29	5.81	0.36	1.59	0.49	2.16	0.49	2.16	0.37	1.62	12.29	53.84	0.13	0.58	0.15	0.664	-	-	0.15	0.664	-	-	-	-	-	-	-	- 1	5021.08	0.01	0.09
TO-2	Plant 3 -Thermal Oxidizer	2.17	9.71	2.02	9.00	3.78	16.55	0.42	1.84	0.42	1.84	0.31	1.38	9.36	41.01	0.10	0.44	0.52	2.30	-	-	0.52	2.30	-	-	-	-	-	-	-	-	5021.08	0.01	0.09
TO-1 SSM	Plant 2 -Thermal Oxidizer SSM	-	-	-	-	19.49	1.71	-	-	-	-	-	-	-	-	6.54	0.57	7.58	0.66	-	-	7.58	0.66	-	-	-	-	-	-	-	-	0.00	0.00	0.00
TO-2 SSM	Plant 3 -Thermal Oxidizer SSM	-	-	-	-	190.32	16.67	-	-	-	-	-	-	-	-	0.05	0.005	18.68	1.64	-	-	18.68	1.64	-	-	-	-	-	-	-	-	0.00	0.00	0.00
DEHY-1 SSM	Plant 2 - Dehy Overhead SSM	-	-	-	-	193.81	16.98	-	-	-	-	-	-	_	-	0.05	0.005	18.75	1.64			18.75	1.64	-	-	-	-	-	-	-	-	0.00	0.00	0.00
FL-1	Plant 1 - SSM	103.59	5.13	206.77	10.06	99.67	4.79	-	-	-	-	-	-	0.60	0.03	0.006	0.001	0.05	0.00	-	-	0.05	0.00	-	-	-	-	-	-	-	-	84.92	0.00	0.00
FL-2	Plant 2 - Dehy-1 Control and SSM/M	175.50	16.78	350.30	33.24	171.54	24.96	-	-	-	-	-	-	1.13	0.50	0.012	0.006	0.47	1.66	-	-	0.47	1.66	-	-	-	-	-	-	-	-	5200.20	0.01	0.10
FL-3	Plant 3 - SSM	143.83	8.15	287.08	16.03	139.34	8.34	-	-	-	-	-	-	10.11	0.89	0.11	0.01	0.23	0.03	-	-	0.23	0.03	-	-	-	-	-	-	-	-	1895.71	0.00	0.04
VCU-1	Tanks Control	1.24	5.42	2.47	10.81	8.11	35.53	0.02	0.10	0.02	0.10	0.02	0.07	0.0006	0.003	0.00001	0.00004	0.13	0.57	-	-	0.13	0.57	-	-	-	-	-	-	-	-	3642.85	0.01	0.07
VCU-1 SSM	VCU-1 Downtime	-	-	-	-	405.54	13.85		-	-	-	-	-	-	-	0.00030	0.00001	6.52	0.22	-	-	6.52	0.22	-	-	-	-	-	-	-	-	-	- '	-
TK-702A-F	Condensate Tanks		•	•	I	•	1	• •		ľ	Er	nissions a	are contro	lled by Va	por Combu	stion Unit, '	VCU-1. Em	issions a	re repres	ented unde	r VCU-1.			•	•	•		• •	•		•	2.08	0.11	42.3
TK-701	Produced Water Tanks													-	por Combu				-													0.00	0.00	0.03
TL-1	Condensate Truck Loading	-	-	-	-	69.36	4.07	I -	-	-	-	- 1	-	-	-	0.000	0.000	0.56	0.03	-	-	0.56	0.03	- 1	-	-	-	-	-	-	- 1	0.91	0.00	9.59
TL-2	Produced Water Truck Loading	-	-	-	-	129.71	0.22	-	-	-	-	-	-	-	-	0.0001	0.00000	2.15	0.004	-	-	2.15	0.004	-	-	-	-	-	-	-	-	0.03	0.00	0.02
FUG	Fugitives	-	-	-	-	7.89	34.54	-	-	-	-	-	-	-	-	0.037	0.162	0.01	0.03	-	-	-	-	-	-	-	-	-	-	-	-	2.08	0.00	99.4
SSM	Pig Launcher/Receiver (SSM 1 & 2)	-	-	-	-	66.43	12.12	-	-	-	-	-	-	-	-	0.003	0.001	0.02		-	-	0.02	0.00	-	-	-	-	-	-	-	-	-	-	-
MAL	Malfunction (FL-1, FL-2, FL-3)	517.79	6.21	1,033.70	12.40	498.35	5.98	-	-	-	-	-	-	3.00	0.04	0.032	0.000	0.24	0.00	-	-	0.24	0.00	_	-	-	-	-	-	-	-	-	1 -	-
MAL	Malfunction	-	-	-	-	-	4.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -	-
	Totals	966.80	150.95	1 903 50	184 39	2,009.64		2 25	9.86	2.25	9.86	1.85	8.09	37 38	100.22	7.10	1.89	57.40	15.68	0.50	2.17	56.09	9.55	0.03	0.11	0.53	2.33	0.33	1.43	0.01	0.05	109,246.91	0.31	153.4

Reciprocating Engines

Unit Numbers:	ENG-1		
Source description:	4	Stroke	Rich Burn Natural Gas Engine
Manufacturer:	Waukesh	а	
Model:	P9394GS	31	
Aspiration:	Turbo-cha	arged	

Engine Horsepower and RPM										
Engine speed:	1,200.0	rpm	Mfg data							
Sea level hp:	2,250.0	hp	Mfg data							

	Fu	uel Consur	nption	
Hours of Operation	8,760.0	Hours per	engine	
BSFC:	7,063.0	Btu/hp-hr	Mfd data for LHV	
Fuel heat value:	1,081.8	Btu/scf	Fuel Gas Analysis	
Heat input:	15.89	MMBtu/hr	BSFC * site hp	
Fuel consumption:	14.690	Mscf/hr	Heat input / fuel heat valu	le
Annual fuel usage:	128.69	MMscf/yr	8760 hrs/yr operation	

	Exhaust Parameters										
Exhaust temp (Tstk):	1085	°F	Mfg data								
Stack height:	26.00	ft	Engineering Estimate								
Stack diameter:	1.30	ft	Engineering Estimate								
Exhaust flow:	10366.0	acfm	Mfg data								
Exhaust flow:	172.77	acfs	Mfg data								
Exhaust velocity:	130.16	ft/sec	Exhaust flow ÷ stack area								

Emission Calculations

Uncontrolled Emissions³

NO _x	СО	NMNEHC	Total VOC	SO_2^{1}	H_2S^{1}			
14.6	9.5	0.35		0.042	0.001	g/hp-hr	Mfg data	Engine data
				5		gr Total Sulfur/Ms	Pipeline s	pecification
72.42	47.12	1.74	2.58	0.21	0.01	lb/hr	Hourly em	ission rate
317.21	206.40	7.60	11.30	0.92	0.03	tpy	Annual en	nission rate (8760 hrs/yr)
PM ²	НСОН	Total HAPs						
0.010				lb/MMBtu	AP-42 Tabl	e 3.2-2		
	0.17			g/hp-hr	Mfg data			
0.16	0.84	1.07		lb/hr	Hourly emis	ssion rate		
0.70	3.69	4.70		tpy	Annual emi	ssion rate (8	760 hrs/yr)	

Controlled Emissions

NO _x	CO	NMNEHC	Total VOC	SO ₂	H_2S		
0.63	0.63	0.25		0.042	0.001	g/hp-hr	Catalyst data with 25% safety factor
				5		gr Total Sulfur/Ms	Pipeline specification
3.100	3.100	1.240	1.36	0.210	0.006	lb/hr	Hourly emission rate
13.58	13.58	5.43	5.97	0.92	0.03	tpy	Annual emission rate (8760 hrs/yr)
PM²	HCOH³	Total HAPs					
0.010				lb/MMBtu	AP-42 Tabl	le 3.2-2	
	0.025			g/hp-hr	Mfg data		
0.16 0.70	0.12 0.54	0.35 1.55		lb/hr tpy	Hourly emis Annual emi	ssion rate ission rate (8	3760 hrs/yr)

¹SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

0.00714 lb S/Mscf * fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb SO2/hr

 $\rm H_2S$ emissions based on 0.25 g H2S/100 scf, or 0.0004 lb H2S/Mscf in fuel

0.0004 lb H2S/Mscf fuel * fuel consumption (Mscf/hr) = lb H2S/hr

² It is assumed that $TSP = PM_{10} = PM_{2.5}$. The emission factor used is filterable plus condensable PM.

³ Emission factor provided in Catalyst Spec sheet

Capacity:		MMBtu/hr. MMBtu/hr.	Nameplate I Heat rate, n		ate (20% sa	(Manufactu Ifety factor a	,		
Greenh	ouse Gases Emissions	from Natura	al Gas Com	oustion				Tier 1	
Subpart C- General S	tationary Fuel Combustic					10.0			
$CO_2 = 1 \times 10^{-3} \times Gas$	x EF (Eq. C-1a)						, , ,	er 1 Calculation ed for natural gas
where: $CO_2 = Annual CO_2$	here: $CO_2 = Annual CO_2$ mass emission from natural gas combustion (metric ton).							of any size	, in cases where the s obtained from fuel
Gas = Annual natura	al gas usage, from billing	records (mm	ıBtu)			Dilli	ig records i		erm or mmBtu.
	efault CO ₂ emission factor								
Table C1 of this su	ibpart =	53.02	kg Co2/mm	nBtu)					
Annual gas usage =									
	(o o=			. 1				I	_
	19.07	MMBtu	8,760	hrs	53.06	kg CO ₂	1		c Ton
		hr	1 1	yr		MMBtu	1000	K	g
$CO_2 =$		metric ton/yr							
002-	9,768.0 t	on (US)/yr							
$CH_4 \text{ or } N_2O = 1 \times 10-3$ where: $CH_4 \text{ or } N_2O = AnnualCH_4 = 1.0 \times 10-3 \text{ k}$	al Emission from the com	Eq. C-8b) bustion of na		From Table		ubpart C of F rpes of Fuel:			nd N2O Emission
	Annual gas usage =	19.07	MMBtu	8,760	hrs	1.00E-03	kg CH₄	1	Metric Ton
			hr		yr		MMBtu	1000	kg
CH ₄ =		netric ton/yr on (US)/yr							
		(c c), j:							
	Converted to CO _{2e}		0.18	25	=	4.6	tons/yr CO	2e	
N ₂ O = 1.0 x 10-4 kg N		From Table C Fuel: <u>Natural</u>		art C of Par	t 68 - Defau	ult CH4 and	N2O Emiss	sion Factors	for Various Types of
	40.07	MMBtu	0.700	han I	1.00E-04		4	Motri	c Ton
Annual gas usage =	19.07	IVIIVIDIU	8,760 hr	hrs	1.00E-04 yr	kg N ₂ O	1 MMBtu	1000	kg
			1 1	1	<u> </u>	1 1			
					I				
	N ₂ O=		ton (US)/yr	r					
	Converted to CO _{2e}		0.02	298	=	5.5	tons/yr CO	2e	
Total Engine CO _{2e}		9,778.1	tons/yr CO ₂	е					

Reciprocating Engines

Unit Numbers:	ENG-2		
Source description:	4	Stroke	Rich Burn Natural Gas Engine
Manufacturer:	Waukesha	a	
Model:	P9394GS		
Aspiration:	Turbo-cha	arged	

	Engine Horsepower and RPM											
Engine speed:	1,200.0	rpm	Mfg data									
Sea level hp:	2,250.0	hp	Mfg data									

	Fuel Consumption										
Hours of Operation	8,760.0	Hours per	engine								
BSFC:	7,063.0	Btu/hp-hr	Mfd data for LHV								
Fuel heat value:	1,081.8	Btu/scf	Fuel Gas Analysis								
Heat input:	15.89	MMBtu/hr	BSFC * site hp								
Fuel consumption:	14.690	Mscf/hr	Heat input / fuel heat value								
Annual fuel usage:	128.69	MMscf/yr	8760 hrs/yr operation								

Exhaust Parameters								
Exhaust temp (Tstk):	1085	°F	Mfg data					
Stack height:	26.00	ft	Engineering Estimate					
Stack diameter:	1.30	ft	Engineering Estimate					
Exhaust flow:	10366.0	acfm	Mfg data					
Exhaust flow:	172.77	acfs	Mfg data					
Exhaust velocity:	130.16	ft/sec	Exhaust flow ÷ stack area					

Emission Calculations

Uncontrolled Emissions³

NO _x	СО	NMNEHC	Total VOC	SO_2^{1}	H_2S ¹			
14.6	9.5	0.35		0.042	0.001	g/hp-hr	Mfg data	Engine data
				5		gr Total Sulfur/Msc	: Pipeline s	pecification
72.42	47.12	1.74	2.58	0.21	0.01	lb/hr	Hourly em	ission rate
317.21	206.40	7.60	11.30	0.92	0.03	tpy	Annual en	nission rate (8760 hrs/yr)
PM ²	НСОН	Total HAPs						
0.010				lb/MMBtu	AP-42 Tab	le 3.2-2		
	0.17			g/hp-hr	Mfg data			
0.16	0.84	1.07		lb/hr	Hourly emis	ssion rate		
0.70	3.69	4.70		tpy	Annual emi	ission rate (8	760 hrs/yr)	

Controlled Emissions

NO _x	CO	NMNEHC	Total VOC	SO ₂	H_2S		
0.63	0.63	0.25		0.042	0.001	g/hp-hr	Catalyst data with 25% safety factor
				5		gr Total	
				Ŭ		Sulfur/M	sc Pipeline specification
3.100	3.100	1.240	1.36	0.210	0.006	lb/hr	Hourly emission rate
13.58	13.58	5.43	5.97	0.92	0.03	tpy	Annual emission rate (8760 hrs/yr)
PM ²	HCOH ³	Total HAPs					
0.010			-	lb/MMBtu	AP-42 Tabl	le 3.2-2	
	0.025			g/hp-hr	Mfg data		
0.16	0.12	0.35		lb/hr	Hourly emis	ssion rate	
0.70	0.54	1.55		tpy	Annual emi	ission rate	(8760 hrs/yr)

¹SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

0.00714 lb S/Mscf * fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb SO₂/hr

 H_2S emissions based on 0.25 g H2S/100 scf, or 0.0004 lb H2S/Mscf in fuel

0.0004 lb H2S/Mscf fuel * fuel consumption (Mscf/hr) = lb H2S/hr

² It is assumed that TSP = $PM_{10} = PM_{2.5}$. The emission factor used is filterable plus condensable PM.

³ Emission factor provided in Catalyst Spec sheet

DLK Black River Midstream LLC Greenhouse Gas Emissions

Capacity:

15.9 MMBtu/hr. Nameplate heat rate (Manufacturers data) 19.07 MMBtu/hr. Heat rate, max firing rate (20% safety factor added) **Greenhouse Gases Emissions from Natural Gas Combustion** Tier 1 Subpart C- General Stationary Fuel Combustion Sources 98.30 40 CFR 98 (b)(1)(v) The Tier 1 Calculation Methodology: $CO_2 = 1 \times 10^{-3} \times Gas \times EF$ (Eq. C-1a) (v) May be used for natural gas combustion in a unit of where: any size, in cases where the annual natural gas CO_2 = Annual CO_2 mass emission from natural gas combustion (metric ton). consuption is obtained from fuel billing records in units of therm or mmBtu. Gas = Annual natural gas usage, from billing records (mmBtu) EF = Fuel-specific default CO₂ emission factor for natural gas (kg CO₂/mmBtu) Table C1 of this subpart = 53.02 (kg Co2/mmBtu) Annual gas usage = Metric Ton 19.07 MMBtu 8,760 hrs 53.06 kg CO₂ 1 MMBtu 1000 hr yr kg 8,863.9 metric ton/yr $CO_2 =$ 9,768.0 ton (US)/yr CH_4 or $N_2O = 1 \times 10-3 \times Fuel \times EF$ (Eq. C-8b) where: CH_4 or N_2O = Annual Emission from the combustion of natural gas (metric tons) $CH_4 = 1.0 \text{ x} 10-3 \text{ kg} CH_4/\text{mmBtu}$ From Table C-2 To Subpart C of Part 68 - Default CH4 and N2O Emission Factors for Various Types of Fuel: Natural Gas 1.00E-03 kg CH₄ 19.07 MMBtu 8,760 hrs Metric Ton Annual gas usage = hr MMBtu 1000 kg 0.17 metric ton/yr $CH_4 =$ 0.18 ton (US)/yr Converted to CO_{2e} 4.6 tons/yr CO_{2e} 0.18 25 = From Table C-2 To Subpart C of Part 68 - Default CH4 and N2O Emission Factors for Various Types of $N_2O = 1.0 \times 10-4 \text{ kg } N_2O/\text{mmBtu}$ Fuel: Natural Gas 19.07 MMBtu Annual gas usage = 8,760 hrs 1.00E-04 kg N₂O Metric Ton 1 MMBtu 1000 hr kg 0.017 metric ton/yr $N_2O=$ 0.018 ton (US)/yr Converted to CO_{2e} 0.02 5.5 tons/yr CO_{2e} 298 =

Total Engine CO_{2e}

9,778.1 tons/yr CO_{2e}

Reciprocating Engines

Unit Numbers:	ENG-3								
Source description:	4	4 Stroke Rich Burn Natural Gas Engine							
Manufacturer:	Waukesh	а							
Model:	P9394GS	P9394GSI							
Aspiration:	Turbo-cha	arged							

Engine Horsepower and RPM							
Engine speed:	: 1,200.0 rpm Mfg data						
Sea level hp:	2,250.0	hp	Mfg data				

	Fuel Consumption							
Hours of Operation	8,760.0	Hours per	Hours per engine					
BSFC:	7,063.0	Btu/hp-hr	Mfd data for LHV					
Fuel heat value:	1,081.8	Btu/scf	Fuel Gas Analysis					
Heat input:	15.89	MMBtu/hr	BSFC * site hp					
Fuel consumption:	14.690	Mscf/hr	Heat input / fuel heat valu	le				
Annual fuel usage:	128.69	MMscf/yr	8760 hrs/yr operation					

Exhaust Parameters							
Exhaust temp (Tstk):	1085	°F	Mfg data				
Stack height:	26.00	ft	Engineering Estimate				
Stack diameter:	1.30	ft	Engineering Estimate				
Exhaust flow:	10366.0	acfm	Mfg data				
Exhaust flow:	172.77	acfs	Mfg data				
Exhaust velocity:	130.16	ft/sec	Exhaust flow ÷ stack area				

Emission Calculations

Uncontrolled Emissions³

NO _x	СО	NMNEHC	Total VOC	SO_2^{-1}	H_2S^{-1}			
14.6	9.5	0.35		0.042	0.001	g/hp-hr	Mfg data	Engine data
				5		gr Total Sulfur/Ms	Pipeline s	pecification
72.42	47.12	1.74	2.58	0.21	0.01	lb/hr	Hourly em	ission rate
317.21	206.40	7.60	11.30	0.92	0.03	tpy	Annual en	nission rate (8760 hrs/yr)
PM ²	НСОН	Total HAPs						
0.010				lb/MMBtu	AP-42 Tabl	e 3.2-2		
	0.17			g/hp-hr	Mfg data			
0.16	0.84	1.07		lb/hr	Hourly emis	ssion rate		
0.70	3.69	4.70		tpy	Annual emi	ssion rate (8	760 hrs/yr)	

Controlled Emissions

NO _x	CO	NMNEHC	Total VOC	SO ₂	H_2S		
0.63	0.63	0.25		0.042	0.001	g/hp-hr	Catalyst data with 25% safety factor
				5		gr Total Sulfur/Ms	Pipeline specification
3.100	3.100	1.240	1.36	0.210	0.006	lb/hr	Hourly emission rate
13.58	13.58	5.43	5.97	0.92	0.03	tpy	Annual emission rate (8760 hrs/yr)
PM ²	HCOH³	Total HAPs					
0.010				lb/MMBtu	AP-42 Tabl	e 3.2-2	
	0.025			g/hp-hr	Mfg data		
0.16 0.70	0.12 0.54	0.35 1.55		lb/hr tpy	Hourly emis	ssion rate ssion rate (8	8760 hrs/yr)

¹SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

0.00714 lb S/Mscf * fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb SO2/hr

 $\rm H_2S$ emissions based on 0.25 g H2S/100 scf, or 0.0004 lb H2S/Mscf in fuel

0.0004 lb H2S/Mscf fuel * fuel consumption (Mscf/hr) = lb H2S/hr

² It is assumed that TSP = $PM_{10} = PM_{2.5}$. The emission factor used is filterable plus condensable PM.

³ Emission factor provided in Catalyst Spec sheet

Capacity:		MMBtu/hr. MMBtu/hr.	Nameplate I Heat rate, n		ate (20% sa	(Manufactu Ifety factor a	,		
Greenh	ouse Gases Emissions	from Natura	al Gas Com	oustion				Tier 1	
Subpart C- General S	tationary Fuel Combustic					10.0			
$CO_2 = 1 \times 10^{-3} \times Gas$	x EF (Eq. C-1a)						, , ,	er 1 Calculation ed for natural gas
where: $CO_2 = Annual CO_2$	mass emission from natu	ral gas comb	oustion (metri	c ton).		combusti annual n	ion in a unit atural gas o	of any size	, in cases where the s obtained from fuel
Gas = Annual natura	al gas usage, from billing	records (mm	ıBtu)			Dilli	ig records i		erm or mmBtu.
	efault CO ₂ emission factor								
Table C1 of this su	ibpart =	53.02	kg Co2/mm	nBtu)					
Annual gas usage =									
	(o o=			. 1				I	_
	19.07	MMBtu	8,760	hrs	53.06	kg CO ₂	1		c Ton
		hr	1 1	yr		MMBtu	1000	K	g
$CO_2 =$		metric ton/yr							
002-	9,768.0 t	on (US)/yr							
$CH_4 \text{ or } N_2O = 1 \times 10-3$ where: $CH_4 \text{ or } N_2O = AnnualCH_4 = 1.0 \times 10-3 \text{ k}$	al Emission from the com	Eq. C-8b) bustion of na		From Table		ubpart C of F rpes of Fuel:			nd N2O Emission
	Annual gas usage =	19.07	MMBtu	8,760	hrs	1.00E-03	kg CH₄	1	Metric Ton
			hr		yr		MMBtu	1000	kg
CH ₄ =		netric ton/yr on (US)/yr							
		(c c), j:							
	Converted to CO _{2e}		0.18	25	=	4.6	tons/yr CO	2e	
N ₂ O = 1.0 x 10-4 kg N		From Table C Fuel: <u>Natural</u>		art C of Par	t 68 - Defau	ult CH4 and	N2O Emiss	sion Factors	for Various Types of
	40.07	MMBtu	0.700	han I	1.00E-04		4	Motri	c Ton
Annual gas usage =	19.07	IVIIVIDIU	8,760 hr	hrs	1.00E-04 yr	kg N ₂ O	1 MMBtu	1000	kg
			1 1	1	<u> </u>	1 1			
					I				
	N ₂ O=		ton (US)/yr	r					
	Converted to CO _{2e}		0.02	298	=	5.5	tons/yr CO	2e	
Total Engine CO _{2e}		9,778.1	tons/yr CO ₂	е					

Reciprocating Engines

Unit Numbers:	ENG-4	ENG-4							
Source description:	4	4 Stroke Rich Burn Natural Gas Engine							
Manufacturer:	Waukesh	а							
Model:	P9394GS	P9394GSI							
Aspiration:	Turbo-cha	arged							

Engine Horsepower and RPM						
Engine speed:	1,200.0	rpm	Mfg data			
Sea level hp:	2,250.0	hp	Mfg data			

Fuel Consumption						
Hours of Operation	8,760.0	Hours per	Hours per engine			
BSFC:	7,063.0	Btu/hp-hr Mfd data for LHV				
Fuel heat value:	1,081.8	Btu/scf	Fuel Gas Analysis			
Heat input:	15.89	MMBtu/hr	BSFC * site hp			
Fuel consumption:	14.690	Mscf/hr	Heat input / fuel heat value			
Annual fuel usage:	128.69	MMscf/yr	8760 hrs/yr operation			

Exhaust Parameters						
Exhaust temp (Tstk):	1085	°F	Mfg data			
Stack height:	26.00	ft	Engineering Estimate			
Stack diameter:	1.30	ft	Engineering Estimate			
Exhaust flow:	10366.0	acfm	Mfg data			
Exhaust flow:	172.77	acfs	Mfg data			
Exhaust velocity:	130.16	ft/sec	Exhaust flow ÷ stack area			

Emission Calculations

Uncontrolled Emissions³

	NO _x	СО	NMNEHC	Total VOC	SO ₂ ¹	H_2S^{-1}			
Ī	14.6	9.5	0.35		0.042	0.001	g/hp-hr	Mfg data	Engine data
					5		gr Total Sulfur/Ms	Pipeline s	pecification
	72.42	47.12	1.74	2.58	0.21	0.01	lb/hr	Hourly em	nission rate
	317.21	206.40	7.60	11.30	0.92	0.03	tpy	Annual en	nission rate (8760 hrs/yr)
	PM ²	НСОН	Total HAPs						
	0.010				lb/MMBtu	AP-42 Tabl	e 3.2-2		
		0.17			g/hp-hr	Mfg data			
	0.16	0.84	1.07		lb/hr	Hourly emis	sion rate		
	0.70	3.69	4.70		tpy Annual emission rate (8760 hrs/yr)				

Controlled Emissions

NO _x	CO	NMNEHC	Total VOC	SO ₂	H_2S		
0.63	0.63	0.25		0.042	0.001	g/hp-hr	Catalyst data with 25% safety factor
				5		gr Total Sulfur/Ms	Pipeline specification
3.100	3.100	1.240	1.36	0.210	0.006	lb/hr	Hourly emission rate
13.58	13.58	5.43	5.97	0.92	0.03	tpy	Annual emission rate (8760 hrs/yr)
PM²	HCOH³	Total HAPs					
0.010				lb/MMBtu	AP-42 Tabl	le 3.2-2	
	0.025			g/hp-hr	Mfg data		
0.16 0.70	0.12 0.54	0.35 1.55		lb/hr tpy	Hourly emis	ssion rate ssion rate (8	3760 hrs/yr)

 $^{1}SO_{2}$ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

0.00714 lb S/Mscf * fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb SO2/hr

 $\rm H_2S$ emissions based on 0.25 g H2S/100 scf, or 0.0004 lb H2S/Mscf in fuel

0.0004 lb H2S/Mscf fuel * fuel consumption (Mscf/hr) = lb H2S/hr

² It is assumed that TSP = $PM_{10} = PM_{2.5}$. The emission factor used is filterable plus condensable PM.

³ Emission factor provided in Catalyst Spec sheet

Capacity:		MMBtu/hr. MMBtu/hr.	Nameplate I Heat rate, n		ate (20% sa	(Manufactu Ifety factor a	,		
Greenh	ouse Gases Emissions	from Natura	al Gas Com	oustion				Tier 1	
Subpart C- General S	tationary Fuel Combustic					10.0			
$CO_2 = 1 \times 10^{-3} \times Gas$	x EF (Eq. C-1a)						, , ,	er 1 Calculation ed for natural gas
where: $CO_2 = Annual CO_2$	mass emission from natu	ral gas comb	oustion (metri	c ton).		combusti annual n	ion in a unit atural gas o	of any size	, in cases where the s obtained from fuel
Gas = Annual natura	al gas usage, from billing	records (mm	ıBtu)			Dilli	ig records i		erm or mmBtu.
	efault CO ₂ emission factor								
Table C1 of this su	ibpart =	53.02	kg Co2/mm	nBtu)					
Annual gas usage =									
	(o o=			. 1				I	_
	19.07	MMBtu	8,760	hrs	53.06	kg CO ₂	1		c Ton
		hr	1 1	yr		MMBtu	1000	K	g
$CO_2 =$		metric ton/yr							
002-	9,768.0 t	on (US)/yr							
$CH_4 \text{ or } N_2O = 1 \times 10-3$ where: $CH_4 \text{ or } N_2O = AnnualCH_4 = 1.0 \times 10-3 \text{ k}$	al Emission from the com	Eq. C-8b) bustion of na		From Table		ubpart C of F rpes of Fuel:			nd N2O Emission
	Annual gas usage =	19.07	MMBtu	8,760	hrs	1.00E-03	kg CH₄	1	Metric Ton
			hr		yr		MMBtu	1000	kg
CH ₄ =		metric ton/yr on (US)/yr							
		(c c), j:							
	Converted to CO _{2e}		0.18	25	=	4.6	tons/yr CO	2e	
N ₂ O = 1.0 x 10-4 kg N		From Table C Fuel: <u>Natural</u>		art C of Par	t 68 - Defau	ult CH4 and	N2O Emiss	sion Factors	for Various Types of
	40.07	MMBtu	0.700	han I	1.00E-04		4	Motri	c Ton
Annual gas usage =	19.07	IVIIVIDIU	8,760 hr	hrs	1.00E-04 yr	kg N ₂ O	1 MMBtu	1000	kg
			1 1	1	J -	1 1			
					I				
	N ₂ O=		ton (US)/yr	r					
	Converted to CO _{2e}		0.02	298	=	5.5	tons/yr CO	2e	
Total Engine CO _{2e}		9,778.1	tons/yr CO ₂	е					

Unit Numbers:	ENG-1					
Source description:	4	Stroke	Rich Burn Natural Gas Engine			
Manufacturer:	Waukes	Waukesha				
Model:	P9394G	P9394GSI				
Aspiration:	Turbo-ch	Turbo-charged				
Hours of Operation	<mark>8760</mark>	8760				
Rated Horsepower	<mark>2250</mark>	2250				
Heat Input	<mark>15.89</mark>	MMBtu/hr				
Fuel Type	Natural (Gas				

HAPs	Emission Factor ¹	Emissions		
	lb/MMBtu	pph tpy		
Benzene	0.0004	0.0070 0.030	06	
Toluene	0.0004	0.0065 0.028	84	
Acetaldehyde	0.0084	0.1329 0.582	19	
Acrolein	0.0051	0.0817 0.357	78	
Xylenes	0.0002	0.0029 0.012	28	

Total: 0.231

1 1.012

Unit Numbers:	ENG-2					
Source description:	4	Stroke	Rich Burn Natural Gas Engine			
Manufacturer:	Waukes	sha				
Model:	P9394C	SSI				
Aspiration:	Turbo-c	Turbo-charged				
Hours of Operation	8760	8760				
Rated Horsepower	2250					
Heat Input	<mark>15.89</mark>	MMBtu/hr				
Fuel Type	Natural	Gas				

HAPs	Emission Factor ¹	Emissions		
	lb/MMBtu	pph tr	ру	
Benzene	0.0004	0.0070	0.0306	
Toluene	0.0004	0.0065	0.0284	
Acetaldehyde	0.0084	0.1329	0.5819	
Acrolein	0.0051	0.0817	0.3578	
Xylenes	0.0002	0.0029	0.0128	

Total: 0.231 1.012

Unit Numbers:	ENG-3					
Source description:	4	Stroke	Rich Burn Natural Gas Engine			
Manufacturer:	Waukesha	a				
Model:	P9394GSI					
Aspiration:	Turbo-cha	Turbo-charged				
Hours of Operation	<mark>8760</mark>	8760				
Rated Horsepower	<mark>2250.00</mark>					
Heat Input	<mark>15.89</mark>	MMBtu/hr				
Fuel Type	Natural Ga	as				

HAPs	Emission Factor ¹ Ib/MMBtu	Emiss pph f	ions :py
Benzene	0.0004	0.0070	0.0306
Toluene	0.0004	0.0065	0.0284
Acetaldehyde	0.0084	0.1329	0.5819
Acrolein	0.0051	0.0817	0.3578
Xylenes	0.0002	0.0029	0.0128
	Tota	l: 0.231	1.012

Unit Numbers:	ENG-4					
Source description:	4	Stroke	Rich Burn Natural Gas Engine			
Manufacturer:	Waukesh	а				
Model:	P9394GS					
Aspiration:	Turbo-cha	Turbo-charged				
Hours of Operation	8760	8760				
Rated Horsepower	2250.00					
Heat Input	<mark>15.89</mark>	MMBtu/hr				
Fuel Type	Natural G	as				

HAPs	Emission Factor ¹	Emissi	ons
	lb/MMBtu	pph tr	ру
Benzene	0.0004	0.0070	0.0306
Toluene	0.0004	0.0065	0.0284
Acetaldehyde	0.0084	0.1329	0.5819
Acrolein	0.0051	0.0817	0.3578
Xylenes	0.0002	0.0029	0.0128
·			

Total: 0.231 1.012

Heater Treater/Bioler Calculations

Unit No.	HT-101			
Heater/Boiler rating (MMBtu/hr):	6.97			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	ess specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.644	2.822	
CO	84.000	0.541	2.370	
VOC	5.500	0.035	0.155	
PM ₁₀	7.600	0.049	0.214	
PM _{2.5}	5.700	0.037	0.161	
2.5			0.017	

If the heater/boiler is fueled by Sour Gas, <u>cannot</u> use emission factors above to calculate SO₂ emissions, must use SO₂ mass balance:

SO ₂ Mass Balance of	calculation:
Fuel H ₂ S content (mol %) =	0.0000
SO ₂ produced (lb/hr) =	0.0000
SO ₂ produced (tpy) =	0.0000

Unit No.	HT-801			
Heater/Boiler rating (MMBtu/hr):	6.97			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	ess specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.644	2.822	
CO	84.000	0.541	2.370	
VOC	5.500	0.035	0.155	
PM ₁₀	7.600	0.049	0.214	
PM _{2.5}	5.700	0.037	0.161	
SO ₂	0.600	0.004	0.017	

If the heater/boiler is fueled by Sour Gas, <u>cannot</u> use emission factors above to calculate SO₂ emissions, must use SO₂ mass balance:

ition:	SO ₂ Mass Balance calcu
0.0000	Fuel H ₂ S content (mol %) =
0.0000	SO ₂ produced (lb/hr) =
0.0000	SO ₂ produced (tpy) =

assumptions: SO2 MW 64.06 lb/lb-mole Ideal Gas Law 378.61 SCF/lb-mole

Unit No.	HT-102			
Heater/Boiler rating (MMBtu/hr):	9.74			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	less specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
				_
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.900	3.944	
СО	84.000	0.756	3.313	
VOC	5.500	0.050	0.217	
PM ₁₀	7.600	0.068	0.300	
PM _{2.5}	5.700	0.051	0.225]
SO ₂	0.600	0.005	0.024	

	SO ₂ Mass Balance
0000	Fuel H ₂ S content (mol %) :
0000	SO ₂ produced (lb/hr) :
0000	SO ₂ produced (tpy) :

assumptions: SO2 MW Ideal Gas Law

64.06 lb/lb-mole 378.61 SCF/lb-mole

Unit No.	AR-1			
Heater/Boiler rating (MMBtu/hr):	21.09			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, un	less specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
				_
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	1.950	8.539	
CO	84.000	1.638	7.173	
VOC	5.500	0.107	0.470	
PM ₁₀	7.600	0.148	0.649	
PM _{2.5}	5.700	0.111	0.487	
SO ₂	0.600	0.012	0.051	

SO ₂ Mass Balance	calculation:
Fuel H ₂ S content (mol %) =	0.0000
SO ₂ produced (lb/hr) =	0.0000
SO ₂ produced (tpy) =	0.0000

Unit No.	DR-1			
Heater/Boiler rating (MMBtu/hr):	2.9			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	less specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
				_
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.268	1.174	
CO	84.000	0.225	0.986	
VOC	5.500	0.015	0.065	
PM ₁₀	7.600	0.020	0.089	
PM _{2.5}	5.700	0.015	0.067	
SO ₂	0.600	0.002	0.007	

SO ₂ Mass Balance	calculation:		
Fuel H ₂ S content (mol %) =	0.0000	assumption	S:
SO_2 produced (lb/hr) =	0.0000	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0000	Ideal Gas L	aw 378.61 SCF/lb-mo

Unit No.	HT-103			
Heater/Boiler rating (MMBtu/hr):	9.74			
Rating above is (select from list) :	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	less specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
				_
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.900	3.944	
СО	84.000	0.756	3.313	
VOC	5.500	0.050	0.217	
PM ₁₀	7.600	0.068	0.300	
PM _{2.5}	5.700	0.051	0.225	1
	0.600	0.005	0.024	

SO ₂ Mass Balance of	calculation:]
Fuel H ₂ S content (mol %) =	0.0000	assumptions:
SO ₂ produced (lb/hr) =	0.0000	SO2 MW 64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0000	Ideal Gas Law 378.61 SCF/lb-mole

Unit No.	HT-802			
Heater/Boiler rating (MMBtu/hr):	6.2			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	ess specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.573	2.510	
CO	84.000	0.481	2.109	
VOC	5.500	0.032	0.138	
PM ₁₀	7.600	0.044	0.191	
PM _{2.5}	5.700	0.033	0.143	
SO ₂	0.600	0.003	0.015	

SO ₂ Mass Balance calculation:				
0.0000				
0.0000				
0.0000				

assumptions: SO2 MW Ideal Gas Law

64.06 lb/lb-mole 378.61 SCF/lb-mole

Unit No.	AR-2			
Heater/Boiler rating (MMBtu/hr):	23.92			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, un	ess specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
				_
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	2.211	9.685	
CO	84.000	1.857	8.135	
VOC	5.500	0.122	0.533	
PM ₁₀	7.600	0.168	0.736	
PM _{2.5}	5.700	0.126	0.552	
SO ₂	0.600	0.013	0.058	

SO ₂ Mass Balance of	alculation:]
Fuel H ₂ S content (mol %) =	0.0000	assumptions:
SO ₂ produced (lb/hr) =	0.0000	SO2 MW 64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0000	Ideal Gas Law 378.61 SCF/lb-mole

Unit No.	DR-2			
Heater/Boiler rating (MMBtu/hr):	2.5			
ating above is (select from list) :	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unl	less specifically stated otherwise
Operating hours/year:	8760			
Fuel Heat Value, LHV (Btu/SCF):	1081.8			
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
NO _x	100.000	0.231	1.012	
CO	84.000	0.194	0.850	
VOC	5.500	0.013	0.056	1
PM ₁₀	7.600	0.018	0.077]
PM _{2.5}	5.700	0.013	0.058]
SO ₂	0.600	0.001	0.006	

SO ₂ Mass Balance of	calculation:]		
Fuel H ₂ S content (mol %) =	0.0000		assumptions:	
SO ₂ produced (lb/hr) =	0.0000		SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.0000		Ideal Gas Law	378.61 SCF/lb-mo

Glycol Dehydrator Emissions

Calculated Using GRI-GLYCalc or a Process Simulator
A) Enter information into the yellow boxes.
B) VOC and H2S control efficiencies may be entered (if applicable).
VOC, benzene, and H2S regenerator condenser efficiencies may also be entered (if applicable).

C) There are two separate areas to enter information about the two emissions points, the flash tank and the regenerator. Then underneath, there is a table of the sum of flash tank and regenerator emissions.

D) The program results and any lab analysis results used as the calculation basis must be provided.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	DEHY-1
Identifier	Plant 2 - Dehy Unit

Glycol Dehydrator Unit Information				
Are you using GLYCalc or a Process				
Simulator?	Process Simulator			
GLYCalc Calculation Method (if using GLYCalc)	NA			
Type of Glycol Used:	TEG			
Annual Hours of Operation (hrs/yr):	8760			
Dry Gas Flow Rate (MMscf/day)	291.66			
Laboratory Wet Gas Analysis Provided? If not,				
explain why. (Use notes box below if more				
space needed.)	Yes			
Date of Sample:	2/11/2021			
Is sample site specific or representative? If				
representative, please justify. (Use notes box				
below if more space needed.)	Site specific			
At what point in the process was the sample				
taken?	Dehy Inlet			
Wet Gas Temperature (°F)	105.02			
Wet Gas Pressure (psig)	926.10			
Lean Glycol Pump Type	Multi Stage Centrifugal			
Lean Glycol Pump Make and Model	Multi Stage Centrifugal			
Lean Glycol Flow Rate (gpm)	51.00			
Number of Pump Stokes per Minute for the				
Lean Glycol Pump (pump strokes/min, if				
applicable)	NA			
Flash Tank Temperature (°F)	109.51			
Flash Tank Pressure (psig)	80.00			

Flash Tank					
Is there a flash tank? (If no, leave the inputs in this block blank.)	Yes				
	lb/hr	tpy			
Emissions Uncontrolled VOC,(lb/hr, tpy)	104.804	459.041			
Emissions Uncontrolled Benzene, (Ib/hr, tpy)	0.279	1.223			
Emissions Uncontrolled H2S, (lb/hr, tpy)	0.011	0.048			
Are flash tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal					
oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(C) controlled by another type of control device				
VOC Control Efficiency (%)	100				
H2S Control Efficiency (%)	100				
VOC Results, (lb/hr, tpy)	0	0			
Benzene Results, (lb/hr, tpy)	0	0			
H2S Results, (Ib/hr, tpy)	0	0			

Regenerator					
	lb/hr	tpy			
Emissions Uncontrolled VOC (lb/hr, tpy)	253.877	1111.980			
Emissions Uncontrolled Benzene, (Ib/hr, tpy)	30.158	132.093			
Emissions Uncontrolled H2S, (lb/hr, tpy)					
Are regenerator vapors controlled by a condenser?	Yes				
VOC Condenser Efficiency (%) - if applicable	23.66				
Benzene Condenser Efficiency (%) - if applicable	37.83				
H2S Condenser Efficiency (%) - if applicable	2.00				
Are regenerator vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(B) cont. by flare/				
VOC Results, (lb/hr, tpy)	193.808	848.880			
Benzene Results, (lb/hr, tpy)	18.749	82.119			
H2S Results, (lb/hr, tpy)	0.052	0.228			

Sum of Flash Tank and Regenerator Results				
	lb/hr	tpy		
VOC Results	0	0		
Benzene Results	0	0		
H2S Results	0	0		

Г

Federal Applicability		
40 CFR Part 63 - Subpart HH		
All area sources, with TEG dehydration units, will have some requirements under		
the rule. Emission reduction requirements may apply or only recordkeeping		
requirements may apply.		
Is this subpart applicable?	Yes	
The permittee shall monitor as required by 40 CFR 63.772(b)(2) to demonstrate facility is exempt from general standards. The permittee shall generate and maintain the records required by 40 CFR 63.774(d)(1)(ii) to demonstrate compliance with the general		
If yes, how will compliance be achieved? If no,	standard exemptions found in 40	
please explain why.	CFR 63.764(e).	

Enter any notes here: TEG Flash routed back to the process. Regenerator stream is routed to Flare, FL-2

Glycol Dehydrator Emissions

Calculated Using GRI-GLYCalc or a Process Simulator A) Enter information into the yellow boxes.

B) VOC and H2S control efficiencies may be entered (if applicable). VOC, benzene, and H2S regenerator condenser efficiencies may also be entered (if applicable).

C) There are two separate areas to enter information about the two emissions points, the flash tank and the regenerator. Then underneath, there is a table of the sum of flash tank and regenerator emissions.

D) The program results and any lab analysis results used as the calculation basis must be provided.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	DEHY-2
Identifier	Plant 3 - Dehy Unit

Glycol Dehydrator Unit Information			
Are you using GLYCalc or a Process			
Simulator?	Process Simulator		
GLYCalc Calculation Method (if using GLYCalc)	NA		
Type of Glycol Used:	TEG		
Annual Hours of Operation (hrs/yr):	8760		
Dry Gas Flow Rate (MMscf/day)	220.8		
Laboratory Wet Gas Analysis Provided? If not,			
explain why. (Use notes box below if more			
space needed.)	Yes		
Date of Sample:	2/11/2021		
Is sample site specific or representative? If			
representative, please justify. (Use notes box			
below if more space needed.)	Site specific		
At what point in the process was the sample			
taken?	Dehy Inlet		
Wet Gas Temperature (°F)	104.96		
Wet Gas Pressure (psig)	940.80		
Lean Glycol Pump Type	Multi Stage Centrifugal		
Lean Glycol Pump Make and Model	Multi Stage Centrifugal		
Lean Glycol Flow Rate (gpm)	51.00		
Number of Pump Stokes per Minute for the			
Lean Glycol Pump (pump strokes/min, if			
applicable)	NA		
Flash Tank Temperature (°F)	109.57		
Flash Tank Pressure (psig)	80.00		

Flash Tank		
Is there a flash tank? (If no, leave the inputs in this block blank.)	Yes	
	lb/hr	tpy
Emissions Uncontrolled VOC,(lb/hr, tpy)	104.502	457.717
Emissions Uncontrolled Benzene, (lb/hr, tpy)	0.277	1.212
Emissions Uncontrolled H2S, (lb/hr, tpy)	0.011	0.048
Are flash tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(C) controlled by an control de	
VOC Control Efficiency (%)	100	
H2S Control Efficiency (%)	100	
VOC Results, (lb/hr, tpy)	0	0
Benzene Results, (Ib/hr, tpy)	0	0
H2S Results, (Ib/hr, tpy)	0	0

Regenerator			
	lb/hr	tpy	
Emissions Uncontrolled VOC (lb/hr, tpy)	248.279	1087.463	
Emissions Uncontrolled Benzene, (lb/hr, tpy)	29.819	130.605	
Emissions Uncontrolled H2S, (lb/hr, tpy)	0.053	0.231	
Are regenerator vapors controlled by a condenser?	Yes		
VOC Condenser Efficiency (%) - if applicable	23.35		
Benzene Condenser Efficiency (%) - if applicable	37.35		
H2S Condenser Efficiency (%) - if applicable	1.68		
Are regenerator vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(B) cont. by flare/ VC/TO/VRU		
VOC Results, (lb/hr, tpy)	190.317	833.590	
Benzene Results, (Ib/hr, tpy)	18.680	81.819	
H2S Results, (Ib/hr, tpy)	0.052	0.227	

Sum of Flash Tank and Regenerator Results		
	lb/hr	tpy
VOC Results	0	0
Benzene Results	0	0
H2S Results	0	0

Federal Applicability		
40 CFR Part 63 - Subpart HH		
All area sources, with TEG dehydration units, will have some requirements under the rule. Emission reduction requirements may apply or only recordkeeping		
requirements may apply.		
Is this subpart applicable?	Yes	
The permittee shall monitor as required by 40 CFR 63.772(b)(2) demonstrate facility is exempt fro general standards. The permittee shall generate and maintain the records required by 40 CFR 63.774(d)(1)(ii) to demonstrate compliance with the general		
If yes, how will compliance be achieved? If no,	standard exemptions found in 40	
please explain why. CFR 63.764(e).		

Enter any notes here: TEG Flash routed back to the process. Regenerator stream is routed to thermal oxidizer TO-2

Amine Unit Emissions

Calculated Using GRI-GLYCalc or a Process Simulator A) Enter information into the yellow boxes.

B) VOC and H2S control efficiencies may be entered (if applicable). VOC, benzene, and H2S regenerator condenser efficiencies may also be entered (if applicable).

C) There are two separate areas to enter information about the two emissions points, the flash tank and the regenerator. Then underneath, there is a table of the sum of flash tank and regenerator emissions.

D) The program results and any lab analysis results used as the calculation basis must be provided.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	AM-1	
Identifier	Plant 2 - Amine Unit	

Amine Unit Information				
Are you using AmineCalc or a Process				
Simulator?	Process Simulator			
AmineCalc Model Selection (if using				
AmineCalc):	NA			
Type of Amine Used:	DEA			
Annual Hours of Operation (hrs/yr):	8760			
Feed Gas Flow Rate (MMscf/day):	292.77			
Laboratory Feed Gas Analysis Provided? If not,				
explain why. (Use notes box below if more				
space needed.)	Yes			
Date of Sample:	2/11/2021			
Is sample site specific or representative? If				
representative, please justify. (Use notes box				
below if more space needed.)	Site specific			
At what point in the process was the sample				
taken?	Amine inlet			
Feed Gas Temperature (°F)	89.62			
Feed Gas Pressure (psia)	914.70			
Lean Amine Flow Rate (gpm)	290.00			
Flash Tank Temperature (°F)	94.84			
Flash Tank Pressure (psia)	84.69			

Flash Tank		
Is there a flash tank? (If no, leave the inputs in		
this block blank.)	Yes	
	lb/hr	tpy
Emissions Uncontrolled VOC,(lb/hr, tpy)	23.8881	104.6298
Emissions Uncontrolled Benzene, (lb/hr, tpy)	0.2928	1.2826
Emissions Uncontrolled H2S, (lb/hr, tpy)	0.0048	0.0212
Are flash tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal		
oxidizer, or vapor recovery unit (VRU); or (C)	(C) controlled by another type of	
controlled by another type of control device?	control device	
VOC Control Efficiency (%)	100	
H2S Control Efficiency (%)	100	
VOC Results, (Ib/hr, tpy)	0	0
Benzene Results, (Ib/hr, tpy)	0	0
H2S Results, (Ib/hr, tpy)	0	0

Regenerator			
	lb/hr	tpy	
Emissions Uncontrolled VOC (lb/hr, tpy)	19.4865	85.3507	
Emissions Uncontrolled Benzene, (lb/hr, tpy)	7.5842 33.2187		
Emissions Uncontrolled H2S, (lb/hr, tpy)	6.5380	28.6364	
Are regenerator vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(B) cont. by flare/	VC/TO/VRU	
VOC Results, (Ib/hr, tpy)	19.4865	85.3507	
Benzene Results, (Ib/hr, tpy)	7.5842	33.2187	
H2S Results, (Ib/hr, tpy)	6.5380	28.6364	

Sum of Flash Tank and Regenerator Results		
	lb/hr	tpy
VOC Results	0	0
Benzene Results	0	0
H2S Results	0	0

Federal Applicability						
40 CFR Part 60 - Subpart LLL						
Is this subpart applicable?	No					
	The facility is a natural gas					
	processing plant, however, there is					
	not sulfur recovery plant, thus this					
	location does not meet the					
If yes, how will compliance be achieved? If no,	applicability criteria of 40 CFR					
please explain why.	60.640.					

Enter any notes here: Amine flash is routed back to the process or burned as fuel and regenerator stream is routed to the thermal oxidizer, TO-1.

Amine Unit Emissions

Calculated Using AmineCalc or a Process Simulator A) Enter information into the yellow boxes. B) VOC and H2S control efficiencies may be entered (if applicable).

C) There are two separate areas to enter information about the two emissions points, the flash tank and the regenerator. Then underneath, there is a table of the sum of flash tank and regenerator emissions.

D) The program results and any lab analysis results used as the calculation basis must be provided.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

EPN	AM-2
Identifier	Plant 3 - Amine Unit

Amine Unit Information						
Are you using AmineCalc or a Process						
Simulator?	Process Simulator					
AmineCalc Model Selection (if using						
AmineCalc):	NA					
Type of Amine Used:	DEA					
Annual Hours of Operation (hrs/yr):	8760					
Feed Gas Flow Rate (MMscf/day):	219.2					
Laboratory Feed Gas Analysis Provided? If not,						
explain why. (Use notes box below if more						
space needed.)	Yes					
Date of Sample:	2/11/2021					
Is sample site specific or representative? If						
representative, please justify. (Use notes box						
below if more space needed.)	Site specific					
At what point in the process was the sample						
taken?	Amine inlet					
Feed Gas Temperature (°F)	80.01					
Feed Gas Pressure (psia)	1014.70					
Lean Amine Flow Rate (gpm)	290.00					
Flash Tank Temperature (°F)	96.19					
Flash Tank Pressure (psia)	77.30					

Flash Tank		
Is there a flash tank? (If no, leave the inputs in this block blank.)	Yes	
	lb/hr	tpy
Emissions Uncontrolled VOC,(lb/hr, tpy)	27.3166	119.6468
Emissions Uncontrolled Benzene, (lb/hr, tpy)	0.3337	1.4618
Emissions Uncontrolled H2S, (lb/hr, tpy)	0.0037	0.0161
Are flash tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(C) controlled by an control de	
VOC Control Efficiency (%)	100	
H2S Control Efficiency (%)	100	
VOC Results, (lb/hr, tpy)	0	0
Benzene Results, (Ib/hr, tpy)	0	0
H2S Results, (Ib/hr, tpy)	0	0

Regenerator		
	lb/hr	tpy
Emissions Uncontrolled VOC (lb/hr, tpy)	18.9481	82.9925
Emissions Uncontrolled Benzene, (lb/hr, tpy)	7.5346	33.0017
Emissions Uncontrolled H2S, (lb/hr, tpy)	4.9279	21.5841
Are regenerator vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(B) cont. by flare/	VC/TO/VRU
VOC Results, (Ib/hr, tpy)	18.9481	82.9925
Benzene Results, (Ib/hr, tpy)	7.5346	33.0017
H2S Results, (Ib/hr, tpy)	4.9279	21.5841

Sum of Flash Tank and Rege	nerator Results	
	lb/hr	tpy
VOC Results	0	0
Benzene Results	0	0
H2S Results	0	0

Federal Applicability							
40 CFR Part 60 - Subj	part LLL						
Is this subpart applicable?	No						
If yes, how will compliance be achieved? If no, please explain why.	The facility is a natural gas processing plant, however, there is not sulfur recovery plant, thus this location does not meet the applicability criteria of 40 CFR 60.640.						

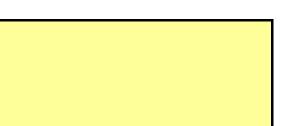
Enter any notes here: Amine flash is routed back to the process or burned as fuel and regenerator stream is routed to the thermal oxidizer, TO-2.

Tank Emissions - Process Simulator

A) Enter information into the yellow boxes.
B) VOC and H2S control efficiencies may be entered (if applicable).
C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) Make sure to answer the control device question.
 F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.


Process	Simulator																					
													Are tank vapors (A)			Reduction						
													uncontrolled; (B) controlled by	,		for						
													a flare, vapor combustor,			Produced						
									Emissions	Emissions			thermal oxidizer, or vapor	VOC	H2S	Water Tank						
							Emissions	Emissions	Uncontrolled	Uncontrolled	Emissions	Emissions	recovery unit (VRU); or (C)	Control	Control	Calc. as	VOC	VOC	Benzene	Benzene	H2S	H2S
		Throughput		Turnovers per Mixture/	RVP	Temperature	Uncontrolled	Uncontrolled	Benzene	Benzene	Uncontrolled	Uncontrolled	l controlled by another type of	Efficiency	Efficiency	Oil/Cond.	Results	Results	Results	Results	Results	Results
EPN	Tank Identifier	(gal/year)	Stream Identification	year Component	(psia)	(°F)	VOC (lb/hr)	VOC (ton/yr)	(lb/hr)	(ton/yr)	H2S (lb/hr)	H2S (ton/yr)	control device?	(%)	(%)	(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Condensate Storage Ta		0 T-702 CONDENSATE STO		8.8					2 0.09	0.00		0 (B) cont. by flare/ VC/TO/VRU	98	3 98	3 0.0			0.02			
	Condensate Storage Ta		0 T-702 CONDENSATE STO		8.8						0.00		0 (B) cont. by flare/ VC/TO/VRU	98	3 98	3 0.0						
	Condensate Storage Ta		0 T-702 CONDENSATE STO		8.8		2.99						0 (B) cont. by flare/ VC/TO/VRU	98	3 98	3 0.0		13.10				
	Condensate Storage Ta		0 T-702 CONDENSATE STO		8.8		2.99			2 0.09			0 (B) cont. by flare/ VC/TO/VRU	98	3 98	3 0.0		13.10				
	Condensate Storage Ta		0 T-702 CONDENSATE STO		8.8		2.99			0.09	0.00		0 (B) cont. by flare/ VC/TO/VRU	98	3 98	010						0.00
TK 702E	Condensate Storage Ta	nl 1533000	0 T-702 CONDENSATE STO	R 906 Condensate	8.8	3 75.56	2.99	13.10	0.02	0.09	0.00	0.0	0 (B) cont. by flare/ VC/TO/VRU	98	3 98	3 0.0	0 2.99	13.10	0.02	2 0.09	0.00	0.00
TR-702F																						
TR-702F																						
TK-702F																Totals:	17.94	78.58	B 0.12	2 0.53	0.00	0.00

VOC Type: Crude Oil or Condensate VOC

Emission Type: Steady State (continuous)

Enter any notes here:

0.78577

Tank Emissions - Process Simulator

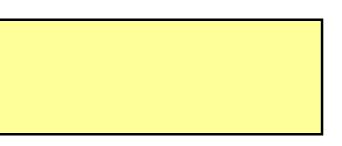
A) Enter information into the yellow boxes.

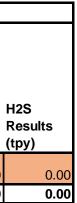
B) VOC and H2S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) Make sure to answer the control device question.


F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.


Proc	cess S	Simulator																				
EP	۶N	Tank Identifier	Throughput (gal/year)	Stream Identification	Turnovers per vear	Mixture/ Component	RVP (psia)	Temperature	Uncontrolled	Emissions Uncontrolled Benzene (lb/hr	Emissions Uncontrolled Benzene (ton/vr)		Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?		H2S Contro Efficiency (%)	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	VOC Results	Results	Benzene Results (Ib/hr)	Results	Results	H23 Res (tp)
TK-70		Produced Water Tank	2076371	T-701 PRODUCED WATER		Produced Water							0 (B) cont. by flare/ VC/TO/VRU	98	3	8 0	387.60					
																Totals:	387.60	1697.69	6.40	28.03	0.00	1

VOC Type: Crude Oil or Condensate VOC

Emission Type: Steady State (continuous)

Enter any notes here:

Thermal Oxidizer Emissions

General Information		Emission Factors
Flare functions as emergency	control device. When streams are fed to flare it will be treated as an emission event.	¹ Emission Factors from Z
(1) Control Equipment:	Thermal Oxidizer	NOx CO
(2) EPN:	TO-1	² Emission Factors from A
(3) What kind of device is this? Pick from list.	Thermal Oxidizer	PM10
	Emission Factors for Waste Gas Stream(s) (lb/MMbtu)NOx0.14CO0.13	PM2.5
(4) Is there one or more pilot streams fired with pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	Yes	Zeeco Guarantee (MMBtu
	Enter pilot stream information into the boxes in the column for Stream No. 1 below. If there is more than one pilot stream, please enter it as one combined stream. Emission Factors for Pilot Stream (lb/MMscf) NOx 100 CO 84	Maximum Heating Value A Maximum Heating Value G
(5) Is there one or more pilot streams fired with field gas? Pick Yes or No. Follow instructions below.	No	Emission Factors
	Please move on to next question below.	
	Emission Factors for Pilot Stream (ppmv)NOx0CO0	Emission Factors from AP- NOx CO PM10, PI
(6) Is there an added fuel stream made up of pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	Yes	
	Enter added fuel stream information into the boxes in the column for Steam No. 2 below.	
	Emission Factors for Added Fuel Stream (ppmv) NOx CO	

Zeeco Guarantee (Ib/MMB	<u>:u)</u>	
	0.14 lb/MMBtu	
	0.13 lb/MMBtu	
AB 42 Table 1 4 1 and 1 4 1) (Ib/MMcof)	
AP-42 Table 1.4-1 and 1.4-2		
	7.6 lb/MMscf	
	5.7 lb/MMscf	
ı/hr)		
a/iii)		
icid Gas Slycol Gas	9.9 MMBtu/hr 5.6 MMBtu/hr	
-42 Table 1.4-1 and 1.4-2 (It		
	100 84	
M2.5	7.6	5.7

(7) Is there an added fuel stream made up of field gas? Pick Yes or No. Follow instructions below.	No	
		Please move on to next question below.
		Emission Factors for Added Fuel Stream (Ib/MMBtu) NOx 0 CO 0
(8) VOC percent destruction efficiency (%)	98	
(9) propane percent destruction efficiency (%) *OPTIONAL*	99	
(10) H ₂ S percent destruction efficiency (%)	98	
(11) Which is utilized for this device?	automatic ignition system	

Thermal Oxidizer No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Thermal	•	-	Ŭ		Ű	Ű	,	<u> </u>	<u> </u>	10		12	
Oxidizer Name (Enter		Waste Gas from											
		Amine, AM-1 (stream											
Here)		219)											-
Maximum Expected Hourly													
Volumtric Flow Rate of	470	04070											CE242 00222
Stream (scf/hr)	470	64872											65342.08333
Amount of Time Stream													
Fired (hrs/yr)	8760	8760											
Maximum Expected Annual Volumtric Flow Rate of													
	4 117 200	EC0 070 4E0											E72 206 6E0
Stream (scf/yr)	4,117,200	568,279,450											572,396,650
Heat Value of Stream - from													
program results or gas													
analysis (Btu/scf)	1081.80	16.67											
propane weight percent of													
total stream (%)													
OPTIONAL	0.73	0.04											-
	0110	5101											
VOC weight percent of total													
stream (%) *OPTIONAL*	0.77	0.27											-
		\$121											

							-)						
	1	1				Hourly (lb/h	<u>r)</u>						1
Stream Sent to Thermal Oxidizer No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Oxidizer Name		Waste Gas from Amine, AM-1 (stream 219)											-
H2S Crude or Condensate VOC	-	6.54											6.54 0.00
Natural Gas VOC Total VOC	-	19.49 19.49											19.49 19.49
Benzene	-	7.58				Ammunal (fm	4						7.58
H2S	_	28.64				Annual (tp	<u>0</u>						28.64
Crude or Condensate VOC Natural Gas VOC	-	85.35											0.00
Total VOC	-	85.35 33.22											85.35
Benzene	-	33.22											33.22
Controlled Emissions													
							r)						
						Hourly (Ib/h	<u>n</u>						
Stream Sent to Thermal													
Oxidizer No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
	Pilot + Sweep Gas	Waste Gas from Amine, AM-1 (stream 219)											-
NOx	0.000	1.386	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.39
со	0.000	1.287	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.29
PM2.5	0.000	0.370	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.37
PM10	0.000	0.493	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.49
H2S	0.001	0.131	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.13
SO2	0.003	12.289	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	12.29
Crude or Condensate VOC		-	0.000									0.000	
Natural Gas VOC	0.00	0.36	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Total VOC	0.00											0.000	
Benzene	0.000											0.000	

						<u>Annual (tpy</u>)						
Stream Sent to Thermal Oxidizer No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Thermal Oxidizer Name	Pilot + Sweep Gas	Waste Gas from Amine, AM-1 (stream 219)											-
NOx	0.206	6.071	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.28
со	0.173	5.637	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.81
PM2.5	0.002	1.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.62
PM10	0.003	2.159	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.16
H2S	0.006	0.573	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.58
SO2	0.012	53.828	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	53.84
Crude or Condensate VOC	-	-	0.000	0.000	0.000		0.000	0.000	0.000	0.000			0.00
Natural Gas VOC	0.000	1.592		0.000	0.000		0.000	0.000	0.000	0.000			1.59
Total VOC	0.000	1.592		0.000	0.000		0.000	0.000	0.000	0.000			1.59
Benzene	0.000		0.000	0.000	0.000		0.000		0.000	0.000			0.66

¹ CO and NOx emissions calculated based on the emission gurantees from manufacturer and the exhaust flue from the TO. 2 PM₁₀/PM_{2.5} AP-42 Factors

Thermal Oxidizer Total Emissions							
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)					
Crude or Condensate VOC	0.00	0.00					
Natural Gas VOC	0.36	1.59					
Total VOC	0.36	1.59					
NO _x	1.39	6.28					
СО	1.29	5.81					
PM _{2.5}	0.37	1.62					
PM ₁₀	0.49	2.16					
H ₂ S	0.13	0.58					
SO ₂	12.29	53.84					
Benzene	0.15	0.66					

Thermal Oxidizer SSM

A) Enter information into the yellow boxes.

B) Please provide a separate detailed calculation for these emissions; also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

C) Since these emissions fall into the category of "Other", which does not have a pre-made emission estimation sheet with pre-approved methods, the time to review this project cannot be guaranteed to be as quick as if only pre-made sheets had been used.

D) VOC and H2S control efficiencies may be entered (if applicable).

E) Make sure to answer the control device question.

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Name: Thermal Oxidizer SSM	EPN:	TO-1 SSM
	Name:	Thermal Oxidizer SSM

Are these vapors (A) uncontrolled; (B) controlled by	
a flare, vapor combustor,	
thermal oxidizer, or vapor	
recovery unit (VRU); or (C)	
controlled by another type of	
control device?	(A) uncontrolled

Uncontrolled Emissions							
	Hourly Emissions	Annual Emissions	Control				
	(lb/hr)	(tpy)	Efficiency				
Total VOC	19.486	1.707	0				
NO _x	0.000	0.000	0				
СО	0.000	0.000	0				
PM _{2.5}	0.000	0.000	0				
PM ₁₀	0.000	0.000	0				
H ₂ S	6.538	0.573	0				
SO ₂	0.000	0.000	0				
Benzene	7.584	0.664	0				
Formaldehyde	0.000	0.000	0				

Total Emissions (control efficiencies factored in if applicable)						
	Hourly Emissions	Annual Emissions				
	(lb/hr)	(tpy)				
Total VOC	19.49	1.71				
NO _x	0.00	0.00				
CO	0.00	0.00				
PM _{2.5}	0.00	0.00				
PM ₁₀	0.00	0.00				
H ₂ S	6.54	0.57				
SO ₂	0.00	0.00				
Benzene	7.58	0.66				
Formaldehyde	0.00	0.00				

Enter any notes here:

SSM assumed 2% of total hours of operation in a year.

Thermal Oxidizer Emissions

General Information					Emission Factor
Flare functions as emergency o	control device. WI	hen streams are fed to fl	are it will be treated as an	emission event.	¹ Emission Facto
(1) Control Equipment:			Thermal Oxidizer		
(2) EPN:			TO-2		² Emission Facto
(3) What kind of device is this? Pick from list.			Thermal Oxidizer		
		Emission Factors for Wa NOx CO	aste Gas Stream(s) (lb/MM 0.14 0.13	4	
(4) Is there one or more pilot streams fired with pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	Yes				Zeeco Guarante
	m		m, please enter it as one co)	
(5) Is there one or more pilot streams fired with field gas? Pick Yes or No. Follow instructions below.	No				Emission Factor
		Please mov	ve on to next question belo	w.	
		Emission Factors for Pile NOx CO	()	Emission Factors
(6) Is there an added fuel stream made up of pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	No				
		Please mov	ve on to next question belo	W.	
		Emission Factors for Ad NOx CO	ded Fuel Stream (ppmv)		

rs

tors from Zeeco Guarantee (Ib/MMB	tu)
NOx CO	0.14 lb/MMBtu 0.13 lb/MMBtu
tors from AP-42 Table 1.4-1 and 1.4-	2 (Ib/MMscf)
PM10	7.6 lb/MMscf
PM2.5	5.7 lb/MMscf
tee (MMBtu/hr)	
ing Value Acid Gas	9.9 MMBtu/hr
ing Value Glycol Gas	5.6 MMBtu/hr
ors	

rs from AP-42 Table 1.4-1	and 1.4-2 (lb/MMscf)		
NOx	100		
CO	84		
PM10, PM2.5	7.6	5.7	

(7) Is there an added fuel stream made up of field gas? Pick Yes or No. Follow instructions below.	No							
	Please move on to next question below.							
	Emission Factors for Added Fuel Stream (Ib/MMBtu) NOx 0 CO 0							
(8) VOC percent destruction efficiency (%)	98							
(9) propane percent destruction efficiency (%) *OPTIONAL*	99							
(10) H ₂ S percent destruction efficiency (%)	98							
(11) Which is utilized for this device?	automatic ignition system							

	1	I	1		1			I	1	1	1	I	
Stream Sent to Thermal			3		_		7			40		40	Tatal
Oxidizer No.	1	2 Waste Gas from	3 Waste gas from Dehy,	4	5	6	1	8	9	10	11	12	Total
Stream Sent to Thermal			DEHY-2 (Stream										
			Condenser OVHD2)										_
	045												
Maximum Expected Hourly													
Volumtric Flow Rate of													
Stream (scf/hr)	470	53575	1550										55594.83333
Amount of Time Stream													
Fired (hrs/yr)	8760	8760	8760										·i
Maximum Expected Annual													
Volumtric Flow Rate of													
Stream (scf/yr)	4,117,200	469,317,000	13,576,540										487,010,740
Stream (Sci/yr)	4,117,200	409,317,000	13,370,340										407,010,740
Heat Value of Stream - from													
program results or gas													
analysis (Btu/scf)	1081.80	18.51	2561.12										
	1001.00	10.51	2001.12										
propane weight percent of													
total stream (%)													
OPTIONAL	0.73	0.04	16.24										
VOC weight percent of total													
stream (%) *OPTIONAL*	0.77	0.32	81.25										-

						Hourly (lb/hr							
						<u>nouny (io/in</u>							
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Compusion No.	1	-	°.	4	5	0	1	0	9	10		12	TOLAI
		Waste Gas from	Waste gas from Dehy,										
		•											
Combustor Name H2S	Gas	94)	Condenser OVHD2)										4.09
Crude or Condensate VOC	-	4.90	0.03										4.98 0.00
Natural Gas VOC	-	18.95	5 190.32										209.27
Total VOC	-	18.95											209.27
Benzene	-	7.53											26.21
			•			Annual (tpy)							
H2S	-	21.58	0.23										21.81
Crude or Condensate VOC	-												0.00
Natural Gas VOC	-	82.99											916.58
Total VOC	-	82.99											916.58
Benzene	-	33.00	81.82										114.82
Controlled Emissions													
Controlled Emissions													
						Hourly (lb/hr)						
	1	•					-			I			
Stream Sent to Thermal													
Oxidizer No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
		Waste Gas from	Waste gas from Dehy,										
		Amine, AM-2 (Stream	-										
Oxidizer Name	Gas	94)	Condenser OVHD2)										-
NOx	0.000	1.386	õ 0.784	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.17
СО	0.000	1.287	0.728	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.02
PM2.5	0.000	0.305	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.31
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01
DN 10	0.000	0.407	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.40
PM10	0.000	0.407	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.42
H2S	0.001	0.099	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.10
				0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.36
SO2	0.003	9.263	0.098	0.000									
SO2	0.003	9.263	0.098	0.000									
	0.003	9.263					0.000	0.000	0.000	0.000	、		0.00
SO2 Crude or Condensate VOC	0.003	9.263	- 0.098 - 0.000	0.000			0.000	0.000	0.000	0.000	、	0.000	0.00
Crude or Condensate VOC			- 0.000	0.000	0.000	0.000					<u>`</u>		
	0.003		- 0.000	0.000	0.000	0.000	0.000		0.000	0.000	、 0.000		
Crude or Condensate VOC Natural Gas VOC	0.00	0.35	- 0.000 5 3.426	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	3.78
Crude or Condensate VOC		0.35	- 0.000 5 3.426	0.000	0.000	0.000		0.000			、 0.000 0.000	0.000	3.78
Crude or Condensate VOC Natural Gas VOC	0.00	0.35	- 0.000 5 3.426	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	3.78

	Annual (tpy)												
Stream Sent to Thermal Oxidizer No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Thermal Oxidizer Name	Pilot + Sweep Gas	Waste Gas from Amine, AM-2 (Stream 94)	Waste gas from Dehy, DEHY-2 (Stream Condenser OVHD2)										_
NOx	0.206	6.071	3.434	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.71
со	0.173	5.637	3.189	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.00
PM2.5	0.002	1.338	0.039	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.38
PM10	0.003	1.783	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.84
H2S	0.006	0.432	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.44
SO2	0.012	40.572	0.428	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	41.01
Crude or Condensate VOC	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Natural Gas VOC	0.000	1.546		0.000		0.000	0.000			0.000	0.000		
Total VOC	0.000					0.000	0.000			0.000	0.000		
Benzene	0.000					0.000				0.000			

¹ CO and NOx emissions calculated based on the emission gurantees from manufacturer and the exhaust flue from the TO. 2 PM₁₀/PM_{2.5} AP-42 Factors

Thermal Oxidizer Total Emissions							
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)					
Crude or Condensate VOC	0.00	0.00					
Natural Gas VOC	3.78	16.55					
Total VOC	3.78	16.55					
NO _x	2.17	9.71					
СО	2.02	9.00					
PM _{2.5}	0.31	1.38					
PM ₁₀	0.42	1.84					
H ₂ S	0.10	0.44					
SO ₂	9.36	41.01					
Benzene	0.52	2.30					

Thermal Oxidizer SSM

A) Enter information into the yellow boxes.

B) Please provide a separate detailed calculation for these emissions; also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

C) Since these emissions fall into the category of "Other", which does not have a premade emission estimation sheet with pre-approved methods, the time to review this project cannot be guaranteed to be as quick as if only pre-made sheets had been used.

D) VOC and H2S control efficiencies may be entered (if applicable).

E) Make sure to answer the control device question.

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN:	TO-2 SSM
Name:	Thermal Oxidizer SSM

Are these vapors (A)	
uncontrolled; (B) controlled	
by a flare, vapor combustor,	
thermal oxidizer, or vapor	
recovery unit (VRU); or (C)	
controlled by another type of	
control device?	(A) uncontrolled

Uncontrolled Emissions								
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)	Control Efficiency					
Total VOC	190.317	16.672	0					
NOx	0.000	0.000	0					
со	0.000	0.000	0					
PM2.5	0.000	0.000	0					
PM10	0.000	0.000	0					
H2S	0.052	0.005	0					
SO2	0.000	0.000	0					
benzene	18.680	1.636	0					
formaldehyde	0.000	0.000	0					

Total Emissions (control efficiencies factored in if applicable)					
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)			
Total VOC	190.32	16.67			
NOx	0.00	0.00			
СО	0.00	0.00			
PM2.5	0.00	0.00			
PM10	0.00	0.00			
H2S	0.05	0.00			
SO2	0.00	0.00			
benzene	18.68	1.64			
formaldehyde	0.00	0.00			

Enter any notes here: SSM assumed 2% of total hours of operation in a year.

Plant 2 - Dehydrator Overhead SSM

A) Enter information into the yellow boxes.

B) Please provide a separate detailed calculation for these emissions; also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

C) Since these emissions fall into the category of "Other", which does not have a pre-made emission estimation sheet with pre-approved methods, the time to review this project cannot be guaranteed to be as quick as if only pre-made sheets had been used.D) VOC and H2S control efficiencies may be entered (if applicable).E) Make sure to answer the control device question.

menus below.

EPN:	DEHY-1 SSM
Name:	Dehydrator Overhead SSM

Are these vapors (A) uncontrolled; (B) controlled by	
a flare, vapor combustor, thermal oxidizer, or vapor	
recovery unit (VRU); or (C) controlled by another	
type of control device?	(A) uncontrolled

Uncontrolled Emissions							
	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)	Control Efficiency				
Total VOC	193.808	16.978	0				
NOx	0.000	0.000	0				
СО	0.000	0.000	0				
PM2.5	0.000	0.000	0				
PM10	0.000	0.000	0				
H2S	0.052	0.005	0				
SO2	0.000	0.000	0				
benzene	18.749	1.642	0				
formaldehyde	0.000	0.000	0				

Total Emissions (control efficiencies factored in if applicable)							
	Hourly Annua Emissions Emiss (lb/hr) (tpy)						
Total VOC	193.81	16.98					
NOx	0.00	0.00					
СО	0.00	0.00					
PM2.5	0.00	0.00					
PM10	0.00	0.00					
H2S	0.05	0.005					
SO2	0.00	0.00					
benzene	18.75	1.64					
formaldehyde	0.00	0.00					

Enter any notes here:

SSM assumed 2% of total hours of operation in a year.

Flare/Vapor Combustor Emissions

1) Control Equipment:	Plant 1 SSM/M								
•••									
(2) EPN:			FL-1						
	T								
3) What kind of device is this? Pick from			Flare						
ist.		Emission Factors	for Waste Gas Stream(s) (lb/MMbtu)						
		NOx	0.138						
		CO	0.2755						
1) is there are ar more pilot streams	r								
(4) Is there one or more pilot streams fired with pipeline quality natural gas or									
propane? Pick Yes or No. Follow	Yes								
instructions below.									
	Enter pilot stre	am information into	the boxes in the column for Stream No. 1 below						
		Emission Factors	for Pilot Stream (lb/MMscf)						
		NOx	100						
		CO	84						
5) Is there one or more pilot streams									
ired with field gas? Pick Yes or No.	No								
ollow instructions below.	110								
			ve on to next question below.						
			for Pilot Stream (ppmv)						
		NOx CO	0						
		0	0						
6) is there an added fuel stream made up									
of pipeline quality natural gas or propane? Pick Yes or No. Follow	No								
nstructions below.									
		Please mov	ve on to next question below.						
			for Added Fuel Stream (ppmv)						
		NOx							
		CO							
7) Is there an added fuel stream made up									
of field gas? Pick Yes or No. Follow	No								
nstructions below.									
			ve on to next question below.						
			for Added Fuel Stream (Ib/MMBtu)						
		NOx	0						
		CO							

Emission Factors		
Emission Factors fror	n AP-42 Table 1.4-1 and	1.4-2 (lb/MMscf)
NO		100
CO		84
0		04
Emission Eactors from	n TCEQ Guidance (Ib/MM	/Btu)
	n-steam assisted, high Bt	
1101	T Steam assisted, high bi	<u>u</u>
	0	400
NO	•	.138
CO	0.2	2755
No	<u>n-steam assisted, low Btu</u>	<u>l</u>
NO	x 0.0)641
CO	0.5	5496
Emission Factors fror	n AP-42 Table 1.4-2 and	<u>1.4-3 (lb/MMscf)</u>
SO	2	0.6
VO	С	5.5
her	izene 0	.002
001		

E

84			
nce (Ib/MMBtu) ed, high Btu	Steam assiste	ed, high Btu	
0.138 0.2755	NOx CO	0.0485 0.3503	
ed, low Btu	Steam assiste	ed, low Btu	
0.0641	NOx	0.068	
0.5496	CO	0.3465	
1.4-2 and 1.4-3 (Ib/MMscf)			

(8) VOC percent destruction efficiency (%)	98	
(9) propane percent destruction efficiency (%) *OPTIONAL*	99	
(10) H ₂ S percent destruction efficiency (%)	98	
(11) Which is utilized for this device?	continuous pilot	

Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
		Compressor	Plant 1										
Name (Enter Names of Each Stream Here)	Gas	Blowdowns	Malfunction										-
Maximum Expected Hourly Volumtric													
Flow Rate of Stream (scf/hr)	360		100000										1600360
Amount of Time Stream Fired (hrs/yr)	8760	96	24										-
Maximum Expected Annual Volumtric													
Flow Rate of Stream (scf/yr)	3,153,600	57,600,000	24,000,000										84,753,600
Heat Value of Stream - from program													
results or gas analysis (Btu/scf)	1081.80	1250.70	1,250.70										-
propane weight percent of total stream													
(%) *OPTIONAL*	0.733805024	11.18068475	11.18										-
VOC weight percent of total stream (%)													
OPTIONAL	0.77	20.84	20.840										-
					<u>Hourly</u>	<u>(lb/hr)</u>							
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Compressor	Plant 1										
	Gas	Blowdowns	Malfunction										
H2S	-	0.3187	0.53										0.85
Crude or Condensate VOC	-												0.00
Natural Gas VOC	-	6810.41	11350.69										18161.10
Total VOC	-	6810.41	11350.69										18161.10
Benzene	-	2.43	4.06										6.49
	-	-	-		Annual	(tpy)	-		-		•		
H2S	-	0.01530	0.01										0.02
Crude or Condensate VOC	-												0.00
Natural Gas VOC	-	326.90	136.21										463.11
Total VOC	-	326.90	136.21										463.11
Benzene	-	0.1169											0.17

Controlled Emissions													
<u></u>					Hourly (I	b/hr)							
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Compressor	Plant 1										
Name	Gas	Blowdowns	Malfunction										
NOx	0.036	103.558	172.597	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	276.19
СО	0.030	206.741	344.568	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	551.34
H2S	0.000	0.006	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.02
SO2	0.000	0.599	0.998	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.60
Crude or Condensate VOC	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	`	0.000	0.00
Natural Gas VOC	0.00	99.67	166.116	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	265.79
Total VOC	0.00	99.67	166.116	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	265.79
Benzene	0.000	0.04869	0.081	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.13
					<u>Annual</u>	<u>(tpy)</u>							
Stream Sent to Flare/Vapor Combustor	1	2	3	Λ	5	6	7	0	٥	10	11	12	
No.	I	2	J J	4	5	0	1	0	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Compressor	Plant 1										
Name	Gas	Blowdowns	Malfunction										-
NOx	0.158		2.071	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.20
CO	0.132			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.19
H2S	0.001	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
SO2	0.001	0.029		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.04
Crude or Condensate VOC	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Natural Gas VOC	0.009			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.79
Total VOC	0.009			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.79
Benzene	0.000	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00

Flare/Vapor Combustor Total Emissions							
	SSM E	missions	Malfunction	Emissions			
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)	Hourly Emissions (lb/hr)	Annual Emissions (tpy)			
Crude or Condensate VOC	0.000		0.000				
Natural Gas VOC	99.67	4.79	166.12				
Total VOC	99.67	4.79	166.12	1.99			
NO _x	103.59	5.13	172.60	2.07			
СО	206.77	10.06	344.57	4.13			
H ₂ S	0.01	0.001	0.01	0.0001			
SO ₂	0.60	0.03	1.00	0.01			
Benzene	0.05	0.00	0.08	0.001			

Flare/Vapor Combustor Emissions

General Information					Emis	ssic
Flare functions as emergency control device.	When streams a	re fed to flare it will	be treated as an emis	ssion event.	<u>Emis</u>	sior
(1) Control Equipment:		Plant 2 - D				
(2) EPN:			FL-2		Emis	SiO
(3) What kind of device is this? Pick from list.			Flare			
			for Waste Gas Stream	n(s) (lb/MMbtu)		
		NOx CO	0.138 0.2755			
(4) Is there one or more pilot streams fired with pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	Yes					
	Enter pilot strea			n for Stream No. 1 below.	If Emis	sio
		Emission Factors NOx CO	for Pilot Stream (lb/M 100 84	<u>Mscf)</u>		
		00	07			
(5) Is there one or more pilot streams fired with field gas? Pick Yes or No. Follow instructions below.	No					
			e on to next question I			
		Emission Factors NOx CO	for Pilot Stream (ppm 0 0	<u>v)</u>		
(6) Is there an added fuel stream made up of pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	No					
			e on to next question l			
		Emission Factors NOx CO	for Added Fuel Stream	<u>n (ppmv)</u>		
(7) Is there an added fuel stream made up of field gas? Pick Yes or No. Follow instructions below.	No					
		Please move	e on to next question I	pelow.	-	
			for Added Fuel Stream 0 0			
			U			

mission	Factors

sion	Factors	fro
		N
		СС

Factors fror

NC
CC
N. 1 -

<u>No</u> NO CO

n Factors fror

SO
VO

VUC
benzene

<u>s from AP-42 Ta</u> NOx CO	<u>ble 1.4-1 and 1.4-2 (lb/MMso</u> 100 84	<u>of)</u>		
	uidance (lb/MMBtu) sisted, high Btu	Steam assist	ed, high Btu	
NOx CO <u>Non-steam ass</u> NOx CO	0.138 0.2755 <u>sisted, low Btu</u> 0.0641 0.5496	NOx CO <u>Steam assist</u> NOx CO	0.0485 0.3503 ed, low Btu 0.068 0.3465	
<u>s from AP-42 Ta</u> SO ₂ VOC benzene	ble 1.4-2 and 1.4-3 (lb/MMso 0.6 5.5 2.10E-03	<u>cf)</u>		

(11) Which is utilized for this device?	automatic ignition system	
(10) H₂S percent destruction efficiency(%)	98	
(9) propane percent destruction efficiency (%) *OPTIONAL*	99	
(%)	98	
(8) VOC percent destruction efficiency		

Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
						Deny							
						Overhead,							
						DEHY-1							
Stream Sent to Flare/Vapor Combustor		Dehy-1 SSM	AM-1 SSM			(Stream							
Name (Enter Names of Each Stream	Pilot + Sweep	Flash Gas -		Compressor	Plant 2	Condenser							
Here)	Gas	Stream 16	Stream220	Blowdowns	Malfunction	Ovhd)							-
Maximum Expected Hourly Volumtric													
Flow Rate of Stream (scf/hr)	510	3446		100000.00	1000000.00	4676.21							2011357.092
Amount of Time Stream Fired (hrs/yr)	8760	1752	1752	96.00	24.00	8760							
Maximum Expected Annual Volumtric													
Flow Rate of Stream (scf/yr)	4,467,600	6,037,589	4,773,791	9600000.00	24000000.00	40963621.5							176,242,602
Heat Value of Stream - from program													
results or gas analysis (Btu/scf)	1081.80	1560.44	1,220.51	1250.70	1250.70	2554.53							
propane weight percent of total stream													
(%) *OPTIONAL*	0.733805024	19.94	9.48	11.18	11.18	16.25							
VOC weight percent of total stream (%)													
OPTIONAL	0.77	41.97	16.33	20.84	20.84	81.09							
	-			-	<u>Hourly</u>	<u>(lb/hr)</u>				-			
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total

					Hourly	<u>(lb/hr)</u>							
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
						Deny							
						Overhead,							
						DEHY-1							
		Dehy-1 SSM	AM-1 SSM			(Stream							
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Flash Gas -	Flash Gas	Compressor	Plant 2	Condenser							
Name	Gas	Stream 16	Stream220	Blowdowns	Malfunction	Ovhd)							-
H2S	-	0.0109	0.00	0.53	0.53	0.05							1.13
Crude or Condensate VOC	-												0.00
Natural Gas VOC	-	104.80	23.89	11350.69	11350.69	193.81							23023.88
Total VOC	-	104.80	23.89	11350.69	11350.69	193.81							23023.88
Benzene	-	0.28	0.29	4.06	4.06	18.75							27.44
					<u>Annua</u>	l (tpy)							
H2S	-	0.00954	0.00424	0.02550	0.00637	0.23							0.27
Crude or Condensate VOC	-												0.00
Natural Gas VOC	-	91.81	20.93	544.83	136.21	848.88							1642.66
Total VOC	-	91.81		544.83									1642.66
Benzene	-	0.2446	0.2565	0.1948	0.0487	82.12							82.86

Controlled Emissions													
	Hourly (lb/hr)												
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
						Deny							
						Overhead,							
						DEHY-1							
		Dehy-1 SSM	AM-1 SSM			(Stream							
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Flash Gas -	Flash Gas	Compressor	Plant 2	Condenser							
Name	Gas	Stream 16	Stream220	Blowdowns	Malfunction	Ovhd)							-
NOx	0.051	0.742	0.459	172.597	172.597	1.648	0.000	0.000	0.000	0.000	0.000	0.000	348.09
CO	0.043	1.481	0.916	344.568	344.568		0.000	0.000	0.000	0.000	0.000	0.000	
H2S	0.000	0.000		0.011	0.011		0.000	0.000	0.000	0.000	0.000	0.000	
SO2	0.000	0.020	0.009	0.998	0.998	0.098	0.000	0.000	0.000	0.000	0.000	0.000	2.12
Crude or Condensate VOC	-	-	-	-	-	-	0.000	0.000	0.000	0.000	0.000	0.000	
Natural Gas VOC	0.003	1.60		166.116	166.116	3.488	0.000	0.000	0.000	0.000	0.000	0.000	337.66
Total VOC	0.003	1.60	0.339	166.116	166.116		0.000	0.000	0.000	0.000	0.000	0.000	
Benzene	0.000	0.00559	0.006	0.081	0.081	0.375	0.000	0.000	0.000	0.000	0.000	0.000	0.55
					<u>Annua</u>	<u>l (tpy)</u>							
Stream Sent to Flare/Vapor Combustor	1	2	3	4	5	6	7	8	9	10	11	12	
No.	•	Ľ	5	-	5	· ·	1	0	3	10		12	Total
						Dehy							
		Dehy-1 SSM	AM-1 SSM			Overhead,							
	Pilot + Sweep	Flash Gas -	Flash Gas	Compressor	Plant 2	DEHY-1							
	Gas	Stream 16	Stream220	Blowdowns	Malfunction	(Stream							
Stream Sent to Flare/Vapor Combustor		Stream To	Stream220			Condenser							
Name						Ovhd)							-
NOx	0.223	0.650		8.285	2.071	7.220	0.000	0.000	0.000	0.000	0.000	0.000	18.85
CO	0.188			16.539			0.000	0.000	0.000	0.000	0.000	0.000	
H2S	0.001	0.000		0.001	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	
SO2	0.001	0.018	0.008	0.048	0.012	0.429	0.000	0.000	0.000	0.000	0.000	0.000	
Crude or Condensate VOC	-	-	-	-	-	-	0.000	0.000	0.000	0.000	0.000	0.000	
Natural Gas VOC	0.012			7.974	1.993		0.000	0.000	0.000	0.000	0.000	0.000	
Total VOC	0.012	1.400 0.005		7.974 0.004	1.993	15.276 1.642	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	
Benzene													

Flare/Vapor Combustor Emissions													
	<u>Normal Opera</u>	Normal Operations Emissions SSM Emissions Malfunction Emissions											
	Hourly	Annual Emissions		Annual	Hourly Emissions	Annual							
	Emissions (lb/hr)	(tpy)	(lb/hr)	Emissions (tpy)	(lb/hr)	Emissions (tpy)							
Crude or Condensate VOC	-	-	-	-	-	-							
Natural Gas VOC Total VOC	3.49 3.49				166.12 166.12	1.99 1.99							
NO _x	1.65												
СО	3.29	14.41	347.01	18.83	344.57	4.13							
H ₂ S	0.00	0.005	0.01	0.00	0.01	0.0001							
SO ₂	0.10	0.43	1.03	0.08	1.00	0.01							
Benzene	0.37	1.64	0.09	0.01	0.08	0.00							

Flare/Vapor Combustor Emissions

General Information						Emission Fact
Flare functions as emergency control device.	When streams a	are fed to flare it w	ill be treated as an emis	ssion event.		Emission Facto
(1) Control Equipment:						
(2) EPN:			FL-3			Emission Facto
(3) What kind of device is this? Pick from list.			Flare			
list.		Emission Factors	s for Waste Gas Stream	n(s) (lb/MMbtu)		
		NOx	0.138	<i></i>		
		CO	0.2755			
(4) Is there one or more pilot streams fired with pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	Yes					
	Enter pilot strea	am information int	o the boxes in the colur	nn for Stream No. 1 below.	lf	Emission Facto
		Emission Factors	<u>s for Pilot Stream (lb/Ml</u>	<u> Viscf)</u>		
		NOx	100			
		CO	84			
(5) Is there one or more pilot streams						
fired with field gas? Pick Yes or No. Follow instructions below.	No					
			ove on to next question			
			s for Pilot Stream (ppm	<u>v)</u>		
		NOx CO	0			
			Jan San San San San San San San San San S			
(6) Is there an added fuel stream made up of pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	No					
			ove on to next question			
		Emission Factors NOx CO	s for Added Fuel Strear	<u>n (ppmv)</u>		
(7) Is there an added fuel stream made up of field gas? Pick Yes or No. Follow instructions below.	No					
			ove on to next question			
			s for Added Fuel Stream	n (Ib/MMBtu)		
		NOx CO	0			

<u>ctors</u>				
	Table 1.4-1 and 1.4-2 (lb	/MMscf)		
NOx	100			
CO	84			
tors from TCEQ C	Guidance (Ib/MMBtu)			
	sisted, high Btu	Steam assis	ted, high Btu	
NOx	0.138	NOx	0.0485	
CO	0.2755	CO	0.3503	
Non-steam ass	<u>sisted, low Btu</u>	Steam assis	<u>ted, low Btu</u>	
NOx	0.0641	NOx	0.068	
CO	0.5496	CO	0.3465	
tors from $\Delta P_{-}/2$ T	Table 1.4-2 and 1.4-3 (lb	/MMacf)		
SO ₂		/10101301/		
-	0.6			
VOC	5.5			
benzene	2.10E-03			

(8) VOC percent destruction efficiency(%)	98	
(9) propane percent destruction efficiency (%) *OPTIONAL*	99	
(10) H₂S percent destruction efficiency (%)	98	
(11) Which is utilized for this device?	continuous pilot	

Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor		Dehy-2 SSM				AM-2 To Thermal							
Name (Enter Names of Each Stream	Pilot + Sweep	Flash Gas -	AM-2 SSM Flash	Compressor	Plant 3	Oxidizer Stream							
Here)	Gas	Stream 30	Gas Stream 95	Blowdowns	Malfunction	Stream 94							-
Maximum Expected Hourly Volumtric													
Flow Rate of Stream (scf/hr)	460	3437		825,000	1000000	53575							1885505.788
Amount of Time Stream Fired (hrs/yr)	8760	1752	1752	96	24	175.2							-
Maximum Expected Annual Volumtric													
Flow Rate of Stream (scf/yr)	4,029,600	6,022,456	5,314,364	79,200,000	24,000,000	9,386,340							127,952,760
Heat Value of Stream - from program													
results or gas analysis (Btu/scf)	1081.80	1561	1,223.94	1,251	1,250.70	18.51							-
propane weight percent of total stream													
(%) *OPTIONAL*	0.733805024	19.97	4.44	11.18068475	11.18068475	0.04							-
VOC weight percent of total stream (%)													
OPTIONAL	0.77	41.95	6.770	20.84	20.83959131	0.18							-
	-				Hourly (lb/	<u>′hr)</u>							
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
		Dehy-2 SSM		_		AM-2 To Thermal							
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Flash Gas -	AM-2 SSM Flash			Oxidizer Stream							
Name	Gas	Stream 30	Gas Stream 95			Stream 94							-
H2S	-	0.0109	0.00	0.44	0.53	4.93							5.91
Crude or Condensate VOC	-												0.00
Natural Gas VOC	-	104.50			11350.69	18.95							20865.77
Total VOC	-	104.50			11350.69	18.95							20865.77
Benzene	-	0.28	0.33	3.35	4.06								15.55
Annual (tpy)													
H2S	-	0.00959	0.00322	0.02103	0.00637	0.43							0.47
Crude or Condensate VOC	- -				0.00637								0.00
Crude or Condensate VOC Natural Gas VOC	- - -	91.54	23.93	449.49	0.00637	1.66							0.00 702.83
Crude or Condensate VOC	- - - -		23.93 23.93	449.49	0.00637								0.00

ontrolled Emissions													
Hourly (lb/hr)													
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
		Dehy-2 SSM				AM-2 To Thermal							
Stream Sent to Flare/Vapor Combustor	Pilot + Sweep	Flash Gas -	AM-2 SSM Flash	Compressor	Plant 3	Oxidizer Stream							
Name						Stream 94							-
NOx	0.046	0.740	0.512	142.392	172.597	0.137	0.000	0.000	0.000	0.000	0.000	0.000	316.42
СО	0.039	1.478	1.023	284.268	344.568	0.273	0.000	0.000	0.000	0.000	0.000	0.000	631.65
H2S	0.000	0.000	0.000	0.009	0.011	0.099	0.000	0.000	0.000	0.000	0.000	0.000	0.12
SO2	0.000	0.021	0.007	0.824	0.998	9.263	0.000	0.000	0.000	0.000	0.000	0.000	11.11
Crude or Condensate VOC	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	`	0.000	0.00
Natural Gas VOC	0.00	1.59	0.367	137.046	166.116	0.337	0.000	0.000	0.000	0.000	0.000	0.000	305.46
Total VOC	0.00	1.59	0.367	137.046	166.116	0.337	0.000	0.000	0.000	0.000	0.000	0.000	305.46
Benzene	0.000	0.00554	0.007	0.067	0.081	0.151	0.000	0.000	0.000	0.000	0.000	0.000	0.31
					<u>Annual (tr</u>	<u>v)</u>							
Stream Sent to Flare/Vapor Combustor	1	2	3	4	5	6	7	8	9	10	11	12	
No.	I	_	3	4	5	-	1	0	9	10	11	12	Total
	Pilot + Sweep	Dehy-2 SSM	AM-2 SSM Flash	Compressor	Plant 3	AM-2 To Thermal							
Stream Sent to Flare/Vapor Combustor	Gas	Flash Gas -	Gas Stream 95	Blowdowns	Malfunction	Oxidizer Stream							
Name		Stream 30				Stream 94							-
NOx	0.201	0.649			2.071	0.012	0.000	0.000	0.000	0.000	0.000	0.000	10.22
CO	0.169	1.295		13.645	4.135	0.024	0.000	0.000	0.000	0.000	0.000	0.000	20.16
H2S	0.001	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.01
SO2	0.001	0.018		0.040	0.012	0.811	0.000	0.000	0.000	0.000	0.000	0.000	0.89
Crude or Condensate VOC	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Natural Gas VOC	0.011	1.395		6.578	1.993	0.030	0.000	0.000	0.000	0.000	0.000	0.000	10.33
Total VOC	0.011	1.395		6.578	1.993	0.030	0.000	0.000	0.000	0.000	0.000	0.000	10.33
Benzene	0.000	0.005	0.006	0.003	0.001	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.03

Flare/Vapor Combustor Total Emissions										
	SSM Emissions Malfunction Emissions									
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)		Annual Emissions (tpy)						
Crude or Condensate VOC	0.00	0.00	0.00							
Natural Gas VOC	139.34	8.34	166.12	1.99						
Total VOC	139.34	8.34	166.12	1.99						
NO _x	143.83	8.15	172.60	2.07						
CO	287.08	16.03	344.57	4.13						
H ₂ S	0.11	0.01	0.01	0.0001						
SO ₂	10.11	0.89	1.00	0.01						
Benzene	0.23	0.03	0.08	0.00						

Flare/Vapor Combustor Emissions

General Information					<u>Err</u>	nission Factors
Flare functions as emergency control device.	When streams a	are fed to flare it wi	I be treated as an emission	event.	Em	<u>nission Factors fr</u> N
(1) Control Equipment:			por Combustion Unit		-	C P
		ve			-	ľ
(2) EPN:			VCU-1		Err	nission Factors fr
]	<u>N</u>
(3) What kind of device is this? Pick from list.			Vapor Combustor			N
		Emission Factors	for Waste Gas Stream(s) ((lb/MMbtu)		C
		NOx CO	0.138 0.2755			<u>N</u>
		0	0.2755		-	C.
(4) Is there one or more pilot streams fired with pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	Yes					Ū
	Enter pilot strea	am information into	the boxes in the column fo	r Stream No. 1 below. If	Err	nission Factors fr
			for Pilot Stream (lb/MMscf)		1	S
		NOx	100			V
		CO	84			b
					-	
(5) Is there one or more pilot streams fired with field gas? Pick Yes or No. Follow instructions below.	No					
		Please mo	ve on to next question below	w.		
			for Pilot Stream (ppmv)			
		NOx CO	0			
(6) Is there an added tuel stream made up of pipeline quality natural gas or propane? Pick Yes or No. Follow instructions below.	No					
			ve on to next question below			
		Emission Factors NOx CO	for Added Fuel Stream (pp	<u>omv)</u>		
		00			-	
(7) Is there an added fuel stream made up of field gas? Pick Yes or No. Follow instructions below.	No					
			ve on to next question below			
		<u>Emission Factors</u> NOx CO	<u>o for Added Fuel Stream (lb/</u> 0 0	<u>/MMBtu)</u>		

<u>ssion Factors</u>	fr N C P
ssion Factors	fro N
	N C N N C
ssion Factors	fre

	<u> </u>				
rs	from AP-42 Table 1.4-1 a	and 1.4-2 (lb/MMscf)			
	NOx	100			
	CO	84			
	PM10, PM2.5	7.6	5.7		
rs	from TCEQ Guidance (lb	/MMBtu)			
	Non-steam assisted, high	<u>h Btu</u>		Steam assisted, high E	<u>3tu</u>
	NOx	0.138		NOx	0.0485
	CO	0.2755		CO	0.3503
	Non-steam assisted, low	<u>' Btu</u>		Steam assisted, low B	<u>tu</u>
	NOx	0.0641		NOx	0.068
	CO	0.5496		CO	0.3465
rs	from AP-42 Table 1.4-2 a	and 1.4-3 (lb/MMscf)			
	SO ₂	0.6			
	VOC	5.5			
		.10E-03			

(8) VOC percent destruction efficiency(%)	98	
(9) propane percent destruction efficiency (%) *OPTIONAL*	98	
(10) H ₂ S percent destruction efficiency (%)	98	
(11) Which is utilized for this device?	automatic ignition system	

Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor													
Name (Enter Names of Each Stream		Condensate	Produced Water										
Here)	Pilot	Tanks	Tanks										-
Maximum Expected Hourly Volumtric													
Flow Rate of Stream (scf/hr)	12	93.86	2768.64										2874.5
Amount of Time Stream Fired (hrs/yr)	8760	8760	8760										-
Maximum Expected Annual Volumtric													
Flow Rate of Stream (scf/yr)	105,120	822,214	24,253,286										25,180,620
Heat Value of Stream - from program													
results or gas analysis (Btu/scf)	1081.80	4015.82	3098.29										-
propane weight percent of total stream													
(%) *OPTIONAL*	0.73	0.13	16.23										-
VOC weight percent of total stream (%)													
OPTIONAL	0.77	100.00	94.83										-
					Hourly	<u>(lb/hr)</u>							
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor		Condensate	Produced Water										
Name	Pilot	Tanks	Tanks										-
H2S	-	0.0000	0.0003										0.00
Crude or Condensate VOC	-	17.94	387.60										405.54
Natural Gas VOC	-												0.00
Total VOC	-	17.94											405.54
													6.52
Benzene	-	0.12	6.40										0.52
	-				Annua	(tpy)							
H2S	-	0.00000	0.00131		Annual	(tpy)							0.00
H2S Crude or Condensate VOC	- - -	0.00000	0.00131 1697.68800		<u>Annual</u>	(<u>tpy)</u>							0.00 1776.27
H2S Crude or Condensate VOC Natural Gas VOC	- - - -	0.00000 78.58 0.00	0.00131 1697.68800 0.00		Annual	(tpy)							0.00 1776.27 0.00
H2S Crude or Condensate VOC	- - - -	0.00000	0.00131 1697.68800 0.00 1697.69		Annual	(tpy)							0.00 1776.27

	Controlled Emissions												
	Hourly (lb/hr)												
Stream Sent to Flare/Vapor Combustor													
No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor		Condensate	Produced Water										
Name	Pilot	Tanks	Tanks										-
NOx	0.001	0.052	1.184	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.24
CO	0.001	0.104	2.363	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.47
PM2.5	0.000	0.001	0.016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.02
PM10	0.000	0.001	0.021	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.02
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SO2	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Crude or Condensate VOC	0.000	0.359	7.752	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.11
Natural Gas VOC	-	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Total VOC	0.00	0.36	7.752	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.11
Benzene	0.000	0.00240	0.128	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.13
					<u>Annual</u>	<u>(tpy)</u>							
Stream Sent to Flare/Vapor Combustor	1	2	3	4	5	6	7	8	9	10	11	12	
No.	I	_	3	4	5	0	Ĩ	0	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor	Pilot	Condensate	Produced Water										
Name		Tanks	Tanks										-
NOx	0.005	0.228		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
CO	0.004	0.455	10.351	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.81
PM2.5	0.000	0.002	0.069	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.07
PM10	0.000	0.003	0.092	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
SO2	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Crude or Condensate VOC	-	-	33.954	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	33.95
Natural Gas VOC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Total VOC	0.000	1.572	33.954	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	35.53
Benzene	0.000	0.011	0.561	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.57

Flare/Vapor Combustor Total Emissions									
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)							
Crude or Condensate VOC	8.11	33.95							
Natural Gas VOC	0.00	0.00							
Total VOC	8.11	35.53							
NO _x	1.24	5.42							
CO	2.47	10.81							
PM _{2.5}	0.02	0.07							
PM ₁₀	0.02	0.10							
H ₂ S	0.00001	0.00004							
SO ₂	0.0006	0.0025							
Benzene	0.13	0.57							

Flare/Vapor Combustor SSM Emissions

A) Enter information into the yellow boxes.

B) Please provide a separate detailed calculation for these emissions; also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

C) Since these emissions fall into the category of "Other", which does not have a pre-made emission estimation sheet with pre-approved methods, the time to review this project cannot be guaranteed to be as quick as if only pre-made sheets had been used.

D) VOC and H2S control efficiencies may be entered (if applicable).

E) Make sure to answer the control device question.

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN:	VCU-1 SSM
Name:	Vapor Combustion Unit SSM

Are these vapors (A) uncontrolled,	
(B) controlled by a flare, vapor	
combustor, thermal oxidizer, or	
vapor recovery unit (VRU); or (C)	
controlled by another type of control	
device?	
	(A) uncontrolled

Uncontrolled Emissions			
	Hourly Emissions	Annual Emissions	Control
	(lb/hr)	(tpy)	Efficiency
Total VOC	405.540	13.855	0
NOx	0.000	0.000	0
СО	0.000	0.000	0
PM2.5	0.000	0.000	0
PM10	0.000	0.000	0
H2S	0.000	0.000	0
SO2	0.000	0.000	0
benzene	6.520	0.223	0
formaldehyde	0.000	0.000	0

Total Emissions (control efficiencies factored in if applicable)		
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
Total VOC	405.54	13.85
NOx	0.00	0.00
СО	0.00	0.00
PM2.5	0.00	0.00
PM10	0.00	0.00
H2S	0.00	0.00
SO2	0.00	0.00
benzene	6.52	0.22
formaldehyde	0.00	0.00

Enter any notes here:

SSM assumed 0.78% of total hours of operation in a year.

Loading Emissions

Truck Hourly Loading Emission Calculations Using equation L_L = 12.46* SPM/T from AP-42, Chapter 5, Section 5.2-4 S = 0.60 Saturation Factor True vapor pressure of liquid loaded (psia) P = 8.96 M = 72.44 Molecular Weight of Vapors (Ib/Ib-mole) Temperature of bulk liquid loaded (in degrees Rankine) T = 559.67 Hourly Loading Rate 8000.00 Gallons Loaded per Hour Loading Loss (Ib VOC released/1000 gal liquid loaded) L_L = 8.67 VOC Uncontrolled Emissions (lb/hr) 69.36 **Tank Vapor Weight Percents**

benzene 0.81 Tank Vapor Benzene wt% H ₂ S 0.00 Tank Vapor H2S wt%	VOC	100.00	Tank Vapor VOC wt%
H₂S 0.00 Tank Vapor H2S wt%	benzene	0.81	Tank Vapor Benzene wt%
	H₂S	0.00	Tank Vapor H2S wt%

Produced Water Reduction

	0.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	
	Uncontrolled Emissions		
VOC	69.36	Emissions Uncontrolled VOC (lb/hr)	
benzene	0.56	Emissions Uncontrolled Benzene (lb/hr)	
H₂S	0.00	Emissions Uncontrolled H ₂ S (lb/hr)	
Collect	ion Efficiency (on	ly fill out if loading vapors are routed to a control device)	
VOC	0.00	VOC Collection Efficiency (%)	
H₂S	0.00	H ₂ S Collection Efficiency (%)	
Vapors Uncaptu	red by Control De	evice (only fill out if loading vapors are routed to a control device)	
VOC	69.36	VOC Uncaptured Vapors (lb/hr)	
benzene	0.56	benzene Uncaptured Vapors (Ib/hr)	
H₂S	0.00	H₂S Uncaptured Vapors (lb/hr)	
Contr	ol Efficiency (only	<i>y</i> fill out if loading vapors are routed to a control device)	
VOC 0.00 VOC Control Efficiency (%)			
H₂S	H ₂ S 0.00 H ₂ S Control Efficiency (%)		
Vapors Uncaptu	ired by Control De	evice (only fill out if loading vapors are routed to a control device)	
VOC	0.00	VOC Results (Ib/hr)	

Benzene Results (Ib/hr)

H₂S Results (lb/hr)

benzene

H₂S

0.00

0.00

Enter temperature in Fahrenheit °F):	Temperature in Rankine (°R):
100	559.67
Enter Barrels of	Gallons of liquid:

Enter Barrels of	Gallons of liquid:
8000	336000
8888	330000

Gallons per Year	Barrels per day:
	0

-	_
	Enter any notes here:
_	
_	
-	
-	
-	
_	

Truck Annual Loading Emission Calculations			
Using equation $L_L = 12.46^*$ SPM/T from AP-42, Chapter 5, Section 5.2-4			
S =	0.60	= Saturation Factor	
P =	4.47	= True vapor pressure of liquid loaded (psia)	
M =	72.44	= Molecular Weight of Vapors (Ib/Ib-mole)	
T =	524.67	= Temperature of bulk liquid loaded (in degrees Rankine)	
Annual Loading Rate	1764000.00	= Gallons Loaded per Year	
L _L =	4.61	Loading Loss (Ib VOC released/1000 gal liquid loaded)	
	4.07	VOC Uncontrolled Emissions (ton/yr)	
		Tank Vapor Weight Percents	
VOC	100.00	Tank Vapor VOC wt%	
benzene	0.81	Tank Vapor Benzene wt%	
H₂S	0.00	Tank Vapor H2S wt%	
Produced Water Reduction			
0.00 Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)			
Uncontrolled Emissions			
VOC	4.07	Emissions Uncontrolled VOC (ton/yr)	
benzene	0.03	Emissions Uncontrolled Benzene (ton/yr)	
H₂S	0.00	Emissions Uncontrolled H ₂ S (ton/yr)	
Collection Efficiency (only fill out if loading vapors are routed to a control device)			
VOC	0.00	VOC Collection Efficiency (%)	
H₂S	0.00	H₂S Collection Efficiency (%)	
Vapors Uncaptured by Control Device (only fill out if loading vapors are routed to a control device)			
VOC	4.07	VOC Uncaptured Vapors (ton/yr)	
benzene	0.03	benzene Uncaptured Vapors (ton/yr)	
H₂S	0.00	H₂S Uncaptured Vapors (ton/yr)	
Control Efficiency (only fill out if loading vapors are routed to a control device)			
VOC	0.00	VOC Control Efficiency (%)	
H₂S	0.00	H₂S Control Efficiency (%)	
Vapors Uncaptu	red by Control Do	evice (only fill out if loading vapors are routed to a control device)	
VOC	0.00	VOC Results (ton/yr)	
benzene	0.00	Benzene Results (ton/yr)	
H₂S	0.00	H ₂ S Results (ton/yr)	
_			

Enter temperature in	Temperature in
Fahrenheit °F):	Rankine (°R):
65	524.67

Enter Barrels of Liquid	Gallons of liquid:	
6000	252000	

Enter gallons per year	Barrels per day:
1764000	115.0684932

	nsate liquids have LACT to
	e liquids out of the facility. True al to 7 days condensate
	is included in case the LACT
down.	

Loading Emissions			
	Hourly		
	Emissions	Annual	
	(lb/hr)	Emissions (tpy)	
VOC	69.36	4.07	
benzene	0.56	0.03	
H2S	0.00	0.00	

Loading Emissions

ck Hourly Loading g equation L _L = 12.46*		Iculations -42, Chapter 5, Section 5.2-4	
S =	0.60	Saturation Factor	
P =	21.67	True vapor pressure of liquid loaded (psia)	
M =	56.01	Molecular Weight of Vapors (lb/lb-mole)	
T =	559.67	Temperature of bulk liquid loaded (in degrees Rankine)	
Hourly Loading Rate	8000.00	Gallons Loaded per Hour	
L _L =	16.21	Loading Loss (Ib VOC released/1000 gal liquid loaded)	
	129.71	VOC Uncontrolled Emissions (lb/hr)	
		Tank Vapor Weight Percents	
voc	94.83	Tank Vapor VOC wt%	
benzene	1.57	Tank Vapor Benzene wt%	
H₂S	0.00	Tank Vapor H2S wt%	
		Produced Water Reduction	
	0.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	
		Uncontrolled Emissions	
VOC	129.71	Emissions Uncontrolled VOC (lb/hr)	
benzene	2.15	Emissions Uncontrolled Benzene (Ib/hr)	
H₂S	0.00	Emissions Uncontrolled H ₂ S (lb/hr)	
Collect	tion Efficiency (c	only fill out if loading vapors are routed to a control device)	
voc	0.00	VOC Collection Efficiency (%)	
H₂S	0.00	H ₂ S Collection Efficiency (%)	
Vapors Uncapt	ured by Control	Device (only fill out if loading vapors are routed to a control device)	
voc	129.71	VOC Uncaptured Vapors (lb/hr)	
benzene	2.15	benzene Uncaptured Vapors (Ib/hr)	
H₂S	0.00	H ₂ S Uncaptured Vapors (Ib/hr)	
Cont	ol Efficiency (or	ly fill out if loading vapors are routed to a control device)	
Contr		VOC Control Efficiency (%)	
voc	0.00	VOC Control Efficiency (%)	
	0.00 0.00	VOC Control Efficiency (%) H ₂ S Control Efficiency (%)	
VOC H ₂ S	0.00		
VOC H ₂ S	0.00	H ₂ S Control Efficiency (%)	
VOC H₂S Vapors Uncapt	0.00 ured by Control	H ₂ S Control Efficiency (%) Device (only fill out if loading vapors are routed to a control device)	

Enter temperature in	Temperature in
Fahrenheit °F):	Rankine (°R):
100	559.67

Enter Barrels of	Gallons of liquid:
8000	336000

Gallons per Year	Barrels per day:
	0

Enter any notes here:					

Truck Annual Loading Emission Calculations				
-		42, Chapter 5, Section 5.2-4		
S =	0.60	= Saturation Factor		
P =	12.23	= True vapor pressure of liquid loaded (psia)		
M =	56.01	= Molecular Weight of Vapors (lb/lb-mole)		
T =	524.67	= Temperature of bulk liquid loaded (in degrees Rankine)		
Annual Loading Rate	44100.00	= Gallons Loaded per Year		
L _L =	9.76	Loading Loss (Ib VOC released/1000 gal liquid loaded)		
	0.22	VOC Uncontrolled Emissions (ton/yr)		
		Tank Vapor Weight Percents		
VOC	94.83	Tank Vapor VOC wt%		
benzene	1.57	Tank Vapor Benzene wt%		
H₂S	0.00	Tank Vapor H2S wt%		
Produced Water Reduction				
	0.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)		
Uncontrolled Emissions				
VOC	0.22	Emissions Uncontrolled VOC (ton/yr)		
benzene	0.00	Emissions Uncontrolled Benzene (ton/yr)		
H₂S	0.00	Emissions Uncontrolled H ₂ S (ton/yr)		
Collec	tion Efficiency (o	nly fill out if loading vapors are routed to a control device)		
VOC	0.00	VOC Collection Efficiency (%)		
H ₂ S	0.00	H ₂ S Collection Efficiency (%)		
Vapors Uncapt	ured by Control [Device (only fill out if loading vapors are routed to a control device)		
VOC	0.22	VOC Uncaptured Vapors (ton/yr)		
benzene	0.00	benzene Uncaptured Vapors (ton/yr)		
H₂S	0.00	H ₂ S Uncaptured Vapors (ton/yr)		
Control Efficiency (only fill out if loading vapors are routed to a control device)				
VOC	0.00	VOC Control Efficiency (%)		
H₂S	0.00	H ₂ S Control Efficiency (%)		
Vapors Uncapt	ured by Control [Device (only fill out if loading vapors are routed to a control device)		
VOC	0.00	VOC Results (ton/yr)		
benzene	0.00	Benzene Results (ton/yr)		
H ₂ S	0.00	H ₂ S Results (ton/yr)		
-				

Enter temperature in	Temperature in
Fahrenheit °F):	Rankine (°R):
65	524.67

Enter Barrels of Liquid	Gallons of liquid:	
150	6300	

Enter gallons per year	Barrels per day:
44100	2.876712329

Enter any n	otes here:
pipe out of th	d water liquids are transfered by ne facility. Truck loading equal to 7 ed water production is included in e is down.

H ₂ S	0.00	H ₂ S Results (ton/	/yr)
			_
Load	ing Emissions		
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)	
VOC	129.71	0.22	
benzene	2.15	0.00	
H2S	0.0001	0.00000017	1

Planned MSS Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and H₂S weight percents may be entered. The weight percents from the Analyses tab are displayed

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) Make sure to answer the control device question.

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	SSM-1
Identifier	Pig Launcher Blowdowns
Describe this MSS	

event in detail,	Pig Launcher = 90 acf each
include specifically	2 pig launch/day for 12 months
what is being done	z pig ladiich/day for 12 months

<u>Venting Emission Calculation</u> <u>Warning:</u> This calculation should provide a conservatively high (potentially overestimated) result for emissions from venting when only gas is present in a unit. If liquids are present in the unit, this calculation could potentially significantly underestimate emissions because this calculation does not factor in emissions resulting from the evaporation of liquids present in the unit. <u>If</u> <u>liquids are present or if you wish to use another calculation methodology, do not use this calculation tab.</u> Instead, use the calculation tab for "Other" and make sure to provide a separate detailed calculation for these emissions and also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

If emissions from this source are uncontrolled:

The formula is set up to do one calculation, which assumes that the entire volume of gas inside the unit is vented from the unit. The calculation of the mass of vented gas is done based on the volume of the unit vented, which is assumed to be saturated with vapor, and the temperature and pressure inside the unit before the venting occurs.

If emissions from this source are controlled:

The formula is set up to do two calculations. To preface the explanation of the two calculations, it is understood that for a release from a pressurized vessel, initial venting due to depressurization could occur rapidly until the vapor inside the vessel is equal to the atmospheric pressure, then further venting of the vapor still left in the vessel at atmospheric conditions could occur at a slower rate. This calculation assumes that any releases at atmospheric pressure cannot be controlled.

In order to move the vapor present in the vessel at atmospheric conditions to a control device, a flare for example, some sort of extra operation is needed such as using air or nitrogen to move the vapor out, and if all of that vapor is routed to the control device, it may be diluted to the point where it would not have a sufficient heating value to combust, and if a supplemental fuel stream is added, there would be additional emissions associated with this.

If you do have a way to move the vapor present in the vessel at atmospheric conditions to a control device, do not use this calculation tab. Instead, use the calculation tab for "Other" and make sure to provide a separate detailed calculation for these emissions and also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs). Also, please describe this MSS event in detail, include specifically what is being done, how it is being done, and how all of the vapor is controlled.

The <u>first calculation</u> of the mass of vented gas, which assumes that the entire volume of gas inside the unit is vented from the unit, is done based on the volume of the unit vented, which is assumed to be saturated with vapor, and the temperature and pressure inside the unit before the venting occurs.

The <u>second calculation</u> is done the same as the first one except using the atmospheric pressure (instead of the pressure inside the unit before the venting occurs) and represents all of the mass vented from the vessel that is present at atmospheric conditions (after the vessel depressurization).

The final result is the first calculation plus the second calculation, with the control efficiency only applied to the first calculation (which uses the pressure inside the unit before venting and represents the entire volume of gas inside the unit being vented).

Ideal Gas Constant, [(ft3*psia)/(R*lb-mol)]
10.73159

I	
(acf - actual cubic feet)	180
Before Venting (psig)	400
Final Pressure (psia)	14.7
Before Venting (psia)	414.7
Temperature of Gas Inside the Unit Before Venting (°F)	100
Temperature of Gas Inside the Unit Before Venting (°R)	559.27
(hours/event)	1
Frequency of Events (events/year)	365
(lb/lb-mol)	20.97
VOC wt %	20.84
benzene wt%	0.01
H ₂ S wt%	0.00
Are planned MSS vapors (A) uncontrolled; (B) controlled by a	

uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?

Vapors Captured by Control Device		
You need to input these values into the appropriate control device		
emission calculation tab.		
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
VOC Results:	54.351	9.919
Benzene Results:	0.019	0.004
H₂S Results:	0.003	0.0005
Planned MSS Emissions		

Flaimed M33 Emissions		
	Hourly	Annual
	Emissions	Emissions
	(lb/hr)	(tpy)
VOC Results:	54.35	9.92
Benzene Results:	0.02	0.00
H₂S Results:	0.003	0.0005

VOC Type: (pick from Natural Gas VOC

<u>Emission Type:</u> (pick <mark>Periodic</mark>

Enter any	
notes	
here:	

Gas Molecular Weight and Weight Percents From Analyses Tab:

Percents From Analyses Tab.	
Molecular Weight	20.97
VOC wt %	20.84
Benzene wt %	0.01
H2S wt %	0.00

Planned MSS Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and H₂S weight percents may be entered. The weight percents from the Analyses tab are displayed

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) Make sure to answer the control device question.

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	SSM-2
Identifier	Pig Launcher Blowdowns
Describe this MSS	

event in detail,	Pig Launcher = 40 acf
include specifically	1 pig launch/day for 12 months
what is being done	

Venting Emission Calculation Warning: This calculation should provide a conservatively high (potentially overestimated) result for emissions from venting when only gas is present in a unit. If liquids are present in the unit, this calculation could potentially significantly underestimate emissions because this calculation does not factor in emissions resulting from the evaporation of liquids present in the unit. If liquids are present or if you wish to use another calculation methodology, do not use this calculation tab. Instead, use the calculation tab for "Other" and make sure to provide a separate detailed calculation for these emissions and also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

If emissions from this source are uncontrolled:

The formula is set up to do one calculation, which assumes that the entire volume of gas inside the unit is vented from the unit. The calculation of the mass of vented gas is done based on the volume of the unit vented, which is assumed to be saturated with vapor, and the temperature and pressure inside the unit before the venting occurs.

If emissions from this source are <u>controlled</u>:

The formula is set up to do two calculations. To preface the explanation of the two calculations, it is understood that for a release from a pressurized vessel, initial venting due to depressurization could occur rapidly until the vapor inside the vessel is equal to the atmospheric pressure, then further venting of the vapor still left in the vessel at atmospheric conditions could occur at a slower rate. This calculation assumes that any releases at atmospheric pressure cannot be controlled.

In order to move the vapor present in the vessel at atmospheric conditions to a control device, a flare for example, some sort of extra operation is needed such as using air or nitrogen to move the vapor out, and if all of that vapor is routed to the control device, it may be diluted to the point where it would not have a sufficient heating value to combust, and if a supplemental fuel stream is added, there would be additional emissions associated with this.

If you do have a way to move the vapor present in the vessel at atmospheric conditions to a control device, do not use this calculation tab. Instead, use the calculation tab for "Other" and make sure to provide a separate detailed calculation for these emissions and also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs). Also, please describe this MSS event in detail, include specifically what is being done, how it is being done, and how all of the vapor is controlled.

The <u>first calculation</u> of the mass of vented gas, which assumes that the entire volume of gas inside the unit is vented from the unit, is done based on the volume of the unit vented, which is assumed to be saturated with vapor, and the temperature and pressure inside the unit before the venting occurs.

The <u>second calculation</u> is done the same as the first one except using the atmospheric pressure (instead of the pressure inside the unit before the venting occurs) and represents all of the mass vented from the vessel that is present at atmospheric conditions (after the vessel depressurization).

The final result is the first calculation plus the second calculation, with the control efficiency only applied to the first calculation (which uses the pressure inside the unit before venting and represents the entire volume of gas inside the unit being vented).

Ideal Gas Constant, [(ft3*psia)/(R*lb-mol)]
10.73159

Gas Molecular Weight and Weight Percents From Analyses Tab:

Percents From Analyses Tab.						
Molecular Weight	20.97					
VOC wt %	20.84					
Benzene wt %	0.01					
H2S wt %	0.00					

(acf - actual cubic feet)	40
Before Venting (psig)	400
Final Pressure (psia)	14.7
Before Venting (psia)	414.7
Before Venting (°F)	100
Before Venting (°R)	559.27
(hours/event)	1
Frequency of Events (events/year)	365
(lb/lb-mol)	20.97
VOC wt %	20.84
benzene wt%	0.01
H ₂ S wt%	0.00
Are planned MSS vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(A) uncontrolled

Vapors Captured by Control Device								
You need to input these values into	You need to input these values into the appropriate control device							
emission calculation tab.								
Hourly Annual								
	Emissions	Emissions						
	(lb/hr)	(tpy)						
VOC Results:	12.078	2.204						
Benzene Results:	0.004	0.001						
H ₂ S Results: 0.001 0.0001								

Planned MSS Emissions								
	Hourly Annual Emissions Emission (Ib/hr) (tpy)							
VOC Results:	12.08	2.20						
Benzene Results:	0.00	0.00						
H₂S Results:	0.0006	0.0001						

VOC Type: (pick from
Natural Gas VOC

Emission Type: (pick Periodic

Enter any	
notes	
here:	

Fugitive Emissions

Equip Cat	Туре	Monitor Frequency	Component Count	Emission Factor ¹ (kg/hr/source)	Control (%)	Inlet Gas % VOC	Inlet Gas % HAP	Inlet Gas % H₂S	Inlet Gas % CH4	Inlet Gas % CO2	Uncontrolled Rate (lb/hr)	Controlled Rate (lb/hr)
Connector	Vapor	Yearly (SS)	6611	2.00E-04	0%						2.9149	2.9149
	Vapor	Yearly (SS) Monthly (SS)	51 3408	8.80E-03 4.50E-03	0% 0%	20.84%	0.02%	0.10%	60.01%	1.26%	0.9894 33.8097	0.9894 33.8097
Pumps	Vapor	Monthly (SS)	24	2.40E-03	0%						0.1270	0.1270
Hourly Total										37.84 165.7	37.84	
	Annual											165.7

		VC	DC OC	Total HA	Total HAP		H₂S		CH ₄		0 ₂
		Uncontrolled	Controlled		Controlled	Uncontrolled	Controlled	Uncontrolled	Controlled	Uncontrolled	Controlled
		Rate	Rate	Uncontrolled Rate	Rate	Rate	Rate	Rate	Rate	Rate	Rate
Equip Cat	Туре	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Connector	Vapor	0.61	0.61	6.01E-04	6.01E-04	2.84E-03	2.84E-03	1.75E+00	1.75E+00	3.66E-02	3.66E-02
Press Relief Device	Vapor	0.206	0.206	2.04E-04	2.04E-04	9.65E-04	9.65E-04	5.94E-01	5.94E-01	1.24E-02	1.24E-02
Valve	Vapor	7.05	7.05	6.98E-03	6.98E-03	3.30E-02	3.30E-02	2.03E+01	2.03E+01	4.24E-01	4.24E-01
Pumps	Vapor	0.03	0.03	2.62E-05	2.62E-05	1.24E-04	1.24E-04	7.62E-02	7.62E-02	1.59E-03	1.59E-03
Hourly To	al	7.89	7.89	0.01	0.01	0.04	0.04	22.71	22.71	0.47	0.47
Annual Total	(tpy)	34.5	34.5	0.03	0.034	0.16	0.16	99.47 99.47		2.08	2.08

Notes

¹ Emission factors from Table 2-4 of the EPA Protocol for Equipment Leak Emission Estimates, November 1995

GHG Emissions from Natural Gas Combustion

		Heat Rate	CO ₂ EF	CO ₂ Em	issions	CH₄ EF	CH ₄ Em	issions	N ₂ O EF	N ₂ O Emi	ssions
Emission Source	Source Description	MMBtu/hr	kg/mmbtu	metric TPY	short tpy	kg/mmbtu	metric TPY	short tpy	kg/mmbtu	metric TPY	short tpy
HT-101	Plant 1 - Mole Sieve Heater	6.97	53.06	3239.70	3571.12	0.001	0.061	0.067	0.0001	0.006	0.007
HT-801	Plant 1 - Stabilizer Heater	6.97	53.06	3239.70	3571.12	0.001	0.061	0.067	0.0001	0.006	0.007
HT-102	Plant 2 - Mole Sieve Heater	9.74	53.06	4527.21	4990.34	0.001	0.085	0.094	0.0001	0.009	0.009
AR-1	Plant 2 - Amine Reboiler	21.09	53.06	9802.75	10805.57	0.001	0.185	0.204	0.0001	0.018	0.020
DR-1	Plant 2 - Dehy Regen Heater	2.9	53.06	1347.94	1485.83	0.001	0.025	0.028	0.0001	0.003	0.003
HT-103	Plant 3 - Mole Sieve Heater	9.74	53.06	4527.21	4990.34	0.001	0.085	0.094	0.0001	0.009	0.009
HT-802	Plant 3 - Stabilizer Heater 1	6.2	53.06	2881.79	3176.60	0.001	0.054	0.060	0.0001	0.005	0.006
AR-2	Plant 3 - Amine Reboiler	23.92	53.06	11118.15	12255.54	0.001	0.210	0.231	0.0001	0.021	0.023
DR-2	Plant 3 - Dehy Regen Heater	2.5	53.06	1162.01	1280.89	0.001	0.022	0.024	0.0001	0.002	0.002
HT-803	Plant 3 - Stabilizer Heater 2	6.2	53.06	2881.79	3176.60	0.001	0.054	0.060	0.0001	0.005	0.006
TO-1	Plant 2 -Thermal Oxidizer	9.80	53.06	4555.09	5021.08	0.001	0.086	0.095	0.0001	0.009	0.009
TO-2	Plant 3 -Thermal Oxidizer	9.80	53.06	4555.09	5021.08	0.001	0.086	0.095	0.0001	0.009	0.009
FL-1	Plant 1 - Flare	12.10	53.06	77.04	84.92	0.001	0.001	0.002	0.0001	0.000	0.000
FL-2	Plant 2 - Flare	25.23	53.06	4717.59	5200.20	0.001	0.089	0.098	0.0001	0.009	0.010
FL-3	Plant 3 - Flare	18.50	53.06	1719.78	1895.71	0.001	0.032	0.036	0.0001	0.003	0.004
VCU-1	Tanks Control	7.11	53.06	3304.77	3642.85	0.001	0.062	0.069	0.0001	0.006	0.007

Emission Factors (EF) from Tables C-1 and C-2 to 40 CFR 98 Subpart C

Unpaved haul road emissions from trucking operations for condensate tanks - Exempt under NMAC 20.2.72.202.B.5

Haul Road Inputs

Site-Wide

Description	Value	Unit
Liquid Throughput	6,081	bbl/day
Annual Operating Hours:	168	hr
Daily Operating Hours:	24	hr

Unpaved Haul Road

Parameter	Value	Unit
Empty Vehicle Weight ¹	16	ton
Load Size ²	21.2	ton
Loaded Vehicle Weight ³	37.2	ton
Mean Vehicle Weight ⁴	26.6	ton
Vehicles Per Day ⁵	12	VPD
Vehicles Per Year	4380	VPY
Segment Length	0.04	mile
Trips per Segment	2	-
Effective Segment Length ⁶	0.08	mile
Trips per Hour ⁷	1.00	-
Wet Days ⁸	60	day
Surface Silt Content ⁹	4.8	%
Control Efficiency	0	%

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Include cargo, transported materials, etc. (5.6 lb/gal RVP10 *7560 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ Vehicles per day = (Turnovers/year) / (365 days/year)

⁶ Effective segment length = trips per segment * segment length

⁷ Trips per hour = Vehicles per day * Segments per trip ÷ Hours of Operation per Day

⁸ Wet days is the NM default allowed by NMED without additional justification

⁹ Surface silt content based on AP-42 Section 13.2.2.3

Unpaved Road Emission Factors

	Calculation Parameters ¹									Hourly Emission Factors			Annual Emission Factors					
	S	W	Р		k			а			b			E ²			E _{ext} ⁵	
Route	Silt Content ¹ %	Mean Vehicle Weight tons	Wet Days day	PM ₃₀ Ib/VMT	PM ₁₀ Ib/VMT	PM _{2.5} Ib/VMT	PM ₃₀	PM ₁₀	PM _{2.5}	PM ₃₀	PM ₁₀	PM _{2.5}	PM ₃₀ ³ Ib/VMT	PM ₁₀ Ib/VMT	PM _{2.5} Ib/VMT	PM ₃₀ Ib/VMT	PM ₁₀ Ib/VMT	PM _{2.5} Ib/VMT
	/0		,															
Trucks	4.8	26.6	60	4.9	1.5	0.15	0.70	0.90	0.90	0.45	0.45	0.45	6.9	1.8	0.18	5.8	1.5	0.15

Emission factors calculated per AP-42 Sec. 13.2.2.3 November, 2006, Equation 2.

Unpaved Road Emissions

Calculation Inputs						Uncontrolled Emissions						Controlled Emissions ⁶						
Route	Annual Operation	Segment Length	Trips per Segment	Number of Trucks per Year	Effective Segment Length	Average VMT/yr ⁴	PN	30	PN	N ₁₀	PN	N _{2.5}	PN	N ₃₀	PN	И ₁₀	PN	M _{2.5}
	hr	mi		trucks/yr	mi	mi/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Trucks	8,760	0.04	2	4380	0.08	350	0.28	1.0	0.07	0.26	0.007	0.026	0.28	1.0	0.07	0.26	0.007	0.026
						Totals	0.28	1.0	0.07	0.26	0.007	0.026	0.28	1.0	0.07	0.26	0.007	0.026

¹ Surface silt = % of 75 micron diameter and smaller particles

² E = k x (s/12)^a x (W/3)^b (AP-42 page 13.2.2-4 Equation 1a, November 2006)

E= Size Specific Emission Factor (lb/VMT)

s = surface material silt content (%)

k, a, b = constants from AP-42 Table 13.2.2-2

W = Weighted Mean Vehicle Weight from Haul Road Inputs (tons)

 3 PM₃₀ emission factor in equation is assumed as a surrogate for TSP emissions

⁴ VMT/yr = Vehicle Miles Travelled per year= Trips per year * Segment Length

⁵ Wet Day Emission Factor = E * (365 - Wet Days)/365. Wet days value is the NM default allowed by NMED without additional justification.

⁶ Controlled Emissions = Uncontrolled Emissions * (1 - Control Factor/100%) 0%

Control Efficiency =

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Engines (Units ENG-1, ENG-2, ENG-3, ENG-4)

- Manufacturers data and catalyst specification sheet
- AP-42 Tables 1.4-1 and 1.4-2 from AP-42
- 40 CFR Part 98 methodology
- 40 CFR 98 Tables C-1 and C-2 Emission Factors

Heaters (Units HT-101, HT-801, HT-102, HT-103, HT-802, HT-803)

- AP-42 Tables 1.4-1 and 1.4-2 from AP-42
- 40 CFR Part 98 methodology
- 40 CFR 98 Tables C-1 and C-2 Emission Factors

Reboilers (Units AR-1, AR-2, DR-1, DR-2)

- AP-42 Tables 1.4-1 and 1.4-2 from AP-42
- Manufacture spec sheet
- 40 CFR Part 98 methodology
- 40 CFR 98 Tables C-1 and C-2 Emission Factors

Glycol Dehydrators (Units DEHY-1, DEHY-2)

• ProMax

Amine Vents (Units AM-1, AM-2)

ProMax

Flare SSM (Units FL-1, FL-2b, FL-3)

- AP-42 Table 13.5-1
- ProMax
- 40 CFR Part 98 methodology

Thermal Oxidizes (Units TO-1 and TO-2)

- AP-42 Tables 1.4-1 and 1.4-2 from AP-42
- Manufacturer's specifications
- 40 CFR Part 98 methodology
- 40 CFR 98 Tables C-1 and C-2 Emission Factors

Vapor Combustion Unit (Unit VCU-1)

- AP-42 Tables 1.4-1 and 1.4-2 from AP-42
- 40 CFR Part 98 methodology

Condensate Storage Tanks (Unit TK-702-A-F)

• ProMax

Produced Water Tank (Unit TK-701)

• Promax

Loading Emissions (Unit TL-1, TL-2)

• AP-42, Table 5.2-1 from AP-42

SSM (Units SSM-1, SSM-2)

- Ideal Gas law
- Inlet gas analysis, pressure temperature

Fugitive Emissions (Unit FUG-1)

- Tables 2-4 and 5-2 of the EPA Protocol for Equipment Leak Emission Estimates, November 1995
- Inlet gas and liquid analyses from ProMax

Haul Road Emissions (Unit HAUL-1)

- Equations 1a and 2 of AP-42 Section 13.2.2 (11/06)
- AP-42 Table 13.2.2-1
- AP-42 Figure 13.2.2-1
- AP-42 Table 13.2.2-2, Industrial Roads
- NMED Guidance Document Department Accepted Values For: Aggregate Handling, Storage Pile, and Haul Road Emissions
- Google Earth

GE Power

BR Gas Plant - New Mexico San Mateo

VHP - P9394GSI Gas Compression

ENGINE SPEED (rpm): DISPLACEMENT (in3): COMPRESSION RATIO: IGNITION SYSTEM: EXHAUST MANIFOLD: COMBUSTION: ENGINE DRY WEIGHT (lbs): AIR/FUEL RATIO SETTING: ENGINE SOUND LEVEL (dBA)	1200 9388 9.7:1 ESM Water Cooled Rich Burn, Turbocharged 33900 ESM 103		NOx SELECTION (g/bhp-hr): COOLING SYSTEM: INTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): JACKET WATER CAPACITY (gal): AUXILIARY WATER CAPACITY (gal): LUBE OIL CAPACITY (gal): MAX. EXHAUST BACKPRESSURE (in. H2O): MAX. AIR INLET RESTRICTION (in. H2O): EXHAUST SOUND LEVEL (dBA)							
SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE (psig): FUEL HHV (BTU/ft3): FUEL LHV (BTU/ft3):	Natural Gas 30 - 60 1,078.2 974.7		ALTITUDE MAXIMUM FUEL WKI:	(ft): INLET AIR TEM	PERATURE	(°F):	953 77 82.9			
SITE SPECIFIC TECHNICAL DATA				MAX RATING AT 100 °F		G AT MAXIMU				
POWER RATING		UNITS	I SITELDATIA	AIR TEMP	100%	75%	50%			
CONTINUOUS ENGINE POWER		BHP		2250	2250	1688	1124			
OVERLOAD		% 2/24 hr		0	0	-	-			
MECHANICAL EFFICIENCY (LHV) CONTINUOUS POWER AT FLYWHE	EL	% BHP		34.4 2250	34.4 2250	32.8 1688	30.1 1124			
based on no auxiliary engine driven equipmen	t									
AVAILABLE TURNDOWN SPEED RA	NGE	RPM			900 - 1200					
FUEL CONSUMPTION										
FUEL CONSUMPTION (LHV)		BTU/BHP-hr		7399	7399	7755	8471			
FUEL CONSUMPTION (HHV) FUEL FLOW	based on fuel analysis LHV	BTU/BHP-hr SCFM		8185 285	8185 285	8579 224	9370 163			
HEAT REJECTION										
JACKET WATER (JW)		BTU/hr x 1000		4766	4672	3868	2986			
LUBE OIL (OC)		BTU/hr x 1000		540	529	479	417			
INTERCOOLER (IC) EXHAUST		BTU/hr x 1000 BTU/hr x 1000		678 4602	564 4726	330 3641	147 2591			
RADIATION		BTU/hr x 1000		660	754	728	703			
EMISSIONS (ENGINE OUT):										
NOx (NO + NO2)		g/bhp-hr		11.7	11.6	11.3	10.3			
CO THC		g/bhp-hr g/bhp-hr		10.9 0.5	10.9 0.5	12.2 0.6	13.8 0.7			
NMHC		g/bhp-hr		0.10	0.10	0.0	0.13			
NM,NEHC (VOC)		g/bhp-hr		0.00	0.00	0.00	0.01			
CO2		g/bhp-hr		457	457	479	523			
CO2e CH2O		g/bhp-hr g/bhp-hr		467 0.050	467 0.050	490 0.050	536 0.050			
CH4		g/bhp-hr		0.42	0.42	0.47	0.54			
AIR INTAKE / EXHAUST GAS										
INDUCTION AIR FLOW		SCFM		3116	3116	2449	1782			
EXHAUST GAS MASS FLOW		lb/hr		14487	14487	11388	8284			
EXHAUST GAS FLOW EXHAUST TEMPERATURE	at exhaust temp, 14.5 psia	ACFM °F		10366 1150	10418 1158	8078 1136	5791 1113			
HEAT EXCHANGER SIZING ¹²										
TOTAL JACKET WATER CIRCUIT (J) TOTAL AUXILIARY WATER CIRCUIT	,	BTU/hr x 1000 BTU/hr x 1000		5404 1381						
COOLING SYSTEM WITH ENGINE	MOUNTED WATER PUMPS									
JACKET WATER PUMP MIN. DESIGN		GPM	850	1						
JACKET WATER PUMP MAX. EXTER AUX WATER PUMP MIN. DESIGN FL		psig CPM	18							
AUX WATER PUMP MIN. DESIGN FL AUX WATER PUMP MAX. EXTERNA		GPM psig	101 29							

All data provided per the conditions listed in the notes section on page three. Data Generated by EngCalc Program Version 3.8 GE Distributed Power, Inc. 2/25/2021 3:59 PM

GE Power

BR Gas Plant - New Mexico San Mateo

FUEL COMPOSITION

Others

HYDROCARBONS:	Mole or V	olume %		FUEL:	Natural Gas
Methane	CH4	87.508		FUEL PRESSURE RANGE (psig):	30 - 60
Ethane	C2H6	10.454		FUEL WKI:	82.9
Propane	C3H8	0.298			02.0
Iso-Butane	I-C4H10	0.005		FUEL SLHV (BTU/ft3):	957.69
Normal Butane	N-C4H10	0.005		FUEL SLHV (MJ/Nm3):	37.66
Iso-Pentane	I-C5H12	0.000			57.00
Normal Pentane	N-C5H12	0		FUEL LHV (BTU/ft3):	974.65
	C6H14	-		· · · · · ·	38.33
Hexane		0		FUEL LHV (MJ/Nm3):	30.33
Heptane	C7H16	0			4070 45
Ethene	C2H4	0		FUEL HHV (BTU/ft3):	1078.15
Propene	C3H6	0		FUEL HHV (MJ/Nm3):	42.40
	SUM HYDROCARBONS	98.271		FUEL DENSITY (SG):	0.62
NON-HYDROCARBONS:					
Nitrogen	N2	1.083		Standard Conditions per ASTM D3588-91 [60°F an	d 14.696psia] and
Oxygen	O2	0		ISO 6976:1996-02-01[25, V(0;101.325)]. Based on the fuel composition, supply pressure an	d temperature liquid
Helium	Не	0		hydrocarbons may be present in the fuel. No liquid	
Carbon Dioxide	CO2	0.646		allowed in the fuel. The fuel must not contain any lie	
Carbon Monoxide	СО	0		recommends both of the following:	
Hydrogen	H2	0		 Dew point of the fuel gas to be at least 20°F (11' measured temperature of the gas at the inlet of the 	
Water Vapor	H2O	0		2) A fuel filter separator to be used on all fuels exce	
		· ·		natural gas.	
	TOTAL FUEL	100		Refer to the 'Fuel and Lubrication' section of 'Techr	
		100		the Waukesha Application Engineering Departmen information on fuels, or LHV and WKI* calculations	
				* Trademark of General Electric Company	
FUEL CONTAMINANTS Total Sulfur Compounds		0	% volume	Total Sulfur Compounds	0 μg/BTU
Total Halogen as Cloride		0	% volume	Total Halogen as Cloride	0 μg/BTU
Total Ammonia		0	% volume	Total Ammonia	0 μg/BTU
		Ū	/0 10101110		° µ9, 2 ° °
<u>Siloxanes</u>				Total Siloxanes (as Si)	0 μg/BTU
Tetramethyl silane		0	% volume		
Trimethyl silanol		0	% volume		
Hexamethyldisiloxane (L2)		0	% volume	Calculated fuel contaminant analysis	will depend on
Hexamethylcyclotrisiloxane (D3)		0	% volume	the entered fuel composition and sele	cted engine
Octamethyltrisiloxane (L3)		0	% volume	model.	-
Octamethylcyclotetrasiloxane (D4)		0	% volume		
Decamethyltetrasiloxane (L4)		0	% volume		
Decamethylcyclopentasiloxane (D5	5)	0	% volume		
Dodecamethylpentasiloxane (L5)	,	0	% volume		
Dodecamethylcyclohexasiloxane (E	26)	0	% volume		
Othere		0			

0 % volume

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

BR Gas Plant - New Mexico

San Mateo

NOTES

1. All data is based on engines with standard configurations unless noted otherwise.

2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of \pm 3%.

3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5%. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.

4. Heat rejection tolerances are \pm 30% for radiation, and \pm 8% for jacket water, lube oil, intercooler, and exhaust energy.

5. Emission levels for engines with GE supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 Calculation Methodology, Equation C-5.

6. Air flow is based on undried air with a tolerance of \pm 7%.

7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of \pm 50°F (28°C).

8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of $\pm 7\%$.

9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 158 PSI BMEP and 1200 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.

10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.

11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.

12. Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.

13. Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).

14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].

15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.

16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.

17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.

18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.

19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.

20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.

21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

SPECIAL REQUIREMENTS

Equipment Specification

Proposal Information	Proposal Number: Project Reference:	CEA-20-003803 Vanguard Processing Solutions	Date:	6/17/2020
Engine Information	Engine Make: Engine Model: Rated Speed: Fuel Description: Hours Of Operation: Load:	Waukesha P9394GSI 1200 RPM Natural Gas 8760 Hours per year 100%	Speed: Power Output: Exhaust Flow Rate: Exhaust Temperature O ₂ : H ₂ O:	Rated 2,250 bhp 13,650 lb/hr 1,085 F 0.3% 20%

Emission Data (100% Load)			Raw Engine Emissions			Target Outlet Emissions								
(10076 2000)	Emission	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	g/bhp- hr	tons/yr	ppmvd @ 15% O ₂	ppmvd	g/kW- hr	lb/MW- hr	Calculated Reduction
	NO _x *	14.6	317.21	1,198	4,184	19.579	43.16	0.5	10.86	41	143	0.671	1.48	96.6%
	со	9.5	206.4	1,281	4,471	12.74	28.09	0.5	10.86	67	235	0.671	1.48	94.7%
	THC**	1.69	36.72	398	1,389	2.266	5							
	NMNEHC***	0.35	7.6	82	288	0.469	1.03	0.2	4.35	47	164	0.268	0.59	42.9%
	CH ₂ O	0.17	3.69	21	75	0.228	0.5	0.02	0.43	3	9	0.027	0.06	88.2%

System	Catalyst (Replacement Catalyst)					
Specifications	Design Exhaust Flow Rate:	13,650 lb/hr				
	Design Exhaust Temperature:	1,085°F				
	Element Model Number:	MEC-TW-SQ-1500-3600-350				
	Number of Catalyst Layers:	2				
	Number of Catalyst Per Layer:	2				
	Catalyst Back Pressure:	5.0 inches of WC (Clean) (12.5 mBar)				
	Dimensions:	15 x 36				
	Exhaust Temperature Limits†:	750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet) 399 – 677°C (catalyst inlet); 732°C (catalyst outlet)				

*** MW referenced as CH₄. Propane in the exhaust shall not exceed 15% by volume of the NMNEHC compounds in the exhaust, excluding aldehydes. The 15% (vol.) shall be established on a wet basis, reported on a methane molecular weight basis. The measurement of exhaust NMNEHC composition shall be based upon EPA method 320 (FTIR), † The head of the definition of the text of text of the text of the text of tex of text of text of text of text of tex of text of

^{*} MW referenced as $\ensuremath{\mathsf{NO}}_2$

^{**} MW referenced as CH4

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

68
0
1
D -*
)2

Component	Mole%	GPM	GPM
		REAL	IDEAL
H ₂ S	0.000		
Nitrogen	0.994		
Methane	78.444		
CO2	0.598		
Ethane	11.552	3.089	3.082
Propane	5.317	1.464	1.461
Isobutane	0.716	0.234	0.234
N-Butane	1.525	0.481	0.480
Isopentane	0.305	0.112	0.111
N-Pentane	0.302	0.109	0.109
Hexanes+	0.247	0.126	0.124
Total	100.000	5.615	5.601

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY

MOLE WT:	20.975
VAPOR PRESS PSIA:	4026.1
SPECIFIC GRAV	VITY
AIR = 1 (REAL):	0.7265
AIR = 1 (IDEAL):	0.7242
H2O = 1 (IDEAL):	0.348
REPORTED BASIS:	14.73
Unnormalized Total:	102.332

HEATING VALUE

1250.7

1229.4

BTU/CUFT (DRY)

BTU/CUFT (WET)

BTEX SUMMARY

WT% BENZENE	14.961
WT% TOLUENE	2.642
WT% E BENZENE	0.000
WT% XYLENES	0.000

4

Sample Name:	Plant 3 Inlet Port # 3
Company:	San Mateo

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%
2,2 DIMETHYL BUTANE	0.003	0.013
CYCLOPENTANE	0.006	0.024
2-METHYLPENTANE	0.008	0.033
3-METHYLPENTANE	0.004	0.017
HEXANE (C6)	0.014	0.056
DIMETHYLPENTANES	0.014	0.069
METHYLCYCLOPENTANE	0.007	0.030
2,2,3 TRIMETHYLBUTANE	0.002	0.011
BENZENE	0.002	0.006
CYCLOHEXANE	0.003	0.012
2-METHYLHEXANE	0.001	0.004
3-METHYLHEXANE	0.002	0.010
DIMETHYCYCLOPENTANES	0.008	0.040
HEPTANE (C7)	0.004	0.017
METHYLCYCLOHEXANE	0.001	0.007
2,5 DIMETHYLHEXANE	0.006	0.031
TOLUENE	0.003	0.015
2-METHYLHEPTANE	0.000	0.000
OTHER OCTANES	0.033	0.167
OCTANE (C8)	0.000	0.000
ETHYLCYCLOHEXANE	0.000	0.000
ETHYL BENZENE	0.000	0.000
M,P-XYLENE	0.000	0.000
O-XYLENE	0.000	0.000
OTHER NONANES	0.035	0.205
NONANE (C-9)	0.000	0.000
IC3 BENZENE	0.004	0.025
CYCLOOCTANE	0.002	0.014
NC3 BENZENE	0.000	0.000
TM BENZENE(S)	0.002	0.015
IC4 BENZENE	0.003	0.018
NC4 BENZENE	0.002	0.010
DECANES + (C10+)	0.072	0.504

Data File: LS_6131.D

***HEXANES PLUS SUMMARY**

AVG MOLE WT	117.507
VAPOR PRESS PSIA	9.860
API GRAVITY @ 60F	57.7
SPECIFIC GRAVITY	
AIR = 1 (IDEAL):	2.975
H2O = 1 (IDEAL):	0.748

COMPONENT RATIOS

HEXANES	(C6)	MOLE%	14.379
HEPTANES	(C7)	MOLE%	19.994
OCTANES	(C8)	MOLE%	17.167
NONANES	(C9)	MOLE%	13.771
DECANES+	(C10+)	MOLE%	34.689
HEXANES	(C6)	WT%	10.369
HEPTANES	(C7)	WT%	16.470
OCTANES	(C8)	WT%	15.824
NONANES	(C9)	WT%	14.916
DECANES+	(C10+)	WT%	42.421

Remarks:

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

Sample Name:	Amine Gas Port # 5		For:	11375G
Sample Date:	02/11/2021		Cyl. Ident.:	2021039067
Sampled By:	JP		Company:	San Mateo
Time Sampled:	12:00		Analysis Date:	02/12/2021
Sample Temp:	71.4 F		Analysis By:	TG
Sample Press:	940.8	H ₂ S (PPM) = 0.5	Data File:	LS_6130.D

Component	Mole%	GPM	GPM
		REAL	IDEAL
H ₂ S	0.000		
Nitrogen	1.018		
Methane	76.636		
CO2	0.590		
Ethane	11.575	3.095	3.088
Propane	5.682	1.565	1.561
Isobutane	0.856	0.280	0.279
N-Butane	1.934	0.610	0.608
Isopentane	0.490	0.179	0.179
N-Pentane	0.524	0.190	0.189
Hexanes+	0.695	0.281	0.278
Total	100.000	6.200	6.182

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY

MOLE WT:	21.799
VAPOR PRESS PSIA:	3937.0
SPECIFIC GRA	VITY
AIR = 1 (REAL):	0.7551
AIR = 1 (IDEAL):	0.7525
H2O = 1 (IDEAL):	0.356
REPORTED BASIS:	14.73
Unnormalized Total:	100.575

HEATING VALUE

BTU/CUFT BTU/CUFT

BTEX SUMMARY

(DRY)	1295.1	WT% BENZENE	2.525
(WET)	1273.1	WT% TOLUENE	1.787
		WT% E BENZENE	0.000

LAB MANAGER

WT% XYLENES

0.687

Sample Name:Amine Gas Port # 5Company:San Mateo

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%
2,2 DIMETHYL BUTANE	0.009	0.034
CYCLOPENTANE	0.039	0.140
2-METHYLPENTANE	0.122	0.483
3-METHYLPENTANE	0.063	0.248
HEXANE (C6)	0.149	0.578
DIMETHYLPENTANES	0.007	0.032
METHYLCYCLOPENTANE	0.058	0.225
2,2,3 TRIMETHYLBUTANE	0.001	0.003
BENZENE	0.020	0.070
CYCLOHEXANE	0.063	0.241
2-METHYLHEXANE	0.015	0.070
3-METHYLHEXANE	0.021	0.097
DIMETHYCYCLOPENTANES	0.006	0.029
HEPTANE (C7)	0.027	0.124
METHYLCYCLOHEXANE	0.040	0.181
2,5 DIMETHYLHEXANE	0.001	0.003
TOLUENE	0.012	0.050
2-METHYLHEPTANE	0.004	0.022
OTHER OCTANES	0.013	0.068
OCTANE (C8)	0.003	0.017
ETHYLCYCLOHEXANE	0.001	0.005
ETHYL BENZENE	0.000	0.002
M,P-XYLENE	0.003	0.014
O-XYLENE	0.001	0.002
OTHER NONANES	0.001	0.014
NONANE (C-9)	0.001	0.006
IC3 BENZENE	0.000	0.001
CYCLOOCTANE	0.000	0.000
NC3 BENZENE	0.000	0.000
TM BENZENE(S)	0.000	0.002
IC4 BENZENE	0.000	0.000
NC4 BENZENE	0.000	0.000
DECANES + (C10+)	0.000	0.010

Data File: LS_6130.D

***HEXANES PLUS SUMMARY**

AVG MOLE WT	89.290
VAPOR PRESS PSIA	9.860
API GRAVITY @ 60F	69.8
SPECIFIC GRAVITY	
AIR = 1 (IDEAL):	2.975
H2O = 1 (IDEAL):	0.703

COMPONENT RATIOS

HEXANES	(C6)	MOLE%	54.494
HEPTANES	(C7)	MOLE%	33.506
OCTANES	(C8)	MOLE%	10.544
NONANES	(C9)	MOLE%	1.177
DECANES+	(C10+)	MOLE%	0.279
HEXANES	(C6)	WT%	52.088
HEPTANES	(C7)	WT%	33.945
OCTANES	(C8)	WT%	12.008
NONANES	(C9)	WT%	1.524
DECANES+	(C10+)	WT%	0.435

190

Remarks:

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

2021039070
2021003010
San Mateo
02/12/2021
TG
LS_6129.D
02 T(

Component	Mole%	GPM	GPM
		REAL	IDEAL
H ₂ S	0.000		
Nitrogen	0.976		
Methane	76.552		
CO2	0.594		
Ethane	11.732	3.137	3.130
Propane	5.850	1.611	1.608
Isobutane	0.887	0.290	0.290
N-Butane	1.985	0.626	0.624
Isopentane	0.478	0.175	0.174
N-Pentane	0.500	0.181	0.181
Hexanes+	0.446	0.179	0.176
Total	100.000	6.199	6.183

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY

MOLE WT:	21.694
VAPOR PRESS PSIA:	3934.4
SPECIFIC GRA	VITY
AIR = 1 (REAL):	0.7515
AIR = 1 (IDEAL):	0.7489
H2O = 1 (IDEAL):	0.355
REPORTED BASIS:	14.73
Unnormalized Total:	102.072

HEATING VALUE

BTU/CUFT (DRY)

BTU/CUFT (WET)

BTEX SUMMARY

1290.2	WT% BENZENE	2.572
1268.3	WT% TOLUENE	1.634
	WT% E BENZENE	0.000
	WT% XYLENES	0.269

Sample Name:	Dehy Inlet Port #7
Company:	San Mateo

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%
2,2 DIMETHYL BUTANE	0.006	0.025
CYCLOPENTANE	0.027	0.096
2-METHYLPENTANE	0.082	0.326
3-METHYLPENTANE	0.042	0.166
HEXANE (C6)	0.101	0.381
DIMETHYLPENTANES	0.004	0.020
METHYLCYCLOPENTANE	0.037	0.145
2,2,3 TRIMETHYLBUTANE	0.000	0.001
BENZENE	0.013	0.045
CYCLOHEXANE	0.039	0.152
2-METHYLHEXANE	0.009	0.043
3-METHYLHEXANE	0.013	0.059
DIMETHYCYCLOPENTANES	0.004	0.018
HEPTANE (C7)	0.016	0.074
METHYLCYCLOHEXANE	0.023	0.107
2,5 DIMETHYLHEXANE	0.000	0.002
TOLUENE	0.007	0.030
2-METHYLHEPTANE	0.002	0.013
OTHER OCTANES	0.008	0.041
OCTANE (C8)	0.002	0.010
ETHYLCYCLOHEXANE	0.001	0.003
ETHYL BENZENE	0.000	0.001
M,P-XYLENE	0.001	0.007
O-XYLENE	0.000	0.002
OTHER NONANES	0.000	0.007
NONANE (C-9)	0.000	0.003
IC3 BENZENE	0.000	0.000
CYCLOOCTANE	0.000	0.000
NC3 BENZENE	0.000	0.000
TM BENZENE(S)	0.000	0.001
IC4 BENZENE	0.000	0.000
NC4 BENZENE	0.000	0.000
DECANES + (C10+)	0.000	0.003

Data File: LS_6129.D

.

***HEXANES PLUS SUMMARY**

AVG MOLE WT	88.871
VAPOR PRESS PSIA 9.8	
API GRAVITY @ 60F	70.4
SPECIFIC GRAVITY	
AIR = 1 (IDEAL):	2.975
H2O = 1 (IDEAL):	0.701

COMPONENT RATIOS

HEXANES	(C6)	MOLE%	56.723
HEPTANES	(C7)	MOLE%	32.522
OCTANES	(C8)	MOLE%	9.627
NONANES	(C9)	MOLE%	0.989
DECANES+	(C10+)	MOLE%	0.139
HEXANES	(C6)	WT%	54.464
HEPTANES	(C7)	WT%	33.024
OCTANES	(C8)	WT%	11.006
NONANES	(C9)	WT%	1.286
DECANES+	(C10+)	WT%	0.220

...

Remarks:

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

Mole Sieve Port #10		For:	11377G
02/11/2021		Cyl. Ident.:	2021039069
JP		Company:	San Mateo
14:00			02/12/2021
85.0 F			TG
919.0	$H_2S(PPM) = 2.0$	Data File:	LS 6128.D
	02/11/2021 JP 14:00 85.0 F	02/11/2021 JP 14:00 85.0 F	02/11/2021Cyl. Ident.:JPCompany:14:00Analysis Date:85.0 FAnalysis By:

Component	Mole%	GPM	GPM
		REAL	IDEAL
H ₂ S	0.000		
Nitrogen	1.017		
Methane	77.476		
CO2	0.602		
Ethane	11.602	3.102	3.095
Propane	5.583	1.538	1.534
Isobutane	0.800	0.262	0.261
N-Butane	1.781	0.561	0.560
Isopentane	0.399	0.146	0.146
N-Pentane	0.408	0.148	0.148
Hexanes+	0.332	0.134	0.133
Total	100.000	5.891	5.877

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY

MOLE WT:	21.308
VAPOR PRESS PSIA:	3978.8
SPECIFIC GRA	AVITY
AIR = 1 (REAL):	0.7380
AIR = 1 (IDEAL):	0.7356
H2O = 1 (IDEAL):	0.351
REPORTED BASIS:	14.73
Unnormalized Total:	101.023

HEATING VALUE

1268.3 1246.8

BTU/CUFT (DRY)	
BTU/CUFT (WET)	

BTEX SUMMARY

	WT% BENZENE	3.083
2	WT% TOLUENE	1.877
1	WT% E BENZENE	0.000
1	WT% XYLENES	1.081

Sample Name:	Mole Sieve Port #10
Company:	San Mateo

***ANALYSIS OF HEXANES PLUS**

Component	MOLE%	WT%
2,2 DIMETHYL BUTANE	0.004	0.018
CYCLOPENTANE	0.021	0.077
2-METHYLPENTANE	0.060	0.244
3-METHYLPENTANE	0.031	0.125
HEXANE (C6)	0.073	0.276
DIMETHYLPENTANES	0.003	0.015
METHYLCYCLOPENTANE	0.028	0.111
2,2,3 TRIMETHYLBUTANE	0.000	0.001
BENZENE	0.010	0.035
CYCLOHEXANE	0.029	0.113
2-METHYLHEXANE	0.006	0.030
3-METHYLHEXANE	0.009	0.043
DIMETHYCYCLOPENTANES	0.003	0.015
HEPTANE (C7)	0.011	0.052
METHYLCYCLOHEXANE	0.017	0.079
2,5 DIMETHYLHEXANE	0.000	0.002
TOLUENE	0.006	0.024
2-METHYLHEPTANE	0.002	0.009
OTHER OCTANES	0.007	0.031
OCTANE (C8)	0.001	0.007
ETHYLCYCLOHEXANE	0.000	0.002
ETHYL BENZENE	0.000	0.001
M,P-XYLENE	0.002	0.012
O-XYLENE	0.001	0.003
OTHER NONANES	0.000	0.005
NONANE (C-9)	0.000	0.002
IC3 BENZENE	0.000	0.000
CYCLOOCTANE	0.000	0.001
NC3 BENZENE	0.000	0.000
TM BENZENE(S)	0.001	0.008
IC4 BENZENE	0.000	0.000
NC4 BENZENE	0.000	0.001
DECANES + (C10+)	0.000	0.014

Data File: LS_6128.D

6

***HEXANES PLUS SUMMARY**

AVG MOLE WT	89.271
VAPOR PRESS PSIA	9.860
API GRAVITY @ 60F	69.5
SPECIFIC GRAVITY	
AIR = 1 (IDEAL):	2.975
H2O = 1 (IDEAL):	0.704

COMPONENT RATIOS

HEXANES	100	MOLE%	55.861
	(C6)		
HEPTANES	(C7)	MOLE%	32.095
OCTANES	(C8)	MOLE%	9.571
NONANES	(C9)	MOLE%	1.493
DECANES+	(C10+).MOLE%	0.980
HEXANES	(C6)	WT%	53.352
HEPTANES	(C7)	WT%	32.392
OCTANES	(C8)	WT%	10.894
NONANES	(C9)	WT%	1.876
DECANES+	(C10+) WT%	1.486

Remarks:

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

000400000	For:		Plant 3 Residue	Sample Name:
2021039066	Cyl. Ident.:		02/11/2021	Sample Date:
San Mateo	Company:		JP	Sampled By:
02/12/2021	Analysis Date:		13:00	Time Sampled:
TG	Analysis By:		99.6 F	Sample Temp:
LS_6127.D	Data File:	$H_{2}S(PPM) = 0.2$	903.1	Sample Press:
	Analysis By:	H_2S (PPM) = 0.2		

Component	Mole%	GPM REAL	GPM IDEAL
H ₂ S	0.000		IDEAL
Nitrogen	1.083		
Methane	87.508		
CO2	0.646		
Ethane	10.454	2.795	2.789
Propane	0.298	0.082	0.082
Isobutane	0.005	0.002	0.002
N-Butane	0.006	0.002	0.002
Isopentane	0.000	0.000	0.000
N-Pentane	0.000	0.000	0.000
Hexanes+	0.000	0.000	0.000
Total	100.000	2.881	2.875

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY

17.907
4459.6
VITY
0.6195
0.6183
0.316
14.73
102.028

HEATING VALUE

1081.8

1063.4

BTU/CUFT (DRY)

BTU/CUFT (WET)

BTEX SUMMARY

WT% BENZENE	#
WT% TOLUENE	#
WT% E BENZENE	#
WT% XYLENES	#

Sample Name:Plant 3 ResidueCompany:San Mateo

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%
2,2 DIMETHYL BUTANE	0.000	0.000
CYCLOPENTANE	0.000	0.000
2-METHYLPENTANE	0.000	0.000
3-METHYLPENTANE	0.000	0.000
HEXANE (C6)	0.000	0.000
DIMETHYLPENTANES	0.000	0.000
METHYLCYCLOPENTANE	0.000	0.000
2,2,3 TRIMETHYLBUTANE	0.000	0.000
BENZENE	0.000	0.000
CYCLOHEXANE	0.000	0.000
2-METHYLHEXANE	0.000	0.000
3-METHYLHEXANE	0.000	0.000
DIMETHYCYCLOPENTANES	0.000	0.000
HEPTANE (C7)	0.000	0.000
METHYLCYCLOHEXANE	0.000	0.000
2,5 DIMETHYLHEXANE	0.000	0.000
TOLUENE	0.000	0.000
2-METHYLHEPTANE	0.000	0.000
OTHER OCTANES	0.000	0.000
OCTANE (C8)	0.000	0.000
ETHYLCYCLOHEXANE	0.000	0.000
ETHYL BENZENE	0.000	0.000
M,P-XYLENE	0.000	0.000
O-XYLENE	0.000	0.000
OTHER NONANES	0.000	0.000
NONANE (C-9)	0.000	0.000
IC3 BENZENE	0.000	0.000
CYCLOOCTANE	0.000	0.000
NC3 BENZENE	0.000	0.000
TM BENZENE(S)	0.000	0.000
IC4 BENZENE	0.000	0.000
NC4 BENZENE	0.000	0.000
DECANES + (C10+)	0.000	0.000

Data File: LS_6127.D

*HEXANES PLUS SUMMARY

AVG MOLE WT	0.000
VAPOR PRESS PSIA	9.860
API GRAVITY @ 60F	#
SPECIFIC GRAVITY	
AIR = 1 (IDEAL):	2.975
H2O = 1 (IDEAL):	0.000

COMPONENT RATIOS

HEXANES	(C6)	MOLE%	0.000
HEPTANES	(C7)	MOLE%	0.000
OCTANES	(C8)	MOLE%	0.000
NONANES	(C9)	MOLE%	0.000
DECANES+	(C10+) MOLE%	0.000
HEXANES	(C6)	WT%	0.000
HEPTANES	(C7)	WT%	0.000
OCTANES	(C8)	WT%	0.000
NONANES	(C9)	WT%	0.000
DECANES+	(C10+) WT%	0.000

Remarks:

EXTENDED LIQUID REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

Sample Name:	Plant 3 Condensate Por	t #15	For code:	11379L
Sample Date:	02/11/2021		Identification:	2021039071
Sampled By:	JP		Company:	San Mateo
Time Sampled:	11:30		Analysis Date:	02/15/2021
Sample Temp:	54.0 F		Analysis By:	TG
Sample Press:	300.0		Data File:	LS_6132.D
Component	Mole%	Wt%	L.V.%	
H ₂ S	0.000	0.000	0.000	
Nitrogen	0.029	0.014	0.010	
Methane	8.025	2.263	4.309	
CO2	0.203	0.157	0.110	
Ethane	12.908	6.823	10.936	
Propane	20.504	15.894	17.895	
Isobutane	6.002	6.132	6.221	
N-Butane	16.912	17.285	16.895	
Isopentane	7.240	9.183	8.388	
N-Pentane	9.040	11.465	10.380	
*Hexanes+	19.137	30.784	24.856	
Total	100.000	100.000	100.000	

CALCULATED PARAMETERS

TOTAL ANALYSIS SUMMARY

MOLE WT: 56.886 SP. GRAVITY (IDEAL): 0.571 API GRAVITY @ 60F 116.300 ABS. DENSITY (LBS/GAL) 4.760 ft3 VAPOR/GAL LIQUID: 31.68 VAPOR PRESSURE: 559.92 REPORTED BASIS: 14.73 UNNORMALIZED TOTAL: 90.81

HEATING VALUE

BTEX SUMMARY

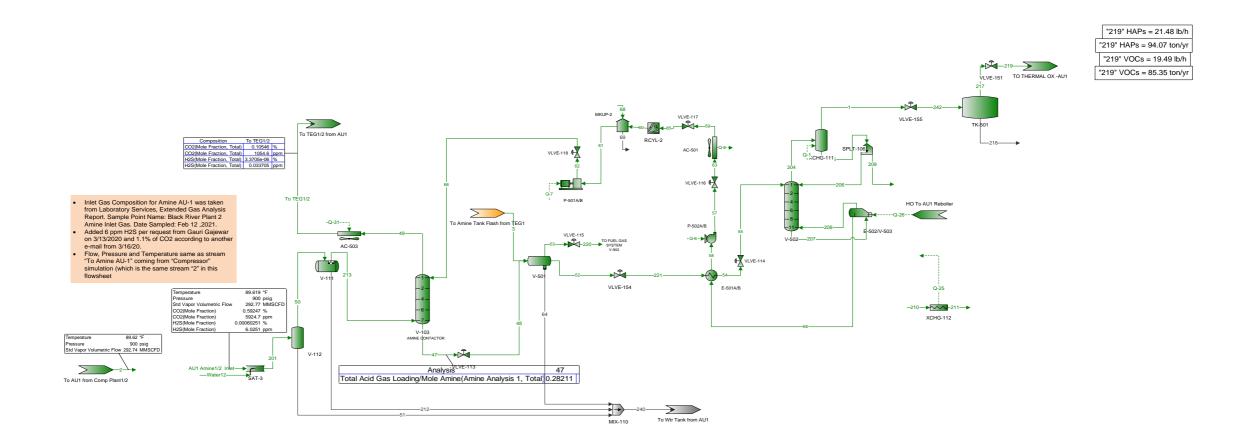
56.	886	BTU/CUFT	3181.0	WT% BENZENE	1.991
0.	571	BTU/GAL	100776.9	WT% TOLUENE	2.300
116.	300	BTU/LB	21171.6	WT% E BENZENE	0.103
.) 4.	760			WT% XYLENES	0.958
31	1.68	RATI	OS		
559	9.92	C1 to C2	28.27 : 1		

1.00 : 1

LAB MANAGER

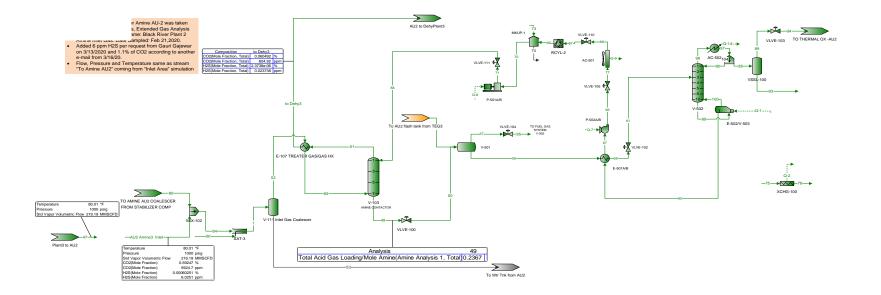
* Hexane+ portion calculated by Allocation Process

CO2 to C2


Sample Name:	Plant 3 Condensate Port #15
Company:	San Mateo

ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%	L.V.%	HEXANES PLUS SUMMARY
2,2 DIMETHYL BUTANE	0.154	0.233	0.203	AVG MOLE WT 91.505
CYCLOPENTANE	0.718	0.986	0.795	SP GRAV @ 60F 0.707
2-METHYLPENTANE	2.636	3.993	3.466	API GRAVITY @ 60F 68.6
3-METHYLPENTANE	1.415	2.144	1.830	ABS. DENSITY (LBS/GAL) 5.896
HEXANE (C6)	3.626	5.491	4.718	VAPOR PRESSURE: 3.98
DIMETHYLPENTANES	0.227	0.399	0.329	WI ONT NEODINE. 3.90
METHYLCYCLOPENTANE	1.400	2.071	1.569	COMPONENT RATIOS
2,2,3 TRIMETHYLBUTANE	0.000	0.000	0.000	COM CREAT INTICO
BENZENE	0.430	0.590	0.381	HEXANES (C6) MOLE% 44.652
CYCLOHEXANE	1.780	2.634	1.919	HEPTANES (C7) MOLE% 36.342
2-METHYLHEXANE	0.563	0.991	0.828	OCTANES (C8) MOLE% 16.562
3-METHYLHEXANE	0.730	1.287	1.063	NONANES (C9) MOLE% 2.181
DIMETHYCYCLOPENTANES	0.203	0.350	0.264	DECANES+ (C10+) MOLE% 0.263
OTHER HEPTANES	0.487	0.922	0.753	DE0/1120/ (010/) 11022 / 0.200
HEPTANE (C7)	1.136	2.000	1.659	
METHYLCYCLOHEXANE	1.587	2.760	2.124	HEXANES (C6) WT% 41.725
2,5 DIMETHYLHEXANE	0.034	0.067	0.055	HEPTANES (C7) WT% 36.524
TOLUENE	0.433	0.701	0.459	OCTANES (C8) WT% 18.625
2-METHYLHEPTANE	0.253	0.508	0.413	NONANES (C9) WT% 2.746
OTHER OCTANES	0.638	1.245	0.958	DECANES+ (C10+) WT% 0.380
OCTANE (C8)	0.225	0.452	0.365	
ETHYLCYCLOHEXANE	0.056	0.110	0.079	
ETHYL BENZENE	0.017	0.032	0.021	HEXANES (C6) LV% 44.308
M,P-XYLENE	0.138	0.257	0.178	HEPTANES (C7) LV% 35.261
O-XYLENE	0.020	0.038	0.025	OCTANES (C8) LV% 17.597
OTHER NONANES	0.138	0.304	0.235	NONANES (C9) LV% 2.490
NONANE (C-9)	0.046	0.103	0.081	DECANES+ (C10+) LV% 0.344
IC3 BENZENE	0.002	0.005	0.003	
CYCLOOCTANE	0.007	0.016	0.011	
NC3 BENZENE	0.000	0.000	0.000	
TM BENZENE(S)	0.007	0.016	0.011	
IC4 BENZENE	0.000	0.000	0.000	
NC4 BENZENE	0.001	0.001	0.001	
DECANES + (C10+)	0.030	0.078	0.060	×1

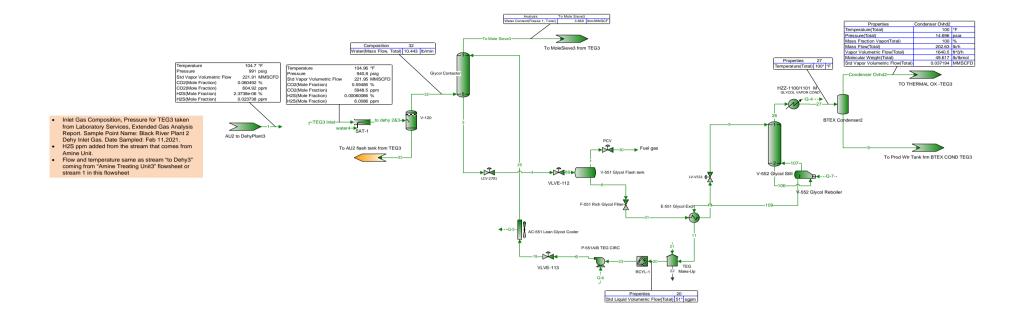

Remarks NR=NOT REPORTED ON FIELD TAG

Data File: LS_6132.D

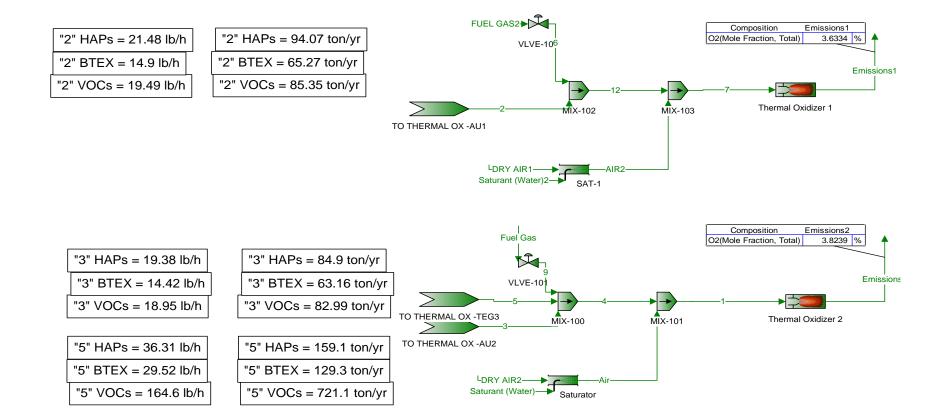
Deserve Otreserve			50	<u></u>	040	000	0.40
Process Streams	AU1 Amine1/2 Inlet	To TEG1/2	53 Salvad	61	219	220	242 Salvad
Composition Status: Phase: Total From Block:	Solved	Solved AC-503	Solved V-501	Solved MKUP-2	Solved VLVE-151	Solved VLVE-115	Solved VLVE-155
To Block:	SAT-3	To TEG1/2 from AU1	VLVE-115	P-501A/B	TO THERMAL OX -AU1		TK-501
Mole Fraction	%	%	%	%	%	%	%
CO2	0.592467*	0.105460	0.218856	0.111092			91.5183
H2S	0.000602509*	3.37047E-06	0.00197681	0.000428754	0.112220		0.112220
N2 C1	1.02226* 76.9564*	1.02603 77.2287	0.450768 78.0829	0 0	0.000769415 0.405544	0.450768 78.0829	0.000769415 0.405544
C2	11.6234*	11.6637	13.7796	0	0.128880		0.128880
C3	5.70576*	5.72624	4.38213	0		4.38213	0.0340489
iC4	0.859579*	0.862735	0.408544	0	0.00241151	0.408544	0.00241151
nC4	1.94209*	1.94912	1.21744	0	0.0104790		0.0104790
iC5 nC5	0.492049* 0.526191*	0.493871 0.528128	0.173032 0.222057	0 0	0.00106638 0.00165741	0.173032 0.222057	0.00106638 0.00165741
C6	0.149623*	0.150180	0.0401273	0	0.000244418	0.0401273	0.000244418
C7	0.0271129*	0.0272149	0.00343203	0	1.21920E-05	0.00343203	1.21920E-05
Benzene	0.0200836*	0.0198441	0.0522115	0		0.0522115	0.0567974
Toluene o-Xylene	0.0120502* 0.00100418*	0.0119224 0.000990934	0.0244099 0.00142936	0 0	0.0314128 0.00312772	0.0244099 0.00142936	0.0314128 0.00312772
p-Xylene	0.00100418	0.00296981	0.00142930	0	0.00993331	0.00452058	0.00993331
C8	0.00301254*		0.000254245	0		0.000254245	8.01383E-07
Water	0*	0.136201	0.868971	88.2093	7.68055	0.868971	7.68055
Triethylene Glycol	0*	0	0	0	0	0	0
Ethylbenzene Cyclohexane	0* 0.0632634*	0 0.0634749	0 0.0671924	0	0 0.00251944	0.0671924	0.00251944
UCARSOL™ AP-814	0.0032034	0.000217207		11.6792		5.22784E-05	7.53466E-08
2-Methylpentane	0*		2.44636E-07	0		2.44636E-07	0
3-Methylpentane	0*		2.79457E-07	0		2.79457E-07	0
C9 C10	0* 0*	0	0 0	0	0	0	0
Mass Fraction	%	<u> </u>	%	%	<u> </u>	%	%
CO2	1.21214*	0.216921	0.472686	0.168693	96.0876		96.0876
H2S	0.000954586*	5.36868E-06	0.00330631	0.000504183	0.0912417		0.0912417
N2	1.33127*	1.34336	0.619709	0	0.000514209	0.619709	
C1 C2	57.3927*	57.9049	61.4746	0	0.155211	61.4746	0.155211 0.0924526
C2 C3	16.2478* 11.6963*	16.3916 11.8013	20.3342 9.48307	0	0.0924526 0.0358189		0.0924526
iC4	2.32257*	2.34361	1.16533	0	0.00334384	1.16533	0.00334384
nC4	5.24749*	5.29478	3.47264	0	0.0145303	3.47264	0.0145303
iC5	1.65036*	1.66536	0.612668	0	0.00183551	0.612668	
nC5	1.76487* 0.599408*	1.78088 0.604870	0.786253 0.169704	0 0	0.00285280 0.000502491	0.786253 0.169704	0.00285280
C6 C7	0.126297*	0.127453	0.0168770	0	2.91450E-05	0.0168770	2.91450E-05
Benzene	0.0729289*	0.0724461	0.200148	0	0.105842	0.200148	0.105842
Toluene	0.0516149*	0.0513417	0.110376	0	0.0690495	0.110376	0.0690495
o-Xylene	0.00495603*	0.00491691	0.00744720	0	0.00792177		0.00792177
p-Xylene C8	0.0148681* 0.0159974*	0.0147359 0.0161439	0.0235529 0.00142527	0	0.0251587 2.18387E-06	0.0235529 0.00142527	0.0251587 2.18387E-06
Water	0.0139974	0.114680	0.00142327	54.8308	3.30101	0.768272	3.30101
Triethylene Glycol	0*	0	0	0	0	0	0
Ethylbenzene	0*	0	0	0	0	0	0
	0.247512*	0.249673	0.277518	0	0.00505847	0.277518	0.00505847
UCARSOL™ AP-814 2-Methylpentane	0* 0*	0.000935096	1.03460E-06	45 0		0.000270987 1.03460E-06	1.74739E-07
3-Methylpentane	0*		1.18186E-06	0		1.18186E-06	0
C9	0*	0	0	0	0	0	0
C10	0*	0	0	0	0	-	0
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
CO2 H2S	8381.67* 6.60077*	1486.32 0.0367856	0.691576 0.00483739	240.958 0.720168	6885.23 6.53799	0.691576 0.00483739	6885.23 6.53799
п25 N2	9205.47*	9204.53	0.00483739	0.720168	0.0368460	0.00483739	0.0368460
C1	396859*	396758	89.9421	0	11.1217	89.9421	11.1217
C2	112350*	112314	29.7504	0	6.62475	29.7504	6.62475
C3	80877.7*	80861.3	13.8745	0	2.56663	13.8745	2.56663
iC4 nC4	16060.1* 36285.3*	16058.2 36279.2	1.70497 5.08074	0 0	0.239605 1.04118	1.70497 5.08074	0.239605 1.04118
iC5	11411.9*	11410.9	0.896380	0	0.131524	0.896380	0.131524
nC5	12203.7*	12202.4	1.15035	0	0.204419	1.15035	0.204419
C6	4144.78*	4144.50	0.248290	0	0.0360064	0.248290	0.0360064
C7 Bonzono	873.318*	873.291	0.0246924	0	0.00208841	0.0246924	0.00208841
Benzene Toluene	504.289* 356.906*	496.392 351.788	0.292832 0.161489	0	7.58418 4.94779	0.292832 0.161489	7.58418 4.94779
o-Xylene	34.2700*	33.6901	0.0108958	0	0.567640	0.0108958	0.567640
p-Xylene	102.810*	100.968	0.0344596	0	1.80276	0.0344596	1.80276
C8	110.619*	110.616	0.00208527	0	0.000156487		0.000156487
Water Triethylene Glycol	0* 0*	785.775 0	1.12404	78319.5	236.536 0	1.12404	236.536
Ethylbenzene	0*	0	0 0	0	0	0	0
Cyclohexane	1711.50*	1710.73	0.406031	0	0.362468	0.406031	0.362468
UCARSOL™ AP-814	0*		0.000396475	64277.3		0.000396475	1.25211E-05
2-Methylpentane	0*		1.51370E-06	0		1.51370E-06	0
3-Methylpentane C9	0*		1.72915E-06	0		1.72915E-06	0
C9 C10	0* 0*	0	0 0	0	0		0
	0	0	0	0	0	0	0

Process Streams		AU1 Amine1/2 Inlet	To TEG1/2	53	61	219	220	242
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		AC-503	V-501	MKUP-2	VLVE-151	VLVE-115	VLVE-155
	To Block:	SAT-3	To TEG1/2 from AU1	VLVE-115	P-501A/B	TO THERMAL OX -AU1		TK-501
Property	Units							
Temperature	°F	89.6189*	105*	94.8381	119.258	119.182	94.4475	119.182
Pressure	psia	914.696*	912.129	84.6959*	47.3	15.6959*	79.6959*	15.6959*
Mole Fraction Vapor	%	100	100	100	0	100	100	100
Mole Fraction Light Liquid	%	0	0	0	100	0	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0	0
Molecular Weight	lb/lbmol	21.5109	21.3961	20.3766	28.9822	41.9167	20.3766	41.9167
Mass Density	lb/ft^3	4.19783	3.94096	0.295353	63.9853	0.106442	0.277824	0.106442
Molar Flow	lbmol/h	32145.5	32024.0	7.18019	4928.50	170.948	7.18019	170.948
Mass Flow	lb/h	691480	685188	146.308	142839	7165.57	146.308	7165.57
Vapor Volumetric Flow	ft^3/h	164723	173863	495.365	2232.37	67319.0	526.620	67319.0
Liquid Volumetric Flow	gpm	20536.9	21676.4	61.7598	278.321	8393.02	65.6565	8393.02
Std Vapor Volumetric Flow	MMSCFD	292.769*	291.663	0.0653944	44.8869	1.55693	0.0653944	1.55693
Std Liquid Volumetric Flow	sgpm	3916.56	3900.25	0.860377	290*	17.4948	0.860377	17.4948
Compressibility		0.795147	0.817202	0.981931	0.00344845	0.995017	0.982952	0.995017
Specific Gravity		0.742717	0.738751	0.703551	1.02592	1.44727	0.703551	1.44727
API Gravity					4.34869			
Enthalpy	Btu/h	-1.14211E+09	-1.11291E+09	-246630	-6.18989E+08	-2.78028E+07	-246630	-2.78028E+07
Mass Enthalpy	Btu/lb	-1651.68	-1624.25	-1685.69	-4333.48	-3880.06	-1685.69	-3880.06
Mass Cp	Btu/(lb*°F)	0.645312	0.633658	0.498437	0.840861	0.217506	0.497713	0.217506
Ideal Gas CpCv Ratio		1.23923	1.23508	1.24890	1.16436	1.28038	1.24900	1.28038
Dynamic Viscosity	cP	0.0129599	0.0130285	0.0110509	2.89863	0.0160536	0.0110380	0.0160536
Kinematic Viscosity	cSt	0.192733	0.206381	2.33580	2.82808	9.41541	2.48026	9.41541
Thermal Conductivity	Btu/(h*ft*°F)	0.0217692	0.0222011	0.0184026	0.210266	0.0106617	0.0183692	0.0106617
Surface Tension	lbf/ft				0.00374821			
Net Ideal Gas Heating Value	Btu/ft^3	1154.31	1158.39	1106.16	407.382	11.8511	1106.16	11.8511
Net Liquid Heating Value	Btu/lb	20299.9	20480.4	20534.8	4605.94	-0.425818	20534.8	-0.425818
Gross Ideal Gas Heating Value	Btu/ft^3	1271.74	1276.30	1220.51	487.917	16.6733	1220.51	16.6733
Gross Liquid Heating Value	Btu/lb	22371.9	22572.2	22664.9	5660.44	43.2327	22664.9	43.2327

Process Streams		AU2 Amine3 Inlet	to Dehy3	57	70	94	95	100
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		E-107 TREATER GAS/GAS HX	V-501	MKUP-1	VLVE-103	VLVE-104	E-502/V-503
Mole Fraction	To Block:	MIX-102 %	AU2 to DehyPlant3 %	VLVE-104 %	P-501A/B %	TO THERMAL OX -AU2 %	 %	V-502
		0.592467*	0.0604916	0.135010	0.139007	% 91.4219	0.135010	% 0.746496
-02 H2S		0.592467**	2.37382E-06	0.135010	0.139007	0.102419		0.746490
N2		1.02226*	1.01078	0.444412	0.000392090	0.000831150	0.444412	0.0011034
C1		76.9564*	76.2533	77.8580	0	0.455992	77.8580	(
C2		11.6234*	11.7797	13.8035	0	0.149115	13.8035	(
C3		5.70576*	6.08065	4.43898	0	0.0400367	4.43898	(
C4		0.859579*	0.973644	0.429335	0	0.00298731	0.429335	(
nC4 C5		1.94209* 0.492049*	2.25526 0.562463	1.31471 0.177220	0	0.0133851 0.00130250	1.31471 0.177220	(
nC5		0.492049	0.588788	0.177220	0	0.00130250	0.223516	
C6		0.149623*	0.166352	0.0389529	0	0.000287368	0.0389529	(
C7		0.0271129*	0.0325948	0.00346656	0	1.49564E-05	0.00346656	(
Benzene		0.0200836*	0.0204826	0.0534518	0	0.0683244	0.0534518	(
Toluene		0.0120502*	0.0120465	0.0235859	0	0.0363594	0.0235859	(
o-Xylene		0.00100418*	0.000976323	0.00128391	0	0.00340424	0.00128391	(
o-Xylene C8		0.00301254* 0.00301254*	0.00294802	0.00412189 0.000292930	0	0.0109704	0.00412189 0.000292930	
Vater		0.00301234	0.131967	0.988649	88.1767	7.68798	0.988649	99.049
Friethylene Glycol		0*	0	0	0	0	0	001010
Ethylbenzene		0*	4.87354E-06		0		6.42423E-06	(
Cyclohexane		0.0632634*	0.0624966	0.0600364	0	0.00268582	0.0600364	(
JCARSOL™ AP-814		0*	0.000261216		11.6839		8.05251E-05	0.20344
2-Methylpentane		0* 0*	0.000113044 5.67637E-05		0		2.98548E-05	
3-Methylpentane C9		0* 0*	5.67637E-05 0.000193140		0		1.49393E-05 4.87370E-06	
C10		0*	0.000152597		0		2.20295E-06	
Mass Fraction		%	%	%	%	%	%	%
CO2		1.21214*	0.122329	0.290963	0.210998	96.0093	0.290963	1.78898
H2S		0.000954586*	3.71746E-06	0.00225085	0.000460883	0.0832930	0.00225085	0.0020478
N2		1.33127*	1.30110	0.609645	0	0.000555600	0.609645	
21		57.3927*	56.2105	61.1646	0	0.174560	61.1646	
C2 C3		16.2478* 11.6963*	16.2758 12.3206	20.3252 9.58528	0	0.106993 0.0421280	20.3252 9.58528	
23 C4		2.32257*	2.60034	9.56526	0	0.00414323	9.56526	
nC4		5.24749*	6.02318	3.74194	0	0.0185644	3.74194	
C5		1.65036*	1.86470	0.626136	0	0.00224246	0.626136	
nC5		1.76487*	1.95198	0.789704	0	0.00342699	0.789704	
26		0.599408*	0.658718	0.164380	0	0.000590933	0.164380	
C7		0.126297*	0.150076	0.0170099	0	3.57618E-05	0.0170099	(
Benzene Toluene		0.0729289* 0.0516149*	0.0735171	0.204459	0	0.127353	0.204459	
o-Xylene		0.00495603*	0.0510021 0.00476280	0.106419 0.00667484	0	0.0799418 0.00862418	0.106419 0.00667484	
p-Xylene		0.0148681*	0.0143813	0.0214291	0	0.0277920	0.0214291	
C8		0.0159974*	0.0221419	0.00163857	0	3.12213E-06	0.00163857	
Nater		0*	0.109243	0.872187	54.7885	3.30499	0.872187	97.167
Friethylene Glycol		0*	0	0	0	0	0	
Ethylbenzene		0*		3.33986E-05	0	2.67658E-05		
Cyclohexane JCARSOL™ AP-814		0.247512* 0*	0.241683	0.247425 0.000401843	0 45	0.00539382 2.78448E-12	0.247425	1.0411
2-Methylpentane		0*	0.000447629		45		0.000401843	1.0411
B-Methylpentane		0*	0.000224772		0		6.30434E-05	
C9		0*		3.06097E-05	0		3.06097E-05	
210		0*	0.000997657	1.53490E-05	0		1.53490E-05	
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
02		6275.31*	648.648	0.474936	301.358	5680.22	0.474936	268.110
12S 12		4.94195* 6892.08*	0.0197118 6899.07	0.00367404 0.995118	0.658258 0	4.92788 0.0328711	0.00367404 0.995118	0.30690
N2 C1		297126*	298055	99.8384	0	10.3275	99.8384	
C2		84115.7*	86302.2	33.1766	0	6.33008	33.1766	
23		60552.7*	65330.1	15.6460	0	2.49243	15.6460	
C4		12024.1*	13788.3	1.99463	0	0.245127	1.99463	
nC4		27166.6*	31937.9	6.10794	0	1.09833	6.10794	
C5		8544.01*	9887.58	1.02204	0	0.132671	1.02204	
nC5 C6		9136.86* 3103.17*	10350.4 3492.85	1.28903 0.268316	0	0.202752 0.0349615	1.28903 0.268316	
26 27		653.848*	3492.85 795.778	0.268316	0	0.0349615	0.268316	
Benzene		377.558*	389.824	0.333736	0	7.53463	0.333736	
Toluene		267.214*	270.438	0.173707	0	4.72962	0.173707	
o-Xylene		25.6577*	25.2547	0.0108953	0	0.510234	0.0108953	
o-Xylene		76.9732*	76.2569	0.0349785	0	1.64426	0.0349785	
C8		82.8195*	117.407	0.00267462	0	0.000184715	0.00267462	
Nater		0*	579.258	1.42366	78251.9	195.534	1.42366	14562.
Triethylene Glycol		0*	0 126065	0	0	0 00158355	0 5 45162E-05	
Ethylbenzene Cyclohexane		0* 1281.39*	0.126065 1281.52	5.45162E-05 0.403870	0	0.00158355 0.319116	5.45162E-05 0.403870	
JCARSOL™ AP-814		1281.39^ 0*		0.403870	0 64271.4	0.319116 1.64739E-10		156.03
2-Methylpentane		0*		0.0000000000000000000000000000000000000	04271.4		0.000205646	130.03
B-Methylpentane		0*		0.000102905	0		0.000102905	
C9		0*		4.99640E-05	0		4.99640E-05	
C10		0*		2.50540E-05	0		2.50540E-05	


Process Streams		AU2 Amine3 Inlet	to Dehy3	57	70	94	95	100
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:		E-107 TREATER GAS/GAS HX	V-501	MKUP-1	VLVE-103	VLVE-104	E-502/V-503
	To Block:	MIX-102	AU2 to DehyPlant3	VLVE-104	P-501A/B	TO THERMAL OX -AU2		V-502
Property	Units							
Temperature	°F	80.0104*	104.697	96.1590	119.186	119.182	96.3484	247.227
Pressure	psia	1014.70*	1005.70	77.3	47.3	15.6959*	79.6959*	25.3
Mole Fraction Vapor	%	100	99.9958	100	0	100	100	100
Mole Fraction Light Liquid	%	0	0.00418768	0	100	0	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0	0
Molecular Weight	lb/lbmol	21.5109	21.7627	20.4209	28.9938	41.9067	20.4209	18.3640
Mass Density	lb/ft^3	4.95974	4.55863	0.269068	64.0312	0.106417	0.277452	0.0620517
Molar Flow	lbmol/h	24067.1	24365.0	7.99325	4926.06	141.179	7.99325	816.090
Mass Flow	lb/h	517707	530249	163.229	142825	5916.32	163.229	14986.7
Vapor Volumetric Flow	ft^3/h	104382	116318	606.645	2230.56	55595.8	588.315	241520
Liquid Volumetric Flow	gpm	13013.9	14501.9	75.6337	278.096	6931.42	73.3484	30111.6
Std Vapor Volumetric Flow	MMSCFD	219.194*	221.908	0.0727995	44.8647	1.28580	0.0727995	7.43264
Std Liquid Volumetric Flow	sgpm	2932.31	2989.51	0.958418	290*	14.4527	0.958418	30.1603
Compressibility		0.759865	0.792720	0.983527	0.00344779	0.995016	0.983038	0.986997
Specific Gravity		0.742717		0.705079	1.02666	1.44693	0.705079	0.634063
API Gravity					4.26568			
Enthalpy	Btu/h	-8.60812E+08	-8.53006E+08	-274468	-6.18805E+08	-2.29424E+07	-274468	-8.40118E+07
Mass Enthalpy	Btu/lb	-1662.74	-1608.69	-1681.49	-4332.61	-3877.81	-1681.49	-5605.75
Mass Cp	Btu/(lb*°F)	0.686626	0.659112	0.498194	0.839896	0.217667	0.498541	0.461309
Ideal Gas CpCv Ratio		1.24177	1.23136	1.24782	1.16434	1.28020	1.24777	1.31091
Dynamic Viscosity	cP	0.0133588		0.0110536	2.92045	0.0160472	0.0110599	0.0133885
Kinematic Viscosity	cSt	0.168147		2.56461	2.84733	9.41389	2.48852	13.4697
Thermal Conductivity	Btu/(h*ft*°F)	0.0222135		0.0184120	0.210103	0.0106674	0.0184281	0.0166478
Surface Tension	lbf/ft				0.00374708			
Net Ideal Gas Heating Value	Btu/ft^3	1154.31	1178.00	1109.21	407.545	13.5439	1109.21	6.66526
Net Liquid Heating Value	Btu/lb	20299.9	20473.6	20545.3	4606.35	14.8527	20545.3	-896.272
Gross Ideal Gas Heating Value	Btu/ft^3	1271.74	1297.35	1223.84	488.079	18.5000	1223.84	57.0450
Gross Liquid Heating Value	Btu/lb	22371.9	22555.0	22675.8	5660.41	59.7346	22675.8	144.801

-								
Process Streams		Condenser Ovhd	TEG1/2 Inlet	10	14	16	28	37
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved
	rom Block:	BTEX Condenser1		XCHG-102	RCYL-1	VLVE-102	VLVE-104	K-100
Mole Fraction	To Block:	TO FLARE - TEG1/2	SAT-1 %	BTEX Condenser1	PUMP-100	 %	VSSL-100	XCHG-100
		%		%	%		%	%
CO2 H2S		4.86071 0.0372147	0.594847* 0.000600856*	0.414034 0.00321453	1.49094E-07 5.24913E-08	2.32781 0.00351908	0.156452 0.000713189	1.24770E-07 4.40949E-08
N2		0.00934219	0.977392*	0.000791033	5.24913E-06	0.209490	0.000713189	4.40949E-08 3.21718E-13
C1		10.6064	76.6612*	0.898522	0	55.5314	2.07907	5.07559E-09
C2		14.4577	11.7487*	1.22801	9.21155E-08	19.7106	0.905344	7.59473E-08
C3		18.2505	5.85834*	1.55967	4.58753E-07	12.4352	0.715701	3.77796E-07
iC4		3.68634	0.888265*	0.319508	1.93641E-07	1.83625	0.122108	1.58975E-07
nC4		14.5587	1.98783*	1.27673	1.55436E-06	4.82249	0.401267	1.28240E-06
iC5		4.88412	0.478682*	0.448465	1.48450E-06	1.04904	0.118726	1.22279E-06
nC5		6.48441	0.500713*	0.609867	2.80141E-06	1.17724	0.152863	2.30446E-06
C6		1.89172	0.101144*	0.211050	9.47087E-06	0.211554	0.0461566	7.76852E-06
C7		0.347769	0.0160228*	0.0578939	2.72268E-06	0.0290229	0.0116618	2.24432E-06
Benzene		5.84350	0.0130185*	0.795701	0.00166814	0.0393689	0.148978	0.00142073
Toluene		2.67673	0.00700998*	0.658258	0.00410418	0.0169524	0.124542	0.00352433
o-Xylene p-Xylene		0 0.190827	0* 0.00100143*	0 0.112917	0 0.00172287	0 0.00181835	0 0.0220219	0 0.00149467
C8		0.0293860	0.00200285*	0.0104420	1.20169E-06	0.00181835	0.00202494	9.92468E-07
Water		6.41862	0*	90.3183	8.01776	0.223906	22.9121	8.02938
Triethylene Glycol		7.25057E-07	0*	0.518970		6.03490E-05	71.9574	91.9641
Ethylbenzene		0	0*	0	0	0	0	0
C9		0	0*	0	0	0	0	0
C10		0	0*	0	0	0	0	0
Cyclohexane		2.55465	0.0390556*	0.324784	6.39410E-05	0.0974153	0.0632005	5.31542E-05
2-Methylpentane		1.34400	0.0821169*	0.140132	4.42294E-06	0.179123	0.0319776	3.63659E-06
3-Methylpentane		0.867346	0.0420599*	0.0927426	4.31890E-06	0.0947357	0.0203439	3.56624E-06
Undecane		0	0*	0	0	0	0	0
Dodecane		0	0*	0	0	0	0	0
Argon O2		0	0* 0*	0	0	0	0	0
UCARSOL™ AP-814		0	0*	0	0	0	0	0
Mass Fraction		%	%	%	%	%	%	%
CO2		4.32024	1.21247*	0.820777	4.70119E-08	3.72517	0.0603519	3.93460E-08
H2S		0.0256146	0.000948415*	0.00493482	1.28174E-08	0.00436105	0.000213048	1.07683E-08
N2		0.00528538	1.26810*	0.000998167	0	0.213393	0.00180836	6.45783E-14
C1		3.43637	56.9592*	0.649296	0	32.3937	0.292349	5.83450E-10
C2		8.77973	16.3617*	1.66328	1.98451E-08	21.5512	0.238614	1.63636E-08
C3		16.2529	11.9643*	3.09793	1.44935E-07	19.9388	0.276624	1.19371E-07
iC4 nC4		4.32712 17.0894	2.39112* 5.35105*	0.836500 3.34260	8.06380E-08 6.47283E-07	3.88084 10.1921	0.0622084 0.204427	6.62088E-08 5.34088E-07
iC5		7.11667	1.59953*	1.45747	7.67379E-07	2.75216	0.0750825	6.32159E-07
nC5		9.44846	1.67315*	1.98201	1.44813E-06	3.08847	0.0966706	1.19136E-06
C6		3.29232		0.819242	5.84754E-06	0.662911	0.0348642	4.79697E-06
C7		0.703766	0.0743588*	0.261308	1.95467E-06	0.105747	0.0102425	1.61141E-06
Benzene		9.21832	0.0470974*	2.79969	0.000933578	0.111821	0.102000	0.000795195
Toluene		4.98088	0.0299141*	2.73200	0.00270937	0.0567968	0.100582	0.00232682
o-Xylene		0	0*	0	0	0	0	О
p-Xylene		0.409151	0.00492400*	0.539988	0.00131049	0.00701956	0.0204926	0.00113703
C8		0.0677916	0.0105960*	0.0537279	9.83482E-07	0.0122347	0.00202745	8.12338E-07
Water		2.33531	0*	73.2925	1.03489	0.146675	3.61800	1.03650
Triethylene Glycol Ethylbenzene		2.19900E-06	0* 0*	3.51056	98.9601 0	0.000329544	94.7173 0	98.9592
Ethyldenzene C9		0	0* 0*	0	0	0	0	0
C9 C10		0	0*	0	0	0	0	0
		4.34206	0.152231*	1.23123	3.85552E-05	0.298113	0.0466214	3.20543E-05
Cvclohexane		2.33908	0.327743*	0.543954	2.73083E-06	0.561287	0.0241542	2.24555E-06
Cyclohexane 2-Methylpentane			0.021110		2.66659E-06			2.20211E-06
2-Methylpentane		1.50951	0.167868*	0.360002	2.00039E-00	0.296857	0.0153667	2.20211E-00
-			0.167868* 0*	0.360002	2.00059E-00 0	0.296857	0.0153667 0	2.20211E-00 0
2-Methylpentane 3-Methylpentane		1.50951						2.20211E-00 0 0
2-Methylpentane 3-Methylpentane Undecane Dodecane Argon		1.50951 0 0 0	0* 0* 0*	0	0 0 0	0	0	0 0 0 0
2-Methylpentane 3-Methylpentane Undecane Dodecane		1.50951 0	0* 0* 0*	0 0	0 0	0 0	0 0	0 0 0 0 0 0


Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
CO2	8.78671	8383.55*	8.84140	1.35295E-05	9.30316	18.1446	1.13071E-05
H2S	0.0520961	6.55778*	0.0531578	3.68870E-06	0.0108912	0.0640521	3.09455E-06
N2	0.0107497	8768.20*	0.0107522	0	0.532924	0.543676	1.85583E-11
C1	6.98905	393842*	6.99421	0	80.8995	87.8937	1.67670E-07
C2	17.8566	113132*	17.9169	5.71121E-06	53.8215	71.7383	4.70251E-06
C3	33.0559	82726.8*	33.3709	4.17110E-05	49.7949	83.1658	3.43045E-05
iC4	8.80070	16533.3*	9.01077	2.32068E-05	9.69194	18.7027	1.90269E-05
nC4	34.7572	36999.6*	36.0064	0.000186281	25.4536	61.4602	0.000153485
iC5	14.4742	11059.9*	15.6999	0.000220844	6.87318	22.5733	0.000181668
nC5	19.2167	11568.9*	21.3502	0.000416756	7.71309	29.0637	0.000342370
C6	6.69607	2791.25*	8.82486	0.00168286	1.65554	10.4818	0.00137854
C7	1.43135	514.151*	2.81480	0.000562533	0.264091	3.07936	0.000463083
Benzene	18.7486	325.653*	30.1582	0.268674	0.279259	30.6660	0.228521
Toluene	10.1303	206.840*	29.4290	0.779728	0.141843	30.2395	0.668675
o-Xylene	0	0*	0	0	0	0	0
p-Xylene	0.832150	34.0468*	5.81674	0.377145	0.0175305	6.16103	0.326756
C8	0.137878	73.2655*	0.578756	0.000283036	0.0305547	0.609544	0.000233447
Water	4.74966	0*	789.506	297.831	0.366304	1087.74	297.866
Triethylene Glycol	4.47243E-06	0*	37.8158	28479.7	0.000822997	28476.4	28438.6
Ethylbenzene	0	0*	0	0	0	0	0
C9	0	0*	0	0	0	0	0
C10	0	0*	0	0	0	0	0
Cyclohexane	8.83109	1052.60*	13.2628	0.0110958	0.744502	14.0166	0.00921167
2-Methylpentane	4.75733	2266.17*	5.85946	0.000785905	1.40175	7.26186	0.000645320
3-Methylpentane	3.07012	1160.72*	3.87794	0.000767419	0.741366	4.61994	0.000632836
Undecane	0	0*	0	0	0	0	0
Dodecane	0	0*	0	0	0	0	0
Argon	0	0*	0	0	0	0	0
O2	0	0*	0	0	0	0	0
UCARSOL™ AP-814	0	0*	0	0	0	0	0

Process Streams		Condenser Ovhd	TEG1/2 Inlet	10	14	16	28	37
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	BTEX Condenser1		XCHG-102	RCYL-1	VLVE-102	VLVE-104	K-100
	To Block:	TO FLARE - TEG1/2	SAT-1	BTEX Condenser1	PUMP-100		VSSL-100	XCHG-100
Property	Units	TOTEALE TEOUZ	UATT	DIEX Condenser	1 0111 100		1002 100	
Temperature	°F	100	105.019*	100*	207.614	108.016	109.512	390
Pressure	psia	14.6959	940.8*	14.6959	14.1959	79.6959*	94.6959	15.1959
Mole Fraction Vapor	%	100	100	8.46528	0	100	3.44602	(
Mole Fraction Light Liquid	%	0	0	1.21925	100	0	96.5540	100
Mole Fraction Heavy Liquid	%	0	0	90.3155	0	0	0	(
Molecular Weight	lb/lbmol	49.5152	21.5915	22.2002	139.572	27.5010	114.087	139.558
Mass Density	lb/ft^3	0.123254	4.13675	0.647219	65.4363	0.370293	29.9872	58.4753
Molar Flow	lbmol/h	4.10752	32024.0	48.5220	206.194	9.08105	263.523	205.920
Mass Flow	lb/h	203.385	691446	1077.20	28779.0	249.738	30064.6	28737.7
Vapor Volumetric Flow	ft^3/h	1650.12	167147	1664.35	439.802	674.434	1002.58	491.450
Liquid Volumetric Flow	gpm	205.730	20839.1	207.503	54.8324	84.0853	124.997	61.2717
Std Vapor Volumetric Flow	MMSCFD	0.0374097	291.663*	0.441920	1.87794	0.0827067	2.40006	1.87544
Std Liquid Volumetric Flow	sgpm	0.703998	3910.51	2.46745	51	1.24558	54.6398	50.9268
Compressibility		0.982966	0.810302	0.0839282	0.00422836	0.971556	0.0589818	0.00397736
Specific Gravity		1.70963	0.745498		1.04918	0.949539		0.937574
API Gravity					-6.66702			-6.66694
Enthalpy	Btu/h	-208183	-1.13449E+09	-5.64448E+06	-6.55046E+07	-362716	-7.32383E+07	-6.18678E+07
Mass Enthalpy	Btu/lb	-1023.59	-1640.76	-5239.96	-2276.13	-1452.39	-2436.03	-2152.85
Mass Cp	Btu/(lb*°F)	0.388340	0.637610	0.840981	0.640318	0.462907	0.609107	0.709017
Ideal Gas CpCv Ratio		1.11611	1.23424	1.26247	1.03030	1.18978	1.04211	1.02644
Dynamic Viscosity	cP	0.00885961	0.0131654		3.69444	0.0106062		0.797942
Kinematic Viscosity	cSt	4.48737	0.198680		3.52459	1.78811		0.851879
Thermal Conductivity	Btu/(h*ft*°F)	0.0108492	0.0223035		0.113707?	0.0165066		0.1072563
Surface Tension	lbf/ft				0.00267654?			0.002049743
Net Ideal Gas Heating Value	Btu/ft^3	2363.56	1159.06	269.909	3474.02	1424.06	2813.06	3473.57
Net Liquid Heating Value	Btu/lb	17941.1	20306.8	3791.65	9177.60	19546.4	9070.54	9177.37
Gross Ideal Gas Heating Value	Btu/ft^3	2554.53	1276.87	335.910	3801.65	1560.44	3085.90	3801.17
Gross Liquid Heating Value	Btu/lb	19405.1	22377.9	4919.88	10068.4	21428.9	9978.09	10068.2

Process Streams	Condenser Ovhd2	TEC2 Inlot	o Mole Sieve	8	23	27	30	109
Composition Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total From Bloc	k: BTEX Condenser2		Glycol Contactor	V-551 Glycol Flash tank	RCYL-1	HZZ-1100/1101 M	PCV	52 Glycol Rebo
To Block Mole Fraction	TO THERMAL OX -TEG3	SAT-1 %	loleSieve3 from T %	F-551 Rich Glycol Filter %	P-551A/B TEG CIRC %	BTEX Condenser2 %	 %	-551 Glycol Exc %
CO2	4.81745			0.0812213	1.70644E-07	0.527011	2.33605	1.95741E-07
H2S N2	0.0373142 0.00913882	0.000600856		0.000636623 0.000153321	6.02791E-08 0	0.00413041 0.000994840	0.00354647 0.208701	
C1	10.4779			0.175868	0	1.14114	55.5257	
C2	14.4007			0.242338	1.07489E-07	1.57243	19.7418	
C3 iC4	18.2793 3.69874			0.309489 0.0635073	5.32836E-07 2.25007E-07	2.00815 0.412072	12.4558 1.83574	
nC4	14.6019	1.98783	1.98445	0.253642	1.79798E-06	1.64577	4.81860	2.05551E-06
iC5 nC5	4.90309 6.56053			0.0891469 0.122160	1.71809E-06 3.24359E-06	0.578428 0.792625	1.04409 1.17379	
C6	1.91580			0.0422840	1.10689E-05	0.274295	0.209816	
C7	0.352862	0.0160228		0.0116017	3.12713E-06	0.0752590	0.0286470	
Benzene Toluene	5.85596 2.66488			0.158576 0.133067	0.00184269 0.00447423	1.01736 0.835421	0.0391231 0.0167710	
o-Xylene	0			0	0		0	0
p-Xylene C8	0.187162 0.0299235			0.0235218 0.00209563	0.00185362 1.37182E-06	0.141128 0.0135891		
Water	6.41212			20.2939	8.01638	87.6461	0.188746	
Triethylene Glycol	8.44877E-07			77.8858	91.9753		6.36017E-05	91.9679
Ethylbenzene C9	0	0,	-	0	0	0	0	0
C10	0	0,	•	0	0	0	0	0
Cyclohexane 2-Methylpentane	2.57196 1.35372			0.0646635 0.0279326	7.32231E-05 5.17217E-06	0.419118 0.181211	0.0965389 0.177830	
2-Methylpentane 3-Methylpentane	1.35372 0.869548			0.0279326 0.0183988	5.02822E-06	0.181211 0.119351	0.177830	
Undecane	0	0'	· 0	0	0	0	0	0
Dodecane Argon	0	0; 0;	-	0	0	0	0	0
02	0	0,	· 0	0	0	0	0	0
UCARSOL™ AP-814 Mass Fraction	0	0 ³	* 0 %	0	0	0	0%	0 %
CO2	4.27300			0.0293845	5.38062E-08	0.995602	3.73818	
H2S		0.000948415	0.000937116	0.000178359	1.47188E-08	0.00604259		
N2 C1	0.00515971 3.38777			3.53078E-05 0.0231932	0	0.00119630 0.785830	0.212580 32.3890	
C2	8.72715			0.0599022	2.31569E-08	2.02960	21.5844	
C3	16.2452		11.9590	0.112187	1.68339E-07	3.80111	19.9710	
iC4 nC4	4.33277 17.1049			0.0303437 0.121190	9.36988E-08 7.48725E-07	1.02810 4.10611	3.87960 10.1835	
iC5	7.12965	1.59953	1.59666	0.0528735	8.88118E-07	1.79142	2.73904	1.01315E-06
nC5 C6	9.53975 3.32738			0.0724536 0.0299545	1.67668E-06 6.83414E-06	2.45480 1.01466	3.07929 0.657438	
C7	0.712608			0.00955651	2.24501E-06	0.323708	0.104373	
Benzene	9.21901			0.101826	0.00103125	3.41124	0.111118	
Toluene o-Xylene	4.94865 0			0.100789 0	0.00295362 0	3.30419 0	0.0561867 0	
p-Xylene	0.400469			0.0205284	0.00140993	0.643153		
C8 Water	0.0688901 2.32816	0.0105960 [°] 0 [°]		0.00196785 3.00545	1.12271E-06 1.03470	0.0666323 67.7786	0.0120156 0.123638	
Water Triethylene Glycol	2.55714E-06			96.1506	98.9598		0.123636	
Ethylbenzene	0	0'	•	0	0	0	0	0
C9 C10	0	0,	•	0	0	0	0	0
Cyclohexane	4.36250	, v	•	0.0447367	4.41517E-05	1.51411	0.295419	5.02380E-05
2-Methylpentane	2.35116			0.0197878	3.19339E-06	0.670329	0.557211	
3-Methylpentane Undecane	1.51024 0	0.167868 [°] 0 [°]		0.0130339 0	3.10451E-06 0	0.441498 0	0.294395 0	3.50389E-06 0
Dodecane	0	0'	•	0	0	0	0	0
Argon O2	0	0, 0,	-	0	0	0	0	0
UCARSOL™ AP-814	0	0'	•	0	0	0	0	0
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
CO2 H2S	8.65823 0.0519338			8.70284 0.0528247	1.54849E-05 4.23593E-06	8.70282 0.0528199	9.31266 0.0109485	
N2	0.0104549	6672.39	6671.85	0.0104571	0	0.0104571	0.529585	3.01630E-11
C1 C2	6.86452 17.6835			6.86915 17.7413	0 6.66433E-06	6.86915 17.7413	80.6883 53.7716	
C3	32.9171			33.2265	4.84462E-05	33.2265	49.7524	
iC4	8.77934	12581.5	12562.8	8.98691	2.69655E-05	8.98688	9.66496	3.08369E-05
nC4 iC5	34.6590 14.4466			35.8929 15.6596	0.000215475 0.000255591	35.8926 15.6593	25.3693 6.82356	
nC5	19.3301	8803.69	8774.56	21.4586	0.000482532	21.4581	7.67121	0.000550919
C6 C7	6.74216 1.44393			8.87164 2.83036	0.00196679 0.000646090	8.86942 2.82962	1.63783 0.260017	
C7 Benzene	1.44393 18.6802			2.83036 30.1578	0.000646090 0.296784	2.82962 29.8185	0.260017 0.276819	
Toluene	10.0273	157.400	128.259	29.8508	0.850021	28.8828	0.139974	0.967925
o-Xylene p-Xylene	0 0.811456		-	0 6.07990	0 0.405764	0 5.62198	0 0.0171990	
C8	0.139590	55.7533	55.1408	0.582819	0.000323105	0.582451	0.0299337	0.000367914
Water Triethylene Glycol	4.71746 5.18144E-06			890.126 28477.0	297.776 28479.6	592.471 33.4970	0.308010	
I riethylene Glycol Ethylbenzene	5.18144E-06 0	0,		28477.0 0	28479.6 0	33.4970 0	0.000865181 0	28443.5
C9	0	0,	°,	0	0	0	0	0
C10 Cyclohexane	0 8.83959	0 [°] 801.002 [°]	[*] 0 * 787.029	0 13.2497	0 0.0127064	0 13.2353	0 0.735955	0 0.0144399
2-Methylpentane	4.76407	1724.50	1717.25	5.86056	0.000919025	5.85953	1.38814	0.00103705
3-Methylpentane	3.06015			3.86026	0.000893447	3.85925	0.733404	
Indeense	0	0'	0	0	0	0	0	0
Undecane Dodecane	0	0'	· 0	0	0	0	0	0
Dodecane Argon	0 0	0;	· 0	0 0	0 0	0 0	0	0 0
Dodecane	0 0 0	0; 0;	* 0 * 0	0 0 0	000000000000000000000000000000000000000	0 0 0	000000000000000000000000000000000000000	

Condenser Ovhd2 Solved BTEX Condenser2 TO THERMAL OX -TEG3 100 14.6959 100 0 49.6170 0.123517	Solved SAT-1 104.955* 955.496* 100 0 0	IoleSieve3 from T 107.188 948.496 100	8 Solved V-551 Glycol Flash tank F-551 Rich Glycol Filter 109.565 94.6959 0	23 Solved RCYL-1 P-551A/B TEG CIRC 211.239 14.1959	27 Solved HZZ-1100/1101 M BTEX Condenser2 100* 14.6959	108.069	109 Solved 52 Glycol Reboile -551 Glycol Exch 390
BTEX Condenser2 TO THERMAL OX -TEG3 100 14.6959 100 0 0 49.6170	 SAT-1 104.955* 955.496* 100 0 0	Glycol Contactor IoleSieve3 from T 107.188 948.496 100	V-551 Glycol Flash tank F-551 Rich Glycol Filter 109.565 94.6959	RCYL-1 P-551A/B TEG CIRC 211.239	HZZ-1100/1101 M BTEX Condenser2	PCV 108.069	52 Glycol Reboil -551 Glycol Exch
TO THERMAL OX -TEG3 100 14.6959 100 0 0 49.6170	SAT-1 104.955* 955.496* 100 0 0	IoleSieve3 from T 107.188 948.496 100	F-551 Rich Glycol Filter 109.565 94.6959	P-551A/B TEG CIRC 211.239	BTEX Condenser2	108.069	-551 Glycol Exch
100 14.6959 100 0 0 49.6170	104.955* 955.496* 100 0 0	107.188 948.496 100	109.565 94.6959	211.239	100*	108.069	
14.6959 100 0 49.6170	<mark>955.496*</mark> 100 0 0	948.496 100	94.6959				390
14.6959 100 0 49.6170	<mark>955.496*</mark> 100 0 0	948.496 100	94.6959				390
100 0 49.6170	100 0 0	100		14.1959	14,6959		
0 0 49.6170	0		0			79.6959*	15.1959
	0	0		0	10.8836	100	0
	0		100	100	1.55238	0	100
		0	0	0	87.5640	0	0
0.123517	21.5915	21.5828	121.646	139.574	23.2960	27.5022	
	4.21513	4.14380	68.3145	65.3028	0.529312	0.370271	58.4747
4.08381	24369.5	24358.0	243.469	206.192	37.5227	9.05829	205.947
202.627	526174	525713	29617.1	28779.0	874.127	249.123	28743.0
1640.47	124830	126867	433.540	440.700	1651.44	672.812	491.545
204.526	15563.2	15817.2	54.0517	54.9444	205.894	83.8830	61.2835
0.0371938	221.948*	221.843	2.21743	1.87791	0.341742	0.0824994	1.87568
0.700882	2975.80	2973.81	52.9969	51	2.06052	1.24278	50.9364
0.982890	0.807749	0.812094	0.0276033	0.00421414	0.107689	0.971564	0.00397761
1.71315	0.745498	0.745198	1.09533	1.04704		0.949579	0.937565
			-5.22488	-6.66684			-6.66625
-206982	-8.63669E+08	-8.62399E+08	-7.15175E+07	-6.54371E+07	-4.29356E+06	-361663	-6.18767E+07
-1021.49	-1641.41	-1640.44	-2414.74	-2273.78	-4911.83	-1451.75	-2152.76
0.388401	0.640897	0.637535	0.605692	0.641917	0.809809	0.462902	0.709008
1.11583	1.23426	1.23375	1.03942	1.03019	1.25012	1.18977	1.02644
0.00885017	0.0132196	0.0132084	14.8312	3.54336		0.0106066	0.797899
4.47304	0.195788	0.198990	13.5533	3.38737		1.78829	0.851841
0.0108341	0.0223853	0.0224070	0.115145	0.113663?		0.0165084	0.107253?
			0.00296112	0.00266474?			0.00204966?
2369.70	1159.06	1158.58	2991.50	3474.07	344.087	1424.30	3473.84
17950.8	20306.8	20306.7	9049.38	9177.65	4832.44	19549.1	9177.62
2561.12	1276.87	1276.37	3279.45	3801.71	414.371	1560.70	3801.46
19415.2	22377.9	22378.1	9947.68	10068.5	5977.39	01401 6	10068.4
	204.526 0.0371938 0.700882 0.982890 1.71315 -206982 -1021.49 0.388401 1.11583 0.00885017 4.47304 0.0108341 2369.70 17950.8 2561.12	204.526 15563.2 0.0371938 221.948* 0.700882 2975.80 0.982890 0.807749 1.71315 0.745498 -206982 -8.63669E+08 -1021.49 -1641.41 0.388401 0.640897 1.11583 1.23426 0.00885017 0.0132196 4.47304 0.195788 0.0108341 0.0223853 2369.70 1159.06 17950.8 20306.8 2561.12 1276.87	204.52615563.215817.20.0371938221.948*221.8430.7008822975.802973.810.9828900.8077490.8120941.713150.7454980.745198-206982-8.63669E+08-8.62399E+08-1021.49-1641.41-1640.440.3884010.6408970.6375351.115831.234261.233750.008850170.01321960.01320844.473040.1957880.1989900.01083410.02238530.02240702369.701159.061158.5817950.820306.820306.72561.121276.871276.37	204.52615563.215817.254.05170.0371938221.948*221.8432.217430.7008822975.802973.8152.99690.9828900.8077490.8120940.02760331.713150.7454980.7451981.09533-206982-8.63669E+08-8.62399E+08-7.15175E+07-1021.49-1641.41-1640.44-2414.740.3884010.6408970.6375350.6056921.115831.234261.233751.039420.008850170.01321960.013208414.83124.473040.1957880.19899013.55330.01083410.02238530.02240700.1151452369.701159.061158.582991.5017950.820306.820306.79049.382561.121276.871276.373279.45	204.52615563.215817.254.051754.94440.0371938221.948*221.8432.217431.877910.7008822975.802973.8152.9969510.9828900.8077490.8120940.02760330.004214141.713150.7454980.7451981.095331.04704-206982-8.63669E+08-8.62399E+08-7.15175E+07-6.54371E+07-1021.49-1641.41-1640.44-2414.74-2273.780.3884010.6408970.6375350.6056920.6419171.115831.234261.233751.039421.030190.008850170.01321960.013208414.83123.543364.473040.1957880.19899013.55333.387370.01083410.02238530.02240700.1151450.113663?0.002961120.00266474?2369.701159.061158.582991.503474.0717950.820306.820306.79049.389177.652561.121276.871276.373279.453801.71	204.52615563.215817.254.051754.9444205.8940.0371938221.948*221.8432.217431.877910.3417420.7008822975.802973.8152.9969512.060520.9828900.8077490.8120940.02760330.004214140.1076891.713150.7454980.7451981.095331.047041.713150.7454980.7451981.095331.04704-206982-8.63669E+08-8.62399E+08-7.15175E+07-6.54371E+07-4.29356E+06-1021.49-1641.41-1640.44-2414.74-2273.78-4911.830.3884010.6408970.6375350.6056920.6419170.8098091.115831.234261.233751.039421.030161.250120.008850170.01321960.013208414.83123.54336	204.52615563.215817.254.051754.9444205.89483.88300.0371938221.948*221.8432.217431.877910.3417420.08249940.7008822975.802973.8152.9969512.060521.242780.9828900.8077490.8120940.02760330.004214140.1076890.9715641.713150.7454980.7451981.095331.047040.949579206982-8.63669E+08-8.62399E+08-7.15175E+07-6.54371E+07-4.29356E+06-361663-1021.49-1641.41-1640.44-2414.74-2273.78-4911.83-1451.750.3884010.6408970.6375350.6056920.6419170.8088090.4629021.115831.234261.233751.039421.030191.250121.189770.008850170.01321960.013208414.83123.54336<

Process Streams		Air	AIR2	DRY AIR1	DRY AIR2	Emissions1	Emissions2	Fuel Gas	FUEL GAS2	12
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block: To Block:	Saturator MIX-101	SAT-1 MIX-103	 SAT-1	 Saturator	Thermal Oxidizer 1	Thermal Oxidizer 2	 VLVE-101	 VLVE-100	MIX-102 MIX-103
Mole Fraction	TO BIOCK.	%	%	%	%	%	%	%	<u> </u>	%
CO2		0.0319272	0.0319272	0.033*	0.033*	32.2641	31.9512		0.0252378*	81.0862
H2S N2		0 75.5486	0 75.5486	0* 78.087*	0* 78.087*	0.0331184 49.9633	0.0296334 50.8987	0* 0.528291*	0* 0.525969*	0.0994244 0.0606529
C1		0	75.5480 0	78.087 0*	78.087 0*	49.9055	0.0987		79.0312*	9.37048
C2		0	0	0*	0*	0	0	13.5741*	13.6855*	1.67461
C3 iC4		0	0	0* 0*	0* 0*	0	0 0	4.02259* 0.337022*	4.19361* 0.361004*	0.508324 0.0432984
nC4		0	0	0*	0* 0*	0	0	0.972671*	1.03898*	0.0432984
iC5		0	0	0*	0*	0	0	0.103732*	0.114854*	0.0140405
nC5		0	0	0* 0*	0* 0*	0	0		0.128756*	0.0161492
C6 C7		0	0	0*	0*	0	0		0.0384297* 0*	0.00459832 1.08019E-05
Benzene		0	0	0*	0*	0	0		0*	0.0503213
Toluene		0	0	0*	0*	0	0		0*	0.0278311
o-Xylene p-Xylene		0 0	0	0* 0*	0* 0*	0		1.00978E-08* 6.84740E-08*	0* 0*	0.00277110 0.00880071
C8		0	0	0*	0*	0		8.60715E-08*		7.10009E-07
Water		3.25076	3.25076	0*	0*	13.5087	12.6879	0.946350*	0.856422*	6.90246
Triethylene Glycol Ethylbenzene		0 0	0	0* 0*	0* 0*	0	0	-	0* 0*	0
C9		0	0	0*	0*	0	0		0*	0
C10		0	0	0*	0*	0	0		0*	0
Cyclohexane 2-Methylpentane		0	0	0* 0*	0* 0*	0	0	0* 0*	0* 0*	0.00223217
2-Methylpentane 3-Methylpentane		0	0	0* 0*	0* 0*	0	0	0* 0*	0* 0*	0
Undecane		0	0	0*	0*	0	0	0*	0*	0
Dodecane		0	0	0*	0*	0 507270	0	0*	0*	0
Argon O2		0.903638 20.2651	0.903638 20.2651	0.934* 20.946*	0.934* 20.946*	0.597370 3.63338	0.608668 3.82391	0* 0*	0* 0*	0
UCARSOL™ AP-814		0	0	0*	0*	0	0	0*	0*	6.67555E-08
Mass Fraction		%	%	%	%	%	%	%	%	%
CO2 H2S		0.0491140 0	0.0491140 0	0.0501404* 0*	0.0501404* 0*	44.3148 0.0352259	43.8292 0.0314791	0.0376867* 0*	0.0555958* 0*	90.5377 0.0859686
H25 N2		73.9758	73.9758	75.5218*	75.5218*	43.6816	44.4429	0.745155*	0.737514*	0.0859686
C1		0	0	0*	0*	0	0		63.4621*	3.81389
C2 C3		0	0	0* 0*	0* 0*	0	0	20.5512* 8.93118*	20.5980* 9.25610*	1.27752
iC4		0	0	0* 0*	0*	0	0	0.986299*	9.25610* 1.05026*	0.568685 0.0638484
nC4		0	0	0*	0*	0	0	2.84653*	3.02269*	0.188380
iC5		0	0	0*	0*	0	0	0.376834*	0.414780*	0.0257008
nC5 C6		0	0	0* 0*	0* 0*	0	0	0.425216* 0.147096*	0.464986* 0.165766*	0.0295608 0.0100535
C7		0	0	0*	0*	0	0		0*	2.74607E-05
Benzene		0	0	0*	0*	0	0		0*	0.0997251
Toluene o-Xylene		0	0	0* 0*	0* 0*	0	0		0* 0*	0.0650590 0.00746395
p-Xylene		0	0	0*	0*	0	0		0*	0.0237047
C8		0	0	0*	0*	0	0		0*	2.05766E-06
Water		2.04703	2.04703	0*	0*	7.59513	7.12461	0.858422*	0.772277*	3.15486
Triethylene Glycol Ethylbenzene		0	0	0* 0*	0* 0*	0	0	-	0* 0*	0
C9		0	0	0*	0*	0	0	0*	0*	0
C10		0	0	0*	0*	0	0	0.00132070*	0*	0
Cyclohexane 2-Methylpentane		0	0	0* 0*	0* 0*	0	0	0* 0*	0* 0*	0.00476613 0
3-Methylpentane		0	0	0*	0*	0	0	0*	0*	0
Undecane		0	0	0*	0*	0	0	0*	0*	0
Dodecane Argon		0 1.26179	0 1.26179	0* 1.28816*	0* 1.28816*	0 0.744767	0 0.757889	0* 0*	0* 0*	0
O2		22.6663	22.6663	23.1399*	23.1399*	3.62850	3.81392	0*	0*	0
UCARSOL™ AP-814		0	0	0*	0*	0	0	0*	0*	1.64641E-07
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
CO2 H2S		4.66676 0	5.38047 0	5.38047* 0*	4.66676* 0*	8224.89 6.53799	6933.53 4.97982	0.0748481* 0*	0.244355* 0*	6885.47 6.53799
N2		7029.10	8104.10	8104.10*	7029.10*	8107.38	7030.62	1.47992*	3.24152*	3.27837
C1 C2		0	0	0* 0*	0* 0*	0	0	127.292* 40.8159*	278.928*	290.050
C2 C3		0	0 0	0^ 0*	0^ 0*	0	0	40.8159 [^] 17.7378*	90.5321* 40.6824*	97.1568 43.2490
iC4		0	0	0*	0*	0	0	1.95885*	4.61612*	4.85572
nC4		0	0	0* 0*	0* 0*	0	0	5.65338*	13.2853*	14.3265
iC5 nC5		0	0	0* 0*	0* 0*	0	0	0.748415* 0.844504*	1.82304* 2.04370*	1.95457 2.24812
C6		0	0	0*	0* 0*	0	0	0.292142*	0.728572*	0.764578
C7		0	0	0*	0*	0	0		0*	0.00208841
Benzene		0	0	0* 0*	0* 0*	0	0	0.000174894* 1.89533E-05*	0* 0*	7.58418
Toluene o-Xylene		0	0	0* 0*	0" 0*	0	-	1.89533E-05* 1.07204E-07*	0* 0*	4.94779 0.567640
p-Xylene		0	0	0*	0*	0	0	7.26954E-07*	0*	1.80276
C8 Water		0	0	0* 0*	0* 0*	0		9.83182E-07*	0* 2 20421*	0.000156487
Water Triethylene Glycol		194.506 0	224.253 0	0* 0*	0* 0*	1409.67 0	1127.07 0	1.70488* 0*	3.39431* 0*	239.930 0
Ethylbenzene		0	0	0* 0*	0* 0*	0	-	1.14698E-07*	0*	0
C9		0	0	0*	0*	0	0	0*	0*	0
C10 Cyclohexane		0	0	0* 0*	0* 0*	0	0	0.00262298* 0*	0* 0*	0 0.362468
Cyclonexane 2-Methylpentane		0	0	0^ 0*	0^ 0*	0	0	0^ 0*	0^ 0*	0.362468 N
3-Methylpentane		0	0	0*	0*	0	0	0*	0*	0
		0	0	0*	0*	0	0	0* 0*	0* 0*	0
Undecane						0	0	A*	O*	
Undecane Dodecane		0 119.894	0 138.230	0* 138.230*	0* 119.894*	Ũ	0 110 80/	-	•	0
Undecane		0 119.894 2153.72	0 138.230 2483.10	138.230* 2483.10*	119.894* 2153.72*	138.230 673.455	0 119.894 603.340	0*	0* 0*	0 0 1.25211E-05

Process Streams		Air	AIR2	DRY AIR1	DRY AIR2	Emissions1	Emissions2	Fuel Gas	FUEL GAS2	12
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Saturator	SAT-1			Thermal Oxidizer 1	Thermal Oxidizer 2			MIX-102
	To Block:	MIX-101	MIX-103	SAT-1	Saturator			VLVE-101	VLVE-100	MIX-103
Property	Units									
Temperature	°F	80	80	80*	80*	1929.84	1956.89	94.9840*	94.0663*	115.422
Pressure	psia	15.6959	15.6959	15.6959*	15.6959*	15.4459	14.4459	79.6959*	79.6959*	15.6959
Mole Fraction Vapor	%	100	100	100	100	100	100	100	100	100
Mole Fraction Light Liquid	%	0	0	0	0	0	0	0	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0	0	0	0	0	0
Molecular Weight	lb/lbmol	28.6090	28.6090	28.9649	28.9649	32.0419	32.0826	19.8606	19.9782	39.4153
Mass Density	lb/ft^3	0.0775745	0.0775745	0.0785278	0.0785278	0.0192960	0.0178677	0.270287	0.272417	0.100714
Molar Flow	lbmol/h	332.129	382.924	370.476*	321.333*	579.246	493.084	10*	22*	192.948
Mass Flow	lb/h	9501.88	10955.1	10730.8	9307.38	18560.2	15819.4	198.606	439.520	7605.09
Vapor Volumetric Flow	ft^3/h	122487	141220	136650	118523	961868	885366	734.797	1613.41	75512.0
Liquid Volumetric Flow	gpm	15271.1	17606.6	17036.9	14776.9	119921	110383	91.6111	201.152	9414.49
Std Vapor Volumetric Flow	MMSCFD	3.02491	3.48753	3.37415	2.92658	5.27556	4.49082	0.0910762	0.200368	1.75730
Std Liquid Volumetric Flow	sgpm	21.7562	25.0835	24.6352	21.3673	44.4185	37.8739	1.18706	2.61961	20.1144
Compressibility		0.999491	0.999491	0.999643	0.999643	1.00022	1.00020	0.983826	0.983537	0.995319
Specific Gravity		0.987794	0.987794	1.00008	1.00008	1.10632	1.10773	0.685734	0.689794	1.36091
API Gravity										
Enthalpy	Btu/h	-1.13484E+06	-1.30840E+06	-14346.6	-12443.5	-2.98584E+07	-2.46237E+07	-339471	-747122	-2.85500E+07
Mass Enthalpy	Btu/lb	-119.433	-119.433	-1.33695	-1.33695	-1608.73	-1556.54	-1709.27	-1699.86	-3754.06
Mass Cp	Btu/(lb*°F)	0.244872	0.244872	0.240567	0.240567	0.322509	0.321520	0.502623	0.501468	0.233538
Ideal Gas CpCv Ratio	. ,	1.39691	1.39691	1.39987	1.39987	1.23790	1.23843	1.25384	1.25275	1.27684
Dynamic Viscosity	cP	0.0182602	0.0182602	0.0183453	0.0183453	0.0491630	0.0494945	0.0110925	0.0110609	0.0155513
Kinematic Viscosity	cSt	14.6948	14.6948	14.5841	14.5841	159.056	172.929	2.56202	2.53476	9.63959
Thermal Conductivity	Btu/(h*ft*°F)	0.0149197	0.0149197	0.0149444	0.0149444	0.0513687	0.0517183	0.0185583	0.0184789	0.0116262
Surface Tension	lbf/ft									
Net Ideal Gas Heating Value	Btu/ft^3	0	0	0	0	0.194336	0.173886	1083.55	1090.19	134.803
Net Liquid Heating Value	Btu/lb	-21.7303	-21.7303	-0.0375319	-0.0375319	-111.431	-106.318	20641.4	20645.4	1192.75
Gross Ideal Gas Heating Value	Btu/ft^3	1.63546	1.63546	0	0	7.00720	6.57208	1196.48	1203.57	152.004
Gross Liquid Heating Value	Btu/lb	-0.0367636	-0.0367636	-0.0375319	-0.0375319	-30.7433	-30.6381	22799.6	22799.6	1358.39

ProMax Flowsheet

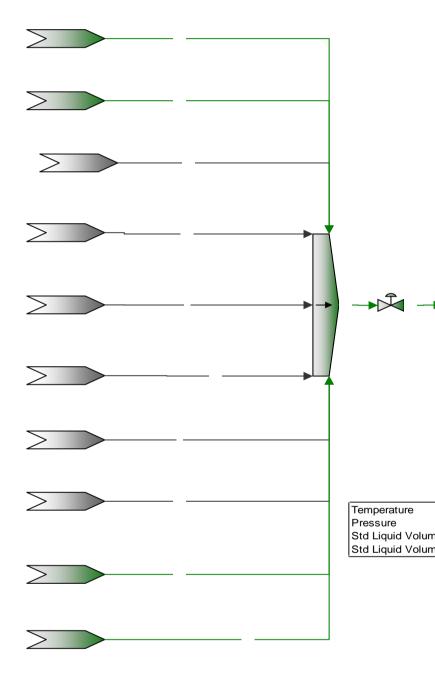
 Temperature
 100.52 °F

 Pressure
 0 psig

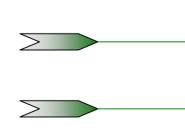
 Std Liquid Volumetric Flow
 37.05 sgpm

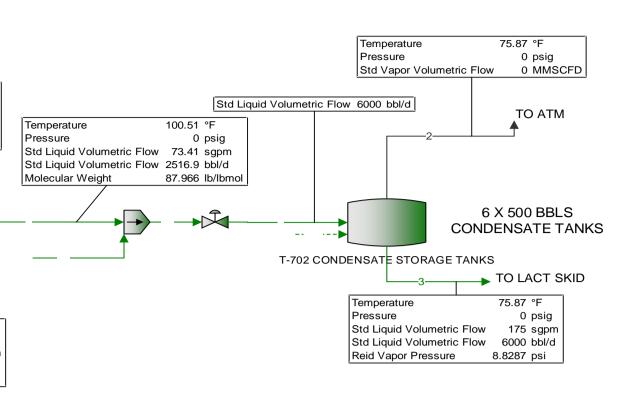
 Std Liquid Volumetric Flow
 1270.3 bbl/d

 Reid Vapor Pressure
 8.9 psi


 Temperature
 100.51 °F

 Pressure
 0 psig


 Std Liquid Volumetric Flow
 36.359 sgpm


 Std Liquid Volumetric Flow
 1246.6 bbl/d

 Reid Vapor Pressure
 8.5621 psi

Condensate Tanks Losses	
Annual tank loss calculations for "6".	Flashing losses Cond tnk—
Total working and breathing losses are 78.48 ton/yr.	——Working losses Cond tnk—
Flashing losses are 0 ton/yr.	Breathing losses Cond tnk-
Loading losses are 525.5 ton/yr of loaded liquid.	
* Only Non-Exempt VOCs are reported.	Loading losses Cond tnk—
Vapor adjusted to ensure mass balance	Residual Cond tnk
T 1 0	

Temperature 89.659 °F Pressure 0 psig Std Vapor Volumetric Flow 0.020263 MMSCFD \rightarrow to flare from Wtr Tank Temperature 89.659 °F 0 psig Pressure TO ATM Std Liquid Volumetric Flow 3.8613 sgpm —16—— Std Liquid Volumetric Flow 132.39 bbl/d Temperature 75.87 °F Pressure 0 psig Std Vapor Volumetric Flow 0.061456 MMSCFD 1 X 500 BBLS WATER TANK - -CED WATER TANK TO TRUCK —17— Temperature 75.87 °F 0 psig Pressure Std Liquid Volumetric Flow4.3788 sgpmStd Liquid Volumetric Flow150.13 bbl/dTrue Vapor Pressure6.9767 psig Temperature50.073 °FPressure0 psigStd Liquid Volumetric Flow0.8898 sgpmStd Liquid Volumetric Flow30.507 bbl/dStd Liquid Volumetric Flow30.507 bbl/dStd Liquid Volumetric Flow32.054 bbl/d

Water Tanks Losses

Tank-2

	Flashing losses Wtr tr
Annual tank loss calculations for "15".	3
Total working and breathing losses are 18.39 ton/yr.	———Working losses Wtr tr
Flashing losses are 1,679 ton/yr.	
Loading losses are 22.15 ton/yr of loaded liquid.	Breathing losses Wtr t
* Only Non-Exempt VOCs are reported.	Loading losses Wtr tr
Vapor adjusted to ensure mass balance	Loading losses with th
· · · · · · · · · · · · · · · · · · ·	Residual Wtr tnk-

	-
	-

		•
		►
		•
		-

	UOM	Gas	T-701 PRODUCED WATER	T-702 CONDENSATE STORAGE
	00101		TANK	TANKS
Daily Rate	MMSCFD	510		
Daily Throughput	bbl/d		150	6000
Annual Throughput	gal/yr		2301523	91980000
Per Tank Throughput	gal/yr		2301523	15330000
# of Tanks			1	6
Turnover Per Tank	per year		133	906
Total Flow	lb/hr		408.75	17.92
VOC [C3+] total	lb/hr		387.60	17.92
VOC [C3+] per tank	lb/hr		387.60	2.99
Bz total	lb/hr		6.40	0.14
Bz per tank	lb/hr		6.40	0.02
H2S total	lb/hr		0.00	0.00
H2S per tank	lb/hr		0.0003	0.0000
Temperature	°F		75.87	75.56
VOC [C3+] wt %	%		94.83	100.00
Bz wt %	%		1.57	0.81
H2S wt %	%		0.0000767	0.000000
MW Vapors	lb/lbmol		56.01	72.44
SCF/hr	SCF/hr		2768.64	93.86
HV	btu/ft^3		3098.29	4015.82
C3 % (mass)	%		16.23	0.13
			17	3
RVP	psi		18.28	8.83
Vapor Pressure @ 100 °F	psia		21.67	8.96
Vapor Pressure @ 65 °F	psia		12.23	4.47

*Results for vapor streams are for flashing, working , and breathing combined unless otherwise noted in cell comments

BURNER DATA SHEET

PROJECT TITLE	:
LOCATION	:
OWNER	: Matador Resources Co
OWNER REFERENCE	: H-801
PURCHASER	: Tulsa Heaters Midstream
PURCHASER REFERENCE	: MJ18-325
UNIT	:
HEATER SERVICE	: Hot Oil Heater
ITEM NUMBER	:
CALLIDUS REFERENCE	: BB-9024982
CALLIDUS DOCUMENT #	: BB-9024982-DS

APPROVED BY THM

0	3/22/2018	ISSUED FOR APPROVAL		SM	DW	UOO A Honeywell Compar	ıy
Rev.	Date	Description	Pre	epared		Document Number: BB-9024982-DS	Rev 0

()

	1 A state of the second s	el constant a sub	GENERAL DA			
	2 TYPE OF HEATER	an a		Hot Oil Heate		and a second different of
	ALTITUDE ABOVE SEA LEVEL	f	4 .	3051		
	AIR SUPPLY			Ambient		
	TEMPERATURE (MIN/MAX/DESIGN)	0	F MINIMUM =	-20 MAXIMUM =	110 DESIGN =	60
			6	50		
	DRAFT TYPE			Forced Draft, Am	hient	
	REQUIRED TURNDOWN			5:1	bient	
		- 400		5.1		
		1. 141.0		7.00		
	ACROSS BURNER	in. W.C		7.00		
	ACROSS PLENUM	in. W.C				
	DISTANCE BURNER CL:					
13	Ξ	in		51		
	TO BURNER C _L (HORIZ.)	in		n/a		
15	TO UNSHIELDED REFRACTORY	in				
16	BURNER FLOOR LINING THICKNESS	in		6		
17	HEATER CASING THICKNESS	in		0.1875		
18	FURNACE HEIGHT	ft.		10.5		
19	FURNACE WIDTH	ft.		10.5		
	FURNACE LENGTH	ft.		19		
and the second s	TUBE CIRCLE DIAMETER			8.5		
	BURNER CIRCLE DIAMETER	in.		n/a		
	BORNER CIRCLE DIAMETER					a conser las
	TYPE OF BURNER	1.		GAS ONLY		
					DCD	
	DIRECTION OF FIRING			HORIZONTALLY FI	RED	
	LOCATION			WALL		
	BURNER MODEL			CUBL-5W-HC-H	Ζ	
28	NUMBER REQ'D / HEATER			1		
29	PILOTS :					
30	NUMBER REQUIRED			1		
31	TYPE			Standard		
32	IGNITION METHOD			Electric		
33	FLAME DETECTION			None		
34	FUEL			Natural Gas		
35	FUEL PRESSURE RANGE	psig	Minimum =		imum = 15.0	
		poig	mininan	10.0 10		
36	FUEL CONNECTION SIZE			1/2" 150# RESW	1	
36 37	FUEL CONNECTION SIZE	Btu/br		1/2" 150# RFSW	•	
37	CAPACITY	Btu/hr		100,000	······	
37 38	CAPACITY			100,000		
37 38 39 C	CAPACITY OPERATING CASE	BURN	ER OPERATING Design	100,000	······	
37 38 39 C 40 H	CAPACITY OPERATING CASE IEAT RELEASE (LH'	BURN v)	Design	100,000	······	
37 38 39 C 40 H 41	CAPACITY OPERATING CASE IEAT RELEASE (LH' MAXIMUM	BURN V) MMBtu/hr	Design 21.09	100,000	······	
37 38 39 C 40 H 41 42	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL	U U) MMBtu/hr MMBtu/hr	Design 21.09 19.17	100,000	······	
37 38 39 C 40 H 41 42 43	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL MINIMUM	BURN V) MMBtu/hr MMBtu/hr MMBtu/hr	Design 21.09 19.17 4.22	100,000	······	
37 38 39 40 41 41 42 43 44 E	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL MINIMUM XCESS AIR	V) MMBtu/hr MMBtu/hr MMBtu/hr %	Design 21.09 19.17 4.22 15%	100,000	······	
37 38 39 40 41 41 42 43 44 E	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL MINIMUM	BURN V) MMBtu/hr MMBtu/hr MMBtu/hr	21.09 19.17 4.22 15% Ambient	100,000	······	
37 38 39 40 40 41 42 43 43 44 E	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL MINIMUM XCESS AIR	V) MMBtu/hr MMBtu/hr MMBtu/hr %	Design 21.09 19.17 4.22 15%	100,000	······	
37 38 39 C 40 H 41 42 43 44 E 45 C 46 A	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F	21.09 19.17 4.22 15% Ambient	100,000	······	
37 38 39 40 41 41 42 43 44 43 44 45 C 46 A1 47 A1	CAPACITY DPERATING CASE IEAT RELEASE (LH MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C.	21.09 19.17 4.22 15% Ambient	100,000	······	
37 38 39 40 H 41 42 43 44 E 43 44 E 45 C 46 Al 47 Al 48 Al	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C.	21.09 19.17 4.22 15% Ambient	100,000	······	
37 38 39 40 41 42 43 44 43 44 45 C 46 A1 47 A1 48 A1 49 VI	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM ISIBLE FLAME LENGTH (EXPECTED)	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft.	21.09 19.17 4.22 15% Ambient 7.00 16.00	100,000	······	
37 38 39 40 41 42 43 44 5 7 46 A1 45 C 46 A1 47 A1 48 A1 49 VI 50 VI	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM ISIBLE FLAME LENGTH (EXPECTED) ISIBLE FLAME DIAMETER (EXPECTED)	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000	······	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM ISIBLE FLAME LENGTH (EXPECTED)	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft.	21.09 19.17 4.22 15% Ambient 7.00 16.00	100,000	······	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	CAPACITY DPERATING CASE IEAT RELEASE IEAT RELEASE IEAT RELEASE INVERSION INV	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000	······	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM ISIBLE FLAME LENGTH (EXPECTED) ISIBLE FLAME DIAMETER (EXPECTED)	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000	······	
37 38 39 40 41 41 42 43 44 45 C 46 A1 45 C 46 A1 47 A1 49 VI 50 VI 51 FL 53 54	CAPACITY DPERATING CASE IEAT RELEASE IEAT RELEASE IEAT RELEASE INVERSION INV	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000	······	
37 38 39 40 41 41 42 43 44 45 C 46 A1 44 45 C 46 A1 47 A1 49 VI 50 VI 51 FL 53 54 55 55	CAPACITY DPERATING CASE IEAT RELEASE IEAT RELEASE IEAT RELEASE INVERSION INV	V) MMBtu/hr MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000	······	
37 39 40 40 41 42 43 44 45 C 46 A1 44 45 C 46 A1 47 A1 48 A1 49 VI 50 VI 51 FL 55 56	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM SIBLE FLAME LENGTH (EXPECTED) SIBLE FLAME DIAMETER (EXPECTED) AME SHAPE NOTES :	V) MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA		
37 38 39 39 C 40 H 40 H 41 41 42 43 E 44 43 C 46 A1 44 E C 46 47 A1 49 VI 50 VI FL 52 53 53 54 55 56 VWNE VI VI	CAPACITY CAPACITY CAPACITY CONTRACTOR CASE CAPACITY CASE CAPACITY CASE CASE CASE CASE CASE CASE CASE CASE	V) MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA	BB-9024982	
37 38 39 39 C 40 H 40 H 41 41 42 43 E 44 43 C 46 A1 44 E C 46 47 A1 49 VI 50 VI FL 52 53 53 54 55 56 VWNE VI VI	CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM SIBLE FLAME LENGTH (EXPECTED) SIBLE FLAME DIAMETER (EXPECTED) AME SHAPE NOTES :	V) MMBtu/hr MMBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA	BB-9024982	
37 38 3 39 C 40 H 40 H 1 1 42 43 L 44 43 C 44 E 44 E C 46 A1 47 A1 48 A1 50 V1 51 F1 52 53 53 54 55 56 WWNE SWNE SWNE SWNE SWNE	CAPACITY CAPACITY CAPACITY CONTRACTOR CASE CAPACITY CASE CAPACITY CASE CASE CASE CASE CASE CASE CASE CASE	V) MMBtu/hr MMBtu/hr MBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA	BB-9024982	
37 38 39 39 C 40 H 40 H 41 42 43 44 E 44 44 E 44 E 47 A1 48 A1 48 A1 49 VI 50 VI 51 FL 52 53 54 55 56 WWNE WWNE WINE	CAPACITY CAPACITY CAPACITY CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT	V) MMBtu/hr MMBtu/hr MBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA	BB-9024982	
37 38 39 39 C 40 H 41 42 44 C 44 43 44 E 44 C 44 44 E 44 C 44 50 17 16 50 17 51 51 52 53 54 55 56 56 56 50 WWNE UURCH 100 101	CAPACITY CAPACITY CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CO	V) MMBtu/hr MMBtu/hr MBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA	BB-9024982	
37 38 39 339 C 40 H 41 42 43 44 C 44 43 44 E 44 C 44 C 44 C 45 C 44 C 44 C 47 A1 48 A1 49 VI 50 VI 51 FL 53 54 55 56 56 56 WWNE URCH URCH URCH URCH URCH 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57<	CAPACITY CAPACITY CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT OF CONSISTENT. THE OF CONSISTENT OF CO	V) MMBtu/hr MMBtu/hr MBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA CALLIDUS REF: DOCUMENT NUMBEI	BB-9024982 R: BB-9024982-DS	
37 38 39 40 H 41 41 42 43 44 E. 44 43 44 E. 44 E. 46 48 AI 48 49 VI 50 51 FL 53 54 55 56 WWNE URCH URCH URCH EATE NIT:	CAPACITY CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM ISIBLE FLAME LENGTH (EXPECTED) SIBLE FLAME DIAMETER (EXPECTED) AME SHAPE RE: RE: RE: RE: RE: REF.: H-801 HASER: Tulsa Heaters Mid HASER: REF.: H-801 HASER: H-801 HASER: H-801 HASER: KESE KESE KESE KESE KESE KESE KESE KES	V) MMBtu/hr MMBtu/hr MBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA CALLIDUS REF: DOCUMENT NUMBEI	BB-9024982 R: BB-9024982-DS	
37 38 39 339 C 40 H 41 42 43 44 C 44 43 44 E 44 C 44 C 44 C 45 C 44 C 44 C 47 A1 48 A1 49 VI 50 VI 51 FL 53 54 55 56 56 56 WWNE URCH URCH URCH URCH URCH 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57<	CAPACITY CAPACITY DPERATING CASE IEAT RELEASE (LH' MAXIMUM NORMAL MINIMUM XCESS AIR OMB. AIR TEMPERATURE IR SIDE DP @ MAXIMUM IR SIDE DP @ MAXIMUM IR SIDE DP @ NORMAL IR SIDE DP @ MINIMUM ISIBLE FLAME LENGTH (EXPECTED) SIBLE FLAME DIAMETER (EXPECTED) AME SHAPE RE: RE: RE: RE: RE: REF.: H-801 HASER: Tulsa Heaters Mid HASER: REF.: H-801 HASER: H-801 HASER: H-801 HASER: KESE KESE KESE KESE KESE KESE KESE KES	V) MMBtu/hr MMBtu/hr MBtu/hr % °F in. W.C. in. W.C. in. W.C. ft. ft. ft.	Design 21.09 19.17 4.22 15% Ambient 7.00 16.00 3.00	100,000 DATA	BB-9024982 R: BB-9024982-DS	

(

Ń		Unit			Plant Loc.		
10Rams,	FIRED HEATER DATA SHEET	Service	Regeneration Gas	Heater	Equip.No.	H-101	
	CUSTOMARY UNITS	Туре	Horizontal		No. Req.	1	
		Owner			Client No.	J-387	
		Purchaser	EPC, Inc.		Model No.	4HE-14-4HE-4-6-E	
	Revision: 0	Vendor	Heat Recovery Co	rporation	Ref. No.	HRC 15400	
	Approved: LC/JB	Date	8/6/2015			Page 1	of 5
	Approved. <u>2013</u>		Process Design Cond	itions			
	1 Total duty per heater, MM Btu/Hr			4.870			
	2 Heater section			Rad+Conv		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	3 Service			Regen. Gas			
	4 Heat Absorption, MM Btu/Hr			4.87			
	5 Fluid name			Natural Gas			
	6 Flow rate, lb/hr			15,568			
	7 Flow rate, bpd						
	8 Pressure drop (allowable, clean), psi			5			
	9 Pressure drop (calculated, clean), psiwith 1/8" coke		••••••	4			
	10 Average flux density (allowable), Btu/hr-ft ²					·	
	11 Average flux density (calculated), Btu/hr-ft ²		•••••	11,978	<u>, </u>		
	12 Maximum flux density, Btu/hr-ft²			20,519			
	13 Velocity Limitations						
	14 Maximum allowable inside film temperature, °F				,		
	15 Fouling Factor			0.001			
	16 Corrosion or Erosion Characteristics						
t (Conditions: 17 Temperature, °F			100			
				1020	·		
	18 Pressure, psig			15,568			
0	19 Vapor flow, lb/hr			21.48			
Paters.	20 Vapor, molecular weight	••••••	•••••••	0.014			
	21 Vapor Viscosity, Cp			0.65			
	22 Vapor, Specific Heat, Btu/lb-F						A
	23 Vapor Thermal Conductivity, Btu/hr-ft-F		••••••	0.022			
tle	et Conditions:			550			
	23 Temperature, °F			1016			
	24 Pressure, psig					·····	
	25 Vapor flow, lb/hr						
	26 Vapor molecular weight	••••••		0.02			
	27 Vapor Viscosity, Cp						
	28 Vapor, Specific Heat, Btu/hr-F			0.0425			
	29 Vapor Thermal Conductivity, Btu/hr-ft-F		••••••	0.0425			
ma	arks and Special Requirements: 30 Distillation Data or Composition Attached						
	So Distination Data of composition Actuaries		mbustion Design Co	nditions			
	1 Type of fuel			Natural Gas			
	2 Excess air, percent			15%			
	3 Guaranteed Efficiency, Percent (LHV)			86.30			
	4 Calculated Efficiency, Percent (LHV)			87.30			
	5 Radiation loss, percent of heat release (LHV)						
	6 Flue gas temperature leaving radiant section, *F			1,734			
	7 Flue gas temperature leaving convection section, °F			493			
	8 Flue Gas Mass Velocity Thru Convection Section, lb/sq ft	-s	•••••	0.22			
	9 Draft at Bridge Wall, In. H20			0.010		A	
	10 Draft at Burners, In. H20			0.040			,
	11 Ambient Air Temperature, °F	comb/draft		60/80			
	12 Altitude, Ft. Above Sea Level			2,000			
	13 Calculated Heat Release, MM BTU per Hr (LHV)			5.58			
÷.	14 Volumetric Heat Release, Btu/hr-ft ³ (LHV)						
	Note: A fuel savings of MM Btu/						

FIRED HEATER DATA SHEET CUSTOMARY UNITS Revision: 0	Service Unit Type Owner Purchaser Vendor Date	Regeneration Gas H Horizontal EPC, Inc. Heat Recovery Corp 8/6/2015		Plant Loc. Equip.No. No. Req. Job No. Model No. Ref. No.	H-101 1 J-387 4HE-14-4HE-4-6- HRC 15400 Page 2	E
	. Dute					
		Fuer Characteristic	>	Composition	Composition	
* 1 True of fuel			Natural Gas	composition	composition	
1			*****		Manage - 11 (1997) 1997 - 19	
			901 Btu/SCF			
* 12 Sodium Content, ppm for Liquid Fuels					La companya da manada da Canada a companya da manada da seria da seria da seria da seria da seria da seria da s	
* 13 Sulfur Content, Percent by Weight						
* 14 Gases: Molecular weight						
* Composition, Mole Percent					·	
	N	echanical Design Con	ditions			
General 1 Plot limitations 2 Tube limitations 3 Required Drawings 4 Structural Design Data: Wind Load 5 List of Applicable Standards or Specifications:			Stack Limitations Other Limitations Seismic Factor	3		
Coil Design:		2		4		
			Radiant	Shield	Conv.	
			1100	1100	1100	
* 8 Design Fluid Temperature, °F			600	600	600	
			0.063	0.063	0.063	
-			0.063	0.063	1,750	
			1,750	1	1,755	
			14.230	14.230	14.230	
			13.000	13.000	13.000	
			14	4		
			214	61		
16 Extended surface tubes, number		••••			6	
					<u> </u>	
				No		
			10% of buttwelds	will be 100% X-raye	d	
Tubes:						_
			Horizontal	Horizontal	Horizontal	
23 Tube Material (ASTM Specifications & Grade)	•••••		4	SA 106 Gr B	· · · · · · · · · · · · · · · · · · ·	
24 Outside Diameter, in			4.5	4.5	4.5	
				- <u>Sch 80</u>		
			716		·	
	EATER DATA SHEET Unit Regeneration (DMARY UNITS Type Horizontal Owner Purchaser EPC, Inc. Oni: 0 Vendor Heat Recovery red: LC/JB Date 8/6/2015 Fuel Characte I			730		
28 Maximum Tube Wall Temperature, F (Design) 27 Design Basis for Tube Wall Thickness				ASME SECT VIII Div	/1	

~		Service			Plant Loc.		
FIDE	D HEATER DATA SHEET	Unit	Regeneration Ga	s Heater	Equip.No.	H-101	
P. C.			Horizontal		No. Reg.	1	
C	USTOMARY UNITS	Type			Client No.	 J-387	
		Owner	500 J			4HE-14-4HE-4-6-E	
		Purchaser	EPC, Inc.		Model No.		
R	levision: 0	Vendor	Heat Recovery C	orporation	Ref. No.	HRC 15400	
	proved: LC/JB	Date	8/6/2015			Page 3	of 5
			cal Design Conditio	ons (continued)			
		iviecnani		Radiant	Shiełd	Conv.	
	Extended Surface:			None	None	Serrated	
	laterial					C.S.	
	Dimensions				444.00.000.000.000.000.0000000000000000	3/4" x 0.05	
	pacing		#/in			5	
	mum Fin Temperature				*****	763	
	nsion ratio				++		
ug-Type Hea				4	Nosa		
	ufacturer and Type				None	-	
	erial (ASTM specification and grade)						
+	inal Rating					······································	
	tion						
38 Weld	led or Rolled					<u></u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
eturn Bends:							
	ufacturer and Type			◀	SR 180° WPB		
	erial (ASTM specification and grade)						
					as Tubes		
	inal Rating or Schedule				Header Box		
	tion		••••••	4,000,000,000,000,000,000,000,000,000,0			
erminals: NO					Flanged	>	
	ufacturer and Type				as Tubes		
	erial (ASTM specification and grade)						
	inal Rating				as Tubes		
46 Loca	tion			heater outlets		heater inlets	
👌 47 Weld	ded or Rolled			welded		welded	
48 Flang	ge: Size and Rating		······	4"-600# RFWN		4"-600# RFWN	
	Location			Radiant		Top Conv.	
rossovers:							
	ded or Flanged			4			
	material (ASTM specification and grade)			+	- Same as Tubes		
	Size and Wall Thicknes			◄	- Same as Tubes		
	tion			4	Header Box		
	tion				,		
-		•••••				No	
ube Support					Ends		
	, Top, Bottom:				CS	·····	
	erial				3/8 "	· · · · · · · · · · · · · · · · · · ·	
	kness				4"-8# 2300 F	Ceramic Fiber	
	and Thickness of Insulation						
	lation Reinforcement				310 SS and		
55 inter	rmediate:						
Mat	erial				None		·
Spac	ing						
Туре	and Thickness of Coating						
	es: Location						
	Material						
leader Boxes							
1 Loca		Material	CS		Thickness	3/16"	
	ation: Material 2"-6# 2300°F	Ceramic Fiber			Thickness	2"	
∠ msu	Anchoring Material	304 SS				· · · · · · · · · · · · · · · · · · ·	
		Bolted					
	Header Box Doors Bolted or Hinged?	Buiteu					
urners					Number	1	
	nufacturer and Type Universal Comb	ustion 1PS-4-4			- Number	<u>ــ</u>	
5 Loca							
	and Type of Pilots Electric					······································	
	t Release per Burner at Design Excess Air and Draft:						
7 Hea					6.98	MM Btu per Hr.	
7 Hea Nori		MM BTU per	Hr;	Maximum	0.30	wiwi btu per rin.	
Nori		·+	Hr;	Maximum	3.3'		

and the second	FIRED HEATER DATA SHE CUSTOMARY UNITS	ET	Service Unit Type	Regenerati Horizontal		leater	Plant Loc. Equip.No. No. Req.	H-101 1		
			Owner				Client No.	J-387		
			Purchaser	EPC, Inc.			Model No. Ref. No.	4HE-14-4HE-4-6-E		
	Revision: 0			Heat Reco	very Cor	poration		HRC 15400 Page 4	of	5
	Approved: LC/JB		Date	8/6/2015						
	······································		Mechani	cal Design Co	onditions	s (continued)				
ings: 1	: L Exposed Vertical Walls: N/A									
-	Thickness 4"		Hot-Face Ter	np.: Design		2300°F		Calculated		16
	Wall Construction	2"-8# 2300°F	+ 2"-6# 2300°F Ceran	nic Fiber						
	Outrido Cacing: Thickness	3/16"			Material	C.S.	Outside Tem	perature		
	Outside Casing: Thickness	310 55				0.0.				
	Tieback Material							****		
	Support Material	C.S.	141-1-1			** }******				
	Method of Fastening Tiebacks to	Structure	Welded							
2	2 Shielded Vertical Walls:									
	Thickness	3"	Hot-Face Ter			2300°F		Calculated		
	Wall Construction	1"-8# 2300°F	+ 2"-6# 2300°F Cerar	nic Fiber						
	Outside Casing: Thickness	3/16"			Material	CS	Outside Ten	perature		
	Tieback Material	304 SS								
	Support Material	C.S.					<u> </u>			
	3 Arch: None Thickness Arch Construction		Hot-{	ace Temp.: De	sign			Calculated		
	Outside Caring: Thickness				Material		Outs	ide Temperature		
	Outside Casing: Thickness Tieback Material									·
	Support Material									
	Method of Fastening Tiebacks to	Structure								
4	4 Floor:									
	Thickness 7.5"		Hot-Face Te	mp.: Design		1900°F		Calculated		
	Floor Construction	5" 1:2:4 LHV Castab	le plus 2.5" 1st. Quali	ty FireBrick						
					Floor Elevat	ion				
	Outside Casing: Thickness	1/4"			Material	CS	Outsi	de Temperature		
5	5 Convection Section:	and the second s		and and the						
	Thickness 3"			Design Ho	t-Face Tem	perature	2300 F			
	Construction	1"-8# 2300°F + 2"-6	# 2300°F Ceramic Fib	2r						
	Outside Casing: Thickness	3/16"			Material	cs	Outs	ide Temperature		
	Tieback Material	304 SS								
	Support Material	C.S.								
	Method of Fastening Tiebacks to		Welded							
e	6 Internal Wall: N/A Type			Di	imensions		Material			
	·1F~									

		Service		Plant Loc.		
FIRED HEATER DATA SHEE	Т	Unit	Regeneration Gas Heater	Equip No	H-101	
CUSTOMARY UNITS		Туре	Horizontal	No Rqd	1	
í		Owner		Job No	J-387	
Bovisions 0		Purchaser	EPC, Inc. Heat Recovery Corporation		4HE-14-4HE-4-6-E HRC 15400	
Revision: 0		Vendor	8/6/2015		Page 5	of 5
Approved: LC/JB		Date			rage J	01 5
an a		Mechani	cal Design Conditions (continued)			
Stack:						
1 Number 1	Self-Supporting or	Guyed	Self-Supporting	Location	Top Convection	
2 Material C.S.			·	Min. Thickness	3/16"	
3 Inside Metal Diameter 20	0" OD Pipe Sch10	Height Above	Grade	Stack Length	20'-0"	
4 Lining: Material N	one		Thickness			
Type of Material or Reinfor	cement					
Extent of Lining						
Dampers:						
1 Location: Stack or Bottom Air Plen	um					
2 Material			Multiple or Single Leaf			
3 Description of Provision for Operation	on from Grade					
Breeching, Flues None						
1 Material		AST	M Specification	<u> </u>	Size	
2 Insulation:			Thickness			
Type of Anchoring Materia	al					
3 Size of Access Door into Breeching						
Air Ducts and Plenum						
1 Material	N/A	AST	M Specification		5ize	
Miscellaneous						
1 Overall Dimensions of Furnace	Refer to drawing	15400-001				
2 Platforms: Location	None					
Width						
Type of Floor						
3 Stairs: Location	None					
4 Ladders: Location	None					
5 Access Doors: Location and Size		One End 18" x	18"			
6 Observation Doors: Location and Si	ze –	Each End 3" x i	5 ⁿ			
7 Miscellaneous Connections (Numbe	r and Size):	Couplings Only	,			
Draft (3) 3/4°-3000# Cp	lg s.		Flue Gas Sample	(2) 3/4"-3000# Cpl	gs	
Temp. (3) 3/4"-3000# Cpi	lgs.		Smothering Steam	(1) 1"-3000# Cplg	s.	
Header Box Drain (3) 3/4"-3000# Cpigs.		Stack Drain			
Coil Drains			Other	TWO (2) Scanner (Connections	
8 Painting and Galvanizing Requireme	ents	Heater and Sta	ick commercial sandbiasted cleaned, SP-6, and	d painted with one coat	t of Sherwin	
		Williams KEM I	HI-Temp 850 No.1 Black 2-3 mils dft			
						·····
9 Are Painter's Trolley and Rail Includ	ed?	N/A				
10 Extent of Tube-Handling Facilities		Removable He	ader Boxes			
11 Explosion Doors: Location and Size		None				
1						
ាcial Equipment (S	oot Blower Air Preheat	ters. Noise Suppr	essors, Fans, Etc.)			
	oor blower, All mened					********

	Unit	Condensate Stablizer	Plant Loc.	
FIRED HEATER DATA SHEET	Service	Hot Oil	Equip.No.	H-801
CUSTOMARY UNITS	Type	Horizontal	No. Req.	1
	Owner	Matador	Job No.	387
Date: 12/17/2015	Purchaser	EPC, Inc.	Model No.	4HE-14-4HE-4-6-E
Revision: 0	Vendor	Heat Recovery Corp.	Ref. No.	15405
Approved: LIC	Date	12/17/2015		Page 1 of 5

Process Design Conditions

*	1 Total duty per heater, MM Btu/Hr	4.19 x 1.1
¥	2 Heater section	Rad+Conv
*	3 Service	Condensate Stablizer
*	4 Heat Absorption, MM Btu/Hr	4.609
*	5 Fluid name	Chemitherm 550
*	6 Flow rate, lb/hr	74,938
	7 Flow rate, bpd	
*	8 Pressure drop (allowable, clean), psi	10
	9 Pressure drop (calculated, clean), psiwith 1/8" coke	3
*	10 Average flux density (allowable), Btu/hr-ft ²	
	11 Average flux density (calculated), Btu/hr-ft ²	11,366
	12 Maximum flux density, Btu/hr-ft ²	19,021
	13 Velocity Limitations	
	14 Maximum allowable inside film temperature, °F	600 (564 Calc)
	15 Fouling Factor	0.0015
	16 Corrosion or Erosion Characteristics	
Into	Conditions:	
*	17 Temperature, °F	350
*	17 Temperature, T	40
*	19 Liquid flow, lb/hr	74,938
*	20 Thermal Conductivity Btu / hr ft oF	0.069
1	21 Specific Gravity	0.908
or all comp	22 Specific Heat Btu / Ibm oF	0.59
4	23 Liquid Viscosity, Cp	1.27
Out	et Conditions:	
*	23 Temperature, °F	450
*	24 Pressure, psig	37
*	25 Liquid flow, lb/hr	74,938
*	26 Thermal Conductivity Btu / hr ft oF	0.067
*	27 Specific Gravity	0.908
*	28 Specific Heat Btu / lbm oF	0.64
*	29 Liquid Viscosity, Cp	0.727
Ren	arks and Special Requirements:	
*	30 Distillation Data or Composition Attached	
	Combustion Design Condition	S

		Natural Cos		
*	1 Type of fuel	Natural Gas	,	
*	2 Excess air, percent	15		
	3 Guaranteed Efficiency, Percent (LHV)	83.38		
	4 Calculated Efficiency, Percent (LHV)	84.38	·	
	5 Radiation loss, percent of heat release (LHV)	1.50		
	6 Flue gas temperature leaving radiant section, °F	1,790		
	7 Flue gas temperature leaving convection section, °F	606		
	8 Flue Gas Mass Velocity Thru Convection Section, lb/sq ft-s	0.23		
	9 Draft at Bridge Wall, In. H20	-0.010		
	10 Draft at Burners, In. H20	-0.050		
*	11 Ambient Air Temperature, °Fcomb/draft	60/95		
*	12 Altitude, Ft. Above Sea Level	3,000		
	13 Calculated Heat Release, MM BTU per Hr (LHV)	S.46		
	14 Volumetric Heat Release, Btu/hr-ft ³ (LHV)			

Note: A fuel savings of ______ MM Btu/hr will offset a \$1,000 increase in furnace cost (erected)

	FIRED HEATER DATA SHEET CUSTOMARY UNITS Date: 12/17/2015 Revision: 0 Approved: LJC	Service Unit Type Owner Purchaser Vendor Date	Condensate Stabl Hot Oil Horizontal Matador EPC, Inc. Heat Recovery Co 12/17/2015	rp.	Plant Loc. Equip No. No. Req. Job No. Model No. Ref. No.	H-801 1 387 4HE-14-4HE-4 15405 Page 2	
			Fuel Characteristi	CS	Composition	Volume %	
*	1 Type of fuel			Natural Gas			
*	2 Heating value (HHV)						
*	3 Heating value (LHV)			901 btu/scf			
*	4 Specific gravity						
*	5 H/C ratio (by weight)						
*	6 Temperature at Burner, °F						
*	7 Viscosity, @ *F,						
*	8 Viscosity, @ F,						
*	9 Fuel Pressure Available @ burner, psig						
*	10 Atomizing Steam Pressure, psig						
*	11 Vanadium Content, ppm for Liquid Fuels						
*	12 Sodium Content, ppm for Liquid Fuels						
*	13 Sulfur Content, Percent by Weight						
*	14 Gases: Molecular weight						
*	Composition, Mole Percent						
		Mechanica	I Design Conditions				
Ger	neral						
٠	1 Plot limitations			Stack Limitations			
*	2 Tube limitations			Other Limitations			
*	3 Required Drawings						
`*	4 Structural Design Data: Wind Load			Seismic Factor			
district.	5 List of Applicable Standards or Specifications:		1		3		
Coi	l Design:		2		4		
*	6 Heater Section			Radiant	Shield	Conv.	
*	7 Design Pressure, psig			150	150	150	
*	8 Design Fluid Temperature, °F			500	500	500	<u> </u>
*	9 Corrosion Allowance: Tubes			0.063	0.063	0.063	

*	9 Corrosion Allowance: Tubes	0.063	0.063	0.063
	Fittings	0.063	0.063	0.063
	10 Hydrostatic Test Pressure, psig	215	215	215
	11 Number of Passes	1	1	1
	12 Overall Tube Length, Ft	14.230	14.230	14.230
	13 Effective Tube length, ft	13.000	13.000	13.000
	14 Bare Tubes, number	14	4	
	15 Bare tubes, total exposed surface, ft ²	214	61	
	16 Extended surface tubes, number			6
	17 Extended surface tubes, total expsoed surface, ft ²		**	1,167
	18 Tube spacing, center-to-center (staggered), in	8	8	8
	19 Tube Center to furnace wall in. Min	6	4	4
*	20 Stress Relieve	◀	No	
*	21 Weld Inspection Requirements, X-Ray or Other	100% of 10%		
Tub	25:			
*	22 Vertical or Horizontal	Horizontal	Horizontal	Horizontal
	23 Tube Material (ASTM Specifications & Grade)	◀	SA 106 Gr B	
	24 Outside Diameter, in	4.5	4.5	4.5
	25 Wall Thickness (minimum) (average), in	◀	- Sch 40	
	26 Maximum Tube Wall Temp., °F (Calculated)	611		
	27 Inside Film Coefficient (Calculated)	173		
	28 Maximum Tube Wall Temperature, °F (Design)	4	636	
	28 Maximum Tube Wall Temperature, °F (Design) 27 Design Basis for Tube Wall Thickness	<u> </u>	ASME SEC. VIII DIV	·.1

		Service	Condensate Stablizer	Plant Loc.	
	FIRED HEATER DATA SHEET	Unit	Hot Oil	Equip.No.	H-801
Ĩ	CUSTOMARY UNITS	Туре	Horizontal	No. Req.	1
		Owner	Matador	Job No.	387
	Date: #######	Purchaser	EPC, Inc.	Model No.	4HE-14-4HE-4-6-E
	Revision: 0	Vendor	Heat Recovery Corp.	Ref. No.	15405
	Approved: UC	Date	12/17/2015		Page 3 of 5

Mechanical Design Conditions (continued)

escription of Extended Surface:		Radiant	Shield	Conv.
28 Type		None	None	5errated
29 Fin Material				<u>C.S.</u>
30 Fin Dimensions	ht/thck			1@ 1/2" + 2@ 1" x 0.05
31 Fin Spacing	#/in			6/inch
32 Maximum Fin Temperature	°F			745
33 Extension ratio				
lug-Type Headers:				
34 Manufacturer and Type		4	None	
35 Material (ASTM specification and grade)				
36 Nominal Rating				
37 Location				
38 Welded or Rolled				
eturn Bends:				
39 Manufacturer and Type		SR 180°	SR 180º	SR 180º 🕨
40 Material (ASTM specification and grade)		4	A234-WPB	
40 Matchai (ASTA) Specification and group			me as Tubes	
41 Nominal Rating of Schedule			Header Bo	x
				····
erminals: NOTE:		4	Flanged	
43 Manufacturer and Type			me as Tubes	_
44 Material (ASTM specification and grade)			me as Tubes	-
45 Nominal Rating				hastorialat
46 Location		heater outlet		heater inlet
47 Welded or Rolled		welded		welded
48 Flange: Size and Rating		4"-300# RFWN		4"-300# RFWN
Location		Radiant		Top Conv
rossovers:				
49 Welded or Flanged		<u>+</u>	WELDED	
50 Pipe material (ASTM specification and grade)		←	SA-106-B	_
51 Pipe Size and Wall Thicknes		◀	- 4" SCH 40	
52 Location		4	HEADER BOX	-
53 Flange Rating				
ube Supports:				
54 Ends, Top, Bottom:		-	Ends	
Material			CS	
Thickness			3/8	1
Type and Thickness of Insulation			4" Cerami	c Fiber
Insulation Reinforcement			310 SS	
55 Intermediate:				
Material		+	None	
Spacing				
Type and Thickness of Coating				
56 Guides: Location				
So Guides. Eccation				
eader Boxes				
1 Location Radaint & Convection Ends	Material CS		Thickness	3/16"
	6 # 1800 F Ceramic Fiber		Thickness	2"
	304 SS			
	Bolted			
3 Are Header Box Doors Bolted or Hinged?	Doneu			
urners UNIVERSAL COL			Number	1
	MBUSTION TPS-4-4			
5 Location Radiant Ends				
6 Size and Type of Pilots Electric ignition				
7 Heat Release per Burner at Design Excess Air and Dr			c b	AAAA Dhu u aa 110
	MM BTU per Hr;	Maximum	6.2	MM Btu per Hr.
Normal 5.380 8 Minimum Distance Burner Centerline to Tube Cente		Maximum		

	FIRED HEATER DATA SHEET CUSTOMARY UNITS	Unit Service Type Owner Purchaser	Black River Plant 2 Regeneration Gas Horizontal Matador Resource Veritas Gas Proces	Heater s sing	Plant Loc. Equip.No. No. Req. Job No. Model No.	Eddy County, NM H-101 J412 6HE-10-4H-6-4HE-4	-6-E
	Revision: <u>0</u> Approved: LC	Vendor Date	Heat Recovery Cor 9/26/2017	poration	Ref. No.	HRC 17417 Page 1	of 5
			Process Design Cond	itions			
				HILL COLLOGING AND ADDRESS OF ANY AND ANY			
	1 Total duty per heater, MM Btu/Hr			6.544 Rad+Conv			
	2 Heater section 3 Service			Regen. Gas		•••••	
	 4 Heat Absorption, MM Btu/Hr 			6.544			
	* 5 Fluid name			Natural Gas			
	* 6 Flow rate, lb/hr			23,279			
	7 Flow rate, bpd						
	* 8 Pressure drop (allowable, clean), psi						
	9 Pressure drop (calculated, clean), psiwith 1/8" coke			6			
	 10 Average flux density (allowable), Btu/hr-ft² 11 Average flux density (calculated), Btu/hr-ft² 			12,000			
	12 Maximum flux density, Btu/hr-ft ²			17,832			
	13 Velocity Limitations						
	14 Maximum allowable inside film temperature, °F						
	15 Fouling Factor	••••••		0.001			
	16 Corrosion or Erosion Characteristics						
	Inlet Conditions:			130			
	* 17 Temperature, °F			120 975			
	18 Pressure, psig 19 Vapor flow, lb/hr			23,279			
	 19 Vapor flow, ID/nr			19.28			
11 A.	 20 Vapor, molecular weight			0.0142			
1	22 Vapor, Specific Heat, Btu/lb-F			0.64			And a second
	 * 23 Vapor Thermal Conductivity, Btu/hr-ft-F 			0.024			
	Outlet Conditions:						
	* 23 Temperature, °F			550			
	* 24 Pressure, psig			969			
	* 25 Vapor flow, lb/hr			23,279			
	* 26 Vapor molecular weight			19.28			
	* 27 Vapor Viscosity, Cp			0.0186			
	* 28 Vapor, Specific Heat, Btu/hr-F			0.71			
	* 29 Vapor Thermal Conductivity, Btu/hr-ft-F			0.042		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Remarks and Special Requirements: * 30 Distillation Data or Composition Attached						
	So Distillation Data of composition Attached		a and a second				
		Co	mbustion Design Co	nditions			
	* 1 Type of fuel			Natural Gas			
	* 2 Excess air, percent			15%			
	3 Guaranteed Efficiency, Percent (LHV)			83.00			
	4 Calculated Efficiency, Percent (LHV)			84.00	······································		
	5 Radiation loss, percent of heat release (LHV)			2.00			
	6 Flue gas temperature leaving radiant section, °F			1,683			
	7 Flue gas temperature leaving convection section, °F			620 0.30			
	8 Flue Gas Mass Velocity Thru Convection Section, Ib/sq fl			0.010			
	9 Draft at Bridge Wall, In. H20 10 Draft at Burners, In. H20			0.010			
	10 Draft at Burners, In. H20 * 11 Ambient Air Temperature, °F			60/95			
	11 Ambient Air Temperature, F 12 Altitude, Ft. Above Sea Level			3200			
	13 Calculated Heat Release, MM BTU per Hr (LHV)			7.79			
	14 Volumetric Heat Release, Btu/hr-ft ³ (LHV)						
	Note: A fuel savings of MM Btu/h			cost (erected)			
2 A	1						
Shutty .	L						

		Service	Black River Plant	2	Plant Loc.	Eddy County, NM	
	FIRED HEATER DATA SHEET	Unit	Regeneration Gas	Heater	Equip No.	H-101	
	CUSTOMARY UNITS	Type	Horizontal		No. Req.	1	
		Owner	Matador Resource	25	Job No.	J412	
		Purchaser	Veritas Gas Proce	ssing	Model No.	6HE-10-4H-6-4HE-	4-6-E
	Revision: 0	Vendor	Heat Recovery Co		Ref. No.	HRC 17417	
	Approved: LC	Date	9/26/2017		•	Page 2	of 5
USA:2					•		
			Fuel Characteris	lics			
	A True of all			Natural Gas	Composition	Volume %	
Ľ	1 Type of fuel 2 Heating value (HHV)						
				901 btu/scf			
	3 Heating value (LHV)						
Ľ	4 Specific gravity 5 H/C ratio (by weight)						
I.	6 Temperature at Burner, °F						
I.							
	8 Viscosity, @°F, 9 Fuel Pressure Available @ burner, psig						
ľ.	10 Atomizing Steam Pressure, psig						
	11 Vanadium Content, ppm for Liquid Fuels						
Ľ.	12 Sodium Content, ppm for Liquid Fuels						
L.	12 Solium Content, ppm for Equid Fuels						
Ĩ.	14 Gases: Molecular weight						
ľ.	Composition, Mole Percent						- <u></u>
were	composition, well referre						
		м	echanical Design Co	onditions	10,1700		
Ger	neral						
÷.	1 Plot limitations			 Stack Limitation 	\$		
*	2 Tube limitations			Other Limitation	15		
+	3 Required Drawings						
*	4 Structural Design Data: Wind Load			Seismic Factor			
*	5 List of Applicable Standards or Specifications:		1		3		
Coi	Design:		2		4		
*	6 Heater Section			Radiant	Shield	Conv.	
*	7 Design Pressure, psig			1100	1100	1100	
1*	8 Design Fluid Temperature, °F			600	600	600	
1*	9 Corrosion Allowance: Tubes			0.063	0.063	0.063	
	Fittings			0.063	0.063	0.063 2,200	
	10 Hydrostatic Test Pressure, psig			2,200	2,200	1	
	11 Number of Passes			14.230	14.230	14.230	
	12 Overall Tube Length, Ft 13 Effective Tube length, ft			13.000	13.000	13.000	
	14 Bare Tubes, number			10 / 6	4		-
	15 Bare tubes, total exposed surface, ft ²			317	61		
	16 Extended surface tubes, number					6	
	17 Extended surface tubes, total expsoed surface, ft ²					735	
	18 Tube spacing, center-to-center (staggered), in			12	8	8	
	19 Tube Center to furnace wall In. Min			9	4	4	
	20 Stress Relieve				No	>	
	21 Weld Inspection Requirements, X-Ray or Other			100% o	f buttwelds will be 10	% X-rayed	
Tut							
*	22 Vertical or Horizontal			Horizontal	Horizontal	Horizontal	
	23 Tube Material (ASTM Specifications & Grade)			4	SA 106 Gr B		
	24 Outside Diameter, in			6.625 / 4.S	4.5	4.5	
	25 Wall Thickness (minimum) (average), in			4	Sch 80		
	26 Maximum Tube Wall Temp., °F (Calculated)			745	-		
	27 Inside Film Coefficient (Calculated)			117		L	
	28 Maximum Tube Wall Temperature, °F (Design)			4	770	· · · · · · · · · · · · · · · · · · ·	
	27 Design Basis for Tube Wall Thickness				ASME SECT VIII Div	·	

Se	rvice	Black River Pla	nt 2	Plant Loc.	Eddy County, NM	
FIRED HEATER DATA SHEET Ur	nit	Regeneration (Sas Heater	Equip.No.	H-101	
	pe	Horizontal		No. Reg.	1	
	wner	Matador Reso	Irces	Job No.	J412	
	irchaser	Veritas Gas Pro		Model No.	6HE-10-4H-6-4HE-4-	6-F
		Heat Recovery		Ref. No.	HRC 17417	
	endor		and the second	NEL NO.	Page 3	of 5
Approved: LC Da	əte	9/26/201	./		Page 5	01 3
	Mechani	ical Design Cond	itions (continued)			
Description of Extended Surface:			Radiant	Shield	Conv.	
28 Type	••••••		None	None	Serrated	
29 Fin Material					C.S.	
30 Fin Dimensions					3/4" x 0.05	
31 Fin Spacing		#/in			4766	
32 Maximum Fin Temperature					/66	
33 Extension ratio						
Plug-Type Headers:			-	None	b	
34 Manufacturer and Type				NOTE		
* 35 Material (ASTM specification and grade)						
36 Nominal Rating					<u></u>	
* 37 Location						
38 Welded or Rolled	••••••					
Return Bends:				SR 180° WPB		
39 Manufacturer and Type			SR/LR	WPB	\	
* 40 Material (ASTM specification and grade)				e as Tubes	>	
41 Nominal Rating or Schedule			Same	e as Tubes Header Bo	×	
* 42 Location	••••••				···· · · · · · · · · · · · · · · · · ·	
Terminals: NOTE:			4	Flanged	`	
43 Manufacturer and Type * 44 Material (ASTM specification and grade)			Same	as Tubes		,
 44 Material (ASI M specification and grade)				as Tubes		
45 Nominal Rating * 46 Location			heater outlets		heater inlets	
* 45 Location * 47 Welded or Rolled			welded		welded	
47 Welded of Rolled			6"-600# RFWN		4"-600# RFWN	
48 Flange: Size and Kating			Radiant		Top Conv.	
Crossovers:						
* 49 Welded or Flanged			4			
 * 50 Pipe material (ASTM specification and grade) 				- SA-106-B	>	,
51 Pipe Size and Wall Thicknes			◀	6" Sch 80		
* 52 Location			←	Header Box		
53 Flange Rating						
Tube Supports:						
54 Ends, Top, Bottom:			<	Ends	>	
Material				CS		
Thickness				3/8	1 	
Type and Thickness of Insulation			2"- 8# 2300°F +		amic Fiber Blanket	
Insulation Reinforcement				310 SS Studs A	nd Clips	
55 Intermediate:						
Material			··· •	None	>	
Spacing						
Type and Thickness of Coating						
56 Guides: Location						
Material						
Header Boxes					2 (4 5)	
	aterial	CS		Thickness	3/16"	
		ic Fiber Blanket		Thickness	2"	
	S Studs and	Clips				
	ted					
Burners				Nixmal	Turo	
4 Manufacturer and Type Universal Combustion	LoNOx TPS	5 4-3		Number	Two	
5 Location Each End						
6 Size and Type of Pilots Electric Ignition						
7 Heat Release per Burner at Design Excess Air and Draft:				4.0	MMA Dtu par 11-	
	M BTU per l	Hr;	Maximum _	4.8	MM Btu per Hr.	
8 Minimum Distance Burner Centerline to Tube Centerline:			Vartia-1	5'		
Horizontal 2.45'			Vertical	<u>د</u>		

		Unit	Black River Plant-	3	Plant Loc.	Loving, NM		
	FIRED HEATER DATA SHEET	Service	Regeneration G			H-101		
CUSTOMARY UNITS					No. Reg.	1		
	COSTOMART DINITS	Owner	Matador Resourc		Job No.			
		Purchaser	Veritas Gas Pro		Model No.	6HE-10-4H-6-4H		
	Devision: 0			<u> </u>			1E-4-0-E	
	Revision: 0	Vendor	Heat Recovery Co	rporation	Ref. No.	19439		
	Approved: JB	Date	9/27/2019			Page 1	of 5	
			rocess Design Con	ditions				
	1 Total duty per heater, MM Btu/Hr			6.544				
	2 Heater section			Rad+Conv				
	3 Service			Regen. Gas				
	4 Heat Absorption, MM Btu/Hr			6.544				
	5 Fluid name			Natural Gas				
	6 Flow rate, lb/hr			23,279				
	7 Flow rate, bpd			·				
	8 Pressure drop (allowable, clean), psi			10				
	9 Pressure drop (calculated, clean), psiwith 1/8" coke			6				
	0 Average flux density (allowable), Btu/hr-ft ²							
	1 Average flux density (calculated), Btu/hr-ft ²			12,000				
	2 Maximum flux density, Btu/hr-ft ²			17,832				
	3 Velocity Limitations							
	4 Maximum allowable inside film temperature, °F							
	5 Fouling Factor			0.001				
1	.6 Corrosion or Erosion Characteristics							
let Co	onditions:							
1	7 Temperature, °F			120				
1	.8 Pressure, psig			975				
1	.9 Vapor flow, lb/hr			23,279				
2	0 Vapor, molecular weight			19.28				
	1 Vapor Viscosity, Cp			0.0142				
	2 Vapor, Specific Heat, Btu/lb-F			0.64				
	3 Vapor Thermal Conductivity, Btu/hr-ft-F			0.024				
	Conditions:							
	3 Temperature, °F			550				
	4 Pressure, psig			969				
	25 Vapor flow, lb/hr			23,279				
	6 Vapor molecular weight			19.28				
	7 Vapor Viscosity, Cp			0.0186				
	28 Vapor, Specific Heat, Btu/hr-F			0.71				
	19 Vapor Thermal Conductivity, Btu/hr-ft-F ks and Special Requirements:			0.042				
	0 Distillation Data or Composition Attached							
		Со	nbustion Design Co	onditions				
	1 Type of fuel			Natural Gas				
	2 Excess air, percent			15%				
	3 Guaranteed Efficiency, Percent (LHV)			83.00				
	4 Calculated Efficiency, Percent (LHV)			84.00				
	5 Radiation loss, percent of heat release (LHV)			2.00				
	6 Flue gas temperature leaving radiant section, °F			1,683				
	7 Flue gas temperature leaving convection section, °F			620				
	8 Flue Gas Mass Velocity Thru Convection Section, Ib/sq	ft-s		0.30				
	9 Draft at Bridge Wall, In. H20			0.010				
1	0 Draft at Burners, In. H20			0.060				
1	1 Ambient Air Temperature, °F	comb/draft		60/95				
1	2 Altitude, Ft. Above Sea Level			3200				
1	3 Calculated Heat Release, MM BTU per Hr (LHV)			7.79				
1	4 Volumetric Heat Release, Btu/hr-ft ³ (LHV)							
	Note: A fuel savings of MM Btu/	/br will offcot a \$	000 increase in furnace	cost (crosted)				

PRED HEATER DATA SHEET Unit Regeneration Gas Heater Equip No. H=101 CUSTOMARY UNITS Type Horizontal No. Ref. 1 Job No. Id423 Purchase Purchase Model Andro Resources Model No. Id423 Job No. Id423 Revision: 0 Approved: 18 Date 9/27/2019 Page 2 of 5 Statistic production: 0 Approved: 18 Date 9/27/2019 Page 2 of 5 Statistic production: 0 Volume % Model No. Model No. Model No. Model No. 1 Type of fel. Matani Gas Matani Gas Model No. Model No. Model No. 3 Statistic production: 0 Statistic production: 0 Volume % Model No.			Service	Black River Plan	t- 3	Plant Loc.	Loving, NM	
CUSTOMARY UNITS Type Horizontal No. Reg. 1 Purchaser Purchaser John No. 1/423 Model No. 1/423 Revision: 0 Veritas Gas Processing Model No. 1/423 Model No. 1/423 Approved: 16 Date 9/27/2019 Page 2 of 5 7 Page fuel Page 1/2 of 5 9/27/2019 Page 2 of 5 7 Page fuel Composition Volume K 1 Page fuel Storosty, 6 *		FIRED HEATER DATA SHEET	Unit	Regeneration G	as Heater	Equip No.		
Owner Matador Resources Job No. H232 Revision: 0		CUSTOMARY UNITS	Type			• •	1	
Purchaser Vendor Media No. 1943 Diff. 1944 Diff. Diff. <thdiff.< th=""> <thdiff.< th=""> Diff.<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdiff.<></thdiff.<>								
Revision: 0 Vendor Heat Recovery Corporation Ref. No. 194339 Approved: JB Date 9/27/2013 Ref. No. 194339 I Type of Incl Fuel Characteristics Composition Volume % I Type of Incl Matural Gas Matural Gas Matural Gas I Type of Incl Matural Gas Matural Gas Matural Gas I Type of Incl Matural Gas Matural Gas Matural Gas I Notify weightion Matural Gas Matural Gas Matural Gas I Notify weightion Matural Gas Matural Gas Matural Gas I Notify Weightion The Composition Notify weightion Matural Gas Matural Gas I Notify Network Particip Nation Notify Network The Composition Notify Network Matural Gas Matural Gas I Notify Network Particip Nation Notify Network Matural Gas Matural Gas Matural Gas I A Societ Network Particip Nation Notify Network Matural Gas Matural Gas Matural Gas I Notify Network Particip Nation Notify Network Matural Gas Matural Gas Matural Gas								1-6-F
Approved: JB Date 9/27/2019 Page 2 of 5 Fuel Characteristics Composition Volume % Natural Gas September Constrained on September Conseptember Conseptember Constrained On September Constrained On S		Pavision: 0						4-0-L
Fuel Characteristics Composition Volume % 1 Hearing value (HV) 991 bul/et/ 991 bul/et/ 991 bul/et/ 4 Specific gravity 991 bul/et/ 991 bul/et/ 991 bul/et/ 991 bul/et/ 5 HYG ratio (IV weight) 991 bul/et/ 991					corporation	Kel. NO.		
1 Type of fuel Natural Gis Volume N. 2 Natural Gis Second provide		Approved: JB	Date	9/2//2019			Page 2	of 5
1 Neural Cas 2 Heating value (HV) 901 blu/cf 3 Heating value (HV) 901 blu/cf 4 Sector gravity 901 blu/cf 5 Horizontal Cas 901 blu/cf 7 Weatshy & 901 blu/cf 9 Net Present Available & Domer, pg. 901 blu/cf 9 Net Present Available & Domer, pg. 901 blu/cf 11 Yandium Content, ppin for Ligid Fuels. 901 blu/cf 12 Salue (Instances 901 blu/cf 13 Salue (Instances 901 blu/cf 14 Salue (Instances 901 blu/cf 1 Yandium Context, ppin for Ligid Fuels 901 blu/cf 14 Salue (Instances 901 blu/cf 1 Yandium Context, ppin for Ligid Fuels 901 blu/cf 1 Salue (Instances 901 blu/cf 1 Salue (Instances 1000 blu/cf 1 Salue (Instances 1000 blu/cf 1 Salue (Instances 1000 blu/cf 1 Salue (Instances 100				Fuel Character	istics			
2 besing value (HV)						Composition	Volume %	
3 Heating value (LHV)	*	1 Type of fuel			Natural Gas			
4 Appendic proving	*	2 Heating value (HHV)						
S H/C ratio (by weight)	*	3 Heating value (LHV)			901 btu/scf			
6 Temperature at Burner, T	*	4 Specific gravity						
* Yexcosity, Ø * * 8 Viscosity, Ø * * 9 Fuel Pressure, Analable Ø burner, påg.	*							. <u> </u>
* 8 Viscosity, @ * * 9 Fuel Pressure Available @ burner, psig.	*	•						
* 100 Pressure Available @ burner, psig.	*							
10 Atomining Steam Pressure, poig.	*							
* 11 Vanadium Content, ppm for Liquid Fuels.	*							. <u> </u>
* 12 Sodiur Context, por for liquid Puls	*	10 Atomizing Steam Pressure, psig						<u> </u>
 13 Sufur Content, Percent by Weight	*	11 Vanadium Content, ppm for Liquid Fuels						
14 Gases: Molecular weight	*	12 Sodium Content, ppm for Liquid Fuels						
Composition, Mole Percent Mechanical Design Conditions General 1 Plot limitations 2 Tube limitations 3 Required Drawings 4 Structurel Design Data: Wind Load 5 List of Applicable Standards or Specifications: 1 6 Heater Section. 7 Design Pressure, psig. 9 Corrosion Allowance: Tubes. 9 Gorrosion Allowance: Tubes. 100 100 100 0063 0064 0064 0064	*							
Mechanical Design Conditions General * 1 Plot limitations * Stack Limitations * 1 Tube limitations Other Limitations Other Limitations * 3 Required Drawings * Stack Limitations * 4 Structural Design Data: Wind Load Seismic Factor * 5 List of Applicable Standards or Specifications: 1 3 Coil Design: 2 4 Required Pressure, psig. 11000 11000 * 8 Design Fluid Temperature, *F. 600 600 600 600 * 9 Corrosion Allowance: Tubes. 0.063	*	c						. <u> </u>
General * 1 Plot limitations * 1 Plot limitations * * 2 Tube limitations Other Limitations * 3 Required Drawings Seismic Factor * 5 List of Applicable Standards or Specifications: 1 * 1 2 4 * 6 Heater Section. 2 4 * 7 Design Pressure, psig. 1100 1100 * 8 Design Fluid Temperature, 'F. 600 600 600 * 9 Design Fluid Temperature, 'F. 600.63 0.063 0.063 0 Hydrostatic Test Pressure, psig 2,200 2,200 2,200 2,200 11 Number of Passes 1 1 1 1 1 12 Overall Tube Length, FL 14.230 14.230 14.230 14.230 13 Effective Tubes, number 13.000 13.000 13.000 13.000 13.000 14 Bare Tubes, number 12 8 8 9 4 4 9 4 4 12 8 8 12 8 8 12	*	Composition, Mole Percent						
General * 1 Plot limitations * 1 Plot limitations * * 2 Tube limitations Other Limitations * 3 Required Drawings Seismic Factor * 5 List of Applicable Standards or Specifications: 1 * 1 2 4 * 6 Heater Section. 2 4 * 7 Design Pressure, psig. 1100 1100 * 8 Design Fluid Temperature, 'F. 600 600 600 * 9 Design Fluid Temperature, 'F. 600.63 0.063 0.063 0 Hydrostatic Test Pressure, psig 2,200 2,200 2,200 2,200 11 Number of Passes 1 1 1 1 1 12 Overall Tube Length, FL 14.230 14.230 14.230 14.230 13 Effective Tubes, number 13.000 13.000 13.000 13.000 13.000 14 Bare Tubes, number 12 8 8 9 4 4 9 4 4 12 8 8 12 8 8 12			M	echanical Design (Conditions			
 1 Plot limitations 2 Tube limitations 3 Required Drawings 4 A structural Design Data: Wind Load 5 List of Applicable Standards or Specifications: 1 3 Coil Design: 2 A 6 Heater Section 7 Design Pressure, psig 2 Intiges 9 Corrosion Allowance: Tubes 0.063 0.				<u> </u>				
2 Tube limitations Other Limitations 3 Required Drawings	Gen							
 * 3 Required Drawlings * 4 Structural Design Data: Wind Load Seismic Factor 5 List of Applicable Standards or Specifications: 1 Coil Design: * 6 Heater Section * 7 Design Pressure, psig. * 8 Design Fluid Temperature, *F. * 6 Obigon State Viewson, psig. * 7 Design Pressure, psig. * 7 Design Pressure, psig. * 8 Design Fluid Temperature, result of Passes. * 100 * 100	*							
 4 Structural Design Data: Wind Load Seismic Factor Sisti of Applicable Standards or Specifications: 1 3 3 3 4 6 Heater Section	÷				Other Limitation	s		
1 3 Coil Design: 2 4 6 Heater Section	*				- Colomia Footor			
Coil Design: 2 4 * 6 Heater Section	*					2		
6 Heater Section Radiant Shield Conv. * 7 Design Pressure, psig. 1100 1100 1100 * 8 Design Pressure, psig. 600 600 600 9 Corrosion Allowance: Tubes. 0.063 0.063 0.063 0.063 10 Hydrostatic Test Pressure, psig 2,200 2,200 2,200 2,200 11 Number of Passes. 1 1 1 1 12 Overall Tube Length, Ft. 13,000 13,000 13,000 13,000 13 Effective Tube length, ft. 13,000 13,000 13,000 13,000 14,230 14 Bare Tubes, number 10 / 6 4 16 16 16 16 17 5 16 17 5 17 6 17 12 8 8 19 14 25	Coil							
* 7 Design Pressure, psig	*	-					Conv	
* 8 Design Fluid Temperature, "F	*							
* 9 Corrosion Allowance: Tubes	*							
Fittings	*							
11 Number of Passes						0.063	0.063	
12 Overall Tube Length, Ft		10 Hydrostatic Test Pressure, psig			2,200	2,200	2,200	
13 Effective Tube length, ft		11 Number of Passes			1	1	1	
14 Bare Tubes, number 10 / 6 4 15 Bare tubes, total exposed surface, ft ² 317 61 16 Extended surface tubes, number 6 17 Extended surface tubes, total expsoed surface, ft ² 6 18 Tube spacing, center-to-center (staggered), in 12 8 8 19 Tube Center to furnace wall In. Min. 9 4 4 * 20 Stress Relieve. 9 4 4 * 11 Weld Inspection Requirements, X-Ray or Other 100% of buttwelds will be 10% X-rayed 100% of buttwelds will be 10% X-rayed Tubes: * 22 Vertical or Horizontal. Horizontal Horizontal 23 Tube Material (ASTM Specifications & Grade). 6.625 / 4.5 4.5 4.5 24 Outside Diameter, in 5A 106 Gr B 25 Wall Thickness (minimum) (average), in 5ch 80 26 Maximum Tube Wall Temp, *F (Calculated). 745 28 Maximum Tube Wall Temperature, *F (Design). 770		12 Overall Tube Length, Ft			14.230	14.230	14.230	
15 Bare tubes, total exposed surface, ft ² 317 61 16 Extended surface tubes, number 6 17 Extended surface tubes, total expsoed surface, ft ² 6 17 Extended surface tubes, total expsoed surface, ft ² 12 8 8 19 Tube Center to furnace wall In. Min. 9 4 4 * 20 Stress Relieve. 9 4 4 * 21 Weld Inspection Requirements, X-Ray or Other. 100% of buttwelds will be 10% X-rayed Tubes: * 22 Vertical or Horizontal. Horizontal 23 Tube Material (ASTM Specifications & Grade). 6.625 / 4.5 4.5 24 Outside Diameter, in 6.625 / 4.5 4.5 25 Wall Thickness (minimum) (average), in		13 Effective Tube length, ft			13.000	13.000	13.000	
16 Extended surface tubes, number 6 17 Extended surface tubes, total expsoed surface, ft ² 735 18 Tube spacing, center-to-center (staggered), in 12 8 8 19 Tube Center to furnace wall In. Min. 9 4 4 * 20 Stress Relieve. 9 4 4 * 21 Weld Inspection Requirements, X-Ray or Other. 100% of buttwelds will be 10% X-rayed Tubes: * 22 Vertical or Horizontal. Horizontal Horizontal 23 Tube Material (ASTM Specifications & Grade). 6.625 / 4.5 4.5 4.5 24 Outside Diameter, in 6.625 / 4.5 4.5 4.5 25 Wall Thickness (minimum) (average), in 6.625 / 4.5 4.5 4.5 26 Maximum Tube Wall Tempo, *F (Calculated). 745 770 — — 28 Maximum Tube Wall Temperature, *F (Design). 117 770 — —					10 / 6	4		
17 Extended surface tubes, total expsoed surface, ft ² 18 Tube spacing, center-to-center (staggered), in 19 Tube Center to furnace wall In. Min. 10 Stress Relieve. 20 Stress Relieve. 21 Weld Inspection Requirements, X-Ray or Other. 21 Weld Inspection Requirements, X-Ray or Other. 22 Vertical or Horizontal. 23 Tube Material (ASTM Specifications & Grade). 24 Outside Diameter, in 25 Wall Thickness (minimum) (average), in 26 Maximum Tube Wall Tempor, *F (Calculated). 27 Inside Film Coefficient (Calculated). 28 Maximum Tube Wall Temperature, *F (Design).		• •						·
18 Tube spacing, center-to-center (staggered), in 19 Tube Center to furnace wall In. Min		,						
19 Tube Center to furnace wall In. Min								
 * 20 Stress Relieve								
 * 21 Weld Inspection Requirements, X-Ray or Other					9			
Tubes: * 22 Vertical or Horizontal Horizontal Horizontal 23 Tube Material (ASTM Specifications & Grade) • SA 106 Gr B • 24 Outside Diameter, in 6.625 / 4.5 4.5 4.5 25 Wall Thickness (minimum) (average), in • Sch 80 • 26 Maximum Tube Wall Temp., °F (Calculated) 745 • • 27 Inside Film Coefficient (Calculated) 117 • • 28 Maximum Tube Wall Temperature, °F (Design) • 770 • •	*							
 * 22 Vertical or Horizontal. * 22 Vertical or Horizontal. * 23 Tube Material (ASTM Specifications & Grade). * 4 Outside Diameter, in	Ĩ., .				100% of	buttweids will be 10	» х-гауеа	
23 Tube Material (ASTM Specifications & Grade)	100				However	Horizontal	Horizontal	
24 Outside Diameter, in	Ť						Horizontal	
25 Wall Thickness (minimum) (average), in								- <u> </u>
26 Maximum Tube Wall Temp., *F (Calculated)							+.5	·
27 Inside Film Coefficient (Calculated) 117 28 Maximum Tube Wall Temperature, *F (Design) 770						501 00		
28 Maximum Tube Wall Temperature, °F (Design)								
		· · · ·				770		·
					→		·	

	Service	Black River Plar	nt- 3	Plant Loc.	Loving, NM	
FIRED HEATER DATA SHEET	Unit	Regeneration		Equip.No.	H-101	
CUSTOMARY UNITS	Type	Horizontal		No. Reg.	1	
COSTOWART ONTS	Owner			Job No.	J423	
		Matador Resou		Model No.	6HE-10-4H-6-4HE-4	
Devisions 0	Purchaser	Veritas Gas Pro				1-0-E
Revision: 0	Vendor	Heat Recovery	Corporation	Ref. No.	19439	
Approved: JB	Date	9/27/2019			Page 3	of 5
	Mechani	ical Design Condi	tions (continued)			
Description of Extended Surface:			Radiant	Shield	Conv.	
28 Type			None	None	Serrated	
29 Fin Material					C.S.	
30 Fin Dimensions 31 Fin Spacing		#/in		·	3/4" x 0.05 4	
32 Maximum Fin Temperature		•			766	
33 Extension ratio			. <u></u>		/00	
Plug-Type Headers:						
34 Manufacturer and Type			•	- None		
 * 35 Material (ASTM specification and grade) 			<u> </u>			
36 Nominal Rating						
* 37 Location						
38 Welded or Rolled						
Return Bends:						
39 Manufacturer and Type			SR / LR	SR 180° WPB	>	
 40 Material (ASTM specification and grade) 			•	WPB		
41 Nominal Rating or Schedule			Same	as Tubes		
* 42 Location				Header Bo	×	
Terminals: NOTE:						
43 Manufacturer and Type			←	Flanged	>	
 * 44 Material (ASTM specification and grade) 				as Tubes	`	
45 Nominal Rating				as Tubes	>	
* 46 Location			heater outlets		heater inlets	
* 47 Welded or Rolled			welded		welded	
48 Flange: Size and Rating			6"-600# RFWN		4"-600# RFWN	
Location			Radiant		Top Conv.	
Crossovers: * 49 Welded or Flanged				– Welded —		
 * 50 Pipe material (ASTM specification and grade) 				- SA-106-B		
51 Pipe Size and Wall Thicknes				6" Sch 80		
* 52 Location				Header Box		
53 Flange Rating			<u> </u>			
Tube Supports:			<u> </u>		·	
54 Ends, Top, Bottom:				Ends	→	
Material				CS		
Thickness				3/8 "		
Type and Thickness of Insulation			2"- 8# 2300°F +	2" -6# 2300°F Cera	amic Fiber Blanket	
Insulation Reinforcement				310 SS Studs Ar	nd Clips	
55 Intermediate:						
Material			·	None	>	
Spacing						
Type and Thickness of Coating						
56 Guides: Location						
Material						
Header Boxes	Material	C 5		Thicknoss	2/16"	
1 Location Radiant and Convection Ends 2 Insulation: Material	Material 6# 2300°F Ceram	CS ic Fiber Planket		Thickness	3/16" 2"	
2 Insulation: Material Anchoring Material	304 SS Studs and			Thickness	۷	
3 Are Header Box Doors Bolted or Hinged?	Bolted	Cilho				
3 Are Header Box Doors Boiled of Hinged? Burners	Buildu					
	mbustion LoNOx TPS	4-3		Number	Тwo	
5 Location Each End	Insustion LONOX TPS	J			i WU	
6 Size and Type of Pilots Electric Ignit	ion					
7 Heat Release per Burner at Design Excess Air and D						
Normal 3.900	MM BTU per H	Hr:	Maximum	4.8	MM Btu per Hr.	
8 Minimum Distance Burner Centerline to Tube Cent		,				
Horizontal 2.45'			Vertical	5'		

1 2 Owner: San Mateo Midstream Owner Ref.: H-801 Ftnt 3 Purchaser: Veritas Purchaser Ref .: J-423 Manufacturer: Tulsa Heaters Midstream, LLC THM Ref.: MJ19-409 4 Rev 5 Service: Hot Oil Heater Project: 290 GPM Amine Treating Unit Loving, Eddy County, NM 6 Quantity: Location: 1 7 SHO Duty: 18.61 MMBTU/ hr SHO Model: SHO1750 8 CMS Release: 23.92 MMBTU/ hr CMS Model: CMS2500 9 10 11 PROCESS DESIGN CONDITIONS 12 13 14 Heater Section Radiant / Convection Radiant / Convection Radiant / Convection Radiant / Convection 15 **Operating Case** Design Case 16 Service Hot Oil Heater - - -Heat Absorption (R/C) 17 MMBTU/ hr 12.36 / 6.25 18 Process Fluid Chemtherm 550 - - -321,260 Process Mass Flow Rate, Total 19 Lb/ hr Process Bulk Velocity (calc. R/C) 20 ft/ s 10 21 Process Mass Velocity (calc. R/C) Lb/ s ft2 321 505 Coking Allowance (dP calcs) 22 in 23 Pressure Drop, Clean (allow. / calc.) 15 17 psi 1 Pressure Drop, Fouled (allow. / calc.) 24 psi 25 Average Heat Flux (allowable) BTU/ hr ft2 13,000 26 Average Heat Flux (calculated) BTU/ hr ft2 12,730 27 Maximum Heat Flux (allowable) BTU/ hr ft2 Maximum Heat Flux (calc. R/C) 22,600 / 28,620 28 BTU/ hr ft2 29 Fouling Factor, Internal hr ft2 °F/ BTU 0.002 30 Corrosion or Erosion Characteristics 31 Max. Film Temperature (allow. / calc.) °F 635 516 1 32 Inlet Conditions: 33 34 Temperature °F 275 35 Pressure psig 55 36 Mass Flow Rate, Liquid Lb/ hr 321,260 Mass Flow Rate, Vapor 37 Lb/ hr 0 38 Weight Percent, Liquid / Vapor wt% 100% 0% 1 39 Density, Liquid / Vapor Lb/ ft3 51.46 0.00 40 Molecular Weight, Liquid / Vapor Lb/ Lbmole 0.0 41 Viscosity, Liquid / Vapor 2.1651 / 0.000 ср 42 Specific Heat. Liquid / Vapor BTU/ Lb °F 0.5556 / 0.000 43 Thermal Conductivity, Lig./Vap. BTU/hr ft °F 0.0675 / 0.000 44 45 **Outlet Conditions:** °F 46 Temperature 375 47 Pressure 38 psig Mass Flow Rate, Liquid 321,260 48 Lb/ hr 49 Mass Flow Rate, Vapor 0 Lb/ hr 50 Weight Percent, Liquid / Vapor wt% 100% 1 0% 51 Density, Liquid / Vapor Lb/ ft3 49.24 / 0.00 Molecular Weight, Liquid / Vapor 52 Lb/ Lbmole 0.0 - - -53 Viscosity, Liquid / Vapor 0.977 / 0.000 ср 54 Specific Heat, Liquid / Vapor BTU/ Lb °F 0.603 / 0.000 55 Thermal Conductivity, Liq./Vap. BTU/hr ft °F 0.066 / 0.000 56 57 58 59 60 61 1-Aug-19 62 Flow and duty changed JF 0 Issued with Proposal 63 А 64 revision date description by chk'd appv'd FIRED HEATER DATA SHEET AMERICAN ENGINEERING SYSTEM of UNITS **USA** Applications MJ19-409-HTRds- 0 Pg 1 of 6 SHO = Superior Quality, Flexibility, Dependability & Modularity

This document contains confidential information proprietary to THM. This document shall not be used, reproduced or disclosed without the prior written consent of THM

	Unit	Black River 3 Gas Plant	Plant Loc.	Loving, NM
FIRED HEATER DATA SHEET	Service	Hot Oil Heater	Equip.No.	H-851
CUSTOMARY UNITS	Туре	Horizontal	No. Req.	1
	Owner	Matador Resources	Job No.	19438 / J-423
Date: 10/27/2019	Purchaser	Veritas Gas Processing	Model No.	4HE-14-4HE-4-6-E
Revision: 0	Vendor	Heat Recovery Corp.	Proposal No.	HRC 19-03
Approved: JB	Date	10/27/2019		Page 1 of 5

Process Design Conditions

*	1 Total duty per heater, MM Btu/Hr	4.600
*	2 Heater section	Rad+Conv
*	3 Service	Hot Oil Heater
*	4 Heat Absorption, MM Btu/Hr	4.6
*	5 Fluid name	Chemitherm 550
*	6 Flow rate, lb/hr	74,938
	7 Flow rate, bpd	
*	8 Pressure drop (allowable, clean), psi	10
	9 Pressure drop (calculated, clean), psiwith 1/8" coke	3
*	10 Average flux density (allowable), Btu/hr-ft ²	
	11 Average flux density (calculated), Btu/hr-ft ²	11,366
	12 Maximum flux density, Btu/hr-ft ²	19,021
	13 Velocity Limitations	
	14 Maximum allowable inside film temperature, °F	600 (564 Calc)
	15 Fouling Factor	0.0015
	16 Corrosion or Erosion Characteristics	
Inle	Conditions:	
*	17 Temperature, °F	350
*	18 Pressure, psig	40
*	19 Liquid flow, lb/hr	74,938
*	20 Thermal Conductivity Btu / hr ft oF	0.069
*	21 Specific Gravity	0.908
*	22 Specific Heat Btu / lbm oF	0.59
*	23 Liquid Viscosity, Cp	1.27
Out	et Conditions:	
*	23 Temperature, °F	450
*	24 Pressure, psig	37
*	25 Liquid flow, lb/hr	74,938
*	26 Thermal Conductivity Btu / hr ft oF	0.067
*	27 Specific Gravity	0.908
*	28 Specific Heat Btu / Ibm oF	0.64
*	29 Liquid Viscosity, Cp	0.727
Rem	arks and Special Requirements:	
*	30 Distillation Data or Composition Attached	

Combustion Design Conditions

*	1 Type of fuel	Natural Gas
*	2 Excess air, percent	15
	3 Guaranteed Efficiency, Percent (LHV)	83.38
	4 Calculated Efficiency, Percent (LHV)	84.38
	5 Radiation loss, percent of heat release (LHV)	1.50
	6 Flue gas temperature leaving radiant section, °F	1,790
	7 Flue gas temperature leaving convection section, °F	606
	8 Flue Gas Mass Velocity Thru Convection Section, lb/sq ft-s	0.23
	9 Draft at Bridge Wall, In. H20	-0.010
	10 Draft at Burners, In. H20	-0.050
*	11 Ambient Air Temperature, °F comb/draft	60/95
*	12 Altitude, Ft. Above Sea Level	3,000
	13 Calculated Heat Release, MM BTU per Hr (LHV)	5.46
	14 Volumetric Heat Release, Btu/hr-ft ³ (LHV)	

Note: A fuel savings of ______ MM Btu/hr will offset a \$1,000 increase in furnace cost (erected)

Customer

Veritas Gas Processing, LP

Customer PO No. 4122000238

This manual covers the component description, installation, operation and maintenance of the below description.

- (1) 7' Dia. x 40' OAH Self-Supported Enclosed Flare Stack w/ Damper
- (1) Utility Flare Tip w/ flame tabs
- (2) EGF-Z-HEI Electric Ignition Pilot w/ Flame Scanner
- (1) Nema 4, Skid Mounted Pilot Ignition and Monitoring Panel
- (1) Shutdown Monitoring Logic and Controls a. Stack Mounted Thermocouple for Monitoring and High Temperature Shutdown
 - b. Pilot Gas Solenoid
 - c. 6" Butterfly Valve for Flare Shutdown

PLANT #1 TO FOR AMINE

Control Panel:120V / 60 Hz / 1 PhaseRecommended Flare Purge RateFlare Tip Size:14Seal Type:Velocity SealPurge Rate:145 Scfh of a gas that will not go to dew point at operating temperatures	01:			equiremen		40 1. 10
Pilot Gas # Pilots: 2 Total Fuel Gas: 130 Scfh @ 15 psig or 58 Scfh Propane @ 7 psig Electricity Control Panel: 120V / 60 Hz / 1 Phase Recommended Flare Purge Rate Flare Tip Size: 14 Seal Type: Velocity Seal Purge Rate: 145 Scfh of a gas that will not go to dew point at operating temperatures Assist Media None None Flow: TBD (Field adjusted based on smoke production)	mai					
# Pilots: 2 Total Fuel Gas: 130 Scfh @ 15 psig or 58 Scfh Propane @ 7 psig Electricity Control Panel: 120V / 60 Hz / 1 Phase Recommended Flare Purge Rate Flare Tip Size: 14 Flare Tip Size: 14 Seal Type: Velocity Seal Purge Rate: 145 Scfh of a gas that will not go to dew point at operating temperatures Assist Media None Flow: TBD (Field adjusted based on smoke production)	Location	0.00			1100.	AU OOED
Total Fuel Gas: 130 Scfh @ 15 psig or 58 Scfh Propane @ 7 psig Electricity I20V / 60 Hz / 1 Phase Control Panel: 120V / 60 Hz / 1 Phase Recommended Flare Purge Rate If a sea sea sea sea sea sea sea sea sea s		2				
Electricity Control Panel: 120V / 60 Hz / 1 Phase Recommended Flare Purge Rate Flare Tip Size: 14 Seal Type: Velocity Seal Purge Rate: 145 Scfh of a gas that will not go to dew point at operating temperatures Assist Media None Flow: TBD (Field adjusted based on smoke production)			@ 15 mig or 59	Soft Dronana) 7 noig	
Control Panel: 120V / 60 Hz / 1 Phase Recommended Flare Purge Rate Flare Tip Size: 14 Seal Type: Velocity Seal Purge Rate: 145 Scfh of a gas that will not go to dew point at operating temperatures Assist Media Flow: TBD (Field adjusted based on smoke production)	Total Fuel Gas:	150 Scin		s Sem Propane @	<i>y i</i> psig	
Recommended Flare Purge Rate Flare Tip Size: 14 Seal Type: Velocity Seal Purge Rate: 145 Scfh of a gas that will not go to dew point at operating temperatures Assist Media None Flow: TBD (Field adjusted based on smoke production)						
Flare Tip Size:14Seal Type:Velocity SealPurge Rate:145 Scfh of a gas that will not go to dew point at operating temperaturesAssist Media NoneFlow: TBD (Field adjusted based on smoke production)	Control Panel:	120V / 6	0 Hz / 1 Phase			
Flare Tip Size:14Seal Type:Velocity SealPurge Rate:145 Scfh of a gas that will not go to dew point at operating temperaturesAssist Media NoneFlow: TBD (Field adjusted based on smoke production)						
Flare Tip Size:14Seal Type:Velocity SealPurge Rate:145 Scfh of a gas that will not go to dew point at operating temperaturesAssist Media NoneFlow: TBD (Field adjusted based on smoke production)						
Seal Type:Velocity SealPurge Rate:145 Scfh of a gas that will not go to dew point at operating temperaturesAssist Media NoneFlow: TBD (Field adjusted based on smoke production)			te			
Purge Rate: 145 Scfh of a gas that will not go to dew point at operating temperatures Assist Media None Flow: TBD (Field adjusted based on smoke production)			Seal			·
Assist Media None Flow: TBD (Field adjusted based on smoke production)				l not go to dew r	oint at operating ten	operatures
None Flow: TBD (Field adjusted based on smoke production)						
	<u>Assist Media</u>					
	None	Flow: The second	3D (Field adjust	ed based on smo	ke production)	

· · · · · · · · ·

Please see below for the thermal oxidizer specs. Please let me know if you have any questions.

Gauri Gajewar, P.E. Senior Consultant, Air Quality

Contek Solutions LLC, an ERM Group Company ***Until further notice, ERM employees are working from home.*** 6221 Chapel Hill Blvd, Suite 300 | Plano, TX | 75093 D +1 469 294 5945 | M +1 214 315 5749 E Gauri.Gajewar@erm.com | W www.contekllc.com

From: Sydney Levine <Sydney_Levine@zeeco.com>
Sent: Friday, March 13, 2020 10:42 AM
To: Duane Nash <dnash@veritasgas.com>
Cc: Darrell Petty <dpetty@veritasgas.com>; Sean O'Grady <sogrady@sanmateomidstream.com>; Shaun Napier
<Shaun_Napier@zeeco.com>
Subject: RE: [EXTERNAL] FW: Plant 3 Data Request

EXTERNAL EMAIL Hi Duane,

Please see the requested information below and let us know if you have additional questions.

- Maximum Acid Gas Flowrate (composition is detailed in the attached email) : 267.8 lbmol/hr
- Maximum Vent Flowrate (composition is detailed in the attached pdf): 7.3 lbmol/hr
- The flue gas information is shown below for the three cases when operating at 1500°F:

Components	Acid and Glycol Gas Case Mol %	Acid Gas Only Case Mol %	Glycol Gas Only Case Mol %
Carbon Dioxide	39.78	39.11	4.16
Water	15.41	15.98	14.86
Nitrogen	41.80	41.91	69.72
Oxygen	3.0	3.00	11.26
Sulfur Dioxide	0.01	0.01	0.00
Total, lbmol/hr	698.76	705.40	447.13
Mol. Wt.	32.96	32.80	27.64

• Emissions:

Stack Parameter	Values for Acid Gas and Glycol Gas Case	Values for Acid Gas Only Case	Values for Glycol Gas Only Case
VOC Destruction Efficiency	>99%	>99%	>99%
CO, ppmvd@3%O2 (lb/MMBtu)	85 (0.14)	85 (0.14)	85 (0.08)
NOx, ppmvd@3%O2 (lb/MMBtu)	50 (0.13)	50 (0.13)	85 (0.13)

• These values are understood to apply only when the system is operated in accordance with the operating conditions stipulated in the design summary and for the waste(s) stipulated in the design basis of Zeeco's proposal & change order.

- VOC is defined as non-methane and non-ethane hydrocarbons.
- Emissions factors given in Ib/MMBtu are based on LHV heat release of the total heat release in the system, including heat release from waste and fuel gasses. The total maximum heat release (combined fuel and

waste) for the three cases are shown below:

- o Acid Gas and Glycol Gas: 9.8 MMBtu/hr
- o Acid Gas Only: 9.9 MMBtu/hr
- o Glycol Gas Only: 5.6 MMBtu/hr

Best Regards,

Sydney Levine Midstream and End User Business Manager

Zeeco World Headquarters | Main: +1 918 258 8551 | Direct: +1 918 893 8416

Table 13.5-1 (English Units). THC, NOx AND SOOT EMISSIONS FACTORS FOR FLARE OPERATIONS FOR CERTAIN CHEMICAL MANUFACTURING PROCESSES^a

Pollutant	SCC ^e	Emissions Factor Value	Emissions Factor Units	Grade or Representativeness
THC, elevated flares ^c	30190099;	0.14 ^{b,f}	lb/10 ⁶ Btu	В
THC, enclosed ground flares ^{g,h} Low Percent Load ⁱ	30119701; 30119705; 30119709; 30119741	8.37 ^j or 3.88e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
THC, enclosed ground flares ^{g,h} Normal to High Percent Load ⁱ	50117741	2.56 ^j or 1.20e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
Nitrogen oxides, elevated flares ^d		$0.068^{b,k}$	lb/10 ⁶ Btu	В
Soot, elevated flares ^d		$0 - 274^{b}$	μg/L	В

- ^a All of the emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the THC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factors are representative of controlled emissions rates for THC. These values are not representative of the uncontrolled THC routed to the flare from the associated process, and as such, they may not be appropriate for estimating the uncontrolled THC emissions or potential to emit from the associated process.
- ^b Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
- ^c Measured as methane equivalent. The THC emissions factor may not be appropriate for reporting volatile organic compounds (VOC) emissions when a VOC emissions factor exists.
- ^d Soot in concentration values: nonsmoking flares, 0 micrograms per liter ($\mu g/L$); lightly smoking flares, 40 $\mu g/L$; average smoking flares, 177 $\mu g/L$; and heavily smoking flares, 274 $\mu g/L$.
- ^e See Table 13.5-4 for a description of these SCCs.
- ^f Factor developed using the lower (net) heating value of the vent gas.
- ^g THC measured as propane by US EPA Method 25A.
- ^h These factors apply to well operated ground flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >200 btu/scf net heating value in the vent gas and less than the specified maximum exit velocity. The emissions factor data set had an average destruction efficiency of 99.99%. Based on tests using pure propylene fuel. References 12 through 33 and 39 through 45.
- ⁱ The dataset for these tests were broken into four different test conditions: ramping back and forth between 0 and 30% of load; ramping back and forth between 30% and 70% of load; ramping back and forth between 70% and 100% of load; and a fixed rate maximum load condition. Analyses determined that only the first condition was statistically different. Low percent load is represented by a unit operating at approximately less than 30% of maximum load.
- ^j Heat input is an appropriate basis for combustion emissions factor. However, based on available data, heat input data is not always known, but gas flowrate is generally available. Therefore, the emissions factor is presented in two different forms.
- ^k Factor developed using the higher (gross) heating value of the vent gas.

CLIENT: JOBSITE: CLIENT PO: 4232000188

Veritas Gas Processing Loving, NM

ZEECO DOC NO: 42050-7050 CLIENT DOC NO: TOTAL PAGES: 2

UTILITY CONSUMPTION

REV	DATE	BY	APP	DESCRIPTION
0	15NOV19	CMM	GAC	ISSUED FOR APPROVAL
	•			

Client: Location:	Veritas Gas Processing Loving, NM	Zeeco Ref.: Client Ref.: Doc. No.	42050 4232000188 42050-7050	Date: Rev.	7-Nov-19 0
Equipment	T		ons Utility Requirements		
AFDS-14/42 J-423, D-701		76 SCFH (2.04 Nm³/h ts total = 152 SCFH @ Continuous P	nsumption (Fuel Gas): @ 15 PSIG per pilot r @ 1.05 kg/cm ² g) /B\ 15 PSIG / 4.07 Nm ³ /hr @ 1.05 urge Gas Requirement: 3.037 Nm ³ /hr) Fuel Gas	kg/cm²g)	
GENERAL	Cc		r Consumption: 25.2 Watts (Maximum & Contin	uous)	

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO_2^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^d	0.6	А
тос	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2.EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE
GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Combustor Type	Ň	O _x ^b	СО	
(MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.
^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr of theat commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr of theat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr of theat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr of heat input that commenced construction mo

that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
$\mathrm{SO_2}^{\mathrm{d}}$	0.6	А
ТОС	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2.EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE
GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2×10^4 lb/10⁶ scf.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	E
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22- 6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to kg/ 10^6 m³, multiply by 16. To convert from $1b/10^6$ scf to 1b/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

 ^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.
 ^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES^a (SCC 2-02-002-53)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating		
Criteria Pollutants and Greenhouse Gases				
NO_x^{c} 90 - 105% Load	2.21 E+00	А		
$NO_x^{c} < 90\%$ Load	2.27 E+00	С		
CO ^c 90 - 105% Load	3.72 E+00	А		
CO ^c <90% Load	3.51 E+00	С		
CO ₂ ^d	1.10 E+02	А		
SO ₂ ^e	5.88 E-04	А		
TOC ^f	3.58 E-01	С		
Methane ^g	2.30 E-01	С		
VOC ^h	2.96 E - 02	С		
PM10 (filterable) ^{i,j}	9.50 E-03	Е		
PM2.5 (filterable) ^j	9.50 E-03	Е		
PM Condensable ^k	9.91 E - 03	Е		
Trace Organic Compounds				
1,1,2,2-Tetrachloroethane ¹	2.53 E-05	С		
1,1,2-Trichloroethane ¹	<1.53 E-05	Е		
1,1-Dichloroethane	<1.13 E-05	Е		
1,2-Dichloroethane	<1.13 E-05	Е		
1,2-Dichloropropane	<1.30 E-05	Е		
1,3-Butadiene ¹	6.63 E - 04	D		
1,3-Dichloropropene ¹	<1.27 E-05	Е		
Acetaldehyde ^{l,m}	2.79 E-03	С		
Acrolein ^{l,m}	2.63 E-03	С		
Benzene ^l	1.58 E-03	В		
Butyr/isobutyraldehyde	4.86 E-05	D		
Carbon Tetrachloride ¹	<1.77 E-05	Е		

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Chlorobenzene ¹	<1.29 E-05	Е
Chloroform ¹	<1.37 E-05	Е
Ethane ⁿ	7.04 E-02	С
Ethylbenzene ^l	<2.48 E-05	Е
Ethylene Dibromide ¹	<2.13 E-05	Е
Formaldehyde ^{l,m}	2.05 E-02	А
Methanol ¹	3.06 E-03	D
Methylene Chloride ¹	4.12 E-05	С
Naphthalene ^l	<9.71 E-05	Е
PAH ¹	1.41 E-04	D
Styrene ¹	<1.19 E-05	Е
Toluene ^l	5.58 E-04	А
Vinyl Chloride ¹	<7.18 E-06	Е
Xylene ^l	1.95 E-04	А

Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded)

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter < 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

^c Emission tests with unreported load conditions were not included in the data set.

^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] =

(3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 ,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 $lb/10^6$ scf, and h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

- ^e Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content in natural gas of 2,000 gr/10⁶ scf.
- ^f Emission factor for TOC is based on measured emission levels from 6 source tests.
- ^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor.
- ^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds. Methane and ethane emissions were not measured for this engine category.
- ¹ No data were available for uncontrolled engines. PM10 emissions are for engines equipped with a PCC.
- ^j Considered $\leq 1 \ \mu m$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).
- ^k No data were available for condensable emissions. The presented emission factor reflects emissions from 4SLB engines.
- ¹ Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.
- ^m For rich-burn engines, no interference is suspected in quantifying aldehyde emissions. The presented emission factors are based on FTIR and CARB 430 emissions data measurements.
- ⁿ Ethane emission factor is determined by subtracting the VOC emission factor from the NMHC emission factor.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

- $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industria	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*	
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0	
а	0.9	0.9	0.7	1	1	1	
b	0.45	0.45	0.45	-	-	-	
с	-	-	-	0.2	0.2	0.3	
d	-	-	-	0.5	0.5	0.3	
Quality Rating	В	В	В	В	В	В	

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4- 17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$

(2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> <u>assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution</u> have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls18-22

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road;

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of August 23, 2017

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart C \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart C—General Stationary Fuel Combustion Sources

TABLE C-1 TO SUBPART C OF PART 98-DEFAULT CO2 EMISSION FACTORS AND HIGH HEAT VALUES FOR VARIOUS TYPES OF FUEL

Link to an amendment published at 81 FR 89252, Dec. 9, 2016.

Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026 × 10 ⁻³	53.06
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.25
Distillate Fuel Oil No. 4	0.136	75.90
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
	0.091	67.77
Propylene ²		
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00

eCFR — Code of Federal Regulations

Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 × 10 ⁻³	274.32
Coke Oven Gas	0.599 × 10 ⁻³	46.85
Propane Gas	2.516 × 10 ⁻³	61.46
Fuel Gas ⁴	1.388 × 10 ⁻³	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 × 10 ⁻³	52.07
Other Biomass Gases	0.655 × 10 ⁻³	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

²Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴Reporters subject to subpart X of this part that are complying with \$98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in \$98.243(d)(2)(i) and (d)(2)(ii) and \$98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV_w = ((100 – M)/100)*HHV_d where HHV_w = wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

Need assistance?

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of August 23, 2017

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart C \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart C—General Stationary Fuel Combustion Sources

TABLE C-2 TO SUBPART C OF PART 98—DEFAULT CH_4 and N_2O Emission Factors for Various Types of Fuel

Link to an amendment published at 81 FR 89252, Dec. 9, 2016.

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6 × 10 ⁻⁰³
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0 × 10 ⁻⁰⁴
Fuel Gas	3.0×10^{-03}	6.0 × 10 ⁻⁰⁴
Municipal Solid Waste	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Tires	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Blast Furnace Gas	2.2 × 10 ⁻⁰⁵	1.0 × 10 ⁻⁰⁴
Coke Oven Gas	4.8×10^{-04}	1.0 × 10 ⁻⁰⁴
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Wood and wood residuals	7.2×10^{-03}	3.6 × 10 ⁻⁰³
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3 × 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1 × 10 ⁻⁰⁴

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

[78 FR 71952, Nov. 29, 2013]

Need assistance?

For flares subject to Chapter 115, Subchapter H, relating to highly reactive volatile organic compounds, valid flow rate and composition data required by 30 TAC 115.725–115.726 must be used to determine emissions for any portions of the current reporting year during which HRVOC monitors were installed and operational.

In the absence of monitoring data, selection of the most accurate method may sometimes require exercising scientific judgment. For example, when using the results of a one-time performance test, the test conditions must be compared to the flare's actual operating conditions during the inventory year to determine whether the test accurately represents the flare's performance. If test conditions do not accurately model flare operation, then engineering determinations based on detailed process evaluation may provide the best data.

NO_x and CO Emissions

To calculate NO_x and CO emissions, the net heating value of the flared gas must be known. Using the actual short-term flared gas composition and flow rate data for the inventory year, calculate the net heating value of the flared gas and the total heat release for each short time period. Use these total heat release data, in conjunction with the appropriate emission factors listed below, to determine NO_x and CO emissions for each time segment. Since the calculated net heating value of the gas and the assist gas type will determine the appropriate emission factors, carefully select the correct factors for each flare from Table A-7.

Calculate emissions using the most accurate data for the gas flow rate and composition available. (See "Flared Gas Flow Rate and Composition" earlier in this supplement for more information on preferred data.)

Regardless of the source of the data on gas flow and composition, the determination methodology for NO_x and CO emissions must be coded "A" for 'TCEQ-approved factor' when using the factors below.

Please note: at the time of publication, the EPA was proposing to update several of the emissions factors for flares in AP-42, Chapter 13.5. Once it has finalized the updates, the TCEQ will comment on the appropriateness of any revised factors for the EI. However, the current proposed EPA factors should not be used for determining flare emissions at this time and will not be accepted for the EI.

For flares subject to the HRVOC regulations in Chapter 115, Subchapter H, use the net heating value data required by 30 TAC 115.725 and 115.726 to determine NO_x and CO emissions for any portions of the current reporting year during which HRVOC monitors were installed and operational.

Contaminant	Assist Type	Waste Gas Stream Net Heating Value ^{<i>a,b</i>}	Emission Factor
NO _x	Steam	High Btu	0.0485 lb/MMBtu
		Low Btu	0.068 lb/MMBtu
	Air or	High Btu	0.138 lb/MMBtu
	Unassisted	Low Btu	0.0641 lb/MMBtu
СО	Steam	High Btu	0.3503 lb/MMBtu
		Low Btu	0.3465 lb/MMBtu
	Air or	High Btu	0.2755 lb/MMBtu
	Unassisted	Low Btu	0.5496 lb/MMBtu

Table A-7. Flare Emission Factors

^{*a*} High Btu: > 1000 Btu/scf

^b Low Btu: 192–1000 Btu/scf

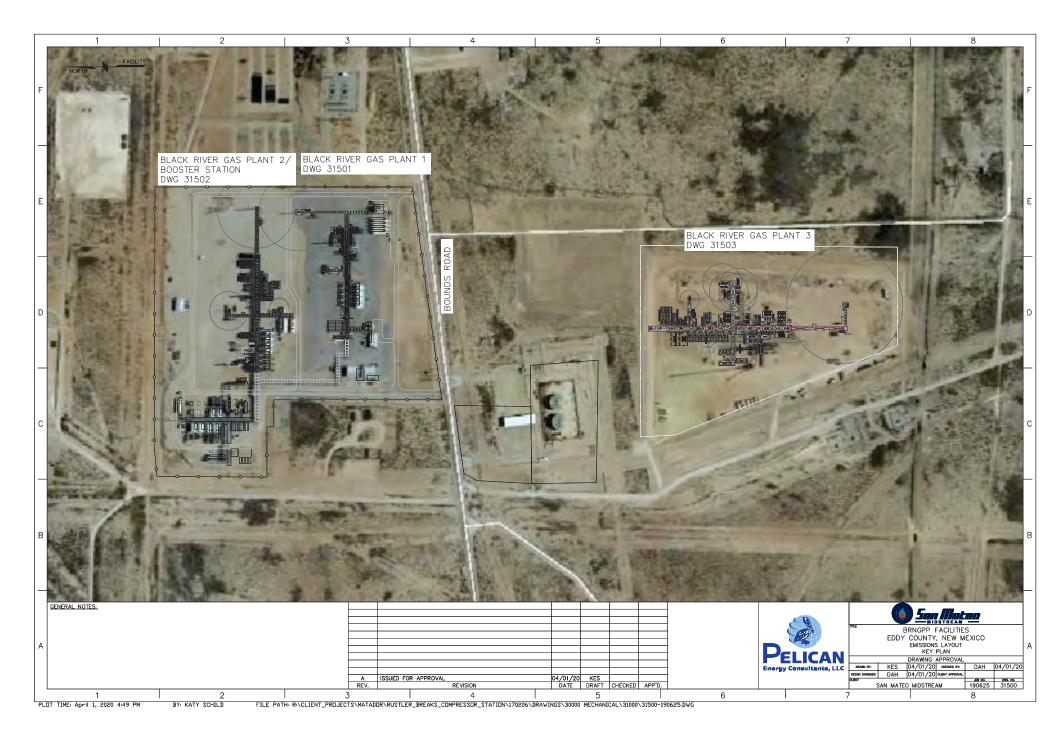
Uncombusted Flared Gas Emissions

Uncombusted flared gas emissions usually include VOCs, H_2S , or both. Emissions calculations for these contaminants are based on the flared gas flow rate and composition, and the appropriate destruction efficiency, which depends upon the actual flare operation.

Destruction Efficiencies

Flare destruction efficiency varies with assist gas flow rate, flame stability, operating conditions, flare tip size and design, the specific compounds being combusted, and gas composition. HRVOC regulations in 30 TAC 115 address flare operational requirements. If flare operations are consistent with Chapter 115, the destruction efficiencies specified in 30 TAC 115.725 may be used to determine VOC emissions.

Otherwise, if the flare met all applicable regulations, the appropriate destruction efficiencies from either an applicable permit or the destruction efficiencies in Table A-8—the maximum destruction efficiencies for EI purposes—may be used to determine flare emissions. For assisted flares, there is the potential for over-assisting the waste gas stream, and the destruction efficiency may be lower than either the permitted efficiency or the appropriate efficiencies contained in the Chapter 115 HRVOC regulations or Table A-8. Emissions determinations must be adjusted accordingly.


Of course, if the flare flame (not the flare pilot) is ever extinguished, the destruction efficiency for the period when the flame was out will be zero. The pilot combustion zone is separate from the flame combustion zone. Therefore, the flare flame can be extinguished while the flare pilots are still lit.

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map is attached to this application.

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications"

This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \Box A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \Box A sample of the letters sent to the owners of record.
- 5. \Box A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \Box A sample of the public notice posted and a verification of the local postings.
- 7. \Box A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. \Box A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying landowners of record.

N/A – Public notice requirements are not applicable for applications submitted pursuant to 20.2.70 NMAC.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Black River Gas Processing Plant is an existing natural gas processing plant located in Eddy County. The primary function of the plant is to remove CO₂, water, and natural gas liquids from sweet field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1321.

Stabilizer

The stabilizer system is a distillation process to lower the Reid Vapor Pressure (RVP) of field condensate/ pipeline hydrocarbon liquids that are swept into the plant slug catchers from the gas pipeline. This process uses heat from a hot oil system to drive off volatile components in the condensate and reduce the RVP to less than 9. The liquid in the tank is then stable and thus does not give off significant vapors. The tank is equipped with a fuel gas blanket for further protection.

Amine Treating

The amine unit is designed to remove CO₂ and H₂S from the natural gas stream to meet pipeline specifications. In addition, carbon dioxide can freeze in the cryogenic unit, forming dry ice and forcing the shutdown of the facility. Amine treating is an exothermic chemical reaction process. This aqueous mixture is regenerated and reused. Lean MDEA solution is pumped to the top of the contactor and allowed to flow downward. Wet gas is fed into the bottom of the contactor and flows upward. As the lean MDEA solution flows down through the contactor, it comes into contact with the wet gas. The CO₂ and H₂S react with the amine to form an amine carbonate. The reacted amine, known as "sour" or "rich" amine is returned to a regeneration unit, and the processed ("sweet") gas continues to the dehydration system. Emissions from amine units AM-1 and AM-2 are controlled by the thermal oxidizers unit TO-1 and TO-2 respectively. The amine reboiler is heated by a natural gas-fired hot oil heater.

Glycol Dehydration

Triethylene glycol (TEG) dehydration is used to remove water from the natural gas stream and is accomplished by reducing the inlet water dew point (temperature at which vapor begins to condense into a liquid) to the outlet dew point temperature which will contain a specified amount of water. The wet gas is brought into contact with dry "lean" glycol in a countercurrent contactor tower. Water vapor is absorbed in the TEG solution and consequently, its dew point reduces. Wet gas passing through the contactor tower is dehydrated, and then passed to the mole sieve beds. The wet (or "rich") glycol then flows from the absorber to a regeneration system in which it is partially decompressed, and then heated to remove water vapor, resulting in "lean" glycol that is reintroduced to the contactor tower. Emissions from glycol dehydrator units, DEHY-1 and DEHY-2, are controlled by flare, FL-2a and thermal oxidizer, TO-2, respectively.

Molecular Sieve Dehydration

Molecular sieve dehydration is used upstream of the cryogenic units to achieve a gas stream dew point of -150°F. The process uses three molecular sieve vessels with one vessel in service absorbing moisture from the gas stream, one vessel in regeneration mode, and one vessel in standby. During the regeneration mode, hot, dry gas (regen gas) is passed up through the vessel to drive off the absorbed moisture from the molecular sieve. The gas comes from the discharge of the residue compressors and it is passed through a direct fired heater to achieve a temperature of approximately 500°F. After the gas passes through the bed it is cooled in an air-cooled exchanger. The water in the gas condenses and is separated from the gas stream in a separator. The regen gas is routed back to the inlet of the plant.

Cryogenic Unit

The cryogenic unit is designed to liquefy natural gas components from the sweet, dehydrated inlet gas by removing work (heat) from the gas by means of the turbo expander. The cryogenic unit recovers natural gas liquids (NGL) by cooling the gas stream to extremely cold temperatures (-150°F and lower) and condensing components such as ethane, propane, butanes

DLK Black River Midstream, LLC Black River Gas Processing Plant

and heavier. The gas is cooled by a series of heat exchangers and by rapidly lowering the pressure of the gas from around 1000 PSIG to approximately 300 PSIG. Once the gas has passed through the system of heat exchangers and expansion, it is recompressed using the energy obtained from expanding the gas. The gas is sent to residue compressors and pipelined out of the facility.

Storage and Loading Operations

The natural gas liquids are transferred to a third-party pipeline. In the event that the pipeline is not available, bullet storage tanks are used to store NGL and load pressurized tanker trucks.

Stabilized condensate is stored in condensate tanks TK-702-A-F, and produced water tank, TK-701. Both the condensate and produce water tanks are controlled by the vapor combustion unit, VCU-1.

Flares

The plant flares are used as control equipment and during startup, shutdown, maintenance and upset conditions. Flares, FL-1, FL-2b and FL-3 operate during startup, shutdown, maintenance and upset conditions. The only steady state operations associated with these flares are from the pilot and purge gas streams and flare, FL-2a which controls the DEHY-1 condenser overhead off gases. SSM emissions from the plant flare result from maintenance activities per manufacturer-recommended or other preventative maintenance schedules. These maintenance activities include, but are not limited to compressor catalyst changes, blowdowns for associated maintenance throughout the facility, instrument calibrations, and process safety device maintenance.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): Please refer Table 2-A

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗆 Yes 🗹 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🛛 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - ☑ a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - **an existing PSD Major Source that has had a major modification requiring a BACT analysis**
 - □ a new PSD Major Source after this modification.

N/A – This application is being submitted pursuant to 20.2.70 NMAC.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

Table for State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)	
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. This facility is an affected facility.	
20.2.7 NMAC	Excess Emissions	Yes	Facility	The entire facility is subject to emissions limits both federal and state regulation. Thus, the facility is subject to this regulation.	
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This regulation does not apply as the facility has no need for fugitive dust control measures. This facility does not fall under applicability facility listed mentioned in this regulation.	
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This regulation applies to facilities that have gas-burning external combustion sources with more than 1,000,000 MMBtu/hr capacity. None of the external combustion equipment of this facility has a capacity greater than 1,000,000 MMBtu/hr. Therefore, this regulation does not apply to this facility.	
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This regulation applies to facilities that have oil-burning external combustion sources with more than 1,000,000 MMBtu/hr capacity. This facility does not have any oil-burning external combustion equipment.	
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation establishes sulfur emission standards for natural gas processing plants. The proposed facility meets the definition of a new natural gas processing plant under this regulation and is subject to the requirements of this regulation [20.2.35.7 (B) NMAC]. The facility will comply with all requirements under 20.2.35 NMAC as applicable.	
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.	
				This regulation could apply to storage tanks at petroleum production facilities, processing facilities, tanks batteries, or hydrocarbon storage facilities.	
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	The oil storage tanks meets the applicable threshold for the capacity of each tank. But all tanks are equipped with control devices that minimizes hydrocarbons and hydrogen sulfide loss to the atmosphere. Therefore, this regulation does not apply to this facility.	
20.2.39	Sulfur Recovery			This regulation could apply to sulfur recovery plants that are not part of petroleum or natural gas processing facilities.	
NMAC	Plant - Sulfur	No	N/A	This facility is a natural gas processing plant. Thus, the facility is not subject to this regulation.	
				This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below:	
20.2.50	Oil and Gas Sector – Ozone Precursor	No	ENG-1 through ENG-4, FUG,	Include the construction status of applicable units as "New", "Existing", "Relocation of Existing", or "Reconstructed" as defined by this Part in your justification:	
NMAC	Pollutants		AR-1, AR-2, TL-1, TL-2	Check the box for the subparts that are applicable: ⊠113 – Engines and Turbines: This facility has natural gas-fired spark ignition engines (ENG-1 through ENG-4). The facility will comply with this regulation. (ENG- 1 through ENG-4) [Existing]	
				⊠114 – Compressor Seals: Engines and Turbines: This facility has reciprocating compressors (Units ENG-1 through ENG-4). Thus, this facility is subject to this	

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				subpart. The facility will comply with this subpart as stated in the 20.2.50.114.B(4). (ENG-1 through ENG-4) [Existing]
				□115 – Control Devices and Closed Vent Systems: The control devices and closed vent systems at this facility are not used to comply with the requirements of this rule; therefore, the facility is not subject to the requirements of this rule.
				⊠116 – Equipment Leaks and Fugitive Emissions: This facility has equipment leaks and fugitive emissions. Thus, the facility will comply with this regulation. (FUG) [Existing]
				□ 117 – Natural Gas Well Liquid Unloading: This facility is a natural gas processing plant and liquid unloading operations do not result in the venting of natural gas. Thus, the facility is not subject to this rule.
				☑ 118 – Glycol Dehydrators: Dehydrators (Units DEHY-1 and DEHY-2) have federally enforceable control with VOC PTE less than 2 tpy. Thus, this facility is not subject to this regulation.
				☑ 119 – Heaters: Each amine reboilers (AR-1 & AR-2) at this facility has a capacity greater than 20 MMBtu/hr. Thus, this facility is subject to this subpart. (AR-1 & AR-2) [Existing]
				☑ 120 – Hydrocarbon Liquid Transfers: This facility trucks out more than 13 times a year and is therefore subject to this subpart. (TL-1 and TL-2) [Existing]
				□121 – Pig Launching and Receiving: This facility does not have pig launching and receiving VOC emission. Therefore, this facility is not subject to this subpart.
				□122 – Pneumatic Controllers and Pumps: This facility does not have any drive gas emissions and all pneumatic controllers are compressed air-driven. Thus, this regulation does not apply to this facility.
				☑ 123 – Storage Vessels: The storage vessels of this facility have federally enforceable control with VOC PTE less than 3 tpy. Thus, the facility is not subject to this subpart.
				□124 – Well Workovers: No applicable activities for this facility. Thus, the facility is not subject to this regulation.
				□ 125 – Small Business Facilities: This facility is not defined as a small business facility. Thus, this regulation does not apply to this facility.
				□126 – Produced Water Management Unit: No applicable activities for this facility. Thus, the facility is not subject to this regulation.
				□127 – Flowback Vessels and Preproduction Operations: No applicable activities for this facility. Thus, the facility is not subject to this regulation.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	ENG-1 through ENG-4, HT-101 through HT-103, HT-801 through HT-803,	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). The facility will comply with this regulation.

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
			AR-1, AR-2, DR-1, DR-2, TO-1, TO-2, VCU-1, FL-1, FL- 2, FL-3	
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining a major source operating permit. The facility is a Title V major source and submitting this initial Title V permit application within one (1) year of commencing operations per 20.2.70.300.B(1) NMAC.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This facility is subject to 20.2.70 NMAC and will therefore comply with the fee requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirement for obtaining a construction permit. This facility is currently permitted under NSR #6567_M8 and complies with all the requirements of this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This regulation establishes requirements for obtaining a prevention of significant deterioration permit. This facility is not a major source with respect to PSD and is therefore not subject to 20.2.74 NMAC.
20.2.75 NMAC	Construction Permit Fees	No	Facility	This regulation establishes a schedule of operating permit emission fees. This facility is subject to 20.2.72 NMAC and in turn subject to 20.2.75 NMAC. The facility is exempt from annual fees under this part (20.2.75.11.E NMAC) as it is subject to fees pursuant to 20.2.71 NMAC.
20.2.77 NMAC	New Source Performance	Yes	ENG-1 through ENG-4, AM-1, AM-2, FUG, CRYO-1 through CRYO-3	 The following equipment of this facility are subject under the subparts of 40 CFR Part 60: 40 CFR 60, Subpart JJJJ: Compressor engines of this facility (ENG-1 through ENG-4) 40 CFR 60, Subpart OOOOa: Fugitives (FUG), Amine Units (AM-1 & AM-2), Cryogenic units (CRYO-1 through CRYO-3), Compressors associated with ENG-1 through ENG-4, Six (6) condensate tanks (TK-702 A-F) and produced water tank (TK 701).
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This regulation establishes state authority to implement emission standards for hazardous air pollutants subject to 40 CFR Part 61. This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61 and is therefore not subject to this regulation.

State Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG-1 through ENG-4, DEHY-1, DEHY-2	 The following equipment are subject to the requirements of 40 CFR 63: 40 CFR 63, Subpart HH: Dehydrator units (DEHY-1 & DEHY-2) 40 CFR 63, Subpart ZZZZ: ENG-1 through ENG-4

Table for Applicable Federal Regulations:

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	ENG-1 through ENG-4, AM-1, AM-2, FUG, CRYO-1 through CRYO-3	 The following equipment of this facility is subject to the subparts of 40 CFR Part 60: 40 CFR 60, Subpart JJJJ: Compressor engines of this facility (ENG-1 through ENG-4) 40 CFR 60, Subpart OOOOa: Fugitives (FUG), Amine Units (AM-1 & AM-2), Cryogenic units (CRYO-1 through CRYO-3), Compressors associated with ENG-1 through ENG-4, Six (6) condensate tanks (TK-702 A-F) and produced water tank (TK 701).
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for fossil-fuel-fired steam generators. This regulation does not apply as the facility does not have any fossil fuel-fired steam-generating units with a heat input rate of 250 MMBtu/hr [60.40(a)(1)].

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for industrial-commercial- institutional steam generating units. This regulation does not apply because the facility does not operate any industrial-commercial-institutional steam generating units with a heat capacity greater than 100 MMBtu/hr.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This regulation does not apply as the facility does not have any steam generating units which meet the applicability criteria of a heat input greater than or equal to 10 MMBtu/hr.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation establishes performance standards for storage vessels for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. The facility was not constructed prior to July 23, 1984. Thus, this rule does not apply to this facility.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This regulation establishes the standard performance for volatile organic liquid storage vessels with a capacity greater than 75 m ³ (~471 bbl). The condensate tanks of this facility have a design capacity of less than 1,589.874 m ³ . These tanks are exempt from this regulation per 40 CFR 60.110b(d)(4). Therefore, this regulation does not apply to the facility.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not have any applicable units. Therefore, the facility is not subject to this regulation.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation defines standards of performance for equipment leaks of VOC emissions from onshore natural gas processing plants for which construction, reconstruction, or modification commenced after January 20, 1984, and on or before August 23, 2011. The was constructed after August 23, 2011. Therefore, this regulation does not apply to this facility.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural	No	N/A	This regulation establishes standards of performance for SO ₂ emissions from onshore natural gas processing for which construction, reconstruction, or modification of the amine sweetening unit commenced after January 20, 1984,

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
	Gas Processing: SO ₂ Emissions			and on or before August 23, 2011. The facility is not subject to this regulation as the amine sweetening unit was constructed after August 23, 2011.	
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	The rule applies to "affected" facilities that are constructed, modified, or reconstructed after Aug 23, 2011 (40 CFR 60.5365): gas wells, including fractured and hydraulically refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels. The facility is not subject to this regulation as the facility was constructed after September 18, 2015.	
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	Compres sors (ENG-1 through ENG-4), CRYO-1 through CRYO-3, AM-1, AM-2, FUG, TK- 702 A-F, TK-701	The amine recovery units (AM-1 and AM-2) are constructed within the applicable period and have more than 2 long tons/yr H ₂ S. Therefore, AM-1 and AM-2 are subject to this regulation. The cryogenic units (CRYO-1 through CRYO-3) are associated with the liquefaction of natural gas. These units are subject to this regulation per 40 CFR 60.5365a(f). The storage vessels (TK-702 A-F and TK-701) at this facility each has PTE greater than 6 tpy. Therefore, storage vessels are subject to this regulation. Compressors associated with (ENG-1 through ENG-4) were constructed within the applicable period and are subject to this regulation. The fugitive components (FUG) are subject to this regulation.	
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary compression ignition combustion engines. The engines at this facility are not compression ignition combustion engines. This regulation does not apply.	
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	ENG-1 through ENG-4	This regulation establishes standards of performance for stationary spark ignition internal combustion engines. Internal combustion engines (ENG-1 through ENG- 4) at this facility commenced operation after June 12, 2006 and were manufactured on or after July 1, 2007. Therefore, ENG-1 through ENG-4 are subject to this regulation.	
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This regulation establishes standards of performance for greenhouse gas emissions for electric generating units. This facility does not have electric generating units. This regulation does not apply.	
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times	No	N/A	This regulation establishes emissions guidelines for greenhouse gas emissions and compliance times for electric generating units. This facility does not have electric generating units. This regulation does not apply.	

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	for Electric Utility Generating Units			
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a municipal solid waste landfill. This regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	NSPS 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources that process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	DEHY-1 and DEHY-2	This regulation defines general provisions for relevant standards that have been set under this part. This regulation applies because 40 CFR Part 63, Subpart HH applies to dehydrator units (DEHY-1 and DEHY-2).
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY-1 and DEHY-2	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. The facility is a minor source of HAPs with TEG dehydrators and meets the definition of a natural gas processing plant. The dehydrator will have a natural gas flow rate equal to or greater than 85 thousand standard cubic feet. The dehydrator vents less than 0.90 megagrams of benzene per year to the atmosphere and is therefore exempt from the emissions control requirements of MACT HH per 63.764(e)(1)(ii). The facility will comply with this regulation.
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from natural gas transmission and storage facilities. This regulation does not apply because this facility is not a natural gas transmission or storage facility as defined in this regulation [40 CFR Part 63.1270(a)].
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This regulation establishes national emission standards for a major source of HAPs for industrial, commercial, and institutional boilers and process heaters. This facility is not a major source of HAPs. Therefore, this regulation does not apply to this facility.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from coal and oil-fired electric utility steam generating units. The facility does not contain the affected units. This regulation does not apply.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	ENG-1 through ENG-4	This regulation defines national emissions standards for HAPs from stationary reciprocating Internal Combustion Engines. The internal spark ignition compressor engines (ENG-1 through ENG-4) are subject to MACT ZZZZ and comply by following the requirements of NSPS JJJJ.
40 CFR 64	Compliance Assurance Monitoring	Yes	DEHY-1, DEHY-2, and TK- 701	Compressor engines (ENG-1 through ENG-4) have an uncontrolled PTE greater than 100 tpy of NO _x and CO but are subject to NSPS JJJJ and per 40 CFR 64.2(b)(1)(i) can take credit for an emissions reduction. TK-701 has an uncontrolled PTE greater than 100 tpy of VOC but is subject to NSPS OOOOa and per 40 CFR 64.2(b)(1)(i) can take credit for an emissions reduction. These units are therefore not subject to 40 CFR 64. Dehydrators have uncontrolled VOC emissions greater than 100 tpy. DEHY-1 and DEHY-2 emissions are controlled by FL-2a and TO-2. Thus, DEHY-1 and DEHY-2 are subject to this regulation.
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility is an affected facility, as it will use flammable process chemicals such as propane at quantities greater than the thresholds. The facility will develop and maintain an RMP for these chemicals.
Title IV – Acid Rain 40 CFR 72	Acid Rain	Yes	Facility	The facility does not operate an affected source under this subpart.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This facility is not an acid rain source. This regulation does not apply.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility is not an acid rain source and is therefore not subject to this regulation.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This regulation establishes an acid rain nitrogen oxide emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO ₂ . This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation establishes a regulation for the protection of the stratospheric ozone. The regulation is not applicable because the facility does not "service", "maintain" or "repair" class I or class II appliances nor "dispose" of the appliances [40 CFR Part 82.1(a)].

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

- The Black River Gas Processing Plant has multiple residue gas and NGL outlets planned to ensure offloading of the process streams. In the event that the 3rd party pipeline offloads have issues or outages, and they cannot take the residue gas or NGL, the inlet gas will be appropriately curtailed to ensure that gas is not flared.
- The Amine and Glycol flash gases are routed back to the process instead of routing to the flare, thus reducing the amount of gas burned in the flare. These streams can be routed to the flare if needed, to ensure control.
- Emissions from the condensate tanks and produced water tanks are controlled by the vapor combustor to reduce VOC emissions. Compressor blowdowns are routed to flare to reduce emissions during maintenance and malfunction.
- The thermal oxidizers installed at the Black River Gas Processing Plant have 99% destruction efficiency
- Glycol still vapors (BTEX) in Plant 3 are routed to the thermal oxidizer (TO-2), instead of the flare. This increases the destruction efficiency of the BTEX vapors and reduces the fuel consumption in the thermal oxidizer.
- The facility has an LDAR program in place to ensure leaks are found and the components are repaired in a timely manner. DLK also utilizes enviro seal valve for components and nitrile rubber for seals, for efficiency and longevity.
- The Black River Gas Processing Plant has modern process and safety systems in place that monitor fire and hazardous gases continuously. The Black River Gas Processing Plant has fulltime monitors to observe and locate any safety and/or process issues that could result in an incident. This safeguards health and safety of not only the employees working at the facility but the surrounding area and environment.
- All required documentation is kept on site and will be made available to the department upon request.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternative operating scenarios at Black River Gas Processing Plant.

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	х
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- See attached, approved modeling **waiver for all** pollutants from the facility.
- See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- No modeling is required.

Modeling is not being submitted with this application pursuant to 20.2.70 NMAC. Air dispersion modeling for this facility was completed and submitted with NSR Permit 6567-M8

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit	Test Description	Test Date
ENG-1	Annual Test	8/13/2020
ENG-2	Annual Test	8/14/2020
ENG-3	Annual Test	8/13/2020
ENG-4	Annual Test	8/14/2020

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Each engine (Units ENG-1 through ENG-4) has uncontrolled NOX and CO emissions greater than 100 tpy, and the dehydrators (Units DEHY-1 and DEHY-2) and produced water tanks (Unit TK-701) have uncontrolled VOC emissions greater than 100 tpy. ENG-1 through ENG-4 have inherent process controls or are subject to federal regulation that brings their respective emission rates below emission monitoring thresholds. DEHY-1, DEHY-2, and TK-701 are subject to 40 CFR 64. CAM Plans for the respective units are attached to this section.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

DLK believes that the Black Water Gas Processing Plant complies with each applicable state and federal regulation identified in Section 13 (Determination of State & Federal Air Quality Regulations). In the event that DLK discovers new information affecting the compliance status of the facility, DLK will make appropriate notifications and/or take corrective actions to maintain the required compliance.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The facility will continue to comply with currently applicable regulations and is committed to complying with newly effective regulations.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Compliance certification will be submitted annually and will begin with the issuance of this Title V operating permit.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances?
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 Yes X No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

No 40 CFR 82 requirements apply to this facility.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

No compliance plan is required as the Black River Gas Processing Plant is within the compliance.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The facility is subject to RMP requirements for NGLs. Matador will submit the list of all applicable substances to the EPA.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

Yes, the facility is 37 km away from the Texas border. The facility is more than 50 km away from local pollution control programs, Indian Tribes, and Pueblos.

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC: Name: MR. Casey Snow Title: VP – Regulatory, Environmental, and Safety Phone: (972) 371-5284 E-mail: <u>csnow@matadorresources.com</u> Address: 5400 LBJ Freeway, Suite 1500, Dallas, TX 75240

DLK Black River Midstream LLC /Black River Gas Processing Plant CAM Plan for Dehydrator Vent Controlled by Flare

I. Background

A. Emissions Unit

Description:	Dehydrator Vent
Identification:	DEHY-1
Facility:	Black River Gas Plant

B. Applicable Regulation, Emission Limit, and Pre-CAM Monitoring Requirements

Regulation: Operation and reporting requirements created in NSR Permit 6567-M8 et seq. to establish federally enforceable recognition of the Dehydrator Vent.

Uncontrolled Emissions:

VOC (tpy)	H ₂ S (tpy)	HAPs (tpy)
848.88	0.23	82.12

Pre-CAM Monitoring Requirements: There are no pre-CAM monitoring requirements.

C. Control Technology, Capture System, Bypass, PER

Controls: Capture System: Bypass:	re System: N/A	
Potential pre-control o	levice emissions:	848.88 tpy VOC, 82.12 tpy HAPs, 0.23 tpy H_2S Under 40 CFR § 64.2(a) this is a CAM affected unit.
Potential post-control	device emissions:	0 tpy VOC, 0 tpy HAPs, 0 tpy H_2S The flare destruction removal efficiency (DRE) is 98%.

II. Monitoring Approach

The key elements of the monitoring approach are presented in the attached table.

III. Response to Excursion

Per 40 CFR §64.1, excursion is defined as: a departure from an indicator range established for monitoring under this part, consistent with any averaging period specified for averaging the results of the monitoring. Excursions of the flare system will trigger an inspection, corrective action, and reporting. Maintenance personnel will inspect the flare within 24 hours and make needed repairs as soon as practicable.

	Indicator No. 1	Indicator No. 2	Indicator No. 3
I. Indicator	Presence of combustion in the flare.	Presence of visible emissions.	Totalized flow volume.
Measurement Approach	The presence of combustion in the flare shall be monitored by a thermocouple with alarm that signals non-combustion of gas.	The flare should be monitored for visible emissions once during each week that the flare is operational.	Flow rate shall be measured continuously with a flow meter and the hourly flow rate shall be determined by averaging a minimum of 4 equally spaced readings throughout the hour.
I. Indicator Range	Flame present (sensed) or no flame present (sensed).	Visible emissions present or not present, in accordance with 40 CFR § 60, Appendix A, Reference Method 22.	Flow rate should be within the operating velocities specified in 40 CFR § 60 Subpart A.
III. Performance Criteria A. Data Representativeness	Destruction depends upon the presence of a flame. If the flame is not present, VOC and H_2S are not being destroyed.	Efficient combustion is assumed if no visible emissions are observed when a flame is present.	Efficient combustion is assumed if flow rates are within 60 ft/s and 400 ft/s determined based on 40 CFR § 60.18.
B. QA/QC Practices and Criteria	Proper operation of the flare achieved by maintaining the non-combustion thermocouple with alarm system. Operators will record the date and result of each such maintenance activity, as well as repairs or replacements made.	Visible emissions to be determined in accordance with Method 22 of Appendix A of 40 CFR § 60 Subpart A.	Verification will be in accordance with 40 CFR § 60 Subpart A, Appendix A Test method used to measure flow.
C. Monitoring Frequency	The thermocouple and alarm system will be tested twice a year by turning off the thermocouples and recording the time required for the alarm to respond.	Visible emissions observation in accordance with Method 22 shall be conducted annually.	Continuous monitoring with flow rates determined hourly.
D. Data Collection Procedures	Records will be maintained of flare shutdown for any reason, including failure to deliver fuel, and of inspection and maintenance to the flare and flare pilot.	Records shall be maintained of all visible emissions observations.	Hourly flow rates shall be recorded.
E. Averaging Period	Not applicable.	A 15-min Method 22 observation will be performed annually.	Hourly.

Monitoring Approach: Black River Gas Plant Flare (FL-2)

Justification

I. Background

The monitoring approach outlined here applies to the flare (FL-2) which is a control device for noncondensable vapors from the dehydrator still vent. The dehydrator still vent is the CAM affected unit.

II. Rationale for Selection of Performance Indicators

The destruction and removal of VOC is dependent upon combustion and on proper operation of the flare. Thus, the monitoring approach is based on three primary indicators: presence of combustion in the flare, presence of visible emissions, and gas volume flow to the flare.

III. Rationale for Selection of Indicator Ranges

When ensuring proper operation of the flare, the presence of a flame to initiate or maintain combustion has only two states: a flame is present or a flame is not present. By design, a thermocouple-based alarm system will indicate the state of combustion. For the purposes of Method 22, the presence of visible emissions has only two states: there are visible emissions or there are not. Proper operation of the flare would correspond with no visible emissions in the presence of a flame. The measurement of totalized flow volume will determine if the volumetric flow is within the design specifications and the maximum velocity determined from manufacturer specifications of the flare.

The permit issued by the NMED requires the flare to achieve 98 percent or greater destruction efficiency.

DLK Black River Midstream LLC /Black River Gas Processing Plant CAM Plan for Dehydrator Vent Controlled by Thermal Oxidizer

I. <u>Background</u>

A. Emissions Unit

Description:	Dehydrator Vent
Identification:	DEHY-2
Facility:	Black River Gas Plant

B. Applicable Regulation, Emission Limit, and Pre-CAM Monitoring Requirements

Regulation: Operation and reporting requirements created in NSR Permit 6567-M8 et seq. to establish federally enforceable recognition of the Dehydrator Vent.

Uncontrolled Emissions:

VOC (tpy)	H ₂ S (tpy)	HAPs (tpy)
833.59	0.23	81.82

Pre-CAM Monitoring Requirements: There are no pre-CAM monitoring requirements.

C. Control Technology, Capture System, Bypass, PER

Controls: Capture System: Bypass:		er (Unit TO-2) dizer is the primary control for the dehydrator e still vent overheads.
Potential pre-control c	levice emissions:	833.59 tpy VOC, 81.82 tpy HAPs, 0.23 tpy H ₂ S Under 40 CFR § 64.2(a) this is a CAM affected unit.
Potential post-control	device emissions:	0 Tpy VOC, 0 tpy HAPs, 0 tpy H ₂ S The thermal oxidizer destruction removal efficiency (DRE) is 98%.

II. Monitoring Approach

The key elements of the monitoring approach are presented in the attached table.

III. Response to Excursion

Per 40 CFR §64.1, excursion is defined as: a departure from an indicator range established for monitoring under this part, consistent with any averaging period specified for averaging the results of the monitoring. Excursions of the thermal oxidizer will trigger an inspection, corrective action, and reporting. Maintenance personnel will inspect the thermal oxidizer within 24 hours and make needed repairs as soon as practicable.

ionneoring rippi oueni Biuen	River das Flant Flier mai Oxiuizer		
	Indicator No. 1	Indicator No. 2	Indicator No. 3
I. Indicator	Presence of combustion in the thermal oxidizer.	Combustion Temperature.	Equipment Inspection.
Measurement Approach	The presence of combustion in the thermal oxidizer shall be monitored by a flame-detection device with an alarm that signals non-combustion of gas.	The temperature of the thermal oxidizer shall be measured with a thermocouple.	The thermal oxidizer is inspected on a semi- annual basis to ensure that the process is properly controlled. The unit is inspected according to a Manufacturer's recommended procedure or NMED- approved inspection protocol which includes at minimum the methods for inspecting and adjusting proper minimum combustion temperature and proper air distribution.
II. Indicator Range	Flame present (sensed) or no flame present (sensed).	>1600 ^o F	Pass or fail of equipment inspection.
III. Performance Criteria A. Data Representativeness	Destruction depends upon the presence of a flame. If the flame is not present, VOC, HAPs, and H ₂ S emissions are not being destroyed.	Destruction depends upon achieving a temperature of \geq 1600° F.	Inspections and maintenance are being conducted on the thermal oxidizer.
B. QA/QC Practices and Criteria	Proper operation of the thermal oxidizer achieved by maintaining the flame- detection device with alarm system. Operators will record the date and result of each such maintenance activity, as well as repairs or replacements made.	Proper operation of the thermal oxidizer shall be achieved by maintaining the non-combustion thermocouple. Operators will record the date and result of each thermocouple maintenance activity, as well as repairs and replacements made.	The thermal oxidizer is inspected on a semi- annual basis to ensure that the process is properly controlled. The unit is inspected according to a Manufacturer's recommended procedure or NMED- approved inspection protocol which includes at minimum the methods for inspecting and adjusting proper minimum combustion temperature, and proper air distribution.
C. Monitoring Frequency	The flame detection device and alarm system will be tested twice a year by turning off the flame detection device and recording the time required for the alarm to	One measurement will be recorded per 24 hours.	Semi-annually.
D. Data Collection Procedures	Respond .will be maintained of thermal oxidizer shutdown for any reason, including failure to deliver fuel, and of inspection and maintenance to the thermal oxidizer.	Temperature will be recorded automatically once per day with a data logger. Records will be available for review at the site.	Semi-annually inspections are performed and documented by the observer. Any repairs or adjustments are documented.
E. Averaging Period	Not applicable.	Not applicable.	Not applicable.

Monitoring Approach: Black River Gas Plant Thermal Oxidizer (TO-2)

Justification

I. Background

The monitoring approach outlined here applies to the thermal oxidizer (TO-2) which is a control device for vapors from the dehydrator non-condensable still vent overheads The dehydrator vent is the CAM affected unit.

II. Rationale for Selection of Performance Indicators

The destruction and removal of VOC, HAPs, and H₂S is dependent upon combustion and on proper operation of the thermal oxidizer. Thus, the monitoring approach is based on three primary indicators: presence of combustion in the flare, monitoring combustion temperature, inspecting integrity of the ducting from the process equipment to the thermal oxidizer.

III. Rationale for Selection of Indicator Ranges

In the case of ensuring proper operation of the thermal oxidizer, the presence of a flame to initiate or maintain combustion has only two states: a flame is present or a flame is not present. By design, a thermocouple-based alarm system will indicate the state of combustion. The combustion temperature will determine the design-specified combustion of VOC, HAPs and H₂S. An inspection of the ducting from the process equipment to thermal oxidizer will ensure the proper operation of the thermal oxidizer.

The permit issued by the NMED requires the thermal oxidizer to achieve 98 percent or greater destruction efficiency.

DLK Black River Midstream LLC / Black River Gas Processing Plant CAM Plan for Produced Water Tank emissions Controlled by Vapor combustion unit

I. <u>Background</u>

A. Emissions Unit

Description:	Produced water tank emissions
Identification:	TK-701
Facility:	Black River Gas Plant

B. Applicable Regulation, Emission Limit, and Pre-CAM Monitoring Requirements

Regulation:

Operation and reporting requirements created in NSR Permit 6567-M8 et seq. to establish federally enforceable recognition of the Produced water tank emissions.

Uncontrolled Emissions:

VOC (tpy)	HAPs (tpy)
1697.69	28.03

Pre-CAM Monitoring Requirements: There are no pre-CAM monitoring requirements.

C. Control Technology, Capture System, Bypass, PER

Controls: Capture System: Bypass:	Vapor Combustion Unit (Unit VCU-1) N/A The vapor combustion unit is the primary control for the produced water tank working, standing, and flash emissions.	
Potential pre-control o	levice emissions:	1697.69 tpy VOC, 28.03 tpy HAPs Under 40 CFR § 64.2(a) this is a CAM affected unit.
Potential post-control	device emissions:	0 tpy VOC, 0 tpy HAPs. The vapor combustion unit DRE is 98%.

II. Monitoring Approach

The key elements of the monitoring approach are presented in the attached table.

III. Response to Excursion

Per 40 CFR §64.1, excursion is defined as: a departure from an indicator range established for monitoring under this part, consistent with any averaging period specified for averaging the results of the monitoring. Excursions of the vapor combustion unit (VCU) will trigger an inspection, corrective action, and reporting. Maintenance personnel will inspect the vapor combustion unit within 24 hours and make needed repairs as soon as practicable.

	Indicator No. 1	Indicator No. 2
I. Indicator	Presence of combustion in the vapor combustion unit.	Equipment Inspection.
Measurement Approach	The presence of combustion in the vapor combustion unit shall be monitored by a flame- detection device with an alarm that signals non-combustion of gas.	The vapor combustion unit is inspected on a semi- annual basis to ensure that the process is properly controlled. The unit is inspected according to a manufacturer's recommended procedure and NMED- approved inspection protocol which includes at minimum the methods for inspecting and adjusting proper minimum combustion temperature and proper air distribution.
II. Indicator Range	Flame present (sensed) or no flame present (sensed).	Pass or fail of equipment inspection.
III. Performance Criteria A. Data Representativeness	Destruction depends upon the presence of a flame.	Inspections and maintenance are being conducted on the vapor combustion unit.
B. QA/QC Practices and Criteria	Proper operation of the vapor combustion unit achieved by maintaining the flame-detection device with alarm system. Operators will record the date and result of each such maintenance activity, as well as repairs or replacements made.	The vapor combustion unit is inspected on a semi- annual basis to ensure that the process is properly controlled. The unit is inspected according to a manufacturer's recommended procedure and NMED- approved inspection protocol which includes at minimum the methods for inspecting and adjusting proper minimum combustion temperature, and proper air distribution.
C. Monitoring Frequency	The flame-detection device and alarm system will be tested twice a year by turning off the flame-detection devices and recording the time required for the alarm to respond.	Semi-annually.
D. Data Collection Procedures	Records will be maintained of vapor combustion unit shutdown for any reason, including failure to deliver fuel, and of inspection and maintenance to the vapor combustion unit.	Semi-annually inspections are performed and documented by the observer. Any repairs or adjustments are documented.
E. Averaging Period	Not applicable.	Not applicable.

Monitoring Approach: Black River Gas Plant Vapor combustion unit (VCU-1)

Justification

I. Background

The monitoring approach outlined here applies to the vapor combustion unit (VCU-1) which is a control device for working, standing, and flash emissions from the produced water tank. The produced water tank is the CAM affected unit.

II. Rationale for Selection of Performance Indicators

The destruction and removal of VOC and HAPs are dependent upon combustion and on proper operation of the vapor combustion unit. Thus, the monitoring approach is based on two primary indicators: presence of combustion in the flare, inspecting integrity of the ducting from the process equipment to the thermal oxidizer.

III. Rationale for Selection of Indicator Ranges

In the case of ensuring proper operation of the vapor combustion unit, the presence of a flame to initiate or maintain combustion has only two states: a flame is present or a flame is not present. By design, a thermocouple-based alarm system will indicate the state of combustion. An inspection of the ducting from the process equipment to thermal oxidizer will ensure the proper operation of the thermal oxidizer.

The permit issued by the NMED requires the vapor combustion unit to achieve 98 percent or greater destruction efficiency.

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

N/A – the facility does not have any other relevant information.

Section 22: Certification

Company Name: DLK Black River Midstream LLC SEAN GRAD hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this 13 day of DEC. , 2023, upon my oath or affirmation, before a notary of the State of Date *Signature PRESCOENT FAW CYGRA Title Printed Name Scribed and sworn before me on this 13 day of December 2023 lexas My authorization as a notary of the State of ____ expires on the mber 2025 day 12.13.2023 Date Notary's Signature 1111 SUSAN PEPIN Notary Public, State of Texas Comm. Expires 09-27-2025 Notary ID 133355037 Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.