APPENDIX A - INVENTORY FIELD SHEETS

													Page	e 9		 đ		5 	OBS			
	Spring Name					S	rings Or	Springs Online ID#_				¹ Spr	¹ Spring Type	/pe						I		
ຍາອເ	Country US State NM	County					²Ser	² Sensitivity		i S	Site Description	escri	ption									
Ger	³ Land Unit	_ Land Unit Detail	tail																			
	Quad	HUC																				
	⁴ Georef Source	Device					Õ	Datum														
fero	UTM Zone UTM East	ast			UTU	UTM North				Ă	Access Directions	» Dir	ection	JS								
99	Lat	Long				Elev	>	ft c	ft or m													
	EPEft or m Declination		Comment	ent																		
E	Sunrise: DJ	z	ц		0		Σ	S	۲ ۲		<			Σ		_ ا					Latitude	ade
S	Sunset: DJ	z	ш		0		Σ	s I	۲ 		A			Σ		_ ا				0	checked?	ed?
	Date	Begin Time				End Time	۵		0	Site Condition	onditi	u										
ləλır	Surveyors																					
IS					Pr	Project	New Mexico	xico														
	Description		Area (m²)	⁵ Surf ⁶ Type	⁵ Surf ⁶ Sub- ⁷ Slope Type Type Var		Aspect T/M	Aspect Slope ⁸ Soil [/MDeg moist	⁸ Soil Water moist dpth(cm) %	Water (cm) %	er 1 % 1		<u>ε</u>	⁰Sub 4	⁹ Substrate %	e % 6 7	0	OrgOth	Prec %	Litter %	000M	Prec Litter Wood Litter % % (cm)
S	A															\vdash						
ital	В										=	_	_			\dashv		_				
peq	c										\rightarrow	-	-+			\rightarrow						
icro											\rightarrow	-	-+			-+		+				
Ν											\dashv					-+		-				
											=					-+						
	G										-					-		_				
se	Whose Camera Used							Photo #						Des	script	ion (c	Description (caption)					
6eu	Sketch Map Location																					
J																						
	Entered in database by					Date		Chec	Checked by								Date					
									ž	∋w Me	∋xico	Surfa	ace V	ater (Jualit	v Bur	New Mexico Surface Water Quality Bureau and SSI rev March 2019	d SSI	rev N	larch	2019	

1 Discharge Sphere (Spring Type) Anthropogenic Cave Exposure Fountain Geyser Gushet Hanging Garden Helocrene Hillslope Hypocrene Limnocrene Mound-form Rheocrene Sensitivity 2 None Location Survey Both Land Unit 3 BLM DOE NPS Private State Tribal USFS Other Georeference Source 4 GPS Map Other Surface Type 5 BW Backwall Cave/Tunnel С CH Channel CS Colluvial slope HGC High Grad. Cienega LGC Low Grad Cienega Mad Madiculous Flow Ρ Pool PM Pool Margin SB Sloping Bedrock SZ Spray Zone SM Spring Mound TE Terrace Oth Other/anthropogenic Surface Subtype 6 CH Riffle, Run, Margin, Eph CS Wet, Dry SB Wet, Dry TE LRZ, MRZ, URZ, HRZ UPL,LRZMRZ,LRZURZ, MRZURZ, HRZMRZ All Anthro (human influence) 7 **Slope Variability** Low, Medium, High

5 - Saturated-Dry 6 - Wet 7 - Saturated-Moist 8 - Wet-Saturated 9 - Saturated 10 - Inundated 9 Substrate 1 clay 2 silt 3 sand (0.1-1mm) 4 fine (pea) gravel (1-10 mm) 5 coarse gravel (1-10 cm) 6 cobble /small boulders(10-100 cm) 7 large boulders (>1 m) 8 bedrock Organic Soil, including peat Other (usually anthropogenic) 10 Lifestage Adult Egg Exuviae Immature Larvae Mixed Other Pupae Shell 11 Habitat AQ - Aquatic T - Terrestrial 12 Method (Invertebrates) Spot Benthic 13 Detection Type (Vertebrates) Call Observed Sian Reported (by others) Other 14 Cover Codes GC Ground Cover SC Shrub Cover MC Midcanopy Cover TC Tall Canopy Cover AQ Aquatic Cover NV Nonvascular (moss, etc) **BC Basal Cover** 15 Emergence Environ/Detail Cave Subaerial Subglacial Subaqueous-lentic freshwater Subaqueous-lotic freshwater

Soil Moisture

1 - Dry-Moist

2- Moist-Drv

3 - Wet-Dry

4- Moist

0 - Dry

8

Subagueous-marine 16 Source Geomorphology **Contact Spring** Fracture Spring Seepage or filtration **Tubular Spring** 17 Flow Force Mechanism Anthropogenic Artesian Geothermal Gravity Other 18/19 Parent Rock Type/Subtype Igneous andesite basalt dacite diorite gabbro grandodiorite granite peridotite rhyolite Metamorphic gneiss marble quartzite slate schist Sedimentary coal conglomerate dolomite evaporates limestone mudstone sandstone shale siltstone Unconsolidated 20 Channel Dynamics Mixed runoff/spring dominated Runoff dominated Spring dominated Subaqueous 21 Flow Consistency Dry intermittent Erratic intermittent Perennial **Regular intermittent** 22 Measurement Technique Current meter Weir Flume Other

Subaqueous-estuarine New Mexico Surface Water Quality Bureau and SSI rev March 2019

Date			ked by	Chec			Date		atabase by	e ni bere	∋tn∃
											B
											nţ
											Benthic Rep
		h	_								Re
Comments	Sec		S	strate	sqnS		cm Cm	√elocity Velocity	Location	# dəЯ	σ
	əmiT	- 601		1			dtaaQ	vtiooleV			
											1
											1
	+										
					<u> </u>						
											1
											_
	+										Invertebrates
											erte
											bra
											tes
											0,
	+										
											1
	+										
	+										
		no	וופו								4
Comments	- Кер	oq ₁₅Meth	-deH ¹¹	90εj2 ⁰¹	Qty			e	Species Name		
S80	Ìo		= əße		-	_			Spring Name		

New Mexico Surface Water Quality Bureau and SSI rev March 2019

Date	жеq рλ	Den Chec	Date	ed in database by	nətn=
	же q р λ				
SIN5111100		pul		anado	
Comments	Page of	.oN	əmsN se	sN pning2	

New Mexico Surface Water Quality Bureau and SSI rev March 2019

	Verified?														
	Comments														Date Date Outson Mutter During Colline During Colli
	т														
	U														
	ш														
	ш														4
															ed by_
	ပ														Checked by
	В														
	A														
	¹⁴ Str														Date
Flora notes	Species Name														Entered in database by D
					 	 e	lol-	ı	 	 	 	 	 		 nterec

OBS

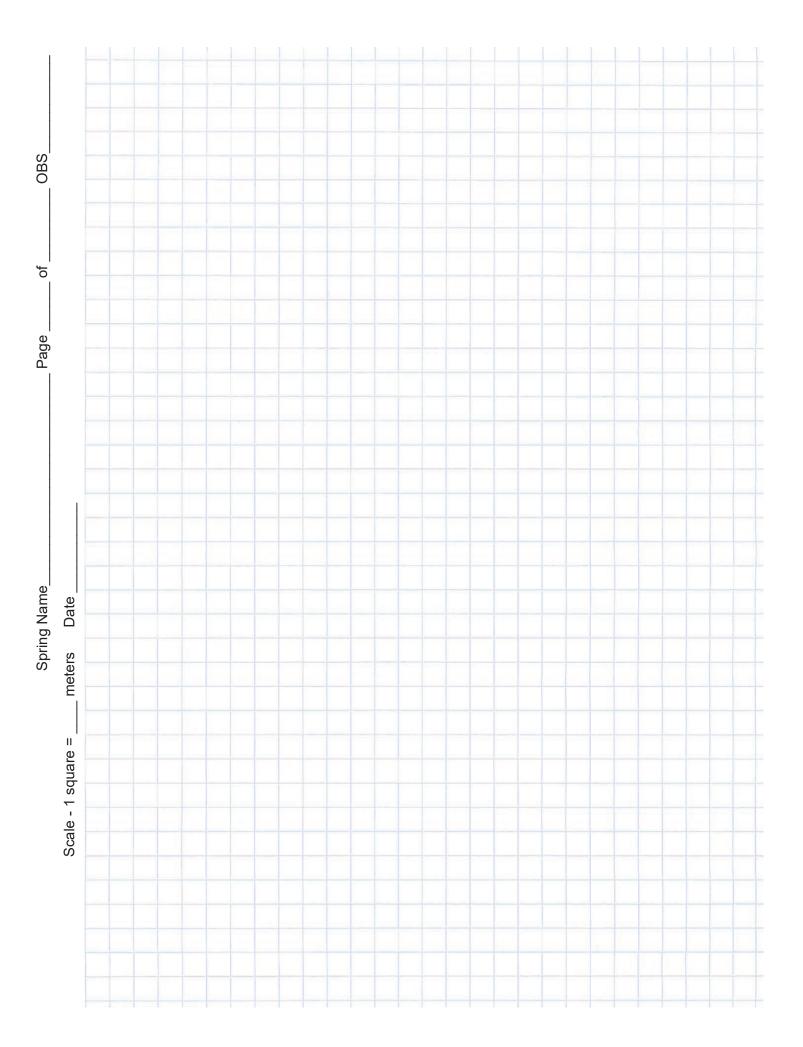
ď

Page_

Spring Name_

	Verified?														
	Comments														Date
	т											 			
	U														
	ш														
	ш														
															ed by
	U														Checked by
	۵														
	A														
	¹⁴ Str														Date
Flora notes	Species Name														Entered in database byD
						e	lor ⁼	ł							Intere

OBS


ď

Page_

Spring Name_

							S	Spring Name	lame				Page	of	OBS	
	ă	Device 1							Date Last Calibrated	t Calibra	ted				Weather	
	õ	Device 2							Date Last Calibrated	t Calibra	ted				Air Temp O	C or F
	Ď	Device 3							Date Last Calibrated	t Calibra	ted					2
	Sa	Sampling Locations		(circle)									(circle)	cle)	No current/recent	ecent
		1 source do	down-gradient		m exitir	stream exiting wetland		pool hole	le well	l other		stand	standing water	flowing water	precipitation	
		comments													Recent rain	sui vey
		2 source do	down-gradient		n exitin	stream exiting wetland	lood pr	ol hole	le well	other		stand	standing water	flowing water	Show on ground Show, hail, or sleet	ound or sleet
		comments													during survey	~
	с	source	down-gradient		n exitin	stream exiting wetland	lood pu	ol hole	e well	other		stand	standing water	flowing water		
ality.	_	comments														
er Qua		Field Measurements	surements	~												
jeW		Location #	Hd	EC		sc	Water Temp (°C)	-	Turbidity ntu	Disso %	Dissolved O ² % ma/L	Alkalinity ma/L	Salinity	Other	Device	
	J												-			
					_											
		Collected for Analysis	or Analys	<u>ıs</u> .	-			-								
	L	San	Sample Type		Samp	Sample Taken?	ildnG جد	olicateT	icateTaken?	Cont	Container	Filtered (Y/N)		Treatment		
	1	Anions														
		Cations														
		Nutrients														
	N	² H and ¹⁸ O lsotopes	otopes													
	Ent	Entered in database by	ase by					Date_	a		Checked by	by		Ď	Date	

New Mexico Surface Water Quality Bureau and SSI rev March 2019

APPENDIX B - ASSESSMENT FIELD SHEETS

	Stressor Checklist	1 Absent	2 Minor	3 Moder- ate	4 Intense
mpact	Flow regulation or hydrological alteration			ate	
	Surface water diverted away (ditch, pipe, etc)				
	Springbox, springhouse, or cap (enclosed in concrete, metal, rock, etc)				
	Upgradient pre-emergence groundwater flow capture (e.g. pipe)				
	Downgradient capture of surface flow (into tank, trough, etc)				
	Flow regulated by impoundment or dam (e.g., berm, concrete structure)		1		
	Source excavated to create open water (e.g., tank)		1		
	Non-point source surface water pollution (e.g., road, agricultural, mining	g)	1		
	Point source surface water pollution (e.g., sewage leakage, ungulate feces)		1		
	Groundwater contamination (evidenced by dead animals, vegetation, odo	r)			
	Nearby wells (groundwater extraction - consider size and proximity)		1		
	Prolonged drought (Palmer's index, moderate=2, severe=3, extreme=4)		1		
	Other hydrologic disturbance	_			
	Flow regulation, hydrologic alteration (max=48)				
	Soil or geomorphic alteration				
	Erosion - overall landscape, general, human influenced				
	Erosion - on-site human influenced (e.g., channel, gully, cutbank)				
	Excavation (e.g., pond creation, springbox and installation)				
	Soil compaction (e.g., livestock trampling, vehicle use)				
	Deposition, debris flow, spoil pile, or land fill				
	Pedestals or hummocks due to livestock or wildlife				
	Ruts (from vehicles)				
	Soil removal (e.g., gravel or other mining, road construction)				
	Soil contamination (e.g., oil, salt licks, refuse)				
	Trails (human or animals)				
	Other soil disturbance				
	Soil or geomorphic alteration (max=44)				
	Animal impacts				
	Habitat alteration by aquatic species (e.g., beaver, muskrat, nutria)				
	Habitat alteration by terrestrial species (e.g., gopher, squirrel burrows)				
	Wildlife grazing, browsing, defecating, or trampling (e.g., elk, deer)				
	Livestock grazing, browsing, defecating, or trampling				
	Non-native predators (e.g., crayfish, introduced fish, domestic animals)		1		
	Other animal effects	_			
	Animal impacts (max=24)				

	Stressor Checklist	1 Absent	2 Minor	3 Moder- ate	4 Intense
Impact	Recreation impacts				
ĺ	Camp sites (e.g., fire rings, refuse, site leveling, compaction)				
	Tracks or trails by recreational motorized vehicles (dirt bikes, ATV, UTV)				
	Tracks or trails from hiking, mountain biking				
	Tracks or trails from pack animals				
	Hunting/fishing (e.g., game cameras, salt licks, carcasses, lures/line)				
	Target practice (e.g., shotgun shells, gunshot damage)				
	Urban parklands, sports fields, swimming pools				
	Passive recreation (e.g., birdwatching, photography, hot spring)				
	Refuse or other waste disposal (e.g., toilet paper, cans, bottles)				
	Excessive human visitation				
	Human modification (e.g., hot springs dams, structures, climb/cave gear)				
	Other recreation disturbance				
	Recreation impacts (max=48)				
	Structures or development impacts				
	Abandoned infrastructure (non-functioning piping, springboxes, or tanks)				
	Utility corridors or power lines				
	Residential development				
	Industrial or commercial development, mining structures	1			
	Light or noise pollution				
	Erosion control structure (e.g., gabeons, grade controls)				
	Wildlife entrapment risk (e.g., missing springbox lid, open tank no escapement)				
	Fence - geomorphically inappropriate and/or nonfunctioning				
	Oil or gas well				
	Pipeline external to site (e.g., oil, gas, water)				
	Other structural disturbance				
	Structures or development impacts (max=44)				
	Land use impacts				
	Fire regime				
	Crop production (current or past)				
	Ranch use (current or past)				
	Road, incl. construction or maint. (paving type, use intensity, and proximity)				
	Restoration, rehabilitation, or remediation actions				
	Sensitive species protection efforts (e.g., fish translocation)				
	Biological resource extraction (e.g., aquaculture, fisheries, plant collecting)				
	Physical resource extraction (e.g., mining, quarrying)				
	Forest management (e.g., thinning, timber harvest, planting)				
	Scientific activities, including sentinel site monitoring				
	Education activities (e.g., environmental education, tourism, youth camp)				
	Other land use effects				
	Land use impacts (max=48)				

Spring Type Dichotomous Key

No.	Alternative	Springs Type
1	Groundwater expression of flow emerges or emerged within a cave (a water passage through basalt or other volcanic rock, or limestone), before flowing or emerging into the atmosphere	Cave
	Groundwater expression of flow emerges or emerged in a subaerial setting (direct contact with the atmosphere), including within a sandstone alcove, or subaqueously (beneath a body of water).	2
2	Groundwater is not expressed at the time of visit (the springs ecosystem is dry, though soil may be moist)	3
	Groundwater is expressed at the time of visit – seepage or flow is actively expressed (water or saturated soil is evident)	5
3	Evidence of prehistoric groundwater presence and/or flow exists (e.g., paleotravertine, paleosols, fossil springs-dependent species, etc.), but no evidence of contemporary flow or aquatic, wetland, or riparian vegetation	Paleospring
	Not as above	4
4	Soil may be moist but is not saturated by groundwater. The presence of groundwater is evidenced by wetland or obligate riparian vegetation	Hypocrene
	Groundwater is expressed through saturated soil, or as standing or flowing water	5
5	Groundwater is evident, but discharge is primarily lentic (standing or slow-moving), and flow downstream from the spring's ecosystem may be absent or very limited	6
	The majority of groundwater discharge flows actively within and/or from the site, and is primarily lotic (fast-moving)	10
6	Groundwater is expressed as a low gradient (<16°) patch of shallow stand- ing water or saturated sediment or soil, typically strongly dominated by emergent wetland vegetation	Helocrene
	Subaqueous discharge creates an open body of water which lacks emergent wetland vegetation, and may or may not have outflow	7
7	The groundwater table surface is exposed as a pool, but without a focused inflow source, and with no outflow	Exposure
	Pool with one or more focused, subaqueous inflow sources, and generally with outflow, usually focused outflow	8
8	Springs source is an open pool of groundwater, not surrounded by a springs-created mound	Limnocrene
	Springs source is surrounded by, and has generated, a mound that may be chemical precipitate, ice, or organic matter	9

Spring Type Dichotomous Key Page 2

No.	Alternative	Springs Type
9	Springs source is surrounded by, or emerges from a mound composed of	Mound-form
	carbonate or other chemical precipitate	(Carbonate)
	Springs source is surrounded by, and/or emerges from a mound composed	Mound-form (ice)
	of ice in a permafrost-dominated landscape (not reported in New Mexico)	
	Springs source is surrounded by, and/or emerges from a mound composed	Mound-form
	of organic matter, such as decomposing vegetation	(organic)
10	Springs flow emerges explosively and periodically, either by geother- mal-derived or gas-derived pressure (not reported in New Mexico)	Geyser
	The springs flow emerges non-explosively, but by the action of gravity	11
11	Flow emerges from a focused point and rises well above ground level (10 cm or more)	Fountain
	Flow may emerge from a focused point, but without substantial rise above ground level	12
12	Flow emerges from a near-vertical or overhung, cliff-dominated bedrock surface, and not within an established surface flow channel (although a surface channel may exist above the source cliff)	13
	Not as above	14
13	Focused flow emerges from a nearly vertical bedrock cliff face (sometimes from a cave) and cascades, usually with some madicolous flow (a shallow sheet of white water)	Gushet
	Flow emerges across a horizontal geologic contact, typically dripping along a seepage front of sandstone over a shale or clay aquitard, and often creating a wet backwall. If a surface channel exists above the source area, a plunge pool and runout channel are likely to occur. This springs type may include unvegetated seepage patches on near-vertical or overhung bedrock walls.	Hanging garden
14	Flow emerges within a surface flow-dominated channel, which upstream may be a perennial stream or a dry channel	Rheocrene
	Flow emerges from a non-bedrock slope at a slope angle between 16° and 60°, and without an upslope channel. In some cases, these springs may emerge from the base of a cliff, but not from the cliff itself	15
15	Flow emerges within an active riparian channel margin or floodplain channel terrace and the source is subject to regular flood scour	Hillslope (Secondarily Rheocrene)
	Flow emerges in an uplands habitat, not associated with a channel that is subject to regular surface flow stream flood scouring	Hillslope (Uplands)

Exposure

springs occur where a water table is exposed, without flowing, at the Earth's surface.

S

I

S

Hypocrene

springs occur where groundwater is not expressed at the Earth's surface, but shallow groundwater is discharged by transpiration through wetland vegetation.

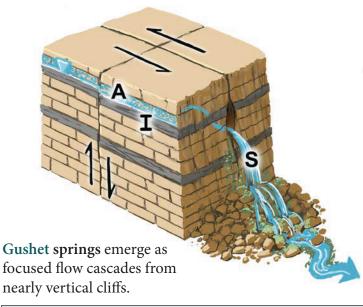
springs (semi-lotic) occur where artesian upwelling causes flow to rise higher than the surrounding landscape. Limnocrene springs emerge into a open pool of water.

Helocrene springs

are springfed wet meadows, called ciénegas at elevations up to about 2,135 m (7,000 ft), or groundwater-dependent fens at higher elevations. Mound-forming springs form where high calcium carbonate concentrations create travertine. This type also forms in the arctic where ice builds up, forming pingo ice hills or aufeis ice sheets.

B

Fig. 50. Lentic and semi-lotic springs types, redrawn for SSI by V. Leshyk, modified from Springer and Stevens (2009).


Cave springs emerge within a cave and flow into the surrounding landscape. Hanging gardens

emerge as seepage along a horizontal fracture or or geologic contact.

Geyser springs occur where groundwater is forcibly erupted by steam or gas pressure.

Hillslope

springs occur where groundwater emerges on gently to steeply sloping (15-60°) land. S

Rheocrene springs emerge into a well-defined wet or dry channel. They are commonly subject to regular surface-flow flooding.

Fig. 51. Lotic springs types, redrawn for SSI by V. Leshyk, modified from Springer and Stevens (2009).

SiteName_

Primary Type

Secondary Type

Condition Assessment Questions Page 1

Aquifer Functionality and Water Quality

The following questions are related to the apparent condition of the aquifer and water table, short-term climatic conditions, and the quality of groundwater at the source(s), as well as anthropogenic alteration of surface flow. Score with half decimals from 1.0 to 4.0.

A. Water table: Is there evidence that the water table is dropping and the aquifer is failing to produce natural quantities of water for the springs ecosystem? For example, is woody

vegetation (e.g., cottonwood, tree willow, other woody phreatophytes) showing evidence of mortality or declining health? Is woody upland vegetation encroaching? Or is an area now dry that was apparently previously groundwater supported? Is there an abandoned well or windmill? Any of these can indicate a declining water table.

- 1. The aquifer is depleted or in significant decline, as evidenced by: total loss of springs fauna (requires knowledge of springs fauna formerly occupying the site); total loss of wetland vegetation cover (observed as dead wetland plants), and/or substantial encroachment of upland vegetation.
- 2. The aquifer is moderately depleted, with evidence of decreasing or dying springs-dependent fauna or wetland vegetation cover, and/or encroachment of upland vegetation.
- 3. Aquifer is slightly but detectably depleted, with minor evidence of decreasing or dying wetland vegetation cover and/or limited encroachment of upland vegetation.
- 4. The aquifer appears to be in pristine or near-pristine condition, with no evidence of reduced flow, loss of wetland vegetation, or encroachment of upland vegetation.
- -- Surveyors are unable to assess the water table condition in the field, but will conduct follow-up research (e.g., interview the land manager) and assign a score.

B. Surface water quality: What is the quality of water after it emerges onto the surface? Is there visual, olfactory, or other evidence of contamination (e.g., feces, strong odor, unusual color)?

- 1. The surface water quality is extremely poor with strong visual, olfactory, or other indications.
- 2. Moderately low surface water quality, with some visual, olfactory, or other indications.
- 3. Moderately high surface water quality, with little visual, olfactory, or other indication of impairment.
- 4. High surface water quality, with no visual, olfactory, or other indication of impairment.
- -- Surveyors were unable to assess surface water quality in the field, but will conduct follow-up research (e.g., locate existing water quality data) and assign a score.

C. Springs flow: Is there evidence that the springs flow has been altered through human actions, such as wells, diversions, or capping?

- 1. The springs ecosystem that previously flowed is dry, with no flow evident at the source(s), or has been completely diverted or capped.
- 2. Springsflow from the source(s) has been greatly reduced due to wells, diversions, or capping.
- 3. Springsflow from the source(s) appears to have been slightly reduced due to wells, diversions, or capping.
- 4. Springsflow from the source(s) appears to be natural or near natural, with no wells, diversions, or capping.
- -- Surveyors are unable to assess springsflow in the field, but will conduct follow-up research (e.g., locating historical information about use) and assign a score.

Comments about aquifer functionality and water quality.

Geomorphology

The following questions are related to the natural geomorphic integrity of the springs ecosystem. Score with half decimals from 1.0 to 4.0.

D. Natural geomorphic diversity: Are the expected microhabitats for this springs ecosystem type present, and/or are additional natural microhabitats or anthropogenic microhabitats present? Are

geomorphic processes negatively influenced by human activities at the springs? Use Worksheet D to calculate this assessment score. The score calculated using Worksheet D may be interpreted using these descriptions:

1. The microhabitats that are expected or may occur in this springs ecosystem type are missing.

- 2. Few of the microhabitats that are expected or may occur in this springs ecosystem type are present.
- 3. Most, but not all of the microhabitats that are expected or may occur in this springs ecosystem type are present.
- 4. All of the microhabitats that are expected, as well as others that may occur in this springs ecosystem type are present.

E. Soil integrity: To what extent are the soils, if present, altered due to anthropogenic influences? Natural soils can be affected by trampling, paving, trailing, vehicle tracks, fire pits, and other

factors. What percent of the natural soils have been affected by these impacts? If an estimated percent cover is within 5% of a boundary score, a half-decimal should be applied.

- 1. 1. Between 75 to 100% of the surface area of natural soils, including peat, have been eliminated.
- 2. Between 50 to 75% of the surface area of natural soils, including peat, are altered and highly compromised.
- 3. Between 25 to 50% of the surface area of natural soils and/ or peat deposits are altered, and soils are somewhat compromised.
- 4. Between 0 to 25% of the surface area of natural soils and/or peat deposits are altered, or natural soils are not expected to occur at that springs ecosystem type (e.g., bedrock-dominated gushet or hanging gardens springs).

F. Natural physical disturbance: Is the site subject to its natural geomorphic disturbance regime, including flooding, rockfall, mammalian herbivore influences, or other natural distur-

bances? Fire disturbance is considered in the next question. Upstream impoundments and channel alterations influence natural flooding, or inundate rheocrene springs downstream. Stabilization measures reduce natural disturbances such as rockfall or sprawling. Intensive mammalian herbivore use can alter the site geomorphology. Exclosures, while well-intended, can eliminate wildlife use, resulting in proliferation of wetland vegetation and loss of surface water and habitat. The four characteristics of ecological disturbance are timing, magnitude, duration, and frequency.

- 1. The natural disturbance regime is nearly or entirely altered, and is largely unrecoverable. All four characteristics have been altered.
- 2. The natural disturbance regime is moderately to highly altered, and is not likely to recover. Two or more disturbance characteristics have been altered.
- 3. The natural disturbance regime is slightly altered, but could recover. One disturbance characteristic has been altered.
- 4. The disturbance regime is nearly or entirely natural, and none of the disturbance characteristics have been altered.
- ---Surveyors could not evaluate the disturbance regime, but will conduct follow-up research (e.g., review hydrology) and assign a score.

G. Natural Fire Regime: Is the springs ecosystem subject to its natural fire disturbance regime? Has a past fire negatively affected the springs ecosystem? Has fire suppression created unnaturally

dense vegetation, threatening the springs with a catastrophic burn?

- 1. The natural fire disturbance regime is nearly or entirely altered, and is largely unrecoverable. All four fire disturbance characteristics have been altered.
- 2. The natural fire disturbance regime is moderately to highly altered, and is not likely to recover. Two or more fire disturbance characteristics have been altered.
- 3. The natural fire disturbance regime is slightly altered, but could recover. One fire disturbance characteristic has been altered.
- 4. The fire disturbance regime is nearly or entirely natural, and none of the fire disturbance characteristics have been altered.
- -- Surveyors could not evaluate the disturbance regime, but will conduct follow-up research (e.g., review fire boundary and intensity maps) and assign a score.

Comments about geomorphology, soils, and disturbance.

Geographic Context

The following questions relate to the level of isolation and size of the springs ecosystem. These intrinsic site characteristics reflect the ecological importance of the springs ecosystem and are likely to influence stewardship prioritization, but they do not reflect the condition and are therefore not counted in the assessment scoring. If an estimated distance or area is within 10% of a boundary score, a half-decimal should be applied.

H. Isolation from other springs ecosystems: How isolated is this springs ecosystem from other reported springs? The importance of a springs ecosystem increases with isolation.

- 1. The nearest reported springs ecosystem is less than 100 m away.
- 2. The nearest reported springs ecosystem is between 100 and 1,000 m away.
- 3. The nearest reported springs ecosystem is between 1 and 10 km away.
- 4. The nearest reported springs ecosystem is more than 10 km away.
- -- Surveyors were unable to determine springs isolation, but will conduct follow-up research (e.g., GIS analysis of isolation) and assign a score.

ID

I. Isolation from perennial sources: How isolated is this springs ecosystem from the nearest perennial water body, such as a stream or lake? The importance of a springs ecosystem increases with isolation from other water bodies.

- 1. The nearest reported perennial water body is less than 100 m away.
- 2. The nearest reported perennial water body is between 100 and 1,000 m away.
- 3. The nearest reported perennial water body is between 1 and 10 km away.
- 4. The nearest reported perennial water body is more than 10 km away.
- -- Surveyors were unable to determine the distance to the nearest perennial water body, but will conduct follow-up research (i.e., GIS analysis of isolation) and assign a score.

J. Habitat size: How large is this springs ecosystem? The importance of a springs ecosystem increases with its functioning size—the surface area that is directly influenced by the spring.

- 1. The springs ecosystem size is less than 100 m^2 .
- 2. The springs ecosystem size is between 100 1,000 m².
- 3. The springs ecosystem size is between 1,000 and 10,000 m^2 .
- 4. The springs ecosystem size is greater than $10,000 \text{ m}^2$.
- ---Surveyors were unable to determine the size of the springs ecosystem, but will conduct follow-up research. For example, if the ecosystem is too large to measure, aerial imagery may be used to assign a score.

Comments about the geographic context and importance of the springs ecosystem.

Habitat

The following questions relate to the capacity of the springs and its associated microhabitats to support native species and natural ecosystem processes. Habitat area, quality, productivity, and diversity strongly influence springs ecosystem ecology and biota, and anthropogenic degradation of springs habitat reduces the extent and importance of those ecological variables. Score with half decimals from 1.0 to 4.0.

K. Microhabitat quality: What is the condition of the microhabitats associated with the site? Consider the overall habitat quality in each of the microhabitats and the intensity of all apparent

anthropogenic impacts. Springs ecosystems can support multiple microhabitats, and each of those microhabitats can support its own suite of species that may or may not interact with those in other microhabitats. Anthropogenic activities may affect one or more or all microhabitats. Human activities can influence some or all microhabitats at a springs ecosystem. For example, intensive livestock use may cause pedestal formation, feces deposition, erosion, or other impacts on wetland microhabitat surfaces. Construction of roads, springboxes, or berms, as well as pollution can degrade microhabitat quality.

- 1. No natural microhabitats remain, or the remaining natural microhabitats are in very poor condition.
- 2. At least one natural microhabitat is in poor condition, with significant impairment evident, and anthropogenic habitats may be present.
- 3. All natural microhabitats are ecologically moderately intact, but some impairment is evident. If anthropogenic habitats are present, they are historic and have recovered ecologically.
- 4. All natural microhabitats are nearly or fully ecologically intact, with little or no impairment. No anthropogenic microhabitats are present.

L. Native plant cover: What is the proportion of native to non-native plant cover? Native vegetation cover is generally supportive of native animal species, while non-native plant cover may

exclude native fauna, increase wildfire frequency and intensity, and attract or support undesireable species through changes in ecological structure and processes. If an estimated percent cover is within 5% of a boundary score, a half-decimal should be applied.

- 1. No native plant species are present, or less than 40% of the plant cover is native.
- 2. Between 40 and 80% of the plant cover is native.
- 3. Between 80 and 95% of the plant cover is native.
- 4. More than 95% of the plant cover is native.
- -- Surveyors were unable to evaluate the native plant species ecological role. For example, surveyors could collect plant specimens or photographs to be subsequently verified.

ID

M. Native food web dynamics: What is the condition of the natural food web at this springs ecosystem? Ecologically intact springs ecosystems support diverse food web interactions,

with robust vegetation (where geomorphically appropriate) supporting diverse populations of invertebrate and vertebrate herbivores and predators. This can range from mountain lions to dragonflies. Trophic structure, as indicated by the presence of vegetation, primary consumers, and secondary or top consumers (predators), indicates that ecosystem functionality at a site is high.

- 1. No natural food web dynamics are evident, with no observation or evidence of predators.
- 2. There is some evidence of natural food web dynamics, indicated by the observation or evidence of at least one predator.
- 3. There is moderate evidence of natural food web dynamics, indicated by the observation or evidence of several predators from a range of trophic levels.
- 4. The food web dynamics appear to be natural or nearly natural, indicated by the observation or evidence of several predators from a range of trophic levels.

Comments about habitat quality, plant cover, and food web dynamics.

Biota

The following questions pertain to flora and faunal species detected during the survey. Floral and faunal species biodiversity is an important topic in stewardship discussions about springs. Score with half decimals from 1.0 to 4.0.

N. Native vs. non-native plant species: What is the proportion of native plant species? Non-native plant species can overwhelm native plant communities at springs, thus the proportional

ion-nalant ional

representation of native and non-native plant species is an important assessment variable. If an estimated percent cover is within 5% of a boundary score, a half-decimal should be applied.

- 1. Between 0 and 40% of the plant species are native.
- 2. Between 40 and 80% of the plant species are native.
- 3. Between 80 and 95% of the plant species are native.
- 4. More than 95% of the plant species are native.
- -- Surveyors were unable to evaluate the proportion of native plant species, but will conduct follow-up research (e.g., collect plant specimens for identification) and assign a score.

O. Presence of noxious weed species: How many plant species from the noxious list are present? Please see New Mexico Noxious Weed List, and complete Worksheet O.

- 1. Three or more NM noxious weed species are present.
- 2. Two NM noxious weed species are present.
- 3. One NM noxious weed species is present.
- 4. No NM noxious weed species are present.
- -- Surveyors were unable to evaluate the presence of noxious species, but will conduct follow-up research (e.g. collect samples for identification) and assign a score.

P. Plant demography: Is the population structure (demography) of woody vegetation appropriate to the site? For example, is the springs ecosystem becoming unnaturally dominated by woody plant

species (e.g., conifer, Russian olive, Siberian elm, tamarisk) or invasive wetland species (e.g., *Typha* or *Phragmites*), as evidenced by the presence of multiple life stages (e.g., seedling, sapling, mature plants)? Upland woody shrubs or trees encroaching onto the site can reveal an unnatural transition due to human activity or disturbance.

- 1. The site is almost entirely dominated by woody plant species or invasive wetland species.
- 2. The site is largely, but not entirely dominated by woody plant species or invasive wetland species.
- 3. The site contains some encroachment by woody plant species or invasive wetland species.
- 4. The vegetation at the springs ecosystem appears appropriate.

Q. Sensitive flora and fauna richness: Did surveyors identify any sensitive plant or animal species? Rare, endemic, sensitive, threatened and/or endangered species often present policy-related or legal management issues to springs stewards.

- 4. One or more sensitive or listed plant or animal species were identified, or the site is designated critical habitat for a species.
- --- Surveyors were unable to evaluate the presence of such species, or due to spring type or naturally non-supportive habitat there is no reason to expect any of these species at the site.

Sensitive species present or reported at the site. Indicate whether, rare, common, or abundant.

R. Proportion of native animal species: What is the proportion of native invertebrate and vertebrate species? Non-native animal species can exert negative impacts on native species

and ecological processes, degrading the springs ecosystem. If an estimated percent cover is within 5% of a boundary score, a half-decimal should be applied.

- 1. Between 0 and 40% of the animal species present are native.
- 2. Between 40 and 80% of the animal species present are native.
- 3. Between 80 and 95% of the animal species present are native.
- 4. More than 95% of the animal species are native.
- ---Surveyors were unable to evaluate the proportion of native animal species, but will conduct follow-up research and assign a score.

S. Number of non-native animal species: How many non-native aquatic and terrestrial animal species are present? For example, to what extent are nonnative mollusks, crayfish, bullfrogs, and

game or aquarium fish species present? Non-native animal species can exert negative impacts on native species and ecological processes, degrading the springs ecosystem. One caveat: not all animal species occupying a springs ecosystem are likely to be detected during a single site visit. Therefore, this score is expected to be refined with multiple visits. Please complete Worksheet S.

- 1. Three or more nonnative animal species were detected.
- 2. Two nonnative animal species were detected.
- 3. One nonnative animal species was detected.
- 4. No nonnative animal species were detected.
- ---Surveyors were unable to evaluate the presence of non-native species, but will conduct follow-up research (e.g. collect samples for identification) and assign a score.

Comments about Biota.

SiteName_

Primary Type

Worksheet D

Secondary Type

Table 2. Probability of microhabitats occurring at each springs type.

						NA:		. T	-				
						Micro	habita	туре		·			
Spring Type	Backwall or sloped bedrock	Cave	Channel	Colluvial slope	Mound	Pool	Terrace	Pool margin	Low gradient cienega	High gradient cienega	No. Likely	No. Possible	No. Unlikely
Cave	High	High	High	Low	Low	Med	Med	Med	Low	Low	3	3	4
Exposure	Med	Low	Low	Med	Low	High	Low	High	Low	Low	2	2	6
Fountain	Low	Low	Med	Med	Med	High	Med	Low	Med	Low	1	5	4
Gushet	High	Med	High	Med	Low	Med	High	Med	Low	Med	3	5	2
Geyser	High	Low	Med	Low	High	Med	Med	Low	Low	Low	2	3	5
Hanging garden	High	Low	High	High	Low	High	High	High	Low	Low	6	0	4
Helocrene	Low	Low	Med	Low	Med	Med	Med	Med	High	High	2	5	3
Hillsope-rheocrene	Med	Low	High	Med	Low	Med	High	Low	Med	Med	2	5	3
Hillsope-upland	Med	Low	High	Med	Low	Med	High	Low	Med	Med	2	5	3
Hypocrene *	Med	Low	Low	Med	Med	Low	Med	High	High	Med	2	5	3
Limnocrene	Med	Low	Med	Low	Med	High	Med	High	Med	Low	2	5	3
Mound-form	High	Low	Med	Med	High	Med	Med	High	Med	Med	3	6	1
Rheocrene	Med	Low	High	Med	Low	Med	High	Low	Med	Low	2	4	4

Table 3. Scoring worksheet with the count of each microhabitat and anthropogenic influence for each.

Microhabitat Type	Likelihood	Liklihood Score	Count	Score	Anthro Count
Backwall or Sloping Bedrock					
Cave					
Channel					
Colluvial Slope					
Spring mound					
Pool					
Terrace					
Pool margin					
Low gradient cienega					
High gradient cienega					
		·	Totals:		

SiteName	ID	_Observer
Primary Type	Secondary Type	

Worksheet D (cont.)

Scoring Question D requires the following steps:

- 1) Table 2 is a reference list showing the probability of occurrence of each natural microhabitat at a given springs type. Use Table 2 to look up the probability of occurrence of each natural microhabitat for the springs type being surveyed. In the Likelihood column of Table 3, copy these probabilities for the springs type you are surveying.
- 2) The Likelihood Score column in Table 3 will autofill based on the values entered into the Likelihood column (low probability = 1, medium probability = 2, and high probability = 3).
- 3) In the Count column in Table 3, record how many of each microhabitat were observed at the spring (e.g. there may have been 1 channel and 2 terraces). These data should also have been recorded on page 1 of the inventory field sheets.
- 4) Multiply values in the Likelihood Score column by values in the Count column to generate values for the Prelim. Score column.
- 5) Sum the Prelim Score column to generate a Preliminary Site Sore.
- 6) Table 4 is a cross-walk reference list to convert the Preliminary Site Score to a Preliminary Question D Assessment Score. For example, if you are surveying a hanging garden and use Table 3 to calculate a Preliminary Site Score of 10, your Preliminary Question D Assessment Score will be 2.5 (from the right column of Table 4).
- 7) Now return to Table 3 and record the number of significant anthropogenic microhabitats present (e.g., berms, concrete slabs, metal tanks, etc.).
- 8) Subtract the number of significant anthropogenic microhabitats from the preliminary Question D Assessment Score to generate a final Question D score. Record this final score in the box for Assessment Question D on the assessment field sheet.

Table 4. Assessment Score chart for condition assessment question D.

Cave	Exposure	Fountain	Gushet	Geyser	Hanging Garden	Helocrene	Hillslope-rheocrene	Hillslope (upland)	Hypocrene	Limnocrene	Mound-Form	Rheocrene	Anthropogenic	Assessment Score
≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	All	1
1	1		1	1	1-4	1	1	1	1	1	1	1		1.5
2-3	2		2-3	2	5-7	2	2	2	2	2	2-3	2		2
4-5	3		4-5	3	8-10	3	3	3	3	3	4-5	3		2.5
6-7	4	1-2	6-7	4	11-13	4	4	4	4	4	6-7	4		3
8	5		8	5	14-17	5	5	5	5	5	8	5		3.5
≥ 9	≥6	≥ 3	≥9	≥6	≥18	≥6	≥ 6	≥6	≥ 6	≥6	≥9	≥ 6		4

Worksheet O

If a species is absent, check the absent box; if present, enter 1. Count the total at the bottom of page 2, and respond to question O.

New Mexico Noxious Weed List Updated September 2016

Observer

Class C Species: Class C species are wide-spread in the state. Management decisions for these species should be determined at the local level, based on feasibility of control and level	Absent	Present
of infestation.		
Cheatgrass, Bromus tectorum		
Curlyleaf pondweed, Potamogeton crispus		
Eurasian watermilfoil, Myriophyllum spicatum		
Giant cane, Arundo donax		
Hydrilla, <i>Hydrilla verticllata</i>		
Jointed goatgrass, Aegilops cylindrica		
Musk thistle, Carduus nutan		
Parrotfeather, Myriophyllum aquaticum		
Russian olive, Elaeagnus angustifolia		
Saltcedar, Tamarix spp.		
Siberian elm, <i>Ulmus pumila</i>		
Tree of heaven, Ailanthus altissima		
Class B Species: Class B Species are limited to portions of the state. In areas with severe infestations, management should be designed to contain the infestation and stop any further spread.	Absent	Present
African rue, <i>Peganum harmala</i>		
Bull thistle, <i>Cirsium vulgare</i>		
Chicory, Cichorium intybus		
Halogeton, Halogeton glomeratus		
Malta starthistle, Centaurea melitensis		
Perennial pepperweed, Lepidium latifolium		
Poison hemlock, Conium maculatum		
Quackgrass, Elytrigia repens		
Russian knapweed Acroptilon repens		
Spiny cocklebur, Xanthium spinosum		
Teasel, Dipsacus fullonum		
		•

	1	
Watch List Species: Watch List species are species of concern in the state. These species have the potential to become problematic. More data is needed to determine if these species should be listed. When these species are encountered please document their location and	Absent	Present
contact appropriate authorities.		
Crimson fountaingrass, Pennisetum setaceum		
Meadow knapweed, <i>Centaurea pratensis</i>		
Myrtle spurge, <i>Euphorbia myrsinites</i>		
Pampas grass, Cortaderia sellonana		
Sahara mustard, <i>Brassica tournefortii</i>		
Syrian beancaper, <i>Zygophyllum fabago L</i> .		
Wall rocket, Diplotaxis tenuifolia		
Class A Species: Class A species are currently not present in New Mexico, or have limited distribution. Preventing new infestations of these species and eradicating existing infestations is the highest priority	Absent	Present
Alfombrilla, Drymaria arenariodes		
Black henbane, <i>Hyoscyamus niger</i>		
Brazillian egeria, <i>Egeria densa</i>		
Camelthorn, Alhagi psuedalhagi		
Canada thistle, Cirsium arvense		
Dalmation toadflax, Linaria dalmatica		
Diffuse knapweed, Centaurea diffusa		
Dyer's woad, Isatis tinctoria		
Giant salvinia, Salvinia molesta		
Hoary cress, Cardaria spp.		
Leafy spurge, Euphorbia esula		
Oxeye daisy, <i>Leucanthemum vulgare</i>	1	İ
Purple loosestrife, <i>Lythrum salicaria</i>		İ
Purple starthistle, <i>Centaurea calcitrapa</i>	1	İ
Ravenna grass, Saccharum ravennae	1	İ
Scentless chamomile, Matricaria perforata		
Scotch thistle, <i>Onopordum acanthium</i>		
Spotted knapweed, <i>Centaurea biebersteinii</i>		
Yellow toadflax, <i>Linaria vulgaris</i>		İ
Yellow starthistle, <i>Centaurea solstitialis</i>		İ
Total Noxious Weed Species Present:		
	1	
	1	

Worksheet P

SiteName___

This table lists vegetation elements that are considered unnatural for each springs type. For the springs type you are surveying, circle all elements present. In the right column, record the total number of unnatural vegetation elements for the springs type you are surveying.

Springs Type	Ground Cover	Woody Cover	Tree Cover	# Unnatural Elements
Cave	Excessive algal cover	n/a	n/a	
Exposure	Excessive algal, Typha or Phragmites cover	Dead shrub cover (all life stages)	Dead tree cover (all stages)	
Fountain	Dead wetland vegetation (all life stages)	Excessive phreatophyte or upland shrub seedling or sapling cover	Excessive phreatophyte or conifer seedlings or saplings	
Geyser	Excessive algal cover	Excessive phreatophyte or upland seedling or sapling shrub cover	Excessive phreatophyte or conifer seedlings or saplings	
Gushet	Dead wetland vegetation, or excessive non-wetland plant species	Dead shrubs, or excessive upland shrub seedling or sapling cover	Dead trees, or excessive conifer or upland plant seedlings or sapling presence	
Hanging Garden	Dead wetland vegetation, or excessive non-wetland plant species	Dead shrubs, or excessive upland shrub seedling or sapling cover	Dead trees, or excessive conifer or upland plant seedlings or sapling presence	
Helocrene	Dead wetland vegetation or excessive unvegetated ground (alkaline springs may not support no or little wetland vegetation)	Dead shrubs, or excessive phreatophyte or upland shrub seedling or sapling cover	Dead, or unnaturally excessive phreatophyte or upland tree seedling or sapling cover	
Hillslope	Dead wetland vegetation, or excessive non-wetland plant species	Dead shrubs, or excessive phreatophyte or upland shrub seedling or sapling cover	Dead, or unnaturally excessive phreatophyte or upland tree seedling or sapling cover	
Hypocrene	Dead wetland vegetation	Dead shrubs	Dead tree seedlings, sap- lings, mature individuals	
Limnocrene	Excessive unnatural algal, Typha or Phragmites cover	Dead shrubs, or excessive upland shrub seedling or sapling cover	Dead trees, or excessive upland tree seedling or sapling cover	
Mound-form	Excessive unnatural algal, Typha or Phragmites cover	Dead shrubs, or excessive upland shrub seedling or sapling cover	Dead trees, or excessive upland tree seedling or sapling cover	
Rheocrene	Excessive unnatural algal, Typha or Phragmites cover	Dead shrubs, or excessive upland shrub seedling or sapling cover in riparian zone	Dead trees or excessive upland tree seedling or sapling cover in riparian zone	
Total Count				

Worksheet S

If species is present, place a checkmark in the right-most column of the table. Count the total at the bottom of the last page, and respond to question S.

New Mexico Exotic Animal List

Edited from the USGS Nonidigenous Aquatic Species (https://nas.er.usgs. gov/queries/SpeciesList.aspx?Group=&Sortby=1&state=NM) and the Biota Information System of New Mexico (BISON; http://bison-m.org/)

to question S.		formation System	formation System of New Mexico (BISON; http://bison-m.org/)	ison-m.org/)	
Group	Common Name	Family	Scientific Name	Nativity in NM F	Present
Amphibians-Frogs	American Bullfrog	Ranidae	Lithobates catesbeianus	Exotic	
Amphibians-Frogs	Green Frog	Ranidae	Lithobates clamitans	Exotic	
Amphibians-Frogs	Barred Tiger Salamander	Ambystomatidae	Ambystoma mavortium	Exotic	
Birds	Chukar	Phasianidae	Alektoris chukar	Exotic	
Birds	Eurasian Collard Dove	Columbidae	Streptopelia decaocto	Exotic	
Birds	European House Sparrow	Passeridae	Passer domesticus	Exotic	
Birds	Pheasant	Phasianidae	Phasianus colchicus	Exotic	
Birds	Rock Dove (Common Pigeon)	Columbidae	Columba livia	Exotic	
Birds	Starling	Sternidae	Sternus vulgaris	Exotic	
Coelenterates- Hydrozoans	freshwater jellyfish	Olindiidae	Craspedacusta sowerbyi	Exotic	
Crustaceans- Cladocerans	a waterflea	Daphnidae	Daphnia lumholtzi	Exotic	
Crustaceans-Copepods	a calanoid copepod	Temoridae	Eurytemora affinis	Exotic	
Crustaceans-Copepods	anchor worm	Lernaeidae	Lernaea cyprinacea	Exotic	
Crustaceans-Crayfish	Red Swamp Crayfish	Cambaridae	Procambarus clarkii	Exotic	
Crustaceans-Crayfish	Rusty Crayfish	Cambaridae	Faxonius rusticus	Exotic	
Crustaceans-Crayfish	Virile Crayfish	Cambaridae	Orconectes virilis	Exotic	
Crustaceans-Crayfish	Western plains crayfish	Cambaridae	Faxonius causeyi	Native (part)	
Fishes	Arctic Grayling	Salmonidae	Thymallus arcticus	Exotic	
Fishes	Bairdiella	Sciaenidae	Bairdiella icistia	Exotic	
Fishes	Black Bullhead	Ictaluridae	Ameiurus melas	Native (part)	

Group	Common Name	Family	Scientific Name	Nativity in NM Pr	Present
Fishes	Black Crappie	Centrarchidae	Pomoxis nigromaculatus	Exotic	
Fishes	Black Drum	Sciaenidae	Pogonias cromis	Exotic	
Fishes	Blue Catfish	Ictaluridae	Ictalurus furcatus	Native (part)	
Fishes	Bluegill	Centrarchidae	Lepomis macrochirus	Native (part)	
Fishes	Brook Stickleback	Gasterosteidae	Culaea inconstans	Exotic	
Fishes	Brook Trout	Salmonidae	Salvelinus fontinalis	Exotic	
Fishes	Brown Bullhead	Ictaluridae	Ameiurus nebulosus	Exotic	
Fishes	Brown Trout	Salmonidae	Salmo trutta	Exotic	
Fishes	Bullhead Minnow	Cyprinidae	Pimephales vigilax	Exotic	
Fishes	Channel Catfish	Ictaluridae	Ictalurus punctatus	Native (part)	
Fishes	Coho Salmon	Salmonidae	Oncorhynchus kisutch	Exotic	
Fishes	Common Carp	Cyprinidae	Cyprinus carpio	Exotic	
Fishes	Cutbow trout	Salmonidae	Oncorhynchus clarkii x mykiss	Native Hybrid	
Fishes	Cutthroat Trout	Salmonidae	Oncorhynchus clarkii	Exotic	
Fishes	Dolly Varden	Salmonidae	Salvelinus malma	Exotic	
Fishes	Fathead Minnow	Cyprinidae	Pimephales promelas	Native (part)	
Fishes	Flathead Catfish	Ictaluridae	Pylodictis olivaris	Native (part)	
Fishes	Gila Topminnow	Poeciliidae	Poeciliopsis occidentalis occiden- talis	Native	
Fishes	Gizzard Shad	Clupeidae	Dorosoma cepedianum	Exotic	
Fishes	Golden Shiner	Cyprinidae	Notemigonus crysoleucas	Exotic	
Fishes	Golden Trout	Salmonidae	Oncorhynchus aguabonita	Exotic	
Fishes	Goldfish	Cyprinidae	Carassius auratus	Exotic	
Fishes	Grass Carp	Cyprinidae	Ctenopharyngodon idella	Exotic	
Fishes	Green Sunfish	Centrarchidae	Lepomis cyanellus	Native (part)	
Fishes	Gulf Killifish	Fundulidae	Fundulus grandis	Exotic	
Fishes	Guppy	Poeciliidae	Poecilia reticulata	Exotic	
Fishes	Inland Silverside	Atherinopsidae	Menidia beryllina	Exotic	
Fishes	Iowa Darter	Percidae	Etheostoma exile	Exotic	
Fishes	Kokanee Salmon	Salmonidae	Oncorhynchus nerka	Exotic	

Group	Common Name	Family	Scientific Name	Nativity in NM P	Present
Fishes	Lake Trout	Salmonidae	Salvelinus namaycush	Exotic	
Fishes	Largemouth Bass	Centrarchidae	Micropterus salmoides	Native (part)	
Fishes	Largespring Gambusia	Poeciliidae	Gambusia geiseri	Native	
Fishes	Longear Sunfish	Centrarchidae	Lepomis megalotis	Exotic	
Fishes	Mexican Golden Trout	Salmonidae	Oncorhynchus chrysogaster	Exotic	
Fishes	Northern Pike	Esocidae	Esox lucius	Exotic	
Fishes	Orangemouth Corvina	Sciaenidae	Cynoscion xanthulus	Exotic	
Fishes	Pirate Perch	Aphredoderidae	Aphredoderus sayanus	Exotic	
Fishes	Plains Killifish	Fundulidae	Fundulus zebrinus	Native (part)	
Fishes	Rainbow Trout	Salmonidae	Oncorhynchus mykiss	Exotic	
Fishes	Redear Sunfish	Centrarchidae	Lepomis microlophus	Exotic	
Fishes	Red Drum	Sciaenidae	Sciaenops ocellatus	Exotic	
Fishes	Rio Grande cutthroat trout	Salmonidae	Oncorhynchus clarkii virginalis	Native	
Fishes	Rock Bass	Centrarchidae	Ambloplites rupestris	Exotic	
Fishes	Sacramento Perch	Centrarchidae	Archoplites interruptus	Exotic	
Fishes	Sailfin Molly	Poeciliidae	Poecilia latipinna	Native	
Fishes	Sargo	Haemulidae	Anisotremus davidsonii	Exotic	
Fishes	Sheepshead Minnow	Cyprinodontidae	Cyprinodon variegatus	Largely exotic	
Fishes	Smallmouth Bass	Centrarchidae	Micropterus dolomieu	Exotic	
Fishes	Snake River Finespotted Cut- throat Trout	Salmonidae	Oncorhynchus clarkii behnkei	Exotic	
Fishes	Spotted Bass	Centrarchidae	Micropterus punctulatus	Exotic	
Fishes	Spooted Sea Trout	Salmonidae	Cynoscion nebulosus	Exotic	
Fishes	Striped Bass	Moronidae	Morone saxatilis	Exotic	
Fishes	Tench	Cyprinidae	Tinca tinca	Exotic	
Fishes	Threadfin Shad	Clupeidae	Dorosoma petenense	Exotic	
Fishes	Tilapia	Cichlidae	Tilapia sp.	Exotic	
Fishes	Walleye	Percidae	Sander vitreus	Exotic	
Fishes	Warmouth	Centrarchidae	Lepomis gulosus	Exotic	
Fishes	White Bass	Moronidae	Morone chrysops	Exotic	

Group	Common Name	Family	Scientific Name	Nativity in NM	Present
Fishes	White Crappie	Centrarchidae	Pomoxis annularis	Exotic	
Fishes	Wiper	Moronidae	Morone chrysops x M. saxatilis	Exotic	
Fishes	Yellow Bullhead	Ictaluridae	Ameiurus natalis	Exotic	
Fishes	Yellow Perch	Percidae	Perca flavescens	Exotic	
Fishes	Yellowstone cutthroat trout	Salmonidae	Oncorhynchus clarkii bouvieri	Exotic	
Fishes	Zebra danio	Cyprinidae	Danio rerio	Exotic	
Insect- Hymenoptera	Honey Bee	Apideae	Apis melifera	Exotic	
Insect- Lepidoptera	Small white	Pieridae	Pieris rapae	Exotic	
Mammals	Barbary Sheep (Aoudad)	Bovidae	Ammotragus lervia	Exotic	
Mammals	Black Rat	Muridae	Rattus rattus	Exotic	
Mammals	Domestic cat	Felidae	Felis catus	Exotic	
Mammals	Domestic Cow	Bovidae	Bos taurus	Exotic	
Mammals	Domestic dog	Canidae	Canis lupus familiaris	Exotic	
Mammals	Eastern Fox Squirrel	Sciuridae	Sciurus niger	Exotic	
Mammals	Feral Burro	Equidae	Equus asinus	Exotic	
Mammals	Feral Horse	Equidae	Equus ferus caballus	Exotic	
Mammals	Feral Pig	Suidae	Sus scrofa	Exotic	
Mammals	Himalayan Tahr	Bovidae	Hemitragus jemlahicus	Exotic	
Mammals	House Mouse	Muridae	Mus musculus	Exotic	
Mammals	Nine-banded Armadillo	Dasypodidae	Dasypus novemcinctus mexi- canus	Exotic	
Mammals	Norway Rat	Muridae	Rattus norvegicus	Exotic	
Mammals	Nutria	Myocastoridae	Myocastor coypus	Exotic	
Mammals	Oryx	Bovidae	Oryx gazella	Exotic	
Mammals	Persian Ibex	Bovidae	Capra aegagrus hircus	Exotic	
Mammals	Siberian Ibex	Bovidae	Capra siberica siberica	Exotic	
Mollusks-Bivalves	Asian clam	Cyrenidae	Corbicula fluminea	Exotic	

Group	Common Name	Family	Scientific Name	Nativity in NM	Present
Mollusks-Gastropods	European ear snail	Lymnaeidae	Radix auricularia	Exotic	
Mollusks-Gastropods	European physa	Physidae	Physella acuta	Exotic?	
Platyhelminthes	Asian tapeworm	Bothriocephalidae	Schyzocotyle acheilognathi	Exotic	
Reptiles-Turtles	Malayan Snail-eating Turtle	Emydidae	Malayemys subtrijuga	Exotic	
Reptiles-Turtles	Midland Painted Turtle	Emydidae	Chrysemys picta marginata	Exotic	
Reptiles-Turtles	Red-Eared Slider	Emydidae	Trachemys scripta elegans	Native (part)	
Reptiles-Turtles	Snapping Turtle	Chelydridae	Chelydra serpentina	Native (part)	
Reptiles-Turtles	Yellow-bellied Slider	Emydidae	Trachemys scripta scripta	Exotic	
Reptiles- Squamates	Mediterranean Gecko	Gekkonidae	Hemidactylus turcicus	Exotic	
			Total Exotic Species Present:	ecies Present:	

Assessment Question	Assessment Question Score	Sum of Question Scores	Category Score
Aquifer Functionality & Water Quality: A. Water table alteration			
Aquifer Functionality & Water Quality: B. Surface water quality impairment			
Aquifer Functionality & Water Quality: C. Springs flow rate			
Aquifer Functionality & Water Quality: Category Total Possible Score =12			
Geomorhology: D. Natural geomorphic diversity			
Geomorhology: E. Soil Integrity			
Geomorhology: F. Natural physical disturbance			
Geomorhology: G. Natural fire regime			
Geomorphology Category: Total Possible Score =16			
Geographic Context: H: Isolation from other springs			
Geographic Context: I. Isolation from nearest perennial water source			
Geographic Context: J. Springs habitat area (size)			
Geographic Context Category: (not counted in total score)			
Habitat: K. Microhabitat quality			
Habitat: L. Native plant cover			
Habitat: M. Native food-web dynamics			
Habitat Category: Total Possible Score =12			

Assessment Question	Assessment Question Score	Sum of Question Scores	Category Score
Biota: N. Native vs. non-native plant species richness Biota:			
O. Presence of noxious weed species Biota: P. Plant demography			
Biota: Q. Sensitive flora and fauna richness			
Biota: R. Native and non-native faunal species percent			
Biota: S. Non-native faunal species richness			
Biota Category: Total Possible Score =20 (excluding Q)			
Total Site Condition Score: (Total possible = 64) 1=irrecoverable 2=poor 3=good 4=pristine			