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CHAPTER 8:  MECHANICAL SYSTEMS

Pumps serve many purposes in wastewater collection
systems and treatment plants.  They are classified by the
character of the material handled; raw wastewater, grit,
effluent, activated sludge, raw sludge, or digested sludge.
Or, they may relate to the conditions of pumping: high lift,
low lift, recirculation, or high capacity.  They may be further
classified by principle of operation, such as centrifugal,
propeller, reciprocating and turbine. The operation and
maintenance of these pumps are some of the most important
duties for many wastewater utility operators.  The two most
common type of pump are the centrifugal pump and the
positive displacement pump.

Pumps are rated by the flow they produce and the pressure
they must work against. Centrifugal pumps are used for
high flow and low head pressure applications. Booster
pumps or primary service pumps are required to move high
volumes of water and usually operated at low head pressures
(200-300 feet of head for water and as little as 50 feet of
head for wastewater applications). Centrifugal pumps are
ideally suited to these types of applications and are much
more efficient than positive displacement pumps of
comparable size. Positive displacement pumps are used for
low flow and high-pressure applications. High pressure
water jet systems like those used for well screen or sewer
line cleaning use positive displacement pumps since
pressure in excess of 2500 feet of head are needed and the
flows seldom exceed 100 gpm. Sludge pumps and chemical
feed pumps are also likely to be positive displacement
pumps. Piston pumps, diaphragm pumps, and progressive
cavity screw pumps are the most common types of positive
displacement pumps.

Another difference between centrifugal and positive
displacement pumps has to do with how they react to
changes in discharge pressure. When the pressure that a
centrifugal pump has to work against changes, the flow
from the pump changes. As the pressure increases, the flow
from the pump will decrease, and when the pressure drops
the flow will increase. Positive displacement pumps do not
react this way. The flow does not change when the discharge
pressure changes. This is the main reason that positive
displacement pumps are used for chemical feeding and
sludge pumping. The operator knows that every time the
pump strokes, it is pumping the same amount of fluid. This
is important if accurate records are to be kept of chemical
dosages and pounds of solids that are moving through the
system.

CENTRIFUGAL PUMPS
A centrifugal pump moves water by the use of centrifugal
force. Any time an object moves in a circular motion there
is a force exerted against the object in the direction opposite
the center of the circle. This would be easier to explain if
we use an example consisting of a person with a bucket
full of water. If the person swings the bucket in a circle
fast enough, the water will stay in the bucket even when it
is upside down. The force that holds the water in the bucket
is called centrifugal force. If a hole is made in the bottom
of the bucket, and it is swung in a circular motion, the
centrifugal force will push the water out of the bucket
through the hole. The same principle applies when water
is moved through a centrifugal pump.

An impeller spins inside a centrifugal pump. It is the heart
of the pump. Water enters the center, or suction eye, of the
impeller. As the impeller rotates, the veins pick up the water
and sling it out into the pump body under pressure. It is the
pressure exerted by the vanes that moves the water out of
the pump and into the system. The suction created as the
water leaves the impeller draws more water into the
impeller through the suction eye.

IMPELLER ROTATION AND CENTRIFUGAL FORCE
The number of vanes and the sweep of the veins determine
the performance characteristics of the impeller. As vanes
are added, the impeller will produce higher discharge
pressures and lower flows. The same situation applies to
increasing the length or sweep of the vanes. Reducing the
number of vanes or the sweep of the vanes will increase
the flow and reduce the pressure.

TYPE OF PUMP PRESSURE/FLOW RATING CHARACTERISTICS
Centrifugal Low Pressure/High Flow Flow changes when  pressure changes
Positive-Displacement High Pressure/Low Flow Flow doesn’t change when pressurechanges

Table 8.1 - Pump Characteristics

Figure 8.1 - Centrifugal Pump Crossection
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Figure 8.2 - Horizontal Nonclog Wastewater Pump with Open Impeller

Figure 8.3
Vertical Ball Bearing Type Wastewater Pump

CENTRIFUGAL PUMPS
Centrifugal pumps designed for pumping wastewater
usually have smooth channels and impellers with large
openings to prevent clogging.

Impellers may be of the open or closed type.  Submersible
pumps usually have open impellers and are frequently used
to pump wastewater from wet wells in lift stations.

PROPELLER PUMPS
There are two basic types of propeller pumps, axial-flow
and mixed-flow impellers.  The axial-flow propeller pump
is one having a flow parallel to the axis of the impeller.
The mixed-flow propeller pump is one having a flow that
is both axial and radial to the impeller.

VERTICAL WET WELL PUMPS
A vertical wet well pump is a vertical shaft, diffuser type
centrifugal pump with the pumping element suspended
from the discharge piping.  The needs of a given installation
determine the length of discharge column.  The pumping
bowl assembly may connect directly to the discharge head
for shallow sumps, or may be suspended several hundred
feet for raising water from wells.  Vertical turbine
centrifugal pump consists of multiple impellers that are
staged on a vertical shaft. The impellers are designed to
bring water in the bottom and discharge it out the top. This
results in axial flow as water is discharged up through the
column pipe. Staging the impellers in these pumps can
create very high discharge pressures, since the pressure
increases as the water moves through each stage.
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Figure 8.4 - Submersible Wastewater Pump
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Figure 8.7 - Propeller Pump

Figure 8.5 - Impellers

Figure 8.6
Propeller-type Impellers
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POSITIVE DISPLACEMENT PUMPS

RECIPROCATING OR PISTON PUMPS
The word “reciprocating” means moving back and forth,
so a reciprocating pump is one that moves water or sludge
by a piston that moves back and forth.  A simple
reciprocating pump is shown below.  If the piston is pulled
to the left, check valve A will be open and sludge will enter
the pump and fill the casing.

When the piston reaches the end of its travel to the left and
is pushed back to the right, Check Valve A will close, Check
Valve B will open, and wastewater will be forced out the
exit line.

A reciprocating or piston pump is a positive-displacement
pump.  Never operate it against a closed discharge valve or
the pump, valve, and/or pipe could be damaged by excessive

pressures.  Also, the suction valve should be open when
the pump is started.  Otherwise an excessive suction or
vacuum could develop and cause problems

INCLINE SCREW PUMPS
Incline screw pumps consist of a screw operating at a
constant speed within a housing or trough.  When the screw
rotates, it moves the wastewater up the trough to a discharge
point.  Two bearings, one on top and one at the bottom,
support the screw.

Figure 8.9 - Incline Screw Pump

Figure 8.8 - Simple Reciprocating Pump
Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. II, 5th ed.,

 Office of Water Programs, California State University, Sacramento Foundation
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PROGRESSIVE CAVITY PUMPS
Operation of a progressive cavity pump is similar to that
of a precision incline screw pump.  The progressive cavity
pump consists of a screw-shaped rotor snugly enclosed in
a non-moving stator or housing.  The threads of the screw-
like rotor make contact along the walls of the stator (usually
made of synthetic rubber).  The gaps between the rotor
threads are called “cavities.”  When wastewater is pumped
through an inlet valve, it enters the cavity.  As the rotor
turns, the waste material is moved along until it leaves the
conveyor (rotor) at the discharge end of the pump.  The
size of the cavities along the rotor determines the capacity
of the pump.

These pumps are recommended for materials that contain
higher concentrations of suspended solids.  They are
commonly used to pump sludges.  Progressive cavity
pumps should NEVER be operated dry (without liquid in
the cavities), nor should they be run against a closed
discharge valve.

Figure 8.10 - Progressive Cavity (screw-flow) Pump

Figure 8.11 - Pumping Principle of a
Progressive Cavity Pump
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Figure 8.12 - Protecting the Shaft

CENTRIFUGAL PUMP COMPONENTS
Before we can discuss operations and maintenance of a
centrifugal pump, it is important to understand how a pump
is put together and what the role is of each of the pump
components. A centrifugal pump is constructed from about
a dozen major components. Let’s take a look at how these
pieces fit together to make a pump.

The impeller is attached to the pump shaft. The shaft must
be straight and true so that it will not cause vibration when
it rotates. The shaft should be protected from potential
damage caused by the failure of other pump parts. A shaft
sleeve is used to protect the shaft in the area where the
shaft passes through the pump casing.

The rotating assembly must be supported as it spins in the
pump. Bearings hold the spinning shaft in place. There are
two types of anti-friction bearings normally found in
centrifugal pumps. One type of bearing is designed to keep
the shaft from wobbling from side-to-side as it spins. This
side-to-side motion is referred to as radial movement. The
bearings used to prevent radial movement of the shaft are
called radial bearings. The most common variety of radial
bearing is the standard ball-type roller bearing.

As the impeller spins, water entering the suction eye pushes
against the top of the impeller exerting force in the same
axis as the pump shaft. This is referred to as up thrust. The
pressure developed inside the pump also pushes against
the impeller in the opposite direction. This downward force
is referred to as down thrust. Bearings designed to support
the shaft against this type of force are called thrust bearings.

Figure 8.13 - Bearings

The most common variety of thrust bearing is an angular
contact ball bearing.

The rotating assembly is placed in a pump casing. Part of
the pump casing is specially designed to collect and direct
the flow of water as it enters and leaves the impeller. This
part of the pump casing is called the volute.

The suction and discharge piping are attached to the pump
casing. The suction piping will always be larger than the
discharge piping. Suction piping is designed to bring water
into the pump at 4 ft/sec in order to minimize the friction
loss on the suction side of the pump. The discharge piping
is designed to carry water away from the pump at 7 ft/sec.

There are several important aspects to suction piping
installation. Horizontal runs of piping should slope upward
toward the pump. Any reducers on the line should be
horizontal across the top instead of tapered. A reducer that
is flat on one side is known as an eccentric reducer. A
reducer that is tapered on both sides is called a concentric
reducer.

These installation features are used to prevent the formation
of air pockets in the suction piping. Air trapped in the
suction piping can create restriction of flow into the pump.

Figure 8.14 - Volute

Figure 8.15 - Suction Piping Installation
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It is also important to make sure there are no leaks in the
suction piping that might allow air to be drawn into the
pump. The pump must never support the piping. Placing
that kind of stress on the casing can cause it to crack or
become sprung enough to cause damage to the rotating
assembly.

Now that the casing is assembled and the piping is in place,
we can spin the impeller and begin moving water. Water
will enter from the suction side of the volute and will be
slung out of the impeller into the discharge side of the
volute. Unfortunately, the water will try to pass from the
high-pressure side back to the suction side and recirculate
through the impeller again.

The pump casing could have been machined to close this
gap, but the fit would become worn and widened over
time. To prevent this internal recirculation, rings are
installed between the pump and the impeller that reduce
the clearance between them to as little as 0.010". Unlike
the casing, these rings are removable and can be replaced
when they become worn. Because they wear out and get
replaced, they are called wearing rings.

There is another area of the pump that will require some
attention. Something must be done to plug the hole where
the shaft enters the pump casing. This is a place where
water can leak out and air can leak into the pump. Neither
of these situations is acceptable. The part of the pump
casing that the shaft passes through is called the stuffing

Figure 8.16 - Recirculation through the Impeller

Figure 8.17 - Packing Rings

box. It’s called the stuffing box because we are going to
stuff something in the box to keep the water in and the air
out.

This “stuffing” will usually be rings of pump packing.
Several rings of packing are placed in the stuffing box. A
metal insert ring fits on top of the stuffing box and is used
to adjust or tighten the packing down to minimize water
leakage. It is called a packing gland.

Since the packing rings touch the shaft sleeve as it rotates,
friction and heat are generated in the stuffing box when the
pump is running. Water is generally used to cool the packing
rings during operation. This means that some water must
leak out of the stuffing box when the pump is running. Water
may simply be allowed to leak through the packing rings
from inside the pump to cool them.

This water must come from the low-pressure side of the
pump and may not be under enough pressure to leak past
the packing rings when the packing gland is properly
adjusted. If this is the case, high-pressure water from the
discharge side of the pump may have to be piped into the
stuffing box. Seal water piping is used to supply this water
to the packing. The seal water enters the stuffing box from
the outside, but it’s needed on the inside between the packing
and the shaft.

A lantern ring is used to get the water to the inside of the
packing rings where the heat is being generated. The lantern
ring is a metal ring that has holes in it. Water circulates
around the outside of the lantern ring and passes through
the holes to get to the inside of the packing rings. The lantern
ring must be aligned with the seal water port on the stuffing
box to make sure that water will get to the center of the
stuffing box. Whenever a potable supply is used for a pump
that is pumping non-potable water, an air gap or reduced
pressure backflow preventer device must be used to prevent
a possible cross-connection.

If there isn’t enough seal water moving past the packing
and rotating pump shaft to cool them properly, the packing
will overheat. If the packing is allowed to overheat, the

Figure 8.18 - Lantern Ring
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lubricant in the packing will be driven away from the shaft
and the packing will become glazed, much like nylon cord
that has been burned at the end. The glazed packing will
then start cutting into the shaft sleeve, creating more friction
and heat. The result will be packing failure and a severely
damage shaft sleeve.

Pumps that do not have packing in the stuffing box will be
equipped with a mechanical seal. Mechanical seals are
comprised of two highly polished seal faces. One seal face
is inserted in a gland ring that replaces the packing gland
on the stuffing box. The other seal face is attached to the
rotating shaft. It is held in place with a locking collar and
is spring loaded so that there is constant pressure pushing
the two seal faces together.

When the pump runs, seal water is piped into the stuffing
box under enough pressure to force the seal faces apart.
The seal faces don’t touch when the pump is running, but
the friction loss created as the water pushes them apart
prevents any leakage from the gland plate. Failure of the
seal water system will result in the seal faces rubbing
against each other. The friction that is generated when this

Figure 8.19 - Stuffing Box with Lantern Ring

Figure 8.20 - Mechanical Seal Components

happens can destroy a mechanical seal in a matter of
seconds.

ALIGNMENT
Whenever two pieces of rotating equipment such as a pump
and motor are used, there must be some means of
transmitting the torque from the motor to the pump.
Couplings are designed to do this.  To function as intended,
the equipment must be properly aligned at the couplings.
Misalignment of the pump and the motor can seriously
damage the equipment and shorten the life of both the pump
and the motor.  Misalignment can cause excessive bearing
loading as well as shaft bending which will cause premature
bearing failure, excessive vibration, or permanent damage
to the shaft.  Remember that the purpose of the coupling is
to transmit power and unless the coupling is of special
design, it is not to be used to compensate for misalignment
between the motor and the pump.

When connecting a pump and a motor, there are two
important types of misalignment, (1) parallel and (2)
angular.  Parallel misalignment occurs when the centerlines
of the pump shaft and the motor shaft are offset.  The pump
and the motor shafts remain parallel to each other but are
offset by some degree.

Angular misalignments occur when the shaft centerlines
are not parallels, but instead form an angle, which
represents the amount of angular misalignment.
In reality, misalignment usually includes both parallel and
angular misalignment.  The goal when aligning machines
is to reduce the angular and parallel misalignment to a
minimum.  Toward this end it is recommended that the use
of a dial indicator be employed.

Figure 8.21 - Use of Dial Indicator to Check for
Shaft Angular Alignment and Trueness
Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. II, 5th ed.,

Office of Water Programs, California State University, Sacramento Foundation
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The two types of misalignment and end float, which is an
in-and-out movement of the shaft along the axis of the shaft,
are shown below.

BEARINGS
Pump bearings usually should last for years if serviced
properly and used in their proper application.  There are
several types of bearings used in pumps such as ball
bearings, roller bearings, and sleeve bearings.  Each bearing
has a special purpose such as thrust load, radial load, and
speed.  The type of bearing used in each pump depends on
the manufacturer’s design and application.  Whenever a
bearing failure occurs, the bearing should be examined to
determine the cause and if possible, to eliminate the problem.
Many bearings are ruined during installation or start-up.
Bearing failures may be caused by:

1. Fatigue failure,
2. Contamination,
3. Brinelling,
4. False brinelling
5. Thrust failures
6. Misalignment,
7. Electric arching,
8. Lubrication failure,
9. Cam failure

LUBRICATION
Pumps, motors, and drives should be oiled and greased in
strict accordance with the recommendations of the
manufacturer.  For additional information read section 15.4
of the Operations of Wastewater Treatment Plants Vol. II.

Figure 8.22 - Types of Shaft Misalginment and
End Float

PUMP CHARACTERISTIC CURVES
Every pump has certain characteristics under which it will
operate efficiently. These conditions can be illustrated with
pump characteristic curves. The graph of the pump curve
should show:

1. The head capacity curve (A)
2. The brake horsepower curve (B)
3. The efficiency curve (C)

The graph may contain a curve labeled “NPSH” (Net
Positive Suction Head) instead of a BHp (Brake
Horsepower) curve. NPSH represents the minimum
dynamic suction head that is required to keep the pump
from cavitating.

To use the pump curve:
1. Start at the particular head pressure that is desired

and then travel across the chart to the point where
it crosses the head capacity curve (A).

2. Drop a straight line from this point down to the
bottom of the chart to determine the gpm output at
that particular head pressure.

3. The brake horsepower can be determined by tarting
at the point where the vertical line crosses the
horsepower curve (B) and going across to the right
side of the chart. Use the same procedure for NSPH
if it is used instead of BHp.

4. The efficiency of the pump at this flow and pressure
is determined by starting at the point where the
vertical line crosses the efficiency curve (C) and
going over to the right side of the chart.

When the head pressure of the pump represented by this
curve is 200 feet, the output is 350 gpm. The brake
horsepower under these conditions is about 22 BHp and
the efficiency is 80%. If the impeller or the speed of the
pump changes, all of the pump’s characteristics will also
change.

Figure 8.23 - Pump Curve
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SHUT OFF HEAD
The highest head pressure that the pump will develop is
called the “shut off head” of the pump. The shut off head
for the pump in this curve is 240 feet of head. When a
pump reaches shut off head, the flow from the drops to 0
gpm. This is a valuable piece of information for conducting
a quick check of the pump’s performance. If the pump
cannot generate its rated shut off head, the pump curve is
no longer of any real value to the operator. A loss of shut
off head is probably caused by an increase in recirculation
inside the pump due to worn wear rings or worn impellers.

There is another factor that might affect the shut off head
of the pump. The pump curve assumes that the pump is
running at design speed. If a pump that is designed to spin
at 1750 rpm and it is only turning at 1700 rpm, the shut off
head will also be lower than the pump curve. However, if
the pump speed is checked with a tachometer and found to
be correct, the wear rings or impellers are probably in need
of repair.

CHECKING SHUTOFF HEAD
It is fairly easy to check the shut off head on a pump if it
has suction and discharge pressure gauges.

1. Start the pump and close the discharge isolation
valve. This will create a shut off head condition
since the flow has been reduced to 0 gpm. The pump
should not operate at shut off head for more than a
minute or it will begin to overheat.
NOTE: NEVER attempt to create shut off head
conditions on a multi-staged turbine well. The shut
off head may be several hundred feet higher than
normal operating pressure, which can cause damage
to piping.

2. With the pump running at shut off head, read the
suction and discharge pressure gauges. Subtract the
suction pressure from the discharge pressure to get

Figure 8.24 - Shut Off Head

the shut off head. Compare the field readings to the
pump curve to see if the wear rings are in need of
replacement.

If the shut off head matches the curve, the same calculation
can be used when the pump is running normally, to estimate
the Total Dynamic Head (TDH) and determine the flow
when a meter is not available.

COMMON OPERATIONAL PROBLEMS
The operator should check all pumps and motors every day
to insure proper operation. After spending a certain amount
of time with these pumps and motors an operator should
be able to tell just by listening to them whether they are
work-ing properly. The vast majority of pumping problems
are either a result of improperly sizing a pump for the job
or one of the three following operational problems.

CAVITATION
One of the most serious problems an operator will en-
counter is cavitation. It can be identified by a noise that
sounds like marbles or rocks are being pumped. The pump
may also vibrate and shake, to the point that piping is
damaged in some severe cases. Cavitation occurs when the
pump starts discharging water at a rate faster than it can be
drawn into the pump. This situation is normally caused by
the loss of discharge head pressure or an obstruction in the
suction line. When this happens, a partial vacuum is created
in the impeller causing the flow to become very erratic.
These vacuum-created cavities are formed on the backside
of the impeller vanes.

As the water surges into the impeller, the partial vacuum is
destroyed and the cavities collapse, allowing the water to
slam into the impeller vanes. These cavities form and
collapse several hundred times a second. As they collapse,

they draw the water
behind them into the
impeller at about 760
mph! The impact created
by the water slamming
into the impeller is so
great that pieces of the
impeller may be chipped
away.

When cavitation occurs,
immediate action must
be taken to prevent the
impeller, pump and
motor bearings, and
piping from being
damaged. Cavitation can
be temporarily corrected
by throttling the
discharge valve. This
action prevents damage
to the pump until the
cause can be found and
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corrected. Remember that the discharge valve is there to
isolate the pump, not control its flow. If it is left in a throttled
position the valve face may become worn to the point that
it won’t seal when the pump is isolated for maintenance.

AIR LOCKING
Air locking is another common problem with pumps. It is
caused by air or dissolved gases that become trapped in
the volute of the pump. As the gas collects, it becomes
compressed and creates an artificial head pressure in the
pump volute. As more air collects in the pump, the pressure
will continue to build until shut off head is reached. Air
locking is most often caused by leaks in the suction line.
The failure of low-level cut-off switches, allowing air in
from the wet well, may also cause air locking.

An air locked pump will overheat in a matter of minutes.
The shut off head condition means that no water is moving
through the pump. Vertical pumps that use internal leakage
to cool packing may also experience packing ring failure,
since the trapped air can prevent water from reaching the
packing.

Air relief valves are used to prevent air locking. They are
located on the highest point on the pump volute and
automatically vent air as it accumulates in the pump. It is
also a good idea to repair leaking gaskets and joints on the
suction piping. If the pressure in the line drops below
atmospheric pressure when the pump is running, air will
leak in instead of water leaking out.

LOSS OF PRIME
Loss of prime happens when water drains out of the volute
and impeller. The impeller can’t create any suction at the
impeller eye unless it is filled with fluid. This occurs only
when negative suction head conditions exist. Pumps that
operate with negative suction lift are usually installed with
a foot valve or check valve at the bottom of the suction
pipe. This valve holds the water in the suction pipe and
pump when the pump is off.

When a pump loses its prime it must be shut down,
reprimed, and all the air bled out of the suction line before
starting the pump again. Worn packing and a defective foot
valve normally cause loss of prime. The best way to prevent
loss of prime is to design a pump installation so that there
is positive suction head on the pump.

ELECTRICITY
Very few operators do electrical repairs or trouble shooting
because this is a highly specialized field and unqualified
operators can seriously injure themselves or damage costly
equipment. For these reasons the operator must be familiar
with electricity, know the hazards, and recognize his/her
own limitations when working with electrical equipment.

Most municipalities employ electricians or contract with
a “commercial electrical company” that they call when
major problems occur. However, the operator should be
able to explain how the equipment is supposed to work
and what it is doing or not doing when it fails.

The need for safety should be apparent.  If proper safe
procedures are not followed in operating and maintaining
electrical equipment, accidents can happen that cause
injuries, permanent disability, or loss of life.  Serious
accidents that could have been avoided have happened
because machinery was not shut off, locked out, and tagged
properly.

Due to the nature of electricity it is suggested you read and
understand the chapter on electricity in the Small
Wastewater System Operation and Maintenance By
California State University, Sacramento or the Operation
of Wastewater Treatment Plants Vol. II.

ELECTRIC MOTORS
Electric motors are commonly used to convert electrical
energy into mechanical energy. A motor generally consists
of a stator, rotor, end bells, and windings. The rotor has an
extending shaft, which allows a machine to be coupled to
it. Most large motors will be three phase motors rated from
220 or 4160 volts.

PHASES
The term “phase” applies to alternating current (AC)
systems and describes how many external winding
connections are available from a generator, transformer,
or motor for actual load connections. Motors are either
single-phase or three-phase.

Single Phase Motors
Single-phase motors are normally operated on 110-220 volt
A.C. single-phase systems. A straight single-phase winding
has no starting torque so it must incorporate some other
means of spinning the shaft. A single-phase motor requires
a special start circuit within the motor to make sure it runs
in the right direction. Several different types of starter
windings are available in these motors. Single-phase power
leads will have three wires, like a three-prong extension
cord.

Three Phase Motors
Three-phase systems refer to the fact that there are three
sets of windings in the motor and three legs of power
coming in from the distribution system. This type of motor
is used where loads become larger than single-phase circuits
can handle. With three legs to carry power, more amps can

Table  8.2 - Causes of Cavitation

Loss of discharge pressure due to open hy-
drants or line breaks
Closed suction valve
Obstruction in the suction line
Low suction head due to drop in water level
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be delivered to the motor. Three phase motors are the most
common types used in water and wastewater systems.
Three major types of three phase motors are the squirrel
cage induction motor, synchronous motors, and wound rotor
induction motors.

Squirrel cage induction motors are widely used because of
its simple construction and relative low maintenance
requirements. The windings are stationary and are built into
the frame of the motor. The power supply is connected to
the windings in the stator, which creates a rotating magnetic
field. The rotor is made up of bars arranged in the shape of
a cylinder and joined to form a “squirrel cage.” Squirrel
cage induction motors make up approximately 90% of all
motors used in industry today.

Three-phase motors do not use a start circuit. The direction
of rotation is determined by how the three leads are wired
to the motor. If any two of the leads are switched, the motor
rotation will be reversed.

Single Phasing
Anytime a lead becomes grounded, a dead short develops,
or one of the contacts opens in a three-phase motor, single
phasing will result. When this occurs, the speed of the motor
will drop and it will begin to overheat. The single phase
will draw too many amps and it will quickly burn up. When
single phasing occurs while the motor is not running, it
simply will not start up again. Special circuit protection is
available that will shut the motor off if single phasing
occurs.

CIRCUIT PROTECTION
Motors need to be protected from power surges and
overloads. Fuses and circuit breakers are designed to open
the circuit when the current load threatens to damage the
motor. Fuses are generally sized at 120-150% of motor
capacity. Circuit breakers can be reset when they trip,
instead of being replaced like a fuse. Circuit breakers can
react faster than fuses and are usually sized closer to the
current rating of the motor.
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