
13-1

CHAPTER 13:  NITROGEN REMOVAL

THE NITROGEN CYCLE
Nitrogen, element number seven on the periodic table, is
an essential part of living matter and a relatively common
element on our planet.  70% of the atmosphere that we
breathe is nitrogen, and plants and animals alike require
nitrogen as one of the building blocks of living tissue.
Because of the many oxidation states that nitrogen can
assume, it exists in many forms.  Ammonia (NH3), nitrite
(NO2), nitrate (NO3) and organically bound nitrogen are
just a few of the many possible compounds of nitrogen.
The nitrogen on our planet is constantly being changed
from one form to another.  These changes are illustrated
by the nitrogen cycle.

THE NEED FOR NITROGEN REMOVAL
Inorganic nitrogen provides a nutrient source for algae in
receiving waters.  The combination of nitrogen and
phosphorous can cause uncontrolled algae blooms, which

choke waterways.  As the lower layers of algae die off, the
decomposing material can cause low D.O. conditions to
exist.  This condition is known as eutrophication.  Algae
can also cause taste and odor problems in drinking water
supplies.  Ammonia is toxic to many fish and aquatic
species.  When discharged from a treatment plant, it can
cause fish kills and the death of other aquatic organisms in
the receiving stream.  Ammonia toxicity increases when
little dilution is available in the receiving stream, and when
the pH and temperature of the stream are elevated.
Ammonia also creates a biological oxygen demand, which
contributes to eutrophication in natural waters.

Nitrate can act as a nutrient in receiving streams and poses
a health risk whenever it is allowed to contaminate drinking
water supplies.  The drinking water problem is of particular
importance in New Mexico, where numerous septic tank
discharges into shallow groundwater have resulted in the
contamination of drinking water supply wells.  When water
that contains elevated levels of nitrate (> 20 mg/L) is
consumed, an illness known as methemoglobinemia can
occur.  Typically affecting infants and the elderly,
methemoglobinemia causes its victims to turn a pale blue/
gray and become lethargic and ultimately comatose.  Death
can soon follow if no treatment is administered.  It mostly
affects infants, and so is commonly known as “blue-babies
syndrome”.

For all of these reasons, the removal of nitrogen from
wastewater continues to grow in importance.  In the future,
with increased effluent re-use and greater stress placed upon
our rivers, lakes and streams, the importance of nitrogen
removal will only increase.

THE MANY FORMS OF NITROGEN
Nitrogen can combine with many other elements to form a
variety of compounds.  Table 13.1 summarizes the common
forms of nitrogen of interest to the wastewater operator.

Table 13.1 - Common Forms of Nitrogen

Figure 13.1 - Wastewater Nitrogen Cycle



13-2

As indicated in the table, nitrogen is present in domestic
wastewater mainly in the form of ammonia and organically
bound nitrogen.  (Depending upon pH, ammonia can exist
in solution as a gas, (NH3), or in solution as a dissolved
solid; ammonium (NH4)). Ammonia and organic nitrogen
compounds can be measured collectively using the Total
Kjeldahl Nitrogen (TKN) test method.

Although they may do a good job at removing BOD, TSS
and pathogens, modern wastewater treatment plants remove
only a small amount of the TKN present in the influent,
unless configured specifically for nitrogen removal.  There
are a variety of methods for removing nitrogen from
wastewater.  Table 13.2 lists the most common.

BIOLOGICAL NUTRIENT REMOVAL
In the natural world, changes to nitrogen compounds are
mostly accomplished biologically, by living organisms.
These organisms live in environments that are aerobic,
anaerobic and even anoxic.  Modern wastewater treatment
plants can be designed (or operated in a modified fashion)
to manipulate microorganisms into changing nitrogen
compounds.  Typically, nitrogen is in the form of ammonia
and organic nitrogen in influent.  If accomplished in the
correct order, the nitrogen compounds that enter the
influent (mainly ammonia) can be converted first into
nitrate and then converted into nitrogen gas (N2), which
escapes into the atmosphere and is thus removed.  This
process is known as nitrification/denitrification.  To
understand how it works, it is important to understand how
(and why) microorganisms change nitrogen from one
compound to another.  Each of the major processes is
described below.

NITROGEN FIXATION
The majority of nitrogen exists as nitrogen gas in the earth’s
atmosphere.  Specialized plants, known as legumes, can
capture atmospheric nitrogen and turn it into plant matter.
This process is known as nitrogen fixation.  Legumes
accomplish nitrogen fixation through a symbiotic
relationship with a group of aerobic, facultative and
anaerobic bacteria that live near their roots.  These bacteria
are actually responsible for transforming atmospheric
nitrogen into compounds that the plants can readily use,
such as nitrate.  The plant’s use of nitrogen results in
increased plant matter.  As the plants are consumed by
higher life forms, the organically bound nitrogen is passed
along for use by other organisms.

ANAEROBIC DECOMPOSITION
Organically bound nitrogen can be broken down into
ammonia by anaerobic bacteria through the process of
anaerobic decomposition.  A good example of this is what
happens in a septic tank.  Much of the organic nitrogen

that enters a septic tank is converted into ammonia, which
is released in the septic tank effluent.  For this reason, the
ammonia concentration coming out of a septic tank is often
higher than the ammonia concentration going in.  Organic
acids are formed as by-products of anaerobic
decomposition, which tend to lower the pH of wastewater
passing through the process.

NITRIFICATION
Nitrification is the process by which ammonia is oxidized
into nitrite and then nitrate.  Working under strict aerobic
conditions (> 1.0 mg/L D.O.), two groups of autotrophic
microorganisms accomplish nitrification.  The species
Nitrosomonas is primarily responsible for converting
ammonia into nitrite, while the species Nitrobacter converts
nitrite into nitrate.  Both organisms are strict aerobes and
are very sensitive to changes in their environment.  Rapid
changes to pH, temperature, D.O. levels and other factors
can result in a large-scale die off.  In this sense, the nitrifiers
are the “prima donnas” of the wastewater microorganism
world.  The rate at which nitrification will occur in a
wastewater treatment facility is regulated by the numbers
of nitrifiers available.

Nitrification can be accomplished in activated sludge
systems, trickling filters, RBCs, lagoons and other types

Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. III, 2nd ed., Office of
Water Programs, California State University, Sacramento Foundation
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of treatment facilities, provided conditions are right.
Because it is a strictly aerobic process, sufficient levels of
dissolved oxygen must be provided.  Typically, a D.O. level
of at least 1 - 2 mg/L must be maintained to realize efficient
nitrification.  However, the D.O. that is available affects
the nitrification rate.  More D.O. will result in higher levels
of nitrification, up to a maximum of about 4.0 mg/L of
D.O.  In order to completely nitrify each pound of ammonia,
4.6 pounds of dissolved oxygen are required.

The nitrifiers can only carry out efficient nitrification within
a pH range of 7.5 – 8.5.  Outside of this range, the rate of
nitrification slows to generally unacceptable levels.
Alkalinity is consumed during nitrification as part of the
biological reaction.  For each pound of ammonia nitrified
into nitrate, 7.2 pounds of alkalinity (as CaCO3) are
destroyed.  Because of the destruction of alkalinity through
the release of hydrogen ions, sustained nitrification causes
a drop in pH.  In communities that use treated surface water
for their potable supply, which are often low in alkalinity,
the insufficient alkalinity is sometimes responsible for
limiting the rate of nitrification in the wastewater treatment
facility.  This problem is easy to overlook.

DENITRIFICATION
Denitrification is the process by which microorganisms
reduce nitrate to nitrogen gas.  A number of species that
occur in wastewater are capable of accomplishing
denitrification.  These are sometimes referred to as
facultative organisms.  All of the organisms that can
accomplish denitrification are Heterotrophic, because they
can metabolize complex organic substances.  Normally,
Heterotrophic organism will metabolize waste using
dissolved oxygen whenever it is available (> 0.1 mg/L).
When placed in anoxic conditions, (an environment having
< 0.1 mg/L dissolved oxygen), the facultative organisms
can turn to the oxygen bound in nitrate as a means of
metabolizing waste.  Utilizing the oxygen contained within
the nitrate molecule results in the release of nitrogen gas.
Given time or agitation, the nitrogen gas will escape from
solution and exit into the atmosphere.  This phenomenon
is commonly observed in secondary clarifiers, where the
rising gas bubbles float particles of sludge to the surface.

Denitrification occurs in two steps.  First, nitrate is reduced
to nitrite.  Next, nitrite is reduced by the microorganism
dissimulation process to gaseous forms of nitrogen
(primarily N2).

Denitrification can be accomplished using fixed growth
reactors, such as trickling filters, RBCs and constructed
wetlands system (although this use is somewhat uncommon
in New Mexico).  More commonly, denitrification is

accomplished in modified activated sludge systems that
incorporate anoxic zones.

The rate at which denitrification can occur is limited by
the presence of dissolved oxygen.  If more than 0.1 mg/L
of D.O. is present, the facultative organisms will use the
D.O. for respiration, instead of turning to nitrate.  For this
reason, it is critical that dissolved oxygen be eliminated.
This typically requires that a large source of carbon be
provided for the microorganisms to metabolize.  Influent
is commonly fed into anoxic zones to provide a carbon
source, however, in some cases, alternative sources of
carbon must be used.  Methanol has been successfully
employed as a source of carbon to drive denitrification,
although the complication and expense often outweigh the
benefits.

Temperature has a profound effect upon denitrification.  At
liquid temperatures of 10º C (50º F), denitrification tapers
off dramatically.  In fact, 10º C can be considered a lower
limitation for denitrification.  Below this temperature,
biological denitrification cannot be used to effectively
remove nitrate.  This fact causes many problems with
wastewater treatment facilities in cold climates that must
remove nitrogen for permit compliance.  The impracticality
of warming large amounts of wastewater for the purposes
of achieving denitrification makes the 10º C temperature
wall a very hard barrier to contend with.

LAND APPLICATION OF EFFLUENT
Many dischargers in New Mexico utilize land application
of effluent as a means of removing residual nitrogen from
treated effluent under permits issued by the NMED Ground
Water Quality Bureau.  In this method, nitrogen in the
effluent is applied at the agronomic uptake rate of a crop
that is grown with the effluent, such as turf, landscaping or
feed crops.  As the nitrogen is applied to the crops, the
growing plants take it up as fertilizer.  When the green
plants are cut and removed, the nitrogen bound in them is
removed, and thus prevented from contaminating the
underlying ground water.  The reporting requirements for
this type of discharge are discussed in further detail in
“Chapter 15, Sampling and Reporting”.

PHYSICAL NITROGEN REMOVAL
Nitrogen can be removed from wastewater through physical
means.  The most common method is ammonia stripping,
which is described below.

AMMONIA STRIPPING
Ammonia (NH3) exists as a gas in solution.  Ammonium
(NH4) is a dissolved solid.  Depending on the pH, nitrogen
will exist as ammonia or ammonium.
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Ammonia, because it is a gas, will come out of solution
readily and exit into the atmosphere (strip).  Ammonium,
as a dissolved solid, will not.  Therefore, to effectively strip
ammonia from wastewater, the pH must be raised to a point
that most of the compound will exist as ammonia.  At pH
11 and a temperature of 25º C, the percentage of the
compound that exists as ammonia is 98%.  At this pH,
agitation of the wastewater or spraying the wastewater into
fine droplets will result in a high level of ammonia removal
through stripping.  Caustic ammonia stripping usually
employs a packed tower with a counter current of forced
air.  High levels of ammonia removal can be reliably
achieved, however the cost is generally prohibitive.

To a lesser extent, this phenomenon
is responsible for much of the
nitrogen removal that is achieved
by lagoon systems.  Because the pH
of lagoons is often elevated over
8.5 during periods of high algae
activity, ammonia stripping can be
responsible for removal of much of
the nitrogen in the wastewater.
Although this method offers an
inexpensive and simple means for
nitrogen removal using lagoons,
please note that the effectiveness
is limited and effluents with less
than 10 mg/L total nitrogen are
hard to obtain.

CHEMICAL NITROGEN

REMOVAL
There are two common chemical
methods for removing nitrogen
from wastewater; breakpoint
chlorination and ion exchange.
Neither is used on a widespread
basis in New Mexico as a means
of discharge permit compliance.

BREAKPOINT CHLORINATION
Ammonia/ ammonium nitrogen
can be oxidized to nitrogen gas
with chlorine.  Breakpoint
chlorination is the term used to
describe the process.  To reach the
chlorine breakpoint, enough
chlorine must be added to satisfy
all of the demand in the wastewater.
Any ammonia in the wastewater is
oxidized to nitrogen gas, and all
other pollutants are oxidized as

well.  When the addition of more chlorine results in a
comparable increase in the free residual, the breakpoint
has been achieved.

Breakpoint chlorination requires relatively high volumes
of chlorine compared with the amount of ammonia being
oxidized.  In fact, the chlorine to ammonia ratio is around
10:1.  This means that it takes 10 pounds of chlorine to
oxidize one pound of ammonia into nitrogen gas.  The high
demand makes breakpoint chlorination impractical for any
use other than for polishing an effluent following another
nitrogen removal process.  In this practice, the bulk of the
influent ammonia is removed through biological processes
and then the remaining 1 –2 mg/L of ammonia is removed
through breakpoint chlorination.

Figure 13.2 - Effects of pH and Temperature on Equilibrium Between
Ammonium Ion (NH4+) and Ammonia Gas (NH30)

Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. III, 2nd ed., Office of Water Programs, California State University,
Sacramento Foundation
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ION EXCHANGE
The ion exchange process can be used to remove a variety
of pollutants from wastewater, including ammonia.  Ion
exchange involves passing ammonia-laden wastewater
through a column that contains natural or synthetic ion
exchange resins.  A naturally occurring resin (or zeolite)
known as clinoptilolite is commonly used.  The columns
are generally 4 – 5 feet in depth packed with 20 X 50 mesh
particles.  As wastewater passes though the column,
ammonium ions in the wastewater are absorbed by the
clinoptilolite.  When the absorptive capacity of the resin is
used up, the column is regenerated through a caustic wash,
which releases the absorbed ammonium from the resin by
converting it into ammonia, which is then removed through
gas stripping.  Clinoptilolite resin can also be regenerated
using brine solution.  When the brine is passed through the
column, the sodium in the brine replaces the absorbed
ammonium at the exchange sites of the resin.  The brine
can then be discarded or the ammonium can be removed
and the brine can be reused to regenerate the column.

Ion exchange is generally considered an expensive method
of ammonia removal.  However, it is also very effective
when properly employed.  Because of plugging of the ion
exchange resin by bio-slimes, this method is generally only
applied to high quality secondary effluents that have been
filtered and disinfected.

OPERATIONAL CONTROL OF NITRIFICATION/
DENITRIFICATION
The two part process of biological nitrogen removal through
nitrification/denitrification requires that ammonia if first
converted into nitrite and then nitrate, and then that the
nitrate be converted into nitrogen gas, which is released to
the atmosphere.

NITRIFICATION
The nitrification portion of biological nitrogen removal can
be accomplished using either fixed film or suspended
growth reactors.  In either case, a sufficient quantity of
oxygen and ample time is required for the microorganisms
to carryout the process.  No matter which type of reactor is
used, the process must be operated in such a way that
ammonia is oxidized completely to nitrate.  If the process
results in the formation of only nitrite but not nitrate,
disinfection problems will result where chorine disinfection
is employed.  This is because nitrite exerts a high demand
(2.5:1) as nitrite is oxidized to nitrate by chlorine.

Please note that a new approach to nitrogen removal is
being employed that oxidizes ammonia to nitrite and then
denitrifies the nitrite immediately without the creation of
nitrate.  This is accomplished biologically, all within the

same aeration basin.  The advantage to this new process is
that significantly less oxygen is required.  Control of the
process can be difficult and requires on-line sensors and
computer control of the aeration system.

NITRIFICATION PROCESS MODES
Fixed Film Processes
Nitrification in fixed film processes can be accomplished
using a variety of treatment units.  Fixed film processes
have an advantage over suspended growth processes when
it comes to nitrification, because the organisms responsible
for nitrification prefer environments where they can attach
to fixed surfaces.  This allows nitrifiers to grow in stable
colonies. Constructed wetlands, RBCs, fluidized beds,
recirculating sand filters and trickling filters have all been
used successfully for nitrification.  Of these treatment units,
trickling filters are most commonly employed and the
following discussion is applicable mainly to the trickling
filter process.  However, many of the important points apply
to all fixed film processes that are intended to nitrify.

Trickling filters (and all fixed film processes) provide BOD
removal by converting soluble BOD into material that can
be removed through solids separation (gravity settling or
filtration).  If nitrification is also a requirement, most of
the BOD must be removed first.  This is because the
microorganisms responsible for nitrification cannot
compete with the large numbers of Heterotrophic bacteria
that form when a large BOD source is available for food.
For this reason, dual stage trickling filters are often
employed to provide BOD removal in the first stage and
then nitrification in the second stage.  BOD removal and
nitrification can occur in the same trickling filter, with the
BOD conversion occurring in the upper portion and
nitrification in the lower portion of the filter media, but
efficiency suffers.

Figure 13.3 - Plastic Media Used for “Trickling
Filter” Type Nitrification

Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. III, 2nd ed., Office of
Water Programs, California State University, Sacramento Foundation
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Very low organic loadings (< 25 lbs. BOD/day/1000cuft
of media) are necessary to allow the growth of nitrifying
bacteria in the same filter with large numbers of
Heterotrophs.  Recirculation through the trickling filter is
critical to maintaining efficient nitrification.  Because the
nitrifiers are sensitive to changes in their environment, the
filter media must be kept wet at all times and sufficient
dissolved oxygen must be maintained.  Recirculation
provides for both requirements.  Recirculation rates of 50
– 200% (and higher) have been used for nitrification.
Occasionally, forced air ventilation will be used to improve
the nitrification rate of trickling filters.

Suspended Growth Processes
Activated sludge processes can be operated in a variety of
modes.  Not all modes of operation are conducive to
nitrification.  Conventional activated sludge lends itself
well to nitrification because the plug flow through the basin
allows for the assimilation of BOD by the Heterotrophs
prior to the start of nitrification.  Adequate detention times
and dissolved oxygen levels must be maintained.

It is also of great importance to maintain a large enough
population of nitrifiers in the system (higher SRT).  This
requires an increased solids inventory over that which is
required for BOD removal alone.  Extended aeration
activated sludge has even greater advantage for nitrification
due to long detention times and high sludge ages.  Contact
stabilization activated sludge generally does not provide
for nitrification because of the high F:M that these systems
operate at and the short detention times in the contact zone.
Step feed activated sludge can be used for partial
nitrification, however, because influent is introduced near
the end of the aeration basin, ammonia can pass through
without being fully oxidized to nitrate.

Nitrification Process Control
When an adequate population of nitrifiers is present, and
suitable conditions of dissolved oxygen, alkalinity and
temperature are maintained, nitrification systems are
relatively easy to operate.  The control of nitrification in a
fixed film reactor depends mainly upon: (1) the
recirculation rate, and (2) the applied loading.  The control
of nitrification in suspended growth reactors depends upon:
(1) the SRT or MCRT, and (2) the dissolved oxygen levels.
Temperature affects nitrifiers as it affects all biological
activity.  Colder temperatures slow the process.

For activated sludge, the detention time in the aeration basin
must be at least 4 hours and preferably >8 hours.  The
typical MLVSS concentration required to maintain an active
population of nitrifiers is > 1500 mg/L.  Dissolved oxygen
levels of 2 – 4 mg/L are typical for conventional activated
sludge nitrification processes, while extended aeration
plants typically need only 1 – 1.5 mg/L of D.O.

Alkalinity is consumed during the nitrification process at
a rate of 7.2 parts of alkalinity for each part of ammonia
oxidized.  Because of this, alkalinity determinations (along
with D.O. readings) offer one of the best day-to-day
operational controls for nitrification.  A drop in the pH of
wastewater may or may not accompany nitrification,
depending upon the alkalinity available and pH at the start
of the process.  Any wastewater containing less than 50
mg/L of alkalinity is likely to experience a significant drop
in pH during nitrification.

If the pH drops below 6.5, nitrification will effectively
cease.  For this reason, it is sometimes necessary to add
alkalinity in order to maintain nitrification.  If you suspect
that low alkalinity is inhibiting nitrification, investigate
carefully before taking action.  Remember that 24-hour
composite samples can often mask fluctuating alkalinity
and pH drops.  If the pH drops low enough to inhibit
nitrification, alkalinity will have to be added to the influent.
Lime, soda ash and sodium hydroxide are the most
commonly used chemicals that are added to increase
alkalinity in nitrifying systems.

The optimum wastewater temperature for nitrification
ranges from 15º - 30º C (60º – 95º F).  Nitrification is
inhibited at low temperatures, and as much as five times
the detention time may be necessary to accomplish
complete nitrification in the winter as opposed to the
summer.  Because there is no way to control the wastewater
temperatures, operators must adjust other process
parameters to compensate for the lower growth rate of the
nitrifiers during low temperatures.  Typically, increasing
the MLVSS concentration, increasing the MCRT, and
increasing the pH slightly are the methods used to
accomplish this.  Under warm weather conditions,
nitrification will proceed at a lower pH, lower MCRTs and
with lower MLVSS concentrations.

The growth of nitrifying organisms is affected by the
nitrogenous load applied to the system.  In fact, the
population of nitrifiers will be limited by the concentration
of ammonia in the influent.  Organic nitrogen, phosphorous
and trace elements are essential for the growth of the
microorganisms in any nitrifying system.  The generally
recommended BOD to nitrogen to phosphorous ratio is
100:5:1 for BOD reduction alone.  In nitrifying systems,
ratios containing significantly more nitrogen can be treated.
If any of these constituents is not available in sufficient
quantities, treatment will suffer.

In some circumstances, it is only necessary to nitrify
ammonia into nitrate.  For example, for a treatment plant
that discharges into a large river, ammonia toxicity may be
a problem but nutrient loading may not.  Under this
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Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. III, 2nd ed., Office of Water Programs, California State University, Sacramento Foundation
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Figure 13.4 - Nitrification and Denitrification Using Suspended Growth Reactors
Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. III, 2nd ed., Office of Water Programs, California State University, Sacramento Foundation
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Reprinted, with permission, from Operation of Wastewater Treatment Plants, Vol. III, 2nd ed., Office of Water Programs, California State University, Sacramento Foundation
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situation, the facility’s discharge permit may limit the
ammonia form of nitrogen in the discharge, but not limit
nitrogen in other forms, such as nitrate.  Simply converting
the incoming ammonia into nitrate is sufficient to meet the
permit limit for ammonia in this case.  In many other
situations, it is necessary to actually remove the nitrogen
by finishing the nitrification/denitrification cycle.

DENITRIFICATION
The microorganisms involved in denitrification are much
more varied and plentiful than those involved in
nitrification.  They are also much less sensitive to
environmental changes than the nitrifiers.  Systems that
nitrify and denitrify have the advantage of regaining about
50% of the alkalinity lost during nitrification, because
alkalinity is created as part of the denitrification process.
Biological denitrification can be accomplished with both
fixed film and suspended growth processes.  In New
Mexico, denitrification is typically performed using anoxic
zones as an adaptation of the activated sludge process,
although constructed wetlands cells, lagoons and even
septic tanks have all been used to provide the anoxic
conditions necessary to induce denitrification.

DENITRIFICATION PROCESS MODES
Fixed Film Processes
The fluidized bed biological denitrification process works
by passing wastewater through a bed of suitable media such
as sand.  As the wastewater moves through the bed,
microorganisms attached to the media utilize the nitrate in
the wastewater as a source of oxygen for metabolizing
carbon compounds.  Trickling filters and RBCs have been
designed to provide for denitrification in a similar fashion,
although these processes must be modified to exclude
dissolved oxygen.  As for all biological denitrification
systems, a carbon food source must be supplied to promote
metabolism by the denitrifying organisms.  Primary
effluent, methane gas, methanol or any other source of
carbon can be used.  In fixed film reactors, the carbon source
can even be organic matter that is trapped in the reactor
itself.

This use of a trapped carbon source for denitrification has
been accomplished in constructed wetlands, although it is
difficult to control and the success of the method is
questionable.  For all biological denitrification systems,
dissolved oxygen must be excluded from the system;
otherwise, the organisms will utilize any available D.O.
rather than utilizing nitrate for cell metabolism.  In general,
fixed film systems are not as well suited to biological
denitrification as suspended growth systems.

Suspended Growth Processes
Activated sludge can be modified quite easily to provide
for biological denitrification.  By creating an anoxic
environment, where the mixed liquor and influent are kept
in suspension, but not aerated, controlled denitrification
can be achieved.  There are many ways of achieving anoxic
conditions in activated sludge systems.  Perhaps one of the
easiest is to simply shut off the aeration system for several
hours to allow anoxic conditions to develop.  If carefully
timed, this method can denitrify the entire contents of an
aeration basin.  This approach has been applied successfully
to package plants that need to denitrify for permit
compliance.

Another approach to creating an anoxic environment is
taken in the sequential batch reactor (SBR) process.  SBRs
operate much as activated sludge, with the exception that
the entire treatment process, including clarification, takes
place within a single reactor basin.  While an SBR is
aerating, mixing and filling with influent, the organisms in
the reactor are assimilating BOD and nitrifying ammonia
into nitrate.

Next, the aeration is turned off, but the mixing and filling
with influent continues.  During this phase, the
microorganisms in the reactor continue to assimilate BOD.
In doing so, they quickly utilize the available D.O (the basin
becomes anoxic).  Once the D.O. is exhausted, the
facultative organisms turn to the oxygen bound up in nitrate
as a source of oxygen that can be utilized and allow them
to continue to metabolize BOD.  SBRs often cycle between
these two phases (aerobic and anoxic) several times before
finally shutting off aeration and mixing so that the mixed
liquor can settle and the clarified effluent can be decanted
off and discharged.  If the phases are carefully controlled,
high levels of nitrogen and BOD removal can be achieved.

Recent development has lead to activated sludge plants that
have special, dedicated anoxic zones, which provide for
denitrification.  Anoxic zones have been utilized at the
beginning, in the middle and at the end of aeration basins.
Some zones are simply a portion of the basin that is mixed
but not aerated (common in oxidation ditches), while others
are isolated areas, separated by walls or baffles.  In either
case, the intent is to provide an area where the mixed liquor
and a carbon source (normally influent) can come together
for a set detention time.  While in the anoxic zone, the
organisms are forced to turn to the oxygen bound up in
nitrate as a source of oxygen to be used while metabolizing
the BOD contained in the carbon source feed.

Often, mixed liquor is recycled through the anoxic zone in
order to denitrify the nitrate contained within it.  This form
of mixed liquor recycle is also used to maintain the desired
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detention time within the anoxic zone, which is typically
around 1 – 2 hours.  Excessive detention times in the anoxic
zone can overstress the non-facultative organisms (like the
nitrifying bacteria), and so must be avoided or the
nitrification side of the process will suffer.
When anoxic zones are located at the beginning of an
aeration basin, another benefit is realized.  In an anoxic
zone located at the head of an aeration basin, the facultative
organisms rapidly take up the easy to assimilate organic
matter (soluble BOD) contained in the influent.  This
reaction results from the stress caused by the anoxic
conditions.  This rapid uptake of the easy to assimilate
organic matter robs many filamentous type bacteria of their
main food source; soluble BOD.  As a result, an anoxic
zone operating in this fashion will actually select against
the growth of many types of filamentous organisms.  For
this reason, anoxic zones situated at the front of an aeration
basin are often referred to as anoxic selectors, or bio-
selectors.  Selectors of this type offer the most powerful
long-term tool for combating filamentous organisms
available to operators.

It is important to understand that the effect does not work
on all types of filamentous organisms.  Much to the regret
of many an operator, the filamentous organism Microthrix
Parvicella does not respond to the selector effect.  In
addition, other filaments are only slightly selected against
or are not affected at all.

DENITRIFICATION PROCESS CONTROL
The control of any biological denitrification process centers
around three things: (1) excluding dissolved oxygen, (2)
maintaining the proper detention time, and (3) ensuring an
adequate carbon source to drive the organisms to denitrify.

A D.O. meter is one of the most useful tools for
troubleshooting denitrification systems.  If any D.O. (>0.1
mg/L) is allowed to exist in the anoxic zone, denitrification
will be hampered.  Checking for the presence of dissolved
oxygen with an accurately calibrated D.O. meter is one of
the most fundamental process control checks.

The detention time in the anoxic zone should be around 1
– 2 hours in order to ensure adequate denitrification.
Detention times lower than 1 hour usually do not allow
enough time for the complete utilization of any residual
D.O. and for complete denitrification.  Detention times that
are excessive will overstress or even kill the strict aerobes
in the system.  The most sensitive obligate aerobes are the
nitrifying bacteria.  If they are killed off due to excessively
long anoxic exposure, the entire nitrogen removal process
will fail.  Mixed liquor recycling is used to maintain the
desired detention times for separate sludge systems and
pre-denitrification systems.

Figure 13.4 shows the typical configurations for separate
sludge post-denitrification, single sludge post-
denitrification and for single sludge pre-denitrification.  Of
these configurations, single sludge pre-denitrification is the
most common in New Mexico.  Furthermore, single sludge
pre-denitrification has the additional advantage of exerting
the selector effect against susceptible filamentous bacteria.

For SBRs, the denitrification detention time is a function
of the length of the anoxic phase, which can be adjusted
by the operator.  It is often necessary to increase the length
of the anoxic phase of an SBR during the winter months,
when cold temperatures make oxygen easier to dissolve
and slow the metabolism of the microbes.  Conversely, the
length of the anoxic phase can often be shortened during
warm weather.

Ensuring an adequate source of carbon is generally not a
problem, because the influent contains all of the carbon
that is needed to drive the denitrification process.  However,
for some configurations (particularly separate sludge post-
denitrification), it may be necessary to add a additional
carbon source.  In the past, methanol was used for this
purpose, however, the cost and complication of methanol
injection almost always make the use of influent as a carbon
source much more desirable.
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