# APPENDIX D HYDROLOGY, GEOMETRY, AND METEROLOGICAL INPUT DATA FOR SSTEMP

This page left intentionally blank.

# TABLE OF CONTENTS

| TABL  | E OF  | CONTENTSI                     |
|-------|-------|-------------------------------|
| LIST  | OF T  | ABLES II                      |
| LIST  | OF F  | IGURES II                     |
| LIST  | OF A  | CRONYMSIII                    |
| D 1.0 | INTF  | RODUCTION1                    |
| D 2.0 | HYD   | ROLOGY1                       |
| D     | 02.1  | Segment Inflow1               |
| D     | 02.2  | Inflow Temperature            |
| D     | 02.3  | Segment Outflow               |
| D     | 02.4  | Accretion Temperature         |
| D 3.0 | GEO   | METRY7                        |
| D     | 93.1  | Latitude                      |
| D     | 93.2  | Dam at Head of Segment 7      |
| D     | )3.3  | Segment Length7               |
| D     | 93.4  | Upstream Elevation            |
| D     | )3.5  | Downstream Elevation          |
| D     | )3.6  | Width's A and Width's B Term  |
| D     | 93.7  | Manning's n or Travel Time 17 |
| D 4.0 | MET   | EOROLOGICAL PARAMETERS        |
| D     | 04.1  | Air Temperature               |
| D     | 04.2  | Maximum Air Temperature       |
| D     | 04.3  | Relative Humidity             |
| D     | 04.4  | Wind Speed                    |
| D     | 94.5  | Ground Temperature            |
| D     | 94.6  | Thermal Gradient              |
| D     | 94.7  | Possible Sun                  |
| D     | 94.8  | Dust Coefficient              |
| D     | 94.9  | Ground Reflectivity           |
| D     | 94.10 | Solar Radiation               |
| D 5.0 | SHA   | DE22                          |
| D 6.0 | REF   | ERENCES                       |

# LIST OF TABLES

| Table D.1 Assessment Units and Modeled Dates                                   | 1 |
|--------------------------------------------------------------------------------|---|
| Table D.2 Drainage Areas for Estimating Flow by Drainage Area Ratios           | 2 |
| Table D.3 Parameters for Estimating Flow using USGS Regression Model           |   |
| Table D.4 Inflow                                                               |   |
| Table D.5 Mean Daily Water Temperature                                         | 4 |
| Table D.6 Segment Outflow                                                      | 5 |
| Table D.7 Mean Annual Air Temperature as an Estimate for Accretion Temperature | 6 |
| Table D.8 Assessment Unit Latitude                                             | 7 |
| Table D.9 Presence of Dam at Head of Segment                                   | 7 |
| Table D.10 Segment Length                                                      |   |
| Table D.11 Upstream Elevations                                                 |   |
| Table D.12 Downstream Elevations                                               |   |
| Table D.13 Width's A and Width's B Terms                                       | 9 |
| Table D.14 Manning's n Values                                                  |   |
| Table D.15 Mean Daily Air Temperature                                          |   |
| Table D.16 Mean Daily Relative Humidity                                        |   |
| Table D.17 Mean Daily Wind Speed                                               |   |
| Table D.18 Mean Annual Air Temperature as an Estimate for Ground Temperature   |   |
| Table E.19 Mean Daily Solar Radiation                                          |   |
| Table D.20 Percent Shade                                                       |   |
|                                                                                |   |

# LIST OF FIGURES

| Figure D.1 | Wetted Width ver | rsus Flow for . | Assessment | Unit NM- | 2306.A_ | 065* | . 10 |
|------------|------------------|-----------------|------------|----------|---------|------|------|
| Figure D.2 | Wetted Width ver | rsus Flow for . | Assessment | Unit NM- | 2306.A_ | 040  | . 11 |
| Figure D.3 | Wetted Width ver | rsus Flow for . | Assessment | Unit NM- | 2306.A_ | 060  | . 12 |
| Figure D.4 | Wetted Width ver | rsus Flow for . | Assessment | Unit NM- | 2306.A_ | 051* | . 13 |
| Figure D.5 | Wetted Width ver | rsus Flow for . | Assessment | Unit NM- | 2306.A_ | 064  | . 14 |
| Figure D.6 | Wetted Width ver | rsus Flow for   | Assessment | Unit NM- | 2306.A_ | 120* | . 15 |
| Figure D.7 | Wetted Width ver | rsus Flow for   | Assessment | Unit NM- | 2306.A_ | 068  | . 16 |
|            |                  |                 |            |          |         |      |      |

# LIST OF ACRONYMS

| 4Q3 Four-consecutive day discharge that ha  | as a recurrence interval of three years |
|---------------------------------------------|-----------------------------------------|
| cfs Cubic Feet per Second                   |                                         |
| GIS Geographic Information Systems          |                                         |
| GPS Global Positioning System               |                                         |
| IOWDM Input and Output for Watershed Data M | Management                              |
| mi <sup>2</sup> Square Miles                |                                         |
| °C Degrees Celcius                          |                                         |
| SEE Standard Error of Estimate              |                                         |
| SSTEMP Stream Segment Temperature           |                                         |
| SWSTAT Surface-Water Statistics             |                                         |
| TMDL Total Maximum Daily Load               |                                         |
| USDA U.S. Department of Agriculture         |                                         |
| USGS U.S. Geological Survey                 |                                         |
| WinXSPRO Windows-Based Stream Channel Cros  | s-Section Analysis                      |

This page left intentionally blank.

# **D 1.0 INTRODUCTION**

This appendix provides site-specific hydrology, geometry, and meteorological data for input into the Stream Segment Temperature (SSTEMP) Model (Bartholow 2002). Hydrology variables include segment inflow, inflow temperature, segment outflow, and accretion temperature. Geometry variables are latitude, segment length, upstream and downstream elevation, Width's A-term, Width's B-term, and Manning's n. Meterological inputs to SSTEMP Model include air temperature, relative humidity, windspeed, ground temperature, thermal gradient, possible sun, dust coefficient, ground reflectivity, and solar radiation. In the following sections, these parameters are discussed in detail for each assessment unit to be modeled using SSTEMP Model. The assessment units were modeled on the day of the <u>maximum recorded thermograph measurement</u>. The assessment units and modeled dates are defined as follows:

| Assessment Unit |                                                   | Modeled Dete |
|-----------------|---------------------------------------------------|--------------|
| ID              | Assessment Unit Description                       | Modeled Date |
| NM-2306.A_065   | Cienguilla Creek (Eagle Nest to headwaters)       | 7/20/2006    |
| NM-2306.A_040   | Cimarron River (Cimarron Village to Turkey Creek) | 7/16/2006    |
| NM-2305.A_060   | Moreno Creek (Eagle Nest Lake to headwaters)      | 8/10/2006    |
| NM-2306.A_051   | Rayado Creek (Miami Lake Diversion to headwaters) | 7/16/2006    |
| NM-2306.A_064   | Sixmile Creek (Eagle Nest Lake to headwaters)     | 7/15/2006    |
| NM-2306.A_120   | South Ponil Creek (Ponil Creek to Middle Ponil)   | 6/2/2006     |
| NM-2306.A_068   | Ute Creek (Cimarron River to headwaters)          | 7/16/2006    |

Table D.1 Assessment Units and Modeled Dates

# **D 2.0 HYDROLOGY**

### **D2.1 Segment Inflow**

This parameter is the *mean daily* flow at the top of the stream segment. If the segment begins at an effective headwater, the flow is entered into SSTEMP Model as zero. Flow data from USGS gages were used when available. To be conservative, the lowest four-consecutive-day discharge that has a recurrence interval of three years but that does not necessarily occur every three years (4Q3) was used as the inflow instead of the mean daily flow. These critical low flows were used to decrease assimilative capacity of the stream to adsorb and disperse solar energy. The 4Q3 would be determined for gaged sites using a log Pearson Type III distribution through "*Input and Output for Watershed Data Management*" (IOWDM) software, Version 4.1 (USGS 2002a) and "*Surface-Water Statistics*" (SWSTAT) software, Version 4.1 (USGS 2002b).

Discharges for ungaged sites on gaged streams were estimated based on methods published by Thomas *et al.* (1997). If the drainage area of the ungaged site is between 50 and 150 percent of the drainage area of the gaged site, the following equation is used:

$$Q_u = Q_g \left(\frac{A_u}{A_g}\right)^{0.5}$$

where,

- $Q_u$  = Area weighted 4Q3 at the ungaged site (cubic feet per second [cfs])
- $Q_g = 4Q3$  at the gaged site (cfs)
- $A_u$  = Drainage area at the ungaged site (square miles [mi<sup>2</sup>])
- $A_g$  = Drainage area at the gaged site (mi<sup>2</sup>)

Drainage areas for assessment units to which this method was applied are summarized in the following table:

| Assessment<br>Unit | USGS<br>Gage | Drainage<br>Area from<br>Gage<br>(mi <sup>2</sup> ) | Drainage<br>Area from<br>Top of AU<br>(mi <sup>2</sup> ) | Drainage<br>Area from<br>Bottom of<br>AU<br>(mi <sup>2</sup> ) | Ratio of DA<br>of Ungaged<br>(upstream) to<br>Gaged Site | Ratio of DA<br>of Ungaged<br>(downstream)<br>to Gaged Site |
|--------------------|--------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|
| NM-2306.A_065      | 07204500     | 56                                                  | _(b)                                                     | 74.74                                                          | _ <sup>(b)</sup>                                         | 133%                                                       |
| NM-2306.A_040      | 07207000     | 294                                                 | 87.15                                                    | 97.25                                                          | <b>29.6%</b> <sup>(c)</sup>                              | 33% <sup>(c)</sup>                                         |
| NM-2305.A_060      | 07204000     | 73.8                                                | 27.12                                                    | 79.53                                                          | 37% <sup>(c)</sup>                                       | 108%                                                       |
| NM-2306.A_051      | 07208500     | 65                                                  | _(b)                                                     | 69.75                                                          | _(b)                                                     | 107%                                                       |
| NM-2306.A_064      | 07205000     | 10.5                                                | _(b)                                                     | 13.88                                                          | _ <sup>(b)</sup>                                         | 132%                                                       |
| NM-2306.A_120      | _(a)         | —                                                   | 87.33                                                    | 95.64                                                          | _                                                        | —                                                          |
| NM-2306.A_068      | _(a)         | _                                                   | _(b)                                                     | 15.86                                                          | _                                                        | —                                                          |

 Table D.2 Drainage Areas for Estimating Flow by Drainage Area Ratios

Notes:

(a)Regression method developed by Waltemeyer (2002) was used to estimate flows since this is an ungaged stream. (b) Assessment unit begins at headwaters.

<sup>(c)</sup> The method developed by Thomas et al. (1997) is not applicable because the drainage area of the ungaged site is less than 50 percent of the drainage area of the gaged site. Therefore, the method developed by Waltemeyer (2002) was used to estimate flows for this assessment unit.

mi<sup>2</sup> = Square miles USGS = U.S. Geological Survey AU = Assessment Unit

4Q3 derivations for ungaged streams were based on analysis methods described by Waltemeyer (2002). Two regression equations for estimating 4Q3 were developed based on physiographic regions of New Mexico (i.e., statewide and mountainous regions above 7,500 feet in elevation). The following statewide regression equation is based on data from 50 gaging stations with non-zero discharge (Waltemeyer 2002):

$$4Q3 = 1.2856 \times 10^{-4} DA^{0.42} P_w^{3.16}$$

where,

| 4Q3     | = Four-day, three-year low-flow frequency (cfs)    |
|---------|----------------------------------------------------|
| DA      | = Drainage area (mi <sup>2</sup> )                 |
| $P_{w}$ | = Average basin mean winter precipitation (inches) |

The average standard error of estimate (SEE) and coefficient of determination are 126 and 48 percent, respectively, for this regression equation (Waltemeyer 2002). The following regression equation for mountainous regions above 7,500 feet in elevation is based on data from 40 gaging stations with non-zero discharge (Waltemeyer 2002):

$$4Q3 = 7.3287 \times 10^{-5} DA^{0.70} P_w^{3.58} S^{1.35}$$

where,

| 4Q3                       | = Four-day, three-year low-flow frequency (cfs)    |
|---------------------------|----------------------------------------------------|
| DA                        | = Drainage area $(mi^2)$                           |
| $\mathbf{P}_{\mathbf{w}}$ | = Average basin mean winter precipitation (inches) |
| S                         | = Average basin slope (percent)                    |

The average SEE and coefficient of determination are 94 and 66 percent, respectively, for this regression equation (Waltemeyer 2002). The drainage areas, average basin mean winter precipitation, and average basin slope for assessment units where this regression method was used are presented in the following table:

| Assessment Unit | <b>Regression</b><br><b>Model</b> <sup>(a)</sup> | Average Elevation<br>for Assessment Unit<br>(feet) | Mean Basin Winter<br>Precipitation<br>(inches) | Average<br>Basin Slope<br>(unitless) |
|-----------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------|
| NM-2306.A_065   | Mountainous                                      | 8997                                               | 8.65                                           | 0.174                                |
| NM-2306.A_040   | Statewide                                        | 6525                                               | 8.22                                           | 0.248                                |
| NM-2305.A_060   | Mountainous                                      | 8394                                               | 9.43                                           | 0.244                                |
| NM-2306.A_051   | Mountainous                                      | 8368                                               | 9.11                                           | 0.219                                |
| NM-2306.A_064   | Mountainous                                      | 9024                                               | 8.00                                           | 0.272                                |
| NM-2306.A_120   | Statewide                                        | 6914                                               | 8.79                                           | 0.303                                |
| NM-2306.A_068   | Mountainous                                      | 9143                                               | 10.01                                          | 0.299                                |

Table D.3 Parameters for Estimating Flow using USGS Regression Model

Notes:

 $mi^2 = Square miles$ 

<sup>(a)</sup> Waltemeyer (2002)

Based on the methods described above, the following values were estimated for inflow:

|                 |      | 4Q3      | DAt                        | DAg                        | Pw   | S        | Inflow       |
|-----------------|------|----------|----------------------------|----------------------------|------|----------|--------------|
| Assessment Unit | Ref. | (cfs)    | ( <b>mi</b> <sup>2</sup> ) | ( <b>mi</b> <sup>2</sup> ) | (in) | unitless | (cfs)        |
| NM-2306.A_065   | N/A  | —        | _                          | 56                         | 8.65 | 0.174    | $0.00^{(3)}$ |
| NM-2306.A_040   | (a)  | 3.30 (1) | 87.15                      | 294                        | 8.22 | 0.248    | 0.65         |
| NM-2305.A_060   | (b)  | 0.18 (2) | 27.12                      | 73.8                       | 9.43 | 0.244    | 0.34         |

### Table D.4Inflow

|                 |      | 4Q3   | DAt      | DAg                        | Pw    | S        | Inflow       |
|-----------------|------|-------|----------|----------------------------|-------|----------|--------------|
| Assessment Unit | Ref. | (cfs) | $(mi^2)$ | ( <b>mi</b> <sup>2</sup> ) | (in)  | unitless | (cfs)        |
| NM-2306.A_051   | N/A  | _     | -        | 65                         | 9.11  | 0.219    | $0.00^{(3)}$ |
| NM-2306.A_064   | N/A  | —     | _        | 10.5                       | 8.00  | 0.272    | $0.00^{(3)}$ |
| NM-2306.A_120   | (a)  | —     | 87.33    | _                          | 8.79  | 0.303    | 0.81         |
| NM-2306.A_068   | N/A  | —     | -        | -                          | 10.01 | 0.299    | $0.00^{(3)}$ |

Notes:

N/A = Not applicable, assessment unit begins at headwaters.

Ref. = Reference

<sup>(a)</sup> Waltemeyer (2002), statewide

<sup>(b)</sup> Waltemeyer (2002), mountainous

| cfs = cubic feet per second    | DAt = Drainage area from top of segment    |
|--------------------------------|--------------------------------------------|
| $mi^2 = Square miles$          | DAb = Drainage area from bottom of segment |
| in = Inches                    | DAg = Drainage area from USGS gage         |
| Pw = Mean winter precipitation | S = Average basin slope                    |

FW = Mean winter precipitation <math>S = Average basin slope<sup>(1)</sup> Based on period of record for USGS gage-Cimarron River near Cimarron, NM (07207000)

<sup>(2)</sup> Based on period of record for USGS gage-Moreno Creek at Eagle Nest, NM (07204000)

<sup>(3)</sup> Inflow is zero because assessment unit begins at headwaters.

### **D2.2 Inflow Temperature**

This parameter represents the *mean daily* water temperature at the top of the segment. 2006 data from thermographs positioned at the top of the assessment unit were used when possible. If the segment began at a true headwater, the temperature entered was zero degrees Celcius (°C) (zero flow has zero heat). The following inflow temperatures for impaired assessment units were modeled in SSTEMP:

| Table D.5 | Mean | Daily | Water | Tem | perature |
|-----------|------|-------|-------|-----|----------|
|-----------|------|-------|-------|-----|----------|

|                 |                                                      | Inflow             | Inflow |
|-----------------|------------------------------------------------------|--------------------|--------|
|                 | Upstream                                             | Temp. <sup>1</sup> | Temp.  |
| Assessment Unit | Thermograph Location                                 | (°C)               | (°F)   |
| NM-2306.A_065   | None (headwaters)                                    | 0                  | 32.0   |
| NM-2306.A_040   | Cimarron River above Cimarron Village- 05Cimarr050.8 | 16.98              | 62.56  |
| NM-2305.A_060   | Moreno Creek on NM 64 at USGS gage- 05Moreno003.7    | 16.36              | 61.45  |
| NM-2306.A_051   | None (headwaters)                                    | 0                  | 32.0   |
| NM-2306.A_064   | None (headwaters)                                    | 0                  | 32.0   |
| NM-2306.A_120   | South Ponil above North Ponil- 05SPonil000.1         | 16.21              | 61.18  |
| NM-2306.A_068   | None (headwaters)                                    | 0                  | 32.0   |

Notes:

°C = Degrees Celcius

°F = Degrees Farenheit

<sup>1</sup> Mean daily average for May 16-September 13, 2006, except South Ponil which was May 16-June 14.

### **D2.3 Segment Outflow**

Flow data from USGS gages were used when available. To be conservative, the 4Q3 was used as the segment outflow. These critical low flows were used to decrease assimilative capacity of the stream to adsorb and disperse solar energy. Outflow was estimated using the methods described in Section D2.1. The following table summarizes 4Q3s used in the SSTEMP Model:

|                 |      | 4Q3      | DAb                        | DAg      | Pw    | S        | Outflow |
|-----------------|------|----------|----------------------------|----------|-------|----------|---------|
| Assessment Unit | Ref. | (cfs)    | ( <b>mi</b> <sup>2</sup> ) | $(mi^2)$ | (in)  | unitless | (cfs)   |
| NM-2306.A_065   | (a)  | 0.31 (1) | 74.74                      | 56       | 8.65  | 0.174    | 0.36    |
| NM-2306.A_040   | (b)  | 3.30 (2) | 281.52                     | 294      | 8.22  | 0.248    | 1.07    |
| NM-2305.A_060   | (a)  | 0.18 (3) | 79.53                      | 73.8     | 9.43  | 0.244    | 0.19    |
| NM-2306.A_051   | (a)  | 1.88 (4) | 69.75                      | 65       | 9.11  | 0.219    | 1.95    |
| NM-2306.A_064   | (a)  | 0.17 (5) | 13.88                      | 10.5     | 8.00  | 0.272    | 0.20    |
| NM-2306.A_120   | (b)  | _        | 95.64                      | _        | 8.79  | 0.303    | 0.84    |
| NM-2306.A_068   | (c)  | _        | 15.86                      | _        | 10.01 | 0.299    | 0.38    |

| Table D.6 | Segment | Outflow |
|-----------|---------|---------|
|-----------|---------|---------|

Notes:

Ref. = Reference

(a) Thomas et al. (1997)

(b) Waltemeyer (2002), statewide

(c) Waltemeyer (2002), mountainous

cfs = cubic feet per second

 $mi^2 = Square miles$ 

in = Inches Pw = Mean winter precipitation DAb = Drainage area from bottom of segment

DAg = Drainage area from USGS gage

n S = Average basin slope

<sup>(1)</sup> Based on period of record for USGS gage-Cieneguilla Creek near Eagle Nest, NM (07204500)

<sup>(2)</sup> Based on period of record for USGS gage-Cimarron River near Cimarron, NM (07207000)

<sup>(3)</sup> Based on period of record for USGS gage-Moreno Creek at Eagle Nest, NM (07204000)

<sup>(4)</sup> Based on period of record for USGS gage-Rayado Creek near Cimarron, NM (07208500)

<sup>(5)</sup> Based on period of record for USGS gage-Sixmile Creek near Eagle Nest, NM (07205000)

### **D2.4** Accretion Temperature

The temperature of the lateral inflow, barring tributaries, generally should be the same as groundwater temperature. In turn, groundwater temperature may be approximated by the mean annual air temperature. Mean annual air temperature for 2006 was used in the absence of measured data. The following table presents the mean annual air temperature for each assessment unit:

| Assessment Unit | Ref. | Mean Annual Air<br>Temperature<br>(°C) | Mean Annual Air<br>Temperature<br>(°F) |
|-----------------|------|----------------------------------------|----------------------------------------|
| NM-2306.A_065   | (a)  | 6.55                                   | 43.783                                 |
| NM-2306.A_040   | (a)  | 6.55                                   | 43.783                                 |
| NM-2305.A_060   | (a)  | 6.55                                   | 43.783                                 |
| NM-2306.A_051   | (a)  | 6.55                                   | 43.783                                 |
| NM-2306.A_064   | (a)  | 6.55                                   | 43.783                                 |
| NM-2306.A_120   | (a)  | 6.55                                   | 43.783                                 |
| NM-2306.A_068   | (a)  | 6.55                                   | 43.783                                 |

 Table D.7 Mean Annual Air Temperature as an Estimate for Accretion Temperature

Notes:

Ref. = References for Weather Station Data are as follows:

(a) New Mexico State University Climate Network (Cimarron RAWS, Elevation 2,665 meters; Latitude 36.606100 N, Longitude 105.120300 W), **2006** 

°F = Degrees Farenheit

°C = Degrees Celciu

# **D 3.0 GEOMETRY**

# D3.1 Latitude

Latitude refers to the position of the stream segment on the earth's surface. Latitude is generally determined in the field with a global positioning system (GPS) unit. Latitude for each assessment unit is summarized below:

|                 | Latitude          |
|-----------------|-------------------|
| Assessment Unit | (decimal degrees) |
| NM-2306.A_065   | 36.42             |
| NM-2306.A_040   | 36.52             |
| NM-2305.A_060   | 36.60             |
| NM-2306.A_051   | 36.42             |
| NM-2306.A_064   | 36.54             |
| NM-2306.A_120   | 36.63             |
| NM-2306.A_068   | 36.59             |

 Table D.8 Assessment Unit Latitude

# D3.2 Dam at Head of Segment

The following assessment units have a dam at the upstream end of the segment with a constant, or nearly constant diel release temperature:

| Assessment Unit | Dam?            |
|-----------------|-----------------|
| NM-2306.A_065   | No              |
| NM-2306.A_040   | No <sup>1</sup> |
| NM-2305.A_060   | No              |
| NM-2306.A_051   | No              |
| NM-2306.A_064   | No              |
| NM-2306.A_120   | No              |
| NM-2306.A_068   | No              |

Table D.9 Presence of Dam at Head of Segment

<sup>1</sup> Eagle Nest Lake is upstream but not at the head of the segment.

# **D3.3 Segment Length**

Segment length was determined with National Hydrographic Dataset Reach Indexing GIS tool. The segment lengths are as follows:

### Table D.10 Segment Length

|                 | Length  |
|-----------------|---------|
| Assessment Unit | (miles) |
| NM-2306.A_065   | 12.63   |
| NM-2306.A_040   | 4.25    |
| NM-2305.A_060   | 9.0     |
| NM-2306.A_051   | 24.26   |
| NM-2306.A_064   | 4.6     |
| NM-2306.A_120   | 5.3     |
| NM-2306.A_068   | 8.04    |

# **D3.4** Upstream Elevation

The following upstream elevations were determined with National Hydrographic Dataset Reach Indexing GIS tool.

**Table D.11 Upstream Elevations** 

| Assessment Unit | Upstream<br>Elevation<br>(feet) |
|-----------------|---------------------------------|
| NM-2306.A_065   | 9,800                           |
| NM-2306.A_040   | 6,629                           |
| NM-2305.A_060   | 8,620                           |
| NM-2306.A_051   | 10,320                          |
| NM-2306.A_064   | 9,880                           |
| NM-2306.A_120   | 7,128                           |
| NM-2306.A_068   | 10,960                          |

# **D3.5** Downstream Elevation

The following downstream elevations were determined with National Hydrographic Dataset Reach Indexing GIS tool.

**Table D.12 Downstream Elevations** 

|                 | Downstream<br>Elevation |
|-----------------|-------------------------|
| Assessment Unit | (feet)                  |
| NM-2306.A_065   | 8,194                   |
| NM-2306.A_040   | 6,420                   |
| NM-2305.A_060   | 8,167                   |
| NM-2306.A_051   | 6,415                   |
| NM-2306.A_064   | 8,167                   |
| NM-2306.A_120   | 6,700                   |
| NM-2306.A_068   | 7,325                   |

### D3.6 Width's A and Width's B Term

Width's B Term was calculated as the slope of the regression of the natural log of width and the natural log of flow. Width-versus-flow regression analyses were prepared by entering cross-section field data into a Windows-Based Stream Channel Cross-Section Analysis (WINXSPRO 3.0) Program (U.S. Department of Agriculture [USDA] 2005). Theoretically, the Width's A Term is the untransformed Y-intercept. However, because the width versus discharge relationship tends to break down at very low flows, the Width's B-Term was first calculated as the slope and Width's A-Term was estimated by solving for the following equation:

$$W = A \times Q^B$$

where,

- W = Known width (feet)
- A = Width's A-Term (seconds per square foot)
- Q = Known discharge (cfs)
- B = Width's B-Term (unitless)

The following table summarizes Width's A- and B-Terms for assessment units requiring temperature TMDLs:

| Assessment Unit | Width's B-<br>Term | Width's A-<br>Term <sup>(1)</sup> |
|-----------------|--------------------|-----------------------------------|
| NM-2306.A_065   | 0.349              | 2.33                              |
| NM-2306.A_040   | 0.356              | 5.78                              |
| NM-2305.A_060   | 0.361              | 2.18                              |
| NM-2306.A_051   | 0.450              | 3.95                              |
| NM-2306.A_064   | 0.505              | 0.735                             |
| NM-2306.A_120   | 0.327              | 6.98                              |
| NM-2306.A_068   | 0.484              | 0.748                             |

### Table D.13 Width's A and Width's B Terms

 $^{(1)}A = e^{\text{constant from regression}}$ 

The following figures present the detailed calculations for the Width's B-Term.

Measurements were collected at one site within these assessment units. The regression of natural log of width and natural log of flow for each location is as follows:

### Figure D.1 Wetted Width versus Flow for Assessment Unit NM-2306.A\_065\*

\*Cross-section E from 8/30/2006 data collection



SUMMARY OUTPUT

| Regression S                                                  | Statistics                                               |                |          |          |                |           |             |             |
|---------------------------------------------------------------|----------------------------------------------------------|----------------|----------|----------|----------------|-----------|-------------|-------------|
| Multiple R<br>R Square<br>Adjusted R Square<br>Standard Error | 0.991088109<br>0.982255641<br>0.981573165<br>0.016116291 |                |          |          |                |           |             |             |
| Observations                                                  | 28                                                       |                |          |          |                |           |             |             |
| ANOVA                                                         |                                                          |                |          |          |                | _         |             |             |
|                                                               | df                                                       | SS             | MS       | F        | Significance F | _         |             |             |
| Regression                                                    | 1                                                        | 0.373824506    | 0.373825 | 1439.254 | 2.70191E-24    |           |             |             |
| Residual                                                      | 26                                                       | 0.006753106    | 0.00026  |          |                |           |             |             |
| Total                                                         | 27                                                       | 0.380577612    |          |          |                |           |             |             |
|                                                               | Coefficients                                             | Standard Error | t Stat   | P-value  | Lower 95%      | Upper 95% | Lower 95.0% | Upper 95.0% |
| Intercept                                                     | 0.844989479                                              | 0.026220739    | 32.226   | 1.73E-22 | 0.791091979    | 0.898887  | 0.791091979 | 0.898886979 |
| X Variable 1                                                  | 0.34891012                                               | 0.00919697     | 37.93751 | 2.7E-24  | 0.330005476    | 0.367815  | 0.330005476 | 0.367814763 |



Figure D.2 Wetted Width versus Flow for Assessment Unit NM-2306.A\_040

SUMMARY OUTPUT

| Regression Statistics |            |  |  |  |  |  |  |
|-----------------------|------------|--|--|--|--|--|--|
| Multiple R            | 0.91245644 |  |  |  |  |  |  |
| R Square              | 0.83257675 |  |  |  |  |  |  |
| Adjusted R            | 0.82211279 |  |  |  |  |  |  |
| Standard E            | 0.0843572  |  |  |  |  |  |  |
| Observatio            | 18         |  |  |  |  |  |  |

#### ANOVA

|            | df | SS          | MS       | F        | Significance F |
|------------|----|-------------|----------|----------|----------------|
| Regressior | 1  | 0.566203855 | 0.566204 | 79.56618 | 1.31424E-07    |
| Residual   | 16 | 0.113858202 | 0.007116 |          |                |
| Total      | 17 | 0.680062058 |          |          |                |

| -          | Coefficients | Standard Error | t Stat   | P-value  | Lower 95%   | Upper 95% | Lower 95.0% | Upper 95.0% |
|------------|--------------|----------------|----------|----------|-------------|-----------|-------------|-------------|
| Intercept  | 1.8147014    | 0.112269493    | 16.1638  | 2.48E-11 | 1.57670071  | 2.052702  | 1.57670071  | 2.052702092 |
| X Variable | 0.33270732   | 0.03729908     | 8.919987 | 1.31E-07 | 0.253636805 | 0.411778  | 0.253636805 | 0.411777838 |





SUMMARY OUTPUT

| Regression S      | Statistics   |                |          |          |                |             |             |             |
|-------------------|--------------|----------------|----------|----------|----------------|-------------|-------------|-------------|
| Multiple R        | 0.999305274  |                |          |          |                |             |             |             |
| R Square          | 0.998611031  |                |          |          |                |             |             |             |
| Adjusted R Square | 0.99843741   |                |          |          |                |             |             |             |
| Standard Error    | 0.001365942  |                |          |          |                |             |             |             |
| Observations      | 10           |                |          |          |                |             |             |             |
| ANOVA             |              |                |          |          |                |             |             |             |
|                   | df           | SS             | MS       | F        | Significance F |             |             |             |
| Regression        | 1            | 0.010731449    | 0.010731 | 5751.669 | 1.01828E-12    |             |             |             |
| Residual          | 8            | 1.49264E-05    | 1.87E-06 |          |                |             |             |             |
| Total             | 9            | 0.010746375    |          |          |                |             |             |             |
|                   | Coefficients | Standard Frror | t Stat   | P-value  | Lower 95%      | Upper 95%   | Lower 95.0% | Upper 95.0% |
| Intercept         | 0.779552422  | 0.014582709    | 53.45731 | 1.66E-11 | 0.745924634    | 0.813180209 | 0.745924634 | 0.813180209 |
| X Variable 1      | 0.360856981  | 0.00475815     | 75.83976 | 1.02E-12 | 0.349884666    | 0.371829295 | 0.349884666 | 0.371829295 |

### Figure D.4 Wetted Width versus Flow for Assessment Unit NM-2306.A\_051\*

\*Cross-section E from 8/30/2006 data collection



#### SUMMARY OUTPUT

| Rearession S      | tatistics    |                |          |          |                |           |             |             |
|-------------------|--------------|----------------|----------|----------|----------------|-----------|-------------|-------------|
| Multiple R        | 0.993725024  |                |          |          |                |           |             |             |
| R Square          | 0.987489423  |                |          |          |                |           |             |             |
| Adjusted R Square | 0.987072403  |                |          |          |                |           |             |             |
| Standard Error    | 0.016891255  |                |          |          |                |           |             |             |
| Observations      | 32           |                |          |          |                |           |             |             |
| ANOVA             |              |                |          |          |                | _         |             |             |
|                   | df           | SS             | MS       | F        | Significance F |           |             |             |
| Regression        | 1            | 0.6756164      | 0.675616 | 2367.971 | 4.18296E-30    | -         |             |             |
| Residual          | 30           | 0.008559435    | 0.000285 |          |                |           |             |             |
| Total             | 31           | 0.684175835    |          |          |                | -         |             |             |
|                   | Coefficients | Standard Error | t Stat   | P-value  | Lower 95%      | Upper 95% | Lower 95.0% | Upper 95.0% |
| Intercept         | 1.374697383  | 0.027279292    | 50.39344 | 1.48E-30 | 1.318985636    | 1.430409  | 1.318985636 | 1.430409129 |
| X Variable 1      | 0.450430134  | 0.009256339    | 48.6618  | 4.18E-30 | 0.431526168    | 0.469334  | 0.431526168 | 0.469334101 |



### Figure D.5 Wetted Width versus Flow for Assessment Unit NM-2306.A\_064

SUMMARY OUTPUT

| Regression S      | Statistics   | •              |           |          |                |           |              |             |
|-------------------|--------------|----------------|-----------|----------|----------------|-----------|--------------|-------------|
| Multiple R        | 0.88603531   |                |           |          |                |           |              |             |
| R Square          | 0.78505857   |                |           |          |                |           |              |             |
| Adjusted R Square | 0.77738209   |                |           |          |                |           |              |             |
| Standard Error    | 0.064739671  |                |           |          |                |           |              |             |
| Observations      | 30           |                |           |          |                |           |              |             |
| ANOVA             |              |                |           |          |                |           |              |             |
|                   | df           | SS             | MS        | F        | Significance F | -         |              |             |
| Regression        | 1            | 0.428628384    | 0.428628  | 102.268  | 7.50986E-11    | -         |              |             |
| Residual          | 28           | 0.117354299    | 0.004191  |          |                |           |              |             |
| Total             | 29           | 0.545982682    |           |          |                | -         |              |             |
|                   | Coefficients | Standard Error | t Stat    | P-value  | Lower 95%      | Upper 95% | Lower 95.0%  | Upper 95.0% |
| Intercept         | -0.307435809 | 0.153027609    | -2.009022 | 0.054264 | -0.620898651   | 0.006027  | -0.620898651 | 0.006027034 |
| X Variable 1      | 0.505215031  | 0.049958143    | 10.11277  | 7.51E-11 | 0.402880416    | 0.60755   | 0.402880416  | 0.607549646 |

### Figure D.6 Wetted Width versus Flow for Assessment Unit NM-2306.A\_120\*

### \*data collections from 05SPonil008.5



SUMMARY OUTPUT

| Regression S      | tatistics    |                |          |          |                |             |             |             |
|-------------------|--------------|----------------|----------|----------|----------------|-------------|-------------|-------------|
| Multiple R        | 0.996048114  |                |          |          |                |             |             |             |
| R Square          | 0.992111845  |                |          |          |                |             |             |             |
| Adjusted R Square | 0.991505064  |                |          |          |                |             |             |             |
| Standard Error    | 0.00376334   |                |          |          |                |             |             |             |
| Observations      | 15           |                |          |          |                |             |             |             |
| ANOVA             |              |                |          |          |                |             |             |             |
|                   | df           | SS             | MS       | F        | Significance F |             |             |             |
| Regression        | 1            | 0.02315664     | 0.023157 | 1635.041 | 4.66074E-15    |             |             |             |
| Residual          | 13           | 0.000184115    | 1.42E-05 |          |                |             |             |             |
| Total             | 14           | 0.023340755    |          |          |                |             |             |             |
|                   | Coefficients | Standard Error | t Stat   | P-value  | Lower 95%      | Upper 95%   | Lower 95.0% | Upper 95.0% |
| Intercept         | 0.13508656   | 0.030088474    | 4.489645 | 0.000609 | 0.070084364    | 0.200088755 | 0.070084364 | 0.200088755 |
| X Variable 1      | 0.377528127  | 0.00933652     | 40.43564 | 4.66E-15 | 0.357357802    | 0.397698452 | 0.357357802 | 0.397698452 |



Figure D.7 Wetted Width versus Flow for Assessment Unit NM-2306.A\_068

SUMMARY OUTPUT

| Regressi   | ion Statistics |                |          |          |                |      |
|------------|----------------|----------------|----------|----------|----------------|------|
| Multiple R | 0.973233872    |                |          |          |                |      |
| R Square   | 0.947184169    |                |          |          |                |      |
| Adjusted R | 0.945228028    |                |          |          |                |      |
| Standard E | 0.032513581    |                |          |          |                |      |
| Observatio | 29             |                |          |          |                |      |
|            |                |                |          |          |                |      |
| ANOVA      |                |                |          |          |                |      |
|            | df             | SS             | MS       | F        | Significance F |      |
| Regressior | 1              | 0.511874716    | 0.511875 | 484.2104 | 8.92287E-19    |      |
| Residual   | 27             | 0.028542589    | 0.001057 |          |                |      |
| Total      | 28             | 0.540417305    |          |          |                |      |
|            |                |                |          |          |                |      |
| _          | Coefficients   | Standard Error | t Stat   | P-value  | Lower 95%      | Up   |
| Intercept  | -0.290161845   | 0.064290113    | -4.51332 | 0.000113 | -0.422074258   | -0.1 |

|            | Coefficients | Standard Error | t Stat   | P-value  | Lower 95%    | Upper 95%    | Lower 95.0%  | Upper 95.0%  |
|------------|--------------|----------------|----------|----------|--------------|--------------|--------------|--------------|
| Intercept  | -0.290161845 | 0.064290113    | -4.51332 | 0.000113 | -0.422074258 | -0.158249432 | -0.422074258 | -0.158249432 |
| X Variable | 0.483756271  | 0.021984144    | 22.00478 | 8.92E-19 | 0.438648534  | 0.528864009  | 0.438648534  | 0.528864009  |
|            |              |                |          |          |              |              |              |              |

# D3.7 Manning's n or Travel Time

Site-specific values were calculated using Strickler's equation to estimate Manning's roughness based on prevailing sediment sizes in the streambed:

$$n = \frac{(d_{50})^{1/6}}{21.0}$$

where  $d_{50}$  is the median sediment size in meters.

The following table summarizes the Manning's n input values for each assessment unit:

| Assessment Unit | $d_{50}$ (in meters) | Manning's n |
|-----------------|----------------------|-------------|
| NM-2306.A_065   | 46                   | 0.090       |
| NM-2306.A_040   | 19                   | 0.078       |
| NM-2305.A_060   | 20.5                 | 0.079       |
| NM-2306.A_051   | 75.5                 | .098        |
| NM-2306.A_064   | 5.5                  | 0.063       |
| NM-2306.A_120   | 45.5                 | 0.090       |
| NM-2306.A_068   | 4.5                  | 0.061       |

### Table D.14 Manning's n

# **D 4.0 METEOROLOGICAL PARAMETERS**

## **D4.1** Air Temperature

This parameter is the mean daily air temperature for the assessment unit (or average daily temperature at the mean elevation of the assessment unit). Air temperature will usually be the single most important factor in determining mean daily water temperature. Air temperatures are usually measured directly (in the shade) using air thermographs and adjusted to what the temperature would be at the mean elevation of the assessment unit. The following table summarizes mean daily air temperatures for each assessment unit (for its modeled date) requiring a temperature TMDL:

| Assossment Unit | Elevation at Air<br>Thermograph<br>Location | Measured<br>Mean Daily<br>Air<br>Temperature | Mean<br>Elevation for<br>Assessment<br>Unit<br>(maters) | Adjusted<br>Mean Daily<br>Air<br>Temperature | Adjusted<br>Mean Daily<br>Air<br>Temperature |
|-----------------|---------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| NM-2306.A 065   | 2510                                        | 19.43                                        | 2742                                                    | 17.91                                        | 64.24                                        |
| NM-2306.A_040   | 2018                                        | 23.64                                        | 1989                                                    | 23.83                                        | 74.89                                        |
| NM-2305.A_060   | 2510 <sup>b</sup>                           | 16.36                                        | 2558                                                    | 16.05                                        | 60.89                                        |
| NM-2306.A_051   | 2018 <sup>a</sup>                           | 23.64                                        | 2551                                                    | 20.14                                        | 68.25                                        |
| NM-2306.A_064   | 2510 <sup>b</sup>                           | 18.34                                        | 2751                                                    | 16.76                                        | 62.17                                        |
| NM-2306.A_120   | 2192                                        | 17.00                                        | 2787                                                    | 13.10                                        | 55.58                                        |
| NM-2306.A_068   | 2192 °                                      | 20.84                                        | 2107                                                    | 21.40                                        | 70.52                                        |

### Table D.15 Mean Daily Air Temperature

Notes:

°F = Degrees Farenheit

°C = Degrees Celcius

<sup>a</sup> No air thermographs deployed. Air thermograph at Cimarron River above Cimarron Village was used.

<sup>b</sup> No air thermographs deployed. Air thermograph at Cienguilla Crek above Eagle Nest Lake was used.

<sup>c</sup> No air thermographs deployed. Air thermograph at South Ponil above Middle Ponil was used.

The adiabatic lapse rate was used to correct for elevational differences from the met station:

$$T_a = T_o + C_t \times (Z - Z_o)$$

where,

 $T_a = air temperature at elevation E$  (°C)

$$T_0$$
 = air temperature at elevation  $E_0$  (°C)

Z = mean elevation of segment (meters)

 $Z_o =$  elevation of station (meters)

 $C_t$  = moist-air adiabatic lapse rate (-0.00656 °C/meter)

### **D4.2** Maximum Air Temperature

Unlike the other variables, the maximum daily air temperature overrides only if the check box is checked. If the box is not checked, the SSTEMP Model estimates the maximum daily air temperature from a set of empirical coefficients (Theurer et al., 1984 as cited in Bartholow 2002) and will print the result in the grayed data entry box. A value cannot be entered unless the box is checked.

# **D4.3 Relative Humidity**

Relative humidity data were obtained from the New Mexico State University Climate Network (<u>http://weather.nmsu.edu/data/data.htm</u>). The data were corrected for elevation and temperature using the following equation:

$$R_{h} = R_{o} \times \left(1.0640^{(T_{o}-T_{a})}\right) \times \left(\frac{T_{a} + 273.16}{T_{o} + 273.16}\right)$$

where,

 $R_h$  = relative humidity for temperature  $T_a$  (decimal)  $R_o$  = relative humidity at station (decimal)  $T_a$  = air temperature at segment (°C)  $T_o$  = air temperature at station (°C)

The following table presents the adjusted mean daily relative humidity for each assessment unit:

| Assessment    | Ref. | Mean Daily Air<br>Temp. at<br>Weather<br>Station | Mean Daily Air<br>Temperature<br>at AU | Mean Daily<br>Relative<br>Humidity at<br>Weather<br>Station | Mean Daily<br>Relative<br>Humidity for<br>AU |
|---------------|------|--------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------|
| Unit          |      | (°C)                                             | (°C)                                   | (percent)                                                   | (percent)                                    |
| NM-2306.A_065 | (a)  | 19.17                                            | 17.91                                  | 48.88                                                       | 52.63                                        |
| NM-2306.A_040 | (a)  | 19.98                                            | 23.83                                  | 34                                                          | 27.13                                        |
| NM-2305.A_060 | (a)  | 14.38                                            | 16.05                                  | 78.54                                                       | 71.22                                        |
| NM-2306.A_051 | (a)  | 19.98                                            | 20.14                                  | 34                                                          | 33.68                                        |
| NM-2306.A_064 | (a)  | 19.07                                            | 16.76                                  | 66.32                                                       | 75.93                                        |
| NM-2306.A_120 | (a)  | 14.11                                            | 13.10                                  | 57.40                                                       | 60.90                                        |
| NM-2306.A_068 | (a)  | 19.98                                            | 21.40                                  | 34                                                          | 31.28                                        |

| Table D.16 | Mean | Daily | Relative | Humidity |
|------------|------|-------|----------|----------|
|------------|------|-------|----------|----------|

Notes:

Ref. = References for Weather Station Data are as follows:

(a) New Mexico State University Climate Network (Cimarron RAWS, Elevation 2,665 meters; Latitude 36.606100 N, Longitude 105.120300 W), modeled dates in 2006

AU = Assessment Unit

°C = Degrees Celcius

# **D4.4 Wind Speed**

Average daily wind speed data were obtained from the New Mexico State University Climate Network (<u>http://weather.nmsu.edu/data/data.htm</u>). The following table presents the mean daily wind speed for each assessment unit:

| Assessment Unit | Ref. | Mean Daily Wind<br>Speed<br>(miles per hour) | Date      |
|-----------------|------|----------------------------------------------|-----------|
| NM-2306.A_065   | (a)  | 3.833                                        | 7/20/2006 |
| NM-2306.A_040   | (a)  | 4.273                                        | 7/16/2006 |
| NM-2305.A_060   | (a)  | 3.750                                        | 8/10/2006 |
| NM-2306.A_051   | (a)  | 4.273                                        | 7/16/2006 |
| NM-2306.A_064   | (a)  | 4.773                                        | 7/15/2006 |
| NM-2306.A_120   | (a)  | 3.25 <sup>(b)</sup>                          | 6/2/2006  |
| NM-2306.A_068   | (a)  | 4.273                                        | 7/16/2006 |

| Table D.17 | Mean | Daily | Wind | Speed |
|------------|------|-------|------|-------|
|------------|------|-------|------|-------|

Notes:

Ref. = References for Weather Station Data are as follows:

(a) New Mexico State University Climate Network (Cimarron RAWS, Elevation 2,665 meters; Latitude 36.606100 N, Longitude 105.120300 W)

(b) No windspeed available for 6/2/2006. The average of the values for June 1 and June 3 was used.

# **D4.5** Ground Temperature

Mean annual air temperature data for 2006 were used in the absence of measured data. The following table presents the mean annual air temperature for each assessment unit:

| Assessment Unit | Ref. | Mean Annual Air<br>Temperature<br>(°C) | Mean Annual Air<br>Temperature<br>(°F) |
|-----------------|------|----------------------------------------|----------------------------------------|
| NM-2306.A_065   | (a)  | 14.11                                  | 43.783                                 |
| NM-2306.A_040   | (a)  | 14.11                                  | 43.783                                 |
| NM-2305.A_060   | (a)  | 14.11                                  | 43.783                                 |
| NM-2306.A_051   | (a)  | 14.11                                  | 43.783                                 |
| NM-2306.A_064   | (a)  | 14.11                                  | 43.783                                 |
| NM-2306.A_120   | (a)  | 14.11                                  | 43.783                                 |
| NM-2306.A_068   | (a)  | 14.11                                  | 43.783                                 |

 Table D.18 Mean Annual Air Temperature as an Estimate for Ground Temperature

Ref. = References for Weather Station Data are as follows:

(a) New Mexico State University Climate Network (Cimarron RAWS, Elevation 2,665 meters; Latitude 36.606100 N, Longitude 105.120300 W)

°F = Degrees Farenheit

°C = Degrees Celcius

# **D4.6** Thermal Gradient

The default value of 1.65 was used in the absence of measured data.

# D4.7 Possible Sun

Percent possible sun for Albuquerque is found at the Western Regional Climate Center web site <u>http://www.wrcc.dri.edu/htmlfiles/westcomp.sun.html#NEW%20MEXICO</u>. The percent possible sun is 83 percent for June, 77 for July, and 73 for August for the Clayton station.

# **D4.8 Dust Coefficient**

If a value is entered for solar radiation, SSTEMP Model will ignore the dust coefficient and ground reflectivity and "override' the internal calculation of solar radiation. Solar radiation data are available from the New Mexico State University Climate Network (see Section 4.10).

# **D4.9 Ground Reflectivity**

If a value is entered for solar radiation, SSTEMP Model will ignore the dust coefficient and ground reflectivity and "override' the internal calculation of solar radiation. Solar radiation data are available from the New Mexico State University Climate Network (see Section 4.10).

# D4.10 Solar Radiation

Because solar radiation data were obtained from an external source of ground level radiation, it was assumed that about 90% of the ground-level solar radiation actually enters the water. Thus, the recorded solar measurements were multiplied by 0.90 to get the number to be entered into the SSTEMP Model. The following table presents the measured solar radiation at Cimarron for 2006:

| Assessment Unit | Ref. | Date      | Mean Solar<br>Radiation<br>(L/hour) | Mean Solar<br>Radiation x<br>0.90<br>(L/day) |
|-----------------|------|-----------|-------------------------------------|----------------------------------------------|
| NM-2306.A_065   | (a)  | 7/20/2006 | 22.579                              | 487.71                                       |
| NM-2306.A_040   | (a)  | 7/16/2006 | 27.805                              | 600.59                                       |
| NM-2305.A_060   | (a)  | 8/10/2006 | 17.526                              | 378.56                                       |
| NM-2306.A_051   | (a)  | 7/16/2006 | 27.805                              | 600.59                                       |
| NM-2306.A_064   | (a)  | 7/15/2006 | 32.525                              | 702.54                                       |
| NM-2306.A_120   | (a)  | 6/2/2006  | 15.432 <sup>(b)</sup>               | 360.805                                      |
| NM-2306.A 068   | (a)  | 7/16/2006 | 27.805                              | 600.59                                       |

| Table D 19 | Mean  | Daily | Solar | Radiation |
|------------|-------|-------|-------|-----------|
|            | witan | Dany  | Dulai | Naulation |

Ref. = References for Weather Station Data are as follows:

(a) New Mexico State University Climate Network (Cimarron RAWS, Elevation 2,665 meters; Latitude 36.606100 N, Longitude 105.120300 W)

(b) No solar radiation values available for 6/2/2006. The averaged value for 5/26-6/9 was used.

## **D 5.0 SHADE**

Percent shade was estimated for the assessment units using field estimations per geomorphological survey field notes from 2006 and 2009. The value in Table D.20 reflects the average of 6 measurements taken at the cross-section of the primary site in the AU, unless otherwise noted. The measurements may have also been averaged along with visual estimates using USGS digital orthophoto quarter quadrangles downloaded from New Mexico Resource Geographic Information System Program (RGIS), online at <u>http://rgis.unm.edu/</u>. This parameter refers to how much of the segment is shaded by vegetation, cliffs, etc. The following table summarizes percent shade for each assessment unit:

| Assessment Unit | Percent Shade    |
|-----------------|------------------|
| NM-2306.A_065   | 12%              |
| NM-2306.A_040   | 46%              |
| NM-2305.A_060   | 7%               |
| NM-2306.A_051   | 22% <sup>a</sup> |
| NM-2306.A_064   | 22%              |
| NM-2306.A_120   | 11%              |
| NM-2306.A_068   | 86%              |

Table D.20Percent Shade

<sup>a</sup> Rayado Creek 3 miles above NM 21 – 05Rayado38.4

# **D 6.0 REFERENCES**

Bartholow, J.M. 2002. SSTEMP for Windows: The Stream Segment Temperature Model (Version 2.0). U.S. Geological Survey computer model and documentation. Available on the internet at <u>http://www.fort.usgs.gov</u>. Revised August 2002.

U.S. Department of Agriculture (USDA). 2005. WinXSPRO 3.0. A Channel Cross Section Analyzer. WEST Consultants Inc. San Diego, CA & Utah State University.

U.S. Geological Survey (USGS). 2002a. Input and Output to a Watershed Data Management File (Version 4.1). Hydrologic Analysis Software Support Program. Available on the internet at <u>http://water.usgs.gov/software/surface\_water.html</u>.

U.S. Geological Survey (USGS). 2002b. Surface-Water Statistics (Version 4.1). Hydrologic Analysis Software Support Program. Available on the internet at <u>http://water.usgs.gov/software/surface\_water.html</u>.

Theurer, Fred D., Kenneth A. Voos, and William J. Miller. 1984. Instream Water Temperature Model. Instream Flow Inf. Pap. 16 Coop. Instream Flow and Aquatic System Group. U.S. Fish & Wildlife Service, Fort Collins, CO.

Thomas, Blakemore E., H.W. Hjalmarson, and S.D. Waltemeyer. 1997. Methods for Estimating Magnitude and Frequency of Floods in the Southwestern United States. USGS Water-Supply Paper 2433.

Viger, R.J., S.L. Markstrom, G.H. Leavesley and D.W. Stewart. 2000. The GIS Weasel: An Interface for the Development of Spatial Parameters for Physical Process Modeling. Lakewood, CO. Available on the internet at <u>http://wwwbrr.cr.usgs.gov/weasel/</u>.

Waltemeyer, Scott D. 2002. Analysis of the Magnitude and Frequency of the 4-Day Annual Low Flow and Regression Equations for Estimating the 4-Day, 3-Year Low-Flow Frequency at Ungaged Sites on Unregulated Streams in New Mexico. USGS Water-Resources Investigations Report 01-4271. Albuquerque, New Mexico.

This page left intentionally blank.