Section 3

Application Summary

The Application Summary shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will effect the facility’s operations and emissions, de-bottlenecking impacts, and changes to the facility’s major/minor status (both PSD & Title V).

Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM): Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Schlumberger Technology Corporation operates a bulk cement preparation plant at 1105 W. Bender Avenue in Hobbs, Lea County, New Mexico. This facility, known as the Hobbs District for Schlumberger, currently operates under NSR Air Quality Permit No. 2715-R8, the most recent revision issued by the NMED in September 2012. Operations at the Hobbs District involve the blending and dispensing of specialty cement mixtures and sand materials to serve oilfield services field operations. The Hobbs District facility as it is now operated is comprised of a Bulk Cement Plant (Permit Unit No. 1), Sand Plant (Unit No. 2), and a Gel Tank (Unit 4). In this revision, the equipment components comprising these permitted Units have been relisted as the individual components (See Table A-2 in UA2).

As addressed in this application, the Hobbs District plans to upgrade the Bulk Cement Plant to improve dust control and operating flexibility, which will involve revisions to the most recent version of the NSR permit to include replacement blending vessels, new truck transfer equipment, and new dust controllers. By installing separate dust control devices on each product silo, the facility will be able transfer materials while operating the dust controller for the individual silos. These physical changes will accommodate an increase in potential throughput of the Cement Plant. In addition, the Hobbs District seeks in this application to remove the Bulk Acid Blending/Loading facility (current permit Unit 3) from the permit, as this equipment has been decommissioned and removed from the facility. The existing Sand Plant silos (4) and existing Gel Tank will not be modified.

Fugitive dust emissions are generated from on-site truck traffic on paved plant areas. This source assumes the trucks are typical over-the-road dry bulk tank trailers, with one or three compartments that are loaded and unloaded by pneumatic transfer. There are no open belts at the facility for material transfer, all transfers are through closed pneumatic systems. Material throughput is determined using truck scales to weigh the arriving and departing trucks to monitor net weight incoming and outgoing. Based on facility estimates, up to 24 trucks may be accommodated per 24-hour day.

The Bulk Cement Plant at the Hobbs District (existing permit Unit 1) currently consists of:

- Eleven (11) bulk cement product storage tanks, with capacity ranging from 1,700 to 2,300 cubic foot volume. These are numbered Silo 1 through Silo 12, with non-existent Silo 11 skipped in the facility numbering system. The eleven storage tanks currently are collectively vented to a single cyclone-filter system (Metroplex, Inc.);
- One (1) Junk tank, 1,200 cubic foot capacity (TK 13);
- One (1) Vent tank, 1,200 cubic foot capacity (TK 14);
- One (1) Weigh Batcher tank, 650 cubic foot capacity (TK 15);
- One (1) Double Stack tank, a pair of 250 cubic foot capacity vessels (TK 16); and,
• One (1) Holding tank; 350 cubic foot capacity (TK 17).

No physical changes are proposed for the current Sand Plant equipment, or an existing Gel Tank. The Sand Plant (existing permit Unit 2) at the Hobbs District consists of:
 • Four storage silos (Sand-1 to Sand-4), each with 3,350 cubic foot capacity collectively vented to DC S1, a cyclone-filter system (Metroplex, Inc. M-Plex Model CF-600); and
 • Pneumatic delivery systems (Sand-5) for each silo to receive sand from railcars or trucks, and a pneumatic loading system to load out sand to trucks, conveyance air vented to DC S1.

Purpose of the Significant Revision

One purpose of this Significant Revision application is to address the Bulk Cement Plant upgrade project, as outlined above, including the addition of eleven individual dust control devices on product storage tanks listed in the Hobbs District permit. This revision also seeks to remove from the permit the Bulk Acid Blending/Loading plant that has been decommissioned and removed from the site. Refer to the process flow diagrams in Section 4 that illustrate the role of the equipment in the Bulk Cement Plant process. There will be no net change in the number of storage tanks/silos at the facility. In summary, the changes to the Hobbs District facility are:

 • Repurposing of the existing Junk tank to be the new Pre-Blend Tank, to be numbered TK 13;
 • Relocation of the existing Vent tank to be numbered TK 14;
 • Removal of the existing Weigh Batcher and Double Stack tanks, and installation of replacement tanks to be numbered TK 15 and TK 16, having similar capacity and function;
 • Installation of a replacement Holding Tank to be numbered TK 17 increasing to 1,800 cubic foot capacity from the current 350 cubic foot capacity;
 • Installation of eleven new Silo Dust Collectors (C&W Mfg. Co. Model LPR-8-S) DC 1 to DC 12, with the DC unit numbers matching storage tank unit numbers (Silo 1 through Silo 12, skipping number 11, which does not exist);
 • Installation of a new cyclone-filter dust collector DC 13 (Metroplex, Model m-Plex CF-600) to serve TK 13, TK 14, TK 16 and TK 17;
 • Installation of a new cyclone-filter dust collector DC 15 (Metroplex, Model M-Plex CF-600) to serve TK 15; and
 • Installation of one replacement Additive Hopper (HP 1), enclosed inside the existing Warehouse.

This application includes in Section 16 a waiver from dispersion modeling that is specified for inclusion in NSR permit revision applications (NMAC 20.2.72.203.A(4)). This waiver is appropriate for the modified facility because the controlled particulate emissions levels are sufficiently low that none of the hourly emission thresholds stated in the current NMED Modeling Guidance are approached. Consequently, the emissions from routine operations will not violate any New Mexico or National Ambient Air Quality Standards.

Type of Permit Application and Regulatory Citation

For the substantive technical corrections to the current permit, and installation of new equipment, the Hobbs District facility is submitting this NSR Significant Revision application (20.2.72.219.D NMAC). The lists provided above and in Table 2-A identify the planned facility equipment changes. The physical changes to the Bulk Cement Plant equipment, including the replacement and upgrade of several items, will alter the control devices that were present at the time of 2007 and 2012 permitting.

This permit revision is submitted pursuant to 20.2.72.219.D NMAC, and the application contents follow the listed items in NMAC 20.2.72.203. Based on conservative estimates of controlled PTE for the entire facility, including the requested modifications, total site-wide emissions are estimated to be less than 0.5 pounds per hour of PM_{10}. However, because the dust control configuration is changing and the facility relies on the dust controllers to achieve the estimated potential to emit, the facility is required to submit an NSR Significant Revision application.
Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Attached Figure 4-1 illustrates the process flow for the Bulk Cement Plant (Unit 1). Bulk solids materials are delivered by truck and pneumatically conveyed to the individual silos. During these transfers the individual dust collectors will be operated to filter and vent the pneumatic conveyance air. Batches of product can be blended in the Pre-Blend or “Weigh Batcher” tank, then conveyed to truck loading via the Double Stack and Holding Tanks.

For the C&W Silo Dust Collectors, to be installed on 11 silos, the exhaust configuration is unconventional, as is shown in an inset in Figure 4-1. The air vents through a circular slot that runs around the perimeter of the collector housing, just under the dome cap.

As shown in Figure 4-2 at the existing Sand Plant (Unit 2) sand materials are pneumatically transferred to the four silos from either railcar or truck delivery lines. For shipment, sand materials are transferred pneumatically from the sand plant silos to one of four loading lines. The pneumatic conveyance air is controlled by an existing cyclone-filter dust collector (DC S1). None of this equipment will be modified.
Figure 4-1. Process Flow Diagram – Bulk Cement Plant
Figure 4-2. Process Flow Diagram – Sand Plant
Section 5

Plot Plan Drawn To Scale

A plot plan drawn to scale showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

See Attached Figure 5-1 for Plot Plan of the Schlumberger Hobbs District facility, showing location of structures and permitted source units.
Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The “Calculations” tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional “Calc” tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant’s responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to “Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer’s maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:
A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.
B. At least 5 significant figures shall be retained in all intermediate calculations.
C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device
regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Point Source Emissions

The post-upgrade configuration of the dust collector emission points at Hobbs District Bulk Cement Plant and Sand Plant was used to estimate the maximum hourly and annual emissions on uncontrolled and controlled bases. As noted in the following tables, the emission rates reflect the maximum hourly or annual material processing rates, and utilize emissions factors from EPA Document AP-42. For control efficiency, vendor information was referenced, but the assumed efficiency is lower based on controlled/uncontrolled emission factor ratios in AP-42 to provide a conservative estimate.

Paved “Haul Road” Emissions

The Hobbs District facility is almost entirely paved. Truck traffic is limited to the paved areas and operates at a limited speed for safety. As the facility map in Section 6 shows, within the paved plant area there are confined, paved paths along which supply trucks and customer trucks travel to and from facility entrance to either the Cement Plant or Sand Plant. In their use and surface characteristics, these paths differ substantially from “haul roads” common in the mining industry. Speed restrictions within the site hold truck speeds below 10 miles per hour, which greatly reduces the actual generation of dust from truck movement.

The Hobbs District is adjoined by a large arterial highway, and is located in a developed area with numerous commercial and industrial facilities with similar truck and customer vehicle traffic. Collectively, these adjoining sources of particulate far exceed the amount from the truck traffic within the Hobbs facility.

To estimate particulate species emissions from the in-plant truck traffic areas at the Hobbs District, the U.S. EPA Document AP-42 Section for Paved Roads, Section 13.2.1-5, Equation 2 (Daily Basis):

$$E_{ext} = \left[k \times (sL)^{0.91} \times (W)^{1.02} \right] \times (1 - \frac{P}{4N})$$

Where:
- k = particle size multiplier (lb/VMT) = 0.00054 PM$_{2.5}$, 0.0022 PM$_{10}$, and 0.0027 TSP,
- sL = road surface silt loading (grams per square meter) (g/m2),
- W = average weight (tons) of the vehicles traveling the road.
- E_{ext} = annual or other long-term average emission factor in the same units as k,
- P = number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, and
- N = number of days in the averaging period (e.g., 365 for annual, 91 for seasonal, 30 for monthly).

It is important to note for the analysis of slow speed industrial roads that Equation 2 does not account for the effects of average or maximum vehicle speed. Based on statistical evaluation, this correlation blends together a data set with speeds ranging from 1 to 55 mph. The emission factor development discussion in the Background Document for Section 13.2.1-5 acknowledges that vehicle speed has a dominant effect on actual dust emissions. This is particularly true for the lower speed data points in the set used for the AP-42 correlation. However, in developing a single correlation such as Equation 2, the vehicle speed factor was discounted on statistical grounds.

As shown in the attached excerpt from the Background Document to Section 13.2.1-5, there is data for vehicle speeds at 10 mph and below that support a representative PM$_{10}$ factor of 100 g/VMT, equal to 0.22 lb/VMT, even at silt loadings as high as 200 g/m2. This emission factor is assumed as a suitable value for the Hobbs facility, supported by the AP-42 Background Document, to determine PM$_{10}$ fugitive emissions for slow traffic on paved roads, even at high silt loadings.

To calculate the emissions factors for other particulate species based on the lb PM$_{10}$/VMT value, ratios of the size multiplier factor, k, used in Equation 2 can be applied as follows:

$$E_{ext} (PM_{2.5}) = 0.22 \text{ lb PM}_{10}/\text{VMT} \times (0.00054/0.0022) = 0.054 \text{ lb PM}_{2.5}/\text{VMT}$$

$$E_{ext} (\text{TSP}) = 0.22 \text{ lb PM}_{10}/\text{VMT} \times (0.0027/0.0022) = 0.27 \text{ lb TSP/VMT}$$
To estimate the maximum on-site vehicle miles traveled (VMT), refer to the site layout diagram. The two locations for routine traffic are the cement plant and sand plant unload/load facilities in the southeastern corner. From the scale map, the roundtrip distances per visit are 690 meters for either location. The physical layout of the facility constrains the number of trucks that can safely traverse the route within the plant at a given time. In addition, the amount of time to physically load/unload, or prepare a blended product load from bulk and sack material added manually, extends the time on-site for each truck. On average, the on-site time at least one hour per truck. These logistical and safety considerations result in a representative unload/load activity level of 1 truck per hour. Further, total maximum daily throughput is based on unload/load of 24 trucks per day (24 hours). From these data, the total daily VMT is:

\[
\text{Daily VMT} = \left(\frac{24 \text{ trips/day} \times 690 \text{ m/trip}}{1,609.3 \text{ meters/mile}}\right) = 10.3 \text{ VMT/day}
\]

Hobbs District operations may occur up to a full time schedule of 24 hours per day, 7 days per week. Using the daily VMT, and the emission factors calculated above for particulate species from paved roads, the daily and annual particulate emission estimates are shown in the following table:

Estimates of Daily and Annual Particulate Emissions – Hobbs District - Paved Plant Roads

<table>
<thead>
<tr>
<th>Particulate</th>
<th>Daily Estimates</th>
<th>Annual Average Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/day</td>
<td>Lb/hr</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>2.27</td>
<td>0.094</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>0.55</td>
<td>0.023</td>
</tr>
<tr>
<td>TSP</td>
<td>2.88</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Example Calculations:

Daily PM$_{10}$:
\[
\text{lb PM}_{10}/\text{day} = 10.3 \text{ VMT/day} \times 0.22 \text{ lb PM}_{10}/\text{VMT} = 2.27 \text{ lb PM}_{10}/\text{day}
\]

Annual PM$_{10}$:
\[
\text{lb PM}_{10}/\text{yr} = 10.3 \text{ VMT/day} \times 0.22 \text{ lb PM}_{10}/\text{VMT} \times 365 \text{ day/yr} = 827 \text{ lb PM}_{10}/\text{yr}
\]
Table 6-1

EMISSION CALCULATIONS - TSP / PM$_{10}$ / PM$_{2.5}$: Bulk Cement Plant - Controlled

Bulk Cement Plant: Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collectors

Storage Silo Controls:
- Silo Dust Collectors (DC 1 - 12) C&W Manufacturing Co., 2,340 cfm (typical), 8-cartridge filters, pulse-jet cleaning
- Control Efficiency %: 99.93% is used for emissions estimates, vendor specifications (without reference to particle size) is 99.99% control.

and other tank controls:
- Cyclone-Filter Dust Collectors (DC 13 and DC 15) Metroplex, 2,000 - 3,000 cfm (typical), fabric filters, pulse-jet cleaning
- Control Efficiency: 99.0% is used for emissions estimates, vendor specifications (without reference to particle size) is 99.9% control.

Max. Hourly Transfer:
- 50 tons per hour per truck load/unload pipe (pneumatic loading capacity)

Annual Production:
- Assume PTE scenario for maximum hourly emissions, and requested maximum annual throughput of 100,000 tons/yr per silo for annual emissions.

Emission Factors:

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Emission Point Description</th>
<th>Process Description, Emissions Basis</th>
<th>PTE Process Rates 1</th>
<th>Control Efficiency % 2</th>
<th>AP-42 Emission Factor 3</th>
<th>TSP Emissions 3</th>
<th>AP-42 Emission Factor 3</th>
<th>PM$_{10}$ Emissions 3</th>
<th>AP-42 Emission Factor 3</th>
<th>PM$_{2.5}$ Emissions 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC 1</td>
<td>Silo 1 Dust Collector (DC 1)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 2</td>
<td>Silo 2 Dust Collector (DC 2)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 3</td>
<td>Silo 3 Dust Collector (DC 3)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 4</td>
<td>Silo 4 Dust Collector (DC 4)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 5</td>
<td>Silo 5 Dust Collector (DC 5)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 6</td>
<td>Silo 6 Dust Collector (DC 6)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 7</td>
<td>Silo 7 Dust Collector (DC 7)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 8</td>
<td>Silo 8 Dust Collector (DC 8)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 9</td>
<td>Silo 9 Dust Collector (DC 9)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 10</td>
<td>Silo 10 Dust Collector (DC 10)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 12</td>
<td>Silo 12 Dust Collector (DC 12)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>100,000</td>
<td>99.93%</td>
<td>0.73</td>
<td>0.026</td>
<td>0.47</td>
<td>0.016</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 13</td>
<td>TK 13, 14, 16,17 Cyclone-Filter Dust Coll. (DC 13)</td>
<td>Transfer to Pre Blend, Vent/Holding Tank, and Double Stack Tanks 4</td>
<td>50</td>
<td>220,000</td>
<td>99.90%</td>
<td>0.73</td>
<td>0.037</td>
<td>0.47</td>
<td>0.024</td>
<td>0.47</td>
</tr>
<tr>
<td>DC 15</td>
<td>Cyclone-Filter Dust Coll. (DC 15)</td>
<td>Transfer to Weigh Batcher Tank (TK 15) 3</td>
<td>50</td>
<td>220,000</td>
<td>99.90%</td>
<td>0.73</td>
<td>0.037</td>
<td>0.47</td>
<td>0.024</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Total Emissions
- 0.35
- 0.44
- 0.23
- 0.28
- 0.23
- 0.28

1 - The total facility maximum process rate is 2,200 tons per day, and 803,000 tons per year. These throughputs are distributed across 5 truck unload/load points, each capable of 50 tons per hour.

2 - The control efficiency conservatively assumed for estimates is lower than specified by vendor (C&W), but matches the PM$_{10}$ control efficiency used in Table 11.12-2 for cement loading (SCC 3-05-011-07) The vendor also does not specify control efficiency dependency on particle size.

3 - Uncontrolled emissions factors from Document AP-42, Chapter 11.12, (June 2006) Table 11.12-1. Emission factors: Cement unloading to elevated storage silo (pneumatic). The PM$_{2.5}$ factor is conservatively assumed to be equal to PM$_{10}$ factor.

4 - Transfer operations consist of pneumatic conveying of product materials from silos to the tank vessels, vented emissions are controlled by M-Plex cyclone-filter units. It is assumed the full annual throughput is transferred though these tanks.

5 - Loading of trucks is via pneumatic conveying, with vented are from truck vessel returned to the Vent tank, and controlled by a dust collector. It is assumed the full annual throughput is transferred to trucks.
EMISSION CALCULATIONS - TSP / PM$_{10}$ / PM$_{2.5}$: Sand Plant - Controlled

Sand Plant: Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collector DC-S1

Controls: Metro-Plex Cyclone-Filter Dust Collector

Control Efficiency: 90% Conservatively reduced from 99.9% filter efficiency quoted by vendor, to account for uncertainty in capture efficiency

Max. Hourly Transfer:
- 25 tons per hour - Loading to silos
- 25 tons per hour - Truck Loadout

Annual Production: Assume PTE scenario of 8,760 hours per year at Max. Hourly Transfer rate for controlled truck/railcar delivery and truck loadout. Actual throughput anticipated to be less than 100,000 tons/yr

Emission Factors:
- AP-42, Chapter 11.12, June 2006, Table 11.12-2. (PM and PM$_{10}$ emission factors)
- AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles, Equation 1, November 2006 (PM$_{2.5}$ emission factors)

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Emission Point Description</th>
<th>Process Description, Emissions Basis</th>
<th>PTE Process Rates</th>
<th>Control Efficiency</th>
<th>AP-42 Emission Factor 1, 2</th>
<th>TSP Emissions</th>
<th>PM$_{10}$ Emissions</th>
<th>PM$_{2.5}$ PTE Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC S1</td>
<td>Cyclone-Filter Dust Collector</td>
<td>Transfer to Sand Plant Silos from railcar/truck</td>
<td>25 219,000 90.0% 0.0021 0.00053 0.023 0.00099 0.0025 0.0108 0.00099 0.0025 0.0108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand 5</td>
<td>Truck Loading - controlled by DC S1</td>
<td>Transfer pneumatically to truck</td>
<td>25 219,000 90.0% 0.0051 0.013 0.056 0.0024 0.0060 0.0263 0.00037 0.00093 0.0041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Emissions 0.018 0.079 0.0085 0.037 0.0034 0.015

1 - The emission factor in Table 11.12.-2 for Sand Transfer to elevated silo, uncontrolled. For truck loading, AP-42 batch drop Equation 1 (below) was used with a mean moisture of 4.17%.

3 - PM$_{2.5}$ emission factor not provided in AP-42, Chapter 11.12 for sand transfer. However as footnoted in Table 11.12-2, the emission factors for PM and PM$_{10}$ were each derived from the the AP-42 Aggregate Handling and Storage Pile (Equation1). Refering to AP-42, Chapter 13.2.4, a separate PM$_{2.5}$ emission factor can be calculated from Equation 1.

AP-42 13.2.4-3 (Eq. 1) $E=(k(0.0032)(U/5)^{1.3})(m/2)^{1.4}$
WHERE:
- E = emission factor (lb/ton)
- k = particle size multiplier = 0.74 for PM, 0.35 for PM$_{10}$, 0.053 for PM$_{2.5}$
- U = mean wind speed in miles per hour (mph)
- M = material moisture content (%)

For Sand - As received and loaded

E (PM) = 0.00513 lb/ton
E (PM$_{10}$) = 0.00243 lb/ton
E (PM$_{2.5}$) = 0.00037 lb/ton

U for exposed handling areas = 20 mph (assumed conservative annual average).

M is estimated at 4.17%, based on average of "sand" materials provided in AP-42 Table 11.12-2 footnote b.
EMISSION CALCULATIONS - TSP / PM₁₀ / PM_{2.5}: Bulk Cement Plant - Uncontrolled

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Emission Point Description</th>
<th>Process Description, Emissions Basis</th>
<th>PTE Process Rates ¹</th>
<th>Control Efficiency % ²</th>
<th>AP-42 Emission Factor ³</th>
<th>TSP PTE Uncontrolled Emissions</th>
<th>AP-42 Emission Factor ³</th>
<th>PM<sub>10</sub> PTE Uncontrolled Emissions</th>
<th>AP-42 Emission Factor ³</th>
<th>PM<sub>2.5</sub> PTE Uncontrolled Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC 1</td>
<td>Silo 1 Dust Collector (DC 1)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 2</td>
<td>Silo 2 Dust Collector (DC 2)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 3</td>
<td>Silo 3 Dust Collector (DC 3)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 4</td>
<td>Silo 4 Dust Collector (DC 4)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 5</td>
<td>Silo 5 Dust Collector (DC 5)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 6</td>
<td>Silo 6 Dust Collector (DC 6)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 7</td>
<td>Silo 7 Dust Collector (DC 7)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 8</td>
<td>Silo 8 Dust Collector (DC 8)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 9</td>
<td>Silo 9 Dust Collector (DC 9)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 10</td>
<td>Silo 10 Dust Collector (DC 10)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 12</td>
<td>Silo 12 Dust Collector (DC 12)</td>
<td>Solids transfer to Silo, PTE schedule and throughput</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 13</td>
<td>TK 13, 14, 16, 17 Cyclone-Filter Dust Coll. (DC 13)</td>
<td>Transfer to Pre Blend, Vent/Holding Tank, and Double Stack Tanks ⁴</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
<tr>
<td>DC 15</td>
<td>Cyclone-Filter Dust Coll. (DC 15)</td>
<td>Transfer to Weigh Batcher Tank (TK 15) ⁴</td>
<td>50</td>
<td>0.0%</td>
<td>0.73</td>
<td>36.5</td>
<td>0.47</td>
<td>23.5</td>
<td>0.47</td>
<td>23.5</td>
</tr>
</tbody>
</table>

Total Emissions

<table>
<thead>
<tr>
<th>TSP</th>
<th>PM<sub>10</sub></th>
<th>PM<sub>2.5</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>474.5</td>
<td>305.5</td>
<td>305.5</td>
</tr>
<tr>
<td>562.1</td>
<td>361.9</td>
<td>361.9</td>
</tr>
</tbody>
</table>

1. The total facility maximum process rate is 2,200 tons per day, and 803,000 tons per year. These throughputs are distributed across 5 truck unload/load points, each capable of 50 tons per hour. The 803,000 tons/yr is conservatively represented as 100,000 tons/yr maximum throughput for each of the 11 Silos.

2. The control efficiency of the installed dust collectors is neglected for the uncontrolled case.

3. Uncontrolled emissions factors from Document AP-42, Chapter 11.12, (June 2006) Table 11.12-1. Emission factors: Cement unloading to elevated storage silo (pneumatic). The PM₁₀ factor is conservatively assumed to be equal to PM_{2.5} factor.

4. Transfer operations consist of pneumatic conveying of product materials from silos to the tank vessels. It is assumed the full annual throughput is transferred though these tanks.

5. Loading of trucks is via pneumatic conveying, with vented are from truck vessel returned to the Vent tank. It is assumed the full annual throughput is transferred to trucks.
Table 6-4
EMISSION CALCULATIONS - TSP / PM₁₀ / PM₂.₅: Sand Plant - Controlled

Permit No. 2715-R8 NSR Permit Revision Application
Schlumberger Technology Corp. - Hobbs District

Sand Plant: Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collector Neglected

Max. Hourly Transfer: 25 tons per hour - Loading to silos
25 tons per hour - Truck Loadout

Annual Production: Assume PTE scenario of 8,760 hours per year at Max. Hourly Transfer rate for controlled truck/railcar delivery and truck loadout. Actual throughput anticipated to be less than 100,000 tons/yr

Emission Factors:
- AP-42, Chapter 11.12, June 2006, Table 11.12-2. (PM and PM₁₀ emission factors)
- AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles, Equation 1, November 2006 (PM₂.₅ emission factors)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ton/hr)</td>
<td>(ton/yr)</td>
<td>(%)</td>
<td>(lb/ton)</td>
<td>(lb/hr)</td>
<td>(ton/yr)</td>
<td>(lb/ton)</td>
<td>(lb/hr)</td>
<td>(ton/yr)</td>
</tr>
<tr>
<td>DC S1</td>
<td>Cyclone-Filter Dust Collector</td>
<td>Transfer to Sand Plant Silos from railcar/truck</td>
<td>25</td>
<td>219,000</td>
<td>0.0%</td>
<td>0.0021</td>
<td>0.0525</td>
<td>0.230</td>
<td>0.00099</td>
<td>0.0248</td>
</tr>
<tr>
<td>Sand 5</td>
<td>Truck Loading - controlled by DC S1</td>
<td>Transfer pneumatically to truck</td>
<td>25</td>
<td>219,000</td>
<td>0.0%</td>
<td>0.0051</td>
<td>0.128</td>
<td>0.558</td>
<td>0.0024</td>
<td>0.0600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.180</td>
</tr>
</tbody>
</table>

1 - The emission factor in Table 11.12.-2 for Sand Transfer to elevated silo, uncontrolled. For truck loading, AP-42 batch drop Equation 1 (below) was used with a mean moisture of 4.17%.
2 - For the uncontrolled case, the control efficiency of the installed dust collector is neglected.
3 - PM₂.₅ emission factor not provided in AP-42, Chapter 11.12 for sand transfer. However as footnoted in Table 11.12-2, the emission factors for PM and PM₁₀ were each derived from the the AP-42 Aggregate Handling and Storage Pile (Equation 1). Refering to AP-42, Chapter 13.2.4, a separate PM₂.₅ emission factor can be calculated from Equation 1.

AP-42 13.2.4-3 (Eq. 1)
E=(k(0.0032)(U/5)^1.3)/(m/2)^1.4
WHERE:
E = emission factor (lb/ton)
k = particle size multiplier = 0.74 for PM, 0.35 for PM₁₀, 0.053 for PM₂.₅
U = mean wind speed in miles per hour (mph)
M = material moisture content (%)

Sand - As received and loaded
E (PM) = 0.00513 lb/ton
E (PM₁₀) = 0.00243 lb/ton
E (PM₂.₅) = 0.00037 lb/ton

U for exposed handling areas ~ 20 mph (assumed conservative annual average).
M is estimated at 4.17%, based on average of "sand" materials provided in AP-42 Table 11.12-2 footnote b.
Table 6-5

EMISSION CALCULATIONS - TSP / PM$_{10}$ / PM$_{2.5}$: Fugitive Dust from Paved Haul Road Inside Facility

Fugitive Dust from Paved Haul Road Inside Facility

Controls: roadway paving, limited truck speed
Control Efficiency: Included in emissions factor at speed < 10 mph

Max. Hourly Transfer: 24 Trucks per Day
690 meters/truck trip = 0.429 miles/trip. For the truck route from primary entrance, to cement plant load station, and back to entrance

Annual Production: Assume maximum annual production corresponding to 24 trucks per day, 365 days per year, combined load, unload and blending operations

Emission Factors: AP-42, Chapter 13.2.1-5 (January 2011), Background Documentation, pgs. 4-36 to 4-54, and Figure "PM$_{10}$ Emissions Factor by Vehicle Speed"
AP-42, Chapter 13.2.1-5 Equation 2, (PM$_{2.5}$, PM and PM$_{10}$ size weighting factors)

<table>
<thead>
<tr>
<th>Emission Source Description</th>
<th>Process Description, Emissions Basis</th>
<th>PTE Process Rates</th>
<th>Control Efficiency</th>
<th>AP-42 Emission Factor 1</th>
<th>TSP PTE Emissions</th>
<th>AP-42 Emission Factor 1</th>
<th>PM$_{10}$ PTE Emissions</th>
<th>AP-42 Emission Factor 1</th>
<th>PM$_{2.5}$ PTE Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Traffic on Paved Interior Haul Roads</td>
<td>Paved Roads, Limited Speed, Truck Wt 37 tons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Emissions</td>
<td></td>
<td>24</td>
<td>0.429</td>
<td>0.0%</td>
<td>0.270</td>
<td>0.12</td>
<td>0.50</td>
<td>0.220</td>
<td>0.094</td>
</tr>
</tbody>
</table>

1 = The emission factor calculated using supporting AP-42 data at vehicle speed < 10 mph, from Background Documentation, reference noted above.

Paved Road Emission Factors (see Section 6)

- E (PM) = 0.270 lb/VMT
- E (PM$_{10}$) = 0.220 lb/VMT
- E (PM$_{2.5}$) = 0.054 lb/VMT
Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units and control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly affect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- Fuel specifications sheet.
- If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Tables 6-1 through 6-5 presented in Section 6, and also included in Form UA2, contain the emissions calculations for the full facility after the described upgrade project.

Three sections of AP-42 were used as emissions factor references. Excerpts from these sections are attached to this Section:

- Section 11.12 Concrete Batching, June 2006;
- Section 13.2.1 Paved Roads; including the Background Document, January 2011; and,
- Section 13.2.4 Aggregate Handling and Storage Piles, November 2006.

Vendor information regarding control efficiency was used for the emission calculations. Excerpts from the vendor literature are attached to this Section.
Section 8

Map(s)

See Attached Figure 8-1 for Vicinity Map of Schlumberger Hobbs District facility, showing surrounding industrial area.
Section 9

Proof of Public Notice
(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC)
(This proof is required by: 20.2.72.203.A.14 NMAC “Documentary Proof of applicant’s public notice”)

I have read the AQB “Guidelines for Public Notification for Air Quality Permit Applications”
This document provides detailed instructions about public notice requirements for various permitting actions.
It also provides public notice examples and certification forms. Material mistakes in the public notice will
require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant’s Public
Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which
documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous
 places, including the proposed or existing facility entrance. (e.g.: post office, library, grocery, etc.)
3. A copy of the property tax record (20.2.72.203.B NMAC).
4. A sample of the letters sent to the owners of record.
5. A sample of the letters sent to counties, municipalities, and Indian tribes.
6. A sample of the public notice posted and a verification of the local postings.
7. A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
8. A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
9. A copy of the classified or legal ad including the page header (date and newspaper title) or its affidavit of
 publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and
 Spanish.
10. A copy of the display ad including the page header (date and newspaper title) or its affidavit of publication stating
 the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were
 notified by mail. This is necessary for verification that the correct facility boundary was used in determining
 distance for notifying land owners of record.
U.S. Postal Service™
CERTIFIED MAIL® RECEIPT
Domestic Mail Only

For delivery information, visit our website at www.usps.com®.

CERTIFIED MAIL® RECEIPT
Domestic Mail Only

For delivery information, visit our website at www.usps.com®.

CERTIFIED MAIL® RECEIPT
Domestic Mail Only

For delivery information, visit our website at www.usps.com®.
General Posting of Notices – Certification

I, Hiparco Aranada, the undersigned, certify that on February 10, 2017, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the City of Hobbs of Lea County, State of New Mexico on the following dates:

1. Schlumberger Hobbs District - Facility entrance 2/10/2017
2. Hobbs City Hall, 2/10/17
3. James M. Murray State Office Building, 2/10/17
4. Hobbs Public Library, 2/10/17

Signed this ___10th___ day of ___February___, 2017.

Signature

___ Hiparco Aranada ___
Printed Name

Applicant Facility Staff – Schlumberger Hobbs District

Title

2-10-2017
February 10, 2017

Pemco of New Mexico
2605 N. Lovington Hwy.
Hobbs, New Mexico 88240

Dear Neighbor,

Schlumberger Technology Corporation announces that an application for a Significant Revision for its Hobbs District Bulk Products facility has been submitted to the Air Quality Bureau on January 31, 2017.

The Hobbs District facility, owned and operated by Schlumberger, is located at 1105 West Bender Avenue in Hobbs, New Mexico, and the intersection of Lovington Highway and West Bender Blvd. Operations at the Hobbs District facility involve the production of specialty cement mixes and sand products for oil and gas well exploration and production.

The proposed permit revision is for replacement of four (4) product blending tanks, similar to those presently existing at the facility, and installation of thirteen (13) new dust controllers serving existing and new tanks. No increase in regulated air emissions will result from the proposed facility modification. The operating schedule of the facility is currently up to 24 hours per day, and will not change.

If you have any comments about the modification of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico; 87505-1816
(505) 476-4300 or 1 800 224-7009, or on-line at

Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department’s notice will be published in the legal section of a newspaper circulated near the facility location.

Sincerely,

Schlumberger – Hobbs District Facility
1105 W. Bender Avenue
Hobbs, New Mexico 88240
February 10, 2017

Director of Community Services
City of Hobbs
200 E. Broadway
Hobbs, New Mexico 88240

Dear Sir,

Schlumberger Technology Corporation announces that an application for a Significant Revision for its Hobbs District Bulk Products facility has been submitted to the Air Quality Bureau on January 31, 2017.

The Hobbs District facility, owned and operated by Schlumberger, is located at 1105 West Bender Avenue in Hobbs, New Mexico, and the intersection of Lovington Highway and West Bender Blvd. Operations at the Hobbs District facility involve the production of specialty cement mixes and sand products for oil and gas well exploration and production.

The proposed permit revision is for replacement of four (4) product blending tanks, similar to those presently existing at the facility, and installation of thirteen (13) new dust controllers serving existing and new tanks. No increase in regulated air emissions will result from the proposed facility modification. The operating schedule of the facility is currently up to 24 hours per day, and will not change.

If you have any comments about the modification of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico; 87505-1816
(505) 476-4300 or 1 800 224-7009, or on-line at https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html.

Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department’s notice will be published in the legal section of a newspaper circulated near the facility location.

Sincerely,

Schlumberger – Hobbs District Facility
1105 W. Bender Avenue
Hobbs, New Mexico 88240
Schlumberger Technology Corporation announces that an application for a Significant Revision for its Hobbs District Bulk Products facility has been submitted to the Air Quality Bureau on January 31, 2017.

The Hobbs District facility, owned and operated by Schlumberger, is located at 1105 West Bender Avenue in Hobbs, New Mexico, and the intersection of Lovington Highway and West Bender Blvd. Operations at the Hobbs District facility involve the production of specialty cement mixes and sand products for oil and gas well exploration and production.

The proposed permit revision is for replacement of four (4) product blending tanks, similar to those presently existing at the facility, and installation of thirteen (13) new dust controllers serving existing and new tanks. No increase in regulated air emissions will result from the proposed facility modification. The operating schedule of the facility will not change.

If you have any comments about the modification of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico; 87505-1816
(505) 476-4300 or 1 800 224-7009, or on-line at

Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department’s notice will be published in the legal section of a newspaper circulated near the facility location.
<table>
<thead>
<tr>
<th>Owners of Record</th>
<th>Counties, Cities, Tribes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pemco of New Mexico</td>
<td>Department of Community Development</td>
</tr>
<tr>
<td>5715 Lovington Hwy</td>
<td>Lea County</td>
</tr>
<tr>
<td>Hobbs, NM 88240</td>
<td>100 N. Main Ave.</td>
</tr>
<tr>
<td></td>
<td>Lovington, NM 88260</td>
</tr>
<tr>
<td>Superior Diesel</td>
<td>Director of Community Services</td>
</tr>
<tr>
<td>1201 W. Bender Blvd.</td>
<td>City of Hobbs</td>
</tr>
<tr>
<td>Hobbs, NM 88240</td>
<td>200 E. Broadway</td>
</tr>
<tr>
<td></td>
<td>Hobbs, NM 88240</td>
</tr>
<tr>
<td>Ismael Gomez</td>
<td></td>
</tr>
<tr>
<td>1114 W. Lost Horizons St.</td>
<td></td>
</tr>
<tr>
<td>Hobbs, NM 88240</td>
<td></td>
</tr>
<tr>
<td>Glock Trucking</td>
<td></td>
</tr>
<tr>
<td>625 E. Permian Dr.</td>
<td></td>
</tr>
<tr>
<td>Hobbs, NM 88240</td>
<td></td>
</tr>
<tr>
<td>James Cecil Auctioneers</td>
<td></td>
</tr>
<tr>
<td>2005 N. Grimes St.</td>
<td></td>
</tr>
<tr>
<td>Hobbs, NM 88240</td>
<td></td>
</tr>
</tbody>
</table>
PUBLIC SERVICE ANNOUNCEMENT

Schlumberger Technology Corporation announces that it has submitted an air permit revision application to the Air Quality Bureau of the New Mexico Environment Department.

The Hobbs District facility, owned and operated by Schlumberger Technology Corporation, is located at 1105 West Bender Avenue in Hobbs, New Mexico. Operations at the Hobbs District facility involve the production of specialty cement mixes and sand products for oil and gas well exploration and production.

The proposed significant permit revision is for replacement of four product blending tanks, and installation of thirteen new dust controllers serving the existing and new tanks. No increase in regulated air emissions will result from the proposed facility modification. The operating schedule of the facility will not change.

A notice of the proposed Hobbs District air permit modification has been posted, and can be viewed at the following locations:

- The Schlumberger, Hobbs facility entrance at 1105 West Bender Avenue
- Hobbs City Hall
- The James M. Murray State Office building, and,
- Hobbs Public Library

Inquires or comments concerning this project may be submitted in writing to:

New Mexico Environment Department
Air Quality Bureau - Permits Section
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico, 87505

Or, by telephone to the Air Quality Bureau at: (505) 476-4300.
Ms. Morgan –

On behalf of an industrial client in Hobbs, I’m requesting that a PSA be broadcast on two of the Noalmark stations. The announcement (attached text) follows New Mexico agency guidance for notification of an air quality permitting action. I’d ask that you select those stations that might have listeners interested in this sort of information.

If practical, could an e-mail reply be sent to me that the PSA will be broadcast? That is worthwhile documentation for our permitting process.

Thanks in advance for your help. Feel free to contact me if I can answer any questions.

Bob Farmer
Technical Director, Air Quality
ERM
7272 E. Indian School Road | Suite 108 | Scottsdale, AZ 85251

T +480.998.2401 | M 602.499.9474
E bob.farmer@erm.com | W www.erm.com

ERM The business of sustainability
Submittal of Public Service Announcement – Certification

I, Robert Farmer, the undersigned, certify that on February 10, 2017, I submitted a public service announcement to Noalmark Radio that serves the City of Hobbs, Lea County, New Mexico, in which the source is or is proposed to be located and that Noalmark did not respond to me.

Signed this 21st day of February, 2017.

Signature

Robert W. Farmer
Printed Name

Environmental Consultant to Schlumberger Technology
Title

Date 2/21/17
Sports 9

Spieth piling up wins at rate not seen since Tiger Woods

At first glance, Spieth looked as though he was merely another of Tiger Woods’ many imitators. Woods was the wave of the 1980s, the 1990s, and the 2000s. But Spieth is the next Woods, the one who will dominate the world of golf.

Spieth’s record at the Masters is a testament to his skill and dedication. He finished second in 2015, first in 2016, and third in 2017. His performances have been consistently impressive, with a total of seven top-10 finishes in nine attempts. His driving, putting, and short game are all excellent, and he has the ability to control his emotions under pressure.

In the 2016 Masters, Spieth’s final-round 64 was the lowest score ever for a Masters champion. He finished with a 27-under-par total, 11 strokes better than the previous record set by Jack Nicklaus in 1967. In the 2017 Masters, Spieth’s final-round 62 was the lowest score in Masters history, and his total of 28-under-par was the lowest in Masters history.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

Spieth’s record at the US Open is equally impressive. He finished second in 2012, first in 2015, and third in 2016. His performances have been consistently strong, with a total of five top-10 finishes in five attempts. He led after the first two rounds in 2015, and after the third round in 2016.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.

The key to Spieth’s success is his ability to keep his emotions in check under pressure. When he was leading by six strokes, he didn’t let his emotions get the best of him. He remained focused and calm, and his level of play was unwavering.
NOTICE OF AIR QUALITY PERMIT REVISION APPLICATION

Schlumberger Technology Corporation announces that a Significant Revision application for its Hobbs District Bulk Products facility has been submitted to the Air Quality Bureau on January 31, 2017.

The Hobbs District facility, owned and operated by Schlumberger, is located at 1105 West Bender Avenue in Hobbs, New Mexico, near the intersection of Lovington Highway and West Bender Blvd. Operations at the Hobbs District facility involve the production of specialty cement mixes and sand products for oil and gas well exploration and production.

The proposed permit revision is for replacement of four (4) product blending tanks, similar to those presently existing at the facility, and installation of thirteen (13) new dust controllers serving existing and new silos. No increase in regulated air emissions will result from the proposed facility modification. The operating schedule of the facility is currently up to 24 hours per day, and will not change.

If you have any comments about the modification of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico; 87505-1816
(505) 476-4300 or 1 800 224-7009, or on-line at
https://www.nm.env.gov/aqb/permit/aqb_draft_permit.html

Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department’s notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau’s web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

67109711
00188552

BOB FARMER
ERW INC.
7272 E. INDIAN SCHOOL ROAD
STE 108
SCOTTSDALE, AZ 85251
I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

Beginning with the issue dated February 14, 2017 and ending with the issue dated February 14, 2017.

Publisher

Sworn and subscribed to before me this 14th day of February 2017.

Business Manager

(Seal)

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

BOB FARMER
ERM INC.
7272 E. INDIAN SCHOOL ROAD
STE 108
SCOTTSDALE, AZ 85251

67109711 00188540
Section 10

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Hobbs District facility located in Lea County, New Mexico is comprised of a Bulk Cement Plant and a Sand Plant. The planned modifications in dust controllers may result in slight changes to current emissions of total suspended particulates (TSP), inhalable particulates less than 10 microns in diameter (PM_{10}), and fine particulates less than 2.5 microns in diameter (PM_{2.5}). Emission estimates conservatively reflect the maximum operation within the design capacity of the Cement Plant; however, the improvement in dust control is expected to result in a reduction in actual emissions.

The Hobbs District facility emission sources comprise the dust collector vents associated with the Cement Bulk Plant, a dust collector at the Sand Plant, and operation of vehicles within the facility boundaries. The material blending and transfer processes at the Hobbs District will be controlled by silo exhaust dust collectors and cyclone/filter dust collectors. Within these process areas, the post-modification PM emission sources are:

- Eleven Cement Bulk Plant product storage tanks (Silos 1 – 10 and Silo 12) served by silo dust collectors (DC 1 through 10, and 12)
- Five Cement Bulk Plant product preparation tanks (TK 13 through TK 17): pre-blending, holding, double-stack, weigh batcher, and vent tanks served by cyclone-filter dust collectors (DC 13 and 15);
- Four existing Sand Plant silos, and pneumatic loading systems, served collectively by existing cyclone-filter dust collector (DC S1); and,
- Fugitive dust emissions from in-plant truck traffic.

At the Cement Bulk Plant facility, cement/additives are delivered by vendor trucks to the facility, and unloaded pneumatically into one of eleven (11) existing bulk storage tanks (Silos 1-10 and 12). The pneumatic conveyance air for the current silos, will be controlled by new silo vent dust collectors (DC 1 - 10 and 12) prior to release to atmosphere. To produce a blended solids product, ingredient material is suctioned from the various storage tanks to the weigh batcher tank (TK 15), and conveyance air vented from this tank is controlled by a dust collector (DC 15) prior to release to atmosphere. Blended material may be pneumatically transferred to other tanks (TK 13, 14, 16, and 17), to prepare batches for shipment. These tanks (TK 13, 14, 16, and 17) vent conveyance air streams to a second cyclone-filter dust collector (DC 13). To prepare blended product, sack material may be added manually, to the Blend Tank, which is pneumatically unloaded from or loaded from the Holding Tank and vented back to the Vent Tank controlled by a dust collector (DC 13).

At the Sand Plant facility, sand materials are pneumatically transferred to the four silos (Sand 1 through Sand 4) from either railcar or truck delivery lines. For shipment, sand materials are transferred pneumatically from the sand plant silos to one of four loading lines (Sand 5). The pneumatic conveyance air is controlled by an existing cyclone-filter dust collector (DC S1). None of the Sand Plant equipment will be modified as part of the proposed project.

The fugitive dust emissions generated from on-site truck traffic on paved plant areas are characterized in Table 6-5, included in form UA-2. This source assumes the trucks are typical over-the-road dry bulk tank trailers, with one or three compartments that are loaded and off-loaded by pneumatic transfer. There are no open belts at the facility for material transfer, all transfers are through closed pneumatic systems. Material throughput is determined using truck scales to weigh the arriving and departing trucks to monitor net weight incoming and outgoing. Based on facility estimates, up to 24 trucks may be accommodated per 24-hour day. Hourly emissions estimates are based on the loading/unloading capacity for one truck at one time.

A Bulk Acid Blending>Loading facility (Unit 3) is currently permitted, but has been decommissioned and removed from the site. A small gel tank (7,350 gallons) used to store pre-mixed gel solutions is present at the site (current permit Unit 4).
Section 11
Source Determination
Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau’s permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

All stationary sources at the Schlumberger Technology Corporation - Hobbs District are listed in this application.

B. Apply the 3 criteria for determining a single source:

- **SIC Code**: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.
 - [] Yes
 - [] No

- **Common Ownership or Control**: Surrounding or associated sources are under common ownership or control as this source.
 - [] Yes
 - [] No

- **Contiguous or Adjacent**: Surrounding or associated sources are contiguous or adjacent with this source.
 - [] Yes
 - [] No

C. Make a determination:

- The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in “A” above you evaluated only the source that is the subject of this application, all “YES” boxes should be checked. If in “A” above you evaluated other sources as well, you must check AT LEAST ONE of the boxes “NO” to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

- The source, as described in this application, does not constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):
Section 12

Section 12.A
PSD Applicability Determination for All Sources
(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

A. This facility is:

- a minor PSD source before and after this modification (if so, delete C and D below).
- a major PSD source before this modification. This modification will make this a PSD minor source.
- an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
- an existing PSD Major Source that has had a major modification requiring a BACT analysis
- a new PSD Major Source after this modification.

B. This facility is not one of the listed 20.2.74.501 Table I – PSD Source Categories. The “project” emissions for this modification are not significant. Total Hobbs District plant emissions on a controlled PTE basis are calculated in Section 6, and are well below Significance thresholds in Table 2, 20.2.74.502. The “project” emissions listed below only result from changes described in this permit application and emissions from other from existing and new stationary emissions units at this facility. The modification project does not involve de-bottlenecking of the processes. The total emissions, post modification for the facility are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:

a. NOx: 0.00 TPY
b. CO: 0.00 TPY
c. VOC: 0.00 TPY
d. SOx: 0.00 TPY
e. TSP (PM): <1.0 TPY
f. PM10: < 0.5 TPY
g. PM2.5: < 0.5 TPY
h. Fluorides: 0.00 TPY
i. Lead: 0.00 TPY
j. Sulfur compounds (listed in Table 2): 0.00 TPY
k. GHG: 0.00 TPY

C. Netting is not required, as the project is not significant

D. BACT is not required for this modification, as this application is for an emission increase below the Significance level.

E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 – PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

The total annual PTE for each pollutant does not approach the listed PSD emission source thresholds. Site wide emissions are calculated in Section 6 for the stationary sources of PM species across the Hobbs District facility.
Section 13

Discussion Demonstrating Compliance With Each Applicable State & Federal Regulation

Provide a discussion demonstrating compliance with applicable state & federal regulation. If there is a state or federal regulation (other than those listed here) for your facility’s source category that does not apply to your facility, but seems on the surface that it should apply, add the regulation to the appropriate table below and provide the analysis. Examples of regulatory requirements that may or may not apply to your facility include 40 CFR 60 Subpart OOO (crushers), 40 CFR 63 Subpart HHH (HAPs), or 20.2.74 NMAC (PSD major sources). We don’t want a discussion of every non-applicable regulation, but if there is questionable applicability, explain why it does not apply. All input cells should be filled in, even if the response is ‘No’ or ‘N/A’.

In the “Justification” column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the “Applies to Unit No(s)” column, after each listed unit, include the number(s) of the criteria that made the regulation applicable. For example, TK-1 & TK-2 would be listed as: TK-1 (1, 3, 4), TK-2 (1, 2, 4). Doing so will provide the applicability criteria for each unit, while also minimizing the length of these tables.

As this table will become part of the SOB, please do not change the any formatting in the table, especially the width of the table.

If this application includes any proposed exemptions from otherwise applicable requirements, provide a narrative explanation of these proposed exemptions. These exemptions are from specific applicable requirements, which are spelled out in the requirements themselves, not exemptions from 20.2.70 NMAC or 20.2.72 NMAC.

Example of a Table for Applicable STATE REGULATIONS:

<table>
<thead>
<tr>
<th>STATE REGULATIONS CITATION</th>
<th>Title</th>
<th>Applies to Entire Facility</th>
<th>Applies to Unit No(s)</th>
<th>Federally Enforceable</th>
<th>Does Not Apply</th>
<th>JUSTIFICATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.3 NMAC</td>
<td>Ambient Air Quality Standards NMAAQS</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC</td>
</tr>
<tr>
<td>20.2.7 NMAC</td>
<td>Excess Emissions</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Hobbs District is obligated by the existing NSR Air Quality Permit to report Excess Emissions.</td>
</tr>
<tr>
<td>20.2.33 NMAC</td>
<td>Gas Burning Equipment - Nitrogen Dioxide</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility does not operate gas-burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit.</td>
</tr>
<tr>
<td>20.2.34 NMAC</td>
<td>Oil Burning Equipment: NOx</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility does not have oil-burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit.</td>
</tr>
<tr>
<td>20.2.35 NMAC</td>
<td>Natural Gas Processing Plant – Sulfur</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is not part of the source category affected by this regulation.</td>
</tr>
<tr>
<td>20.2.37 NMAC</td>
<td>Petroleum Processing Facilities</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is not of the category affected by this regulation.</td>
</tr>
<tr>
<td>20.2.38 NMAC</td>
<td>Hydrocarbon Storage Facil.</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is not of the category affected by this regulation.</td>
</tr>
<tr>
<td>20.2.39 NMAC</td>
<td>Sulfur Recovery Plant - Sulfur</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is not of the category affected by this regulation.</td>
</tr>
<tr>
<td>STATE REGULATIONS CITATION</td>
<td>Title</td>
<td>Applies to Entire Facility</td>
<td>Applies to Unit No(s.)</td>
<td>Federally Enforceable</td>
<td>Does Not Apply</td>
<td>JUSTIFICATION:</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>20.2.61.10 9 NMAC</td>
<td>Smoke & Visible Emissions</td>
<td>X</td>
<td>DC 1 – 15 at Cement Plant, DC S-1 at Sand Plant</td>
<td>X</td>
<td>--</td>
<td>Dust sources controlled by add-on dust collectors are subject to a 5% opacity limit, pursuant to 20 NMAC 2.72, Sections 210.B.4.</td>
</tr>
<tr>
<td>20.2.70 NMAC</td>
<td>Operating Permits</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>Source is not major for any regulated air pollutants.</td>
</tr>
<tr>
<td>20.2.71 NMAC</td>
<td>Operating Permit Fees</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is not subject to 20.2.70 NMAC and is therefore not subject to 20.2.71 NMAC.</td>
</tr>
<tr>
<td>20.2.72 NMAC</td>
<td>Construction Permits</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>This facility is subject to 20.2.72 NMAC and NSR Permit number: 2715-R8</td>
</tr>
<tr>
<td>20.2.73 NMAC</td>
<td>NOI & Emissions Inventory Requirements</td>
<td>X</td>
<td>DC 1 – 15 at Cement Plant, DC S-1 at Sand Plant</td>
<td>X</td>
<td>--</td>
<td>NOI: 20.2.73.200 NMAC potentially applies Emissions Inventory Reporting: Permit 2715-R8 indicates no Specific Condition for reporting requirements.</td>
</tr>
<tr>
<td>20.2.74 NMAC</td>
<td>Permits – PSD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is not PSD major, based on the annual PTE emissions calculations in Section 6.</td>
</tr>
<tr>
<td>20.2.75 NMAC</td>
<td>Construction Permit Fees</td>
<td>X</td>
<td>DC 1 – 15 at Cement Plant, DC S-1 at Sand Plant</td>
<td>X</td>
<td>--</td>
<td>This facility is subject to 20.2.72 NMAC and is in turn subject to 20.2.75 NMAC.</td>
</tr>
<tr>
<td>20.2.77 NMAC</td>
<td>New Source Performance</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source which is not subject to any Subparts of 40 CFR Part 60, as amended through September 23, 2013.</td>
</tr>
<tr>
<td>20.2.78 NMAC</td>
<td>Emission Standards for HAPS</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility does not comprise a source of hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended through December 31, 2010.</td>
</tr>
<tr>
<td>20.2.79 NMAC</td>
<td>Permits – Nonattainment Areas</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility is located in an area that is designated as attainment for NAAQS.</td>
</tr>
<tr>
<td>20.2.80 NMAC</td>
<td>Stack Heights</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>Not applicable to the local dust collector vents at the facility.</td>
</tr>
<tr>
<td>20.2.82 NMAC</td>
<td>MACT Standards for source categories of HAPS</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This facility does not comprise a source of hazardous air pollutants which are subject to the requirements of 40 CFR Part 63, as amended through August 29, 2013.</td>
</tr>
</tbody>
</table>
Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

<table>
<thead>
<tr>
<th>FEDERAL REGULATIONS CITATION</th>
<th>Title</th>
<th>Applies to Entire Facility</th>
<th>Applies to Unit No(s.)</th>
<th>Federally Enforceable</th>
<th>Does Not Apply</th>
<th>JUSTIFICATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 CFR 50</td>
<td>NAAQS</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Defined as applicable at 20.2.70.7.E.11, any national ambient air quality standard.</td>
</tr>
<tr>
<td>NSPS 40 CFR 60, Subpart A</td>
<td>General Provisions</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source that is not one of the source categories subject to any Subparts of 40 CFR Part 60, as amended through September 23, 2013.</td>
</tr>
<tr>
<td>NSPS 40 CFR Part 60, all subparts</td>
<td>New Source Performance Standards</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source that is not one of the source categories subject to any Subparts of 40 CFR Part 60, as amended through September 23, 2013.</td>
</tr>
<tr>
<td>NSPS 40 CFR Part 60 Subpart OOO</td>
<td>Standards of Performance for Non-Metallic Mineral Processing</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The facility does handle materials that are defined by Subpart OOO as non-metallic minerals. However, the Hobbs District facility does not have any of the listed affected facilities in this subpart (e.g., crusher, conveyor systems).</td>
</tr>
<tr>
<td>NESHAP 40 CFR 61 Subpart A</td>
<td>General Provisions</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source that is not one of the source categories subject to any Subparts of 40 CFR Part 61, as amended through December 31, 2010.</td>
</tr>
<tr>
<td>NSPS 40 CFR Part 61, All Subparts</td>
<td>National Emission Standards for Hazardous Air Pollutants</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source that is not one of the source categories subject to any Subparts of 40 CFR Part 61 as amended through December 31, 2010.</td>
</tr>
<tr>
<td>MACT 40 CFR 63, Subpart A</td>
<td>General Provisions</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source which is not one of the source categories subject to any Subparts of 40 CFR Part 63, as amended through August 29, 2013.</td>
</tr>
<tr>
<td>NSPS 40 CFR Part 63, All Subparts</td>
<td>National Emission Standards for Hazardous Air Pollutants</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>This is a stationary source that is not one of the source categories subject to any Subparts of 40 CFR Part 63, as amended through August 29, 2013.</td>
</tr>
<tr>
<td>MACT 40 CFR 63 Subpart ZZZZ</td>
<td>National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The Hobbs District does not have an emergency generator or other stationary RICE, and therefore is not subject to this subpart.</td>
</tr>
<tr>
<td>NESHAP 40 CFR 64</td>
<td>Compliance Assurance Monitoring</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The Hobbs District is below major source thresholds site wide on a PTE basis. Emissions for none of the Hobbs emissions units are major in and of themselves. This regulation therefore does not apply.</td>
</tr>
<tr>
<td>NESHAP 40 CFR 68</td>
<td>Chemical Accident Prevention</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The Hobbs District does not store at any time a quantity of a listed substance (toxic or flammable) that exceed the thresholds for applicability of this program.</td>
</tr>
<tr>
<td>FEDERAL REGULATIONS CITATION</td>
<td>Title</td>
<td>Applies to Entire Facility</td>
<td>Applies to Unit No(s.)</td>
<td>Federally Enforceable</td>
<td>Does Not Apply</td>
<td>JUSTIFICATION:</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Title IV – Acid Rain</td>
<td>Acid Rain</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The Hobbs District is not an electricity generating facility.</td>
</tr>
<tr>
<td>40 CFR 72-76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title VI – Protection of</td>
<td>Protection of Stratospheric</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>Not Applicable – facility does not “service”, “maintain” or “repair” class I or class II appliances nor “disposes” of the appliances.</td>
</tr>
<tr>
<td>40 CFR 82</td>
<td>Ozone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 CFR 98</td>
<td>Mandatory Reporting Rule for GHG</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The Hobbs District does not operate stationary sources that collective have emissions that approach 25,000 metric tons per year of CO₂ equivalent GHG.</td>
</tr>
<tr>
<td>CAA Section 112(r)</td>
<td>Chemical Accident Prevention</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
<td>The Hobbs District does not store at any time a quantity of a listed substance (toxic or flammable) that exceed the thresholds for applicability of this program.</td>
</tr>
</tbody>
</table>
Section 14

Operational Plan to Mitigate Emissions

(submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

☐ **Title V Sources** (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an **Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies** defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

☐ **NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources**: By checking this box and certifying this application the permittee certifies that it has developed an **Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown** defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

☐ **Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources**: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

The Hobbs District facility has developed a plan to minimize emissions during routine operations. This consists of Dust Collector Inspection Checklists, which describe activities that are performed on a weekly and monthly schedule. In addition, Hobbs District performs monthly preventative maintenance for dust collectors at the facility.
Section 15

Alternative Operating Scenarios
(submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Not Applicable to the Schlumberger Technologies Corporation - Hobbs District. There are no alternative operating scenarios for the facility sources.
Section 16

Air Dispersion Modeling

1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau’s Dispersion Modeling Guidelines found on the Planning Section’s modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.

2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau’s dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.

3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

<table>
<thead>
<tr>
<th>What is the purpose of this application?</th>
<th>Enter an X for each purpose that applies</th>
</tr>
</thead>
<tbody>
<tr>
<td>New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.</td>
<td>X</td>
</tr>
<tr>
<td>New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above.</td>
<td>X</td>
</tr>
<tr>
<td>Note: Neither modeling nor a modeling waiver is required for VOC emissions.</td>
<td>X</td>
</tr>
<tr>
<td>Reporting existing pollutants that were not previously reported.</td>
<td>X</td>
</tr>
<tr>
<td>Reporting existing pollutants where the ambient impact is being addressed for the first time.</td>
<td>X</td>
</tr>
<tr>
<td>Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3</td>
<td>X</td>
</tr>
<tr>
<td>above.</td>
<td>X</td>
</tr>
<tr>
<td>Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.</td>
<td>X</td>
</tr>
<tr>
<td>Other: i.e. SSM modeling. See #2 above.</td>
<td>X</td>
</tr>
<tr>
<td>This application does not require modeling since this is a No Permit Required (NPR) application.</td>
<td>X</td>
</tr>
<tr>
<td>This application does not require modeling since this is a Notice of Intent (NOI) application</td>
<td>X</td>
</tr>
<tr>
<td>(20.2.73 NMAC).</td>
<td>X</td>
</tr>
<tr>
<td>This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),</td>
<td>X</td>
</tr>
<tr>
<td>20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau’s Modeling Guidelines.</td>
<td>X</td>
</tr>
</tbody>
</table>

Check each box that applies:

X See attached, approved modeling waiver for all pollutants from the facility.
□ See attached, approved modeling waiver for some pollutants from the facility.
□ Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
□ Attached in UA4 is a modeling report for some pollutants from the facility.
X No modeling is required.
Air Dispersion Modeling Waiver Request Form

This form must be completed and submitted with all air dispersion modeling waiver requests.

If an air permit application requires air dispersion modeling, in some cases the demonstration that ambient air quality standards and Prevention of Significant Deterioration (PSD) increments will not be violated can be satisfied with a discussion of previous modeling. The purpose of this form is to document and streamline requests to certify that previous modeling satisfies all or some of the current modeling requirements. The criteria for requesting and approving modeling waivers is found in the Air Quality Bureau Modeling Guidelines. Typically, only construction permit applications submitted per 20.2.72, 20.2.74, or 20.2.79 NMAC require air dispersion modeling. However, modeling is sometimes also required for a Title V permit application.

A waiver may be requested by e-mailing this completed form in MS Word format to the modeling manager, sufi.mustafa@state.nm.us.

This modeling waiver is not valid if the emission rates in the application are higher than those listed in the approved waiver request.

Section 1 and Table 1: Contact and facility information:

<table>
<thead>
<tr>
<th>Contact name</th>
<th>Judith A. Carley</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail Address:</td>
<td>jcarley@slb.com</td>
</tr>
<tr>
<td>Phone</td>
<td>(281) 285-7785</td>
</tr>
<tr>
<td>Facility Name</td>
<td>Hobbs District Bulk Facility</td>
</tr>
<tr>
<td>Air Quality Permit Number(s)</td>
<td>2715-R8</td>
</tr>
<tr>
<td>Agency Interest Number (if known)</td>
<td></td>
</tr>
</tbody>
</table>

General Comments: (Add introductory remarks or comments here, including the purpose of and type of permit application.)

The Hobbs District facility is seeking a revision to the existing permit, to upgrade the Bulk Cement Plant (Unit 1) to improve dust control and operating flexibility, which will involve replacement of blending vessels with similar units, new truck transfer equipment, and new dust controllers on existing tanks.

Based on the conservative emissions analysis presented in Section 6 of the application (Rev 1, March 2017) Hobbs District after the planned dust control upgrades will have very low post-control emissions of TSP, PM10 and PM2.5. Maximum hypothetical emissions for stack sources are developed in detail in supporting Tables 6-1 and 6-2. The fugitive emissions for on-site truck travel are calculated in Table 6-5. These fugitive emissions, based on the highest feasible number of daily truck trips, are estimated to be less than 0.5 tons per year and are therefore less than the exemption threshold for modeling.

Post-project existing and modified sources will have total controlled emissions, conservatively assuming simultaneous operation of all material storage transfer units, which compare to the de minimis modeling thresholds as follows:
<table>
<thead>
<tr>
<th>Particulate Species</th>
<th>Maximum Controlled Hourly Emissions (lb/hr)¹</th>
<th>AQB Modeling Threshold Emissions (lb/hr)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>0.37</td>
<td>1.0</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>0.25</td>
<td>0.3</td>
</tr>
</tbody>
</table>

¹ – Combined Cement Plant, Sand Plant, and fugitive truck travel emissions, refer to supporting calculations in Tables 6-1, 6-2, and 6-5.
² - New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines - September 2016, Table 1- Very Small Emission Rate Model Waiver Requirements. Values are from the column for “all emissions come from stacks 20 feet or greater in height and there are no horizontal stacks or raincaps.”

Section 2 – List All Regulated Pollutants from the Entire Facility - Required

In Table 2, below, list all regulated air pollutants emitted from your facility, except for New Mexico Toxic Air Pollutants, which are listed in Table 6 of this form. All pollutants emitted from the facility must be listed regardless if a modeling waiver is requested for that pollutant or if the pollutant emission rate is subject to the proposed permit changes.

Table 2: Air Pollutant summary table (Check all that apply. Include all pollutants emitted by the facility):

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Pollutant is not emitted at the facility and modeling or waiver are not required.</th>
<th>Pollutant does not increase in emission rate at any emission unit (based on levels currently in the permit) and stack parameters are unchanged. Modeling or waiver are not required.</th>
<th>Stack parameters or stack location has changed.</th>
<th>Pollutant is new to the permit, but already emitted at the facility.</th>
<th>Pollutant is increased at any emission unit (based on levels currently in the permit).</th>
<th>A modeling waiver is being requested for this pollutant.</th>
<th>Modeling for this pollutant will be included in the permit application.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM₁₀</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂S</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced S</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃ (PSD only)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 3: Facility wide pollutants, other than NMTAPs, with very low emission rates

The Air Quality Bureau has performed generic modeling to demonstrate that small sources, as listed in Appendix 2 of this form, do not need computer modeling. After comparing the facility’s emission rates for various pollutants to Appendix 2, please list in Table 3 the pollutants that do not need to be modeled because of very low emission rates.

Section 3 Comments. (If you are not requesting a waiver for any pollutants based on their low emission rate, then note that here. You do not need to complete the rest of Section 3 or Table 3.)

<Add comments here>
Table 3: List of Pollutants with very low facility-wide emission rates

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Requested Allowable Emission Rate From Facility (pounds/hour)</th>
<th>Release Type (select “all from stacks > 20 ft” or “other”)</th>
<th>Waiver Threshold (from appendix 2) (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td><1.0</td>
<td>All stacks > 20 ft. No raincaps</td>
<td>5.0</td>
</tr>
<tr>
<td>PM10</td>
<td><0.5</td>
<td>All stacks > 20 ft. No raincaps</td>
<td>1.0</td>
</tr>
<tr>
<td>PM2.5</td>
<td><0.3</td>
<td>All stacks > 20 ft. No raincaps</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Section 4: Pollutants that have previously been modeled at equal or higher emission rates

List the pollutants and averaging periods in Table 4 for which you are requesting a modeling waiver based on previous modeling for this facility. The previous modeling reports that apply to the pollutant must be submitted with the modeling waiver request. Request previous modeling reports from the Modeling Section of the Air Quality Bureau if you do not have them and believe they exist in the AQB modeling file archive or in the permit folder.

Section 4 Comments. (If you are not asking for a waiver based on previously modeled pollutants, note that here. You do not need to complete the rest of section 4 or table 4.)

No modeling has been performed previously for this facility. The requested waiver does not rely on prior modeling results.

Table 4: List of previously modeled pollutants (facility-wide emission rates)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging period</th>
<th>Proposed emission rate (pounds/hour)</th>
<th>Previously modeled emission rate (pounds/hour)</th>
<th>Proposed minus modeled emissions (lb/hr)</th>
<th>Modeled percent of standard or increment</th>
<th>Year modeled</th>
</tr>
</thead>
</table>

Section 4, Table 5: Questions about previous modeling:

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was AERMOD used to model the facility?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did previous modeling predict concentrations less than 95% of each air quality standard and PSD increment?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were all averaging periods modeled that apply to the pollutants listed above?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were all applicable startup/shutdown/maintenance scenarios modeled?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did modeling include all sources within 1000 meters of the facility fence line that now exist?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Did modeling include background concentrations at least as high as current background concentrations?

If a source is changing or being replaced, is the following equation true for all pollutants for which the waiver is requested? (Attach calculations if applicable.)

\[
\begin{align*}
(q_1 \times (h_1)) &+ \frac{(v_1)^2}{2} + (c \times (T_1)) \leq (q_2 \times (h_2)) &+ \frac{(v_2)^2}{2} &+ (c \times (T_2))
\end{align*}
\]

Where

- \(g\) = gravitational constant = 32.2 ft/sec\(^2\)
- \(h_1\) = existing stack height, feet
- \(v_1\) = exhaust velocity, existing source, feet per second
- \(c\) = specific heat of exhaust, 0.28 BTU/lb-degree F
- \(T_1\) = absolute temperature of exhaust, existing source = degree F + 460
- \(q_1\) = emission rate, existing source, lbs/hour
- \(h_2\) = replacement stack height, feet
- \(v_2\) = exhaust velocity, replacement source, feet per second
- \(T_2\) = absolute temperature of exhaust, replacement source = degree F + 460
- \(q_2\) = emission rate, replacement source, lbs/hour

If you checked “no” for any of the questions, provide an explanation for why you think the previous modeling may still be used to demonstrate compliance with current ambient air quality standards.

Section 5: Modeling waiver using scaled emission rates and scaled concentrations

At times it may be possible to scale the results of modeling one pollutant and apply that to another pollutant. If the analysis for the waiver gets too complicated, then it becomes a modeling review rather than a modeling waiver, and applicable modeling fees will be charged for the modeling. Plume depletion, ozone chemical reaction modeling, post-processing, and unequal pollutant ratios from different sources are likely to invalidate scaling.

If you are not scaling previous results, note that here. You do not need to complete the rest of section 5.

This waiver does not rely on scaling of previous modeling results

To demonstrate compliance with standards for a pollutant describe scenarios below that you wish the modeling section to consider for scaling results.

Section 6: New Mexico Toxic air pollutants – 20.2.72.400 NMAC

Modeling must be provided for any New Mexico Toxic Air Pollutant (NMTAP) with a facility-wide controlled emission rate in excess of the pound per hour emission levels specified in Tables A and B at 20.2.72.502 NMAC - Toxic Air Pollutants and Emissions. An applicant may use a stack height correction factor based on the release height of the stack for the purpose of determining whether modeling is required. See Table C - Stack Height Correction Factor at 20.2.72.502 NMAC. Divide the emission rate for each release point of a NMTAP by the correction factor for that release height and add the total values together to determine the total adjusted pound per hour emission rate for that NMTAP. If the total adjusted pound per hour emission rate is lower than the emission rate screening level found in Tables A and B, then modeling is not required.

In Table 6, below, list the total facility-wide emission rates for each New Mexico Toxic Air Pollutant emitted by the facility. The table is pre-populated with common examples. Extra rows may be added for NMTAPS not listed or for NMTAPS emitted from multiple stack heights. NMTAPS not emitted at the facility may be deleted, left blank, or noted as 0 emission rate. Toxics previously modeled may be addressed in Section 5 of this waiver form. For convenience, we have listed the stack height correction factors in Appendix 1 of this form.
Section 6 Comments. (If you are not requesting a waiver for any NMTAPs then note that here. You do not need to complete the rest of section 6 or Table 6.)

This waiver request is not addressing any NMTAPs. Hobbs District facility is not a source of NMTAPs

Table 6: New Mexico Toxic Air Pollutants emitted at the facility
If requesting a waiver for any NMTAP, all NMTAPs from this facility must be listed in Table 3 regardless if a modeling waiver is requested for that pollutant or if the pollutant emission rate is subject to the proposed permit changes.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Requested Allowable Emission Rate (pounds/hour)</th>
<th>Release Height (Meters)</th>
<th>Correction Factor</th>
<th>Allowable Emission Rate Divided by Correction Factor</th>
<th>Emission Rate Screening Level (pounds/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>Asphalt (petroleum) fumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.333</td>
</tr>
<tr>
<td>Carbon black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.233</td>
</tr>
<tr>
<td>Chromium metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0333</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0467</td>
</tr>
<tr>
<td>Nickel Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0667</td>
</tr>
<tr>
<td>Wood dust (certain hard woods as beech & oak)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0667</td>
</tr>
<tr>
<td>Wood dust (soft wood)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.333</td>
</tr>
<tr>
<td>(add additional toxics if they are present)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 7: Approval or Disapproval of Modeling Waiver

The AQB air dispersion modeler should list each pollutant for which the modeling waiver is approved, the reasons why, and any other relevant information. If not approved, this area may be used to document that decision.
Appendix 1: Stack Height Release Correction Factor (adapted from 20.2.72.502 NMAC)

<table>
<thead>
<tr>
<th>Release Height in Meters</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 9.9</td>
<td>1</td>
</tr>
<tr>
<td>10 to 19.9</td>
<td>5</td>
</tr>
<tr>
<td>20 to 29.9</td>
<td>19</td>
</tr>
<tr>
<td>30 to 39.9</td>
<td>41</td>
</tr>
<tr>
<td>40 to 49.9</td>
<td>71</td>
</tr>
<tr>
<td>50 to 59.9</td>
<td>108</td>
</tr>
<tr>
<td>60 to 69.9</td>
<td>152</td>
</tr>
<tr>
<td>70 to 79.9</td>
<td>202</td>
</tr>
<tr>
<td>80 to 89.9</td>
<td>255</td>
</tr>
<tr>
<td>90 to 99.9</td>
<td>317</td>
</tr>
<tr>
<td>100 to 109.9</td>
<td>378</td>
</tr>
<tr>
<td>110 to 119.9</td>
<td>451</td>
</tr>
<tr>
<td>120 to 129.9</td>
<td>533</td>
</tr>
<tr>
<td>130 to 139.9</td>
<td>617</td>
</tr>
<tr>
<td>140 to 149.9</td>
<td>690</td>
</tr>
<tr>
<td>150 to 159.9</td>
<td>781</td>
</tr>
<tr>
<td>160 to 169.9</td>
<td>837</td>
</tr>
<tr>
<td>170 to 179.9</td>
<td>902</td>
</tr>
<tr>
<td>180 to 189.9</td>
<td>1002</td>
</tr>
<tr>
<td>190 to 199.9</td>
<td>1066</td>
</tr>
<tr>
<td>200 or greater</td>
<td>1161</td>
</tr>
</tbody>
</table>

Appendix 2. Very small emission rate modeling waiver requirements

Modeling is waived if emissions of a pollutant for the entire facility (including haul roads) are below the amount:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>If all emissions come from stacks 20 feet or greater in height and there are no horizontal stacks or raincaps (lb/hr)</th>
<th>If not all emissions come from stacks 20 feet or greater in height, or there are horizontal stacks, raincaps, volume, or area sources (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>H₂S (Pecos-Permian Basin)</td>
<td>0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>H₂S (Not in Pecos-Permian Basin)</td>
<td>0.01</td>
<td>0.002</td>
</tr>
<tr>
<td>Lead</td>
<td>No waiver</td>
<td>No waiver</td>
</tr>
<tr>
<td>NO₂</td>
<td>2</td>
<td>0.025</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.3</td>
<td>0.015</td>
</tr>
<tr>
<td>PM10</td>
<td>1.0</td>
<td>0.05</td>
</tr>
<tr>
<td>TSP</td>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>SO₂</td>
<td>2</td>
<td>0.025</td>
</tr>
<tr>
<td>Reduced sulfur (Pecos-Permian Basin)</td>
<td>0.033</td>
<td>No waiver</td>
</tr>
<tr>
<td>Reduced sulfur (Not in Pecos-Permian Basin)</td>
<td></td>
<td>No waiver</td>
</tr>
</tbody>
</table>
Section 17

Compliance Test History
(submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

To date, the SCT Hobbs facility has not received a request from the Department to conduct compliance testing on either Unit 1 or Unit 2 dust controls. (Specific Condition 6.a., NSR Permit No. 2715-R6).

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>Test Description</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 20

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.
Section 23: Certification

Company Name: Schlumberger

I, Douglas Reed, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 10th day of January, 2017, upon my oath or affirmation, before a notary of the State of Texas.

Signature

Date

Printed Name

Title

Scribed and sworn before me on this 10th day of January, 2017.

My authorization as a notary of the State of Texas expires on the 61st day of July, 2020.

Notary's Signature

Date

Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7 AE NMAC.

Notary Public, State of Texas
Comm. Expires 07-01-2020
Notary ID 130724876

Form-Section 23 last revised: 10/15/16 Section 23, Certification, Page 1 Printed: 1/10/2017