Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

Prepared by the State of New Mexico's Long-Term Impact Review Team

October 20, 2015 | OFFICIAL DRAFT

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

MESSAGE FROM NEW MEXICO ENVIRONMENT SECRETARY RYAN FLYNN

Thank you for your concerns and for your attention to the long-term effects of the Gold King Mine Spill on the Northern New Mexico region. When Governor Susana Martinez named the multi-agency Long-Term Impact Review Team, including Environment, Health, Game & Fish, Agriculture, Homeland Security, and the Office of the State Engineer, she did so with key priorities in mind.

"As the river begins to clear up, there are still many questions left unanswered by the Environmental Protection Agency. New Mexicans deserve to know the long-term effects this environmental catastrophe will

have on our communities, our agriculture and our wildlife," Governor Martinez said. "That is why I have called on state agencies to come together to work with local and federal officials to investigate and shed light on the potential impacts this waste spill could have on our families in the coming days, months and years."

- www.env.nm.gov/OOTS/documents/150814PR-GSMGoldKingMineSpill-9a.pdf

We look forward to working together in this important endeavor to protect New Mexicans and our unique environment. Our areas of focus will include water, sediment, agriculture/livestock, health, and wildlife.

The Long-Term Impact Review Team is pleased to offer this draft of the Long-Term Monitoring Plan for public review and comment. Written comments on the Monitoring Plan will be accepted until close of business on November 20, 2015, and should be sent, preferably by email to <u>NMENV-outreach@state.nm.us</u>, or by regular mail to the NMED Office of the Secretary, PO Box 5469, Santa Fe, NM 87502-5469. Please do share this Monitoring Plan with your neighbors, friends, and families.

The Long-Term Monitoring Plan will be dynamic and subject to data-driven modifications as observations and test results become available. Please feel free to share any further questions or comments as the Monitoring Plan is implemented in the forthcoming months and years.

Yours truly,

Ryan Flynn

Secretary Ryan Flynn New Mexico Environment Department

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

EXECUTIVE SUMMARY & BACKGROUND

On August 5, 2015, a U.S. Environmental Protection Agency work crew digging into the Gold King Mine (GKM) triggered a discharge of impounded mine water into Cement Creek near Silverton, Colorado. More than 3 million gallons of acidic mine water containing sediment, heavy metals, and other chemicals discharged into Cement Creek flowing into the Animas River and then into New Mexico where the river joins the San Juan River before flowing into the Navajo Nation and Utah. Governor Susana Martinez declared an emergency, and created the multi-agency Long-Term Impact Review Team (LTIRT) which includes top scientists collaborating with New Mexico's institutions of higher education.

The Long-Term Monitoring Plan (LTMP) is a dynamic plan and subject to data-driven modifications as observations and test results become available. The LTMP will provide the matrix for effective collaboration as technical teams work to:

- 1. *Identify the impacts of the August 5, 2015 mine wastewater spill* on Northern New Mexico's downstream water quality and environment. To the extent possible, the plan seeks to differentiate the Gold King Mine Spill's wastewater impacts from previous spills, historical acid mine drainage; and from naturally occurring acid rock drainage over geologic time.
- 2. Generate the data needed to perform a science-based assessment of potential risks to public health, public and private drinking water sources, water-based recreation, livestock, irrigated agriculture, fish, macroinvertebrates, and other wildlife.

With multiple areas under scientific review, results will be focused into the following areas: water, sediment, agriculture/livestock, health, and wildlife. The LTMP was prepared by the six executive agencies (Environment, Agriculture, Fish & Game, Health, Homeland Security, and Office of the State Engineer) on the Long-Term Impact Review Team in collaboration with New Mexico State University, the New Mexico Water Resources Research Institute, New Mexico Tech, the New Mexico Bureau of Geology and Mineral Resources, the University of New Mexico, San Juan County, the City of Farmington, and the San Juan Soil and Water Conservation District.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

INTRODUCTION

The Gold King Mine (GKM) is located in the upper Animas watershed in the San Juan Mountains of southwestern Colorado, and was operated from approximately 1887 until 1922. The GKM is one of some 400 abandoned or inactive mines in the San Juan Mountains. Acid rock drainage (ARD) forms when geologic minerals undergo oxidation and release sulfuric acid and dissolved metals into water. For the purpose of this Long-Term Monitoring Plan, ARD is meant to include drainage from both undisturbed naturally occurring minerals and ore bodies as well as drainage from mine workings. ARD from the ore bodies and from some of the mine workings has impacted water quality in the Animas River and in many of its tributaries.

The GKM, however, was not a source of ARD when mining operations ceased in 1922. Seepage of ARD from the GKM began after bulkheads were installed in other mine workings in the area, in the late 1990s to early 2000s, in an effort to control ARD. The bulkheads caused groundwater to become impounded and rise up into previously unsaturated natural geologic fractures and mine workings. Flooded mine workings, such as at the GKM, became sources of ARD seepage that did not exist prior to installation of the bulkheads. The U.S. Environmental Protection Agency (EPA) and the State of Colorado took actions to investigate and alleviate these newly created seeps of ARD.

On August 5, 2015, a U.S. Environmental Protection Agency (EPA) work crew digging into the Gold King Mine (GKM) Level 7 adit triggered a blowout and continuous discharge of impounded mine water. EPA reported that more than 3 million gallons of of acidic mine water containing sediment, heavy metals, and other chemicals discharged into Cement Creek flowing into the Animas River and then into New Mexico where the river joins the San Juan River before flowing into the Navajo Nation and Utah.

The New Mexico Environment Department (NMED), the New Mexico Office of the State Engineer (OSE), the New Mexico Department of Health (NMDOH), the New Mexico Department of Agriculture (NMDA), the New Mexico Department of Game and Fish (NMDGF), the New Mexico Department of Emergency Management and Homeland Security, and San Juan County coordinated emergency response to ensure that public health and safety were protected. Governor Susana Martinez declared an emergency, authorized the use of up to \$750,000 in emergency funds, and appointed a Long-Term Impact Review Team. This Monitoring Plan was prepared by the executive agencies on the Long-Term Impact Review Team in collaboration with New Mexico State University, the New Mexico Water Resources Research Institute, New Mexico Tech, the New Mexico Bureau of Geology and Mineral Resources, the University of New Mexico, San Juan County, the City of Farmington, and the San Juan Soil and Water Conservation District.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

CONCEPTUAL MODEL

The geology, ore deposits and ARD in the watershed surrounding Silverton, Colorado area are discussed in great detail by the papers contained in Church et al. (2007). The discussion provided in this paragraph draws heavily from the work of those authors, particularly Stanton et al. (2007), Vincent et al. (2007), and von Gerard et al. (2007). The mountains surrounding the Silverton, Colorado area include two volcanic calderas that were intruded by hydrothermal fluids that created sulfur-rich, base-metal ore bodies enriched in copper, lead, silver, molybdenum, and zinc. Pyrite and other sulfide minerals in this region have undergone various degrees of bio-geochemical oxidation by natural geologic processes that result in the release of sulfuric acid and metals (ARD) into groundwater and surface water. Over the past nine thousand years, iron, aluminum, manganese, and other metals concentrated in ARD have precipitated and cemented near-surface sediments forming ferricrete. Cement Creek (Figure 1) was named after the widespread naturally occurring deposits of ferricrete in this watershed. These geologic deposits of ferricrete demonstrate that ARD has been occurring in this mineralized area long before mining began in the late 19th century.

Figure 1. Ferricrete deposit in Cement Creek, CO. (From U.S. Geological Survey photo gallery)

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

Excavation of mine tunnels drained groundwater from the mountain and allowed air to enter the ore zone, providing greater opportunity for the oxidation of sulfide minerals and production acidic mine water. There is no doubt that mining activity increased the amount of ARD entering the Animas watershed.

The bio-geochemistry and mineralogy of the GKM is a dynamic system that is sensitive to physicochemical changes that took place during and after mining. Reactive solid phases precipitate from the oxidation and dissolution of sulfide minerals, including pyrite and chalcopyrite at the GKM. These phases commonly include ferric (oxy)hydroxide, gypsum, jarosite, and schwertzmannite, which react with mine water producing an acidic metal-sulfate-rich solution. Acid rock drainage has high concentrations of dissolved and total calcium, magnesium, sodium, sulfate, iron, aluminum, manganese, and other metals that influence surface-water quality in the region.

In the late 1990s and early 2000s, after mining operations had ceased, bulkheads were installed in the American Tunnel (Figure 2) and in other excavations in lower levels of the mine workings to control ARD seepage. After the bulkheads were installed, the water table in the mountain rose and flooded mine workings, such as GKM level 7, located at higher elevations. Flooding of the mine workings created ARD seeps that did not exist prior to installation of the bulkheads. An animation prepared and narrated by Kirsten Brown of the Colorado Division of Reclamation, Mining and Safety, that is posted in a <u>Durango Herald news article</u> (Olivarius-Mcallister, 2013) explains how the American Tunnel had drained groundwater from mine workings in the mountain, and how the installation of bulkheads in the American Tunnel and other excavations in the area caused the water table in the mountain to rise by approximately 1,000 feet.

Figure 2. Geologic Cross Section Through the Gold King Mine and American Tunnel. (From Burbank and Leudke, 1969, Plate 6)

Acidic mine water discharging from the GKM flows down Cement Creek before mixing with the Animas River, resulting in additional neutralization and mineral precipitation. On the whole, this mixing process results in improvement of water quality compared to

LONG-TERM MONITORING PLAN Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

ARD initially released from the Gold King Mine. Trace elements including lead, arsenic, cadmium, and molybdenum have the affinity to adsorb onto ferric (oxy)hydroxide to varying degrees, with arsenic and lead adsorbing the strongest. Ferric (oxy)hydroxide and other reactive minerals coat suspended solids released from the GKM. Aluminum has a tendency to precipitate as hydroxysulfate minerals including alunite and AlOHSO₄ above pH3, which are potentially present as suspended solids in mine water released from the GKM and surface water flowing within Cement Creek and the Animas River. Manganese dioxide is another oxidation product of sulfide minerals that is also commonly present in surface water released from the GKM most likely contains these reactive minerals in the suspended fraction that typically can be transported tens to hundreds of kilometers down river during storm events.

Metals and other chemicals concentrated in Animas River water are transported in both the dissolved and suspended phases with the majority of the contaminant mass occurring in the suspended fraction. Adsorption, precipitation, and co-precipitation are the dominant processes controlling the chemistry and mineralogy of the suspended fraction. The ability of the Animas River to transport large volumes of suspended sediment is related to the steepness of the gradient, which directly controls flow velocity that decreases south of Silverton. The riverbed area downstream of where the gradient decreases is characterized by low-energy environments where mine-waste sediment and associated heavy metals may have deposited and accumulated for decades. Accumulation of contaminated sediments most likely presents significant long-term potential sources of heavy metal migration into New Mexico, especially during storm events and snowmelt where re-suspension of sediment occurs.

A conceptual illustration of the Animas River hydrologic system is shown in Figure 3. The Animas River valley alluvial aquifer in Colorado receives base flow from groundwater (Von Gerard et al., 2007). Flow of circumneutral pH groundwater into the river provides a source of dilution of long-term ARD, and of historical mining waste spills that have occurred in the past near Silverton. While the potentiometric surface of the alluvial aquifer in the Aztec-Cedar Hill area has not yet been surveyed, local potentiometric surface maps constructed at several petroleum storage tank sites in Farmington show that the Animas River is gaining in that area. As such, the Animas River is believed to be predominantly gaining in the Aztec-Cedar Hill area. Some of the water diverted from the river into irrigation ditches subsequently recharges the alluvial aquifer in irrigated croplands and along the length of the ditches.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

Figure 3. Conceptual Illustration of the Animas River Hydrologic System. Many of the potential pathways for contaminant migration discussed in this Long-Term Monitoring Plan are identified on this image. Image courtesy of NM Bureau of Geology and Mineral Resources, developed with feedback from the Long-Term Impact Review Team.

Alluvial groundwater typically contains a substantially higher concentration of total dissolved solids (TDS) compared to Animas River water. Potential sources of elevated groundwater TDS may include cation exchange, dissolution of soluble sulfate minerals present in the alluvium, evaporation of groundwater in waterlogged valley areas (as evidenced by "white alkali" accumulation, Figure 4), upwelling of mineralized groundwater from bedrock units underlying the alluvium, and discharges from onsite

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

wastewater systems especially those that receive waste from salt-based water softeners.

Figure 4. "White alkali" in Flora Vista, NM (August 2015).

Elevated concentrations of dissolved manganese and iron occur in some alluvial aquifer wells, and nitrate concentrations are typically low (less than 1 mg/L), indicating reducing conditions in those areas. Possible causes of these reducing conditions include oxidation of naturally occurring organic matter and/or sulfide minerals deposited in the alluvium, oxidation of thermogenic and biogenic natural gas that occurs in some areas of the alluvial aquifer (Chafin, 1994), and oxidation of reactive organic matter discharged by onsite wastewater systems.

A review of historical monitoring data for public water systems that divert water from the Animas River provides no evidence that Maximum Contaminant Levels (MCLs) for metals have ever been exceeded in the drinking water delivered to consumers (N.M. Department of Public Health, 1967; Garcia and Olaechea, 1974; Garcia and Pierce, 1980). All of these public water supply systems utilize a sedimentation basin or reservoir, as well as a treatment system to further decrease suspended solids concentrations. Sedimentation and treatment provide significant protection for the subject drinking water against any suspended-phase heavy metals that may migrate from the Silverton mining area.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

Potential Human Exposure Pathways for Heavy Metals in the Animas River

- Ingestion of surface water (river water and ditch water)
- Seepage of surface water into the alluvial aquifer and ingestion of contaminated well water
- Flooding and inundation of improperly sealed domestic water wells, entry of heavy metals in flood water into wells, and ingestion of contaminated well water
- Skin contact with surface water and sediment
- Desiccation of river, ditch or cropland sediment, and subsequent inhalation of windborne sediment
- Uptake of heavy metals into fish, livestock and/or crops and ingestion of contaminated food

Data Gaps

- Historical and ongoing contaminant loadings to the Animas watershed
- Background-baseline contaminant concentrations in sediment and water caused by natural geologic sources and historical mining and milling
- Distribution and mass balance of contaminants in sediment and water
- Complete characterization of ground and surface water quality (metal speciation, stable isotopes, microorganisms)
- Aquifer-river-irrigation ditch hydraulics
- Uptake of contaminants by plants, livestock, macro-invertebrates, fish, and wildlife
- Toxicological and ecological risk assessment
- Impact of storm events on sediment, and ground and surface water quality
- Patterns of consumption by residents for human exposure pathways (discussed above)

Long-Term Monitoring Plan Outline

The Long-Term Monitoring Plan (LTMP) is a dynamic plan and subject to data-driven modifications as observations and test results become available. The LTMP will provide the matrix for effective collaboration as technical teams work to:

- 1. *Identify the impacts of the August 5, 2015 mine wastewater spill* on Northern New Mexico's downstream water quality and environment. To the extent possible, the plan seeks to differentiate the Gold King Mine Spill's wastewater impacts from previous spills, historical acid mine drainage; and from naturally occurring acid rock drainage over geologic time.
- 2. Generate the data needed to perform a science-based assessment of potential risks to public health, public and private drinking water sources, water-based recreation, livestock, irrigated agriculture, fish, macroinvertebrates, and other wildlife.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

To achieve these goals, specific monitoring elements are summarized below. The monitoring elements include work that the Long-Term Impact Review Team has determined need to be performed. Work plans are being developed by the Long-Term Impact Review Team for each of the technical monitoring elements. Additional funding and resources are needed, however, to fully perform all of the monitoring proposed.

For the purpose of this monitoring plan, and based upon information presented in the previous sections, the following metals are of concern with regard to acid rock and mine drainage and to the GKM spill: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, and zinc.

MONITORING ELEMENTS

1. Public Drinking Water Systems

Goals: Determine if the GKM spill will have any impact on the water sources used by public water supply systems; ensure that public water systems deliver drinking water that complies with all of the Maximum Contaminant Levels; and monitor for accumulation of heavy metals in drinking water treatment infrastructure.

Actions:

- Work with public water systems to develop a regional Source Water Protection Plan that will address potential contamination issues from the GKM spill.
- Monitor sources of public water supply in accordance with schedules and analyses required by the Safe Drinking Water Act.
- Establish real time monitoring of the Animas River for indicator parameters, such as flow rate and turbidity, and provide alerts to public water systems of high-flow or flood events so that they may take appropriate actions.
- Increase sampling frequency, if appropriate, in response to detection of increased heavy metal concentrations in source waters.
- Monitor sedimentation basin sludge for evidence of heavy metal buildup.
- Explore interest among public water systems in Colorado, and with the State of Colorado, in collaborating on the regional Source Water Protection Plan (described above).

2. Surface Water Quality

Goals: Determine if surface-water quality has changed as a result of the GKM spill, and evaluate any changes with regulatory standards and criteria.

Actions:

• Surface water quality sampling:

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

- Field parameters, total dissolved and suspended solids, anions/cations, dissolved and total metals; also collect suspended solids on filter paper and test for total metals
- Seasonal base flow
- Storm events and snowmelt
- With staff already in the field, this would be a good time to collect other parameters of concern that are known to be out of compliance with state water quality standards – E.coli, nitrogen, phosphorus. Current data suggests that these are also associated with storm events.

3. <u>Sediment (Stream, Irrigation Ditches and Irrigated Croplands)</u>

Goals:

- Determine if elevated heavy metal concentrations presently occur in stream and irrigation ditch sediment, and in soil that has been irrigated with water diverted from the Animas River; and
- Monitor the migration of contaminated surface water sediment from Colorado into New Mexico.

Actions:

- Initial and periodic future sampling, especially after runoff/storm events, of surface water sediment and irrigated soils for heavy metals and evidence of increasing concentrations migrating into NM from CO.
- Facilitate coordination between ditch associations and public water systems to ensure that future ditch flushing does not adversely impact drinking water intakes.

4. Solids Characterization

Goals: Determine specific form of contaminants in GKM spill solids and assess likely release and re-release pathways. Provide characterization support for other tasks in the monitoring plan.

Actions:

- Review solid characterization data for GKM site and surrounding mines and mine waters to establish likely initial forms of solid contaminants.
- Directly characterize solids and associated metals from water and sediment along the flow path.
- Model the likely transformation and release of mixed metals in GKM spill solids in different depositional environments.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

5. Aquifer-River Interactions

Goals: Define hydraulic and geochemical interactions between river water, hyporheic zone pore fluid, and shallow alluvial groundwater, including potential heavy metal (and nutrient?) sequestering in hyporheic zone sediment.

Actions:

• Sample surface water, near-river wells, stream sediment, rock coatings, and hyporheic zone sediment and pore fluid at twenty sites from Cement Creek, CO, through N.M., and into Bluff, UT for general chemistry and trace metals.

6. <u>Regional Ground and Surface Water Hydraulics</u>

Goal: Map the regional water table on a seasonal basis and define hydraulic relationships between groundwater and surface water.

Actions:

- Measure water levels in surface water (both rivers and irrigation ditches) and in up to 80 wells seasonally for two years.
- Prepare potentiometric (water level) maps for each measurement event with an interpretive report on groundwater flow direction/velocity, and on interactions between ground and surface water.

7. <u>Groundwater Quality</u>

Goal: Determine if groundwater quality has been impacted by the GKM spill.

Actions:

- Map and evaluate water quality data collected by the EPA in August 2015 from private domestic wells that were self-identified by residents and sampled for laboratory analysis.
- Identify additional private water supply wells that may be influenced by recharge from irrigation ditches and sample for general chemistry and trace metals.
- If possible, identify indicator parameters that can be used to monitor groundwater for possible impacts from the spill. Select wells for additional sampling of indicator parameters based upon hydraulic relationships to rivers and irrigation ditches.
- Identify private domestic wells that are at risk of being inundated by floodwater that may contain mine waste; sample for heavy metals and bacteria.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

8. Ongoing and Potential Future Discharges in the Mining Area

Goals: Identify and characterize ongoing and potential future discharges of mine waste into the Animas watershed.

Actions:

- Identify locations, volumes and chemical quality of water impounded in mine workings in the upper Animas watershed.
- Identify and chemically characterize ongoing mine water seeps and gauge flow rates.
- Identify locations of waste rock and mill tailings piles that have the potential to discharge into surface water.

9. Airborne Dust

Goal: Determine if the GKM spill has created potentially unhealthy contaminant concentrations in airborne dust.

Actions:

• After the first year of monitoring data for sediment is available, the Long-Term Impact Review Team will review the data and make a decision on what monitoring, if any, is necessary for airborne dust.

10. Plants and Animals

Goals: Determine if GKM spill contaminants have adversely affected benthic organisms or are being accumulated by plants and animals. This data will be used to estimate human exposure to contaminants.

Actions:

Monitor and, when effects are observed or expected, sample:

- Benthic microbes and macro-invertebrates
- Riparian invertebrates
- Fish
- Amphibians and reptiles
- Terrestrial wildlife
- Birds
- Livestock
- Crops

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

11. Biomonitoring

Goal: The Department of Health continues its biomonitoring work through the Four Corners States Biomonitoring Consortium.

Actions: Farmington-area residents will be recruited to assess levels of heavy metals in their private well water and urine, as described in the existing Internal Review Board-approved methodology.

MORE ABOUT LONG-TERM MONITORING

1. <u>Community Outreach and Involvement</u>

Goal: Keep the public informed of the results from the monitoring and research efforts outlined in this Plan. Provide opportunities for public comment on the progress and direction of monitoring activities.

Actions: Distribute written informational material to the public, host periodic public meetings, create and support a Long-Term Citizen Advisory Committee to work with the technical Long-Term Impact Review Team to ensure that citizen and stakeholder concerns continue to be carried forward.

2. Informational Conference

Goal: Disseminate information and results from the monitoring and research efforts outlined in this Plan. Bring together academics, agencies, representatives, and community members and provide a forum for addressing concerns and questions over the GKM spill and the continuing monitoring efforts.

Actions: Coordinate an informational conference sometime during the Spring of 2016, in Farmington, New Mexico.

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

REFERENCES CITED

Burbank, W.S. and R.G. Leudke, 1969, Geology and Ore Deposits of the Eureka and Adjoining Districts, San Juan Mountains, Colorado, U.S. Geological Survey Professional Paper 535. <u>http://pubs.usgs.gov/pp/0535/report.pdf</u>, Plate 6, <u>http://pubs.usgs.gov/pp/0535/plate-6.pdf</u>

Chafin, D.T., 1994, Sources and Migration Pathways of Natural Gas in Near-Surface Ground Water Beneath the Animas River Valley, Colorado and New Mexico, U.S. Geological Survey Water Resources Investigations Report 94-4006. <u>http://pubs.er.usgs.gov/publication/wri944006</u>

Church, S.E., von Guerard, Paul, and Finger, S.E., eds., 2007, Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado: U.S. Geological Survey Professional Paper 1651, 1,096 p. plus CD-ROM. [In two volumes.] <u>http://pubs.usgs.gov/pp/1651/</u>

Garcia, F.N. and P.G. Olaechea, 1974, New Mexico Public Water Supplies Chemical Data, E.M. Environmental Improvement Agency open file report.

Garica, F.N. and S.T. Pierce, 1980, Chemical Quality of New Mexico Community Water Supplies, N.M. Environmental Improvement Division open file report.

New Mexico Department of Public Health (NMDPH), 1967, Chemical Analyses of the Municipal Drinking Water Supplies, open file report.

Olivarius-Mcallister, C., 2013, Superfund: A dirty word to some in Silverton, Durango Herald, August 3, 2013.

http://www.durangoherald.com/article/20130803/NEWS01/130809831/Superfund:-Adirty-word-to-some-in-Silverton

Stanton, M.R., D.B. Yager, D.L. Fey and W.G. Wright, 2007, Formation and geochemical significance of iron bog deposits,

http://pubs.usgs.gov/pp/1651/downloads/Vol2 combinedChapters/vol2 chapE14.pdf In Church, S.E., von Guerard, Paul, and Finger, S.E., eds., Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado: U.S. Geological Survey Professional Paper 1651, 1,096 p. plus CD-ROM. [In two volumes.] http://pubs.usgs.gov/pp/1651/

Vincent, K.R., S.E. Church and L. Wirt, 2007, Geomorphology of Cement Creek and its relation to ferricrete deposits,

http://pubs.usgs.gov/pp/1651/downloads/Vol2_combinedChapters/vol2_chapE16.pdf In Church, S.E., von Guerard, Paul, and Finger, S.E., eds., Integrated investigations of

Evaluating the Effects of the Gold King Mine Wastewater Spill in Northern New Mexico

environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado: U.S. Geological Survey Professional Paper 1651, 1,096 p. plus CD-ROM. [In two volumes.] <u>http://pubs.usgs.gov/pp/1651/</u>

Von Gerard, P., S.E. Church, D.B. Yager and J.M. Besser, 2007, The Animas River Watershed, San Juan County, Colorado, <u>http://pubs.usgs.gov/pp/1651/downloads/Vol1_combinedChapters/vol1_chapB.pdf</u> In Church, S.E., von Guerard, Paul, and Finger, S.E., eds., Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado: U.S. Geological Survey Professional Paper 1651, 1,096 p. plus CD-ROM. [In two volumes.] <u>http://pubs.usgs.gov/pp/1651/</u>

-end-