APPENDIX I

SAMPLING AND ANALYSIS PLAN

Sampling and Analysis Plan

This Sampling and Analysis Plan describes sampling activities intended for monitoring the groundwater treatment system (GWTS) located at Kirtland Air Force Base (AFB), New Mexico. These activities are to occur whether the GWTS is discharging to irrigation, injection well(s), and/or other approved discharge locations.

I.1 Discharge Requirements

Treated groundwater discharged from the GWTS must comply with Discharge Permit (DP)-1839. As stated in the introduction to DP-1839: "The New Mexico Environment Department's (NMED's) Hazardous Waste Bureau (HWB) and Groundwater Quality Bureau (GWQB) both provide regulatory oversight at the BFF project site. The HWB regulated the evaluation and remediation of the KAFB BFF dissolved-phase plume and the associated GWTS. The GWQB regulates the procedures that ensure treated groundwater discharged from the GWTS to underground injection control (UIC) well(s) meet DP requirements."

Effluent discharged from the GWTS must not exceed the following criteria as currently stipulated in Table 2 of the Discharge Permit DP-1839 (NMED, 2017):

- Ethylene dibromide (EDB) 0.05 micrograms per liter (μ g/L)
- Benzene 5 μ g/L
- Ethylbenzene $700 \,\mu g/L$
- Toluene $-750 \,\mu g/L$
- Total xylenes $620 \,\mu g/L$
- Iron (dissolved) 1 milligram per liter (mg/L)
- Manganese (dissolved) -0.2 mg/L.

Additionally, the approved National Pollutant Discharge Elimination System (NPDES) permit authorizes discharge into the Tijeras Arroyo segment number 20.6.4.098, from outfall 001. The NPDES outfall is considered a non-continuous discharge permit and will ONLY BE USED in instances where other discharge locations (Golf Course Main Pond, KAFB-7, and KAFB-106IN2) are not available for use. Effluent discharged to the NPDES outfall must not exceed the following criteria whenever discharge occurs, as stipulated in Part 1, Section A of the NPDES Permit Number NM0031216 (U.S. Environmental Protection Agency [EPA], 2019). Note the criteria are provided for both the 30-day average concentration (30-DA) and daily maximum concentration (DM); *** indicates no 30-day average concentration.

- pH 6.6 (minimum) and 9.0 (maximum)
- Total residual chlorine -- ***(30-DA), 11 µg/L (DM)
- Total suspended solids (TSS) 21mg/L (30-DA), 33mg/L (DM)
- Biochemical oxygen demand 26 mg/L (30-DA), 48 mg/L (DM)
- Oil and grease -8 mg/L (30-DA), 15 mg/L (DM)

Additionally, the concentrations of EDB, the chemical oxygen demand (COD), nitrate-nitrite nitrogen, ammonia (as nitrogen), heptachlor, per- and polyfluoroalkyl substances (PFAS) and whole effluent toxicity for *Daphnia pulex* sp. (48-hour acute) must be reported for both the 30-day average concentration and daily maximum concentration during discharge. As stated above, the NPDES outfall is for emergency use only and not part of the standard operation of the GWTS. Detailed sampling requirements are not discussed in the following sections. Sampling requirements for NPDES outfall are discussed in Part 1 Section A (1) of the NPDES permit.

I.2 Sample Locations and Sampling Interval

I.2.1 Extraction Wells

All four of the extraction wells are capable of being sampled individually. The sample will be collected from the sample valve in the wellhead vault and/or collected at the sample valves located in the well control house just downstream of the flowmeter for each well. Samples will be analyzed for EDB; benzene, toluene, ethylbenzene, and total xylenes (BTEX); dissolved iron; and manganese in accordance with the criteria outlined in DP-1839 Table 2.

All extraction wells are sampled annually in the second quarter of the calendar year at a minimum. Sampling of individual extraction wells is also required when the combined influent concentrations increase more than 35 percent, the same range as a field duplicate, from the previous month's results for any of the monitored contaminants. This applies unless the samples are collected during an operational change condition that impacts influent concentrations, such as during partial operation of the extraction well network, or if analyte concentrations are below the effluent discharge criteria concentrations provided in DP-1839 Table 2 (NMED, 2017). In the event that the combined influent samples are collected during an operational change condition, sampling of individual extraction wells is required when the combined influent concentrations increase more than 35 percent from the maximum results for any of the monitored contaminants from either the combined influent or individual wells over the previous four quarters and exceed the effluent discharge criteria concentrations provided in DP-1839 (NMED, 2017).

I.2.2 Treatment System

Sampling of the treatment system will be performed in accordance with DP-1839, Condition 20. Samples will be collected at a minimum of monthly at three locations from each treatment train in the GWTS to monitor the performance of the carbon treatment system (Table I-1). These monthly samples will be collected at the outlet of the influent pumps, prior to the pretreatment bag filters, at the outlet of the first or lead carbon vessel, and at the outlet of the effluent pumps prior to the post-treatment bag filters.

After a monthly sampling event has taken place, and the samples have been analyzed, if a sample taken between the granular activated carbon (GAC) vessels (outlet of the first carbon vessel) is shown to be detect of EDB, a special procedure will be followed that includes an additional sampling port during the next month's sampling event. This port shall be a vertical port on the lag GAC vessel of the train with the detected EDB. A flowchart describing this procedure is provided in Attachment L-1.

In addition to the monthly sampling, samples will be collected annually and once every 5 years for the analytes listed on Table I-1. The annual and 5-year samples are collected from both influent and effluent skids (4 sample locations) of the GWTS but not between the GAC vessels. Any analytes detected in the samples collected as part of the 5-year sampling event will be added to the annual sampling list. The most recent 5-year sampling event occurred in the third quarter of 2017. The next 5-year sampling event will need to take place in the third quarter of 2022.

In the event that equipment modifications are made to the GWTS, such as the beginning of operation of a new extraction well, treatment train, or changing out GAC, samples will be collected from the three locations from each treatment train daily for the first 7 days, then weekly until the end of the first month, and monthly thereafter. The same effluent sampling schedule will be implemented in the event that conditions at the GWTS are believed to be potentially impacting GWTS effluent water quality.

Prior to discharging treated water from a new extraction well to any permitted injection well, NMED will be supplied with adequate documentation showing that the treated effluent produced from this new extraction well meets the effluent discharge criteria provided in Section I.1.

I.2.3 Non-Extraction Well Influent Monitoring

Non-extraction well water (e.g., investigation-derived wastewater from drilling and sampling at Kirtland AFB Bulk Fuels Facility, GAC backwash water, etc.) from the groundwater monitoring network can be introduced as influent to the GWTS for treatment and discharged to an approved location. In order to meet the acceptance criteria for treatment, the water must be characterized for EDB, BTEX, dissolved iron, and manganese. Water that has not been characterized or does not meet the requirements provided in Table 5-10f the Operations and Maintenance Plan is not acceptable for treatment and disposal through the GWTS (as described in Section 6 of the Operations and Maintenance Plan).

I.2.4 Underground Injection Control Groundwater Monitoring Wells

In accordance with DP-1839 Condition 23, monitoring wells within the vicinity of UIC wells KAFB-7 (KAFB-0505, KAFB-0507R, and KAFB-0508) and KAFB-106IN2 (KAFB-2628 and KAFB-2629) are sampled annually. Sampling will be performed during the fourth quarter of each year and will be reported in the Annual report. This monitoring will be performed to detect any changes in aquifer chemistry that may be a result of the injection effluent water. Samples will be analyzed for the analytes listed in Table I-1. In the event that the chemical quality of the groundwater being injected changes over time, additional geochemical modeling will be performed.

I.3 Sampling Procedure

The following sections are provided to meet the requirements of Condition 18 of DP-1839. Samples will be collected from their respective sampling ports by opening the port and discharging process water into the sampling containers. The port will be opened in such a way that it does not readily cause entraining of air and subsequent off-gassing of the samples and will not cause loss of sample preservatives from sample containers. Waste containers will be placed under sampling ports prior to sampling to ensure capture of all process water. Excess water collected in the waste containers will be emptied into the GWTS building sump for treatment.

Field filtering for dissolved metals will be performed by affixing a clean piece of poly tubing onto the sampling port. The inline 0.45-micron field filter will be attached to the open end of the poly tubing. The port will then be opened so as to condition the poly tubing and filter with process water for approximately 30 seconds. Samples will then be collected from the process water flowing through the filter. All process water not collected in the sample container will be collected into an appropriate waste container and then discharged to the GWTS building sump for treatment.

I.4 Field Measurements

Field parameters including temperature, turbidity, specific conductance, and pH will be collected in the field using water quality and turbidity meters. See Table I-2 for field meter calibration requirements and associated corrective actions. Free chlorine concentration will be measured with an inline chlorine analyzer for influent measurements and a handheld colorimeter or chlorine test strips for mid-GAC, effluent, or extraction well measurements. See Table I-6 for field measurement frequency.

I.5 Field Quality Control Samples

Field quality control (QC) samples will be collected in association with the GWTS sampling to ensure field sample collection precision and representativeness. Field duplicate samples will be collected per month, year, and 5-year sampling event associated with an effluent sample and shipped to the laboratory for the same analyses as the parent sample. In addition, trip blank samples for EDB, BTEX, and volatile organic compounds will accompany each shipment of GWTS samples to the laboratory to monitor for volatile organics contamination during sampling, sample shipping, and storage of samples at the laboratory. Matrix spike/matrix spike duplicates will also be collected in conjunction with each sampling event for laboratory QC. Field blank samples for volatile organic compounds will be collected as deemed necessary based on site conditions at the time of sample collection.

I.6 Sample Bottles, Preservation, and Shipping

Water samples collected from the GWTS will be collected and analyzed in accordance with EPA guidelines for analytical methods and parameters, sample containers, sample preservation, and sample preparation and analysis holding times presented on Table I-3.

Sample packaging and shipping requirements are designed to maintain sample integrity from the time a sample is collected until it is received at the analytical laboratory. All chain-of-custody forms, sample labels, custody seals, and other sample documents will be completed. Specific procedures for packaging and shipping of environmental samples are presented below:

- A sample label, completed with indelible ink, will be attached to the sample bottle.
- A cooler will be used as a shipping container.
- In preparation for shipping samples, the drain plug will be taped shut so that no fluids, such as melted ice, will drain out of the cooler during shipment. A large plastic bag may be used as a liner for the cooler. Ice will be placed at the bottom of the cooler.
- The containers will be placed in the lined cooler. Cardboard separators or bubble wrap may be placed between the containers at the discretion of the shipper.
- All samples for chemical analysis must be shipped cooled to ≤6 degrees Celsius with ice. All samples will require icing before shipment. A temperature blank will be included in each shipment of samples.
- The liner will be taped closed, if used, and sufficient packing material will be used to prevent sample containers from making contact or rolling around during shipment.
- A copy of the chain-of-custody form will be placed inside the cooler.
- The cooler will be closed and taped shut with clear packing tape.
- Custody seals will be placed on the cooler. Clear tape will be placed over the custody seals to help prevent them from being accidentally torn or ripped off.
- The cooler of samples will be shipped via an overnight carrier. A copy of the shipping bill will be retained for the field records and sent electronically to the project chemist.

I.7 Laboratory Analyses and Methods

Information regarding analytical methods, reporting limits, and project screening levels are listed in Table I-4.

I.8 Data Validation

All samples collected for permit compliance will undergo EPA Stage 3 data validation on 100 percent of data. The data validation will be performed by a third-party subcontractor using the criteria specified in the Quality Assurance Project Plan, data validation guidelines, and DoD Quality System Manual:

- Project-specific Quality Assurance Project Plan (Kirtland AFB, 2021)
- Department of Defense (DoD) and Department of Energy (DoE) *Consolidated Quality Systems Manual for Environmental Laboratories Version 5.3* (DoD and DoE, 2019)
- DoD General Data Validation Guidelines (DoD, 2019)
- EPA Contract Laboratory Program, National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2017a)
- EPA Contract Laboratory Program, National Functional Guidelines for Inorganic Superfund Data Review (EPA, 2017b).

The following QC elements will be included in the EPA Stage 3 data validation:

- Sample extraction and analysis holding times
- Laboratory method blanks
- Surrogate spike recoveries
- Laboratory control sample/laboratory control sample duplicate recoveries
- Matrix spike/matrix spike duplicate recoveries
- Relative percent difference
- Initial calibrations
- Continuing calibrations
- Trip blank results
- Field duplicate sample precision.

Data will be validated and flagged with the data qualifiers found in Table I-5 as applicable:

As a result of the data validation process, EPA qualifiers will be generated and applied to the affected sample results that exceeded the established QC criteria. EPA Stage 3 data review findings will be summarized and documented with each quarterly monitoring report in accordance with DP-1839 Condition 17.

I.9 Data Analysis and Reporting Triggers

Treated groundwater samples are collected monthly between the two GAC vessels to monitor for breakthrough as required in Condition 20 of DP-1839. When a detectable concentration of a regulated constituent is observed between the GAC vessels, an assessment of the GAC will be performed to determine if a GAC change-out is required. When any regulated constituent is detected leaving the lead GAC vessel at a concentration of 90 percent of the effluent limit, that GAC vessel undergoes GAC change-out and the lag GAC vessel is placed into the lead position. However, a GAC change-out may be performed at lower effluent concentrations if deemed appropriate for efficient system operation. After completion of the GAC exchange, additional sampling will be performed as specified in Section I.2.2. If dissolved iron and manganese concentrations reach 90 percent of the project screening levels (Section I.1) downstream of the sand filters, then the sand filter catalytic media will need to be replaced.

I.10 Reporting

I.10.1 Compliance

Compliance reporting will occur quarterly in the respective Quarterly Reports as specified in DP-1839 Condition 17. The Quarterly Report is submitted 90 days after the conclusion of the quarter in which the quarterly groundwater sampling event occurred as specified in DP-1839 Condition 19. These quarterly reports will be produced in accordance with DP-1839 Conditions 19, 20, 21, 22, 23, and 24 including but not limited to the following:

- Monthly, quarterly, and cumulative operational run-time
- Monthly, quarterly, and cumulative average, maximum, and minimum flow rates
- Monthly, quarterly, and cumulative volume of treated effluent discharged to each discharge location
- Monthly average, maximum, and minimum head values of injection water for each UIC well
- Quarterly and cumulative treated volumes of investigation-derived waste purge water
- Analytical sampling results (e.g., influent, between the GAC tanks, and treated effluent)
- Maintenance activities including but not limited to the following:
 - Mechanical integrity testing of the effluent conveyance line
 - GAC changes
 - System instrumentation repair or replacement (pumps, flow meters, pressure sensors, etc.)
 - Well rehabilitation
 - Major alarm conditions
 - Shutdown periods of greater than 48 hours

- And any additional operational changes.
- Groundwater monitoring well analytical results
- Groundwater elevation contour maps.

I.10.2 Exceedance

An exceedance in discharge criteria at either the GCMP or the UIC wells will trigger a system shut down and regulatory notification. As soon as Kirtland AFB has knowledge that effluent water quality exceeds the discharge criteria for one or more of the contaminants listed in DP-1839 Table 2, the NMED HWB and GWQB shall be notified. The contingency plan (Appendix C of DP-1839) as well as any actions that can be taken to correct the problem and achieve the required effluent concentrations will be performed. Following plant operational adjustments, the effluent groundwater will be re-tested. Per DP-1839 Condition 20, the monitoring frequency will be increased to daily for the first week, weekly for the first month, and monthly thereafter.

In the event that an exceedance in discharge criteria is experienced at the NPDES outfall, the system will be immediately shut down and oral notification shall be given to EPA and NMED within 24-hours as specified in Part III.B.7. of the NPDES permit. Following plant operational adjustments, the effluent groundwater will be re-tested. Per DP-1839 Condition 20, the monitoring frequency will be increased to daily for the first week, weekly for the first month, and monthly thereafter.

If the required actions are considered to be outside the scope of work for plant operations, then the system will be shut down pending submittal of a corrective action plan to NMED.

REFERENCES

- Department of Defense (DoD). 2019. *General Data Validation Guidelines*. Environmental Data Quality Workgroup. September.
- Department of Defense (DoD) and Department of Energy (DoE). 2019. *Consolidated Quality Systems Manual for Environmental Laboratories*. Version 5.3. Prepared by DoD Environmental Data Quality Workgroup, Department of Navy, Lead Service. May.
- (U.S.) Environmental Protection Agency (EPA). 2017a. *EPA National Functional Guidelines for Superfund Organic Methods Data Review EPA-540-R-2017-002*. Office of Superfund Remediation and Technology Innovation. January.
- EPA. 2017b. EPA National Functional Guidelines for Inorganic Superfund Data Review, EPA-540-R-2017-001. Office of Superfund Remediation and Technology Innovation. January.
- EPA. 2019. Authorization to Discharge Under the National Pollutant Discharge Elimination System, issued to U.S. Air Force located at Kirtland Air Force Base. September.
- Kirtland Air Force Base (AFB). 2021. Quality Assurance Project Plan Groundwater Monitoring and Interim Remedial Operations, Bulk Fuels Facility Solid Waste Management Units ST-106/SS-111, Kirtland Air Force Base, New Mexico. March

NMED. 2017. Discharge Permit Issuance, DP-1839, Kirtland Air Force Base. Ground Water Quality Bureau. April.

TABLES

 Table I-1

 Groundwater Treatment System Monitoring Requirements

Analysis	Analytes	Frequency ^(a)	Sample Location
EPA Method SW8011	EDB	Monthly	Influent, between tanks, and effluent
EPA Method SW8260C	Benzene, ethylbenzene, toluene, and total	Monthly	
	xylenes		
EPA Method SW6010C	Dissolved iron and dissolved manganese	Monthly	
EPA Method E300.0A	Chloride and sulfate	Annually ^b	Trains 1 and 2 – influent and effluent
	Chloride, sulfate, fluoride	5-year ^c	
EPA Method E353.2	Nitrogen (nitrate-nitrite)	Annually ^b	Trains 1 and 2 – influent and effluent
EPA Method SW8260C ^(b)		Annually ^b	Trains 1 and 2 – influent and effluent
			UIC Groundwater Monitoring Wells ^f
EDB – Method SW8011		Annually ^b	Trains 1 and 2 – influent and effluent
			UIC Groundwater Monitoring Wells ^f
EPA Method SW6010C		Annually ^b	UIC Groundwater Monitoring Wells ^f
SVOCs – Method SW8270D ^(b)		Annually ^b	Trains 1 and 2 – influent and effluent
Total phenol – E420.4		Annually ^b	Trains 1 and 2 – influent and effluent
Cyanide (free) – OIA-1677-09		Annually ^b	Trains 1 and 2 – influent and effluent
Total mercury – SW7470A		5-year ^c	Trains 1 and 2 – influent and effluent
Total and dissolved metals –		5-year ^c	Trains 1 and 2 – influent and effluent
SW6010C/SW6020A ^(c)			
Total and dissolved metals –		Geochemical modeling ^d	Trains 1 and 2 – influent and effluent
SW6010C/SW6020A ^(d)			UIC Groundwater Monitoring Wells ^f
Total and dissolved silica – SM4500-		Geochemical modeling ^d	Trains 1 and 2 – influent and effluent
SiO2 C-1997			UIC Groundwater Monitoring Wells ^f
Carbonate alkalinity – SM2320B		Geochemical modeling ^d	Trains 1 and 2 – influent and effluent
			UIC Groundwater Monitoring Wells ^f
Dissolved organic carbon – SM5310		Geochemical modeling ^d	Trains 1 and 2 – influent and effluent
C-2000			UIC Groundwater Monitoring Wells ^f
EDB – Method SW8011	EDB	3/Week ^e	Trains 1 and 2 – effluent
SW8081B	Heptachlor	3/Week ^e	Trains 1 and 2 – effluent
EPA 537 Modified	Per- and Polyfluorinated Alkyl Substances	3/Week ^e	Trains 1 and 2 – effluent
EPA 350.1	Ammonia Nitrogen	1/Week ^e	Trains 1 and 2 – effluent
SM5210B	Biochemical oxygen demand	3/Week ^e	Trains 1 and 2 – effluent
EPA 410.4	Chemical oxygen demand	1/Week ^e	Trains 1 and 2 – effluent
EPA 353.2	Nitrate-Nitrite Nitrogen	1/Week ^e	Trains 1 and 2 – effluent
E1664A	Oil and Grease (Hexane extractable)	3/Week ^e	Trains 1 and 2 – effluent
SM4500-CIG	Total residual chlorine	1/Week ^e	Trains 1 and 2 – effluent
SM2540D	Total Suspended Solids	3/Week ^e	Trains 1 and 2 – effluent
EPA 2021.0	Whole Effluent Toxicity - Daphnia Pulex (48-	Yearly ^e	Trains 1 and 2 – effluent
	hour acute NOEC freshwater)		

Table I-1 Groundwater Treatment System Monitoring Requirements

a. Sampling frequency will be increased (daily, weekly, etc.) during shakedown testing of new components.

b. List of analytes per the Kirtland Air Force Base Discharge Permit DP-1839, Table 3, Annual Monitoring Constituent List.

c. List of analytes per the Kirtland Air Force Base Discharge Permit DP-1839, Table 4, Five-year Monitoring Constituent List. The next 5-year sampling event must take place in Q3 2022.

d. List of analytes per the Kirtland Air Force Base Discharge Permit DP-1839, Table 5, Geochemical Modeling Analyte List.

e. Samples will be collected only when discharge to the NPDES occurs.

f. UIC groundwater monitoring wells for KAFB-7 (KAFB-0505, KAFB-0507, and KAFB-0508) and KAFB-106IN2 (KAFB-2628 and KAFB-2629) in accordance with DP-1839 Condition 23.

E = EPA Methods for Chemical Analysis of Water and Wastes, 1983 and Updates.

EDB = Ethylene dibromide.

EPA = U.S. Environmental Protection Agency.

OIA = EPA Office of International Affairs Method OIA-1677-09, 2010.

SM = American Public Health Organization Standard Methods for the Examination of Water and Wastewater, 22nd Edition.

SVOC = Semivolatile organic compound.

SW = EPA SW-846-Test Methods for Evaluating Solid Waste, 3rd Edition, 1986 and Updates.

VOC = Volatile organic compound.

Field Equipment	Calibration Verification Activity	Frequency	Acceptance Criteria	Corrective Action	Responsible Person	Standard Operating Procedure Reference
YSI (or equivalent) water quality meter with flow cell	Check calibration against two of the following three traceable standards with nominal pH of 4.0, 7.0, and 10.0 Check calibration of outside of range -10–60 °C (14–140 °F)	Calibrate probe once per week and then verify once per day before first use	± 0.2 pH units	Recalibrate	Field personnel	Manufacturer's Operation Manual
Cell	Check calibration against specific conductance standard Check calibration of outside of range -10–60 °C (14–140 °F)	Calibrate probe once per week and then verify once per day before first use	± 0.5 percent of standard value or 0.0001 millisiemens per centimeter, whichever is greater	Recalibrate	Field personnel	Manufacturer's Operation Manual
Turbidity Meter	Calibrate with primary standard of 10 nephelometric turbidity units	Calibrate every 3 months; verify once a week reading is within acceptable value	±10 percent	Recalibrate	Field personnel	Manufacturer's Operation Manual

Table I-2 **Field Instrument Quality Control**

°C = Degree Celsius °F = Degree Fahrenheit

	Preparation/			Preparation Holding	Analytical
Parameter	Analysis Method	Bottle Type	Preservative	Time	Holding Time
Volatile Organic Compounds and BTEX	SW5030B/8260C	3 x 40-ml glass VOA vials	HCl to pH <2; Cool ≤6°C	NA	14 days
Ethylene dibromide	SW8011	2 x 40-ml glass VOA vials	HCl to pH <2; Cool ≤6°C	NA	14 days
Semivolatile Organic Compounds	SW3510C/8270D	2 x 250-ml amber	Cool ≤6°C	7 days	40 days
Total and dissolved metals	SW3005A/6010C; SW3020A/6020A	1 x 250-ml HDPE	HNO3 to pH <2; Cool ≤6°C	NA	180 days
Total mercury	SW7470A	1 x 250-ml HDPE	HNO3 to pH <2; Cool ≤6°C	NA	28 days
Total and dissolved silica	SM4500-SiO2 C-1997	1 x 250-ml HDPE	Cool ≤6°C	NA	28 days
Anions (chloride, sulfate, fluoride	E300.0A	2 x 40-ml VOA vials	Cool ≤6°C	NA	28 days
Nitrate-nitrite nitrogen	E353.2	1 x 250-ml HDPE	H ₂ SO4 to pH<2; Cool to 6°C	NA	28 days
Total phenol	E420.4	1 x 250-ml glass	H2SO4 to pH<2; Cool to 6°C	NA	28 days
Cyanide (free)	OIA-1677-09	1 x 250-ml glass	NaOH to pH>12; Cool to 6°C	NA	14 days
Carbonate alkalinity	SM2320B	1 x 250-ml HDPE	Cool to 6°C	NA	14 days
Dissolved organic carbon	SM5310 C-2000	2 x 40-ml VOA vials	Cool to 6°C	NA	28 days
Ammonia	EPA 350.1	1 x 500-mL plastic or glass	H2SO4 to pH<2; Cool to <6°C	NA	28 days
Biochemical oxygen demand	SM5210B	1 x 500-mLplastic	Cool to <6°C	NA	2 days
Chemical oxygen demand	EPA 410.1	1 x 125-mL plastic	Cool to <6°C	NA	28 days
Heptachlor	SW8081B	1 x 1000-mL amber glass	Cool to <6°C	7 days	40 days
Oil and grease	E1664A	1 x 1000-mL glass	HCL or H2SO4 to pH<2	NA	28 days
Total residual chlorine	SM4500-CL-G	1 x 1000-mL plastic	Cool to <6°C	NA	2 days
Total suspended solids	SM2540D	1 x 1000-mL plastic	Cool to <6°C	NA	7 days
Whole Effluent Toxicity - Daphnia Pulex (48-hour acute NOEC freshwater)	EPA 2021.0	1 x 1-gallon HDPE	Cool to <6°C	NA	3 days

 Table I-3

 Analytical Parameter, Method, Sample Container, Preservation, and Holding Time Requirements

Table I-3 Analytical Parameter, Method, Sample Container, Preservation, and Holding Time Requirements

°C = Degree Celsius.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes. E = EPA Methods for Chemical Analysis of Water and Wastes, 1983 and Updates. H2SO4 = Sulfuric acid. HCI = Hydrochloric acid. HDPE = High density polyethylene. HNO3 = Nitric acid. ml = Milliliter. NA = Not applicable. NaOH = Sodium hydroxide. NOEC= No observed effect concentration. OIA = EPA Office of International Affairs Method OIA-1677-09, 2010. SM = American Public Health Organization Standard Methods for the Examination of Water and Wastewater, 22nd Edition. SW = U.S. Environmental Protection Agency SW846 – Test Methods for Evaluating Solid Waste, Third Edition and Updates. VOA = Volatile organics analysis.

 TABLE I-4

 Analytical Parameter, Analyte Reporting Limits, and Screening Criteria for Water

		DP-1839							
						Droinet	Achievab	le Laborato	ry Limits ⁴
Analyte	Analytical Method	CASRN	Units	NMWQCC ¹	EPA MCL ²	Project Screening Level ³	LOQ	LOD	DL
Volatile Organic Compounds									
1,1,2,2-Tetrachloroethane	SW8260C	79-34-5	µg/L	10	NS	10	1.0	1.0	0.5
1,1,2-Trichloroethane	SW8260C	79-00-5	µg/L	10	5.0	5.0	1.0	1.0	0.5
1,1-Dichloroethane	SW8260C	75-34-3	µg/L	25	NS	25	1.0	1.0	0.5
1,2-Dibromoethane (EDB)	SW8011	106-93-4	µg/L	0.1	0.05	0.05	0.03	0.02	0.01
1,2-Dichloroethane	SW8260C	107-06-2	µg/L	10	5.0	5.0	1.0	1.0	0.5
Benzene	SW8260C	71-43-2	µg/L	10	5.0	5.0	1.0	1.0	0.5
Chloroform	SW8260C	67-66-3	µg/L	100	80	80	1.0	1.0	0.5
cis-1,2-Dichloroethene	SW8260C	156-59-2	µg/L	NS	70	70	1.0	1.0	0.5
Dibromochloromethane	SW8260C	124-48-1	µg/L	NS	80	80	1.0	1.0	0.5
Ethylbenzene	SW8260C	100-41-4	µg/L	750	700	700	1.0	1.0	0.5
Methyl tert-Butyl Ether (MTBE)	SW8260C	1634-04-4	µg/L	NS	NS	NS	1.0	1.0	0.5
Methylene Chloride	SW8260C	75-09-2	µg/L	100	5.0	5.0	4.0	4.0	2.0
Naphthalene ⁵	SW8260C	91-20-3	µg/L	30	NS	30	5.0	2.0	1.0
Tetrachloroethene (PCE)	SW8260C	127-18-4	µg/L	20	5.0	5.0	1.0	1.0	0.5
Toluene	SW8260C	108-88-3	µg/L	750	1000	750	1.0	1.0	0.5
Trichloroethene (TCE)	SW8260C	79-01-6	µg/L	100	5.0	5.0	1.0	1.0	0.5
m,p-Xylene	SW8260C	179601-23-1	µg/L	NS	10,000	10,000	1.0	1.0	0.5
o-Xylene	SW8260C	95-47-6	µg/L	NS	10,000	10,000	1.0	1.0	0.5
Xylene (Total)	SW8260C	1330-20-7	µg/L	620	10,000	620	1.0	1.0	0.5
Semivolatile Organic Compounds	·								
bis(2-Ethylhexyl)phthalate	SW8270D	117-81-7	µg/L	NS	6	6	5	4	2
1-Methylnaphthalene ⁵	SW8270D	90-12-0	µg/L	30	NS	30	0.5	0.2	0.1
2-Methylnaphthalene ⁵	SW8270D	95-95-4	µg/L	30	NS	30	0.5	0.2	0.1
Naphthalene ⁵	SW8270D	91-20-3	μg/L	30	NS	30	0.5	0.4	0.1
Pyrene	SW8270D	129-00-0	µg/L	NS	NS	120	0.5	0.4	0.1

 TABLE I-4

 Analytical Parameter, Analyte Reporting Limits, and Screening Criteria for Water

							Achievab	le Laborato	ory Limits ⁴
Analyte	Analytical Method	CASRN	Units		EPA MCL ²	Project Screening Level ³	LOQ	LOD	DL
Metals - Total and dissolved									
Aluminum	SW6010C	7429-90-5	mg/L	5.0	NS	5.0	0.400	0.400	0.0870
Antimony	SW6020A	7440-36-0	mg/L	NS	0.006	0.006	0.002	0.001	0.00033
Arsenic	SW6020A	7440-38-2	mg/L	0.1	0.01	0.01	0.004	0.002	0.00054
Barium	SW6010C	7440-49-3	mg/L	1.0	2.0	1.0	0.010	0.0063	0.0003
Beryllium	SW6020A	7440-41-7	mg/L	NS	0.004	0.004	0.001	0.00013	0.00007
Cadmium	SW6020A	7440-43-9	mg/L	0.01	0.005	0.005	0.001	0.005	0.00023
Calcium	SW6010C	7440-70-2	mg/L	NS	NS	NS	0.004	0.050	0.033
Chromium	SW6020A	7440-47-3	mg/L	0.05	0.1	0.05	0.004	0.002	0.0007
Copper	SW6010C	7440-50-8	mg/L	1.0	1.3	1.0	0.02	0.005	0.0025
Iron	SW6010C	7439-89-6	mg/L	1.0	NS	1.0	0.4	0.05	0.033
Lead	SW6020A	7439-92-1	mg/L	0.05	0.015	0.015	0.002	0.00025	0.00013
Magnesium	SW6010C	7439-95-4	mg/L	NS	NS	NS	0.2	0.05	0.017
Manganese	SW6010C	7439-96-5	mg/L	0.2	NS	0.2	0.01	0.0013	0.0008
Mercury (total)	SW7470A	7439-97-6	mg/L	0.002	0.002	0.002	0.0002	0.0001	0.00005
Potassium	SW6010C	7440-09-7	mg/L	NS	NS	NS	1.0	5.0	0.192
Selenium	SW6020A	7782-49-2	mg/L	0.05	0.05	0.05	0.004	0.001	0.0005
Silver	SW6020A	7440-22-4	mg/L	0.05	NS	0.05	0.001	0.00025	0.00011
Sodium	SW6010C	7440-23-5	mg/L	NS	NS	NS	2.0	0.5	0.167
Strontiuim	SW6020A	7440-24-6	mg/L	NS	NS	NS	0.002	0.002	0.000436
Thallium	SW6020A	7440-28-0	mg/L	NS	0.002	0.002	0.001	0.00025	0.00015
Uranium	SW6020A	NS	mg/L	0.03	0.03	0.03	0.0005	0.0002	0.0000618
Zinc	SW6010C	7440-66-6	mg/L	10	NS	10	0.04	0.01	0.0039
Miscellaneous			-			•		<u>.</u>	
Alkalinity, carbonate	SM2320B	NS	mg/L	NS	NS	NS	2	2	0.7
Chloride	E300.0A	16887-00-6	mg/L	250	NS	250	2.0	2.0	1.0
Cyanide (free)	OIA-1677-09	57-12-5	mg/L	0.2	0.2	0.2	0.006	0.006	0.002
Dissolved organic carbon	SM5310 C-2000	NS	mg/L	NS	NS	NS	1.0	1.0	0.5
Fluoride	E300.0A	16984-48-8	mg/L	1.6	NS	1.6	0.5	0.5	0.25
Nitrate-nitrite nitrogen ⁶	E353.2	84145-82-4	mg/L	10	10	10	1.0	0.1	0.04
Silica	SM4500-SiO2 C-1997	7631-86-9	mg/L	NS	NS	NS	0.4	0.4	0.1
Sulfate	E300.0A	18785-72-3	mg/L	600	250	250	5.0	5.0	1.5
Total phenols	E420.4	108-95-2	mg/L	0.005	NS	0.04	0.04	0.04	0.015

 TABLE I-4

 Analytical Parameter, Analyte Reporting Limits, and Screening Criteria for Water

							Achievab	le Laborato	ry Limits ⁴
						Project Screening			l
Analyte	Analytical Method	CASRN	Units		EPA MCL ²	Level ³	LOQ	LOD	DL
	NPDES	No NM00312	16						
Volatile Organic Compounds						10			
1,2-Dibromoethane (EDB)	SW8011	106-93-4	µg/L	0.1	0.05	Report ¹⁰	0.03	0.02	0.01
Miscellaneous			"			D			
Ammonia Nitrogen	EPA 350.1	7664-41-7	mg/L	NS	NS	Report ¹⁰ 26/48 ¹¹	0.05	0.05	0.017
Biochemical oxygen demand	SM5210B	NS	mg/L	NS	NS	20/40 Report ¹⁰	2	2	1
Chemical oxygen demand	EPA 410.4	NS	mg/L	NS	NS	Report ¹⁰	20	20	9
Nitrate-nitrite nitrogen	E353.2	84145-82-4	mg/L	10 NC	10 NC	8/15 ¹¹	1.0	0.1	0.04
Oil and Grease (Hexane extractable) Total residual chlorine	E1664A SM4500-CI G	NS NS	mg/L	NS NS	NS NS	0.011	5.0 0.05	5 0.05	1.4 0.017
Total Suspended Solids	SM 2540D	NS	mg/L	NS	NS	21/33 ¹¹	5.00	5.00	1.4
Whole Effluent Toxicity - Daphnia Pulex (48-hour acute NOEC freshwater) ⁹	EPA 2021.0	NS	mg/L LC50	NS	NS	Report ¹⁰	5.00 NA	5.00 NA	1.4 NA
Organochlorine Pesticides	EFA 2021.0	113	L030	113	N3	Report	NA	NA	
Heptachlor	SW8081B	76-44-8	μg/L	0.4	NS	Report ⁴	0.02	0.02	0.006
Per- and Polyfluorinated Alkyl Substances	300001B	70-44-0	µg/∟	0.4	NO	Report	0.02	0.02	0.000
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid (PFPrOPrA)*	EPA 537 Modified	13252-13-6	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluorooctanesulfonate (PFOS)	EPA 537 Modified	1763-23-1	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluoroundecanoic acid (PFUdA)	EPA 537 Modified	2058-94-8	ng/L			Report ¹⁰	2.00	1.44	0.72
N-methylperfluoro-1-octanesulfonamidoacetic acid	EPA 537 Modified	2355-31-9	ng/L			Report ¹⁰	4.00	2.64	1.32
Perfluoropentanoic acid (PFPeA)	EPA 537 Modified	2706-90-3	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluoropentanesulfonate (PFPeS)	EPA 537 Modified	2706-90-3	ng/L			Report ¹⁰	1.88	1.32	0.66
Fluorotelomer sulfonate 6:2 (6:2 FTS)	EPA 537 Modified	27619-97-2	ng/L			Report ¹⁰	1.00	1.32	0.66
N-ethylperfluoro-1-octanesulfonamidoacetic acid	EPA 537 Modified	2991-50-6	ng/L			Report ¹⁰	4.00	2.64	1.32
Perfluorohexanoic acid (PFHxA)	EPA 537 Modified	307-24-4	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluorododecanoic acid (PFDoA)	EPA 537 Modified	307-55-1	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluorooctanoic acid (PFOA)	EPA 537 Modified	335-67-1	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluorodecanoic acid (PFDA)	EPA 537 Modified	335-76-2				Report ¹⁰	2.00	1.32	0.66
Perfluorodecanesulfonate (PFDS)	EPA 537 Modified	335-77-3	ng/L ng/L			Report ¹⁰	1.94	1.32	0.66
Perfluorohexanesulfonate (PFHxS)	EPA 537 Modified	355-46-4	ng/L			Report ¹⁰	1.82	1.32	0.66
Perfluorobutyric acid (PFBA)	EPA 537 Modified	375-22-4	ng/L			Report ¹⁰	2.00	1.64	0.82
	EPA 537 Modified	375-73-5	-			Report ¹⁰	1.78	1.60	0.82
Perfluorobutanesulfonate (PFBS)	EPA 537 Modified		ng/L			Report ¹⁰		-	
Perfluoroheptanoic acid (PFHpA)	EPA 537 Modified EPA 537 Modified	375-85-9	ng/L			Report ¹⁰	2.00	1.32 1.32	0.66 0.66
Perfluoroheptanesulfonate (PFHpS)		375-92-8	ng/L			Report ¹⁰	1.90		
Perfluorononanoic acid (PFNA)	EPA 537 Modified	375-95-1	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluorotetradecanoic acid (PFTeDA)	EPA 537 Modified	376-06-7	ng/L				2.00	1.32	0.66
Fluorotelomer sulfonate 8:2 (8:2 FTS)	EPA 537 Modified	39108-34-4	ng/L			Report ¹⁰	3.84	2.64	1.32
Perfluorononanesulfonate (PFNS)	EPA 537 Modified	68259-12-1	ng/L			Report ¹⁰	1.92	1.40	0.7
Perfluorotridecanoic acid (PFTrDA)	EPA 537 Modified	72629-94-8	ng/L			Report ¹⁰	2.00	1.32	0.66
Perfluorooctanesulfonamide (PFOSA)	EPA 537 Modified	754-91-6	ng/L			Report ¹⁰	1.86	1.32	0.66
Fluorotelomer sulfonate 4:2 (4:2 FTS)	EPA 537 Modified	757124-72-4	ng/L			Report ¹⁰	1.88	1.32	0.66

TABLE I-4

Analytical Parameter, Analyte Reporting Limits, and Screening Criteria for Water

¹ NMWQCC standards per the New Mexico Administrative Code Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC 2004). For metals, the NMWQCC standard applies to dissolved metals and total mercury.

² EPA National Primary Drinking Water Regulations, Maximum Contaminant Levels and Secondary Maximum Contaminant Levels, Title 40 Code of Federal Regulations Part 141, 143 (May 2009).

³ The project screening level was selected to satisfy the requirements of the Kirtland Air Force Base Hazardous Waste Permit Number NM9570024423 as the lowest of (1) NMWQCC standard or (2) EPA MCL. If no MCL or NMWQCC standard exists for any analyte, then the project screening level will be the EPA Tapwater Regional Screening Level. Project screening levels below the LOD are highlighted and the screening level is set at the LOQ.

⁴ Achievable laboratory limits are for Eurofins Lancaster Laboratories Environmental, LLC, Lancaster Pennsylvania.

⁵ NMWQCC specifies a standard for the sum of naphthalene and mononaphthalenes (1-methylnaphthalene and 2-methylnaphthalene). Conservatively, this standard is shown for each of the three compounds.

⁶ The MCL for nitrate is 10 mg/L.

⁷ USEPA Region 6 - Kirtland AFB NPDES Permit No. NM0031216 (September 2019).

⁸ Achievable laboratory limits are for GEL Labortories, LLC (GEL).

⁹ Whole effluent toxicity will be performed by EA Engineering, Science & Technology, Inc., Ecotoxicology Laboratory.

¹⁰ NPDES permit specifies to report the results from the laboratory. No screening value is provided in the permit.

¹¹ NPDES permit specifies allowable concentration for 30-day average and daily maximum.

 $\mu g/L = Microgram(s)$ per liter.

CASRN = Chemical Abstracts Service Registry Number.

DL = Detection limit.

E = EPA Methods for Chemical Analysis of Water and Wastes, 1983 and Updates.

EPA = U.S. Environmental Protection Agency.

LOD = Limit of detection.

LOQ = Limit of quantitation.

MCL = Maximum Contaminant Level.

mg/L = Milligram(s) per liter.

NMWQCC = New Mexico Water Quality Control Commission.

NS = Not specified.

SW = EPA SW846 - Test Methods for Evaluating Solid Waste, Third Edition and Updates.

March 2021

Qualifier	Definition
	No Qualifier indicates that the data are acceptable both qualitatively and quantitatively.
U	The analyte was analyzed for but was not detected above the reported limit of quantitation.
J	The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample. Results are estimated, although the data are considered usable and may be used as appropriate to meet project objectives. Results are qualitatively acceptable and quantitatively uncertain.
J-	The analyte was positively identified; the associated numerical value is its approximate concentration with a low bias in the sample.
J+	The analyte was positively identified; the associated numerical value is its approximate concentration with a high bias in the sample.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The analyte was analyzed for, but the presence <u>or</u> absence of the analyte has not been verified. Re-sampling and re- analysis may be necessary to confirm or deny the presence of the analyte. Results are rejected, and data are <u>unusable</u> for any purposes.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project QC criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Table I-5Data Qualification Flags and Reason Codes

Field Equipment	Values Measured (Units)	Frequency	Sample Locations
YSI (or equivalent)	Temperature (°C)	Concurrently with monthly, annual, and 5-year GWTS	Influent, mid-GAC, effluent sampling ports; extraction
water quality meter	Saturated DO (%)	samples; with annual extraction well samples; as	well sampling ports; any location as needed.
with flow cell	DO (mg/L)	needed	
	Specific Conductance (µS/cm)		
	рН		
	ORP (mV)		
Turbidity Meter	Turbidity (NTU)	Concurrently with monthly, annual, and 5-year GWTS	Influent, mid-GAC, effluent sampling ports; extraction
		samples; with annual extraction well samples; as	well sampling ports; any location as needed
		needed	
Handheld	Free chlorine (mg/L)	As needed	Influent, mid-GAC, effluent sampling ports; extraction
Colorimeter (0-2			well sampling ports; any location as needed
mg/L)			
Chlorine Test	Free chlorine (mg/L)	As needed	Influent, mid-GAC, effluent sampling ports; extraction
Papers (0-200 mg/L)			well sampling ports; any location as needed
Inline Influent	Free chlorine (mg/L)	Continuous	Permanently in line with influent, pre-influent pump
Chlorine Analyzer			skid
(0-5 mg/L)			

Table I-6Field Measurement Frequency

°C = Degree Celsius

 μ S/cm = microSiemens per centimeter

DO = dissolved oxygen

GAC = granular activated carbon

GWTS = groundwater treatment system

mg/L = milligram(s) per liter

mV = millivolt(s)

NTU = Nephelometric turbidity unit

ORP = oxidation reduction potential

Appendix J

APPENDIX J

WASTE CHARACTERIZATION DOCUMENTATION

Appendix J

BAG FILTER DISPOSAL APPROVAL

From:	Simpler, Trent SPA
To:	Jercinovic, Devon; Phaneuf, Mark J SPA; Dreeland, Linda SPA; Sanchez, Amy E. SPA; Adria Bodour; BITNER,
	LUDIE W GS-13 USAF AFCEC/CZO; Vic Branson; Amdurer, Mike; Tarbert, Jason A
Subject:	Bag filters
Date:	Thursday, June 09, 2016 7:50:47 AM

Devon and Mike,

We spoke with Katrina and she is good with us throwing the bag filters away. There is no official reply.

Consider this your approval to put used bag filters in the dumpster.

Trent

Trent Simpler, P.E. Project Manager BFF Chair Wind Energy CX Red Team LGL US Army Corps of Engineers Trent.Simpler@usace.army.mil 505-342-4823 (office) 505-301-6996 (Blackberry)

HAZARDOUS WASTE PROCESS DESCRIPTION

ORGANIZATION CODE & UEC NAME:

WASTE COLLECTION SITE ID (IAP#):

SHOP CODE:

BUILDING NUMBER/LOCATION: Building 19150 Bulk Fuels Facility Groundwater Treatment System (GWTS)

DATE: 4/27/16

DESCRIPTION OF PROCESS:

Bag filters are located at both the inlet and outlet of the granular-activated carbon beds at the GWTS to remove suspended solids resulting from groundwater extraction, and fines released from the activated carbon beds. During normal operation of the GWTS, bag filters are replaced on an as-needed basis, or semiannually as required in the *Operation and Maintenance Manual*, *Mid-Plume Pump and Treat System* (USACE, 2016).

WASTE DESCRIPTION:

Non-hazardous solid waste. See Attachment 1 for a description of how the waste was characterized, and Attachment 2 for the analytical data.

LIST MATERIALS AND NSNs SPECIFIC TO THIS PROCESS:

Used bag filters (10 micron size #2, 7-inch by 32-inch) stored in DOT-approved 55-gallon drums

IS THIS A NEW PROCESS? YES__X__ NO____ DESCRIBE ANY CHANGES MADE TO PROCESS SINCE LAST EVALUATION (If no change, a negative response is required) N/A

PREPARER'S NAME, JOB TITLE, PHONE NUMBER, & SIGNATURE (*This person must be actively involved in the process*)

I certify that to the best of my knowledge and belief, all of the process description information

attle G Xa Minue

Signature of Person Actively Involved in the Process *Caitlin LaChance, Scientist* 505-262-8942

PLEASE include, if applicable:

contained herein is accurate and complete.

• Any T. O. or other references related to the process;

- A diagram of the process; and
- Any comments relevant to process description not otherwise included.

FOR HAZARDOUS WASTE PERSONNEL USE ONLY

ASSIGNED WASTE PROFILE:

COMMENTS: _____

Attachment 1: Bag Filter Waste Characterization and Request for Disposal

Background

Kirtland Air Force Base (KAFB) is investigating and remediating a historical release of aviation gasoline and jet fuel from the Bulk Fuels Facility (BFF) pursuant to the Resource Conservation and Recovery Act (RCRA) corrective action provisions in Part 6 of KAFB's Hazardous Waste Treatment Facility Operating Permit (HWTF Permit No. NM9570024423). The HWTF Permit is enforced by the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB).

KAFB is currently implementing an ethylene dibromide (EDB) groundwater treatment interim measure (IM) in accordance with Part 6.2.2.2.12 of the HWTF Permit. The EDB plume IM consists of extraction wells and treatment with granulated activated carbon (GAC) at the Groundwater Treatment System (GWTS) facility. The groundwater treated at the GWTS is non-hazardous. The treated effluent from the system is non-detect for all fuel-related constituents.

Bag filters are located at both the inlet and outlet of the GAC beds at the GWTS to remove suspended solids resulting from groundwater extraction, and fines released from the GAC beds. During normal operation of the GWTS, bag filters are replaced on an as-needed basis, or semiannually as required in the *Operation and Maintenance Manual*, *Mid-Plume Pump and Treat System* (USACE, 2016). The waste was accumulated from January 1, 2016 through April 12, 2016. Currently, the waste is being stored on-site in a 55-gallon drum and requires disposal.

Waste Characterization

A generator may use testing, acceptable knowledge (i.e.: process knowledge), or a combination of the two to satisfy its RCRA waste characterization responsibilities (40 CFR 262.11). Waste characterization requirements are detailed in Part 2.6 of the HWTF Permit. Part 2.6.2 states that "Acceptable knowledge may be used as the sole method to characterize waste only when the waste is from a process that is consistent and well-documented".

The influent and effluent from the GWTS meets this permit requirement for the use of acceptable knowledge as the sole method to characterize the inlet and outlet bag filters. As stated above, the influent to the treatment system that goes through the inlet bag filters is nonhazardous and contains no constituents other than EDB above applicable groundwater standards. The treated groundwater that goes through the outlet bag filters has no detectable fuel constituents and meets drinking water quality standards.

Analytical results from two extraction wells (KAFB-106233 and KAFB-106234) and GWTS influent and effluent samples were evaluated as part of the acceptable knowledge review for the inlet filters. The extraction well groundwater and GWTS samples were analyzed for EDB, benzene, toluene, ethylbenzene, total xylenes, dissolved manganese, and dissolved iron. Benzene is the only analyte in this analytical suite that has an established toxicity characteristic standard (500 micrograms per liter; Title 40 Code of Federal Regulations Part 264.24, Table 1). As shown in Attachment 2, benzene concentrations were non-detect for all samples taken for the treatment system, and therefore below the established toxicity characteristic standard.

Conclusion

The totality of the acceptable knowledge demonstrates that the inlet and outlet bag filters are not hazardous waste; therefore, the waste is considered to be non-hazardous. The used bag filters are also not considered to be special waste, as defined in 20.9.7.S(13) NMAC. If the concentrations of contaminants in the system increase to a level at or above the regulatory limits, this process will be reevaluated and revised to comply with disposal requirements.

				LOCATION CODE	GWT	S-INF	GWTS	-GAC1	GWT	S-EFF	GWT	S-INF	GWTS	S-GAC1
				SAMPLE NO	GWTS-	NF-0001	GWTS-G	AC1-0001	GWTS-	EFF-0001	GWTS-	NF-0002	GWTS-G	AC1-0002
				SAMPLE DATE	12/16	6/2015	12/16	/2015	12/16	6/2015	12/18	/2015	12/18	3/2015
				SAMPLE TIME	16	:00	16	:00	16:00		14	:15	14	:25
				SAMPLE DAY	Wedr	nesday	Wedn	lesday	Wedr	nesday	Fri	day	Fri	day
				DAY NUMBER		1		1		1		2		2
				SAMPLE PURPOSE		EG		EG		EG		EG		EG
				LABORATORY		oirical	Emp			oirical	Emp			oirical
				LAB DATA DUE	12/18	3/2015	12/18	/2015	12/18	3/2015	12/20	/2015	12/20)/2015
Chemical Class &		Toxicity Characteristics (40	NMED Ground Water Protection	EPA										
Analytical Method	Parameter	CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
	Draft Anal	ytical Data	,											
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	0.194	0.03	ND	0.03	ND	0.03	0.18	0.0281	ND	0.0288
	BENZENE	500	10	5	ND	1	ND	1	ND	1	ND	1	ND	1
	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	0.316J	1	ND	1
VOC (ug/L)/ SW8260B	TOLUENE	NE	750	1000	ND	1	ND	1	ND	1	ND	1	ND	1
	XYLENES	NE	620	10000	0.918J	3	ND	3	ND	3	2.89J	3	ND	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	36.8J	100	ND	100	ND	100	239	100	ND	100
	MANGANESE, DISSOLVED	NE	200	NE	ND	15	5.02J	15	3.55J	15	15.5	15	5.46J	15
TDS (mg/L)/SM2540C	TDS	NA	1,000	NE	-	-	-	-	-	-	-	-	-	-
TSS (mg/L)/SM2540D	TSS	NA	NE	NE	-	-	-	-	-	-	-	-	-	-
	Field	Data												
	Temperature (Deg.C)				17	.48	17	.33	13	3.78	1	.7	1	5.4
	Spec. Conductivity (us/cm)				35	4.2	37	3.5	6	09	3	93	3	88
	рН				8	.1	9	.1	8	5.5	7.	82	8.	86
	ORP (mV)				2	14	22	25	2	31	79	9.9	11	7.4
	DO (mg/L)				6.	91	0.	57	7.	.53	7.	64	1.	48

SWMUs ST-106/SS-111

				LOCATION CODE	GWT	S-EFF	GWT	S-INF	GWTS	S-GAC1	GWT	S-EFF	GWT	S-INF
				SAMPLE NO	GWTS-E	EFF-0002	GWTS-I	NF-0003	GWTS-G	AC1-0003	GWTS-E	FF-0003	GWTS-	INF-0004
				SAMPLE DATE	12/18	3/2015	21-D	ec-15	21-D	ec-15	21-D	ec-15	22-D	ec-15
				SAMPLE TIME	14	:35	12	:15	12:30		12	:40	15	5:20
				SAMPLE DAY	Fri	day	Mor	nday	Мо	nday	Mor	nday	Tue	esday
				DAY NUMBER		2		3		3		3		4
				SAMPLE PURPOSE		EG		EG		EG		EG		EG
				LABORATORY		irical	Emp			oirical	Emp			pirical
				LAB DATA DUE	12/20)/2015	12/23	/2015	12/23	3/2015	12/23	/2015	12/24	4/2015
			NMED Ground Water											
Chamical Class 8		Toxicity	Protection	EPA										
Chemical Class & Analytical Method	Parameter	Characteristics (40 CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
	Draft Anal	ytical Data				•	•			•		•	•	•
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	ND	0.0284	0.195	0.0281	ND	0.0282	ND	0.028	0.182	0.0283
	BENZENE	500	10	5	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ SW8260B	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ 3008200B	TOLUENE	NE	750	1000	ND	1	ND	1	ND	1	ND	1	ND	1
	XYLENES	NE	620	10000	1.08J	3	ND	3	ND	3	ND	3	ND	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	81.2J	100	37.3J	100	ND	100	30.4J	100	ND	100
	MANGANESE, DISSOLVED	NE	200	NE	4.3J	15	ND	15	5.56J	15	5.87J	15	ND	15
TDS (mg/L)/SM2540C	TDS	NA	1,000	NE	-	-	-	-	-	-	-	-	-	-
TSS (mg/L)/SM2540D	TSS	NA	NE	NE	-	-	-	-	-	-	-	-	-	-
	Field	Data												
	Temperature (Deg.C)				14	4.7	18	3.3	17	7.3	16	5.3	19	9.3
	Spec. Conductivity (us/cm)				5	42	38	37	3	88	43	34	3	97
	рН				8.	02	7.	64	8	.7	8.	17	8	8.2
	ORP (mV)				17	5.5	18	1.3	1	77	15	4.1	26	5.5
	DO (mg/L)				6.	54	7.	95	3.	16	6.	62	7.	.42

SWMUs ST-106/SS-111

				LOCATION CODE	GWTS	S-GAC1	GWT	S-EFF	GWT	S-INF	GWTS	S-GAC1	GWT	S-EFF
				SAMPLE NO	GWTS-G	AC1-0004	GWTS-E	FF-0004	GWTS-I	INF-0005	GWTS-G	AC1-0005	GWTS-I	EFF-0005
				SAMPLE DATE	22-D	ec-15	22-D	ec-15	29-D	ec-05	29-D	ec-05	29-D	ec-05
				SAMPLE TIME	15	:10	15	:00	13	:55	13	:47	13	3:38
				SAMPLE DAY	Tue	sday	Tue	sday	Tue	sday	Tue	sday	Tue	esday
				DAY NUMBER		4		4		5		5		5
				SAMPLE PURPOSE		EG		EG		EG		EG		EG
				LABORATORY		irical	Emp			oirical		irical		pirical
				LAB DATA DUE	12/24	/2015	12/24	/2015	12/31	/2015	12/31	/2015	12/31	1/2015
Observiced Observa		Toxicity	NMED Ground Water Protection	EPA										
Chemical Class & Analytical Method	Parameter	Characteristics (40 CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
		ytical Data	20.0.2.0100)	MOES	Result	LOQ	Result	LOQ	Result	LUQ	Result	LOQ	Result	LOQ
		-		0.05		0.0070			0.404			0.0000	ND	0.0007
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	ND	0.0278	ND	0.0283	0.181	0.0289	ND	0.0288	ND	0.0287
	BENZENE	500	10	5	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ SW8260B	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	ND	1	ND	1
	TOLUENE	NE	750	1000	ND	1	ND	1	ND	1	ND	1	ND	1
	XYLENES	NE	620	10000	ND	3	ND	3	ND	3	ND	3	ND	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	ND	100	39.4J	100	ND	100	ND	100	63J	100
	MANGANESE, DISSOLVED	NE	200	NE	5.3J	15	18.5	15	ND	15	6.65J	15	9.47J	15
TDS (mg/L)/SM2540C	TDS	NA	1,000	NE	-	-	-	-	-	-	-	-	-	-
TSS (mg/L)/SM2540D	TSS	NA	NE	NE	-	-	-	-	-	-	-	-	-	-
	Field	Data												
	Temperature (Deg.C)				1	9	18	3.2	18	8.2	16	5.1	1	7.7
	Spec. Conductivity (us/cm)				3	63	3	91	4	05	3	93	4	19
	рН				8.	91	8.	36	8.	05	8.	81	7.	.38
	ORP (mV)				26	6.1	26	8.2	11	4.5	11	5.3	11	3.8
	DO (mg/L)				2.	13	6	.5	7.	66	2.	46	6.	.47

Appendix J

				LOCATION CODE	GWT	S-INF	GWTS	-GAC1	GWT	S-EFF	GWT	S-INF	GWTS	S-GAC1
				SAMPLE NO	GWTS-	NF-0006	GWTS-G	AC1-0006	GWTS-E	EFF-0006	GWTS-I	NF-0007	GWTS-G	AC1-0007
				SAMPLE DATE	30-D	ec-05	30-D	ec-05	30-D	ec-15	31-D	ec-15	31-D	ec-15
				SAMPLE TIME	13	:05	13	:00	13	3:10	9:	47	9	:43
				SAMPLE DAY	Wedr	nesday	Wedr	esday	Wedr	nesday	Thur	sday	Thu	rsday
				DAY NUMBER		6		6		6		7		7
				SAMPLE PURPOSE		EG		EG		EG		EG		EG
				LABORATORY		irical	Emp			pirical	Emp			pirical
		1		LAB DATA DUE	1/4/	2016	1/4/2	2016	1/4/	2016	1/5/2	2016	1/5/	2016
			NMED Ground											
			Water											
Ob anni and Olama R		Toxicity	Protection	EPA										
Chemical Class & Analytical Method	Parameter	Characteristics (40 CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
	Draft Anal	,	20101210100)	molo	rtooun	200	rtoout	200	rtooun	200	rtoount	200	rtoout	200
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	0.194	0.0284	ND	0.0284	ND	0.0282	0.183	0.0287	ND	0.0286
EDB (ug/L)300011	BENZENE	500	10	5	0.194 ND	0.0204	ND	0.0204	ND	0.0202	0.165 ND	0.0207		0.0200
	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	ND	1	ND ND ND	1
VOC (ug/L)/ SW8260B	TOLUENE	NE	750	1000	ND	1	ND	1	ND	1	ND	1		1
	XYLENES	NE	620	1000	ND	3	ND	3	ND	3	ND	3	ND	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	ND	100	ND	100	ND	100	38.3J	3 100	ND	100
wetais (ug/L)/SW0010C	MANGANESE, DISSOLVED	NE	200	NE			6.9J	100	6.21J		ND			100
	TDS	NA		NE	ND	15	6.91		6.21J	15	ND	15	8.22J	
TDS (mg/L)/SM2540C	TSS	NA	1,000	NE	-	-	-	-	-	-	-	-	-	-
TSS (mg/L)/SM2540D			NE	NE	-	-	-	-	-	-	-	-	-	-
	Field		1 1			7				7 4	1 4-			0.4
	Temperature (Deg.C)					.7		3.8		7.1	17			8.4
	Spec. Conductivity (us/cm)					21	40			25		24		01
	pH					.1		75		.02		05		.54
	ORP (mV)					2.3	17			2.5		6.8		2.4
	DO (mg/L)				7	.7	3.	33	6.	.46	7.	47	2.	.95

				LOCATION CODE	GWT	S-EFF	GWT	GWTS-INF		S-GAC1	GWT	GWTS-EFF		106233
				SAMPLE NO	GWTS-	EFF-0007	GWTS-I	NF-0008	GWTS-G	GAC1-0008	GWTS-	EFF-0008	GW	2601
				SAMPLE DATE	31-D	ec-15	7-Ja	an-16	7-Ja	an-16	7-J	an-16	13-J	an-16
				SAMPLE TIME	8	:30	9:	00	9	:10	9	:20	14	:36
				SAMPLE DAY	Thu	rsday	Thu	rsday	Thu	rsday	Thursday		Wedr	nesday
				DAY NUMBER		7		ek 1	We	ek 1		eek 1		
				SAMPLE PURPOSE		EG		EG		EG		EG		EG
				LABORATORY		pirical		irical		pirical		pirical		
				LAB DATA DUE	1/5/	2016	1/15/	/2016	1/15	/2016	1/15	5/2016	1/21,	/2016
		Toxicity	NMED Ground Water Protection											
Chemical Class &		Characteristics (40		EPA										
Analytical Method	Parameter	CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	14: Wedn Initial S Empi 1/21/ Result 0.00982J ND 0.26J 1.17 1.54J ND 69.3 195 ND 69.3 195 ND	LOQ
	Draft Anal	ytical Data				1							•	
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	ND	0.0287	0.176	0.0283	ND	0.0286	ND	0.0284	0.00982J	0.0284
	BENZENE	500	10	5	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ SW8260B	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	ND	1	0.26J	1
VOC (ug/L)/ SVV8200B	TOLUENE	NE	750	1000	ND	1	ND	1	ND	1	ND	1	1.17	1
	XYLENES	NE	620	10000	ND	3	ND	3	ND	3	ND	3	1.54J	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	54.9J	100	ND	100	ND	100	ND	100	ND	25
	MANGANESE, DISSOLVED	NE	200	NE	7.8J	15	ND	15	7.05J	15	8.37J	15	69.3	3.75
TDS (mg/L)/SM2540C	TDS	NA	1,000	NE	-	-	-	-	-	-	-	-	195	20
TSS (mg/L)/SM2540D	TSS	NA	NE	NE	-	-	-	-	-	-	-	-	ND	4
	Field	Data												
	Temperature (Deg.C)				1	7.9	18	3.4	1	7.1	1	6.4	18	8.8
	Spec. Conductivity (us/cm)				4	16	4	24	4	18	4	30	3	87
	рН				8.	.42	7.	94	8	3.3	7	.87	6.	.42
	ORP (mV)				19	4.9	1	51	16	54.7	15	8.16	20	0.1
	DO (mg/L)				6.	.28	7.	76	2	2.8	6	.68	8.	.16

				LOCATION CODE	KAFB-	106234	GWT	S-INF	GWT	S-GAC1	GW1	S-EFF	GWT	S-INF
				SAMPLE NO	GW	2602	GWTS-I	NF-0009	GWTS-0	GAC1-0009	GWTS-EFF-0009 14-Jan-16 9:53 Thursday Week 2 REG Empirical 1/22/2016		GWTS-	INF-0010
				SAMPLE DATE	13-J	an-16	14-Ja	an-16	14-、	Jan-16	14-、	Jan-16	21-J	an-16
				SAMPLE TIME	14	:52	9:	28	g	:40	g	:53	16	6:08
				SAMPLE DAY	E DAY Wednesday		Thursday		Thursday		Thursday		Thu	rsday
				DAY NUMBER	Initial	Sample	We	ek 2	We	eek 2	We	eek 2	Week 3	8 & Day 1
				SAMPLE PURPOSE		EG		EG		EG				EG
				LABORATORY		pirical	Emp			oirical				pirical
		-		LAB DATA DUE	1/21	/2016	1/22/	2016	1/22	2/2016	1/22	2/2016	1/26	/2016
Chemical Class &		Toxicity Characteristics (40	NMED Ground Water Protection Standards (Sec.	EPA										
Analytical Method	Parameter	CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
	Draft Anal	ytical Data											1	
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	0.112	0.0284	0.15	0.286	ND	0.0287	ND	0.0284	0.146	0.0284
	BENZENE	500	10	5	ND	1	ND	1	ND	1	ND	1	ND	1
	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ SW8260B	TOLUENE	NE	750	1000	0.278J	1	ND	1	ND	1	ND	1	0.661J	1
	XYLENES	NE	620	10000	0.921J	3	ND	3	ND	3	ND	3	ND	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	ND	25	ND	100	ND	100	37.3J	100	ND	100
	MANGANESE, DISSOLVED	NE	200	NE	8.23	3.75	ND	15	ND	15	3.69J	15	5.55J	15
TDS (mg/L)/SM2540C	TDS	NA	1,000	NE	360	20	-	-	-	-	-	-	-	-
TSS (mg/L)/SM2540D	TSS	NA	NE	NE	ND	4	-	-	-	-	-	-	-	-
	Field	Data												
	Temperature (Deg.C)				16	6.4	18	3.8	1	8.9	1	8.8	14	4.3
	Spec. Conductivity (us/cm)				7	01	4	25	4	31	4	44	4	90
	рН				7.	.86	7.	62	7	.83	7	.47	7.	.35
	ORP (mV)				21	9.9	20	2.8	22	21.9	18	38.3	18	8.9
	DO (mg/L)				3.	.22	7	.2		1.7	6	.54	7.	.99

				LOCATION CODE	GWT	S-GAC1	GWT	S-EFF	GWT	S-INF	GWT	S-GAC1	GW	rs-eff
				SAMPLE NO	GWTS-G	GAC1-0010	GWTS-	EFF-0010	GWTS-I	NF-0020	GWTS-0	GWTS-GAC1-0020 23-Feb-16 13:45 Tuesday Monthly REG		EFF-0020
				SAMPLE DATE	21-J	lan-16	21-J	lan-16	23-F	eb-16	23-F	eb-16	23-F	-eb-16
				SAMPLE TIME	15	5:58	15	5:40	13	:25	1:	3:45	1.	4:05
					Thu	Thursday		Thursday		Tuesday		Tuesday		esday
					R Week 3 & Day 1		Week 3 & Day 1		Monthly				Monthly	
						EG		EG		EG				REG
				LABORATORY		pirical		pirical		irical		pirical		pirical
				LAB DATA DUE	1/26	/2016	1/26	/2016	3/2/2	2016	3/2/	/2016	3/2	/2016
Chemical Class &		Toxicity Characteristics (40		EPA										
Analytical Method	Parameter	CFR 264.24)	20.6.2.3103)	MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
EDB (ug/L)SW8011	1,2-DIBROMOETHANE	NE	0.1	0.05	ND	0.0286	ND	0.0281	0.0842	0.0284	ND	0.0282	ND	0.0281
	BENZENE	500	10	5	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ SW8260B	ETHYLBENZENE	NE	750	700	ND	1	ND	1	ND	1	ND	1	ND	1
VOC (ug/L)/ 300200D	TOLUENE	NE	750	1000	ND	1	ND	1	ND	1	ND	1	ND	1
	XYLENES	NE	620	10000	ND	3	ND	3	ND	3	ND	3	ND	3
Metals (ug/L)/SW6010C	IRON, DISSOLVED	NE	1,000	NE	ND	100	ND	100	ND	100	ND	100	ND	100
	MANGANESE, DISSOLVED	NE	200	NE	25.6	15	11.5J	15	ND	15	ND	15	ND	15
TDS (mg/L)/SM2540C	TDS	NA	1,000	NE	-	-	-	-	-	-	-	-	-	-
TSS (mg/L)/SM2540D	TSS	NA	NE	NE	-	-	-	-	-	-	-	-	-	-
	Field	Data												
	Temperature (Deg.C)				1	0.8	1	7.2	19	9.4	1	9.4	1	.9.5
	Spec. Conductivity (us/cm)				4	63	5	70	50	05	4	71	4	196
	рН				7	.42	7	.34	7.	38	7	.49	7	.41
	ORP (mV)				19	91.6	19	95.4	1:	53	17	79.2	19	92.6
	DO (mg/L)					3	6	.96	7.	21	4	4.2	6	.87

			LOCATION CODE SAMPLE NO SAMPLE DATE SAMPLE TIME SAMPLE DAY DAY NUMBER SAMPLE PURPOSE LABORATORY LAB DATA DUE	GWTS-I 22-M 13 Tues Mor		GWTS-G 22-M 13 Tue Mo R Emp	S-GAC1 SAC1-0012 Mar-16 S:20 esday nthly EG birical	GWTS-E 22-W 13 Tue Mor R	S-EFF EFF-0012 Mar-16 3:00 esday nthly EG
			SAMPLE DATE SAMPLE TIME SAMPLE DAY DAY NUMBER SAMPLE PURPOSE LABORATORY	22-M 13 Tue: Mor RE Emp	ar-16 ;40 sday hthly EG irical	22-N 13 Tue Mo R Emp	Mar-16 3:20 esday nthly EG	22-N 13 Tue Moi R	Mar-16 3:00 esday nthly EG
			SAMPLE TIME SAMPLE DAY DAY NUMBER SAMPLE PURPOSE LABORATORY	13 Tues Mor RE Emp	;40 sday hthly EG irical	13 Tue Mo R Emp	3:20 esday nthly EG	13 Tue Moi Ri	8:00 esday nthly EG
			SAMPLE DAY DAY NUMBER SAMPLE PURPOSE LABORATORY	Tue: Mor RE Emp	sday hthly EG irical	Tue Mo R Emp	esday nthly EG	Tue Moi Ri	esday nthly EG
			DAY NUMBER SAMPLE PURPOSE LABORATORY	Mor RE Emp	nthly EG irical	Mo R Emp	nthly EG	Moi RI	nthly EG
			SAMPLE PURPOSE LABORATORY	RE Emp	EG irical	R Emp	EG	R	EG
			LABORATORY	Emp	irical	Emp			
							Dirical		اممنين
			LAB DATA DUE	3/30/		3/30	/2016		
					2010	3/30	/2010	3/30/	2010
									1
		NMED Ground							l
		Water							l
			FPΔ						l
arameter				Result	100	Result	1.00	Result	LOQ
	,	20.0.2.0100)		rtooun	200	rtooun	200	rtoount	200
			0.05	0.0750	0.0000	ND	0.0000	ND	0.0000
									0.0282
					-				1
									1
					-			22-M 13 Tue Mor RI Emp 3/30/ Result ND ND ND ND ND ND ND ND ND ND	1
/LENES	NE	620	10000	ND	3	ND	3	ND	3
ON, DISSOLVED	NE	1,000	NE	ND	100	ND	100	ND	100
ANGANESE, DISSOLVED	NE	200	NE	ND	15	ND	15	ND	15
DS	NA	1,000	NE	-	-	-	-	-	-
SS	NA	NE	NE	-	-	-	-	-	-
Field D	Data								
emperature (Deg.C)				19	.9	1	9.5	19	9.5
pec. Conductivity (us/cm)				46	60	4	72	4	73
1				7.	57	7.	.46	7.	.42
RP (mV)				92	2.6	7	4.7	59	9.2
D (mg/L)				6.	29	5.	.85	6.	.15
	-DIBROMOETHANE NZENE HYLBENZENE LUENE LENES DN, DISSOLVED NGANESE, DISSOLVED S S Field I mperature (Deg.C) ec. Conductivity (us/cm)	Draft Analytical Data-DIBROMOETHANENENZENE500HYLBENZENENELUENENELUENENEDN, DISSOLVEDNESNASNAField Datamperature (Deg.C)	rameterWater Protection Standards (Sec. 20.6.2.3103)Draft Analytical Data-DIBROMOETHANENE0.1NZENE50010NZENE50010HYLBENZENENE750LUENENE750LUENENE620DN, DISSOLVEDNE1,000NGANESE, DISSOLVEDNE200SNA1,000SNANEField Datamperature (Deg.C)	Toxicity Characteristics (40 CFR 264.24)Water Protection Standards (Sec. 20.6.2.3103)EPA MCLs ^a Draft Analytical Data-DIBROMOETHANENE0.10.05-DIBROMOETHANENE0.10.05NZENE500105HYLBENZENENE750700LUENENE7501000LUENENE62010000DN, DISSOLVEDNE1,000NENGANESE, DISSOLVEDNE200NESNA1,000NESNANENESNANENESNANENESNANENEField Datamperature (Deg.C) <tr <td=""><</tr>	Toxicity Characteristics (40 CFR 264.24)Water Protection Standards (Sec. 20.6.2.3103)EPA MCLs ^a ResultDraft Analytical Data-DIBROMOETHANENE0.10.050.0756NZENE500105NDNYLBENZENENE750700NDLUENENE7501000NDLUENENE62010000NDDN, DISSOLVEDNE1,000NENDNGANESE, DISSOLVEDNE200NENDSNA1,000NE-Field Datamperature (Deg.C)464646464646464646	Toxicity rameter Water Protection Standards (Sec. 20.6.2.3103) EPA MCLs ^a Result LOQ Draft Analytical Data -DIBROMOETHANE NE 0.1 0.05 0.0756 0.0283 NZENE 500 10 5 ND 1 HYLBENZENE NE 750 700 ND 1 LUENE NE 750 1000 ND 1 LUENE NE 620 10000 ND 1 LENES NE 620 10000 ND 3 DN, DISSOLVED NE 1,000 NE ND 100 NGANESE, DISSOLVED NE 200 NE ND 15 S NA 1,000 NE - - S NA NE NE - - S NA NE NE - - Generation - - - S	Image: product of the second standards (Sec. 20.6.2.3103)EPA MCLs ^a ResultLOQResultDraft Analytica Data-DIBROMOETHANENE0.10.050.07560.0283NDNZENE500105ND1NDHYLBENZENENE750700ND1NDLUENENE7501000ND1NDLUENENE62010000ND3NDLUENESNE62010000ND3NDNJSSOLVEDNE1,000NEND100NDSNA1,000NESNANENENEField DataNANENEmperature (Deg.C)460446047.5777P (mV)7.5777	Image: state is the	rameterToxicity Characteristics (40 CFR 264.24)Water Protection 20.62.3103)EPA MCLs ^a ResultLOQResultLOQResultDIBROMOETHANEDIBROMOETHANENE0.10.050.07560.0283ND0.0286NDNZENE500105ND1ND1NDHYLBENZENENE750700ND1ND1NDLUENENE7501000ND1ND1NDLUENENE62010000ND3ND3.0NDNDISSOLVEDNE1,000NEND100ND100NDNGANESE, DISSOLVEDNE200NEND15ND15NDSNA1,000NESNA1,000NESNA1,000NESNA1,000NESNA1,000NE <t< td=""></t<>

SWMUs ST-106/SS-111

Operations and Maintenance Plan Groundwater Treatment System Revision R4

March 2021

Notes:

Laboratory results greater than EPA MCLs or NMED Groundwater Protection Standards are highlighted in yellow.

a = EPA MCLs are from the EPA RSL Table, dated Nov. 2015.

ND = not detected

NE = not established

- = not required

LOQ = Limit of Quantitation

 $\mathsf{J} = \mathsf{analyte}$ was detected at a trace level below the LOQ

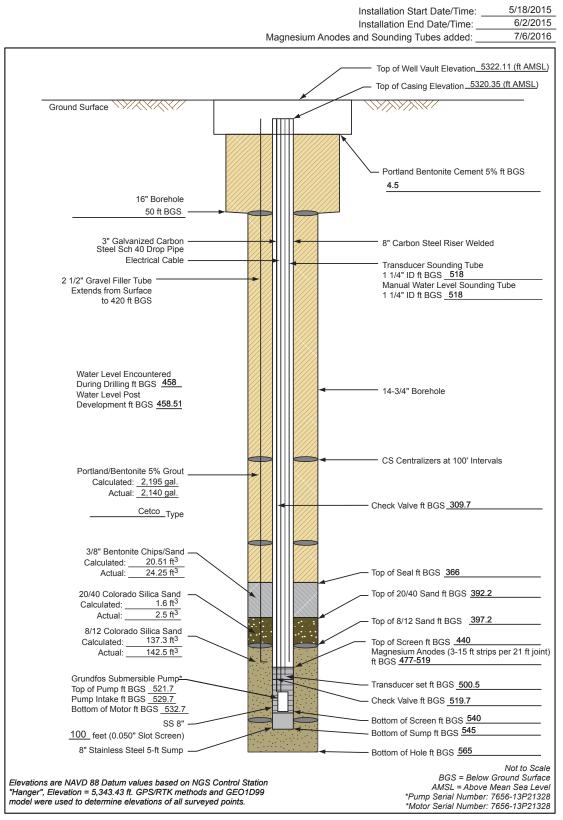
ug/L = micrograms per liter

mg/L = milligrams per liter

The concentrations of iron and manganese for day 7 samples (12/31/15 sample date) are reported as total, not dissolved. Samples were not filtered in the field and were collected nitric acid containers. 12/16/15 thru 1/14/16: influent samples were collected from KAFB-106228

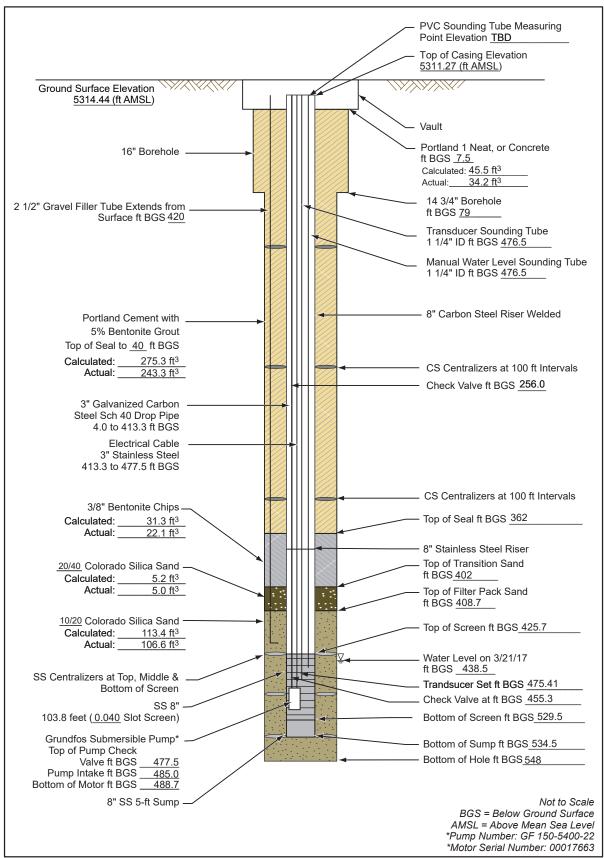
Starting 1/21/16: influent samples were collected from KAFB-106228, 106233 and 106234

March 2021

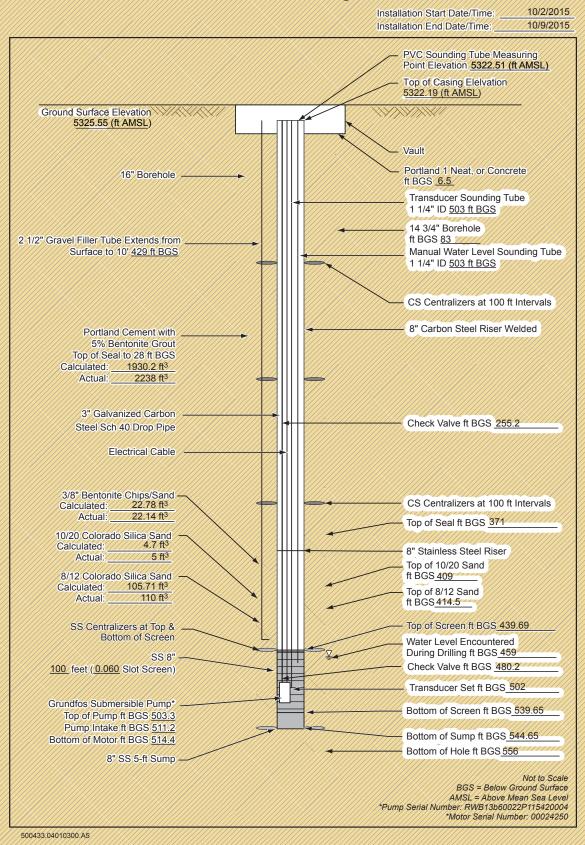

Appendix L

APPENDIX L

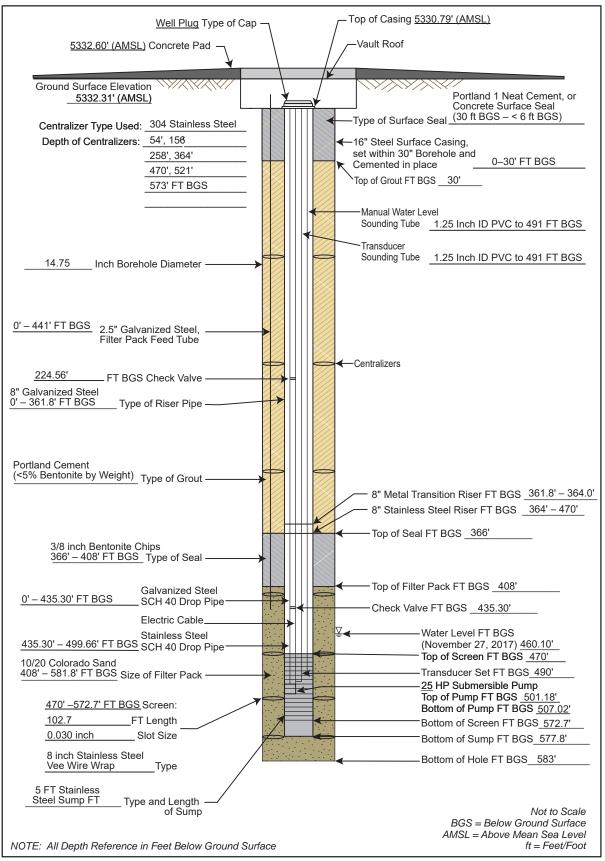
WELL CONSTRUCTION DIAGRAMS AND BOREHOLE LOGS


Appendix L

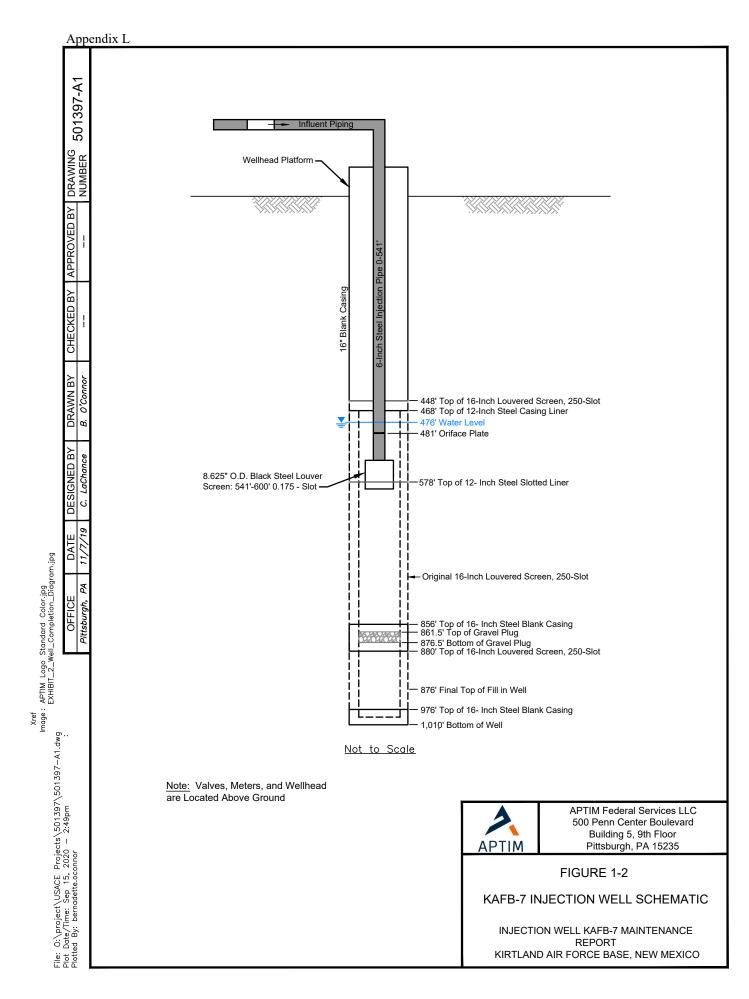
EXTRACTION WELL CONSTRUCTION DIAGRAMS



Extraction Well Construction Diagram KAFB-106228

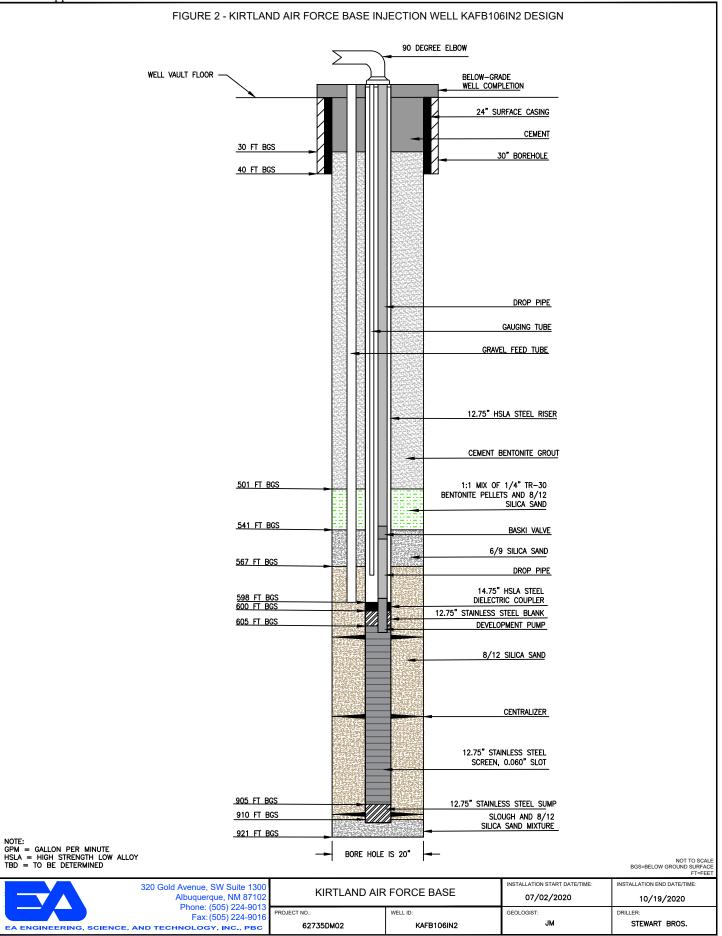

140705.CB020403.A19

500433.04010300.A4


Extraction Well Construction Diagram KAFB-106234

62599DM01

Appendix L


INJECTION WELL CONSTRUCTION DIAGRAMS

PLOT DATE/TIME: 2/11/2021 - 6:56ar

arpio\Desktop\KAFB106IN2\Figure_X_KAFB106IN2_02102021.dwg

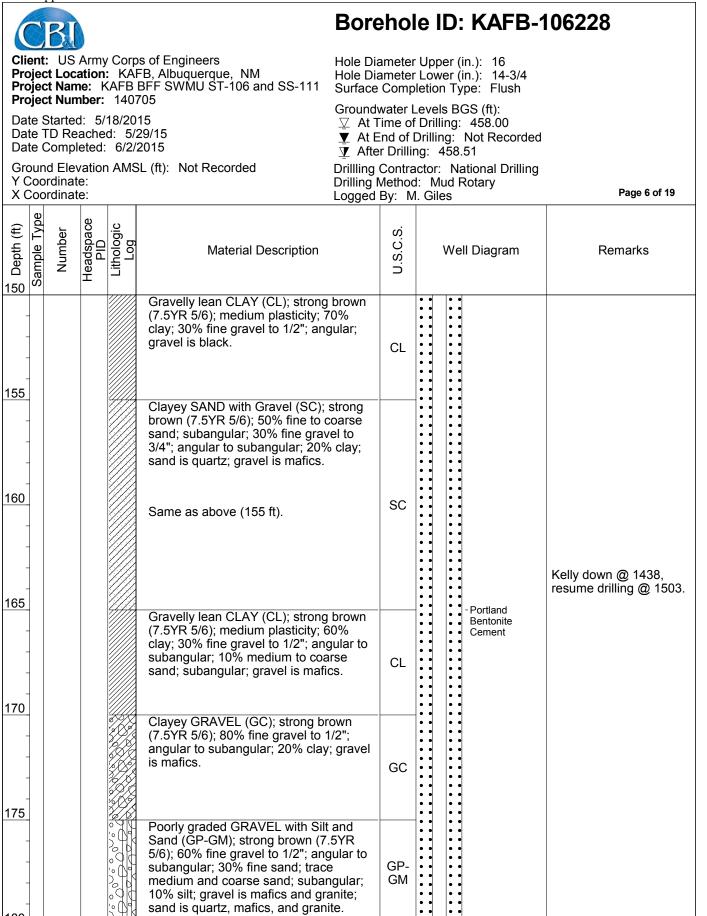
CAD FILE: C:\Use

Appendix L

EXTRACTION/INJECTION WELL BOREHOLE LOGS

6	RI	1			Bore	eho	le ID:	KAFB-1		
Projec	ct Loc ct Nan ct Nun Starte	ation ne: k nber: d: 5/	: KAI KAFB 1407 18/20	15	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4					
Date (Groun Y Coc	Comp nd Ele ordinal	leted: vatior te:	6/2/2			r Drillii Contra Methoo	ng: 458. actor: Na 1: Mud F	ational Drilling	Page 1 of 19	
Sample Type		Headspace	Lithologic Log	Material Description	Logged	Gy. № N.O.S.O.		ll Diagram	Remarks	
- - - - - -				Water jetted to 9', lithology distu	rbed. A	SPHAI	T		Begin advancing 16" casing @ 1507 on 5/18/15.	
5								- Top of Casing/ Top of Bentonite Cement		
<u>10</u> - - -				Well-graded GRAVEL with Sand strong brown (7.5YR 5/6); 60% f coarse gravel to 2"; angular to subangular; gravel is mafics and quartzite; 35% fine to coarse san angular to subrounded; sand is o and quartzite; 5% silt.	ine to I nd;	GW				
<u>15</u> - - 20				Same as above (9 ft).		Gvv		- Portland Bentonite Cement	Kelly down @ 1517, resume drilling @ 1700.	
20				Poorly graded SAND with Silt (S yellowish brown (10YR 5/8); 90% medium sand; trace fine and coa sand; subangular to subrounded quartz; 10% silt.	% arse	SP- SM				
30				Silty GRAVEL with Sand (GM); y brown (10YR 5/8); 55% fine to c gravel to 1 1/2"; subangular; gra mafics; 25% fine to coarse sand subangular to subrounded; sand quartz; 20% silt.	oarse vel is ;	GM				

x


	A	ppend	11X L									
	C	BI				Bore	eho	le l	D:	KAFB-1	06228	
Pr Pr	ojec ojec	t Loca	ation: ne: K	KAF AFB	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
Da Da	ate S ate T	Started D Re Compl	1: 5/ [.] acheo	18/20 ⁻ d: 5/2	15 29/15	Groundv ∑ At T ▼ At E ▼ At E	ime of nd of	f Drill Drilliı	ling: ng:	458.00 Not Recorded		
Gr	oun Cooi	•	vation e:		L (ft): Not Recorded	-	Contra /lethoo	actor: d: M	Na Na	tional Drilling	Page 2 of 19	
පි Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Wel	l Diagram	Remarks	
35	-				Silty GRAVEL with Sand (GM); y brown (10YR 5/8); 55% fine to co gravel to 1 1/2"; subangular; gra mafics; 25% fine to coarse sand subangular to subrounded; sand quartz; 20% silt.	oarse vel is ;	GM				Cuttings moist after driller added water.	
33	-				Silty SAND (SM); yellowish brow 5/8); 85% fine to coarse sand; subangular to subrounded; sand quartz and mafics; 15% silt.						Kelly down @ 1800, resume drilling @ 1810.	
40	-				Same as above (35 ft); 75% fine medium sand; trace coarse sand silt.		SM					
45	-				Same as above (35 ft); 75% fine medium sand; trace coarse sand silt.					Portland Bentonite Cement	End day @ 47' @ 1820. on 5/18/15.	
50	-				Lean CLAY with Sand (CL); redo yellow (7.5YR 6/6); 75% clay; 25 coarse sand; trace medium and sand; angular to subangular; trac	i% fine					Push 16" casing to 50' @ 0935 on 5/19/15. @ 1648 begin mud rotary. Begin drilling with 2 collars and 7' of lot/sub/pound.	
55	-				Same as above (50 ft).		CL		 • •<			
60	-								• • • • • •			

	A	ppend	IX L									
	C	BI				Bore	eho	le I	D: KAFB-1	06228		
P P	rojeo rojeo	t Loc	ation ne: k	: KAF	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
D	ate S ate T	Started TD Re Compl	d: 5/ ache	18/20 d: 5/2	15 29/15	⊻ At T ▼ At E	ime o nd of	f Drilli Drillin	s BGS (ft): ing: 458.00 ng: Not Recorded			
G	roun Coo	-	vatior e:		SL (ft): Not Recorded		Contra Aethoo	actor: d: Mi	National Drilling ud Rotary	Page 3 of 19		
@ Depth (ft)	ample Type	er	Headspace	Lithologic Log	Material Description		N. S. C. S. N. S. C. S.		Well Diagram	Remarks		
	-				Lean CLAY with Sand (CL); rede yellow (7.5YR 6/6); 75% clay; 25 coarse sand; trace medium and sand; coarse sand is quartz and angular to subangular; trace silt.	5% fine granite;		 	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Add 3rd collar @ 60' @ 1800.		
6	5				Same as above (60 ft).							
70	_ _ _ _				Lean CLAY (CL); reddish yellow 6/8); medium plasticity; 90% clay medium to coarse sand; sand is and granite; trace silt.	y; 10%						
7	5				Same as above (70 ft).		CL		- Portland Bentonite Cement	Stop drilling @ 75' on 5/19/15. Resume drilling @ 0840 on 5/21/15.		
80) - -				Same as above (70 ft).					Add 4th collar @ 80' @ 0857. Total of 77' of collar.		
8	- 5 - -				Same as above (70 ft).							
9(ן ס							••	• • • •			

	A	ppendi	ix L								
		BI				Bore	eho	le I	D:	KAFB-1	06228
Pro Pro	ojec ojec	: US t Loca t Nam t Num	ation ne: k	: KÁI (AFB	os of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111 705		meter	Low	ver (i	n.): 16 n.): 14-3/4 pe: Flush	
Da Da	te S te T	Started D Re Compl	l: 5/ ache	18/20 d: 5/2	15 29/15	👤 At E	ime of nd of	f Drill Drillir	ing: ng:	458.00 Not Recorded	
Gro Y (oun Cool	•	vatior e:		SL (ft): Not Recorded		Contra /lethoo	actor: d: M	Na ud R	tional Drilling	Page 4 of 19
g Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.			l Diagram	Remarks
	-				Sandy lean CLAY (CL); strong b (7.5YR 5/8); medium plasticity; 6 clay; 40% coarse sand; subangu sand is quartz, mafics, and quar	60% ular;					
95	-				Lean CLAY (CL); yellowish red (5/8); medium plasticity; 90% clay medium to coarse sand; subang sand is granite, mafics, and qua	y; 10% jualr;		 • •<			
<u>100</u>	-				Same as above (95 ft).						Kallu dave @ 0040
<u>105</u>	-				Same as above (95 ft).		CL			- Portland Bentonite Cement	Kelly down @ 0940, resume drilling @ 1240.
	-				Same as above (95 ft); 95% clay medium to coarse sand; trace fii gravel.						
<u>115</u>	-				Same as above (95 ft); 95% clay medium to coarse sand; trace fin gravel.				 		
120								• • • • • •	• • • • • •		

· · · · ·	Ap	pend	1X L									
C		BI				Bore	eho	le l	D: KAFB-1	106228		
Proj Proj	ect ect	t Loc t Nan	ation ne: k	: KA KAFB	os of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
Date Date	e S e T	tarte D Re	d: 5/ ache			⊥ At T T At E	ime o nd of	f Drilli Drillir	s BGS (ft): ing: 458.00 ng: Not Recorded			
	unc oor	d Elev dinat	vatior te:		SL (ft): Not Recorded		Contra Method	actor: d: M	National Drilling ud Rotary	Page 5 of 19		
Depth (ft)	Sample Lype	Number	Headspace	Lithologic Log	Material Description	Logged	N.S.C.S.		Well Diagram	Remarks		
-					Sandy lean CLAY (CL); strong t (7.5YR 5/8); low plasticity; 60% 40% fine sand.							
125					Same as above (120 ft).		CL			Kelly down @ 1313, resume drilling @ 1330.		
<u>130</u> - - -					Same as above (120 ft).							
135					Clayey SAND (SC); strong brow 5/8); 60% fine to medium sand; subangular; sand is quartz; 40%				- Portland Bentonite Cement			
<u>140</u> - - -					Same as above (135 ft); clay is	firmer.	SC					
145					Clayey SAND with Gravel (SC); brown (7.5YR 5/6); 40% fine to sand; subangular; 20% fine grav 3/4"; subangular; 40% clay; med plasticity; sand is quartz; gravel mafics.	medium vel to dium				Kelly down @ 1352, resume drilling.		

180

Appendix L								
CBI		Bore	eho	le I	D: KAFB-1	06228		
Client: US Army Corp Project Location: KA Project Name: KAFB Project Number: 140	FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Dia	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush					
Date Started: 5/18/20 Date TD Reached: 5/ Date Completed: 6/2/	15 29/15	⊻ AtT ▼ AtE	ime of nd of l	^f Drill Drillir	s BGS (ft): ing: 458.00 ng: Not Recorded			
Ground Elevation AMS Y Coordinate: X Coordinate:			Contra Aethoo	actor: d: M	National Drilling ud Rotary	Page 7 of 19		
081 Depth (ft) Sample Type Number Headspace PID Lithologic Log	Material Description	Logged	N.S.C.S.		Well Diagram	Remarks		
	Poorly graded GRAVEL with Silt Sand (GP-GM); strong brown (7 5/6); 60% fine gravel to 1/2"; ang subangular; 30% fine sand; trace medium and coarse sand; subar 10% silt; gravel is mafics and gra sand is quartz, mafics, and gran	.5YR gular to e ngular; anite;	GP- GM		· · · · · · · · · · · · · · · · · · ·	End day on 5-21-15 @ 183'. Kelly down @ 1542. 1500 gallons mud used		
	Silty GRAVEL with Sand (GM); r yellow (7.5YR 6/6); 70% fine gra subangular; 15% fine to coarse s subangular; 15% silt; gravel is m granite, and quartzite; sand is m	ivel; sand; nafics,				on 5/21/15. Resume drilling on 5/22/15 @ 0830.		
	Same as above (185 ft).							
	Same as above (185 ft).		GM		- Portland Bentonite Cement			
	Silty GRAVEL (GM); reddish yell (7.5YR 6/6); 70% fine gravel; subangular; 10% fine to coarse s subangular to subrounded; 20% gravel is mafics and granite; san quartz.	sand; silt;				Kelly down @ 0905, resume drilling @ 0940.		
205	Same as above (200 ft); 60% fin 10% coarse sand; subrounded;					resume unining @ 0940.		

		ppend				Dore	ha		.		106000
Client: US Army Corps of Engineers Hole Diameter Up										NAFB-	106228
P	rojec rojec	t Loca	ation ne: k	: KAF	B, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Dia	ameter	Low	ver (i	n.): 16 n.): 14-3/4 pe: Flush	
D	ate S ate T	Started TD Re Compl	d: 5/ ache	18/20 d: 5/2	15 29/15		ime of nd of	f Drill Drilli	ling: ng:	458.00 Not Recorded	
Y	Coo	d Elev ordinat ordinat	e:	n AMS	SL (ft): Not Recorded	-	Contra Method	actor d: M	: Na lud F	tional Drilling	Page 8 of 19
10 Depth (ft)		Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Wel	l Diagram	Remarks
21:	-				Poorly graded GRAVEL with Silt Sand (GP-GM); reddish yellow (6/8); 70% fine gravel to 3/8"; sub to subrounded; 20% fine to coar 10% silt; gravel is mafics and qu sand is quartz and mafics.	7.5YR bangular se sand;	GP- GM				
	-				Poorly graded SAND (SP); reddi yellow (7.5YR 6/8); 90% coarse trace fine and medium sand; subrounded; 5% fine gravel to 3 silt; sand is mafics, quartzite, and granite; gravel is mafics.	sand; /8"; 5%					
220	<u>-</u> -				Same as above (215 ft).		SP				Kelly down @ 1002, resume drilling @ 1023.
22	-				Silty GRAVEL with Sand (GM); r yellow (7.5YR 6/8); 70% coarse trace fine gravel; subangular to subrounded; 15% fine sand; 15% gravel is mafics and granite; san mafics.	gravel; % silt;				- Portland Bentonite Cement	Hard drilling @ 227', possibly cemented formation.
230) - -				Same as above (225 ft).		GM				
23	-				Same as above (225 ft).						
24()							• • • • • •	••		

A	opendi	хL									
C	BI				Bore	Borehole ID: KAFB-106228					
Projec Projec	t Loca t Nam	ation: ie: K	: KAF	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
Projec Date S Date T Date C	tarted D Rea	l: 5/ [,] acheo	18/20 ⁷ d: 5/2	15 29/15	👳 At T	ime of nd of	f Drilli Drillin	BGS (ft): ng: 458.00 g: Not Recorded			
	d Elev rdinate	vation e:		L (ft): Not Recorded	Drilling	Contra Method	actor: d: Mu	National Drilling	Page 9 of 19		
65 Depth (ft) Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks		
240				Silty SAND (SM); reddish yellow 6/6); 70% fine to coarse sand; subangular to subrounded; 10% gravel to 3/8"; 20% silt; sand is r and granite; gravel is feldspar. Same as above (240 ft).	fine	SM		• • • •	Kelly down @ 1150, resume drilling @ 1258.		
250 - - 255 - -				Well-graded SAND with Silt and (SW-SM); reddish yellow (7.5YF 60% fine to coarse sand; subang subrounded; 30% fine gravel to angular to subrounded; 10% silt mafics and granite; gravel is ma granite, and quartz. Same as above (250 ft).	8 6/6); gular to 3/8"; ; sand is	SW- SM		- Portland Bentonite Cement	Gravel clasts are generally flat.		
- 260 - - -				Silty SAND (SM); yellowish brow 5/6); 80% coarse sand; trace fin medium sand; angular to subrou 20% silt; sand is mafics and grad	e and inded;		• • • •	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Kelly down @ 1410,		
265				Same as above (260 ft); 70% co sand; trace fine and medium sar silt.	barse nd; 30%	SM	• • • •	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	resume drilling @ 1420.		

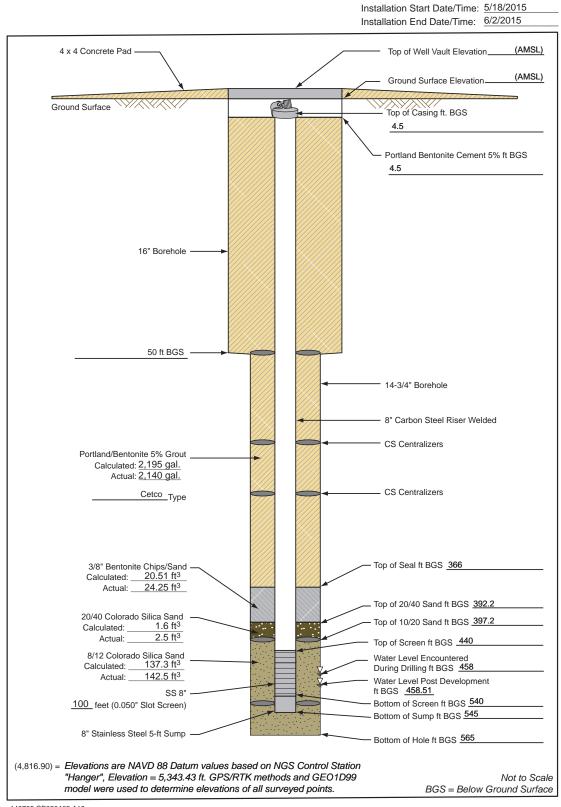
A	opend	IX L									
C	BI				Bore	eho	le I	D: KAFB-	106228		
Projec Projec	t Loca t Nam	ation: ne: K	KAF AFB	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
Projec Date S Date T Date C	tarteo D Re	d: 5/ ache	18/20 ⁷ d: 5/2	15 29/15	⊻ At T ▼ At E	ime of ind of l	f Drilli Drillin	s BGS (ft): ing: 458.00 ig: Not Recorded			
	d Elev rdinat	/atior e:		L (ft): Not Recorded		Contra Methoo	actor: d: Mu	National Drilling ud Rotary	Page 10 of 19		
02 Depth (ft) Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks		
_				Silty SAND (SM); yellowish brow 5/6); 70% coarse sand; trace fin medium sand; angular to subrou 30% silt; sand is mafics and gra	e and unded;				Some color change due to mud added.		
275				Same as above (270 ft).		SM		• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •			
280				Same as above (270 ft).				• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Kelly down @ 1455,		
285				Silty GRAVEL with Sand (GM); I yellowish brown (10YR 6/4); 60% gravel; angular to subangular; 1 sand; trace medium and coarse 25% silt; gravel is granite and qu sand is quartz.	% fine 5% fine sand;			- Portland Bentonite Cement	resume drilling @ 1515.		
290			$\frac{1}{2} \frac{1}{2} \frac{1}$	Same as above (285 ft)		GM					
295			20000000000000000000000000000000000000	Silty GRAVEL (GM); light brown 6/4); 80% fine gravel; angular to subangular; 20% silt; gravel is n and granite.)				Coarse mafic gravel observed @ 294' likely causing pipe to bounce.		

endix L									
10			Bore	eho	le l	D: KAFB-1	06228		
ocation ame: k	: KÁF (AFB I	B, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
ted: 5/ Reache	18/20 ⁷ d: 5/2	15 29/15	⊻ At T ▼ At E	ime o nd of	f Drilli Drillin	ng: 458.00 g: Not Recorded			
levatior ate:			Drilling Drilling N	Contra /lethoo	actor: d: Mu	National Drilling	Page 11 of 19		
Headspace	Lithologic Log	Material Description		U.S.C.S.	,	Well Diagram	Remarks		
		brown (7.5YR 6/4); 90% fine gra 3/8"; angular to subangular; 5% sand; subangular; 5% silt; grave	vel to coarse l is			 • •<	Kelly down @ 1550. Lost circulation @ 1600. Resume drilling @ 1605 with circulation.		
		Same as above (300 ft).				• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Drilling bit binding up at 305 to 310' likely due to coarse gravel.		
		light brown (7.5YR 6/4); 80% fin to 3/8"; angular to subangular; 1 medium to coarse sand; subang silt; gravel is mafics, granite, and	e gravel 5% ular; 5% d	GP		- Portland Bentonite Cement	Stop drilling @ 310' @ 1620 on 5/22/15. 1500 gallons mud used on 5/22/15. Resume drilling @ 0842 on 5/26/15, redrill 3' due to fill in bottom of hole.		
		brown (7.5YR 6/4); 85% fine gra 3/8"; angular to subangular; 10% sand; subangular; 5% silt; grave mafics and quartzite; sand is qua Poorly graded GRAVEL with Sa light brown (7.5YR 6/4); 80% fine to 3/8"; angular to subangular; 1 sand; subangular; 5% silt; grave	vel to 6 fine I is artz. nd (GP); e gravel 5% fine I is			• • • •	Drill bit bouncing likely due to coarse gravel. Kelly down @ 0902, resume drilling @ 0936.		
	ocation ame: k umber: ted: 5/ Reache npleted: Elevation nate: nate:	ocation: KAF ame: KAFB umber: 1407 ted: 5/18/20 Reached: 5/2 Elevation AMS hate: hat	Anterial Description Material Description	JS Army Corps of Engineers ocation: KAFB, Albuquerque, NM ame: KAFB BFF SWMU ST-106 and SS-111 umber: 140705 Hole Dia Surface Groundw Y At T umber: 140705 Y At T ted: 5/18/2015 Y At T Reached: 5/29/15 Y At T isevation AMSL (ft): Not Recorded nate: Drilling M Logged ate: Logged mate: Same as above (300 ft). mate: Same as above (310 ft).	JS Army Corps of Engineers ocation: KAFB, Albuquerque, NM ame: KAFB BFF SWMUST-106 and SS-111 umber: 140705 Hole Diamete Hole Diamete Surface Comp Groundwater I > At Time o Y At End of Y At End Y At	JS Army Corps of Engineers ocation: KAFB, Albuquerque, NM ame: KAFB BFF SWMU ST-106 and SS-111 umber: 140705 Hole Diameter Low Surface Completion ted: 5/18/2015 Reached: 5/22/15 npleted: 6/2/2015 Groundwater Levels A Time of Drilling Atter Dorilling: 4 Drilling Contractor: Drilling Method: ML ogged By: M. Gile ate: Material Description rig 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cocation: KAFB, Albüquerque, NM ame: KAFB, BFF SWMU ST-106 and SS-111 umber: 140705 ted: 5/18/2015 Reached: 5/29/15 pieted: 6/2/2015 Bevation AMSL (ft): Not Recorded piete: ate: Drilling: At End of Drilling: ate: Drilling Method: Muterial Description ate: Drilling Attract: Muterial Description 36 ^a gigg G Material Description G 37 ^a angular to subangular; 5% coarse sand; subangular; 5% subangular; 5% Fortland 9 ^a Poorty graded GRAVEL with Sand (GP); light brown (7.5YR 6/4); 80% fine gravel to 3/8°; angular to subangular; 5% GP 9 ^b Poorty graded GRAVEL (GP): light brown (7.5YR 6/4); 80% fine gravel to 3/8°; angular to subangular; 5% Fortland Bertonile Cement 9 ^b Poorty graded GRAVEL (GP): light brown (7.5YR 6/4); 80% fine gravel to 3/8°; angular to subangular; 5% Fortland Bertonile Cement 9 ^b Poorty graded GRAVEL (GP): light brown (7.5YR 6/4); 80% fine gravel to 3/8°; angular to subangular; 5% Fortland Bertonile Cement		

	A	opendi	ХL								
	Ľ	BI				Bore	eho	le I	D: KAFB-	106228	
Pro Pro	ojec ojec	t Loca t Nam	ation: ie: K	: Káf (AFB I	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush					
Da Da	te S te T	t Num Started D Rea Comple	l: 5/ [,] acheo	18/20 ⁷ d: 5/2	15 29/15	⊻ At T ▼ At E	ime of nd of	f Drill Drillir	ls BGS (ft): ling: 458.00 ng: Not Recorded		
Gro Y C	ouno Cooi	•	vation e:		L (ft): Not Recorded		Contra /lethoo	actor: d: M	National Drilling	Page 12 of 19	
E Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks	
335	-				Poorly graded GRAVEL with Sal light brown (7.5YR 6/4); 80% find to 3/8"; angular to subangular; 1 sand; subangular; 5% silt; grave granite and quartz; sand is quart	e gravel 5% fine I is	GP	· · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •		
-	-				Silty GRAVEL with Sand (GM); I brown (7.5YR 6/4); 70% fine gra 3/8"; angular to subangular; 15% sand; subangular; 15% silt; grav mafics and granite; sand is quar	vel to 6 fine el is			· · · · · · · · · · · · · · · · · · ·		
<u>340</u> - -	-				Same as above (335 ft).		GM		· · · · · · · · · · · · · · · · · · ·	Kelly down @ 1103, resume drilling @ 1125.	
<u>345</u> - -	-				Silty SAND (SM); brown (7.5YR 80% fine sand; trace medium sa subangular to subrounded; 20% sand is quartz.	ind;			- Portland Bentonite Cement		
350	-				Same as above (345 ft).		SM		· · · · · · · · · · · · · · · · · · ·		
<u>355</u> - - - - - - -	-				Poorly graded GRAVEL with Sal brown (7.5YR 5/4) 75% fine grav 3/8"; angular to subangular; 20% coarse sand; 5% silt; gravel is m granite, and quartzite; sand is qu mafics.	vel to 6 fine to afics,	GP		· · · · · · · · · · · · · · · ·	Rig bouncing slightly.	

	A	ppend	IX L									
		BI				Bore	ehol	e l	D:	KAFB-1	06228	
Pro Pro	ojec ojec	t Loca t Nam	ation ne: k	: KAF	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
Da Da	te S te T	Started	d: 5/ ache	18/20 d: 5/2	15 29/15	👤 At E	ime of nd of [Drilli Drillin	ing: ig:	458.00 Not Recorded		
Gro Y (oun Coo	rdinat	/atior e:		SL (ft): Not Recorded	Drilling N	Contra ⁄Iethod	ctor: : Mi	Na ud F	ational Drilling	Page 13 of 19	
		rdinat	e:			Logged	By: M	. Gile	es		Page 13 of 19	
00 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Wel	ll Diagram	Remarks	
-	-				Silty SAND (SM); brown (7.5YR 80% fine to coarse sand; angula subangular; 20% silt; trace crush coarse gravel; sand is quartz, mi quartzite.	r to ned	SM	• • • • • • • • • • • • • • • •		- Portland Bentonite Cement	Slow drilling, bit bouncing at 358 to 363 ft. Kelly down @ 1436, resume drilling @ 1438.	
365	-				Well-graded SAND with Gravel (brown (7.5YR 5/4); 60% fine to c sand; angular to subangular; 350 gravel to 3/8"; angular to subang silt; sand is mafics and quartz; g mafics and granite.	coarse % fine jular; 5%		•••	•••	- Top of Bentonite Seal		
370	-				Same as above (365 ft).							
375 375 380					Same as above (365 ft).		SW			-Bentonite Seal	Drill bit bouncing.	
385	-				Well-graded SAND with Silt (SW brown (7.5YR 5/4); 80% fine to c sand; angular to subangular; 10 ⁶ gravel to 3/8"; 10% silt; sand is c and mafics; gravel is mafics and	coarse % fine juartz	SW- SM				Kelly down @ 1710, resume drilling @ 1715. Used 1500 gallons mud	
390	-				Silty SAND (SM); brown (7.5YR 80% fine to coarse sand; angula subangular; 20% silt; sand is qua mafics.	r to	SM				on 5/26/15. Bit bouncing @ 1804.	

A	Append	1X L									
C	BI				Bore	Borehole ID: KAFB-106228					
Projec Projec	ct Loca ct Nam	ation: ie: K	KAF AFB I	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111		ameter	Lowe	r (ir	n.): 16 n.): 14-3/4 be: Flush		
Date S	ct Num Startec TD Rea Comple	l: 5/² acheo	18/20 ⁷ d: 5/2	15 29/15		ime of nd of l	^r Drillin Drilling	ng: g: N	458.00 Not Recorded		
Groun Y Coo	•	vation e:		L (ft): Not Recorded		Contra Aethoo	actor: d: Mue	Nat d R	tional Drilling	Page 14 of 19	
6 Depth (ft) Sample Type			Lithologic Log	Material Description	Logged	U.S.C.S.			Diagram	Remarks	
-				Silty SAND (SM); brown (7.5YR = 80% fine to coarse sand; angula subangular; 20% silt; sand is qua mafics.	r to	SM		-	Top of 20/40 Sand	Stop drilling @ 392.5' @ 1843 on 5/26/15. Used 1600 gallons mud on 5/26/15. Resume drilling @ 0205 on 5/27/15	
395 - - -				Well-graded SAND with Silt (SW gray (7.5YR 6/1); 80% fine to coas sand; subangular to subrounded fine gravel to 3/8"; subangular to subrounded; 10% silt; sand and are quartz and mafics.	arse ; 10%	SW- SM			Top of 10/20 Sand	@ 0805 on 5/27/15.	
400				Fat CLAY with Sand (CH); strong (7.5YR 5/6); medium plasticity; 8 clay; 20% fine sand; trace mediu coarse sand.	0%						
410				Same as above (399 ft).		СН				Stop drilling @ 1145. Trip out and replace drill bit, dump mud in shaker, and repair sand pump.	
415				Same as above (399 ft); sand is coarse.	more					Resume drilling @ 1738.	
420				Clayey SAND (SC); strong brown 5/6); 70% fine to coarse sand; subangular to subrounded; 30% sand is mafics, quartz, and grani	clay;	SC					


Appendix L							
CBI		Bore	hol	e ID: KAFB-1	06228		
	B, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush					
Project Number: 1407 Date Started: 5/18/207 Date TD Reached: 5/2 Date Completed: 6/2/2	15 29/15	⊻ At Ti ▼ At E	ime of nd of I	Levels BGS (ft): Drilling: 458.00 Drilling: Not Recorded			
Ground Elevation AMS Y Coordinate: X Coordinate:		Drillling (Contra Iethoc	ng: 458.51 ictor: National Drilling I: Mud Rotary I. Giles	Page 15 of 19		
075 Depth (ft) Sample Type Number Headspace PID Lithologic Logic	Material Description		U.S.C.S.	Well Diagram	Remarks		
425	Poorly graded SAND with Silt (S pinkish gray (7.5YR 6/2); 90% co sand; trace fine and medium sar subangular to subrounded; 10% sand is mafics, granite, quartz, a quartzite. Same as above (420 ft).	oarse nd; silt;					
430	Same as above (420 ft).		SP- SM		Pipe bouncing.		
435	Same as above (420 ft).				Pipe bouncing.		
440	Same as above (420 ft).			- Top of 8" Stainless Steel 0.050 Slot Screen			
445	Poorly graded SAND (SP); brow (7.5YR 5/4); 95% coarse sand; t	race fine			Stop drilling @ 443' @ 1846 on 5/27/15. Used 1600 gallons mud on 5/27/15. Resume drilling @ 0816 on 5/28/15.		
450	and medium sand; subangular to subrounded; 5% silt; sand is ma quartz, quartzite, and granite.		SP		Fine sand coming off the shaker.		

		BI				Bore	ehol	le ID	: KAFB-1	06228
Pr Pr	ojec ojec	t Loca t Nam	ation: ne: K	: KÁ (AFB	os of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Dia	ameter	Lower	(in.): 16 (in.): 14-3/4 ype: Flush	
Da Da	te S ite T	t Num Starteo D Re Compl	d: 5/ ache	18/20 d: 5/	15 29/15	🕎 At T	ime of Ind of I	[:] Drilling Drilling:	3GS (ft): g: 458.00 Not Recorded 3.51	
Y (Coo	d Elev rdinat rdinat	e:	n AMS	SL (ft): Not Recorded	-	Contra Methoo	ictor: N 1: Mud	National Drilling	Page 16 of 19
65 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	w	ell Diagram	Remarks
	-				Poorly graded SAND (SP); brow (7.5YR 5/4); 95% coarse sand; t and medium sand; subangular to subrounded; 5% silt; sand is ma quartz, quartzite, and granite.	race fine o	SP			Fine sand coming off the shaker.
<u>455</u>	-				Poorly graded SAND with Silt (S brown (7.5YR 5/4); 90% coarse trace fine and medium sand; any subrounded; 10% silt; sand is qu Y mafics, and granite.	sand; gular to				
460	-				Same as above (455 ft); 90% fin trace medium and coarse sand; subangular; sand is quartz.	ne sand;				
465	-				Same as above (455 ft); 90% fin trace medium and coarse sand; subangular; sand is quartz.	ne sand;	SP- SM		- 8" Stainless Steel 0.050 Slot Screen	
470	-				Same as above (455 ft); 90% fin trace medium and coarse sand; subangular; sand is quartz.	ie sand;				
475	-				Well-graded SAND with Silt (SW brown (7.5YR 5/4); 90% fine to o sand; subangular to subrounded silt; fine sand is quartz and mafie coarse sand is quartz, granite, a mafics.	coarse l; 10% cs;	SW- SM			Bit bouncing @ 478'.

		bendix				Dore	hal			00000
Pre	ojec	t Loca	ation:	KA	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Dia Hole Dia	ameter ameter	· Upper (· Lower (in.): 16 in.): 14-3/4 /pe: Flush	106228
Pro Da Da	ite S te T	t Nun Starteo D Re Compl	n ber: d: 5/ [/] acheo	1407 18/20 d: 5/2	705 15 29/15	Groundv ∑ At T ▼ At E	water L ime of nd of I	evels B Drilling:	GS (ft): 458.00 Not Recorded	
Y (Coo	d Elev rdinat rdinat	e:	AMS	SL (ft): Not Recorded	-	Contra Methoc	ictor: Na I: Mud I	ational Drilling	Page 17 of 19
8 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	We	ll Diagram	Remarks
	-				Well-graded SAND with Silt (SW brown (7.5YR 5/4); 90% fine to o sand; subangular to subrounded silt; fine sand is quartz and mafic coarse sand is quartz, granite, a mafics.	coarse l; 10% cs;				
485	-				Same as above (480 ft); fine sar quartz; medium and coarse san quartz, mafics, and quartzite.		SW- SM			
490	-				Same as above (480 ft); fine sar quartz; medium and coarse san quartz, mafics, and quartzite.					
495					Silty SAND (SM); brown (7.5YR 85% fine to coarse sand; suban subrounded; 15% silt; fine sand quartz; medium and coarse san granite, quartzite, and mafics.	gular to is			- 8" Stainless Steel 0.050 Slot Screen	A little bouncing.
500					Same as above (495 ft).		SM			A little bouncing.
<u>505</u> 510					Well-graded SAND (SW); browr 5/4); 95% fine to coarse sand; a subrounded; 5% silt; sand is qua mafics, and granite.	ngular to	SW			

	Ċ	BI				Bore	Borehole ID: KAFB-106228					
P P	rojeo rojeo	ct Loc ct Nan	ation: ne: K	KAF AFB	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush						
D	ate S ate T	ct Nur Starte TD Re Comp	d: 5/ [.] eacheo	18/20 d: 5/2	15 29/15	🔻 At E	ime of nd of I	Drilling:	458.00 Not Recorded			
Y	Coo	nd Ele ordinat ordinat	te:	AMS	SL (ft): Not Recorded	-	Contra Aethoc	ctor: Na I: Mud I	ational Drilling	Page 18 of 19		
Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	We	ll Diagram	Remarks		
51	-				Well-graded SAND (SW); brown 5/4); 95% fine to coarse sand; a subrounded; 5% silt; sand is qua mafics, and granite.	ngular to	SW					
	-				Poorly graded SAND (SP); brow (7.5YR 5/4); 95% coarse sand; t sand; subangular to subrounded sand is quartz, mica, and granite	race fine I; 5% silt;				Bit bouncing.		
520	-				Same as above (515 ft).					Bit bouncing.		
52	-				Same as above (515 ft).		SP		-8" Stainless Steel 0.050 Slot Screen	Bit bouncing.		
530	-				Same as above (515 ft).					Bit bouncing.		
53	-				Well-graded SAND (SW); brown 5/4); 95% fine to coarse sand; subangular to subrounded; 5% s is quartz, granite, and mica.		SW			Bit bouncing.		

	A	ppend	lix L								
		BI				Bore	ehol	e ID:	KAFB-1	06228	
Pro Pro	ojec ojec	t Loc t Nan	ation: ne: K	: KAF	s of Engineers FB, Albuquerque, NM BFF SWMU ST-106 and SS-111	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 Surface Completion Type: Flush					
Da Da	te S te T	Starte D Re	d: 5/ ache	1407 18/20 d: 5/2 6/2/2	15 29/15	👤 At E	ime of nd of I	[:] Drilling: Drilling:	458.00 Not Recorded		
Gro Y (oun Cool	•	vatior e:		L (ft): Not Recorded	-	Contra /lethoo	1: Mud F	ational Drilling	Page 19 of 19	
05 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		ll Diagram	Remarks	
	-				Well-graded SAND (SW); brown 5/4); 95% fine to coarse sand; subangular to subrounded; 5% s is quartz, granite, and mica.				Botton of Screen	Bit bouncing.	
545	-				Same as above (540 ft).		SW		- Bottom of Sump		
550	-				Poorly graded SAND (SP); brow (7.5YR 5/4); 95% coarse sand; t and medium sand; angular to subrounded; 5% silt; sand is qua mica, and granite.	race fine				Stop drilling @ 1845 on 5/28/15. Used 2,300 gallons of mud on 5/28/15. Resume drilling @ 0803 on 5/29/15.	
555	-				Same as above (550 ft).		SP				
<u>560</u> - -	-				Same as above (550 ft).						
565	-								Bottom of Ritter Pack	Total depth = 565 ft. Reached total depth @ 0847 on 5/29/15. Used 600 gallons of mud on 5/29/15. Used a total of 9,100 gallons mud on the entire boring.	

Extraction Well Completion Diagram KAFB-106228

140705.CB020403.A19

Groundwater Extraction Well Development

Project Name:	KAFB BFF			Well No.:	KAFB-106228
Location:	Gibson			Date Installed:	6/2/2015
Personnel:	VB, RW, EP		Casing	Diameter (I.D.):	8-inch
Start Date:	6/4/2015		Total	Depth (ft. BGS):	545
End Date:	6/16/2015				
Method of Develo	opment:				
X Surging	X Bailing X	Pumping X	Jetting		
X Original Devel	opment	Redevelopment	Other		
Screened Interv Weather: Var	er Before Developir val (ft. BGS): 440 - ried	540			
Equipment Numb	ers: pH: <u> </u>	NR	Conductivity: Turbidity:	NR NR	
Equipment Decon Describe:	taminated Prior to	Development?	X Yes	No	
Collected Sample Describe:	of Water Added to	Well? Yes	XNC)	
Comments:					

Summary of development procedure, including key decision-points, calculations, and observations (described in detail in the following pages):

Well development consisted of bailing, surging, pumping, and jetting. The first step of development removed mud and cuttings from the well casing and filter pack, which were generated during the drilling process, by surging and bailing. The second step entailed physical well development using surging, bailing, and pumping to assess development progress. These actions included taking measurements of sediment content in the water using the Imhoff cone technique, and applying 30 minutes of sustained pumping, measuring, and plotting drawdown to estimate development effectiveness. The third step used jetting with simultaneous pumping.

Bailing				
Date	Time	Total	Imhoff Cone	Comments
		Volume	Measurement	
		Bailed	(mL sediment	
		(gallons)	per L water)	
6/4/2015	1157	15	25	Bailer was full of dark mud.
6/4/2015	1215	120	5	Wait until 993 gallons to begin purging well.
6/4/2015	1530	1,000	30	Water/mud is dark brown.
6/5/2015	1243	1,015	25	Continue bailing. Water/mud is dark brown.
6/5/2015	1323	1,300	10	Water/mud is dark brown.
6/5/2015	1356	1,375	10	Water/mud is dark brown.
6/5/2015	1428	1,600	15	Lighter brown in color.
6/6/2015	1018	1,765	10	Lighter brown in color.
6/6/2015	1032	1,840	3	Lighter brown in color. Sand to 1 mm.
6/8/2015	1157	2,935	0.7	Water is light brown.
6/8/2015	1207	2,980	3.0	Water is light brown.
6/8/2015	1220	2,995	0.5	Water is light brown.
6/8/2015	1226	3,040	0.9	Water is light brown.

L = liter

mL = milliliter

Surging				
Interval (feet below ground surface)	Date	Start Time	End Time	Comments
540-535	6/5/2015	1746	1750	Begin purging.
535-530	6/5/2015	1752	1756	
530-525	6/5/2015	1757	1801	
525-520	6/5/2015	1802	1806	
520-515	6/5/2015	1807	1811	
515-510	6/5/2015	1812	1816	
510-505	6/5/2015	1816	1820	
505-500	6/5/2015	1821	1825	
500-495	6/5/2015	1826	1830	
495-490	6/5/2015	1834	1838	
490-485	6/5/2015	1838	1642	Stop purging for 6/5/2015.
485-480	6/6/2015	0844	0848	
480-475	6/6/2015	0850	0854	
475-470	6/6/2015	0855	0859	
470-465	6/6/2015	0900	0904	
465-460	6/6/2015	0905	0909	
460-455	6/6/2015	0910	0914	
455-450	6/6/2015	0915	0919	
450-445	6/6/2015	0921	0925	
445-440	6/6/2015	0926	0930	
540-440	6/6/2015	0940	0950	Four strokes.
540-535	6/8/2015	0910	0914	
535-530	6/8/2015	0916	0920	
530-525	6/8/2015	0921	0925	
525-520	6/8/2015	0926	0930	
520-515	6/8/2015	0932	0936	
515-510	6/8/2015	0937	0941	
510-505	6/8/2015	0943	0947	
505-500	6/8/2015	0951	0955	
500-495	6/8/2015	0957	1001	
495-490	6/8/2015	1002	1006	
490-485	6/8/2015	1008	1012	
485-480	6/8/2015	1014	1018	
480-475	6/8/2015	1022	1026	
475-470	6/8/2015	1029	1034	
470-465	6/8/2015	1035	1039	
465-460	6/8/2015	1040	1045	
460-455	6/8/2015	1046	1050	Out of saturated screen
540-455	6/8/2015	1056	1130	Six strokes.

Pumping										
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	pH (S.U)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Comments
6/6/2015	1325	4.55	NR	1,930	23.02	8.38	1.270	>1,000	NR	Water level meter malfunction prior to pumping
6/6/2015	1345	4.5	NR	2,020	25.24	8.71	1.104	>1,000	NR	
6/6/2015	1400	4.5	NR	2,100	23.48	8.78	1.090	>1,000	NR	Imoff = 1.5 mL
6/6/2015	1415	4.5	NR	2,170	23.66	8.79	0.986	>1,000	NR	Imoff =0.25 mL
6/6/2015	1430	4.5	NR	2,240	23.29	8.61	0.835	>1,000	NR	Imoff = 0.5 mL
6/6/2015	1445	4.5	NR	2,310	23.70	8.53	0.699	>1,000	NR	Imoff = 0.25 mL
6/6/2015	1500	4.0	NR	2,380	23.97	8.31	0.622	>1,000	NR	Imoff = 0.25 mL
6/6/2015	1515	4.0	NR	2,440	22.91	7.83	0.562	>1,000	NR	Imoff = 0.4 mL
6/6/2015	1530	4.0	NR	2,500	22.66	7.89	0.548	>1,000	NR	Imoff = 0.3 mL
6/6/2015	1545	4.0	NR	2,560	23.11	7.87	0.540	>1,000	NR	Imoff = 0.2 mL
6/6/2015	1600	4.0	NR	2,620	22.85	7.88	0.533	>1,000	NR	Imoff = 0.2 mL
6/6/2015	1615	4.0	479.00	2,680	22.49	7.78	0.534	>1,000	NR	Imoff = 0.4 mL
6/6/2015	1630	4.0	479.80	2,740	22.70	7.81	0.529	>1,000	NR	Imoff = 0.3 mL
6/6/2015	1645	4.0	NR	2,800	22.50	7.91	0.535	>1,000	NR	Imoff = 0.1 mL
6/6/2015	1700	4.0	NR	2,860	22.27	7.69	0.544	>1,000	NR	Imoff = 0.3 mL
6/6/2015	1715	4.0	NR	2,920	22.44	7.72	0.522	>1,000	NR	Imoff = 0.2 mL
6/9/2015	0720	11.0	467.15	3,722	21.19	8.42	0.529	>1,000	NR	Imoff = 0.1 mL; Pump at 532 feet bgs
6/9/2015	0740	11.0	467.80	3,940	21.16	8.32	0.508	781	NR	Imoff = < 0.1 mL
6/9/2015	0750	11.0	470.65	4,050	21.16	8.22	0.499	313	NR	Imoff = < 0.1 mL
6/9/2015	0800	11.0	471.10	4,160	21.16	8.21	0.503	278	NR	Imoff = < 0.1 mL
6/9/2015	0810	11.0	471.50	4,270	21.16	8.21	0.497	207	0.6	Imoff = < 0.1 mL
6/9/2015	0820	18.0	478.1	4,380	21.10	8.21	0.488	165	NR	Imoff = < 0.1 mL
6/9/2015	0830	19.0	482.80	4,560	20.85	8.21	0.522	196	NR	Imoff = < 0.1 mL
6/9/2015	0840	18.0	486.20	4,750	20.87	8.25	0.514	429	NR	Imoff = < 0.1 mL
6/9/2015	0850	18.5	487.00	4,930	20.88	8.26	0.507	452	NR	Imoff = < 0.1 mL
6/9/2015	0900	19	486.00	5,125	20.80	8.20	0.491	351	NR	Imoff = 0.1 mL
6/9/2015	0910	18	485.20	5,315	20.75	8.17	0.496	262	NR	Imoff = < 0.1 mL
6/9/2015	0920	18	485.10	5,495	20.75	8.16	0.493	230	NR	Imoff = < 0.1 mL
6/9/2015	0930	18	484.50	5,670	20.77	8.16	0.487	184	NR	Imoff = 0.1 mL
6/9/2015	0940	18	484.00	6,850	20.63	8.14	0.491	176	0.64	Imoff = 0.1 mL
6/9/2015	1025	21	471.20	6,930	21.41	8.19	0.910	146	NR	Imoff = 0.1 mL; Pump at 511 feet bgs

Date	Time	Rate	Depth	Volume	Temp	рН	EC	Turbidity	Specific	Comments
Date	Time	(gpm)	to	Removed	(°C)	рп (S.U.)	(mS/cm)	(NTU)	Capacity	Comments
		(gpiii)	Water	(gallons)	()	(3.0.)	(IIIS/CIII)	(1110)	(gpm/ft)	
			(ft BGS)	(Ballolis)					(6011)10)	
6/9/2015	1035	20	476.95	7,130	20.86	7.99	0.503	75.4	NR	Imoff = 0.1 mL
6/9/2015	1045	20	480.50	7,330	20.85	8.11	0.487	11.5	NR	Imoff = < 0.1 mL
6/9/2015	1055	20	481.75	7,530	20.94	8.15	0.478	143	NR	Imoff = < 0.1 mL
6/9/2015	1055	20	482.35	7,730	20.87	8.15	0.480	147	0.79	Imoff = < 0.1 mL
6/9/2015	1135	21	468.00	7,830	22.84	8.24	0.478	136	NR	Imoff = < 0.1 mL
										Pump at 490 feet
										bgs
6/9/2015	1145	22	480.00	8,050	20.66	7.96	0.490	96.4	NR	Imoff = < 0.1 mL
6/9/2015	1155	20	479.00	8,270	20.71	8.05	0.456	88.2	NR	Imoff = < 0.1 mL
6/9/2015	1205	20	479.50	8,470	20.72	8.08	0.454	96.5	NR	Imoff = < 0.1 mL
6/9/2015	1215	20	479.50	8,670	20.66	8.08	0.468	89.0	NR	Imoff = < 0.1 mL
6/9/2015	1225	20	479.50	8,870	20.64	8.08	0.461	76.6	NR	Imoff = < 0.1 mL
6/9/2015	1235	20	479.50	9,070	20.63	8.08	0.460	73.5	0.89	Imoff = < 0.1 mL
6/9/2015	1245	20	479.50	9,270	20.66	8.09	0.450	73.7	0.89	Imoff = < 0.1 mL
6/9/2015	1255	20	479.50	9,470	20.71	8.10	0.458	72.1	0.89	Imoff = < 0.1 mL
6/9/2015	1305	20	479.50	9,670	20.73	8.10	0.455	79.8	0.89	Imoff = < 0.1 mL
6/9/2015	1320	20	479.00	9,970	20.71	8.08	0.452	68.8	0.90	Imoff = < 0.1 mL
6/9/2015	1415	20	465.00	10,010	21.02	8.24	0.458	125	2.5	Imoff = < 0.1 mL;
										Pump at 506 feet
										bgs
6/9/2015	1425	21	474.00	10,220	20.61	7.85	0.444	50.2	2.4	Imoff = < 0.1 mL
6/9/2015	1435	21	477.15	10,420	20.66	7.99	0.452	82.4	1.05	Imoff = < 0.1 mL
6/9/2015	1445	21	477.00	10,630	20.68	8.00	0.494	80.0	1.05	Imoff = < 0.1 mL
6/9/2015	1455	21	477.00	10,840	20.65	8.01	0.452	73.7	1.05	Imoff = < 0.1 mL;
										Pump at 501 feet
										bgs
6/9/2015	1505	21	476.50	11,050	20.74	8.02	0.458	72.4	1.08	Imoff = < 0.1 mL;
										Pump at 496 feet
										bgs
6/9/2015	1515	21	476.50	11,260	20.64	8.03	0.449	68.8	1.08	Imoff = < 0.1 mL
6/9/2015	1540	22	467.30	11,360	20.68	7.47	0.406	155	2.14	Imoff = < 0.1 mL;
										Pump at 527 feet
										bgs
6/9/2015	1550	22	477.50	11,580	20.59	7.89	0.432	45.2	1.07	Imoff = < 0.1 mL;
										Pump at 527 feet
										bgs
6/9/2015	1600	22	477.90	11,800	20.65	7.95	0.442	74.1	1.05	Imoff = < 0.1 mL
6/9/2015	1610	22	477.69	12,020	20.60	7.99	0.446	67.0	1.06	Imoff = $< 0.1 \text{ mL};$
										Pump at 522 feet
										bgs

Pumping										
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U.)	EC (mS/cm)	Turbidit y (NTU)	Specific Capacity (gpm/ft)	Comments
6/9/2015	1620	22	477.40	12,240	20.62	8.02	0.441	59.9	1.08	Imoff = < 0.1 mL
6/9/2015	1630	21	477.50	12,450	20.69	8.00	0.500	49.3	1.02	Imoff = < 0.1 mL; Pump at 502 feet bgs
6/9/2015	1640	21	477.39	12,660	20.69	8.03	0.446	48.7	1.03	Imoff = < 0.1 mL
6/9/2015	1650	45	496.30	13,110	20.51	8.00	0.474	87.0	1.15	Imoff = < 0.1 mL; Pump at 532 feet bgs
6/9/2015	1700	43	507.90	13,540	20.31	8.04	0.476	92.0	0.84	Imoff = 1.0 mL
6/10/2015	1700	45	471.90	15,810	22.82	8.69	0.448	143	3.02	Imoff = < 0.1 mL; Pump at 513 feet bgs
6/10/2015	1710	45	474.00	16,260	21.25	7.97	0.443	70.9	2.65	Imoff = < 0.1 mL
6/10/2015	1720	45	474.90	16,710	21.02	7.96	0.429	59.9	2.15	Imoff = < 0.1 mL
6/11/2015	0810	46	466.00	17,537	21.59	7.20	0.459	17.6	5.11	Imoff = 0 mL; Pump at 481.5 feet bgs
6/11/2015	0820	45.5	470.60	17,442	20.33	7.19	0.458	49.7	3.31	Imoff = 0 mL
6/11/2015	0830	45.5	471.70	18,447	20.46	7.31	0.444	62.3	3.10	Imoff = 0 mL
6/11/2015	0840	45.5	472.30	18,902	19.91	7.37	0.440	45.9	2.97	Imoff = 0 mL
6/12/2015	1435	45	460.50	20,098	26.45	6.79	0.527	15.2	12.16	Imoff = 0 mL; Pump at 533 feet bgs
6/12/2015	1445	45	461.31	20,548	25.42	7.31	0.526	5.79	9.20	Imoff = 0 mL
6/12/2015	1455	45	461.64	20,998	22.71	7.57	0.443	2.55	9.20	Imoff = 0 mL
6/12/2015	1505	45	461.89	20,448	21.57	7.64	0.428	1.90	8.84	Imoff = 0 mL
6/12/2015	1515	45	462.02	20,898	20.98	7.61	0.426	1.72	8.65	Imoff = 0 mL
6/13/2015	2031	45	460.00	38,341	25.52	8.63	0.511	13.7	15	Imoff = < 0.1 mL; Pump at 533 feet bgs
6/13/2015	2041	45	460.66	38,791	20.98	8.19	0.364	8.58	12.30	Imoff = 0 mL
6/13/2015	2051	45	460.77	39,241	20.76	8.12	0.380	9.79	11.94	Imoff = 0 mL
6/13/2015	2101	45.5	460.91	39,691	20.65	8.10	0.380	6.95	11.64	Imoff = 0 mL
6/13/2015	2111	45	460.99	40,141	20.56	8.10	0.379	4.96	11.28	Imoff = 0 mL
6/13/2015	2121	45	461.05	40,591	20.51	8.10	0.378	4.64	11.11	Imoff = 0 mL
6/13/2015	2131	45	461.10	41,041	20.48	8.11	0.378	4.32	10.98	Imoff = 0 mL
6/13/2015	2141	45	461.10	41,491	20.49	8.12	0.377	5.48	10.98	Imoff = 0 mL
6/15/2015	2120	45	452.05	53,048	27.21	7.87	0.500	14.3	NR	Imoff = < 0.1 mL
6/15/2015	2130	45	460.62	53,498	25.03	7.88	0.481	31.0	12.61	Imoff = < 0.1 mL
6/15/2015	2140	45	460.77	53,948	23.53	7.91	0.429	16.3	12.01	Imoff = < 0.1 mL
6/15/2015	2150	45	460.82	54,398	22.80	7.93	0.399	8.86	11.94	Imoff = < 0.1 mL

Pumping										
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U.)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Comments
6/15/2015	2200	45	460.90	54,848	22.28	7.96	0.391	5.14	11.69	Imoff = < 0.1 mL
6/15/2015	2208	NR	NR	55,208						Shut off pump.
6/16/2015	1900	56	462.75	56,273	21.79	8.31	0.423	109	12.97	Imoff = < 0.1 mL
6/16/2015	1910	55	462.76	56,823	21.05	8.27	0.401	58.6	12.97	Imoff = < 0.1 mL
6/16/2015	1920	55	462.84	57,373	20.88	8.30	0.396	27.7	12.70	Imoff = < 0.1 mL
6/16/2015	1930	55	462.87	57,923	20.76	8.30	0.396	21.3	12.61	Imoff = < 0.1 mL
6/16/2015	1940	55	462.91	58,473	20.68	8.30	0.392	17.1	12.5	Imoff = < 0.1 mL
6/16/2015	1950	55	462.94	59,023	20.63	8.31	0.391	12.6	12.42	Imoff = < 0.1 mL
6/16/2015	2000	55	462.97	59,573	20.57	8.31	0.391	12.6	12.33	Imoff = < 0.1 mL
6/16/2015	2020	55	463.01	60,673	20.50	8.32	0.390	7.90	12.22	Imoff = < 0.1 mL
6/16/2015	2040	55	461.66	61,773	20.43	8.33	0.389	7.64	12.14	Imoff = < 0.1 mL
6/16/2015	2130	55	461.75	63,523	20.37	8.32	0.388	4.46	11.90	Imoff = < 0.1 mL

°C = degrees Celsius

EC = Electric Conductivity

ft bgs = feet below ground surface

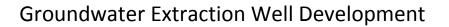
gpm = gallons per minute

gpm/ft = gallons per minute per foot

mL = milliliter

mS/cm = millisiemen per centimeter

NR = not recorded


NTU = Nephelometric Turbidity Unit

S.U. = Standard Unit

Jetting						
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Comments
6/9/2015	1715	484.5	29	45.5	0.2	Jet = 130 psi
6/9/2015	1721	481.5	29	45.5	0.7	Jet = 130 psi
6/9/2015	1724	478.5	29.5	45	0.5	Jet = 129 psi
6/9/2015	1736	475.5	29			Shut pump off @ 1734
6/9/2015	1740	472.5	29			Jet = 130 psi
6/9/2015	1744	469.5	29.5			Jet = 130 psi
6/9/2015	1748	466.5	29			Jet = 129 psi
6/9/2015	1751	463.5	29			Jet = 129 psi
6/9/2015	1755	460.5	29.5			Jet = 129 psi
6/10/2015	1450	531.5	22	44	< 0.1	Jet = 72 psi
6/10/2015	1505	536.5	24	45	0.3	Jet = 118 psi
6/10/2015	1514	533.5	24	45	0.1	Jet = 118 psi
6/10/2015	1518	530.5	24	45	0.2	Jet = 118 psi
6/10/2015	1524	527.5	24	46	0.5	Jet = 118 psi
6/10/2015	1529	524.5	24	46	0.1	Jet = 118 psi
6/10/2015	1534	521.5	24	45.5	0.1	Jet = 118 psi; Pumped 2,300 gallons
6/10/2015	1632	517.5	25	46	< 0.1	Jet = 117 psi
6/10/2015	1636	514.5	25	45	0.3	Jet = 117 psi
6/10/2015	1640	511.5	25	45.5	2.0	Jet = 117 psi
6/10/2015	1644	508.5	25	45.5	0.5	Jet = 117 psi
6/10/2015	1802	505.5	28	46	0.1	Jet = 117 psi
6/10/2015	1806	502.5	28	46	0.1	Jet = 116 psi
6/10/2015	1812	499.5	28.5	45.5	0.1	Jet = 116 psi
6/10/2015	1816	496.5	29	45	0.1	Jet = 117 psi
6/10/2015	1819	493.5	28	45	0.1	Jet = 117 psi
6/10/2015	1824	490.5	28	44	0.2	Jet = 117 psi
6/10/2015	1830	487.5	28	44.5	0.1	Jet = 117 psi; Stop jetting.
	al of 2,58	5 gallons a	nd pumped o	ut 6,490 gallo	ns on 6/10/2015	
6/12/2015	0756	536.5	27	46	< 0.1	Jet = 129 psi
6/12/2015	0802	533.5	27	46	0.4	Jet = 129 psi
6/12/2015	0808	530.5	27	46	0.3	Jet = 128 psi
6/12/2015	0814	527.5	26	46	0.5	Jet = 128 psi
6/12/2015	0820	524.5	29	46	0.3	Jet = 129 psi
6/12/2015	0826	521.5	30	46	< 0.1	Jet = 128 psi
6/12/2015	0832	518.5	30	46	< 0.1	Jet = 128 psi
6/12/2015	0838					Breaking Connection.
6/12/2015	0934	515.5	26	45.5	< 0.1	Jet = 130 psi
6/12/2015	0940	512.5	26	46	0.1	Jet = 129 psi

Jetting						
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Comments
6/12/2015	0946	509.5	26.5	46	< 0.1	Jet = 130 psi
6/12/2015	0952					Breaking Connection.
6/12/2015	1032	506.5	27.5	45	< 0.1	Jet = 132 psi
6/12/2015	1038	503.5	28	45	< 0.1	Jet = 131 psi
6/12/2015	1044	500.5	28	45	< 0.1	Jet = 131 psi
6/12/2015	1050	497.5	28	45	< 0.1	Jet = 132 psi
6/12/2015	1056	494.5	28	45	< 0.1	Jet = 131 psi
6/12/2015	1102	491.5	28	46	< 0.1	Jet = 131 psi
6/12/2015	1108					Breaking Connection.
6/12/2015	1234	488.5	16	44	< 0.1	Jet = 130 psi
6/12/2015	1248	485.5	16	45	< 0.1	Jet = 132 psi
6/12/2015	1254	482.5	16	45	< 0.1	Jet = 132 psi; Stop pumping
6/12/2015	1300	479.5	16			Jet = 132 psi
6/12/2015	1306	476.5	16			Jet = 132 psi
6/12/2015	1312	473.5	16			Jet = 132 psi
6/12/2015	1318	470.5	16			Jet = 132 psi
6/12/2015	1324	467.5	16			Jet = 132 psi
6/12/2015	1330	464.5	15.5			Jet = 132 psi
6/12/2015	1336					Stop Jetting; Drop pump to bottom.
6/12/2015	1544	536.5	12	45	< 0.1	Jet = 132 psi; DTW = 460.20
6/12/2015	1551	533.5	11	45	< 0.1	Jet = 132 psi; DTW = 460.50
6/12/2015	1557	530.5	11	45	0.1	Jet = 132 psi
6/12/2015	1605	527.5	11	45	< 0.1	Jet = 132 psi
6/12/2015	1612	524.5	10	45	< 0.1	Jet = 132 psi
6/12/2015	1618	521.5	11	45	< 0.1	Jet = 132 psi; DTW = 461.50
6/12/2015	1620					Stop Jetting for repairs.
6/13/2015	1340	536.5	42	45	< 0.1	Jet = 120 psi
6/13/2015	1348	533.5	42	45	0.2	Jet = 120 psi
6/13/2015	1356	530.5	42	45	0.1	Jet = 120 psi
6/13/2015	1402	527.5	42	45	0.1	Jet = 120 psi
6/13/2015	1409	524.5	42	45	0.3	Jet = 120 psi
6/13/2015	1415	521.5	41	45.5	< 0.1	Jet = 120 psi
6/13/2015	1639	518.5	42	45	0.1	Jet = 122 psi
6/13/2015	1646	515.5	42	45.5	0.2	Jet = 121 psi
6/13/2015	1652	512.5	42	45.5	0.1	Jet = 121 psi
6/13/2015	1659	509.5	42	45	0.1	Jet = 121 psi
6/13/2015	1730	506.5	42	45	< 0.1	Jet = 122 psi

Jetting						
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Comments
6/13/2015	1736	503.5	42	45	0.1	Jet = 122 psi
6/13/2015	1811	500.5	42	45	< 0.1	Jet = 122 psi
6/13/2015	1818	497.5	42	45	< 0.1	Jet = 122 psi
6/13/2015	1825	494.5	42	45	< 0.1	Jet = 122 psi
6/13/2015	1831	491.5	42	45	0.1	Jet = 122 psi
6/13/2015	1837	488.5	42	45	0.2	Jet = 122 psi
6/13/2015	1924	485.5	42	45	0.1	Jet = 121 psi
6/13/2015	1931	482.5	42	45.5	0.1	Jet = 121 psi
6/13/2015	1937	479.5	42	45.5	< 0.1	Jet = 121 psi
6/13/2015	1941					Stop Jetting; Out of water
6/15/2015	0723	536.5	42	45.5	0.7	Jet = 124 psi
6/15/2015	0729	533.5	42	45.5	0.1	Jet = 124 psi
6/15/2015	0735	530.5	42	45.5	< 0.1	Jet = 124 psi
6/15/2015	0741	527.5	42	45	< 0.1	Jet = 124 psi
6/15/2015	0746	524.5	42	45.5	< 0.1	Jet = 123 psi
6/15/2015	0752	521.5	42	46	< 0.1	Jet = 123 psi
6/15/2015	0758	518.5		46		Stop Jetting; Out of water
6/15/2015	0906	518.5	18	45	< 0.1	Jet = 50 psi
6/15/2015	0912	515.5	42	45	< 0.1	Jet = 120 psi
6/15/2015	0918	512.5	42	45	< 0.1	Jet = 122 psi
6/15/2015	0924	509.5	42	45.5	< 0.1	Jet = 122 psi
6/15/2015	0930					Remove stick
6/15/2015	1013	506.5	41	45	< 0.1	Jet = 119 psi
6/15/2015	1019	503.5	42	45	< 0.1	Jet = 120 psi; Out of water
6/15/2015	1100	500.5	42	46	< 0.1	Jet = 120 psi
6/15/2015	1106	497.5	41	46	< 0.1	Jet = 120 psi
6/15/2015	1112	494.5	41	46	< 0.1	Jet = 120 psi
6/15/2015	1118	491.5	40.5	46	< 0.1	Jet = 120 psi
6/15/2015	1124	488.5	40.5	46	< 0.1	Jet = 120 psi
6/15/2015	1201	485.5	41	45	0.1	Jet = 120 psi
6/15/2015	1207	482.5	41	45	< 0.1	Jet = 120 psi; Out of water
6/15/2015	1303	479.5	41	45	< 0.1	Jet = 117 psi; DTW = 457.7
6/15/2015	1309	476.5	41	45	< 0.1	Jet = 117 psi
6/15/2015	1315	473.5	41	46	< 0.1	Jet = 117 psi
6/15/2015	1321	470.5	41	46	< 0.1	Jet = 117 psi
6/15/2015	1327	467.5	41			Jet = 117 psi; Pump off
6/15/2015	1333	464.5	41			Jet = 117 psi
6/15/2015	1339	461.5	41			Jet = 117 psi
6/15/2015	1447	461.5	41			Jet = 117 psi

Jetting						
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Comments
6/15/2015	1451					Stop jetting due to lightning
6/15/2015	1602	461.5	41			Jet = 122 psi; Finish section
6/15/2015	1604	464.5	41			Jet = 122 psi
6/15/2015	1610	467.5	41			Jet = 122 psi
6/15/2015	1616	470.5	41	45	< 0.1	Jet = 121 psi; Start pumping
6/15/2015	1622	473.5	41	46	< 0.1	Jet = 121 psi
6/15/2015	1628	476.5	41	46	< 0.1	Jet = 121 psi
6/15/2015	1634	479.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1640	482.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1646					Out of water; Add 20 feet of pipe
6/15/2015	1741	485.5	41	44	0.1	Jet = 121 psi
6/15/2015	1747	488.5	41	45	0.1	Jet = 121 psi
6/15/2015	1753	491.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1759	494.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1805	497.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1811	500.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1817					Add pipe
6/15/2015	1841	503.5	41	45	< 0.1	Jet = 121.5 psi
6/15/2015	1847	506.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1853					Out of water
6/15/2015	1931	509.5	42	45	< 0.1	Jet = 121 psi
6/15/2015	1937	512.5	41	46	< 0.1	Jet = 121 psi
6/15/2015	1945	515.5	41	45	< 0.1	Jet = 121 psi
6/15/2015	1950	518.5	42	45.5	< 0.1	Jet = 121 psi
6/15/2015	1956	521.5	42	45	< 0.1	Jet = 121 psi
6/15/2015	2002	521.5				Add pipe
6/15/2015	2030	524.5	42	46	< 0.1	Jet = 121 psi
6/15/2015	2036	527.5	42	46	< 0.1	Jet = 121 psi
6/15/2015	2042	530.5	42	46	< 0.1	Jet = 121 psi
6/15/2015	2048	533.5	42	46	< 0.1	Jet = 121 psi
6/15/2015	2054					Turn off jet pump

ft bgs = feet below ground surface

gpm = gallons per minute

L = liter

mL = milliliter

psi = pounds per square inch

Pro	iec	t Loc	ation	: KA	os of Engineers Hole Di	amete	r Uppe	D: KAFB- er (in.): 16 er (in.): 14-3/4	SEGIESSIONAL GE
Pro Date Date Date Gro Y C	jec e S e T e C	et Nun Starteo D Re Compl d Elev rdinat	nber: d: 9/ ache eted: /atior e:	500 8/201 d: 9/	433 Ground 5 ♀ At T 18/2015 ♀ At E ♀ At T ♀ At T	water ime o nd of r Drilli Contra Metho	Levels f Drillin Drillin ng: 4 actor: d: Mu	BGS (ft): ng: 450.00 g: Not Recordec 59.60 National Drilling id Rotary	8881903-220
	Sample Type	numper Numper	1	Lithologic Log	Logged Material Description	By: N S.O.S.N		s Well Diagram	Remarks
					No lithologic description. Sandy SILT (ML); pinkish white (7.5YR 8/2); dry; soft; 60% silt; 40% fine to coarse sand; angular to subangular. Note: sand is quartz and mafics. Poorly graded GRAVEL with Silt and Sand (GP-GM); reddish yellow (7.5YR 7/6); 60% fine gravel to 3/4"; angualr to subangular; 30% fine to coarse sand; subangular to subrounded; 10% silt. Note: gravel is mafics and granite. Sand is mafics, quartzite, and quartz. Poorly graded SAND with Silt and Gravel (SP-SM); brown (7.5YR 5/3); 70% coarse sand; trace fine and medium sand; subangular to subrounded; 20% fine gravel to 1/2"; subangular; 10% silt. Note: sand is quartz, mafics, and quartzite. Gravel is mafics.	ML GP- GM SP- SM		- Top of Casing/Top of Portland Bentonite Cement - Portland Bentonite Cement	Borehole was potholed from 0 - 12'. Begin advancing 16" casing @ 1140 on 9/8/15. Kelly down @ 1201, new 10' connection. Resume drilling @ 1400.

	A	ppend	lix L						
		BI			Bore	eho	le l	D: KAFB-	106233
Pro Pro	ojec Djec	t Loc	ation ne: k	: KÁI (AFB	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	amete	rlów	er (in.): 16 er (in.): 14-3/4 n Type: Flush	
Da Da	te S te T	Starte	d: 9/a ache	8/201 d: 9/	Ground 5	Time o End of	f Drill Drillir	s BGS (ft): ing: 450.00 ng: Not Recorde 159.60	d
ΥC	Cool	d Elev rdinat rdinat	e:	n AMS	L (ft): Not Recorded Drilling	Contra Metho	actor: d: M	National Drilling ud Rotary	Page 2 of 24
영 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks
30	-				Poorly graded SAND with Silt and Grave (SP-SM); brown (7.5YR 5/3); 70% coarse sand; trace fine and medium sand; subangular to subrounded; 20% fine gravel to 1/2"; subangular; 10% silt. Note: sand is quartz, mafics, and quartzite. Gravel is mafics.	SP- SM	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	
-	-				Gravelly SILT with Sand (ML); light brown (7.5YR 6/4); low plasticity; 60% silt; 25% fine gravel to 1/2"; angular to subangular; 15% medium to coarse sand.		- • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Cuttings come out of cyclone as mush.
40	-				Sandy SILT (ML); light brown (7.5YR 6/4); low plasticity; 50% silt; 40% coarse sand; angular to subangular; 10% fine gravel to 1/2"; angular to subangular. Note: gravel is mafics.	ML	• • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Kelly down @ 1615, new connection. Resume drilling @ 1735.
45	-				Same as above (40 ft).		• • • • • • • • • •	 Portland Bentonite Cement 	
50					Same as above (40 ft); trace clay. Same as above (40 ft).				Kelly down @ 1820. End of 9/8/15. Resume drilling with 16" casing @ 0812 on 9/9/15. Used approximately 500 gallons of water.
55	-				Silty SAND (SM); brown (7.5YR 4/4); 85% very fine to fine sand; trace gravel; 15% silt.				
- - - 60	-				Same as above (53 ft); 80% fine to coarse sand; 20% silt. Note: sand is quartz and mafics. Same as above (53 ft); 80% fine to coarse sand; 20% silt; trace clay. Note: sand is quartz and mafics.	SM			Kelly down @ 0902, new 10' connection. Resume drilling @ 1011.

	-	pene	lıx L								
		31			Bo	oreł	10	le l	D: KAFB	-106233	
Pro Pro	ject ject	Loca Nam	ation ne: k	: KAF	B, Albuquerque, NM Hole RAPID SWMU ST-106 and SS-111Surf .33	e Diarr face C	ietei omp	Low			
Dat	e TI) Re			Groundwater Levels BGS (ft): 15 √ At Time of Drilling: 450.00 ↓ 18/2015 ↓ At End of Drilling: Not Recorded ↓ After Drilling: 459.60						
ΥC	oord	Elev dinat dinat	e:	n AMS	Drilli		tho	d: M	National Drilling ud Rotary es	Page 3 of 24	
g Depth (ft)	Number Number Headspace PID Lithologic Log			Lithologic Log	Material Description		ທ່ O ທີ່ Well Diagram ລ		Well Diagram	Remarks	
-					Sandy SILT (ML); strong brown (7.5Y 4/6); low plasticity; 50% silt; 40% fine sand; trace medium sand; 10% fine gravel to 3/8".			· · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	PID = 0.0 ppm @ mud pit. PID = 0.0 ppm @ mud	
<u>65</u> - -					SILT (ML); yellowish red (5YR 5/6); 9 silt; 10% coarse sand; angular.	0%				pit. Driller added water to clean out hose and cyclone. Kelly down @ 1107, new 10' connection. Resume drilling @ 1123.	
 					Same as above (65 ft); yellowish red (5YR 5/8); trace clay.		ИL				
75					Same as above (65 ft); yellowish red (5YR 5/8); trace clay.			 . .<	- Portland Bentonite Cement	PID = 0.0 ppm @ mud pit.	
80										Kelly down @ 1212 @ 77'. Reach total depth with 16" casing @ 1246. End	
85					Lean CLAY with Sand (CL); light greenish gray (Gley1 8/1); soft; low plasticity; 80% clay; 20% fine sand; tr coarse sand.		CL			of 9/9/15. Resume drillin with mud rotary @ 1010 on 9/10/15. Used a total of 1,100 gallons of water to date.	
<u>co</u> - -					SILT with Sand (ML); brown (7.5YR 5 low plasticity; 75% silt; 25% very fine fine sand.	to	ИL			PID = 0.0 ppm @ mud pit.	

Project Project Project Date S Date T Date C Groun	t Loc t Nan t Nur Starte D Re Comp d Ele	ation ne: hber: d: 9/ eache leted: vatior	: KA KAFB 5004 8/201 d: 9/	FB, Albuquerque, NM Hole D RAPID SWMU ST-106 and SS-111Surfac 433 Ground 5 ⊊ At 18/2015 ♀ At ♀ At	Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 SS-111Surface Completion Type: Flush Groundwater Levels BGS (ft):					
Y Coo X Coo				Drilling	Metho	d: M	ud Rotary	Page 4 of 24		
Bepth (ft) Sample Type	Number	Headspace	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks		
95				SILT with Sand (ML); brown (7.5YR 5/4) low plasticity; 75% silt; 25% very fine to fine sand.	; ML			PID = 0.0 ppm @ mud pit.		
<u>-</u> - 100				Lean CLAY with Sand (CL); yellowish red (5YR 5/8); soft; low plasticity; 70% clay; 10% silt; 20% fine to medium sand				Kolly down @ 1152, pa		
- - 105				Same as above (95 ft); 20% coarse sand; angular. Same as above (95 ft); 30% fine to			- Portland Bentonite	Kelly down @ 1152, ne 20' connection. Resume drilling @ 1247.		
- - - 110 - -				coarse sand; no silt. Lean CLAY (CL); yellowish red (5YR 5/8); soft; low plasticity; 90% clay; 10% meduim to coarse sand.	CL		Cement	PID = 0.0 ppm @ mud pit.		
<u>115</u>				Same as above (110 ft).						
120						• • • • • • • •	• • • • • • • •	PID = 0.0 ppm @ mud pit.		

1 \	ppend	IX L					
C	BI			Bore	eho	le ID: KAFB-	106233
Projec Projec	t Loc Nan	ation: ne: K	KÁI AFB	⁻ B, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ametei	r Upper (in.): 16 r Lower (in.): 14-3/4 oletion Type: Flush	
Project Date S Date T Date C	Starteo	d: 9/8 acheo	3/201	5 ∑ At 1 18/2015 ¥ At E	Fime of End of	Levels BGS (ft): f Drilling: 450.00 Drilling: Not Recordec	I
	d Elev rdinat	vation e:	AMS	L (ft): Not Recorded Drilling	Contra Method	ing: 459.60 actor: National Drilling d: Mud Rotary 4 Giles	Page 5 of 24
Depth (ft) Sample Type			Lithologic Log	Material Description	U.S.C.S.	Well Diagram	Remarks
-				Sandy SILT (ML); brown (7.5YR 5/4); low plasticity; 70% silt; 30% fine sand.	ML		Kelly down @ 1305, new 20' connection. Resume drilling @ 1315.
125				Silty SAND (SM); light brown (7.5YR 6/4); loose; 75% very fine sand; 25% silt.	SM		PID = 0.0 ppm @ mud pit.
135			<u>,</u>	Sandy SILT (ML); strong brown (7.5YR 5/6); 60% silt; 40% fine to coarse sand. Note: sand is mafics.	ML		
-				Poorly graded SAND with Silt (SP-SM); strong brown (7.5YR 5/6); 90% coarse sand; angular to subangular; 10% silt. Note: sand is quartz, granite, and mafics.	SP- SM	- Portland Bentonite Cement	PID = 0.0 ppm @ mud pit.
140				Silty SAND (SM); strong brown (7.5YR 5/6); 70% fine to coarse sand; angular to subangular; 30% silt. Note: sand is mafics.	SM		Kelly down @ 1330, new 20' connection. Resume drilling @ 1352.
145				Well-graded SAND with Silt (SW-SM); strong brown (7.5YR 5/6); 90% fine to coarse sand; angular to subrounded; 10% silt. Note: sand is mafics, quartz, and granite.	SW- SM		

Ap	pend	ix L						
C	BI			Bore	eho	le ID	: KAFB-	106233
Project	t Loc t Nan	ation: ne: K	: KAF (AFB I	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ameter	·lower	(in.): 16 (in.): 14-3/4 ype: Flush	
Date S	tarte D Re	d: 9/8 eache	8/201 d: 9/1	Ground ∑ At T	Fime o [.] End of	f Drilling Drilling:	3GS (ft): j: 450.00 Not Recordec 9.60	I
Ground Y Coor X Coor	rdinat	te:	AMS	=	Contra Methoo	actor: N d: Mud	ational Drilling	Page 6 of 24
G Depth (ft) Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	w	ell Diagram	Remarks
				Well-graded SAND with Silt (SW-SM); strong brown (7.5YR 5/6); 90% fine to coarse sand; angular to subrounded; 10% silt. Note: sand is mafics, quartz, and granite.	SW- SM		•	PID = 0.0 ppm @ mud pit.
155				Silty SAND (SM); brown (7.5YR 5/4); 75% fine to coarse sand; angular to subrounded; 25% silt. Note: sand is quartz and mafics.	SM			
<u>160</u> - - -				Poorly graded SAND with Silt (SP-SM); strong brown (7.5YR 5/6); 90% coarse sand; trace fine and medium sand; angular to subangular; 10% silt. Note: sand is mafics and quartz.			•	Kelly down @ 1410, new 20' connection. Resume drilling @ 1428.
<u>165</u> - - -				Same as above (160 ft).	SP- SM		- Portland Bentonite Cement	PID = 0.0 ppm @ mud pit.
<u>170</u> - - -				Poorly graded SAND (SP); strong brown (7.5YR 5/6); 95% coarse sand; trace fine and medium sand; angular to subangular; 5% silt. Note: sand is mafics, quartz, and quartzite.				
175				Same as above (170 ft).	SP			
180							•	PID = 0.0 ppm @ mud pit.

	B	A						D: KAFB-	106233
Proied	ct Loo ct Nar	ation ne: k	: KAF (AFB I	⁻ B, Albuquerque, NM H RAPID SWMU ST-106 and SS-111 _S 33	lole Dian urface C	neter omp	r Low pletio		
Date S	Starte TD Re	d: 9/ eache	8/201 d: 9/1	5 18/2015	🛛 At Tin	ne of d of	f Drill Drillir	ls BGS (ft): ling: 450.00 ng: Not Recordec	I
	nd Ele ordina	vatior te:		L (ft): Not Recorded D	- rillling Co	ontra	actor: d: M	National Drilling ud Rotary	Page 7 of 24
B Depth (ft) Sample Type	Number	Headspace	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks
-				Well-graded SAND (SW); strong bi (7.5YR 5/6); 95% fine to coarse sai angular to subrounded; 5% silt. No sand is quartz and mafics.	nd;			• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Kelly down @ 1445, nev 20' connection. Resume drilling @ 1500.
<u>185</u> - -				Same as above (180 ft).					PID = 0.0 ppm @ mud
<u>190</u>				Same as above (180 ft).	\$	SW			pit.
- 195 - -				Same as above (180 ft).				- Portland Bentonite Cement	
 200				Silty SAND (SM); brown (10YR 5/3 85% fine to coarse sand; angular to subangular; 15% silt. Note: sand is	5				Kelly down @ 1527, ne 20' connection. Resume drilling @ 1547.
205	quartz with mafics and Same as above (200		quartz with mafics and quartzite. Same as above (200 ft); 80% fine t coarse sand; 20% silt.		SM			PID = 0.0 ppm @ mud pit.	
210									

	ppend	IX L							
C	BI			Bo	ore	ho	le l	D: KAFB-	106233
Projec Projec	ct Loc ct Nan	ation:	KÁF FB F	B, Albuquerque, NM Hole RAPID SWMU ST-106 and SS-111Sur 33	e Diar face C	netei Comp	Low		
Date S	Starte TD Re	d: 9/8/2 ached:	2015	5 Gro ∑ 8/2015 ∑	At Tir At En	ne of d of	f Drill Drillir	s BGS (ft): ing: 450.00 ng: Not Recorded 459.60	
Groun Y Coo X Coo	ordinat	e:	AMS	L (ft): Not Recorded Drill Drill	lling C	ontra	actor: d: M	National Drilling ud Rotary	Page 8 of 24
Depth (ft) Sample Type	Number	Headspace PID Litholocic	Log	Material Description		U.S.C.S.		Well Diagram	Remarks
210				Silty SAND (SM); brown (10YR 5/3); 80% fine to coarse sand; angular to subangular; 20% silt. Note: sand is quartz with mafics and quartzite.		SM		<pre> •</pre>	
-				Poorly graded SAND (SP); strong bro (7.5YR 5/6); 95% coarse sand; trace medium sand; angular to subangular; 5% silt. Note: sand is quartz with maf and quartzite.	;	SP			PID = 0.0 ppm @ mud pit.
220				Well-graded SAND (SW); strong brow (7.5YR 5/6); 95% fine to coarse sand angular to subangular; 5% silt. Note: sand is quartz, mafics, and quartzite.	;				Kelly down @ 1612, new 20' connection. Resume drilling @ 1636.
<u>225</u> - - -				Same as above (220 ft); 95% mediun coarse sand.		SW		- Portland Bentonite Cement	
230				Same as above (220 ft); 95% mediun coarse sand.	n to				
235				Silty SAND (SM); brown (7.5YR 4/2); 60% fine sand; trace medium sand; subangular to subrounded; 40% silt. Note: sand is quartz with mafics.		SM			PID = 0.0 ppm @ mud pit.
240							•••	• •	

Client	B	Armi		a of Engineera				D: KAFB-	106233
Project	t Loca t Nan	ation: ne: K	: KAF (AFB	s of Engineers FB, Albuquerque, NM RAPID SWMU ST-106 and SS-1 I33	Hole Dia 11Surface	amete Comp	r Low pletio	er (in.): 16 ver (in.): 14-3/4 n Type: Flush s BGS (ft):	
Date C	D Re ompl	acheo leted:	d: 9/′	18/2015	⊻ At T ▼ At E ⊻ At E	ime o nd of r Drilli	f Drill Drillir ng: 4	ing: 450.00 ng: Not Recordeo 459.60	
Ground Y Coor X Coor	dinat	e:	n AMS	L (ft): Not Recorded	Drilling Contractor: National Drilling Drilling Method: Mud Rotary Logged By: M. Giles Page 9				
05 Depth (ft) Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks
-				Silty SAND (SM); brown (7.5YF 70% fine sand; trace medium s subangular to subrounded; 30% Note: sand is quartz with mafic	and; % silt.			• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Kelly down @ 1705, nev 20' connection. Resume drilling @ 1713.
245				Same as above (240 ft); 60% fi 40% silt.	ine sand;		· · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	
<u>250</u> - -				Same as above (240 ft); 80% fi 20% silt.	ine sand;	SM		 • •<	
 				Same as above (240 ft); 80% fi 20% silt.	ine sand;			- Portland Bentonite Cement	PID = 0.0 ppm @ mud pit.
260				Same as above (240 ft); brown 5/3); 75% very fine to fine sand medium and coarse sand; 25%	l; trace				Kelly down @ 1728, nev 20' connection. Resume drilling @ 1745.
265				Poorly graded SAND with Silt (brown (7.5YR 5/3); 90% fine to sand; trace coarse sand; angul subrounded; 10% silt. Note: sa quartz, mafics, and quartzite.	medium ar to	SP- SM			

	App	pend	ix L						
		3.1			Bore	eho	le l	D: KAFB	-106233
Pro Pro	ject ject	Loca Nam	ation:	KAF AFB	FB, Albuquerque, NM Hole Dia RAPID SWMU ST-106 and SS-111Surface	amete	rlówi	oer (in.): 16 ver (in.): 14-3/4 n Type: Flush	
Date Date	e Sta e TE	arteo) Re	d: 9/8	8/201	Ground 5 ⊻ At 1	Time o End of	f Drill Drilliı	ls BGS (ft): ling: 450.00 ng: Not Recorde	ed
Gro Y C	und oorc	•	/ation e:	AMS	L (ft): Not Recorded Drilling	Contra Metho	actor: d: M	: National Drillin lud Rotary	g Page 10 of 24
02 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks
-					Poorly graded SAND with Silt (SP-SM); brown (7.5YR 5/3); 90% fine to medium sand; trace coarse sand; angular to subrounded; 10% silt. Note: sand is quartz, mafics, and quartzite.	SP- SM		· · · · · · · · · · · · · · ·	Rig chatter @ 273'. PID = 0.0 ppm @ mud
275					Well-graded SAND with Silt (SW-SM); brown (7.5YR 5/3); 90% fine to coarse sand; angular to subangular; 10% silt. Note: sand is quartz, mafics, and quartzite.	SW- SM		· · · · · · · · · · · · · · · ·	pit.
<u>280</u> - - -			-		Poorly graded GRAVEL (GP); brown (7.5YR 5/3); 85% fine gravel to 3/8"; angular to subrounded; 10% coarse sand; 5% silt. Note: gravel and sand are mafics, quartz, and felspar.			· · · · · · · · · · · · · · · · · · ·	Kelly down @ 1800. End of 9/10/15. Resume drilling @ 1003 on 9/11/15. Used 2,400 gallons of water on 9/10/15.
<u>285</u> - - -					Same as above (280 ft).	GP		 Portland Bentonite Cement * 	
<u>290</u> - - -					Poorly graded GRAVEL with Silt and Sand (GP-GM); brown (7.5YR 5/3); 50% fine gravel to 3/8"; angular to subrounded; 40% fine sand; 10% silt. Note: gravel is mafics, quartz, and feldspar. Sand is quartz.			· · · · · · · · · · · · · · · · · · ·	
<u>295</u> - - 300					Same as above (290 ft); 70% fine gravel to 3/8"; 20% fine sand.	GP- GM			

Proie	ect Lo	cation	: KAF	B. Albuquerque, NM Hole I	Diamete	rlow	er (in.): 16 er (in.): 14-3/4	
Proje Proje Date Date Date	ect Na ect Nu Starte TD R Comp nd Ele	me: H mber: ed: 9/ eache pleted evation	KAFB 5004 8/2019 ed: 9/1	RAPID SWMÜ ST-106 and SS-111Surfa 33 Grour 5 ∑ A 8/2015 ¥ A ¥ A ¥ A ↓ A Drillin	ce Comp dwater Time o End of ter Drilli g Contra	Detion Level f Drill Drillir ing: 4 actor:	n Type: Flush s BGS (ft): ing: 450.00 ng: Not Recorded	
X Co					d By: N			Page 11 of 24
00 Depth (ft) Sample Type	Number	Headspace	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks
305				Silty GRAVEL with Sand (GM); light brown (7.5YR 6/4); 55% fine gravel to 3/8"; angular to subangular; 30% fine sand; 15% silt. Note: gravel is mafics and feldspar. Sand is quartz. Same as above (300 ft); 70% fine grave to 3/8"; 15% fine sand; subangular to subrounded. Note: gravel is mafics and quartz.			• • • •	Kelly down @ 1020, ne 20' connection. Resum drilling @ 1028. PID = 0.0 ppm @ mud pit.
<u>310</u> - - - 315				Silty SAND with Gravel (SM); light brow (7.5YR 6/4); 70% fine to coarse sand; angular to subrounded; 15% fine grave to 3/8"; 15% silt. Note: sand and gravel are mafics, granite, quartzite, and quart	SM			
320				Poorly graded GRAVEL with Sand (GP light brown (7.5YR 6/4); 60% fine grave to 3/8"; angular to subrounded; 35% fin to coarse sand; 5% silt. Note: gravel is mafics, feldspar, and quartz. Sand is quartz.	Ï		- Portland Bentonite Cement	PID = 0.0 ppm @ mud pit.
325				Well-graded SAND with Silt and Grave (SW-SM); light brown (7.5YR 6/4); 65% fine to coarse sand; angular to subrounded; 25% fine gravel to 3/8"; 10% silt. Note: sand and gravel are mafics, quartzite, felspar, and quartz. Same as above (320 ft). Note: greater fine sand fraction.			• • • •	Kelly down @ 1058, ne 20' connection. Resume drilling @ 1112.

	Ap	opend	IX L						
	2	BI			Bor	eho	le	ID: KAFB-′	106233
Pro Pro	ojec Djec	t Loca t Nam	ation: ne: K	: KAF	FB, Albuquerque, NM Hole D RAPID SWMU ST-106 and SS-111Surfac	iamete	rlov	oer (in.): 16 ver (in.): 14-3/4 n Type: Flush	
Da ^r Da	te S te T	Started	d: 9/8 ache	8/201 d: 9/1	Ground 5 ∑ At 18/2015 ∑ At	Time of End of	of Dril Drilli	ls BGS (ft): ling: 450.00 ng: Not Recorded 459.60	
Gro Y C	oun Cooi	•	vation e:		L (ft): Not Recorded Drillling	Contr Metho	actor d: N	: National Drilling lud Rotary	Page 12 of 24
65 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks
- - -					Silty SAND (SM); light brown (7.5YR 6/4); 80% fine to coarse sand; angular to subrounded; 5% fine gravel to 3/8"; 15% silt. Note: sand and gravel are mafics, quartz, and feldspar.)		· · · · · · · · · · · · · · ·	
<u>335</u> - -	-				Same as above (330 ft).	SM		· · · · · · · · · · · · · ·	
- 340_ - -	-				Poorly graded SAND with Silt (SP-SM); light brown (7.5YR 6/4); 90% coarse sand; trace fine and medium sand; angular to subangular; 10% silt. Note: sand is quartz, mafics, and granite.			· · · · · · · · · · · · · · · · · · ·	Kelly down @ 1127, new 20' connection. Resume drilling @ 1140.
- 345_ - -					Same as above (340 ft).	SP- SM		 Portland Bentonite Cement • 	
- <u>350</u> - -					Silty SAND with Gravel (SM); light brown (7.5YR 6/4); 65% fine to coarse sand; angular to subangular; 20% fine gravel to 3/8"; 15% silt. Note: sand and gravel are quartz, mafics, quartzite, and granite			· · · · · · · · · · · · · · · · ·	
- <u>355</u> - -					Same as above (350 ft).	SM			
360							•••	••	

/	Append	ix L											
C	BI			Bore	eho	le IC	: KAFB-1	106233					
Proj∉ Proj∉	ect Loc ect Nan	ation: ne: K/	KAF AFB F	⁻ B, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	amete	er Lower	(in.): 16 (in.): 14-3/4 Гуре: Flush						
Date Date	Project Number: 500433 Groundwater Levels BGS (ft): Date Started: 9/8/2015												
Grou Y Co	Date Completed:												
Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.		'ell Diagram	Remarks					
-				Silty SAND (SM); light brown (7.5YR 6/3); 80% very fine to fine sand; trace medium and coarse sand; subangular to subrounded; 20% silt. Note: sand is quartz with some mafics.	SM		- Top of 3/8" Bentonite Chip Seal	Kelly down @ 1155, new 20' connection. Resume drilling.					
365				Poorly graded SAND with Silt (SP-SM); light brown (7.5YR 6/3); 90% coarse sand; trace fine and medium sand; subangular to subrounded; 10% silt. Note: sand is mafics, quartz, feldspar, and granite.	SP- SM								
370				Silty SAND with Gravel (SM); light brown (7.5YR 6/3); 50% fine to coarse sand; angular to subrounded; 40% fine gravel to 3/8"; 15% silt. Note: sand and gravel are mafics, quartz, feldspar, and granite.	SM								
380				Poorly graded GRAVEL (GP); light brown (7.5YR 6/3); 85% fine gravel to 1/2"; angular to subrounded; 10% fine sand; 5% silt. Note: gravel and sand are mafics, feldspar, quartz, and granite.	GP		- 3/8" Bentonite Chip Seal	PID = 0.0 ppm @ mud pit.					
385				Poorly graded GRAVEL with Silt and Sand (GP-GM); light brown (7.5YR 6/3); 75% fine gravel to 1/2"; subangular to subrounded; 15% fine sand; 10% silt. Note: gravel and sand are mafics, feldspar, quartz, and granite.	GP-			Kelly down @ 1324, new 20' connection. Resume drilling @ 1335.					
390				Same as above (380 ft).	ĞМ								

C		BI				Bore	ehol	e ID	: KAFB-1	106233
Proj Proj	ject ject	t Loc t Nar	ation	. KA	s of Engineers FB, Albuquerque, NM RAPID SWMU ST-106 and SS- ⁻ 133	Hole Dia 111Surface	ameter Comp	Lower (letion T		
Date Date	e S e T	tarte D Re	d: 9	/8/201 ed: 9/1		🗶 At E	ime of Ind of [Drilling	: 450.00 Not Recorded	
Grou Y Co X Co	oor	dina	te:	n AMS	SL (ft): Not Recorded	_	Contra Method	ctor: N : Mud	ational Drilling	Page 14 of 24
06 Depth (ft)	Sample Type	Number	Headspace	Lithologic Log	Material Descriptior	1	U.S.C.S.	We	ell Diagram	Remarks
395					Silty GRAVEL with Sand (GM) brown (7.5YR 6/3); 70% fine g 1/2"; angular to subangular; 15 sand; 15% silt. Note: gravel ar are mafics, quartz, feldspar, an	ravel to 5% fine nd sand nd granite.	GM			
- - - 400				$\frac{1}{2}$	Silty GRAVEL (GM); light brow 6/3); 70% fine gravel to 1/2"; a subrounded; 10% fine sand; 2 Note: gravel and sand are mai quartz, feldspar, and granite.	ingular to 0% silt. fics,			- 3/8" Bentonite Chip Seal	
- - - 405					Silty SAND with Gravel (SM); I (7.5YR 6/3); 50% fine to coars subangular to subrounded; 20 gravel to 3/8"; 30% silt. Note: s gravel are mafics, quartz, and	e sand; % fine sand and	SM		- Top of 20/40 Sand	Kelly down @ 1459, ne 20' connection. Resum drilling @ 1508.
410					Clayey SAND with Gravel (SC brown (5YR 5/4); low plasticity to coarse sand; subangular to subrounded; 25% fine gravel t 25% clay. Note: sand and grav quartz, mafics, feldspar, and g	y; 50% fine to 3/8"; vel are	SC		- Top of 10/20 Sand	
-					Silty SAND with Gravel (SM); (7.5YR 6/3); 50% fine to coars subangular to subrounded; 25 gravel to 3/8"; 25% silt. Note: s gravel are quartz, mafics, and	e sand; % fine sand and				PID = 0.0 ppm @ mud pit.
<u>415</u> - -					Same as above (410 ft); 55% coarse sand; 30% fine gravel 15% silt. Note: sand and grave quartz, mafics, granite, and fel	to 3/8"; el are	SM			
420										

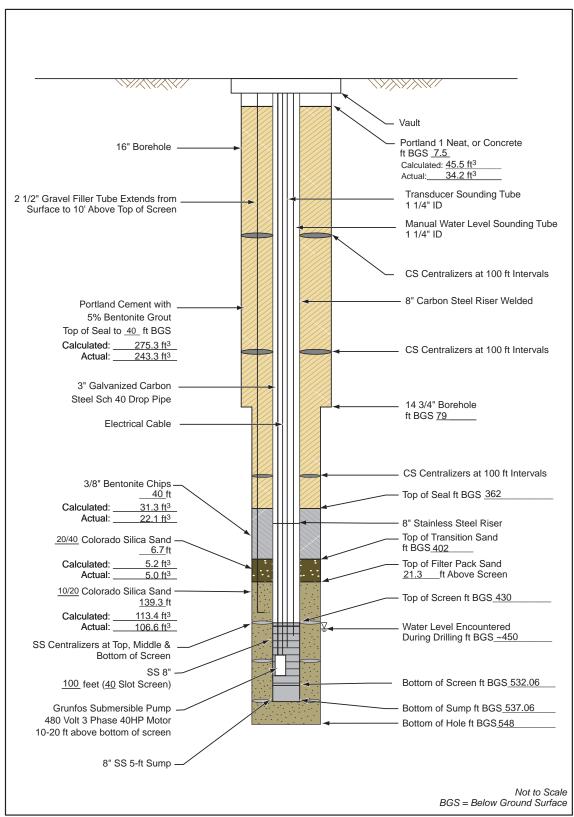
Borehole ID: KAFB-106233										
Pro Pro	ojec ojec	t Loca t Nam	ation: ne: K	: Kaf Afb I	s of Engineers ⁻ B, Albuquerque, NM RAPID SWMU ST-106 and SS-11	Hole Dia Hole Dia 1Surface	imeter imeter Comp	Upper (in.): 16 Lower (in.): 14-3/4 letion Type: Flush		
Da Da	te S te T	t Num tarted	n ber: d: 9/8 acheo	5004 3/201 d: 9/1	133	Groundv ∑ At T ▼ At E	vater L ime of nd of I	evels BGS (ft): Drilling: 450.00 Drilling: Not Recorded ng: 459.60		
YO	Cool	d Elev dinat dinat	e:	AMS	SL (ft): Not Recorded	Drilling Contractor: National Drilling Drilling Method: Mud Rotary Logged By: M. Giles Page 15 of 24				
5 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	Well Diagram	Remarks	
425	-				Silty SAND with Gravel (SM); lig (7.5YR 6/3); 55% fine to coarse subangular to subrounded; 30% gravel to 3/8"; 15% silt. Note: sa gravel are quartz, mafics, granite feldspar.	sand; fine nd and	SM		Kelly down @ 1437. End of mud rotary drilling @ 425' @ 1450 on 9/11/15.	
430	-									
435	-									
440	-									
445										
450					∇					

	C	BI			I	Bore	hol	e ID	: KAFB-1	106233-Sonic
Pr Pr	ojec ojec	t Loca t Nam	ation: ne: KA	KAF FB F	B, Albuquerque, NM RAPID SWMU ST-106 and SS-111s	Iole Dia	meter	lower	(in.): 16 (in.): 14-3/4 ype: Flush	
Da Da	ate S ate T	Started	ber: d: 9/14 ached: eted:							
Y	Cool	d Elev rdinat rdinat	e:	AMS	L (ft): Not Recorded		Contra /lethoc	ictor: N I: Sonio	ational Drilling c Coring	Page 16 of 24
5 Depth (ft)	Sample Type	Number	Headspace PID	Log	Material Description		U.S.C.S.	We	ell Diagram	Remarks
425	_				Silty SAND with Gravel (SM); light (7.5YR 6/3); 55% fine to coarse sa subangular to subrounded; 30% fin gravel to 3/8"; 15% silt. Note: sand gravel are quartz, mafics, granite, feldspar.	ind; ne I and	SM			Drill with mud rotary to 425'.
	_				Poor recovery.					Begin sonic coring @ 1650 on 9/14/15 for test run. @ 425 - 430 ft, geologist noted loose, coarse gravel with trace fine gravel; subangular to subrounded.
430					 @ 430 ft. Fat CLAY (CH); red (10F hard; high plasticity; 100% clay. @ 432.1 ft. Fat CLAY with Sand (O greenish gray (Gley 1 6/1); hard; h plasticity; 80% clay; 20% fine sand 	CH); igh	СН		- Top of 8" Stainless Steel 0.050 Slot Screen	 @ 430 ft occasional black specs, streaks, and gray material interfilling cracks of the clay. End of 9/14/15. Resumed drilling on 9/15/15. @ 431.7 - 435 ft sand is quartz with occasional biotite.

		RI			Bore	eho	le ID: KAFB-	106233-Sonic
Pro Pro	ojec ojec	ct Loca ct Nam	ation: ne: K	KA AFB	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	amoto	⁻ Upper (in.): 16 ⁻ Lower (in.): 14-3/4 vletion Type: Flush	
Da Da Da	ite S ite T ite (Compl	d: 9/ [,] acheo eted:	14/20 d: 9/	15 ∇ At24/2015 Ψ At E Ψ At E	Fime of End of er Drilli	Levels BGS (ft): f Drilling: 450.00 Drilling: Not Recorded ng: 459.60	
Y (Coo	ordinat prdinat	e:	AIVIS		Methoo	actor: National Drilling d: Sonic Coring 1. Giles	Page 17 of 24
5 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	Well Diagram	Remarks
	_				 @ 434.8 ft. Poorly graded SAND with Sill (SP-SM); light brown (7.5YR 6/4); 90% fine sand; subangular; 10% silt. @435 ft. No recovery. @ 435.7 ft. Poorly graded SAND with Sill (SP-SM); light brown (7.5YR 6/4); 90% fine sand; trace medium sand; subangular to subrounded; 10% silt. 	\ <u>SM</u> /		 @ 435 - 435.7 ft drilled instead of cored due to possible obstruction. @ 435 - 445.9 ft sand is quartz with biotite and occasional microcline.
440	-				Same as above (435.7 ft).	SP- SM	8" Stainless Steel 0.050 Slot Screen	@ 440 ft occasional layers of slightly higher silt.
445	_				@ 443.7 ft. Same as above (435.7 ft); light brown (7.5YR 6/3); 90% fine to medium sand; trace coarse sand.			
450	-				@ 445.9 ft. No recovery.			Driller reported that it felt like coring through a gravel interval.

	~	RI			Bo	re	hol	e ID: KAFB-1	106233-Sonic
Pro Pro	ojec ojec	t Loca t Nam	ation: ne: K	KAF AFB	B, Albuquerque, NM Hole RAPID SWMU ST-106 and SS-111Surfa	Diar	neter	Upper (in.): 16 Lower (in.): 14-3/4 letion Type: Flush	
Da Da Da	te S te T te C	Compl	d: 9/ acheo eted:	14/20 d: 9/2	15 ⊊ A 24/2015 ¥ A ¥ A	At Tir At En After	ne of Id of [Drillir	evels BGS (ft): Drilling: 450.00 Drilling: Not Recorded ng: 459.60	
Y (Coo	d Elev rdinat rdinat	e:	AMS	Drillir	ng M	ethod	ctor: National Drilling I: Sonic Coring I. Giles	Page 18 of 24
5 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	Well Diagram	Remarks
					 @ 450 ft. Well-graded SAND (SW); lig brown (7.5YR 6/3); 95% fine to coarse sand; subangular to subrounded; 5% s @ 451.8 ft. Poorly graded SAND with and Gravel (SP-SM); light brown (7.5Y 6/3); 75% fine sand; trace medium sar subangular to subrounded; 15% coars gravel to 2-1/2"; 10% silt. @ 452.8 ft. No lithologic description. Core removed for testing. @ 453.6 ft. Poorly graded SAND with 5 (SP-SM); light brown (7.5YR 6/3); 90% fine to medium sand; subangular to subrounded; 10% silt. @ 453.8 ft. Lean CLAY with Gravel (C strong brown (7.5YR 5/6); low plasticit 75% clay; 25% fine gravel to 1/2"; subrounded. @ 455 ft. Silty SAND (SM); brown (10 5/3); 70% very fine sand; 30% silt. @ 455.7 ft. Well-graded GRAVEL with Silt and Sand (GW-GM); strong brown (7.5YR 5/6); 50% fine to coarse sand; subangular to subrounded; 10% silt. @ 456.3 ft. Poorly graded SAND with 5 is and Gravel (SP-SM); brown (7.5YR 5/6); 90 fine sand; subangular to subrounded; 10% silt. @ 456.1 ft. No recovery. @ 456.3 ft. Poorly graded SAND with 5 is and Gravel (SP-SM); brown (7.5YR 5/6); 90 fine sand; subangular to subrounded; 10% silt. @ 457.1 ft. No recovery. @ 460 ft. Poorly graded SAND with 5 is and Gravel (SP-SM); brown (7.5YR 5/6); 90 fine sand; subangular to subrounded; 10% silt. @ 457.1 ft. No recovery. @ 460 ft. Poorly graded SAND with 5 is and Gravel (SP-SM); brown (7.5YR 5/6); 90 fine to medium sand; subangular 	silt. Silt (R d; e Silt (R d; e Silt (R d; e Silt (R d; e)); (C d) Silt (R d) (R d) (C d)	SW SP- SM CL SM GW- GM SP- SM SP- SM SP- SM GW- GM	8" Stainless Steel 0.050 Slot Screen	 @ 450 - 454 ft sand is quartz and biotite with occasional microcline. Gravel is mafics and occasional quartzite. @ 450.8 - 451.1 ft trace fine gravel to 3/8". @ 455 - 457.1 ft sand is quartz with occasional biotite. Gravel is mafics, quartz, and quartzite. @ 455.6 - 455.7 ft cored rock. @ 460 - 462.8 ft sand is quartz with biotite and occasional microcline. Gravel is mafics with occasional sandstone and quartzite.
465	-				subrounded; 20% fine gravel to 1/2"; subangular to subrounded; 10% silt. @ 460.8 ft. Well-graded GRAVEL with Silt and Sand (GW-GM); brown (7.5YF 5/4); 60% fine to coarse gravel to 1"; subrounded; 30% fine to coarse sand; subangular to subrounded; 10% silt.	R	<u>SM</u>		@ 462.7 ft, silt is very hard, possibly cemented.

	~	RI			Bore	ehol	le ID: KAFB-	106233-Sonic
Pro Pro	ojeo ojeo	ct Loca ct Nam	ation: ne: K	KÁF AFB I	FB, Albuquerque, NM Hole Dia RAPID SWMU ST-106 and SS-111Surface	ameter	⁻ Upper (in.): 16 - Lower (in.): 14-3/4 detion Type: Flush	
Da Da Da	ite s ite s ite (Compl	d: 9/1 acheo eted:	14/20 [,] d: 9/2	$ \begin{array}{cccc} & Ground \\ 15 & & & & & \\ 24/2015 & & & & \\ & & & & & \\ & & & & & \\ & & & &$	Time of End of I er Drillin	Levels BGS (ft): f Drilling: 450.00 Drilling: Not Recorded ng: 459.60	I
Y (Coc	ordinat	e:			Method	actor: National Drilling 1: Sonic Coring 1. Giles	Page 19 of 24
5 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	Well Diagram	Remarks
	-				 @ 462.7 ft. Silty SAND (SM); light brownish gray (10YR 6/2); 75% fine to coarse sand; subangular to subrounded; 25% silt. @ 462.8 ft. No recovery. @ 465 ft. Poorly graded SAND with Silt 	SP- SM GW- GC		@ 465 - 466.6 ft sand is quartz and biotite with occasional microcline. Gravel is mafics.
470	_				(SP-SM); light brownish gray (10YR 6/2); 90% fine to medium sand; subangular to subrounded; 10% silt. @ 466 ft. Well-graded GRAVEL with Clay and Sand (GW-GC); brown (7.5YR 5/3); 60% fine to coarse gravel to 2"; subangular; 30% fine to coarse sand; subangular to subrounded; 10% clay. @ 466.6 ft. No recovery.	SP		@ 467.5 ft 2-1/2" clay lense; light red (2.5YR 6/8). @ 467.5 - 468.4 ft sand is quartz. @ 468.3 ft coarse gravel to 1"; subrounded, mafics.
	-				 @ 467.5 ft. Poorly graded SAND (SP); brown (7.5YR 5/3); 95% fine sand; trace medium sand; subangular to subrounded; 5% silt. @ 468.4 ft. No recovery. @ 470 ft. Well-graded GRAVEL with Silt and Sand (GW-GM); strong brown (7.5YR 4/6); 60% fine to coarse gravel 2"; angular to subangular; 30% fine to coarse sand; 10% silt. @ 471.4 ft. No recovery. 	GW- GM	8" Stainless Steel 0.050 Slot Screen	 @ 470 - 471.4 ft sand is quartz with biotite and quartzite. Gravel is mafics, feldspar, and quartzite. @ 471.4 ft. 2" piece of gravel in shoe of core barrel with multiple rock fragments. End of 9/15/15 @ 472.5 ft. Used approximately 500 gallons of water to date. Resume coring on 9/16/15 @ 0750.
475					@ 475 ft. No lithologic description. Core removed for testing.			
					@ 476 ft. Poorly graded SAND (SP); strong brown (7.5YR 4/6); 95% fine sand; subangular to subrounded; 5% silt. @ 476.3 ft. No recovery.	SP		@ 475 - 476.3 ft sand is quartz with biotite.
480	-				 @ 477.5 ft. Poorly graded SAND with Silt (SP-SM); strong brown (7.5YR 4/6); 90% fine sand; trace medium sand; subangular to subrounded; 10% silt. @ 478.2 ft. No recovery. 			@ 477.5 - 478.2 ft sand is quartz with some biotite.


		RI			Bore	eho	le ID: KAFB-	106233-Sonic
Pro Pro	ojec ojec	ct Loc ct Nan	ation: ne: K	: KAF	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ameter	Upper (in.): 16 Lower (in.): 14-3/4 letion Type: Flush	
Da Da Da	te S ite T ite C	Compl	d: 9/ ache eted:	14/20 ⁻ d: 9/2	15 ∑ At 1 24/2015 ∑ At E	Time of End of	evels BGS (ft): Drilling: 450.00 Drilling: Not Recorded ng: 459.60	
Y	Coo	d Elev ordinat ordinat	e:	n AMS		Method	actor: National Drilling 1: Sonic Coring 1. Giles	Page 20 of 24
8 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	Well Diagram	Remarks
	-				 @ 480 ft. Poorly graded SAND (SP); light brown (7.5YR 6/4); 95% fine sand; trace coarse sand; subangular to subrounded; 5% silt. @ 481.2 ft. No recovery. 	SP		@ 480 - 481.2 ft sand is quartz with some biotite.
485	-				 @ 482.5 ft. Poorly graded SAND (SP); light brown (7.5YR 6/4); 95% fine sand; trace medium sand; subangular to subrounded; 5% silt. @ 483.4 ft. No recovery. 	SP		 @ 482.5 - 483.4 ft sand is quartz with some biotite. @ 483.1 ft conglomerate rock fragment jamming shoe in core barrel. @ 485 - 486 ft drilled bible and bible
	-				@ 487.5 ft. Poorly graded SAND (SP); light brown (7.5YR 6/3); 95% fine to medium sand; trace coarse sand; subangular to subrounded; trace fine gravel to 1/2"; subrounded; 5% silt.	SP	8" Stainless Steel 0.050 Slot Screen	 without coring due to rock fragments in shoe of the core barrel. @ 487.5 - 490.5 ft sand is quartz with biotite and occasional microcline. Gravel is mafics.
<u>490</u>	-				 @ 488.6 ft. Silty SAND (SM); light brown (7.5YR 6/3); 80% fine to coarse sand; subangular to subrounded; 20% silt. @ 490 ft. Well-graded SAND with Silt (SW-SM); light brown (7.5YR 6/3); 90% fine to coarse sand; subangular to subrounded; 10% silt. @ 490.5 ft. No recovery. 	SM SW- SM		@ 490.4 ft cemented sandstone, fine to coarse grained.
495					@ 492.5 ft. Well-graded SAND with Gravel (SW); light brown (7.5YR 6/3); 75% fine to coarse sand; subangular to subrounded; 20% fine to coarse gravel to 1-1/2"; subrounded; 5% silt.	sw		 @ 492.5 ft coarse gravel is cemented sandstone. @ 492.5 - 495 ft sand is quartz, biotite, and microcline. Gravel is mafics.

(C	RI			Bore	eho	le ID: KAFB-1	106233-Sonic
Pr Pr	ojeo ojeo	ct Loc ct Nan	ation: ne: K	: KAI AFB	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ametei	r Upper (in.): 16 r Lower (in.): 14-3/4 lletion Type: Flush	
Da Da	ate S ate	ct Nun Starteo TD Re Compl	d: 9/ ache	14/20 d: 9/2	Ground 15 ♀ At 1 24/2015 ♀ At E	ime of Ind of	Levels BGS (ft): f Drilling: 450.00 Drilling: Not Recorded ng: 459.60	
Y	Coo	nd Elev ordinat ordinat	e:	AMS	SL (ft): Not Recorded Drilling Drilling Logged	Methoo	actor: National Drilling 1: Sonic Coring 1. Giles	Page 21 of 24
6 Depth (ft)						U.S.C.S.	Well Diagram	Remarks
	-				 @ 495 ft. Well-graded SAND (SW); brown (7.5YR 5/3); 95% fine to coarse sand; subangular to subrounded; 5% silt. @ 495.8 ft. Poorly graded SAND (SP); brown (7.5YR 5/3); 95% fine to medium 	SW SP		@ 495 - 497.2 ft, sand is quartz, biotite, microcline, and occasional quartz.
	-				 sand; subangular to subrounded; 5% silt. @ 497.2 ft. No recovery. @ 497.5 ft. Poorly graded SAND (SP); brown (7.5YR 5/3); 90% fine to medium sand; subangular to subrounded; 5% fine gravel to 3/4"; subrounded; trace coarse gravel; 5% silt. @ 499 ft. No recovery. 	SP		@ 497.5 - 499 ft sand is quartz with biotite. Gravel is mafics. Occasional coarse gravel in shoe.
500	-				 @ 500 ft. Poorly graded SAND (SP); brown (10YR 4/3); 90% fine to medium sand; trace coarse sand; subangular to subrounded; 5% fine gravel to 3/4"; subrounded; 5% silt. @ 501.1 ft. No recovery. 	SP		@ 500 - 501.1 ft sand is quartz, biotite, and microcline. Gravel is mafics.
	-				@ 502.5 ft. Well-graded SAND (SW); brown (10YR 4/3); 90% fine to coarse sand; angular to subrounded; 5% fine gravel to 1/2"; subrounded; 5% silt.	sw	8" Stainless Steel 0.050 Slot Screen	@ 502.5 - 504.5 ft sand is quartz, biotite, and microcline. Gravel is mafics.
505	_				 @ 504.5 ft. No recovery. @ 505 ft. Poorly graded GRAVEL (GP); yellowish red (5YR 5/8); 85% coarse gravel to 2"; trace fine gravel to 1/2"; subangular; 10% fine to medium sand; 5% clay. @ 505.4 ft. No recovery. 	GP		@ 505 - 505.4 ft sand is quartz. Gravel is mafics.
510	_				 @ 507.5 ft. Well-graded SAND (SW); brown (10YR 4/3); 95% fine to coarse sand; subangular to subrounded; 5% silt. @ 508.3 ft. Poorly graded SAND (SP); brown (10YR 4/3); 95% fine to medium sand; 5% silt. @ 509 ft. Silty SAND with Gravel (SM); 	SW SP SM SW		@ 507.5 - 509.5 ft sand is quartz with occasional biotite and microcline. Gravel is mafics.

	~	RI			B	ore	ehol	e ID:	KAFB-1	06233-Sonic
Pro Pro	ojeo ojeo	ct Loc ct Nan	ation: ne: K	: Káf (AFB I	B, Albuquerque, NM Hole RAPID SWMU ST-106 and SS-111Sur	a Dia	ameter	Upper (i Lower (i letion Ty	n)· 14-3/4	
Da Da Da	te S te T te C	Compl	d: 9/ acheo eted:	14/20 ⁻ d: 9/2	15 ♀ 24/2015 ♀ ¥	At T At E Afte	Time of End of I er Drillir	ng: 459.	450.00 Not Recorded 60	
Y (Coo	nd Elev prdinat prdinat	e:		Drill	ing I		I: Sonic	itional Drilling Coring	Page 22 of 24
10 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	Wel	ll Diagram	Remarks
510	-				brown (10YR 4/3); 50% fine sand; 35 coarse gravel to 1-1/4"; subrounded; 15% silt. @ 509.3 ft. Well-graded SAND (SW) brown (10YR 4/3); 95% fine to coarse sand; subangular to subrounded; 5% @ 509.5 ft. No recovery. @ 510 ft. Well-graded SAND with Sil (SW-SM); brown (10YR 4/3); 80% fin coarse sand; subangular to subrounded; 10% silt. @ 510.8 ft. No recovery. @ 512.5 ft. Well-graded SAND (SW) brown (10YR 4/3); 85% fine to coarse sand; subangular to subrounded; 10% fine to coarse gravel; 5% silt. @ 514 ft. Poorly graded SAND (SP); brown (10YR 4/3); 95% fine to mediu sand; subangular to subrounded; 5% @ 514.5 ft. No lithologic description. Co removed for testing. @ 515.5 ft. Well-graded SAND (SW) light brown (7.5YR 6/4); 90% fine to coarse sand; subangular to subrounded; 5% fine gravel to 1/2"; subrounded; 5% fine gravel to 1/2"; subrounded; 5% fine gravel to 1/2"; subrounded; 5% silt. @ 516.1 ft. Poorly graded SAND (SW) light brown (7.5YR 6/4); 90% fine to coarse sand; subangular to subrounde; 5% Silt. @ 516.2 ft. No recovery. @ 517.5 ft. Well-graded SAND with S (SP-SM); light brown (7.5YR 6/4); 90° fine sand; 10% silt. @ 516.2 ft. No recovery. @ 517.5 ft. Well-graded GRAVEL with Sand (GW); light brown (7.5YR 6/4); 90° fine to coarse gravel to 1-1/4"; angular to subrounded; 35% fine to coarse sand; subangular to subround 5% silt. @ 517.9 ft. Poorly graded SAND (SP) light brown (7.5YR 6/4); 95% fine to coarse sand; subangular to subround 5% silt. @ 517.9 ft. Poorly graded SAND (SP) light brown (7.5YR 6/4); 95% fine to coarse sand; subangular to subround 5% silt. @ 517.9 ft. Poorly graded SAND (SP) light brown (7.5YR 6/4); 95% fine to coarse sand; subangular to subround 5% silt. @ 517.9 ft. Poorly graded SAND (SP) light brown (7.5YR 6/4); 95% fine to coarse sand; subangular to subround 5% silt.	silt.	SW SP SW SP-		8" Stainless Steel 0.050 Slot Screen	 @ 510 - 510.8 ft sand is quartz with biotite, microcline, and quartzite. Gravel is mafics. @ 512.5 - 514.5 ft sand is quartz with biotite and occasional microline. Gravel is mafics. Interval 515 - 515.5 ft was not opened to obtain a minimally disturbed sample. @ 515.5 - 516.2 ft sand is quartz with biotite and occasional microcline. Gravel is mafics. @ 517.5 - 518.9 ft sand is quartz and microcline, with occasional mafics, biotite, and quartzite. Gravel is mafics and quartz ite. @ 520 - 521.8 ft sand is quartz, biotite, and microcline. End of 9/16/15 @ 522.5 ft. Used approximately 300 gallons of water.
525					medium sand; subangular to subrounded; 5% silt. @ 518.9 ft. No recovery. @ 520 ft. Poorly graded SAND (SP);					Resume coring on 9/17/15. @ 522.5 - 523.1 ft sand is quartz with trace biotite.

CRI	Bore	eho	le ID: KAFE	8-106233-Sonic								
Project Name: KAF	AFB, Albuquerque, NM Hole Di B RAPID SWMU ST-106 and SS-111Surface	ameter	r Upper (in.): 16 r Lower (in.): 14-3/4 bletion Type: Flush									
	Groundwater Levels BGS (ft): Date Started: 9/14/2015 Date TD Reached: 9/24/2015 Date Completed:											
Ground Elevation AMSL (ft):Not RecordedDrilling Contractor:National DrillingY Coordinate:Drilling Method:Sonic CoringX Coordinate:Logged By:M. Giles												
252 Depth (ft) Sample Type Number Headspace PID Lithologic	Material Description	U.S.C.S.	Well Diagram	Remarks								
	 brown (7.5YR 4/4); 95% fine to medium sand; subangular to subrounded; 5% sit. @ 521.8 ft. No recovery. @ 522.5 ft. Poorly graded SAND with Sill (SP-SM); brown (7.5YR 5/4); 90% fine to medium sand; trace coarse sand; subangular to subrounded; 10% silt. @ 523.1 ft. No recovery. @ 525 ft. Poorly graded SAND (SP); brown (7.5YR 5/4); 95% fine to medium sand; subangular to subrounded; 5% sit. @ 525.3 ft. SILT with Sand (ML); brown (7.5YR 5/4); firm; low plasticity; 85% sit; 15% fine sand. @ 525.6 ft. Poorly graded SAND (SP); brown (7.5YR 5/4); 95% fine to medium sand; subangular to subrounded; trace fine gravel; rounded; 5% silt. @ 526.8 ft. Clayey GRAVEL (GC); reddish yellow (7.5YR 6/6); 80% coarse gravel to 2-1/2"; subangular; 20% clay. @ 527.2 ft. No recovery. @ 527.9 ft. Poorly graded SAND (SP); brown (5YR 6/4); dry; hard; high plasticity; 100% clay. @ 527.9 ft. Poorly graded SAND (SP); brown (7.5YR 5/4); 95% fine to medium sand; subangular to subrounded; 5% silt. @ 527.7 ft. No recovery. @ 527.9 ft. Poorly graded SAND (SP); brown (7.5YR 6/3); 50% fine to medium sand; subangular to subrounded; 5% silt. @ 529.7 ft. No recovery. @ 530 ft. Poorly graded GRAVEL with Silt and Sand (GP-GM); light brown (7.5YR 6/3); 50% fine gravel to 3/8"; subangular to subrounded; 40% fine to coarse sand; subangular to subrounded; 40% fine to coarse sand; subangular to subrounded; 40% fine to coarse sand; subangular to subrounded; 10% silt. Note: Gravel is mafics, quar	GC GC CH SP GP- GM	8" Stainless Steel 0.050 Slot Screen - Bottom of Screen	 @ 525 - 527.2 ft sand is quartz with occasional biotite. @ 526.8 ft clay is firm with high plasticity. @ 527.9 - 529 ft sand is quartz with biotite. End of continuous coring @ 530 ft on 9/17/15. Resumed drilling on 9/18/15 with mud rotary. 								
540												

0	RI		Boi	reho	le ID: KAFB-	106233-Sonic					
roje roje	ect Loc ect Nan	ation: KAR ne: KAFB	-B, Albuquerque, NM Hole I RAPID SWMU ST-106 and SS-111Surfac	Diamete	lower (in) 14-3/4						
Date Started:9/14/2015Image: Groundwater Levels BGS (ft):Date TD Reached:9/24/2015Image: At Time of Drilling:450.00Date Completed:Image: Image: At End of Drilling:Not RecordedImage: Image: I											
Ground Elevation AMSL (ft): Not Recorded Drilling Contractor: National Drilling Y Coordinate: Drilling Method: Sonic Coring X Coordinate: Logged By: M. Giles											
	Number	Headspace PID Lithologic Log		U.S.C.S.	Well Diagram	Remarks					
-			10% silt. Note: Gravel is mafics, quartz, and granite. Sand is quartz, mafics, and microcline. Same as above (540 ft); 60% fine grave to 3/8"; angular to subrounded; 30% medium to coarse sand; subangular to subrounded. Note: gravel is mafics and	el GP- GM		12" reaming stopped @ 543 ft on 9/18/15 @ 1155. Resume drilling @ 1020 on 9/24/15.					
-			to 3/8"; angular to subrounded; 30% medium to coarse sand; subangular to subrounded. Note: gravel is mafics and		- Bottom of Filter Pack/Bottom of Hole - Native Backfill - Bottom of Rat Nole	Total depth = 552 ft bgs. Reached total depth on 9/24/15 @ 1055.					
	roje roje ate ate ate co Co	roject Loc roject Nan roject Nan roject Nan roject Nan ate Started ate TD Re ate Completion Coordinat Coordinat Coordinat Coordinat Coordinat Coordinat Coordinat Coordinat Coordinat	roject Location: KAFB roject Name: KAFB roject Number: 5004 ate Started: 9/14/20 ate Completed: fround Elevation AMS Coordinate: Coordinat	lient: US Army Corps of Engineers roject Location: Hole E Hole E Hole E Hole E Hole E roject Number: 500433 ate Started: 9/14/2015 ate TD Reached: Groun Y At Y At Y At Y At Y At Y At Y At Y At	Nient: US Army Corps of Engineers roject Location: KAFB Albuquergue, NM roject Name: KAFB RAPID SWMU ST-106 and SS-111 Surface Composition: Surface Composition: Surface Composition: KAFB RAPID SWMU ST-106 and SS-111 Surface Composition: Surface Composition: Surface Composition: KAFB RAPID SWMU ST-106 and SS-111 Surface Composition: Surface Composition: Sur	roject Location: KAFB, Albüquerque, NM roject Number: 500433 ate Started: 9/14/2015 ate Completed: 9/24/2015 ate Compl					

500433.04010300.A4

Appendix L

Project Name:	KAFB BFF			Well No.:	KAFB-106233
Location:	Gibson and	-		Date Installed:	9/30/2015
	California	_			
Personnel:		_	Casing	Diameter (I.D.):	8-inch
Start Date:	10/1/2015	_	Total	537.06	
End Date:	/2015	_			
Method of Develo	opment:				
X Surging	X Bailing X	Pumping X	Jetting		
X Original Devel	opment	Redevelopment	Other		
Screened Interv Weather: Van Equipment Numb	· _	– 532.06 NR	Conductivity:	NR NR	
Equipment Decon Describe:	taminated Prior to	Development?	X Yes	No	
Collected Sample Describe:	of Water Added to	Well? Yes	XN)	
Comments:					

Summary of development procedure, including key decision-points, calculations, and observations (described in detail in the following pages):

Well development consisted of bailing, surging, pumping, and jetting. The first step of development removed mud and cuttings from the well casing and filter pack, which were generated during the drilling process, by surging and bailing. The second step entailed physical well development using surging, bailing, and pumping to assess development progress. These actions included taking measurements of sediment content in the water using the Imhoff cone technique, and applying 30 minutes of sustained pumping, measuring, and plotting drawdown to estimate development effectiveness. The third step used jetting with simultaneous pumping.

Bailing				
Date	Time	Total Volume Bailed (gallons)	Imhoff Cone Measurement (mL sediment per L water)	Comments
10/1/2015	1638	0	,	Begin bailing
10/1/2015	1815	480		Stop bailing
10/2/2015	1038	480		Resume bailing on 10/2/15
10/2/2015	1044	495	0.2	First reading; thick mud; solids still suspended after 5 minutes
10/2/2015	1103	540	8.0	Diluted 250 mL mud with 750 mL of clean water; readings multiplied by 4.
10/2/2015	1113	600	10.0	Same as above
10/2/2015	1125	705	11.3	Same as above
10/2/2015	1147	825	6.0	Same as above
10/2/2015	1205	930	6.0	Same as above
10/2/2015	1330	1005	4.0	Same as above
10/2/2015	1348	1080	6.5	Same as above
10/2/2015	1407	1155	4.0	Same as above
10/2/2015	1418	1230	4.0	Same as above
10/2/2015	1423	1305	3.0	Same as above
10/2/2015	1517	1395	2.6	Same as above
10/2/2015	1530	1420	10.0	Same as above
10/2/2015	1609	1620	3.0	Same as above
10/2/2015	1617	1680	3.0	Same as above
10/3/2015	0900	1785	0.3	Getting 1,000 mL of well water
10/3/2015	0910	1840	1.0	Getting 1,000 mL of well water
10/3/2015	0923	1915	1.0	Getting 1,000 mL of well water
10/3/2015	0938	1990	1.0	Getting 1,000 mL of well water
10/6/2015	1408	4046	1.5	Begin bailing
10/6/2015	1425	4121	1.5	
10/6/2015	1436	4196	1.5	
10/6/2015	1446	4271	0.6	
10/6/2015	1458	4346	1.0	
10/6/2015	1508	4421	0.5	
10/6/2015	1519	4481	0.4	
10/7/2015	1036	4496	1.3	Begin bailing
10/7/2015	1051	4571	2.0	
10/7/2015	1105	4646	1.5	
10/7/2015	1130	4721	1.1	
10/7/2015	1142	4796	1.0	

Appendix L

Bailing										
Date	Time	Total Volume Bailed (gallons)	Imhoff Cone Measurement (mL sediment per L water)	Comments						
10/7/2015	1205	4931	0.7							
10/7/2015	1249	4946	0.1							
10/7/2015	1256	4991	0.5							
10/18/2015	1103	68922		Bailer full of sand; use suction to get sand off of bottom						
10/18/2015	1630	69147		Still sandy with some water; 225 gallons bailed, 45 gallons of which was sand.						

L = liter

mL = milliliter

Surging				
Interval (feet below ground surface)	Date	Start Time	End Time	Comments
532-527	10/6/2015	0905	0915	
527-522	10/6/2015	0915	0926	
522-517	10/6/2015	0927	0937	
517-512	10/6/2015	0938	0948	
512-507	10/6/2015	0948	0958	
507-502	10/6/2015	1009	1019	
502-497	10/6/2015	1020	1030	
497-492	10/6/2015	1030	1040	
492-487	10/6/2015	1040	1050	
487-482	10/6/2015	1050	1100	
482-477	10/6/2015	1116	1126	
477-472	10/6/2015	1127	1137	
472-467	10/6/2015	1137	1147	
467-462	10/6/2015	1147	1157	
462-457	10/6/2015	1157	1207	
457-452	10/6/2015	1255	1305	
452-447	10/6/2015	1302	1315	
532-448	10/6/2015	1315	1326	
532-527	10/6/2015	1629	1640	
527-522	10/6/2015	1641	1651	
522-517	10/6/2015	1651	1701	
517-512	10/6/2015	1701	1702	
512-507	10/6/2015	1720	1730	
507-502	10/6/2015	1730	1740	
402-497	10/6/2015	1740	1750	
497-492	10/6/2015	1750	1800	
492-487	10/7/2015	0808	0819	
487-482	10/7/2015	0827	0837	
482-477	10/7/2015	0837	0847	
477-472	10/7/2015	0847	0857	
472-467	10/7/2015	0857	0907	
467-462	10/7/2015	0907	0917	
462-457	10/7/2015	0923	0933	
457-452	10/7/2015	0934	0944	
452-447	10/7/2015	0944	0954	
532-449	10/7/2015	0954	1009	

Date	Time	Rate	Depth	Volume	Temp	рН	EC	Turbidity	Specific	Imhoff	Depth
		(gpm)	to	Removed	(°C)	(S.U)	(mS/cm)	(NTU)	Capacity	Cone (mL	of
			Water	(gallons)					(gpm/ft)	sediment	pump
			(ft BGS)							per L	(Feet)
										water)	
10/3/2015	1707	8	474.00	1995	20.7	8.23	0.689	>1,000	0.31	0.3	491.3
10/3/2015	1715	5	474.00	1075	21.3	8.17	0.745	>1,000	0.31	0.1	491.3
10/3/2015	1725	6.5	471.00	2125	21.5	8.11	0.813	>1,000	0.22	0.2	491.3
10/3/2015	1735	6.5	473.65	2190	21.8	7.96	0.808	>1,000	0.25	0.1	491.3
10/3/2015	1745	6	476.80	2255	21.5	7.95	0.721	>1,000	0.21	0.1	491.3
10/3/2015	1755	6	475.50	2310	21.5	7.91	0.707	>1,000	0.22	0.1	491.3
10/3/2015	1805	6	475.80	2370	21.4	7.89	0.665	>1,000	0.21	<0.1	491.3
10/3/2015	1815	6	476.00	2430	21.3	7.89	0.645	>1,000	0.21	<0.1	491.3
10/3/2015	1825	6	476.30	2490	21.3	7.89	0.633	>1,000	0.21	<0.1	491.3
10/3/2015	1835	6	476.55	2550	21.3	7.90	0.626	>1,000	0.21	<0.1	491.3
10/5/2015	0908		448.9	2557							491.3
10/5/2015	0910	8.5	452.1	2557	14.7	6.89	0.608	185	2.66	<0.1	491.3
10/5/2015	0920	8.5	463.2	2642	20.7	7.34	0.614	>1,000	0.59	<0.1	491.3
10/5/2015	0930	8.0	470.45	2727	20.2	7.30	0.599	125	0.37	<0.1	491.3
10/5/2015	0940	8.0	474.05	2807	20.7	7.83	0.592	123	0.32	<0.1	491.3
10/5/2015	0950	7.5	477.35	2887	20.8	7.90	0.604	217	0.28	<0.1	491.3
10/5/2015	1000	7.5	479.00	2962	20.8	7.87	0.585	334	0.25	<0.1	491.3
10/5/2015	1010	7.5	479.75	3037	20.8	7.63	0.611	>1,000	0.24	<0.1	491.3
10/5/2015	1108		449.41	3037							530.7
10/5/2015	1110	8	451.20	3037	21.6	7.85	0.607	>1,000	3.5	<0.1	530.7
10/5/2015	1120	8	459.53	3117	21.1	7.84	0.586	810	0.75	<0.1	530.7
10/5/2015	1130	7.5	463.95	3197	20.5	7.96	0.631	>1,000	0.53	<0.1	530.7- 525.7
10/5/2015	1140	7.5	467.20	3172	20.8	7.92	0.606	666	0.41	<0.1	530.7-
											525.7
10/5/2015	1150	7.5	469.40	3247	20.7	7.80	0.535	238	0.37	<0.1	525.7-
											520.7
10/5/2015	1200	7.5	471.45	3322	20.7	7.78	0.514	264	0.33	<0.1	525.7-
											520.7
10/5/2015	1240	7.5	452.80	3322	22.0	7.74	0.516	302	1.92	<0.1	520.7-
<u> </u>											515.7
10/5/2015	1250	7.5	461.65	3397	21.0	7.76	0.514	149	0.59	<0.1	520.7-
											515.7
10/5/2015	1300	7.5	467.98	3472	20.9	7.74	0.525	109	0.38	<0.1	515.7-
											510.7
10/5/2015	1322	8	452.40	3472	21.9	7.74	0.512	79.1	2.28	<0.1	510.7-

Pumping											
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Imhoff Cone (mL sediment per L water)	Depth of pump (Feet)
10/5/2015	1342	7.5	471.50	3632	20.8	7.77	0.498	165	0.33	<0.1	505.7- 500.7
10/5/2015	1352	7.5	476.23	3707	21.0	7.77	0.509	326	0.27	<0.1	500.7- 495.7
10/5/2015	1402	8	474.90	3782	21.1	7.77	0.526	455	0.31	<0.1	495.7- 490.7
10/5/2015	1427	8	453.90	3782	23.3	7.74	0.528	414	1.6	<0.1	490.7- 485.7
10/5/2015	1437	8	464.20	3862	21.1	7.75	0.514	373	0.52	<0.1	490.7- 485.7
10/5/2015	1448	7.5	471.35	3942	20.7	7.75	0.487	183	0.33	<0.1	480.7- 485.7
10/7/2015	1518		448.35	4991							512.3
10/7/2015	1525	9	450.4	4991	24.7	7.00	0.561	>1,000	6.42	0.2	512.3
10/7/2015	1535	9	450.35	5081	20.2	7.84	0.570	>1,000	6.67	<0.1	512.3
10/7/2015	1545	9	450.35	5171	20.5	7.87	0.547	>1,000	6.67	<0.1	512.3
10/7/2015	1552	30	453.90	5171	19.4	7.77	0.509	555	6.12	<0.1	512.3
10/7/2015	1602	29	453.80	5471	19.0	7.74	0.511	572	6.04	<0.1	512.3
10/7/2015	1612	29.5	453.95	5771	18.9	7.71	0.496	392	5.96	<0.1	512.3
10/7/2015	1622	29	454.15	6071	18.8	7.68	0.479	222	5.63	<0.1	512.3
10/7/2015	1632	29	454.30	6371	18.8	7.67	0.472	138	5.47	<0.1	512.3
10/7/2015	1648	28.5	453.65	6371	19.6	7.75	0.465	139	6.13	<0.1	530.4- 525.4
10/7/2015	1658	28	454.18	6656	18.8	7.69	0.463	137	5.40	<0.1	530.4- 525.4
10/7/2015	1708	28	454.45	6936	18.8	7.68	0.461	95.2	5.14	<0.1	530.4- 525.4
10/7/2015	1718	28	454.49	7216	18.7	7.68	0.442	110	5.10	<0.1	525.4- 520.4
10/7/2015	1728	28	454.52	7496	18.7	7.67	0.447	43.2	5.07	<0.1	520.4- 515.4
10/7/2015	1738	28	454.60	7776	18.7	7.68	0.441	111	5.00	<0.1	515.4- 510.4
10/7/2015	1815	30	453.80	7776	18.0	7.80	0.466	81.7	6.25	<0.1	510.4- 505.4
10/7/2015	1825	30	454.80	8076	18.5	7.70	0.445	101	5.17	<0.1	510.4- 505.4
10/8/2015	0824	30	453.37	8568	11.7	7.17	0.458	38	7.48	<0.1	505.4- 500.4

٦

Pumping											
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Imhoff Cone (mL sediment per L water)	Depth of pump (Feet)
10/8/2015	0834	30	454.70	8868	12.2	7.32	0.458	40.9	5.62	<0.1	505.4- 500.4
10/8/2015	0844	30	454.70	9168	12.9	7.44	0.460	13.6	5.62	<0.1	500.4- 495.4
10/8/2015	0854	30	454.70	9468	14.0	7.56	0.460	8.1	5.62	<0.1	500.4- 495.4
10/8/2015	0904	30	455.20	9768	14.1	7.57	0.459	5.83	5.17	<0.1	495.4- 490.4
10/8/2015	0931	30	453.30	9768	19.1	7.64	0.466	15.9	7.61	<0.1	490.4- 485.4
10/8/2015	0941	31	454.90	10068	18.6	7.71	0.462	10.8	5.60	<0.1	490.4- 485.4
10/8/2015	0951	31	455.22	10378	18.6	7.71	0.444	24.2	5.29	<0.1	480.4- 475.4
10/8/2015	1001	31	455.41	10688	18.6	7.70	0.447	20.0	5.12	<0.1	480.4- 475.4
10/8/2015	1011	31	455.37	10998	18.6	7.70	0.453	13.5	5.16	<0.1	475.4- 470.4
10/8/2015	1054	31	453.25	10998	19.3	7.68	0.450	9.98	7.97	<0.1	470.4- 465.4
10/8/2015	1104	31	453.90	11308	18.6	7.71	0.435	4.22	6.82	<0.1	470.4- 465.4
10/8/2015	1114	31	455.25	11618	18.6	7.69	0.435	9.63	5.26	<0.1	470.4
10/8/2015	1124	31	455.25	11928	18.6	7.69	0.443	6.41	5.26	<0.1	470.4
10/8/2015	1134	31	455.44	12238	18.6	7.69	0.442	5.21	5.09	<0.1	470.4
10/8/2015	1144	31	455.55	12548	18.6	7.68	0.443	3.5	5.00	<0.1	470.4
10/8/2015	1154	31	455.30	12858	18.6	7.68	0.445	59.4	5.21	<0.1	470.4
10/8/2015	1204	31	455.60	13168	18.6	7.69	0.445	76.0	4.96	<0.1	470.4
10/8/2015	1347	31	455.08	13168	18.9	7.68	0.492	34.5	5.42	<0.1	470.4
10/8/2015	1358	31	453.80	13478	18.7	7.73	0.444	9.0	6.98	<0.1	470.4
10/8/2015	1408	31	455.50	13788	18.6	7.71	0.444	8.29	5.04	<0.1	470.4
10/8/2015	1418	31									
10/15/2015	1400	40	450.36		22.5	7.62	0.508	142	36.04	<0.1	529
10/15/2015	1412	39.5	451.20		19.8	7.72	0.461	97.8	20.26	<0.1	529
10/15/2015	1422	39.5	451.26		19.2	7.69	0.465	24.8	19.65	<0.1	529
10/16/2015	0932	42.5	451.25	42809	18.9	7.29	0.484	545	24.29	0.2	488
10/16/2015	0942	42	451.34	43123	18.8	7.61	0.458	51.1	22.8	0.15	488
10/16/2015	0952	42	451.39	43165	18.6	7.72	0.463	15.3	23.22	<0.1	488

Pumping											
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Imhoff Cone (mL sediment per L water)	Depth of pump (Feet)
10/16/2015	1002	42	451.42	43207	18.5	7.73	0.464	10.0	21.88	<0.1	488
10/16/2015	1022	42	451.44	43209	18.4	7.72	0.465	5.76	21.65	<0.1	488
10/16/2015	1042	42	451.47	43375	18.3	7.72	0.463	4.08	21.32	<0.1	488
10/16/2015	1102	42	451.49	43459	18.3	7.72	0.464	4.14	21.11	<0.1	488
10/16/2015	1122	42	451.49	43543	18.3	7.71	0.462	2.11	21.11	<0.1	488
10/16/2015	1142	42	451.49	43627	18.2	7.71	0.460	2.23	21.11	<0.1	488
10/16/2015	1202	42	449.65	43711	20.0	7.86	0.515	198		<0.1	488
10/16/2015	1222	42	451.40	43795	18.4	7.74	0.462	4.58	22.11	<0.1	488
10/16/2015	1312	42	451.30	44005	19.8	7.80	0.466	96.8	23.33	<0.1	488
10/16/2015	1318	42	451.37	44306	18.5	7.74	0.455	30.2	22.46	<0.1	488
10/16/2015	1625	42	451.15		19.8	7.76	0.507	>1,000	25.45	6.0	468
10/16/2015	1635	43.5	451.66		20.6	7.82	0.523	748	20.14	0.2	468
10/16/2015	1645	44	451.70		19.6	7.79	0.498	227	20.00	0.2	468
10/16/2015	1655	44	451.74		18.9	7.77	0.473	114			468
10/20/2015	1528	63.78	452.07		18.1	7.65	0.463	78.7	22.34	<0.1	509.4
10/20/2015	1538	63.90	452.11		18.0	7.64	0.488	10.4	21.59	<0.1	509.4
10/20/2015	1548	63.08	452.15		18.0	7.63	0.486	3.88	21.46	<0.1	509.4
10/20/2015	1621	63.08	452.43						19.59		

°C = degrees Celsius

EC = Electric Conductivity

ft bgs = feet below ground surface

gpm = gallons per minute

gpm/ft = gallons per minute per foot

mL = milliliter

mS/cm = millisiemen per centimeter

NR = not recorded

NTU = Nephelometric Turbidity Unit

S.U. = Standard Unit

г

Jetting							
Date	Time	Depth	Jetting	Pumping	Imhoff Cone	Depth to	Comments
		(ft bgs)	Rate	Rate	Measurement	Water	
			(gpm)	(gpm)	(mL sediment per L water)	(feet bgs)	
10/12/2015	1820	520.0					Pump on
10/12/2015	1823	520.0		46.5	<0.1	458.0	
10/12/2015	1828	520.0	37.44	46.5	0.2	454.2	
10/12/2015	1834	525-520	36.12	46.0	0.2	452.0	
10/13/2015	0914	520-515		47.0	0.2	451.0	Pump on
10/13/2015	0928	520-515	26.0	47.0	2.0	454.2	Turn on jet
10/13/2015	0958	520-515	26.0	44.0	1.5	454.0	
10/13/2015	1011	520-515		44.0	0.3	454.1	
10/13/2015	1123	515-510	43.9	46.0	0.3	453.1	
10/13/2015	1137	510-505	30.0	44.0	0.7	452.3	
10/13/2015	1144	520-515	30.0	43.0	1.0	453.0	
10/13/2015	1149	525-505	30.0	43.0	0.5	453.0	Turn off jet/pump
10/13/2015	1240	505-500	32.0	47.0	0.9	453.9	Turn on jet/pump
10/13/2015	1247	500-495	30.0	46.0	0.5	451.6	
10/13/2015	1257	495-490	32.0	45.0	0.6	452.5	Turn off jet/pump
10/13/2015	1408	495-490	30.0	44.0	1.5	451.1	Turn on jet/pump
10/13/2015	1418	490-485	30.0	44.0	2.0	451.3	Turn off jet/pump
10/13/2015	1513	485-480	32.0	46.0	0.3	451.5	Turn on jet/pump
10/13/2015	1520	480-475	32.0	45.0	2.5	451.2	Turn off jet/pump
10/13/2015	1630	475-470	24.0	45.0	0.4	451.1	Turn on jet/pump
10/13/2015	1635	470-465	22.0	45.0	0.7	451.8	Turn off jet/pump
10/13/2015	1726	465-460	35.0	46.0	1.5	451.5	Turn on jet/pump
10/13/2015	1732	460-455	24.0	45.0	2.5	451.8	
10/13/2015	1739	455-450	23.0	43.0	3.0	451.0	Turn off jet/pump
10/14/2015	0830	465-460	26	46.5	2.5	451.3	Turn on jet/pump
10/14/2015	0835	460-455	25	44	7.5	451.5	
10/14/2015	0840	455-450	24	44	10.0	451.5	
10/15/2015	0906	465-460	39	46	7.0	450.0	
10/15/2015	0913	460-455	37	44	4.0	450.0	
10/15/2015	0920	455-450	36	43	7.0	449.9	
10/15/2015	1028	470-465	36	44	18.0	451.1	
10/15/2015	1034	475-470	36	43	10.0	449.7	
10/15/2015	1041	480-475	39	42	6.0	449.7	
10/15/2015	1045	485-480	38	40	5.0	449.7	
10/15/2015	1150	490-485	37	44	6.5	449.6	
10/15/2015	1155	495-490	37	40	4.5	449.7	
10/15/2015	1202	450-495	37	41	1.5	449.6	
10/15/2015	1208	505-500	38	40	3.0	449.6	

Г

Jetting							
Date	Time	Depth	Jetting	Pumping	Imhoff Cone	Depth to	Comments
		(ft bgs)	Rate	Rate	Measurement	Water	
			(gpm)	(gpm)	(mL sediment	(feet bgs)	
					per L water)		
10/15/2015	1339	510-505	36	42	1.1	449.6	
10/15/2015	1345	515-510	36	40	1.5	449.5	
10/15/2015	1350	520-515	36	40	2.5	449.5	
10/15/2015	1356	525-520	36	40	0.8	449.5	
10/15/2015	1432	525-520	35	39	0.6	449.2	
10/15/2015	1438	520-515	36	38	2.5	449.5	
10/15/2015	1444	515-510	36	37	1.9	449.4	
10/15/2015	1450	510-505	35	38	5.0	449.6	
10/15/2015	1530	505-500	34	41	1.6	449.8	
10/15/2015	1535	500-495	36	40	3.5	449.6	
10/15/2015	1548	495-490	32	38	2.5	449.8	
10/15/2015	1554	490-485	35	38	4.0	499.6	
10/15/2015	1654	485-480	35	42	4.5	449.4	
10/15/2015	1659	480-475	35	39.5	7.5	449.6	
10/15/2015	1705	475-470	34	39	8.0	449.8	
10/15/2015	1710	470-465	34	39	7.0	450.0	
10/16/2015	0637	465-460	35	44	10.0	450.2	
10/16/2015	1458	430-445	34				In unsaturated zone
10/16/2015	1618	445-440	34				In unsaturated zone
10/16/2015	1706	465-460	27	44	2.3	450.8	
10/16/2015	1711	460-455	24	43	9.8	450.6	
10/16/2015	1718	455-450	24	43	7.0	450.5	
10/16/2015	1738	465-460	35	40	3.5	450.6	
10/16/2015	1743	460-455	35	40	8.0	450.5	
10/16/2015	1749	455-450	24	40	5.0	450.3	
10/17/2015	0826	465-460	24	13	5.5	449.5	
10/17/2015	0831	460-455	24	42	7.5	450.3	
10/17/2015	0837	455-450	24	41	5.5	450.3	
10/17/2015	0842	455-450	25	40	7.5	450.4	
10/17/2015	0847	460-455	24	39	8.0	450.4	
10/17/2015	0852	465-460	24	38	6.0	450.3	
10/17/2015	0857	465-460	25	38	4.5	450.3	
10/17/2015	0902	460-455	24	38	5.5	450.4	
10/17/2015	0908	455-450	25	38	3.5	450.3	
10/17/2015	1010	480-475	35	39	1.2	450.0	
10/17/2015	1016	475-470	33	39	3.0	449.8	
10/17/2015	1010	470-465	24	38	4.75	450.4	

Jetting							
Date	Time	Depth (ft bgs)			Imhoff Cone Measurement (mL sediment per L water)	Depth to Water (feet bgs)	Comments
10/17/2015	1031	470-465	23	38	4.0	450.4	
10/17/2015	1036	475-470	23	38	4.5	450.2	
10/17/2015	1041	480-475	27	38	3.75	450.0	
10/17/2015	1047	480-475	27	38	3.0	450.0	
10/17/2015	1053	475-470	27	38	2.0	450.3	
10/17/2015	1058	470-465	25	38	2.0	450.2	
10/17/2015	1249	465-460	23	40	4.0	449.9	
10/17/2015	1254	460-455	22	39	3.5	450.0	
10/17/2015	1259	455-450	22	38	11.0	450.2	
10/17/2015	1304	455-450	21	38	3.0	450.0	
10/17/2015	1310	460-455	22	38	6.5	450.4	
10/17/2015	1315	465-460	23	38	4.0	450.4	
10/17/2015	1321	465-460	24	38	2.5	450.3	
10/17/2015	1326	460-455	24	38	7.0	450.3	
10/17/2015	1331	455-450	23	38	6.5	450.1	
10/17/2015	1336	455-450	23	38	6.0	450.2	
10/17/2015	1341	460-455	24	38	7.0	450.1	
10/17/2015	1347	455-450	23	38	9.0	450.5	
10/17/2015	1354	460-455	23	34	10.0	450.3	
10/17/2015	1413	460		33	1.5	451.1	
10/17/2015	1418	455		33	0.7	451.1	
10/17/2015	1423	455		33	0.3	451.1	
10/17/2015	1427	465		33	0.3	451.1	
10/17/2015	1435	465		33	0.1	451.1	
10/17/2015	1445	465		34	0.1	451.3	
10/17/2015	1500	465		35	0.1	451.4	

ft bgs = feet below ground surface

gpm = gallons per minute

L = liter

mL = milliliter

psi = pounds per square inch

C	RI			Bore	ehol	le IC): KAFB-1	06234
Proje Proje Proje Date Date Date	ect Loc ect Nan ect Nur Starte TD Re Comp	ation ne: k nber: d: 9/ eache leted:	: KAF (AFB 5004 2/201 d: 10	FB, Albuquerque, NM Hole Dia RAPID SWMU ST-106 and SS-111Surface 433 Ground 5 ⊈ At T 0/1/2015 ⊈ At E ♀ At E	ameter Comp water I Time of End of I er Drillin	Lower letion evels Drillin Drilling ng: 45	BGS (ft): g: 459.00 : Not Recorded	VIRGINIA BRACHT 8881903-2250
Y Co	ordinat	te:		Drilling I Logged	Methoo By: D	d: Muc avid K	l Rotary essler	Page 1 of 24
Oepth (ft) Sample Type	Number	Headspace	Lithologic Log		U.S.C.S.		/ell Diagram	Remarks
5				A No lithologic description.	<u>SPHA</u>	T	- Top of Casing/Cement Seal	Borehole was air knifed from 0.5 - 8.7 ft for utility clearance on 8/31/15. Sand, silt, and gravel observed.
10 - - - 15				SILT (ML); brown (10YR 4/3); hard; 100% silt. SILT with Sand (ML); reddish brown (5YR 5/4); 80% silt; 20% fine sand. Same as above (10 ft).	ML		- Cement Seal	Begin ARCH drilling with 3/4" O.D. bit @ 1715 on 9/2/15. PID = 0.0 ppm @ breathing zone. Resume drilling @ 0835 on 9/3/15 @ 12 ft. PID = 0.0 ppm @ cyclone and breathing zone.
20				Silty SAND (SM); dark reddish brown (5YR 3/3); 70% fine to medium sand; subangular to subrounded; 30% silt. Note: sand is biotite. @ 17 ft. Same as above (16 ft); trace gravel. Well-graded SAND with Gravel (SW); reddish brown (5YR 4/3); dry; 75% fine	SM			Injected water to control dust. Depth of stabilization. Begin drilling with mud @ 1705.
25				to coarse sand; subangular to rounded; 20% gravel; angular to rounded; 5% silt. Note: sand is quartz, feldspars, and mafics. Same as above (18 ft); sand is subrounded to rounded.	sw		Top of Portland Bentonite Cement	PID = 0.0 ppm @ breathing zone.Rig bouncing and chattering.Color cannot be determined.

(Borehole ID: KAFB-106234											
P P	roje roje	ct Loc ct Nan	ation ne: k	: KÁI (AFB	FB, Albuquerque, NM Hole [RAPID SWMU ST-106 and SS-111Surfac)iame	tor		er (in.): 16 er (in.): 14-3/4 Type: Flush			
D	ate s	ct Nun Starte TD Re Comp	d: 9/ ache	s BGS (ft): ing: 459.00 ng: Not Recordeo 458.90	1							
Y	Coc	nd Eler ordinat	Page 2 of 24									
S Depth (ft)		Number	Headspace PID	Lithologic Log	Material Description		5		Well Diagram	Remarks		
	-				Well-graded SAND with Gravel (SW); 75% fine to coarse sand; subrounded to rounded; 20% gravel; 5% silt. Note: sar is quartz, feldspar, and mafics.					Occasional chatter from drill stem.		
3					Same as above (30 ft). Same as above (30 ft); dark reddish brown (5YR 3/3); 55% fine to very coarse sand; 40% coarse gravel; angular.			· ·		End of 9/3/15 @ 34 ft. Resume drilling @ 0905 on 9/4/15. PID = 0.0 ppm @ breathing zone. Gravel layer observed from 35 - 37 ft. Significant drill chatter.		
4	-				Same as above (30 ft); dark reddish brown (5YR 3/3); 55% fine to very coarse sand; 40% coarse gravel; angular.	SI	V		- Portland Bentonite Cement	Hard drilling. Add 150 gallons of water.		
50	-				Same as above (30 ft); dark reddish brown (5YR 3/3); 55% fine to very coarse sand; 40% coarse gravel; angular. Same as above (30 ft); dark reddish brown (5YR 3/3); dense; 55% fine to very coarse sand; 40% coarse gravel; angular; 5% silt.				• • • •	PID = 0.0 ppm @ breathing zone. Added stabilizing collar @ 1140. Hole sloughted approximately 8 ft @ 1230. Continuous chatter from 55 - 58 ft.		

Cli	ient ojec	: US	S Ar cati	rmy i on:	Corp KAF	s of Engineers B, Albuquerque, NM RAPID SWMU ST-106 and SS-11	Hole Di	amete	r Unr	D: KAFB- per (in.): 16 ver (in.): 14-3/4 n Type: Elush	100234	
Da Da	ojec ate S ate T	s t Nu Starte	mb ed: .eac	er: 9/2 cheo	5004 2/2018	-33	Groundwater Levels BGS (ft):					
YC	Coo	d Ele rdina rdina	ate:		AMS	L (ft): Not Recorded	Drilling I	Metho	d: M	National Drilling lud Rotary Kessler	Page 3 of 24	
8 Depth (ft)	Sample Type	Number	Headspace	PID	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks	
65	_					Poorly graded SAND with Grave dark reddish brown (5YR 3/3); 6 to medium sand; subrounded to rounded; 35% fine gravel; suban rounded; 5% silt. Note: sand is o and mafics. Gravel is quartz, fel and mafics. Same as above (60 ft).	ngular to			• • • •	Collection of very coarse gravel in sieve from muc tub.	
70	-					Same as above (60 ft); Note: pe of mafics in gravel increases.	ercentage	SP		• • • • • • • • • • • • • • • • • • • •	Stopped drilling due to low circulation.	
75	_					Same as above (60 ft).				 Portland Bentonite Cement 	Borehole collapsed due to inability to remove fin- gravel. Backfill borehole with 8/12-grade sand from 61.7 - 18.1 ft. Adde third 20' collar @ 75 ft. Resume drilling with	
80	_					Same as above (60 ft); gravel to angular.					ARCH @ 1430 on 9/12/15. Very hard drilling from 7 - 84.6 ft. Drill stem bouncing and chattering PID = 0.0 ppm @ breathing zone. Continue advancing casing using ARCH to 8	
- - - - 90	-					Well-graded SAND with Gravel dark reddish brown (5YR 3/3); 6 fine to coarse sand; subrounded rounded; 35% fine gravel; subar rounded; 5% silt. Note: sand is o and mafics. Gravel is quartz, fel and mafics.	0% very to ngular to quartz	sw			ft on 9/14/15. Could not advance any further.	

	Ap	pendi	хL							
	2	BI			Bore	eho	le l	D:	KAFB-1	06234
Pro Pro	ojec ojec	t Loca t Nam	ation ne: k	: KAI	RAPID SWMU ST-106 and SS-111Surface	ameter	rlów	er (i	n) 14-3/4	
Dat Dat	te S te T	started	d: 9/: ache	2/201 d: 10	5 \\\/1/2015 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ime of	f Drill Drillir	ing: ng:	459.00 Not Recorded	
Gro Y C	ouno Coor	•	/atior e:		⊈ Afte ∑	Contra Methoo	actor: d: M	Na ud F	itional Drilling Rotary	Page 4 of 24
ତ Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.		We	l Diagram	Remarks
<u>90</u> - - 95					Well-graded SAND with Gravel (SW); dark reddish brown (5YR 3/3); 60% very fine to coarse sand; subrounded to rounded; 35% fine gravel; subangular to rounded; 5% silt. Note: sand is quartz and mafics. Gravel is quartz, feldspar, and mafics. Same as above (90 ft); 50% very fine to coarse sand; 45% coarse gravel to 3 cm; angular. Note: sand is quartz, mafics,	SW				Begin drilling using mud @ 0835 on 9/15/15. PID = 0.0 ppm @ breathing zone.
- - 100 - - -					and feldspar. Well-graded GRAVEL with Sand (GW); dark reddish brown (5YR 3/3); 60% fine to coarse gravel; angular to rounded; 35% very fine to medium sand; subrounded to rounded; 5% silt. Note: gravel is quartz and feldspar. Sand is quartz.	GW				
105 -					Same as above (97 ft).				- Portland Bentonite Cement	
- - - - - - - -					Clayey GRAVEL with Sand (GC); dark reddish brown (5YR 3/4); 50% fine to coarse gravel; angular to rounded; 30% very fine sand; rounded; 20% clay. Note: gravel is quartz and feldspar.	GC				
<u>115</u> -					Same as above (107 ft); 50% very fine to coarse gravel; 20% very fine sand; 30% clay.		• • • • • • • • • • • • • •			
- 120					Clayey GRAVEL (GC); strong brown (7.5YR 5/6); 50% gravel; angular to rounded; 10% very fine sand; rounded;			• • • • • • • •		

					F	Doro	ha			06024
	Ċ	BI				sore	no	ie i	D: KAFB-1	106234
Pro	oiec	t Loca	ation	: KAF	-B. Albuquerque, NM H	lole Dia	meter		er (in.): 16 er (in.): 14-3/4	
Pro	ojec ojec	t Nam	ne: r nber:	5004	RAPID SWMU ST-106 and SS-111S				n Type: Flush s BGS (ft):	
				2/201 d: 10	5	🛛 At Ti	me of	f Drill	ing: 459.00 ig: Not Recorded	
					2	After	Drilli	ng: 4	458.90	
Y (Coo	rdinat rdinat	e:	I AIVIG	D	rilling M	lethoo	d: M	National Drilling ud Rotary Kessler	Page 5 of 24
Depth (ft)	Sample Type	Number	space D	Lithologic Log			C.S.			Domorko
Dept Dept 120	Sample	Nun	Head	Litho	Material Description		U.S.		Well Diagram	Remarks
120	-				40% clay. Note: gravel is quartz an feldspar. Clayey GRAVEL (GC); strong brow		GC	• • • • • •	• • • • • •	
405	-				(7.5YR 5/6); 50% gravel; angular to rounded; 10% very fine sand; round 40% clay. Note: gravel is quartz an feldspar.	o ded;				PID = 0.0 ppm @ breathing zone.
125	-				Gravelly fat CLAY with Sand (CH); strong brown (7.5YR 5/6); 50% clay 30% fine to coarse gravel; subroun 20% very fine sand.	y;				
130	-				Fat CLAY with Gravel (CH); brown (7.5YR 4/3); 70% clay; 20% fine to coarse gravel; angular to subround 10% very fine sand. Note: sand is quartz.		СН			
135	-				Fat CLAY (CH); brown (7.5YR 4/3) clay; 10% very fine sand; subround rounded.					
	-				Clayey SAND (SC); brown (7.5YR 60% very fine sand; subrounded; 4 clay.				- Portland Bentonite Cement	
140	-				Same as above (135 ft).		SC			Kelly down, new 20' connection.
145	-				Sandy fat CLAY (CH); brown (7.5Y 5/3); 60% clay; 40% very fine sand		СН			PID = 0.0 ppm @ breathing zone.
150	-							• • • • • • • •		

	Appen	dix 1	L							
	B				Bor	eho	le l	D: K	AFB-	106234
Proj Proj	ect Lo ect Na	catio me:	on: KA	KAF FB F	B, Albuquerque, NM Hole D RAPID SWMU ST-106 and SS-111Surfac	iamete	rlówi	per (in.): ver (in.): n Type:	14-3/4	
Date Date	ect Nu e Start e TD R e Com	ed: leacl	9/2/2 hed:	2015	Ground 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Time o End of	f Drill Drilliı			ł
Grou Y Co		evati ate:		AMS	L (ft): Not Recorded Drilling Drilling	Metho	actor: d: M	Natior		Page 6 of 24
Complete (ft)	Sample Type Number	Headspace	PID Litholocic	Log	Material Description	U.S.C.S.	Well Diagram			Remarks
-					Sandy fat CLAY (CH); brown (7.5YR 5/3); 60% clay; 40% very fine sand.					
<u>155</u> _ _					Same as above (150 ft).	СН				
<u>160</u>					Same as above (150 ft). Well-graded SAND with Gravel (SW); brown (7.5YR 4/3); 60% very fine to			· · · · · · · · · · · · · · · · · ·		Kelly down @ 1345, new 20' connection. Difficult drilling and
1 <u>65</u>			• • • • • • • • • • • • • • • • • • •		coarse sand; 35% fine to coarse gravel; subrounded to rounded; 5% silt. Note: gravel is quartz, feldspar, and mafics. Same as above (161 ft).			Be	rtland ntonite ment	chatter.
- - 170 - -					Same as above (161 ft).	sw				
<u>175</u>					Same as above (161 ft); 35% coarse gravel.					PID = 0.0 ppm @ breathing zone.
- - 180										Kelly down @ 1447, new

	2	B						D: KAFB-	106234
Pro Pro	ojec Djec	t Loc t Nar	ation	: KAF	B, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ameter	rlówi	oer (in.): 16 /er (in.): 14-3/4 n Type: Flush	
Dat Dat	te S te T	tarte D Re	ed: 9/	2/2018 d: 10	Ground 5 ⊻ At 1	Time o [.] End of	f Drill Drillir	ls BGS (ft): ing: 459.00 ng: Not Recorded 458.90	Ŀ
YC	Cooi	d Ele rdina rdina	te:	n AMS	L (ft): Not Recorded Drilling Drilling	Contra Methoo	actor: d: M	National Drilling ud Rotary Kessler	Page 7 of 24
8 Depth (ft)	Sample Type	Number	Headspace	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks
-	-				Well-graded SAND with Gravel (SW); brown (7.5YR 4/3); 60% very fine to coarse sand; 35% coarse gravel; angular to rounded; 5% silt. Note: gravel is feldspar and mafics.	sw		• • • • • • • • • • • •	20' connection. Bit chatter.
	-				Poorly graded SAND with Gravel (SP); brown (7.5YR 4/3); 55% very fine sand; 40% fine gravel; subrounded to rounded; 5% silt. Note: gravel is quartz, feldspar, and mafics.	SP	- • • • • • • • • • • • • • • • • • • •		PID = 0.0 ppm @ breathing zone.
<u>190</u>					Same as above (184 ft); 65% very fine sand; 30% fine gravel.		• • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
- <u>195</u> -	-				Poorly graded GRAVEL with Sand (GP); brown (7.5YR 4/3); 60% fine gravel; subrounded to rounded; 35% very fine sand; rounded; 5% silt. Note: gravel is quartz, fedspar, and mafics.	GP		- Portland Bentonite Cement	
_ 200 _ _	-				Same as above (192 ft); 60% coarse gravel.				Kelly down @ 1540, ne 20' connection.
- <u>205</u> -					Well-graded SAND with Gravel (SW); brown (7.5YR 4/4); 60% very fine to coarse sand; 35% medium gravel; subrounded to rounded; 5% clay. Note: sand is quartz. Gravel is quartz and feldspar.	sw			
210							• • • • • •		

	Appen	dix	L									
C	Borehole ID: KAFB-106234											
Proj Proj	ect Lo ect Na	cati me:	ion: : K	KAF AFB I	B, Albuquerque, NM RAPID SWMU ST-106 and SS-111.	Hole Dia	meter		oer (in.): 16 /er (in.): 14-3/4 n Type: Flush	L		
Date	Project Number: 500433 Groundwater Levels BGS (ft): Date Started: 9/2/2015											
Grou Y Co		eva ate:	tion	AMS	I	_ Drillling Drilling N	Contra Aethoo	actor: d: M	458.90 National Drilli ud Rotary Kessler	ng Page 8 of 24		
	Number			Lithologic Log	Material Description		N.C.S.		Well Diagram	Remarks		
-					Well-graded SAND with Gravel (S brown (7.5YR 4/4); 60% very fine coarse sand; 35% medium gravel subrounded to rounded; 5% clay. sand is quartz. Gravel is quartz ar feldspar.	to ; Note:			· · · · · · · · · · · · · · · · · · ·			
215					Same as above (210 ft); 70% very coarse sand; 25% fine to medium Note: gravel is quartz, feldspar, an mafics.	gravel.			· · · · · · · · · · · · · · · · · · ·			
2 <u>20</u> - -			· · · · ·		Same as above (215 ft).				• • • • • • • • • • • • • • • •	Kelly down @ 1620, new 20' connection.		
- 225 - -					Same as above (215 ft).		SW		 Portland Bentonite Cement 			
- 2 <u>30</u> - -			· · · · · · · · · · · · · · · · · · ·		Same as above (215 ft).				· · · · · · · · · · · · · · · · · ·	Hammer chatter.		
2 <u>35</u> -			· · · · · · · · · · · · · · · · · · ·		Same as above (215 ft).							
240								• • • • • • • • • •		Kelly down @ 1719, new		

	Append	dix L										
	Borehole ID: KAFB-106234											
Proj Proj	iect Lo	catio me:	n: K/	KAF AFB F	FB, Albuquerque, NM Hole D RAPID SWMU ST-106 and SS-111Surfac 133	iamet e Corr	er Lo Ipleti		L			
Date Date	e Starte	ed: 9 each	9/2 1ed	/201	Ground 5 ∑ At /1/2015 ∑ At	Time End o	of Dr f Dril	els BGS (ft): illing: 459.00 ling: Not Recorc 458.90	led			
Ground Elevation AMSL (ft): Not Recorded Drillling Contractor: National Drilling Y Coordinate: Drilling Method: Mud Rotary X Coordinate: Logged By: David Kessler												
Depth (ft)	Sample Type Number	Headspace	DID .	Lithologic Log	Material Description	U.S.C.S.		Well Diagram	Remarks			
240 °			6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Well-graded SAND with Gravel (SW); brown (7.5YR 4/4); 60% very fine to coarse sand; subrounded to rounded; 35% fine to coarse gravel; subrounded to rounded; 5% clay. Note: gravel is quartz, feldspar, and mafics. Same as above (240 ft). Same as above (240 ft); 35% fine grave Same as above (240 ft); 35% fine grave	SIA		- Portland Bentonite Cement	20' connection.			
260			- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Same as above (240 ft); 35% coarse gravel.				Kelly down, new 20' connection. End of 9/15/15 @ 1817. Resume drilling @ 0820 on 9/16/15.			
<u>203</u> - - 2 270			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Same as above (240 ft); 35% fine grave	I.			PID = 0.0 ppm @ breathing zone.			

	Appen	dix L										
	Borehole ID: KAFB-106234											
Pro Pro	iect Lo	cation me: k	: KAF (AFB	B, Albuquerque, NM Hole RAPID SWMU ST-106 and SS-111Surfa	Diam	ete	rlówi	ver (in.): 16 in.): 14-3/4 pe: Flush			
Date Date	- e Starte	ed: 9/. eache	2/201 d: 10	5 \\\\\\\\\\ \/1/2015 \\\\\\\ \\\\\\\\\ \\\\\\\\\\\\\\\\\\\	At Time	e o of	f Drill Drilli	ling: ng:	GS (ft): 459.00 Not Recorded			
Gro Y C	ound Ele oordina	Page 10 of 24										
Depth (ft)	Sample Type Number	Headspace	Lithologic Log	Material Description		0.0.0.0		We	ll Diagram	Remarks		
270				Well-graded SAND with Gravel (SW); brown (7.5YR 4/3); 55% very fine to coarse sand; subrounded to rounded; 40% fine to coarse gravel; rounded; 5° silt. Note: gravel is quartz, feldspar, an mafics. Same as above (270 ft).	d	W				PID = 0.0 ppm @ breathing zone.		
280 - - - 285				Silty SAND with Gravel (SM); brown (7.5YR 4/2); 50% very fine to coarse sand; subrounded to rounded; 20% fin to coarse gravel; angular to subrounde 30% silt. Note: gravel is quartz, feldspa and mafics.	ed; ar,	M			- Portland Bentonite Cement	Kelly down @ 281 ft, new 20' connection.		
- - 290 - -				Well-graded SAND with Gravel (SW); brown (7.5YR 4/3); 60% very fine to coarse sand; subrounded to rounded; 35% fine to medium gravel; subrounde to rounded; 5% silt. Note: gravel is quartz, feldspar, and mafics.	ed				Cement			
- 295 - - -				Same as above (287 ft).	s	W				Rig chatter.		
300								•••				

		RI		D: KAFB-1	06234					
Pro Pro	ojec ojec	US t Loc t Nan	er (in.): 16 er (in.): 14-3/4 n Type: Flush							
Da	ite S ite T	tarte D Re	n ber: d: 9/2 ached leted:	/2015		f Drilli Drillin	s BGS (ft): ng: 459.00 g: Not Recorded 58.90			
Y	Cool	d Elev rdinat rdinat	e:	AMS	L (ft): Not Recorded	Drilling	Contra /lethoo	actor: d: Mu	National Drilling	Page 11 of 24
00 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	ſ	ທ່ ບິ ທ່ ບິ Well Diagram		Remarks	
305	-				Well-graded SAND with Grave brown (7.5YR 4/3); 60% very coarse sand; subrounded to re 35% fine to coarse gravel; sub to rounded; 5% silt. Note: san and mafics. Gravel is quartz, f and mafics.	fine to ounded; orounded d is quartz	SW		• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Kelly down @ 301 ft, new 20' connection.
	-		2		Poorly graded GRAVEL with S brown (7.5YR 4/3); 60% coars subrounded to rounded; 35% coarse sand; subrounded to ro 5% silt. Note: gravel is quartz, and mafics.	se gravel; very fine to ounded; feldspar,	GP		• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Constant rig chatter.
310	-		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Well-graded SAND with Grave dark brown (7.5YR 3/3); 60% coarse sand; subrounded to re 35% fine to coarse gravel; sub to rounded; 5% silt. Note: san Gravel is quartz, feldspar, and	very fine to ounded; prounded d is quartz.			• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	PID = 0.0 ppm @ breathing zone.
315	-		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Same as above (309 ft).				- Portland Bentonite Cement	
320	-				Same as above (309 ft).		SW			Bit chatter. Kelly down @ 1045, new 20' connection.
325	-				Same as above (309 ft); 55% coarse sand; 40% fine gravel.					
330			* * *					•••		

Clie	nt:	US	Army	/ Corp	s of Engineers FB, Albuquerque, NM	Hole Dia	amete	r Upp	D: KAFB- per (in.): 16 ver (in.): 14-3/4	106234		
Proj Proj Date Date Date	ject ject e S e T e C unc	t Nan t Nun tarte D Re compl d Elev	ne: h nber: d: 9/ eache leted: vatior	(AFB 5004 2/2019 d: 10	RAPID SWMÜ ST-106 and SS-11 33	-111Surface Completion Type: Flush Groundwater Levels BGS (ft): ♀ At Time of Drilling: 459.00 ♥ At End of Drilling: Not Recorded ♥ After Drilling: 458.90 Drillling Contractor: National Drilling						
		dinat dinat				Logged			ud Rotary Kessler	Page 12 of 24		
05 Depth (ft)	Sample Type	Number	Headspace	Lithologic Log	Material Description		U.S.C.S.		Well Diagram	Remarks		
335					Well-graded SAND with Gravel (dark brown (7.5YR 3/4); 60% ve coarse sand; subrounded to rou 35% fine to coarse gravel; angul rounded; 5% silt. Note: sand and are quartz, feldspar, and mafics. Same as above (330 ft); 35% co gravel.	ry fine to nded; ar to I gravel			• • • •	PID = 0.0 ppm @ breathing zone. Rig chatter.		
_ <u>340</u> _ _ _					Same as above (330 ft); 35% co gravel.	arse				Kelly down @ 1334, nev 20' connection.		
 					Same as above (330 ft); 35% co gravel.	arse	SW		 Portland Bentonite Cement 			
- <u>350</u> - -					Same as above (330 ft); 35% co gravel.	arse			· · · · · · · · · · · · · · · · · ·	Rig chatter.		
 355					Same as above (330 ft); 35% co gravel.	arse			 • •<	Rig chatter; hard cutting		
- - 360								• • • • • • • •	• • • • • • • •			

Project Project Project Date S	t Locat t Name t Numi tarted:	tion: e: K ber: : 9/2	KAF AFB F 5004 2/201	s of Engineers Hole Dia FB, Albuquerque, NM Hole Dia RAPID SWMU ST-106 and SS-111Surface 33 Ground 5 \(\overline{2}\) At T	amete amete Comp water I	r Upp r Low pletion Level f Drill	per (ver (n Ty ls B ing:	GS (ft): 459.00	106234
Date C	omple d Eleva	ted: ation		⊥ Afte	r Drilli Contra	ng: 4 actor:	458 Na	ational Drilling	
00 Depth (ft) X Sample Type			Lithologic Log	Logged Material Description			Page 13 of 24 Remarks		
365				Well-graded SAND with Gravel (SW); dark brown (7.5YR 3/4); 60% very fine to coarse sand; subrounded to rounded; 35% fine to coarse gravel; angular to rounded; 5% silt. Note: sand is quartz and mafics. Gravel is quartz, feldspar, and mafics.	SW			- Portland Bentonite Cement	Kelly down @ 1459, new 20' connection.
370 370 375				gravel. Poorly graded SAND with Gravel (SP); brown (7.5YR 4/2); 60% fine sand; trace coarse sand; subrounded to rounded; 35% fine to coarse gravel; angular to rounded; 5% silt. Note: sand is quartz and mafics. Gravel is quartz, mafics, and feldspar. Same as above (368 ft); trace medium to				- Top of 3/8" Bentonite Chip Seal	
375 380 3885				coarse sand. Poorly graded SAND (SP); brown (7.5YR 4/2); 85% very fine to fine sand; subrounded to rounded; 10% fine gravel; angular to rounded; 5% silt. Note: gravel is quartz, feldspar, and mafics.	SP			- 3/8" Bentonite Chip Seal	End of 9/16/15 @ 379 ft. Begin drilling with 12 1/4" bit mud rotary on 9/17/15 @ 0901. Kelly down @ 381 ft, new 20' connection.
385				Same as above (380 ft).					PID = 0.0 ppm @ breathing zone.

Project Project Project Date Date	ct Loc ct Nan ct Nun Started TD Re Compl	ation: ne: K nber: d: 9/2 ache leted:	: KAF AFB I 5004 2/201 d: 10	-33 5 /1/2015	Hole Dia Ground\ ∑ At T ▼ At E ▼ At E	Borehole ID: KAFB-106234 Hole Diameter Upper (in.): 16 Hole Diameter Lower (in.): 14-3/4 111 Surface Completion Type: Flush Groundwater Levels BGS (ft): ☑ At Time of Drilling: 459.00 ¥ At End of Drilling: Not Recorded ¥ After Drilling: 458.90				
Y Coo	nd Elev ordinat ordinat	e:	AMS	L (ft): Not Recorded	Drilling Drilling I Logged	Nethod	I: Mud		Page 14 of 24	
66 Depth (ft) Sample Type	Number	Headspace PID	Lithologic Log	Material Descripti	on	U.S.C.S.	W	ell Diagram	Remarks	
				Poorly graded SAND (SP); t (7.5YR 4/2); 85% very fine to subrounded to rounded; 10% angular to rounded; 5% silt. is quartz, feldspar, and mafie @ 391 ft. Poorly graded SAN Gravel (SP); brown (7.5YR 5 fine sand; subrounded to rou fine to coarse gravel; angula subangular; 5% silt. Note: sa and mafics. Gravel is quartz and mafics.	o fine sand; % fine gravel; Note: gravel cs. ND with 5/3); 70% unded; 25% and is guartz			- 3/8" Bentonite Chip Seal	Rig chatter.	
400 - - 405				Same as above (391 ft); 60% 35% fine to coarse gravel. Same as above (391 ft); bro 4/3); 60% fine sand; 35% fin gravel.	wn (7.5YR	SP			Rig chatter; slowed drilling rate. PID = 0.0 ppm @ breathing zone. Kelly down @ 1002, new 20' connection.	
- - - 4 <u>10</u> -				Same as above (391 ft); bro 4/3); 60% fine sand; trace m coarse sand; 35% fine to coa	edium to			- Top of 10/20 Sand		
4 <u>15</u> -				Same as above (391 ft); bro 4/3); 60% fine sand; trace m coarse sand; 35% fine to coa	edium to			- Top of 8/12 Sand		

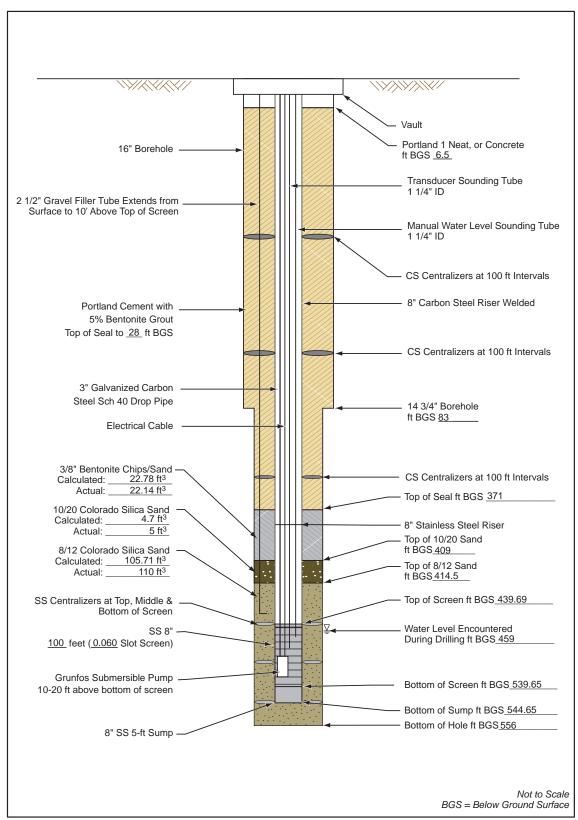
				1							
Borehole ID: KAFB-106234											
Client: US Army Corp Project Location: KAI Project Name: KAFB Project Number: 5004	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ameter	r Upper (in.): 16 r Lower (in.): 14-3/4 ıletion Type: Flush								
Date Started: 9/2/201 Date TD Reached: 10	Date Started:9/2/2015Groundwater Levels BGS (ft):Date TD Reached:10/1/2015☑ At Time of Drilling:459.00Date Completed:☑ At End of Drilling:Not Recorded☑ After Drilling:458.90										
	Ground Elevation AMSL (ft): Not Recorded Drilling Contractor: National Drilling V Coordinate: Drilling Method: Mud Rotary										
055 Depth (ft) Sample Type Number Headspace PID Lithologic Logic	Material Description	U.S.C.S.	Well Diagram	Remarks							
	Poorly graded SAND with Gravel (SP); brown (7.5YR 4/2); 75% fine sand; subrounded to rounded; 20% fine gravel; subrounded to rounded; 5% silt. Note: sand is quartz and mafics. Gravel is quartz, mafics, and feldspar.	SP									
425	Well-graded SAND with Gravel (SW); brown (7.5YR 4/2); 65% fine to coarse sand; subrounded to rounded; 30% fine to coarse gravel; angular to rounded; 5% silt. Note: sand is quartz and mafics.	sw	-8/12 Sand	PID = 0.0 ppm @							
430	Silty SAND (SM); 60% fine sand; subrounded to rounded; 10% fine gravel; angular to subrounded; 30% silt. Note: sand is quartz and mafics. Gravel is quartz, feldspar, and mafics.	SM		breathing zone.							
435				End of mud rotary drilling @ 435 ft on 9/17/15.							
440											
445											
450											

	C	BI			E	Bore	ehole ID: KAFB-106234-Sonic				
Pro Pro	ojec ojec	ct Loca ct Nam	ation: ne: K	KAF AFB	FB, Albuquerque, NM He RAPID SWMU ST-106 and SS-111St	ole Dia	meter	Upper (in.) Lower (in.) etion Type) 14-3/4		
Da Da	Project Number: 500433 Groundwater Levels BGS (ft): Date Started: 9/18/2015										
Y (X (Ground Elevation AMSL (ft): Not Recorded Drilling Contractor: National Drill V Coordinate: Drilling Method: Sonic Coring Logged By: David Kessler									Page 16 of 24	
435 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	Well [Diagram	Remarks	
	-				 @ 435 ft. Poorly graded SAND (SP brown (7.5YR 5/3); 95% fine sand; subrounded to rounded; trace fine gravel; 5% silt. @ 435.5 ft. Fat CLAY (CH); reddish brown (5YR 5/4); high plasticity; 100 clay. @ 436.2 ft. Poorly graded SAND with (SP-SM); brown (7.5YR 5/3); 90% v fine to fine sand; subrounded to rounded; 10% silt. @ 436.6 ft. Well-graded SAND with Gravel (SW); brown (7.5YR 5/3); 60 fine to coarse sand; subrounded to rounded (SW); brown (7.5YR 5/3); 60 fine to coarse sand; subrounded to rounded t	1 0% ith Stilt very	SP CH SP- SM SW		op of 8"	Begin sonic coring with mud on 9/18/15 with 6" O.D. bit. @ 435 - 449 ft sand is quartz with occasional mafics. @ 436.6 - 437 ft gravel is quartz, mafics, and feldspar.	
440	<u>40</u> - -				rounded; 35% fine to coarse gravel subrounded to rounded; 5% silt. @ 437 ft. No recovery. @ 440 ft. Poorly graded SAND (SP brown (7.5YR 4/4); 95% fine sand; subrounded to rounded; 5% silt.		SP	S 0	itainless Steel .050 Slot creen	 @ 440 - 442.8 ft sediments are fining upwards and laminated. @ 440.52 ft cobble to 1-5/8"; subangular; sandstone. 	
445	-				 @ 442.8 ft. Well-graded GRAVEL v Silt and Sand (GW-GM); brown (7.5 4/4); 50% fine to coarse gravel; subrounded; 40% fine to coarse san angular to rounded; 10% silt. @ 443.1 ft. No recovery. 	5YR	GW- GM			@ 442.8 - 449 ft gravel is quartz, mafics, and feldspars with occasional granite and quartzite.	
	-				 @ 445 ft. Silty GRAVEL (GM); brow (7.5YR 5/3); 60% fine to coarse gra subrounded; 10% fine to coarse sat subrounded to rounded; 30% silt. @ 446.7 ft. No recovery. 	vel;	GM			@ 445 - 446.7 ft the percentage of silt decreases with depth.	
	-				@ 447.5 ft. Poorly graded SAND wi Gravel (SP); brown (7.5YR 5/3); 80 fine to medium sand; trace coarse s subrounded to rounded; 15% fine to coarse gravel; subrounded to round 5% silt.	% sand; o	SP				
450					@ 449 ft. No recovery.	/	- - -				

CF	106234-Sonic				
Project Project	Location: KA Name: KAFB	NFB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ametei	r Upper (in.): 16 r Lower (in.): 14-3/4 oletion Type: Flush	
Date Sta Date TD Date Co	Number: 500 arted: 9/18/20 Reached: 1 mpleted:	d			
Ground Y Coord X Coord		Page 17 of 24			
05 Depth (ft) Sample Type	Number Headspace PID Lithologic	Material Description	U.S.C.S.	Well Diagram	Remarks
455		 @ 450 ft. Well-graded SAND with Silt and Gravel (SW-SM); brown (7.5YR 5/3); 70% fine to coarse sand; 20% coarse gravel; 10% silt. @ 450.7 ft. Silty SAND with Gravel (SM); brown (7.5YR 5/4); 50% fine to coarse sand; subrounded to rounded; 20% gravel; 30% silt; trace clay. @ 451.7 ft. Same as above (450.7 ft); 20% very coarse gravel to 40 mm; subrounded to rounded. @ 452 ft. Same as above (450.7 ft); brown (7.5YR 4/4); 60% fine to coarse sand; 15% coarse gravel to 40 mm; 25% silt. @ 453.9 ft. No recovery. @ 455 ft. Silty SAND with Gravel (SM); brown (7.5YR 4/4); 70% fine to coarse sand; subrounded to rounded; 15% coarse gravel to 40 mm; 15% silt. @ 455.8 ft. Poorly graded SAND with Silt (SP-SM); brown (7.5YR 5/3); 90% fine sand; subrounded to rounded; trace fine gravel; 10% silt. @ 456.5 ft. No recovery. 	SM SM SP- SM	-8" Stainless Steel 0.050 Slot Screen	End of 9/18/15 @ 450 ft. Resume coring @ 1030 on 9/23/15. @ 450 - 464.2 ft sand is quartz with occasional granite, mafics, and feldspar. Gravel is quartz with occasional mafics. @ 456.5 ft driller states that coring feels like gravel. Gravel was likely pushed aside instead of recovered, causing loss of core sample.
465		 @ 461.4 ft. Poorly graded SAND (SP); brown (7.5YR 5/3); 95% fine sand; trace- medium sand; subrounded to rounded; 5% silt. @ 461.9 ft. Silty GRAVEL with Sand (GM); brown (7.5YR 5/4); 50% fine to coarse gravel; subrounded to rounded; 35% fine to coarse sand; subrounded to rounded; 15% silt. @ 462.5 ft. Poorly graded SAND (SP); dark brown (7.5YR 3/3); 95% fine sand; 	SP GM SP		

	~	RI			Bor	eho	le ID: KAFB-	106234-Sonic
Pro Pro	ojec ojec	t Loc Nan	ation: ne: K	: KAI AFB	FB, Albuquerque, NM Hole D RAPID SWMU ST-106 and SS-111Surfac	iamete	r Upper (in.): 16 r Lower (in.): 14-3/4 bletion Type: Flush	
Da Da	te S ite T	t Nun Starteo ID Re Compl						
Y (Date Completed:							Page 18 of 24
5 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	Well Diagram	Remarks
100	_			•	subrounded to rounded; trace gravel; rounded; 5% silt. @ 464.2 ft. No recovery. @ 465 ft. Poorly graded SAND (SP); brown (7.5YR 4/3); 95% medium sand; trace coarse sand; trace fine gravel; cubrounded to rounded; 5% silt	SP GW- GM		@ 465 - 479.4 ft sand is quartz with occasional mafics. Gravel is quartz with occasional mafics.
<u>470</u>	-				subrounded to rounded; 5% silt. @ 466.2 ft. Well-graded GRAVEL with Silt and Sand (GW-GM); brown (7.5YR 4/3); 60% fine to coarse gravel; subrounded to rounded; 30% fine to coarse sand; 10% silt. @ 466.5 ft. No recovery. @ 467.5 ft. Well-graded SAND with Gravel (SW); brown (7.5YR 4/3); 80% fine to coarse sand; 15% fine to coarse gravel; 5% silt. @ 468 ft. Well-graded GRAVEL with Silt and Sand (GW-GM); brown (7.5YR 4/3); 70% fine to coarse gravel to 40 mm; subrounded to rounded; 20% coarse sand; trace fine and medium sand; 10%			@ 468.4 ft driller reported drilling in gravel, which likely caused loss of core.
	-				silt. @ 468.4 ft. No recovery. @ 472.5 ft. Poorly graded SAND with Sil (SP-SM); brown (7.5YR 4/3); 90% fine sand; subrounded; trace gravel; 10% silt	SP-	-8" Stainless Steel 0.050 Slot Screen	@ 474.6 - 474.7 ft clay
475	_				 @ 474.7 ft. No recovery. @ 475 ft. Silty SAND (SM); brown (7.5YR 4/3); 80% fine sand; subrounded to rounded; trace coarse gravel; 20% silt @ 476.6 ft. No recovery. 			lense. End of 9/23/15 @ 475 ft. Resume drilling on 9/24/15. @ 476.1 ft silt lense, 7 mm thick.
480	-				 @ 477.5 ft. Silty SAND (SM); brown (7.5YR 4/3); 85% fine sand; subrounded to rounded; 15% silt. @ 478.4 ft. Fat CLAY (CH); yellowish brown (10YR 5/4); hard; medium plasticity; 100% clay. @ 478.7 ft. Lean CLAY (CL); reddish 	SM CH CL SM		@ 476.5 ft silt lense, 5 mm thick. Two 5 mm clay nodules.

Borehole ID: KAFB-106234-Sonic										
Pro Pro	ojec ojec	t Loca t Nam	ation: ne: K	: KÁI (AFB	FB, Albuquerque, NM Hole Dia RAPID SWMU ST-106 and SS-111Surface	ameter	⁻ Upper (in.): 16 - Lower (in.): 14-3/4 Iletion Type: Flush			
Da Da Da	ite S ite T ite C	Started TD Re Compl								
Y (Coo	d Elev rdinat rdinat	Page 19 of 24							
8 Depth (ft)	Sample Type	Number	Headspace PID	Remarks						
					brown (2.5YR 4/3); low plasticity; 95% clay; 5% gravel.	SM		@ 480 - 494.8 ft sand is quartz with occasional mafics.		
	-				 @ 479 ft. Silty SAND (SM); brown (7.5YR 4/3); 80% fine sand; subrounded to rounded; 20% silt. @ 479.4 ft. No recovery. @ 480 ft. Silty SAND (SM); brown (7.5YR 5/3); 80% fine to coarse sand; subrounded to rounded; 20% silt. @ 480.7 ft. Lean CLAY with Sand (CL); reddish brown (5YR 5/4); low plasticity; 80% clay; 20% very fine sand; rounded. @ 480.8 ft. No recovery. 	SP		@ 483.5 - 484 ft sediment is laminated.		
485	-				 @ 480.8 ft. No recovery. @ 482.5 ft. Poorly graded SAND (SP); brown (7.5YR 5/3); 95% fine sand; subrounded to rounded; 5% silt. @ 484.3 ft. No recovery. @ 485 ft. Poorly graded SAND (SP); brown (7.5YR 5/3); 95% fine sand; subrounded to rounded; 5% silt. @ 486.1 ft. No recovery. 	SP	P" Staiplage	 @ 485.65 - 485.7 ft laminations observed. @ 486 ft drilling through gravels; weathered sandstone; white (10YR 8/1). 		
	-				@ 487.6 ft. Poorly graded SAND with Silt (SP-SM); brown (7.5YR 5/3); 90% fine sand; subrounded to rounded; 10% silt. @ 488 ft. Lean CLAY with Sand (CL); reddish brown (2.5YR 4/4); low plasticity; 80% clay; 20% fine sand; trace gravel to	SM CL SP-	- 8" Stainless Steel 0.050 Slot Screen	@ 488 ft texture is blocky.		
490	-				30 mm. @ 489.3 ft. Poorly graded SAND with Silt (SP-SM); brown (7.5YR 5/3); 90% fine sand; subrounded to rounded; 10% silt. @ 489.9 ft. No recovery. @ 490 ft. Silty SAND with Gravel (SM); dark brown (7.5YR 3/3); 65% fine to coarse sand; subrounded to rounded;	SM		@ 490 - 494.8 ft sediment is fining upward.		
495	-				 15% fine to coarse gravel; rounded; 20% silt. @ 491.8 ft. No recovery. @ 492.5 ft. Poorly graded SAND with Silt (SP-SM); brown (7.5YR 4/3); 90% fine to medium sand; trace coarse sand; subrounded to rounded; trace gravel to 45 mm; 10% silt. 	SP- SM		@ 492.6 ft cobble.		


	~	RI			Bore	ehol	e ID	: KAFB- 1	06234-Sonic
Pro Pro	ojec ojec	t Loc Nan	ation: ne: K	: KA (AFB	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ameter	lower	(in.): 16 (in.): 14-3/4 ype: Flush	
Da Da Da	te S te T te C	Compl	d: 9/ ache eted:	18/20 d: 10	15 ⊈ At T √1/2015 ⊈ At T ∑ At T ∑ At E ∑ After	ime of nd of I r Drillir	Drilling Drilling: ng: 458	: 459.00 Not Recorded	
YC	Coo	rdinat	e:		Drilling Logged	Method	I: Sonio	c Coring	Page 20 of 24
65 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	We	ell Diagram	Remarks
	-				 @ 494.8 ft. No recovery. @ 495 ft. Well-graded SAND with Silt (SW-SM); brown (7.5YR 4/2); 90% fine 	SW- SM		· · · · · · · · · · · · · · · · · · ·	@ 495 - 507.8 ft sand is quartz with occasional mafics.
- - 500 -	-				to coarse sand; subrounded to rounded; trace gravel; 10% silt. @ 496.2 ft. Poorly graded SAND with Silt (SP-SM); brown (7.5YR 4/2); 90% fine sand; subrounded to rounded; trace gravel; 10% silt. @ 496.3 ft. No recovery. @ 497.5 ft. Well-graded GRAVEL (GW); 100% fine to coarse gravel to 24 mm. @ 497.7 ft. No recovery.	SP- SM/ GW			 @ 496.3 ft lost what appeared to be saturated sands. @ 497.5 ft sand and silt likely washed out from core sample. @ 497.7 ft drilling through gravels. All core lost during core rod and drill stem removal.
- 505 - -	-				 @ 502.5 ft. Well-graded GRAVEL (GW); 100% gravel; rounded. @ 502.7 ft. SILT (ML); light reddish brown (2.5YR 6/3); hard; low plasticity; 85% silt; trace clay; 10% fine sand; rounded; 5% fine gravel; rounded. @ 503.1 ft. Well-graded SAND with Silt (SW-SM); 90% sand; trace gravel; 10% silt. @ 503.5 ft. Poorly graded SAND (SP); 95% sand; 5% silt. @ 504.1 ft. No recovery. @ 505 ft. Poorly graded GRAVEL with Sand (GP); brown (7.5YR 4/3); 60% fine to coarse sand; 5% silt. @ 505.6 ft. No recovery. @ 507.5 ft. Poorly graded GRAVEL with Sand (GP); brown (7.5YR 4/3); 60% fine gravel to 25 mm; subrounded; 35% fine to coarse sand; 5% silt. 	GW ML SW- SP GP GP		- 8" Stainless Steel 0.050 Slot Screen	End of 9/24/15 @ 502.5 ft. Resume drilling on 9/25/15. Silt and sand fraction washed away. @ 504.1 ft gravel encountered. @ 505.6 ft gravel encountered. @ 507.8 ft gravel encountered.
510					@ 507.8 ft. No recovery.				

	7	RI			Bore	eho	le ID: KAFB-	106234-Sonic
Pro Pro	ojeo ojeo	ct Loc	ation: ne: K	KA AFB	FB, Albuquerque, NM Hole Dia RAPID SWMU ST-106 and SS-111Surface	ameter	⁻ Upper (in.): 16 ⁻ Lower (in.): 14-3/4 letion Type: Flush	
Da Da	te s te ⁻	Started	d: 9/ [,] acheo	18/20	15	ime of Ind of	Levels BGS (ft): ^f Drilling: 459.00 Drilling: Not Recorded ng: 458.90	
Y (X (Coc Coc	ordinat ordinat	e:	AMS	Drilling I	Vethoo	actor: National Drilling d: Sonic Coring avid Kessler	Page 21 of 24
10 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log		U.S.C.S.	Well Diagram	Remarks
-	_				 @ 510 ft. Poorly graded GRAVEL with Sand (GP); brown (7.5YR 4/3); 60% fine gravel; subrounded; 35% fine to coarse sand; 5% silt. @ 510.2 ft. No recovery. 	GP		@ 510.2 ft gravel encountered.
515	-				 @ 512.5 ft. Poorly graded GRAVEL with Sand (GP); brown (7.5YR 4/3); 60% fine gravel; subrounded; 35% fine to coarse sand; 5% silt. @ 512.8 ft. No recovery. 	GP		@ 512.8 ft very coarse pebble in shoe of core barrel.
520	-				 @ 517.5 ft. Poorly graded GRAVEL (GP); brown (7.5YR 4/2); 95% fine gravel to 4 mm; subangular to subrounded; 5% silt. @ 518.1 ft. Poorly graded SAND with Silt and Gravel (SP-SM); brown (7.5YR 4/2); 60% fine sand; rounded; 30% coarse gravel; 10% silt. 	GP SP- SM	-8" Stainless Steel 0.050 Slot Screen	End of 9/25/15 @ 517.5 ft. Resume coring on 9/26/15. @ 518.1 - 520.6 ft sand is quartz.
	-				 © 518.3 ft. No recovery. © 520.1 ft. SILT (ML); brown (7.5YR 4/2); nonplastic; 90% silt; 10% very fine to fine sand. © 520.2 ft. Well-graded SAND with Gravel (SW); brown (7.5YR 5/4); 65% fine to coarse sand; subrounded to rounded; 30% fine to coarse gravel; subangular to subrounded; 5% silt. © 520.6 ft. No recovery. 	ML SW		 @ 520 ft gravel encountered. @ 520.6 ft loose, wet sand and gravel encountered. @ 522.5 ft gravel within coring interval caused core barrel thread sheering.
525								

C	RI			Bore	əho	le ID	: KAFB-1	06234-Sonic
Proje Proje	ct Loca	ation: ie: K	KÁ AFB	FB, Albuquerque, NM Hole Di RAPID SWMU ST-106 and SS-111Surface	ameter	lower	(in.): 16 (in.): 14-3/4 ype: Flush	
Date Date Date	Comple	I: 9/1 achec eted:	8/20 1: 10	$\begin{array}{ccc} & & & & & & \\ 15 & & & & & & \\ 0/1/2015 & & & & & \\ \hline \underline{\Psi} & & & & \\ & & & & & \\ \hline \underline{\Psi} & & & & \\ \end{array}$	Time of End of er Drilli	Drilling: ng: 458	: 459.00 Not Recorded	
Y Coo	ordinate	e:		Drilling	Methoo	d: Sonic avid Ke	c Coring	Page 22 of 24
57 Depth (ft) Sample Type	Number	Headspace PID	Lithologic Log	Material Description	U.S.C.S.	We	ell Diagram	Remarks
-		-		 @ 525 ft. Poorly graded GRAVEL with Silt and Sand (GP-GM); brown (7.5YR 4/2); 60% fine gravel to 8 mm; subangular to subrounded; 30% fine to coarse sand; 10% silt. @ 525.6 ft. Poorly graded SAND with Silt (SP-SM); brown (7.5YR 4/2); dense; 90% fine sand; subangular to 	GP- GM SP- SM			 255 - 537.2 ft gravel is quartz, mafics, and occasional granite. 525.6 - 537.2 ft sand is quartz and mafics. 525.9 ft gravel encountered.
530		د - ۶		Subrounded; 10% silt. @ 525.9 ft. No recovery. @ 527.5 ft. Poorly graded GRAVEL with- Sand (GP); brown (7.5YR 4/2); loose; 70% fine gravel to 4 mm; subrounded to rounded; 25% fine to coarse sand; subrounded to rounded; 5% silt.	GP			@ 528.5 ft gravel encountered.
-				 28.5 ft. No recovery. 530 ft. Well-graded SAND with Gravel (SW); dark brown (7.5YR 3/3); 65% very fine to coarse sand; subrounded to rounded; 30% fine to coarse gravel to 35 mm; subrounded; 5% silt. 530.4 ft. No recovery. 				 @ 530 ft top section of sample shows little sand. Inferred that the sand washed out. @ 530.4 ft gravel encountered.
-				 @ 532.5 ft. Well-graded GRAVEL with Sand (GW); gray (7.5YR 6/1); 50% fine to coarse gravel; subrounded to rounded; 45% fine to coarse sand; subrounded to rounded; 5% silt. @ 533.7 ft. No recovery. 	GW		- 8" Stainless Steel 0.050 Slot Screen	End of 9/26/15 @ 532.5 ft. Resume drilling on 9/28/15. @ 532.5 ft portions of the gravel are cemented with calcium carbonate. @ 533.7 ft sand was
535		-		@ 535 ft. Well-graded GRAVEL with Sand (GW); gray (7.5YR 6/1); 50% fine to coarse gravel; subrounded to rounded; 45% fine to coarse sand; subrounded to rounded; 5% silt.	GW SW-			washed away and gravel not recovered. @ 535 ft hard to very hard conglomerate rock; calcite-cemented. @ 536.5 - 536.55 ft silt
				 @ 535.2 ft. No recovery. @ 536.5 ft. Well-graded SAND with Siltand Gravel (SW-SM); dark brown (7.5YR 3/2); 60% very fine to coarse sand; subrounded to rounded; 30% fine to coarse gravel to 35 mm; subrounded; 10% silt. @ 537.2 ft. No recovery. 	SM			lense; gray (7.5YR 5/1). @ 537.2 ft gravel obstructed sample collection.
540							- Bottom of	

	A	ppenc							1
	C	BI				Bore	ehol	e ID: KAFB-	106234-Sonic
Pro Pro	ojec ojec	t Loca	ation: ie: K	KAF AFB I	s of Engineers ⁻ B, Albuquerque, NM RAPID SWMU ST-106 and SS-1 ⁻ 133	Hole Dia	ameter	Upper (in.): 16 Lower (in.): 14-3/4 letion Type: Flush	
Da Da	ite S ite T	tartec	l: 9/² acheo	18/20 ⁻		∑ At T ▼ At E	ime of nd of l	Levels BGS (ft): Drilling: 459.00 Drilling: Not Recorded	
Gr Y (ouno Coor	•	vation e:	AMS	EL (ft): Not Recorded	Drillling Drilling N	Contra Aethoo	ng: 458.90 Ictor: National Drilling I: Sonic Coring avid Kessler	Page 23 of 24
5 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	Well Diagram	Remarks
	-				@ 540 ft. Poorly graded GRAVE Sand (GP); dark brown (7.5YR fine gravel; angular to subround very fine to coarse sand; angula subrounded; 5% silt.	3/2); 55% led; 40%		Screen	End of continuous coring @ 540 ft on 9/28/15. @ 540 - 556 ft sand is quartz and mafics. Gravel is quartz, mafics, and granite.
545	-				@ 545 ft. Same as above (540 fine gravel to 6 mm; angular.	ft); 55%	GP	- Bottom of Sump	Very hard drilling from 547 - 556 ft.
550	-				@ 550 ft. Same as above (540 fine gravel; angular; 20% very fi coarse sand.	ft) 80% ine to			Reamed borehole using 12-1/4" bit from 435 - 550 ft on 9/26/15 through 9/28/15.

		RI				Bore	ehol	e ID: KAFB-1	06234-Sonic
Pr Pr	ojeo ojeo	ct Loca ct Nam	ation ne: k	: KAF	s of Engineers FB, Albuquerque, NM RAPID SWMU ST-106 and SS-11	Hole Dia	meter	Upper (in.): 16 Lower (in.): 14-3/4 letion Type: Flush	
Da	te S ite T	ct Num Starteo TD Re Compl	1: 9/ ache	18/20 ⁻ d: 10		∑ AtT T AtE	ime of nd of l	Levels BGS (ft): Drilling: 459.00 Drilling: Not Recorded ng: 458.90	
Y	Coo	nd Elevordinat	e:	n AMS	L (ft): Not Recorded	Drilling N	/lethoo	ctor: National Drilling I: Sonic Coring avid Kessler	Page 24 of 24
55 Depth (ft)	Sample Type	Number	Headspace PID	Lithologic Log	Material Description		U.S.C.S.	Well Diagram	Remarks
560	-				@ 555 ft. Poorly graded GRAVE Sand (GP); dark brown (7.5YR 3 fine gravel; angular; 20% very fir coarse sand; angular to subround	/2); 80% ne to	GP	- Bottom of Filter Pack/Bottom ot Hole	Total depth = 556 ft bgs. Reached total depth on 10/1/15. Reamed borehole using 14-3/4" bit from 83 - 556 ft on 9/30/15 through 10/1/15.
570	-								

500433.04010300.A5

Appendix L

Project Name:	KAFB BFF		Well No.:	KAFB-106234
Location:	Anderson and		Date Installed:	10/9/2015
	Georgia			
Personnel:	MG	Casing	Diameter (I.D.):	8-inch
Start Date:	10/1/2015	Total I	Depth (ft. BGS):	544.65
End Date:	11/3/2015			
Method of Develo	opment:			
X Surging	X Bailing X	Pumping X Jetting		
X Original Devel	opment	Redevelopment Other		
Screened Interv Weather: Van Equipment Numb	val (ft. BGS): 439.6 ried	NR Conductivity: Turbidity:	NR NR NR NR	
Collected Sample Describe:	of Water Added to	Well? Yes X No	_	
Comments:				

Summary of development procedure, including key decision-points, calculations, and observations (described in detail in the following pages):

Well development consisted of bailing, surging, pumping, and jetting. The first step of development removed mud and cuttings from the well casing and filter pack, which were generated during the drilling process, by surging and bailing. The second step entailed physical well development using surging, bailing, and pumping to assess development progress. These actions included taking measurements of sediment content in the water using the Imhoff cone technique, and applying 30 minutes of sustained pumping, measuring, and plotting drawdown to estimate development effectiveness. The third step used jetting with simultaneous pumping.

Bailing				
Date	Time	Total Volume Bailed (gallons)	Imhoff Cone Measurement (mL sediment per L water)	Comments
10/12/2015	1800	135		Very muddy, 4 mL of coarse sand and more suspended at 100 gallons
10/13/2015	0910	150	117	Mostly coarse sand
10/13/2015	1005	300	20	Mostly coarse sand
10/13/2015	1055	450	200	Mostly coarse sand
10/13/2015	1100	465	750	All coarse sand
10/13/2015	1305	600	10	Collected from the middle of screen
10/13/2015	1340	750	12	Collected from the middle of screen
10/13/2015	1415	900	10	Collected from the middle of screen
10/13/2015	1440	1050	4	1 mL fine grained, 3 mL very fine grained
10/13/2015	1513	1200	0.8	0.5 mL fine grained, 0.3 mL very fine grained
10/13/2015	1536	1350	0.8	0.5 mL fine grained, 0.3 mL very fine grained
10/13/2015	1605	1500		Stop bailing, tag bottom at 544.1 bgs
10/16/2015	1033		0.7	Collected after 4 bailing runs, sediment is very fine to fine sand
10/16/2015	1056		0.5	Collected after 6 bailing runs, sediment is very fine to fine sand
10/16/2015	1355		0.5	Collected after 4 bailing runs, sediment is very fine to fine sand
10/16/2015	1408		0.5	Collected after 6 bailing runs, sediment is very fine to fine sand

L = liter

mL = milliliter

Surging				
Interval (feet below ground surface)	Date	Start Time	End Time	Comments
540-535	10/15/2015	1640	1645	
535-530	10/15/2015	1645	1650	
530-525	10/15/2015	1650	1655	
525-520	10/15/2015	1655	1700	
520-515	10/15/2015	1700	1705	
515-510	10/15/2015	1705	1710	
510-505	10/15/2015	1710	1715	
505-500	10/15/2015	1715	1720	
500-495	10/15/2015	1720	1725	
495-490	10/15/2015	1725	1730	
490-485	10/15/2015	1730	1735	
485-480	10/15/2015	1735	1740	
480-475	10/15/2015	1740	1745	
475-470	10/15/2015	1745	1750	
470-465	10/15/2015	1750	1755	
465-462.9	10/15/2015	1755	1800	
540-530	10/16/2015	0845	0850	
530-525	10/16/2015	0850	0855	
525-520	10/16/2015	0900	0905	
520-515	10/16/2015	0905	0910	
515-510	10/16/2015	0910	0915	
510-505	10/16/2015	0915	0920	
505-500	10/16/2015	0920	0925	
500-495	10/16/2015	0925	0930	
495-490	10/16/2015	0930	0935	
490-485	10/16/2015	0935	0940	
485-480	10/16/2015	0940	0945	
480-475	10/16/2015	0945	0950	
475-470	10/16/2015	0950	0955	
470-465	10/16/2015	0955	1000	
540-530	10/16/2015	1130	1135	
535-530	10/16/2015	1135	1140	
530-525	10/16/2015	1140	1145	
525-520	10/16/2015	1145	1150	
520-515	10/16/2015	1150	1155	
515-510	10/16/2015	1155	1200	
510-505	10/16/2015	1200	1205	
505-500	10/16/2015	1205	1210	

Surging				
Interval (feet below ground surface)	Date	Start Time	End Time	Comments
500-495	10/16/2015	1210	1215	
495-490	10/16/2015	1215	1220	
490-485	10/16/2015	1220	1225	
485-480	10/16/2015	1225	1230	
480-475	10/16/2015	1320	1325	
475-470	10/16/2015	1330	1335	

Pumping											
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Imhoff Cone (mL sediment per L water)	Pump Intake (Feet bgs)
10/14/2015	1114	0	462.7								490.5
10/14/2015	1312	0	464.5								511.5
10/14/2015	1340	16.5	502	259	21.78	5.99	1.029	1502			511.5
10/14/2015	1359	16.5	500	481.6	21.55	7.23	0.971	506			511.5
10/14/2015	1423	16.5	500	748.5	21.46	7.64	0.900	208		0.5	511.5
10/14/2015	1455	16.5	495	923	21.24	7.69	0.878	117.5		0.0	521.5
10/14/2015	1515	16.5	505	1238	21.32	7.91	08.35	214.3		Trace	521.5
10/14/2015	1530	25	514	1862	20.94	7.86	0.766	988.1		0.2	521.5
10/14/2015	1633	40	522	2675	20.77	8.19	0.788	620.1		0.5	532.5
10/14/2015	1647	37	525	3187	20.93	7.92	0.793	375.5		0.3	532.5
10/14/2015	1745	24.5	475	3812	20.21		0.720	13.3	1.84		532.5
10/15/2015	1005	20.6		4722		8.67			2.98	0.0	527.5
10/15/2015	1016	21.04		5149	20.45	8.26	0.398	10.6		0.0	527.5
10/15/2015	1026	20.72		5157	20.63	8.19	0.632	9.3		0.0	517.5
10/15/2015	1036	20.88		5359	20.77	8.18	0.757	9.6		0.0	512.5
10/15/2015	1103	20.88		5586	21.13	8.15	0.757	9.9		0.0	506.5
10/15/2015	1113	15.21		5745	21.21	8.11	0.755	9.3		0.0	501.5
10/15/2015	1123	15.38		5886	21.20	8.08	0.752	10.1		0.0	496.5
10/15/2015	1133	15.21		6037	21.31	8.08	0.750	10.5		0.0	491.5
10/15/2015	1305	14.25		6212	21.47	8.07	0.754	14.7		0.0	485.5
10/15/2015	1315	14.24		6338	21.52	8.07	0.759	11.0		0.0	480.5
10/15/2015	1325	14.24		6504	21.53	8.08	0.754	11.9		0.0	475.5
10/16/2015	1720	36.14	428.25	7365	19.92	8.47	0.705	259	6.4	<0.1	521.5
10/16/2015	1735	36.30	428.25	8630	19.82	8.13	0.692	140.8			521.5
10/17/2015	0820			9116.18	19.46	8.61	0.692	31.4		Trace	521.5
10/17/2015	0832	42.98		9781.18	20.25	8.35	0.695	72.0		Trace	521.5
10/17/2015	0855	4298		10831.18	19.70	8.06	0.692	30.7		Trace	521.5
10/17/2015	1100	40.3	467.4	13972.18	20.19	8.21	0.695	41.0		Trace	521.5

Pumping											
Date	Time	Rate (gpm)	Depth to Water (ft BGS)	Volume Removed (gallons)	Temp (°C)	рН (S.U.)	EC (mS/cm)	Turbidity (NTU)	Specific Capacity (gpm/ft)	Imhoff Cone (mL sediment per L	Depth of pump (Feet
										water)	bgs)
10/30/2015	1250	66.76	465.92	15013.18	17.7	7.66	0.811	10.4	25.98	<0.1	513.6
10/30/2015	1254	66.76	465.92	16424.18	17.7	7.59	0.817	6.30	25.98	<0.1	513.6
10/30/2015	1317	66.64	465.85	18302.18	18.0	7.57	0.806	44.7	26.65	<0.1	513.6
10/30/2015	1325	66.40	465.88	20642.18	17.7	7.59	0.805	12.7	26.25	<0.1	513.6
10/30/2015	1347	66.04	465.82	23453.18	17.8	7.58	0.807	21.4	26.74	<0.1	513.6
10/30/2015	1355	65.80	465.82	26667.18	17.7	7.60	0.808	7.15	26.64	<0.1	513.6
10/30/2015	1406	66.76	465.81	30240.18	17.9	7.65	0.807	17.1	27.13	<0.1	513.6
10/30/2015	1411	66.52	465.84	34162.18	17.8	7.60	0.807	5.21	26.71	<0.1	513.6
10/30/2015	1424	66.28	465.82	38502.18	17.6	7.65	0.807	13.4	26.83	<0.1	513.6
10/30/2015	1428	66.16	465.84	43312.18	17.6	7.59	0.808	4.41	26.57	<0.1	513.6
10/30/2015	1441	66.16	465.78	48447.18	17.4	7.60	0.805	11.0	27.23	<0.1	513.6
10/30/2015	1447	65.80	465.83	53972.18	17.6	7.59	0.806	3.93	26.56	<0.1	513.6
10/30/2015	1458	66.16	465.79	59863.18	17.5	7.65	0.806	8.59	27.11	<0.1	513.6
10/30/2015	1504	65.92	465.84	66147.18	17.6	7.59	0.807	2.84	26.47	<0.1	513.6
10/30/2015	1522	65.80	465.81	72957.18	17.9	7.56	0.810	4.32	26.75	<0.1	513.6
10/30/2015	1526	65.8	465.72	80041.18	17.6	7.54	0.786	O.R		1	513.6
10/30/2015	1545	65.8	465.73	88350.18	17.6	7.54	0.804	144		0.4	513.6
10/30/2015	1604	65.68	465.87	97725.18	17.9	7.55	0.808	35.5		<0.1	513.6
10/30/2015	1615	65.68		107823.18	17.7	7.57	0.790	557		0.5	513.6
10/30/2015	1622	65.68		118380.18				54.2		0.1	513.6
10/30/2015	1635	65.68	465.87	129331.18	18.1	7.55	0.802	51.1	26.59	0.1	513.6
10/30/2015	1648	65.44	465.81	140282.18	18.1	7.56	0.812	35.3	26.60	<0.1	513.6
10/30/2015	1712	66.04	465.74	152415.18	18.0	7.58	0.909	10.5	27.07	<0.1	513.6
10/30/2015	1729	65.80	4685.77	165009.18	17.8	7.59	0.806	7.11	27.19	<0.1	513.6

Г

٦

Pumping											
Date	Time	Rate	Depth to Water	Volume Removed	Temp (°C)	рН (S.U.)	EC (mS/cm)	Turbidity (NTU)	Specific	Imhoff Cone (mL	Depth of
		(gpm)	(ft BGS)	(gallons)	(C)	(3.0.)	(1115/011)	(110)	Capacity (gpm/ft)	sediment	
			(11 603)	(ganons)					(gpin/it)	per L	pump (Feet
										water)	bgs)
11/02/2015	1330	208.5	471.6	168389.18	17.7	7.52	0.791	6.86	25.18	0.1	512.5
11/02/2015	1340	205.68	471.82	173279.18	17.6	7.49	0.784	1.91	24.19	<0.1	512.5
11/02/2015	1350	205.32	471.91	179959.18	17.7	7.50	0.784	2.21	23.90	<0.1	512.5
11/02/2015	1400	205.32	471.95	188499.18	17.7	7.51	0.783	1.17	23.79	<0.1	512.5
11/02/2015	1405	205.32	471.97	198499.18					23.74		512.5
11/02/2015	1420	150	469.02	208999.18	17.9	7.59	0.782	21.7	26.74	<0.1	512.5
11/02/2015	1430	152.41	469.45	220074.18	17.8	7.56	0.787	3.04	25.36	<0.1	512.5
11/02/2015	1503	153.46	469.20	231849.18	18.0	7.63	0.781	31.2		<0.1	512.5
11/02/2015	1510	152.64	469.35	244409.18	17.7	7.59	0.788	2.24		<0.1	512.5
11/02/2015	1530	154.20	469.25	257529.18	17.7	7.62	0.780	22.3		<0.1	512.5
11/02/2015	1538	152.64		271535.18				3.13		<0.1	512.5
11/03/2015	0940	150.04	469.32	273535.18	17.8	7.08	0.854	1.67	24.88	<0.1	512
11/03/2015	0950	150.16	469.36	276635.18	17.9	7.41	0.854	1.90	24.74	<0.1	512
11/03/2015	1000	150.16	469.43	281235.18	17.9	7.51	0.855	0.50	24.45	<0.1	512
11/03/2015	1010	150.40	469.46	287335.18	17.9	7.53	0.854	0.80	24.38	<0.1	512
11/03/2015	1020	150.28	469.51	294935.18	17.9	7.54	0.854	1.81	24.16	<0.1	512
11/03/2015	1030	150.4	469.52	304035.18	17.9	7.54	0.838	2.03	24.14	<0.1	512
11/03/2015	1050	150.04	464.53	316135.18	17.9	7.55	0.837	1.42	24.04	<0.1	512
11/03/2015	1110	150.16	469.55	331235.18	18.1	7.55	0.839	1.28	23.99	<0.1	512
11/03/2015	1130	150.16	469.57	349335.18	19.2	7.55	0.838	3.37	23.90	<0.1	512
11/03/2015	1150	150.16	469.58	370435.18	18.0	7.55	0.837	0.38	23.87	<0.1	512
11/03/2015	1210	150.16	469.59	394535.18	18.2	7.55	0.837	0.86	23.83	<0.1	512

°C = degrees Celsius

EC = Electric Conductivity

ft bgs = feet below ground surface

gpm = gallons per minute

gpm/ft = gallons per minute per foot

mL = milliliter

mS/cm = millisiemen per centimeter

NR = not recorded

NTU = Nephelometric Turbidity Unit

S.U. = Standard Unit

Jetting							
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Depth to Water (feet bgs)	Comments
10/24/2015	1255	532-537	37.44	55	9/9/9.8/4.5		
10/24/2015	1305	527-532	37.2	80 /45	4/1.2/1.3		Had to change flow meter
10/24/2015	1317	522-527	36.4	45	9/7.5/5/9		
10/24/2015	1327	517-522	35.9		3.5/4/4.5		
10/24/2015	1340						Moved jetting tool back to the bottom of the screen
10/24/2015	1343	537	0	85	3/0.35/0.4/0.75/0.1		
10/24/2015	1507	511-516	36.35	55	1.9/4/5/2.5/2.9		
10/24/2015	1524	506-511	36.23	62	3/5/3.5/2/4.5		
10/24/2015	1538	501-506	36.11	68/65/55	2.5/4/5/2.5		
10/24/2015	1634	496-501	37				
10/24/2015	1644	496-501					At 1644, determine flow meter is not functioning correctly. Calculate flow rate using bucket and stopwatch for remainder of 10/24
10/24/2015	1705	491-496	37	42	9.5/1.3/1.5/6/11		<u></u>
10/24/2015	1720						Stop jetting at 1720
10/24/2015	1730	501	0	42	9.5		Jett off, pumping only
10/24/2015	1735	501	0	42	0.1		
10/24/2015	1740	501	0	42			Trace of fines
10/26/2015	0951	485-490	36	45 / 39.5	4.5/3.7	464.1	Stop jetting at 0955
10/26/2015	1007	485-490		44 / 40.5		466.4	Resume jetting at 1005
10/26/2015	1014	485-490	25	40.5 / 37	6.0/12/23	464.4	
10/26/2015	1021	480-485	24.91	40	12.7/13/10/2.5	464.3	
10/26/2015	1026	475-480	24.30	40	1.5/8/11	463.7/464.3	
10/26/2015	1037	470-475	23.86	40	30/11	464.0	

Jetting							
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Depth to Water (feet bgs)	Comments
10/26/2015	1045	485	0	40	7/2.5/0.6		Jett off, pumping only
10/26/2015	1210	479	0	40	0.1/trace	466.2	
10/26/2015	1327	485	0	43.7	2.5/0.2/<0.1	466.27	
10/26/2015	1348	470-475	31.69	46.0	16/7/5	463/464.2	
10/26/2015	1354	465-470	31.69	44	10/5.5/1.78	464/464.7	
10/26/2015	1420						Set jet at 524 ft bgs
10/26/2015	1534	519-524	0	48.23	4/0.2/0.1	465.19/ 465.3	Jett off pumping only
10/26/2015	1554	519-524	33.72	47.34	10/12.5/5	463.37	
10/26/2015	1600	524-519	32.66	46.15	8/3.0/3.25	463.4/ 463.6	
10/26/2015	1606	519-514	32.54	44.1	4.5/4/5	463.8	
10/26/2015	1611	514-509	32.54	44.1	7.5/6.5/1.5	463.5	
10/26/2015	1653	509-504	0	50	0.3	464.4	Jet off pumping only
10/26/2015	1704	509-504	31.57	47.85	3.0/2.75/2.75	463.6	
10/26/2015	1710	504-499	31.69	46.30	8.0/13/5.25	463.64	
10/26/2015	1717	499-494	31.45	48.23	15.5/7.5/10.0	463.75	
10/26/2015	1722	494-489	31.22	46.15	19/24	464.1	Jet turned off in middle of the time interval
10/26/2015	1736	494-489	32.66	46.00	25/49	463.9	
10/27/2015	0919	489-484	0	50	0.1	464.95	Jett off, pumping only
10/27/2015	0926	489-484	34.80	45.39	12/10/3.5	463.6	
10/27/2015	0934	484-479	33.84	45	24/18/32	463.75	
10/27/2015	0939	479-474	33.60	45	3.5/6/17/5	463.62	
10/27/2015	0945	474-469	33.60	45	7/8.5/10/5	464.10	
10/27/2015	1003	469-464	33.60	47.03	4/10/33/8	463.40	
10/27/2015	1115	519-524	0	48.91		463.08	Jett off, pumping only
10/27/2015	1118	519-524	0	48.91		465.95	
10/27/2015	1126	519-524	33.02	48.91	6/20/7.5/2.0	463.52	
10/27/2015	1133	514-519	29.42	47.18	7/4.5/3/3.5	463.7	
10/27/2015	1141	509-514	29.3- 31.45	43.21	5/4.5/4/4.5	463.5	
10/27/2015	1152	524	0	42	< 1	463.6	Jet off, pumping only

Jetting							
Date	Time	Depth (ft bgs)	Jetting Rate (gpm)	Pumping Rate (gpm)	Imhoff Cone Measurement (mL sediment per L water)	Depth to Water (feet bgs)	Comments
10/27/2015	1302	504-509	0	49.71		462.98	
10/27/2015	1306	504-509	29.9- 31.45	49.71	5/11/2.5/2.8	463.63	
10/27/2015	1313	499-504	32.78	47.12	18/16/18/15	463.20	
10/27/2015	1320	494-499	30.26	46.97	19/25/20/19	463.5	
10/27/2015	1329	489-494	30.14	44	27/25/45	463.82	
10/27/2015	1336	509		44			Jett off, pumping only. Stop pump at 1343
10/27/2015	1428	484-489	0	48.9		462.95	Jett off, pumping only
10/27/2015	1432	484-489	0	48.9		464.9	
10/27/2015	1434	484-489	31.6	48.9	11/41/29/26	463.58	
10/27/2015	1442	479-484	32.66	47.1	26/30/41/25	463.30	
10/27/2015	1448	474-479	32.52	43.74	29/75/20	464.15	
10/27/2015	1455	469-474	32.42	43.69	49/44/22/21	464.05	
10/27/2015	1503	464-469	32.42	42.1	21/26/23	464.25	
10/27/2015	1512	489	0	421		463.95	Jet off, pumping only. Sop pump at 1518

ft bgs = feet below ground surface

gpm = gallons per minute

L = liter

mL = millliliter

psi = pounds per square inch

	Appen	dix L					
EA	Engined	ering, S ology, li	cience, 1c., PBC	Location: K Start Date:	599DM01.1028 Kirtland AFB, New Mexico 11/3/2016 n Date:12/9/2016	WELL LOG Well ID: KAFB-106239 Page: 1 of 12	
Drilling Drill B		d:Direo ne	t Mud R	ket Drilling otary	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	g Drilling (ft): Unknown ng Elev. (ft): 5332.32 175415.85 42702.31	
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details
		SP			sand: 5 YR 6/4, light reddish brow ed sand, subrounded grains, >70%		Portland Cement 0-30 ft bgs 8" Galvanized Carbon Steel Riser 0.5-364 ft bgs
- 10 - 15 - 15 - 20 20 		SP			sand: 5 YR 5/4, reddish brown, ve nd, subrounded grains, >70% qua		
- - - - - - - 35 - - - -		SM		coarse grained diameter]), sub	R 6/4, light reddish brown, >15% f I sand (65% fine; 20% coarse [2-4 bangular to subrounded grains, sar par, and dark minerals	millimeters in	Bentonite Grout 30-366 ft bgs
- 40 - - - - - - - 50		sw		fine to coarse (coarse), subar 95% quartz/fel	and: 5 YR 6/4, light reddish brown, grained sand (30% fine to medium gular to subrounded grains, sand dspar, 5% dark minerals. Driller n s starting at 45 feet below ground s	; 60% composed of otes	

EA	Engine	ering, Scology, In	ience, c., PBC	Location: K Start Date:	599DM01.1028 (irtland AFB, New Mexico 11/3/2016 n Date:12/9/2016	WELL LOG Well ID: KAFB-106239 Page: 2 of 12	
Drilling Drill Bi	g Metho t: Trico	d:Direc	t Mud Ro	et Drilling tary	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	g Drilling (ft): Unknown ng Elev. (ft): 5332.32 I 75415.85 I 2702.31	
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details
- 50 - - - - 55 - - -		SM		coarse grained subangular to s	R 6/3, light reddish brown, >20% fine: sand (40% fine; 40% medium to coa subrounded grains, coarse grained sa 5% quartz/feldspar, 5% dark minerals	rse), and	
60 - - - - - - - - - - -		SW		coarse grained millimeters in d	nd: 5 YR 6/2, pinkish grey, <10% fine sand (30% fine to medium; 60% coa liameter]), subangular to subrounded sand composed of 95% quartz/felds	rse [1-4 grains,	
- 70 - 75		SM		coarse grained diameter]), sub	R 6/4, light reddish brown, >25% fine sand (60% fine; 15% coarse [1-4 mil angular to subrounded grains, coarse d of 95% light quartz/feldspar, 5% da	limeters in e grained	
- 80 - - - - - 85 - -		SM		to coarse grain 3% fine gravel subrounded sa	R 6/3, light reddish brown, >30% fine ed sand (>40% fine to medium; 15% (up to 8 millimeters in diameter), sub- nd and gravel, sand and gravel comp par, minor chert and limestone, 3-5% s (angular)	coarse), angular to oosed of	
90 	5 SM SM SM Light reddish brown, 30% silt, fine to coarse grained sand (60% fine; 10% coarse), 1-2% lithic fragments (up to 8 millimeters in diameter), subangular to subrounded coarse sand grains, 95% quartz/feldspar, 5% lithics/basalt						

Appendix L

EA	Engine I Techno	ering, Scology, Ind	ience, c., PBC	Location: K Start Date:	599DM01.1028 (irtland AFB, New Mexico 11/3/2016 n Date:12/9/2016	WELL LOG Well ID: KAFB-106239 Page: 3 of 12	
Drilling Drill Bi	y Metho t: Trico	d:Direct	ow Jacke t Mud Rot ns	-	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	g Drilling (ft): Unknown ng Elev. (ft): 5332.32 I 75415.85 I 2702.31	
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details
- 100 - 105		SM	HEFE C	oarse grained agments (up f	R 6/4, light reddish brown, >15% fin sand (50% fine; 25% coarse), 1-2% to 10 millimeters in diameter), subai nd and gravel, sand composed of 3 5% basalt	% lithic ngular to	
- 110 - 115		ML	$\left \begin{array}{c} \Omega = \Omega \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right >$	60% fines, 30	ight reddish brown, nonplastic to sli % very fine grained sand, 2% lithic aters in diameter)		
- 120 - 125		ML			5 YR 6/3, light reddish brown, slight very fine to fine grained sand	ly plastic,	
- 130 - 135		SW	C C C C C C C S	oarse grained ravel, lithic fra ubangular gra	nd: 5 YR 5/3, reddish brown, <5% f sand (>20% fine to medium; 60% d agments (up to 12 millimeters in diar ivel, 30% quartz (subrounded), 30% erals/basalt (subangular)	coarse), 15% meter),	
- 140 - 145		ML			R 6/4, light reddish brown, slightly p fine grained sand	lastic, 70%	

Appendix L

and	d Techno	ering, So	c., PBC	Location: K Start Date: Completior	n Date: 12/9/2016	WELL LOG Well ID: KAFB-106239 Page: 4 of 12		
Drilling Drill Bi	g Metho t: Trico	d:Direc	ow Jacke t Mud Rot	-	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	g Drilling (ft): Unknown ng Elev. (ft): 5332.32 I 75415.85 I 42702.31		
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details	
- 150 		SM		ines, fine to co 0% fine grave	R 6/4, light reddish brown, nonplas parse grained sand (50% fine; 10% el (up to 10 millimeters in diameter), lartz, 25% feldspar, 50% dark mine	coarse), , subangular		
- 160		SM		o fine grained ingular to suba	R 6/4, light reddish brown, 30% fine sand, 10% fine gravel, 10% coarse angular gravel (up to 19 millimeters 50% basalt, 10% tuff	e gravel,		
- 170 - 175		ML		rained sand, •	R 6/4, light reddish brown, 40% ver <10% coarse grained sand to fine g diameter), angular to subangular g 50% basalt	gravel (up to		
- 180 - 185		SW	OpO fi	ines, coarse g nillimeters in d	and with gravel: 5 YR 5/3, reddish b rained sand, 25% fine gravel (up to liameter), subangular gravel, sand Ispar, gravel composed of basalt ar	o 10 composed of		
- 190 - 195 - 200		SP	C C C C C C C C C C C C C C C C C C C	5% fines, coa nillimeters in d	sand with gravel: 5 YR 4/2, dark re irse grained sand, 20% fine gravel liameter), subangular to subrounde d of 30% quartz, 30% feldspar, 30% ed of basalt	(up to 6 ed gravel,		

Appendix L

	Append	dix L					
EA	Engine d Techno	ering, Sology, Ir	cience, ic., PBC	Location: F Start Date:	2599DM01.1028 Kirtland AFB, New Mexico : 11/3/2016 n Date:12/9/2016		WELL LOG Well ID: KAFB-106239 Page: 5 of 12
Drilling Drill B		d:Direc ne	t Mud R	ket Drilling otary	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	g Drilling (ft): Unknown ng Elev. (ft): 5332.32 175415.85 42702.31	
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details
200 		ML		Silt with sand: 29% very fine	5 YR 6/3, light reddish brown, nor grained sand	nplastic, 15-	
- 210 - - - 215 - - - - - - - - - - - - - - - - - - -		SP	©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©	fines, coarse g millimeters in c	sand with gravel: 5 YR 5/3, reddis grained sand, 15% fine gravel (up diameter), subangular gravel, sand 30% quartz, 30% feldspar, 30% ba	to 6 d and gravel	
- - - - - - - - - -		GP		fines, 20% coa millimeters in c	gravel with sand: 5 YR 4/3, reddis arse grained sand, fine gravel (up t diameter), gravel subangular to su el composed of 30% quartz, 30%	to 6 Ibrounded,	
- 230 - - - - - - 235 - - -		SM		coarse grained 5% fine gravel	R 4/3, reddish brown, >15% fines, d sand (30% very fine; >15% fine; (up to 9 millimeters in diameter), nd gravel composed of 25% quart basalt	30% coarse), subangular	
- - - - - - - - 245 - - -		SM	14144444444444444444444444444444444444	fine to coarse fine gravel (up	gravel: 5 YR 5/3, reddish brown, grained sand (30% very fine; 30% to 8 millimeters in diameter), suba avel, sand and gravel composed o 50% basalt	angular to	
_ 250							

	Engine	ering, S ology, Ir	cience, nc., PBC	Location: K Start Date:	599DM01.1028 (irtland AFB, New Mexico 11/3/2016 n Date:12/9/2016	WELL LOG Well ID: KAFB-106239 Page: 6 of 12	
Drilling Drill Bi	g Metho it: Trico	d:Direc	t Mud Ro	et Drilling tary	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	Drilling (ft): Unknown ıg Elev. (ft): 5332.32 75415.85 2702.31	
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details
250 - - - - - 255 - - - -		SM		fine to coarse g fine gravel (up	gravel: 5 YR 5/3, reddish brown, >15% grained sand (30% very fine; 30% coar to 8 millimeters in diameter), subangul avel, sand and gravel composed of 25 50% basalt	se), 15% ar to	
- 260 		ML		very fine to coa gravel (up to 8 subrounded gra	yey silt with gravel: 5 YR 7/4, pink, 75% arse grained sand (80% very fine; 10% millimeters in diameter), subangular to avel, sand composed of 20% quartz, 5 pasalt, gravel composed of 20% quartz pasalt	coarse), 0%	
- 270 275 		ML		very fine to coa gravel (up to 8 subangular to s	vey silt with gravel: 5 YR 7/4, pink, 75% arse grained sand (80% very fine; 10% millimeters in diameter), angular sharc subrounded gravel, sand and gravel co 20% feldspar, 60% basalt	coarse), ls,	
- 280 - - - - - 285 - - -				coarse grained (up to 6 millime	gravel: 5 YR 7/3, pink, >15% fines, fines sand (30% fine; 30% coarse), 20% fine eters in diameter), angular to subround ad gravel composed of 25% quartz, 25 pasalt	ne gravel ed	
- 290 - 295 - 295 - 300		SM	14111111111111111111111111111111111111				

Appendix L

Drilling Drilling Drill Bi	g Compa g Metho t: Trico	d:Direc ne	c., PBC low Jacke t Mud Rot	Location: K Start Date: Completion	Date: 12/9/2016 Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75	WELL LOG Well ID: KAFB-106239 Page: 7 of 12 Drilling (ft): Unknown ng Elev. (ft): 5332.32 75415.85				
Driller: Depth (ft)	PID (ppmv)	n Steve	Lithology		Well Diameter: 8 Sample Description	Easting: 154	Completion Details			
- 300 		SW		ine to coarse g up to 12 millim	avelly sand: 5 YR 5/2, reddish gray, - grained sand (30% fine; 30% coarse) neters in diameter), angular to subrou nd gravel composed of 35% quartz, 3 pasalt					
- 310 		SW		ine to coarse o up to 8 millime gravel, sand ar	I graded gravelly sand: 5 YR 5/2, reddish gray, <15% fines, to coarse grained sand (40% fine; 30% coarse), gravel to 8 millimeters in diameter), angular to subrounded vel, sand and gravel composed of 30% quartz, 40% spar, 30% basalt					
- 320 		SW	t t	o coarse grain <15% fine grav	nd: 5 YR 4/2, dark reddish gray, <5% ed sand (20% fine to medium; 50% o rel (up to 8 millimeters in diameter), s gravel, sand composed of 30% quar basalt	oarse), ubangular				
- 330 		SP	t t	o coarse grain 10% fine grave	sand: 5 YR 5/3, reddish brown, <5% ed sand (20% fine to medium; 60% o I (up to 6 millimeters in diameter), su nd gravel composed of 30% quartz, 3 pasalt	coarse), bangular				
340 		SM		Silty sand with gravel: 5 YR 5/3, reddish brown, 20% fines, fine to coarse grained sand (20% fine to medium; 40% coarse), 15% fine gravel (up to 8 millimeters in diameter), subangular to subrounded gravel, sand and gravel composed of 30% quartz, 30% feldspar, 30% basalt						

Appendix L

	Apper	ndix L							
EA	Engine d Techn	ering, So	cience, c., PBC	Location: K Start Date:	599DM01.1028 (irtland AFB, New Mexico 11/3/2016 n Date:12/9/2016		WELL LOG Well ID: KAFB-106239 Page: 8 of 12		
Drilling Drill B	g Metho it: Trico	d:Direc	t Mud R	ket Drilling otary	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	Drilling (ft): Uni ng Elev. (ft): 533 75415.85 2702.31			
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description			npletion etails	
- 350 		SM	131414141414141414141414141414141414141	to coarse grain 15% fine grave subrounded gr	gravel: 5 YR 5/3, reddish brown, 30% ed sand (10% fine to medium; 40% cc el (up to 8 millimeters in diameter), sub avel, sand and gravel composed of 30 dspar, 30% basalt	barse), angular to			
- 360 		SM	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	grained sand (gravel (up to 8	R 5/3, reddish brown, 30% fines, fine t 20% fine to medium; 40% coarse), <5 ⁶ millimeters in diameter), subangular to avel, sand and gravel composed of 30 30% basalt	% fine		8" Stainless Steel Riser 364-470 ft bgs 3/8" Bentonite Chip Seal 366-408 ft bgs	
- 370 		sw		coarse grained fine gravel (up	nd: 5 YR 5/3, reddish brown, <5% fine sand (40% fine to medium; 50% coar to 8 millimeters in diameter), subangu avel, sand and gravel composed of 30 30% basalt	se), <5% lar to			
- 380 - - - - - 385 - - -		sw	×0×0×0×0×0×0×0 ×0×0×0×0×0×0×0	fines, fine to co coarse), 20% f angular shards	nd with gravel: 5 YR 5/2, reddish gray parse grained sand (25% fine to mediu ine gravel (up to 8 millimeters in diame , subangular to subrounded gravel, sa ed of 30% quartz, 30% feldspar, 30%	m; 50% eter), ind and			
- 390 - 395 - 395 		sw		coarse grained fine gravel (up	nd: 5 YR 5/2, reddish gray, <5% fines sand (25% fine to medium; 60% coar to 6 millimeters in diameter), subangu avel, sand and gravel composed of 30 30% basalt	se), <15% lar to			

EA	Engine	ering, Srology, Ir	cience, ic., PBC	Location: K Start Date:	599DM01.1028 (irtland AFB, New Mexico 11/3/2016 n Date:12/9/2016	WELL LOG Well ID: KAFB-106239 Page: 9 of 12				
Drilling Drill Bi		d:Direc ne	t Mud R	ket Drilling otary	Geologist: Bob MarleyDTW During Drilling (ft): UnknownBoring Depth (ft):583Top of Casing Elev. (ft): 5332.32Boring Diameter (in):14.75Northing: 1475415.85Well Diameter: 8Easting: 1542702.31					
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details			
- 400 		sw		coarse grained fine gravel (up	nd: 5 YR 5/2, reddish gray, <5% fines, sand (25% fine to medium; 60% coars to 6 millimeters in diameter), subangul nd gravel composed of 30% quartz, 30 pasalt	se), <15% ar	10/20 Silica Sand 408-581.8 ft bgs			
- 410 - - - - - - - - - - - - - - - - - - -	0.9	SM	13131313131313131313131313131313131313	grained sand (gravel (up to 6 subrounded gra	R 5/2, reddish gray, 25% fines, fine to (25% fine to medium; 40% coarse), <10 millimeters in diameter), subangular to avel, sand and gravel composed of 30 30% basalt, 5% chert)% fine				
- - - - - - - - - - -		SM	1863-1863-1863-1863-1863-18 1819-1819-1819-1819-1819 1819-1819-1	grained sand (a gravel (up to 10 subangular to s quartz, 30% fe	R 6/2, pinkish gray, 30% fines, fine to c 20% fine to medium; 40% coarse), <10 0 millimeters in diameter), fractured sh subrounded gravel, sand composed of dspar, 30% basalt, 5% chert, gravel co 30% feldspar, 30% basalt)% fine ards, 30%				
- 430 - - - - - 435 - - - -	0.8	SM	1	grained sand (4 gravel (up to 6 basalt), subang 35% quartz, 20	R 6/2, pinkish gray, 30% fines, fine to o 40% fine; 20% medium to coarse), trac millimeters in diameter), shards (prima gular to subrounded gravel, sand comp 1% feldspar, 30% basalt, 5% chert, gra 0% quartz, 30% feldspar, 30% basalt	ce fine arily oosed of				
- 440 	0.8	SM		grained sand ((primarily basa	R 6/2, pinkish gray, 30% fines, fine to o 35% fine; 30% medium to coarse), sha lt), subrounded grains (minor subangu 5% quartz, 20% feldspar, 30% basalt,	irds lar), sand				

Appendix L

	Apper	ndix L									
EA	Engine d Techn	ering, So ology, In	tience, c., PBC	Location: K Start Date:	599DM01.1028 (irtland AFB, New Mexico 11/3/2016 n Date:12/9/2016		Well ID: KAF	WELL LOG Well ID: KAFB-106239 Page: 10 of 12			
Drilling Drill Bi	g Metho it: Trico	d: Direc t	t Mud R	ket Drilling otary	btary Boring Depth (ft):583 Top of Cas Boring Diameter (in):14.75 Northing: 1			During Drilling (ft): Unknown f Casing Elev. (ft): 5332.32 ing: 1475415.85 ng: 1542702.31			
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description			mpletion Details			
450 - - - - 455 - - - -	10.0	SM	╡╪╶┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙	grained sand (to subrounded	R 6/2, pinkish gray, 20% fines, fine to 35% fine; 35% medium to coarse), su grains, sand composed of 30% quart basalt, 10% chert	bangular					
- 460 	0.5	SM	1	grained sand (gravel (up to 6 subrounded gra	R 6/2, pinkish gray, 20% fines, fine to 50% fine; 20% medium to coarse), tra millimeters in diameter), subangular t ains and gravel, sand composed of 35 20% basalt, 5% chert	ce fine S					
- 470 - - - - - 475 - - -	1.0	SM	<u> </u>	grained sand (R 6/2, pinkish gray, 20% fines, fine to 50% fine; 20% medium to coarse), su omposed of 35% quartz, 35% feldspar rt	brounded		8" Stainless Steel Vee Wire Wrap Screen 0.030" Slot 470-572.7 ft bgs			
- 480 - - - - - 485 - - - -	0.5	SW-SN	H H H H H H H H H H H H H H H H H H H	fine to coarse g coarse), <5% f subangular to s fragments of vo	and with silt: 5 YR 6/2, pinkish gray, < grained sand (50% fine; 30% medium ine gravel (up to 6 millimeters in diam subrounded grains and gravel, subang olcanic origin (basalt), sand composed Idspar, 30% basalt, 5% chert	to eter), gular					
- 490 - 495 - 500	1.1	SW-SM	┿┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙	fine to coarse coarse), trace f	and with silt: 5 YR 6/2, pinkish gray, <′ grained sand (50% fine; 40% medium fine gravel, subrounded grains and gra 0% quartz, 30% feldspar, 30% basalt						

Appendix	кL				
EA Engineeri and Technolo	ing, Science, ogy, Inc., PBC	Lo St	Project: 62599DM01.1028 Location: Kirtland AFB, New Mexico Start Date: 11/3/2016 Completion Date: 12/9/2016		
Drilling Compan Drilling Method: Drill Bit: Tricone Driller: Quentin	Direct Mud R		ling	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	
Depth PID (ft) (ppmv) L	JSCS Lithology			Sample Descript	

WELL LOG

Well ID: KAFB-106239 Page: 11 of 12

	EA and	Engine d Techn	ering, S ology, Ir	cience, nc., PBC		n Date: 12/9/2016		
	Drilling Company: Yellow Jacket Drilling Drilling Method: Direct Mud Rotary Drill Bit: Tricone Driller: Quentin Stevens				•	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	-	
	Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description		Completion Details
[- 500	1.2				and with silt: 5 YR 6/2, pinkish gray, <1		
-	- - - - - - - -	TTTT fine to co TTTTT coarse), TTTTT and grav				grained sand (50% fine; 40% medium fine gravel, subangular to subrounded uartz subrounded; feldspar/basalt suba ed of 30% quartz, 30% feldspar, 30% b	l grains ingular),	
-	- 510 	1.0	SW-SN	и нанананананананананан нананананананана	fine to coarse coarse), subat feldspar/basal	and with silt: 5 YR 6/2, pinkish gray, <1 grained sand (50% fine; 40% medium ngular to subrounded grains (quartz su t subangular), sand composed of 30% 30% basalt, 5% chert	to Ibrounded;	
-	- 520 - - - - - 525 - -	1.0 THE Silty THE Grain THE Grain THE Silty THE Si		grained sand	/R 6/2, pinkish gray, 20% fines, fine to (60% fine; 20% medium to coarse), sul composed of 30% quartz, 30% feldspar ert	brounded		
•	- 530 	0.5	SM	1	grained sand	/R 6/2, pinkish gray, 20% fines, fine to (40% fine; 40% medium to coarse), sul composed of 30% quartz, 30% feldspar ert	brounded	
• • • •	grained sand (5					/R 6/2, pinkish gray, 20% fines, fine to (50% fine; 25% medium to coarse), sul composed of 30% quartz, 30% feldspar ert	brounded	

Notes: Survey performed 1/16/2017.

	Apper	ndix L								
EA Engineering, Science,					2599DM01.1028 Kirtland AFB, New Mexico : 11/3/2016 n Date:12/9/2016	rtland AFB, New Mexico I1/3/2016				
Drilling Drill Bi	g Metho it: Trico	d: Direc	t Mud Ro	et Drilling tary	Geologist: Bob Marley Boring Depth (ft): 583 Boring Diameter (in): 14.75 Well Diameter: 8	Top of Cas Northing: 1	ing Drilling (ft): Unknown Ising Elev. (ft): 5332.32 1475415.85 1542702.31			
Depth (ft)	PID (ppmv)	USCS	Lithology		Sample Description			npletion etails		
- 550	0.1			Silty sand: 5 Y	R 6/2, pinkish gray, 20% fines, fin 50% fine; 25% medium to coarse)	e to coarse				
- - 555 - - - - 560 - -	1.2			grains, sand c basalt, 5% che	omposed of 30% quartz, 30% feld	spar, 30%				
- 565 - - - - 570 - - -	1.5	SM	ананананананананананан 14141111111111111					8" Stainless Steel Sump		
575 - -								Sump 572.7-577.8 ft bgs		

	DATA	WELL T) LOCAT		. 7 K	IRT	LAND	EAST			D	ATE CON	ISTR ENDED
	5349.0	NW4-N	1W14=NW1	a=SEC 6	-11	ON-R4	1E	·		Fe	bruary	1955
w	TYPE Rotary D	rilled, Grav	vel Pa	cked, 3	/4"	Gray	vel					
E	DE РTH 1010'			DIAME	ΤE		B" Hole 5" Casing	9		PUMPS 475	ETTING	DEPTH
L	ORIGINAL	STATIC LE	VEL	DRAWI		/ N				RECOVE	RY TIM	E
	395' TEST	DATA	· 	AIR LI		AND	GAGES		SP	ECIFIC C	APACITY	(GAL) PER
WEL		PUMPING LEV	1 5	N			IGTH		(F	T) GP	M = (64 GPM/FT
	1400GPM	417'	S	X O		475				DRAWD	OWN	
	r		V	VELL F	^D UN	PING	EQUIP	MENT	Г 		•	CAPACITY
Р	TYPE AND Submersib) MAKE 1e. <u>Bvron-J</u> a	ckson									1150 GP
υ		FT) SIZE					OLUMN					
м	N/A ·		N/A	۱			10" w/ch					Г
р		HEAD		TOTAL	<u> </u>	NUM	BER BOW	LS	SIZ	E AND	ITPE	NO. STAGES
	ABOVE GRD											
	161' SERIAL NO.	425 ⁻	M	<u>586</u> ′		 I P	RPM	FRA	AME	1 <u>2" 3CK</u> phase	CYCLES	VOLTAGE
м	SERIAL NO.	TYPE 14"H Submersible		.B&.1			1750			2	60	440
0.	STAND BY			KE								SIZE
т	460 volt		С	ummins	Ins	tall	ed 1970			300KW		
0	НР	RPM	DE	SCRIPT	ION	. *						
R		1800		Diesel	рс	were	d genera	tor			•	,
	CASING	AND WELL	_ SCR	EENING	MA	TERI	AL USED)			TTING EPTH	LENGTH EACH
	16" O.D.		Blan	k Casin	g					. 448		448
	15" O.D.	⅓" Shut	ter Sc	reen ca	sir	nd .				85	5	408
	16" O.D.		Blan	k Casin	g					88		24
	16" O.D.	¼" Shut	ter sc	reen ca	sir	ng	·			97		96
	16" 0.D		Blan	k Casin	g					1,010	0	34
			-				:					•
							· · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
										1		

FORMATIONS ENCOUNTERED DURING DRILLING #7(KE)	DEPTH (FT)	STRATU
Top soil, sand and gravel	35	35
Sand, gravel and clay	95	60
Course sand and gravel	125	30
Sandy clay and gravel	190	, 65
Sand and gravel	240	50
Coarse sand and gravel	275	35
Sand, gravel and streaks of clay	315	40
Sand, gravel and boulders	465	250
Sand, gravel and streaks of clay	525	60
Sand, gravel and boulders	740	215
Coarse sand and boulders	855	115
Sandy clay	945	90
Coarse sandy clay and boulders	1,000	55
		·
. CHANGES MADE FROM ORIGINAL DATA		······································
1961: Motor failed, equipment removed. Well bailed and surged (3/4") and removed 30 CY of 1/4" gravel. Installed new p to original. Static level 418 feet.	and added 40 C oump and motor	Y of grav identical
1967: Pump failed to operate, equipment removed. Well bailed, of 1/4 inch gravel removed and 100 CY of 3/4 inch gravel identical equipment. Static level 420 feet,	, surged and ca added, Insta	ged. 80 lled new
1970: Equipment failed, removed. Installed Johnson pump and 2 motor, 1400 GPM @ 615' head. Static level 425 feet.	250 HP GE subme	rsible
1973: Equipment failed, removed. Installed 7 stage Fairbanks- w/250 HP Westinghouse hollowshaft motor, 1400 GPM @ 560 425 feet.		
1975: Motor burned out, replaced w/250 HP GE hollowshaft. (Ja Sand sampler installed.	n-Apr) \$6,171.C	13
1976: July, replaced water meter and installed drawdown record	der. \$4,500.00 00	
September, replaced seal and bearings in motor. \$1,800.		
September, replaced seal and bearings in motor. \$1,800. 1977: March, Motor Overhauled (Shops). \$1,500.00		: 1

;

.

Kirtland AFB Well KAFB-7

Grade

16-inch Steel Casing 0 to 448'

6-inch Steel Injection Pipe 0 to 541-feet

6"x 5" Orifice Plate - 481'

8-inch steel Louver	541-feet	448-feet 468-feet	12-inch Steel Casing Liner 468' to 578'
Screen, .175-slot 541' to 600' No plate bottom	600-feet	578-feet	
			12-inch Steel Slotted Liner 578' to 1010'
			16-inch Shutter Screen 250-slot 448' to 856'
		856-feet	
		880-feet	16-inch Steel Casing Blank 856' to 880'
			16-inch Shutter Screen 250-slot 880' to 976'
		976-feet	16-inch Steel Casing Blank
Well Depth and Sizes is not confirmed		1010-feet	976' to 1010'

E	A Engineering, Sci nd Technology, Inc	ence, , PBC	Start Date: 07	and Air Force Base, New Mexico	WELL LOG Well ID: KAFB-106IN2 Page: 1 of 12		
Drilling Drill Bit Drillers:	Company: Stev Method: Revers : 20" Tricone Bit : T. Holmes, M. R J. Russette Jr., (ist: J. Messenge	e Circulatio odriguez, D. Chacho		Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier I	Material: 12.75" OD Stainless Steel; 0.060" Slot Screen aterial(s): Cement, Bentonite Cement Grout, Bentonite/Sand Material: 6/9 Silica Sand ack: 8/12 Silica Sand	
Depth (ft)	USCS	Lithology		Sample Description		Completion Details	
0 - - - - - - - - - - - 20		Salara Sa		;/4, brown; soft; dry; nonplastic; 60% silt; 4	St 0 f bg	2.75" HSLA eel Riser, to 598 ft js	
- - - - - - - - - - - -	ML	fin 1/2 lith	e sand (with trac 2"; subangular to nic fragments; gra	e medium and coarse sand); trace gravel subrounded; sand is quartz, feldspar, and avel is lithic fragments. At 30 ft, 5YR 5/4, 0 ft, Silt, 5YR 6/3, light reddish brown; 90	to d	Cement Bentonite Grout, 30 to 501 ft bgs	
50 - - - 60 - - - - - 70 -	SM	me sa	edium sand; suba	i/3, brown; loose; moist; 85% fine sand; tr angular to subrounded; 15% silt, nonplast spar, and lithic fragments. At 50 ft, cutting	ic;		
80							

bgs = below ground surface in = inch(es)

E	A Engineering, Sc nd Technology, Ind	ience, c., PBC	Start Date: 07	and Air Force Base, New Mexico		Well ID: K	VELL LOG (AFB-106IN2 e of 12		
Drilling Company: Stewart Brothers Drilling Co. Drilling Method: Reverse Circulation Mud Rotary Drill Bit: 20" Tricone Bit Drillers: T. Holmes, M. Rodriguez, J. Russette Jr., O. Chacho Geologist: J. Messenger				Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier I	en Material: 12.75" OD Stainless S 0.060" Slot Screen Material(s): Cement, Bentonite Ce Grout, Bentonite/Sanc er Material: 6/9 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description			Completion Details		
- - - - 90	SP	n s	nedium sand (90%	d: 10YR 5/3, brown; loose; wet; 95% fine fine, 10% medium); trace coarse sand; bunded; 5% silt, nonplastic; sand is quart ragments.					
- - - - 100	ML	fi	ne to medium san	sh brown; soft; wet; nonplastic; 90% silt; 1 d (95% fine, 5% medium); subangular to s quartz, feldspar, and lithic fragments.	0%				
- - - 110 - -	SM	s 1 9	and (95% fine, 5% /2"; subangular to uartz, feldspar, an	/3, brown; loose; wet; 80% fine to mediur medium); trace coarse sand; trace grave subrounded; 20% silt, nonplastic; sand is d lithic fragments; gravel is lithic fragmen 5% fine, 10% medium, 5% coarse); 15%	el to ts. At				
- 120 - - - - 130	SP-SC	8 5 5 5	5% fine to mediun and; trace gravel t	d with Clay: 7.5YR 5/4, brown; loose; wet n sand (90% fine, 10% medium); trace co o 3/8"; subangular to subrounded; 10% c silt; sand is quartz, feldspar, and lithic s lithic fragments.	arse				
- - - - 140	SM	s 1 q	and (95% fine, 5% /2"; subangular to uartz, feldspar, an	/3, brown; loose; wet; 60% fine to mediur medium); trace coarse sand; trace grave subrounded; 40% silt, nonplastic; sand is d lithic fragments; gravel is lithic fragmen	el to ts.				
- - - - 150	sw	c tc q	oarse sand (20% f o 1/2"; subangular uartz, feldspar, an	10YR 5/3, brown; loose; wet; 95% fine to ine, 70% medium, 10% coarse); trace gr to subrounded; 5% silt, nonplastic; sand d lithic fragments; gravel is lithic fragmen	avel is ts.				
 160	SW-SC	1 1	oose; wet; 85% fine 0% coarse); trace 0% clay, slightly pl	with Clay: 10YR 6/4, light yellowish brown e to coarse sand (60% fine, 30% medium gravel to 5/8"; subangular to subrounded astic nodules to 1/2"; 5% silt; sand is qua ragments; gravel is lithic fragments.	, ,				

Note: ags = above ground surface HSLA = high-strength low-alloy

bgs = below ground surface in = inch(es)

E	A Engineering, So nd Technology, In	c., PBC	Start Date: 07	and Air Force Base, New Mexico	WELL LOG Well ID: KAFB-106IN2 Page: 3 of 12				
Drilling Drill Bit Drillers:	Drilling Company: Stewart Brothers Drill Drilling Method: Reverse Circulation Muc Drill Bit: 20" Tricone Bit Drillers: T. Holmes, M. Rodriguez, J. Russette Jr., O. Chacho Geologist: J. Messenger			Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier M	Material: 12.75" OD Stainless Steel; 0.060" Slot Screen iterial(s): Cement, Bentonite Cement Grout, Bentonite/Sand Material: 6/9 Silica Sand ack: 8/12 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description		Completion Details			
- - - 170	sw	to o to felo	coarse sand (20° 1/2"; subangular	10YR 6/3, pale brown; loose; wet; 95% f % fine, 60% medium, 20% coarse); 5% g to subrounded; trace silt; sand is quartz, ragments; gravel is quartz and lithic					
- - - 180 - -	CL	10 ⁰ trad sub is c not	% silt; 40% fine t ce coarse sand; prounded; sand i quartz and lithic f	5/4, brown; soft; wet; nonplastic; 50% cla o medium sand (60% fine, 40% medium) trace gravel to 3/8"; subangular to s quartz, feldspar, and lithic fragments; g ragments. At 180 ft, 80% clay, plastic silt; 10% fine to medium sand (85% fine,	; ravel				
- 190 - - - - - - - - -	SC	sar sub felo	nd (80% fine, 20 prounded; 25% c dspar, and lithic f	R 5/4, brown; loose; wet; 60% fine to med % medium); trace coarse sand; subangul lay; 15% silt, nonplastic; sand is quartz, fragments. At 200 ft, trace gravel to 1/2"; I lithic fragments.					
- 210 - - - 220 - - - - - - - - - - - - - - - - - -	CL	10 ⁰ trad sub is c cla cla	% silt; 30% fine t ce coarse sand; prounded; sand i quartz and lithic f y; 5% silt; 20% s	5/4, brown; soft; wet; nonplastic; 60% cla o medium sand (90% fine, 10% medium) trace gravel to 3/8"; subangular to s quartz, feldspar, and lithic fragments; g ragments. At 220 ft, Clay with Sand: 70% and; trace gravel up to 5/8". At 230 ft, 80 is up to 1-1/2"; 5% silt; 15% sand; trace	ravel				
240									

bgs = below ground surface in = inch(es)

E	A Engineering, So nd Technology, In	lience, c., PBC	Start Date: 07	and Air Force Base, New Mexico		Well ID: Page:	WELL LOG KAFB-106IN2 4 of 12			
Drilling Drill Bit: Drillers:	Company: Ste Method: Rever : 20" Tricone Bit : T. Holmes, M. R J. Russette Jr., ist: J. Messenge	se Circulati t todriguez, O. Chacho	on Mud Rotary	Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier M	terial(s): Material:	12.75" OD Stainless Steel; 0.060" Slot Screen Cement, Bentonite Cement Grout, Bentonite/Sand 6/9 Silica Sand 2 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description			Completion Details			
- - - - 250	CL	no 10 sa	odules to 1-1/2"; 5 0% medium); trac	YR 5/4, brown; soft; wet; plastic; 80% cla % silt; 15% fine to medium sand (90% fir e gravel to 5/8"; subangular to subrounde spar, and lithic fragments; gravel is quartz	ne, d;					
- - - - 260	SC Clayey Sand: 7.5YR 5/4, brown; soft; wet; 60% fine to coarse sand (65% fine, 20% medium, 15% coarse); 10% gravel up to 1"; subangular to subrounded; 20% clay, nonplastic; 10% silt; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments									
- - - - 270	sw	fir gr	ne to coarse sand ravel up to 3/8"; su	10YR 5/4, yellowish brown; loose; wet; 8 (20% fine, 60% medium, 20% coarse); 1 Jbangular to subrounded; 5% silt; 5% clay quartz feldspar, and lithic fragments.	0%					
- - - 280 - -	SP	m sı fe	edium sand (60% ubangular to subro ldspar, and lithic f	d: 10YR 5/3, brown; loose; wet; 95% fine fine, 40% medium); trace coarse sand; bunded; 5% silt, nonplastic; sand is quartz ragments. At 280 ft, 90% sand; 5% grave is quartz and lithic fragments.	trace coarse sand; blastic; sand is quartz, 90% sand; 5% gravel to					
- 290 - - - - 300	CL	//// cl	ay; nodules up to	wn; soft to medium stiff; wet; plastic; 100 2"; clay is moderately mottled to 10YR 7/ e reaction with acid.						
- 300 - - - 310	SC	···· sa ···· su ···· pl ···· gr	and (30% fine, 60 ubangular to subro astic; sand is qua ravel is caliche. No	7/2, light gray; loose; wet; 50% fine to coa % medium, 10% coarse); 10% gravel to 5 bunded; 40% clay, nonplastic to slightly rtz, feldspar, lithic fragments, and caliche ote: secondary calcium carbonate through on with acid.	el to 5/8"; htly aliche;					
310 with a strong reaction with acid. Clay: 2.5Y 7/2, light gray; soft; wet; slightly plastic; 90% clay; 10% fine sand; sand is caliche. Note: secondary calcium carbonate throughout with a moderate reaction with acid. 320										

bgs = below ground surface in = inch(es)

E	A Engineering, Sc nd Technology, Inc	ience, c., PBC	Start Date: 07	and Air Force Base, New Mexico	WELL LOG Well ID: KAFB-106IN2 Page: 5 of 12				
Drilling Drill Bit: Drillers:		se Circu odrigue O. Chac		Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier I	Material: 12.75" OD Stainless Steel; 0.060" Slot Screen aterial(s): Cement, Bentonite Cement Grout, Bentonite/Sand Material: 6/9 Silica Sand ack: 8/12 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description		Completion Details			
- - - - 330	SP-SM		Poorly Graded Sand with Silt: 10YR 6/3, pale brown; loose; wet; 90% fine to medium sand (50% fine, 50% medium); trace coarse sand; subangular to subrounded; 10% silt, nonplastic; sand is quartz, feldspar, and lithic fragments.						
- - - - 340	SM		trace medium sand	/3, pale brown; loose; wet; 75% fine sand; ; subangular to subrounded; 25% silt, quartz, feldspar, and lithic fragments.					
- - - - 350	GW		85% gravel up to 1'	el with Sand: 10YR 5/3, brown; loose; wet '; 15% medium to coarse sand (40% med ngular to subrounded; gravel and sand ar d lithic fragments.	lium,				
- - - 360 - - - - 370 - -	SM		trace medium sand nonplastic; sand is ft, 60% fine to coard	/3, pale brown; loose; wet; 75% fine sand; subangular to subrounded; 25% silt, quartz, feldspar, and lithic fragments. At 3 se sand (85% fine, 10% medium, 5% coa 30% silt; gravel is quartz and lithic	370				
- 380 - - - - 390	GW-GC		loose; wet; 50% gra fine, 30% medium, 10% clay, slightly p	el with Clay and Sand: 10YR 6/3, pale bro avel to 5/8"; 40% fine to coarse sand (50% 20% coarse); subangular to subrounded; lastic; sand is quartz, feldspar, and lithic s quartz and lithic fragments.	6				
390 400	SW-SC		80% fine to coarse 10% gravel to 5/8";	with Clay: 10YR 6/3, pale brown; loose; w sand (70% fine, 15% medium, 15% coars subangular to subrounded; 10% clay, slig rtz, feldspar, and lithic fragments; gravel i gments.	se); ghtly				

bgs = below ground surface in = inch(es)

E	A Engineering, Sci nd Technology, Inc	ence, ., PBC	Start Date: 07	and Air Force Base, New Mexico	WELL LOG Well ID: KAFB-106IN2 Page: 6 of 12			
Drilling Drill Bit Drillers	Company: Stev Method: Revers : 20" Tricone Bit : T. Holmes, M. Ro J. Russette Jr., O ist: J. Messengel	e Circula odriguez D. Chach	ation Mud Rotary	Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier N	Material: 12.75" OD Stainless Steel; 0.060" Slot Screen iterial(s): Cement, Bentonite Cement Grout, Bentonite/Sand Material: 6/9 Silica Sand ack: 8/12 Silica Sand		
Depth (ft)	USCS	Lithology		Sample Description		Completion Details		
- - - - 410	SW-SC		Well-Graded Sand with Clay: 10YR 6/3, pale brown; loose; wet; 80% fine to coarse sand (70% fine, 15% medium, 15% coarse); 10% gravel to 5/8"; subangular to subrounded; 10% clay, slightly plastic; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments.					
- - - - 420	SW-SM		Well-Graded Sand with Silt: 10YR 6/3, pale brown; loose; wet; 80% fine to coarse sand (70% fine, 15% medium, 15% coarse); 10% gravel to 5/8"; subangular to subrounded; 10% silt, nonplastic; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments.					
- 430	SM	:::::	Silty Sand: 10YR 5/3, brown; loose; wet; 70% fine sand; trace medium sand; subangular to subrounded; 30% silt, nonplastic; sand is quartz, feldspar, and lithic fragments.					
- 440 - 440 	SP-SM		fine to medium san sand; trace gravel t nonplastic; sand is is quartz and lithic f	d with Silt: 10YR 5/3, brown; loose; wet; 9 d (80% fine, 20% medium); trace coarse o 3/8"; subangular to subrounded; 10% si quartz, feldspar, and lithic fragments; gra ragments. At 440 ft, no gravel. At 450 ft, 8 d; trace coarse sand; 10% gravel to 1/2";	ilt, vel 30%	_		
- - - 460 - -	SP		medium sand (60% gravel to 5/8"; suba	d: 10YR 5/3, brown; loose; wet; 95% fine fine, 40% medium); trace coarse sand; t ngular to subrounded; 5% silt, nonplastic; spar, and lithic fragments; gravel is lithic	race			
- 470 - - - 480	sw		coarse sand (40% to 3/8"; subangular	10YR 5/3, brown; loose; wet; 95% fine to fine, 40% medium, 20% coarse); trace gra to subrounded; 5% silt, nonplastic; sand i d lithic fragments; gravel is quartz and lith	avel is			

bgs = below ground surface in = inch(es)

Start Date: 07				tland Air Force Base, New Mexico			WELL L KAFB-106I 7 of 12	10.1054
Drilling Drill Bit: Drillers:	Company: Ste Method: Revers 20" Tricone Bit T. Holmes, M. R J. Russette Jr., ist: J. Messenge	se Circulation odriguez, O. Chacho		Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier I	aterial(s): Material:	0.060" Slot S	ntonite Cement onite/Sand
Depth (ft)	USCS	Lithology		Sample Description			Completion Details	n
- - - - 490	SW	coa to 3 qua fraç	arse sand (40% f 3/8"; subangular artz, feldspar, an gments. At 480 f	10YR 5/3, brown; loose; wet; 95% fine to fine, 40% medium, 20% coarse); trace gr to subrounded; 5% silt, nonplastic; sand d lithic fragments; gravel is quartz and lith t, 85% fine to coarse sand (25% fine, 50% se); 10% gravel to 1/2"; 5% silt.	avel is nic			
- - - 500	SM	(80 sub	Silty Sand: 10YR 5/3, brown; loose; wet; 85% fine to coarse sand (80% fine, 15% medium, 5% coarse); trace gravel to 3/8"; subangular to subrounded; 15% silt, nonplastic; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments. Well-Graded Sand with Gravel: 10YR 5/3, brown; loose; wet; 80% fine to coarse sand (30% fine, 40% medium, 30% coarse); 15% gravel to 5/8"; subangular to subrounded; 5% silt, nonplastic; sand and gravel are quartz, feldspar, and lithic fragments. Poorly Graded Sand with Clay: 10YR 5/3, brown; loose; wet; 90% fine to medium sand (80% fine, 20% medium); trace coarse sand; subangular to subrounded; 10% clay, slightly plastic; sand is quartz, feldspar, and lithic fragments; clay exists as 7.5YR 5/3, brown, nodules to 1-1/2".					
- - - - 510	SW	We 809 159 nor						
- - - 520 - -	SP-SC	Poo 909 sar						
- 530 - - -	SP-SM	fine sar	Poorly Graded Sand with Silt: 10YR 5/3, brown; loose; wet; 90% fine to medium sand (80% fine, 20% medium); trace coarse sand; subangular to subrounded; 10% silt; trace clay; sand is quartz, feldspar, and lithic fragments.					
- 540 - - - 550 - - - 560	sw	coa to 1 qua	arse sand (50% f 1/2"; subangular	10YR 5/3, brown; loose; wet; 95% fine to fine, 40% medium, 10% coarse); trace gr to subrounded; 5% silt, nonplastic; sand d lithic fragments; gravel is lithic fragmen to 3/8".	avel is			6/9 Silica Sand, 541 to 567 ft bgs

bgs = below ground surface in = inch(es)

Location: Kin Start Date: 0			Start Date: 07	tland Air Force Base, New Mexico		WELL LOG Well ID: KAFB-106IN2 Page: 8 of 12		E 154	
Drilling Company: Stewart Brothers Drilling Co. Drilling Method: Reverse Circulation Mud Rotary Drill Bit: 20" Tricone Bit Drillers: T. Holmes, M. Rodriguez, J. Russette Jr., O. Chacho Geologist: J. Messenger			lation Mud Rotary z,	Boring Depth (ft bgs):921Boring Diameter (in):20Well Diameter (in):12.75 ODDTW After Completion (ft bgs):494.68Riser Material:12.75" OD HSLA Steel	Seal Ma Barrier I	en Material: 12.75" OD Stainless Ste 0.060" Slot Screen Material(s): Cement, Bentonite Cen Grout, Bentonite/Sand er Material: 6/9 Silica Sand Pack: 8/12 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description			Completior Details	ı	
- - - 570	GW-GC		loose; wet; 60% gra fine, 30% medium,	el with Clay and Sand: 10YR 5/3, brown; avel to 1/2"; 30% fine to coarse sand (50% 20% coarse); subangular to subrounded; ic; gravel and sand are quartz, feldspar, a			Sand,	8/12 Silica Sand, 567 to	
- - - 580	sw		coarse sand (50% 3/8"; subangular to	10YR 5/3, brown; loose; wet; 90% fine to fine, 40% medium, 10% coarse); 5% grav subrounded; 5% clay, nonplastic; sand is d lithic fragments; gravel is quartz and lith	vel to			910 ft bgs	
-	SP-SM		fine to medium san	d with Silt: 10YR 5/3, brown; loose; wet; § d (70% fine, 30% medium); subangular to silt, nonplastic; sand is quartz, feldspar, an	o nd	14.75" HSLA			
- 590 - - -	SM		sand (90% fine, 10	/3, brown; loose; wet; 85% fine to mediun % medium); trace coarse sand; subangul silt, nonplastic; sand is quartz, feldspar, an	n Dia ar to Co nd to bg Sta Sta	to 600 ft bgs; 12.75" Stainless Steel Blank, 600 to 605 ft bgs; 12.75" Stainless Steel Screen, 0.060" slot, 605 to 905.85 ft bgs.			
- 600 - - -	SP-SM		fine to medium san sand; trace gravel t	d with Silt: 10YR 5/3, brown; loose; wet; 6 d (60% fine, 40% medium); trace coarse o 3/8"; subangular to subrounded; 10% s quartz, feldspar, and lithic fragments; gra	JU% bg Sta ilt, Sta ivel Sc 0.0 60				
- 610 - - -	SM		sand (90% fine, 10	/3, brown; loose; wet; 85% fine to mediun % medium); subangular to subrounded; 1 d is quartz, feldspar, and lithic fragments.	n bg 5%				
- 620 - - - 630	SW-SC		fine to coarse sand gravel to 3/8"; suba	with Clay: 10YR 5/3, brown; loose; wet; 8 (50% fine, 40% medium, 10% coarse); 5 Ingular to subrounded; 10% clay, nonplas d is quartz, feldspar, and lithic fragments; I lithic fragments.	5% stic to				
- 630 - - _ 640	SW		coarse sand (15% to 3/4"; subangular	10YR 5/3, brown; loose; wet; 85% fine to fine, 45% medium, 40% coarse); 10% gra to subrounded; 5% clay, nonplastic to sliv rtz, feldspar, and lithic fragments; gravel gments.	avel ghtly				

bgs = below ground surface in = inch(es)

Location: Kirtl Start Date: 07			Start Date: 07-	tland Air Force Base, New Mexico			WELL LOG KAFB-106IN2 9 of 12	
Drilling Drill Bit Drillers	Company: Ste Method: Rever t: 20" Tricone Bi t: T. Holmes, M. F J. Russette Jr., gist: J. Messenge	rse Circulation t Rodriguez, O. Chacho	1802	Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.6 Riser Material: 12.75" OD HSLA Steel	C Seal Ma		12.75" OD Stainless Steel; 0.060" Slot Screen Cement, Bentonite Cement Grout, Bentonite/Sand 6/9 Silica Sand 2 Silica Sand	
Depth (ft)	USCS	Lithology		Sample Description			Completion Details	
- - - 650 - -	sw	coa to 3 pla qua (40	arse sand (15% f 8/4"; subangular stic; sand is qua artz and lithic frag % fine, 50% me bangular to subro	10YR 5/3, brown; loose; wet; 85% fin ine, 45% medium, 40% coarse); 10% to subrounded; 5% clay, nonplastic to rtz, feldspar, and lithic fragments; gra gments. At 640 ft, 90% fine to coarse dium, 10% coarse); trace gravel to 3/ punded; 5% silt; 5% clay. At 650 ft, 90 dium, 5% coarse); no trace gravel.	6 gravel o slightly avel is e sand /8";			
- 660 - - - - 670 - -	CL	109 to s Not exh 5/4 me	% fine to medium subrounded; san te: clay is highly hibits a strong rea , brown; soft; we dium sand (80%)	own; soft to stiff; moist; plastic; 90% of a sand (80% fine, 20% medium); sub d is quartz, feldspar, and lithic fragme mottled to 2.5Y 6/4, light yellowish br action with acid. At 670 ft, Sandy Clay t; slightly plastic; 60% clay; 40% fine fine, 20% medium); trace coarse sa Note: clay exhibits a weak reaction w	angular ents. own, and y: 7.5YR to nd; trace			
- 680 - - -	SP-SC	909 sar	% fine to medium nd; subangular to	d with Clay: 10YR 5/3, brown; loose; a sand (65% fine, 35% medium); trac o subrounded; 10% clay, nonplastic; s d lithic fragments.	e coarse			
- 690 - - - - 700	SC	to c to s slig	coarse sand (709 5/8"; subangular htly plastic; sand	6/4, light yellowish brown; soft; wet; 7 % fine, 25% medium, 5% coarse); 5% to subrounded; 25% clay, nonplastic I is quartz, feldspar, and lithic fragme lithic fragments.	6 gravel to			
- 700 	SP-SC	909 sar	% fine to medium nd; trace gravel to	d with Clay: 10YR 5/3, brown; loose; n sand (75% fine, 25% medium); trac o 3/8"; subangular to subrounded; 10 quartz, feldspar, and lithic fragments;	e coarse % clay,			
710	SW-SC	fine gra sar	e to coarse sand vel to 1/2"; suba	with Clay: 10YR 5/3, brown; loose; w (50% fine, 35% medium, 15% coars ngular to subrounded; 10% clay, non spar, and lithic fragments; gravel is q	e); 5% plastic;			

bgs = below ground surface in = inch(es)

Location: Kirt Start Date: 0			Start Date: 07	and Air Force Base, New Mexico		WELL LOG Well ID: KAFB-106IN2 Page: 10 of 12			
Drilling Drill Bit Drillers	Drilling Company: Stewart Brothers Drilling Co. Drilling Method: Reverse Circulation Mud Rotary Drill Bit: 20" Tricone Bit Drillers: T. Holmes, M. Rodriguez, J. Russette Jr., O. Chacho Geologist: J. Messenger			Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier M	Material: 12.75" OD Stainless Steel; 0.060" Slot Screen aterial(s): Cement, Bentonite Cement Grout, Bentonite/Sand Material: 6/9 Silica Sand ack: 8/12 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description		Completion Details			
- 730	SW-SC	fi g	Vell-Graded Sand ne to coarse sand ravel to 1/2"; suba and is quartz, felds thic fragments.						
- - - - 740	sc	s 	Clayey Sand: 10YR 6/3, brown; loose; wet; 70% fine to medium sand (80% fine, 20% medium); trace coarse sand; subangular to subrounded; 20% clay; 10% silt, nonplastic; sand is quartz, feldspar, and lithic fragments.						
- 740 - - - 750 - -	SW-SC	8 1 P Iii	Well-Graded Sand with Clay: 10YR 6/3, pale brown; loose; wet; 80% fine to coarse sand (40% fine, 35% medium, 25% coarse); 10% gravel to 1/2"; subangular to subrounded; 10% clay, slightly plastic; sand is quartz, feldspar, and lithic fragments; gravel is lithic fragments. Note: clay exists as 7.5YR 5/3, brown, nodules. At 750 ft, 70% sand (20% fine, 60% medium, 20% coarse); 20% quartz and lithic gravel to 1"; 10% clay.						
- 760 - - - - 770 -		fi s s	ne to medium san and; subangular to	d with Silt: 10YR 5/3, brown; loose; wet; 8 d (70% fine, 30% medium); trace coarse o subrounded; 10% silt; 5% clay, nonplast spar, and lithic fragments. At 770 ft, sand lium.	ic;				
- - 780 - - -	SP-SM								
- 790 - - - 800									

bgs = below ground surface in = inch(es)

Start Date: 07-			Location: Kirtl Start Date: 07	and Air Force Base, New Mexico		WELL LOG Well ID: KAFB-106IN2 Page: 11 of 12			
Drilling Drill Bit: Drillers:	Drilling Company: Stewart Brothers Drilling Co. Drilling Method: Reverse Circulation Mud Rotary Drill Bit: 20" Tricone Bit Drillers: T. Holmes, M. Rodriguez, J. Russette Jr., O. Chacho Geologist: J. Messenger			Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier I	Material: 12.75" OD Stainless Steel; 0.060" Slot Screen Iterial(s): Cement, Bentonite Cement Grout, Bentonite/Sand Material: 6/9 Silica Sand ack: 8/12 Silica Sand			
Depth (ft)	USCS	Lithology		Sample Description		Completion Details			
-	SP-SM	fil Sa	Poorly Graded San ne to medium san and; subangular to and is quartz, feld						
- 810 - - -	sc	···· si	Clayey Sand: 10YR 5/3, brown; loose; wet; 80% fine to coarse sand (60% fine, 30% medium, 10% coarse); 5% gravel to 3/4"; subangular to subrounded; 15% clay, nonplastic to slightly plastic; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments. Clay with Sand: 10YR 7/2, light gray; soft to stiff; wet; slightly plastic to plastic; 75% clay; 20% fine to coarse sand (70% fine, 20% medium, 10% coarse); 5% gravel to 3/8"; subangular to subrounded; sand is quartz, feldspar, and lithic fragments; gravel is lithic fragments. Note: clay exhibits a weak reaction with acid.						
- 820 - - - - 830	CL	p 2 si							
-	SC	si si p	Clayey Sand: 10YR 5/3, brown; loose; wet; 80% fine to coarse sand (70% fine, 25% medium, 5% coarse); trace gravel to 3/8"; subangular to subrounded; 15% clay, nonplastic to slightly plastic; sand is quartz, feldspar, and lithic fragments; gravel is quartz and lithic fragments.						
- 840 - - - - 850 - -		9 to a g	0% fine to mediun o subrounded; 10% nd lithic fragments ravel to 3/8"; clay	d with Clay: 10YR 5/3, brown; loose; wet; n sand (80% fine, 20% medium); subangu 6 clay, nonplastic; sand is quartz, feldspa 5. At 850 ft, trace coarse sand; trace lithic exists as nonplastic to slightly plastic 7.51 s; medium stiff. At 860 ft, 10YR 6/3, pale	ular r,				
- 860 - -	SP-SC								
- 870 - -									
880		1.1.1			10				

bgs = below ground surface in = inch(es)

Location: Ki Start Date: 0				5DM02.1016 tland Air Force Base, New Mexico 7-02-2020 ate: 10-19-2020			WELL LOG KAFB-106IN2 12 of 12		
Drilling Company: Stewart Brothers Drilling Co. Drilling Method: Reverse Circulation Mud Rotary Drill Bit: 20" Tricone Bit Drillers: T. Holmes, M. Rodriguez, J. Russette Jr., O. Chacho Geologist: J. Messenger				Boring Depth (ft bgs): 921 Boring Diameter (in): 20 Well Diameter (in): 12.75 OD DTW After Completion (ft bgs): 494.68 Riser Material: 12.75" OD HSLA Steel	Seal Ma Barrier	aterial(s): Material:	12.75" OD Stainless Steel; 0.060" Slot Screen Cement, Bentonite Cemen Grout, Bentonite/Sand 6/9 Silica Sand 2 Silica Sand		
Depth (ft)	USCS	Lithology		Sample Description	Completion Details				
- - - - 890	sc		sand (70% fine, 30	8 6/3, brown; loose; wet; 80% fine to medi % medium); trace coarse sand; subangula clay, nonplastic to slightly plastic; sand is d lithic fragments.					
- - - - - 900	CL		clay; 35% fine to co coarse); trace grave quartz, feldspar, an fragments. Note: cl	6/3, pale brown: soft; wet; slightly plastic; parse sand (60% fine, 30% medium, 10% el to 3/8"; subangular to subrounded; sand d lithic fragments; gravel is quartz and lith ay is weakly mottled to 10YR 7/3, very pa s a weak reaction with acid.	d is nic				
- - - - 910	SP-SM		fine to medium san	d with Silt: 10YR 5/4, brown; loose; wet; 9 d (80% fine, 20% medium); subangular to ilt, nonplastic; sand is quartz, feldspar, ar	nd 12 SI	2.75" tainless teel Sump,			
- - - - 920	SM		sand (75% fine, 25	/3, brown; loose; wet; 80% fine to medium % medium); subangular to subrounded; 1 d is quartz, feldspar, and lithic fragments.	5% 91	905.85 to 911.4 ft bgs 911.4 ft bgs			
- 920	SP-SM		wet; 90% fine to me coarse sand; trace	aded Sand with Silt: 10YR 5/3, brown; loc edium sand (40% fine, 60% medium); trac gravel to 3/8"; subangular to subrounded; ; sand is quartz, feldspar, and lithic s lithic fragments.	e				
			TD = 921 ft bgs as	confirmed by geophysical logs					

bgs = below ground surface in = inch(es)

APPENDIX K

USER OPERATIONAL ADJUSTMENTS DOCUMENTATION

REPLACEMENT KUNKLE LIQUID RELIEF VALVE IN KAFB-106233

Appendix K					
McKeage, Kevin					
From:	SANCHEZ, AMY ELIZABETH CIV USARMY CESPA (US)				
	<amy.e.sanchez@usace.army.mil></amy.e.sanchez@usace.army.mil>				
Sent:	Tuesday, May 16, 2017 10:31 AM				

Jercinovic, Devon; Curley, Tyler; Becker, Lee

RE: Kirtland BFF - Operational Vault Changes

USARMY CESPA (US)

Salazar, Carlos F CIV USARMY CESPA (US); Simpler, Trent W CIV USARMY CESPA (US); McKeage, Kevin; Phaneuf, Mark J CIV USARMY CESPA (US); Dreeland, Linda E CIV

To:

Cc: Subject:

I also concur with proposed recommendations.

Thanks, Amy

-----Original Message-----

From: Salazar, Carlos F CIV USARMY CESPA (US) Sent: Tuesday, May 16, 2017 10:23 AM To: Simpler, Trent W CIV USARMY CESPA (US) <Trent.Simpler@usace.army.mil>; McKeage, Kevin <kmckeage@eaest.com>; SANCHEZ, AMY ELIZABETH CIV USARMY CESPA (US) <Amy.E.Sanchez@usace.army.mil>; Phaneuf, Mark J CIV USARMY CESPA (US) <Mark.J.Phaneuf@usace.army.mil>; Dreeland, Linda E CIV USARMY CESPA (US) <Linda.E.Dreeland@usace.army.mil> Cc: Jercinovic, Devon <djercinovic@eaest.com>; Curley, Tyler <tcurley@eaest.com>; Becker, Lee <lbecker@eaest.com> Subject: RE: Kirtland BFF - Operational Vault Changes

I also concur.

Carlos

-----Original Message-----From: Simpler, Trent W CIV USARMY CESPA (US) Sent: Tuesday, May 16, 2017 10:20 AM To: McKeage, Kevin <kmckeage@eaest.com>; SANCHEZ, AMY ELIZABETH CIV USARMY CESPA (US) <Amy.E.Sanchez@usace.army.mil>; Salazar, Carlos F CIV USARMY CESPA (US) <Carlos.F.Salazar@usace.army.mil>; Phaneuf, Mark J CIV USARMY CESPA (US) <Mark.J.Phaneuf@usace.army.mil>; Dreeland, Linda E CIV USARMY CESPA (US) <Linda.E.Dreeland@usace.army.mil> Cc: Jercinovic, Devon <djercinovic@eaest.com>; Curley, Tyler <tcurley@eaest.com>; Becker, Lee <lbecker@eaest.com> Subject: RE: Kirtland BFF - Operational Vault Changes

1

I concur with these recommendations. Amy? Carlos?

Thanks Trent

Trent Simpler, P.E. Project Manager BFF Chair Wind Energy CX Red Team LGL US Army Corps of Engineers Trent.Simpler@usace.army.mil 505-342-4823 (office) 505-301-6996 (mobile)

-----Original Message-----

Appendix K

From: McKeage, Kevin [mailto:kmckeage@eaest.com] Sent: Tuesday, May 16, 2017 9:16 AM To: Simpler, Trent W CIV USARMY CESPA (US) <Trent.Simpler@usace.army.mil>; SANCHEZ, AMY ELIZABETH CIV USARMY CESPA (US) <Amy.E.Sanchez@usace.army.mil>; Salazar, Carlos F CIV USARMY CESPA (US) <Carlos.F.Salazar@usace.army.mil>; Phaneuf, Mark J CIV USARMY CESPA (US) <Mark.J.Phaneuf@usace.army.mil>; Dreeland, Linda E CIV USARMY CESPA (US) <Linda.E.Dreeland@usace.army.mil> Cc: Jercinovic, Devon <djercinovic@eaest.com>; Curley, Tyler <tcurley@eaest.com>; Becker, Lee <lbecker@eaest.com> Subject: [Non-DoD Source] Kirtland BFF - Operational Vault Changes

USACE Team,

KAFB-106233 Liquid Relief Valve:

Currently, KAFB-106233 is equipped with a Kunkle Model 20-H01 liquid relief valve with a pressure set point of 200 psi which began leaking during pumping operations 12MAY17. EA recommends decreasing the pressure set point to provide a margin of safety between the liquid relief valve set point pressure and the maximum pressure rating of the HDPE dual wall conveyance line (200 psi rated). EA is proposing to replace the leaking liquid relief valve with the same model valve (20-H01) but with a lower set point of 150 psi.

Vault Leak Detection Elevation Increase:

Currently the wellhead vaults for KAFB-106233 and KAFB-106234 can contain a total volume of approximately 628 gallons (7'x3'x4', assuming negligible volume loss due to the presence of installed lines and equipment) and the leak detection sensors are placed approximately 4 inches off of the vault floor which is the equivalent of approximately 50 gallons of water in the vault (8% of the vault volume). With the current position of the leak detection sensors, rain events typically cause the vaults to collect enough surface water run-off to activate the sensors and result in erroneous well and/or system shutdowns. EA is proposing that the leak sensors be moved to approximately 12 inches above the vault floor which is approximately 157 gallons (25% of the vault volume). This height is equivalent to the top of the 3-inch steel pipe in the vault.

In the event that the line between the pitless adaptor and the check valve were to fail while the pump was not currently in operation, approximately 2.5 gallons of water would be leaked into the vault resulting in a depth of less than a quarter of an inch in the vault (not enough to be detected by the current leak detection sensor position). Additionally if the line failed during pumping, the current sensor position (4 inches) would alarm and shutdown the system within 17 seconds. If the leak detected within 1 minute of the failure. Since the system currently responds to vault leak alarms nearly instantaneously, there is very little increase in risk imposed by this short delay in system shutdown. Additionally this would decrease the amount of unnecessary downtime for wells and/or the entire system during and after rain events.

Please let us know how you would like these field changes documented and if you have any questions or concerns.

Thank you,

Kevin McKeage, E.I.

Engineer

Cell: (316) 765-1486

Appendix K Office: (505) 933-6417

kmckeage@eaest.com <mailto:kmckeage@eaest.com>

EA Engineering, Science, and Technology, Inc., PBC

320 Gold Ave, Suite. 1300

Albuquerque, NM 87102

Blockedwww.eaest.com <Blockedhttp://www.eaest.com>

-----Original Message-----

From: Simpler, Trent W CIV USARMY CESPA (US) [mailto:Trent.Simpler@usace.army.mil <mailto:Trent.Simpler@usace.army.mil>]

Sent: Monday, May 15, 2017 2:03 PM

To: Jercinovic, Devon <djercinovic@eaest.com <mailto:djercinovic@eaest.com> >; McKeage, Kevin <kmckeage@eaest.com> >

Cc: SANCHEZ, AMY ELIZABETH CIV USARMY CESPA (US) <Amy.E.Sanchez@usace.army.mil <mailto:Amy.E.Sanchez@usace.army.mil> >; Salazar, Carlos F CIV USARMY CESPA (US) <Carlos.F.Salazar@usace.army.mil <mailto:Carlos.F.Salazar@usace.army.mil> >; Dreeland, Linda E CIV USARMY CESPA (US) <Linda.E.Dreeland@usace.army.mil <mailto:Linda.E.Dreeland@usace.army.mil> >; Phaneuf, Mark J CIV USARMY CESPA (US) <Mark.J.Phaneuf@usace.army.mil <mailto:Mark.J.Phaneuf@usace.army.mil> >

Subject: Vault changes

Devon,

Your proposed changes to the pressure valve and moving the flood sensor (and other standard maintenance items) are considered user maintenance or safety changes and you only need to send us an email explaining what you want to change and why (short email) and we will approve.

Thanks

Trent

Trent Simpler, P.E.

Project Manager BFF

Chair Wind Energy CX

Red Team LGL

Appendix K US Army Corps of Engineers

Trent.Simpler@usace.army.mil <mailto:Trent.Simpler@usace.army.mil>

505-342-4823 (office)

505-301-6996 (mobile)

Non-code Bronze Liquid Relief Valves

Features

- Both inlet and outlet connections are cast integral with body to permit easy inspection and servicing without disconnecting piping.
- Beveled seats lapped for optimum performance.
- Stainless Steel (SS) spring for optimum corrosion resistance.
- Each Kunkle valve is tested and inspected for pressure setting and leakage.

Model Descriptions

Model 19: All bronze, equipped with handwheel for easy adjustment within spring ranges.

Model 19M: Same as model 19 except SS trim (seat and disc). Available 2¹/2" and 3" only. For higher pressure settings or severe applications.

Model 20: All bronze, with pressure-tight cap. Suitable for maximum back pressure of 50 psig.¹

Model 20M: Same as model 20 except SS trim. Available in 21/2" and 3" only (seat and disc). For higher pressure settings or severe applications. Maximum back pressure of 50 psig.¹

Model 20P: Same as model 20 except with packed lift lever. Suitable for maximum back pressure of 50 psig.¹

Model 20MP: Same as model 20M except with packed lift lever. Maximum back pressure of 50 psig.¹

Model 200A: Special non-chattering design. Recommended for light oils and continuous by-pass or pressure regulation. UL842 listed for light oil service. Available ³/4" to 11/2" sizes. Female NPT connections only.

Model 200H: Same as model 20. UL842 listed for use with fuel oils. Available $^{3/4}$ to 2" sizes.

Applications

- Non-code liquid relief.
- Overpressure relief and protection of pumps, tanks, lines and hydraulic systems.

- Pressure regulation.
- · Continuous by-pass relief.

Options

- Available with optional female NPT inlet or flanged inlet and outlet connections.
- Model 19 Variation 10: 1 to 150 psig adjustable spring range Variation 11: 151 to 300 psig adjustable spring range
- Model 20-D Variation 05: 50 to 150 psig spring range Variation 06: 100 to 300 psig

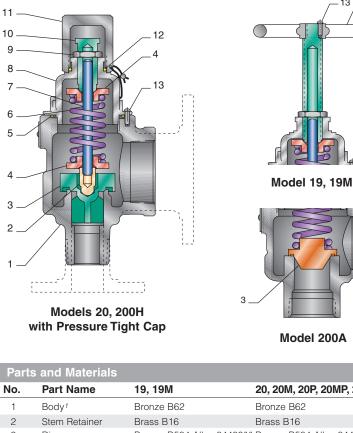
Pressure and Temperature Limits Models 19, 20, 20P:

1 to 300 psig -60° to 406°F

Models 19M, 20M, 20MP: 1 to 500 psig -60° to 406°F

Models 200A, 200H: 1 to 200 psig

-60° to 406°F

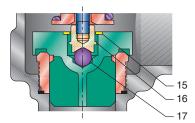

Note

 Back pressure increases set pressure on a one to one basis, and reduces capacity. Back pressure in excess of 10% of set pressure is not recommended.

Kunkle Safety and Relief Products Models 19, 19M, 20, 20M, 20P, 20MP, 200A and 200H

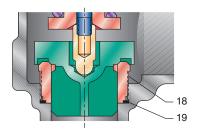
13 _ 14

Parts and Materials

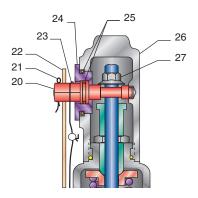

Parts	and materials		
No.	Part Name	19, 19M	20, 20M, 20P, 20MP, 200A, 200H
1	Body ¹	Bronze B62	Bronze B62
2	Stem Retainer	Brass B16	Brass B16
3	Disc	Bronze B584 Alloy 844002,3	Bronze B584 Alloy 84400 ^{2,3}
4	Spring Step	Brass B16	Brass B16
5	O-ring	Teflon®	Teflon®
6	Spring	SS 316 or 17-7	SS 316 or 17-7
7	Stem	Brass B16	Brass B16
8	Bonnet	Bronze B584 Alloy 84400	Bronze B584 Alloy 84400
9	Jam Nut	Steel A108 Zinc Plated	Brass B16
10	Compression Screw	Brass B16	Brass B16
11	Сар	N/A	Brass B16
12	O-ring	N/A	BUNA-N
13	Drive Screw ⁶	SS Commercial	SS Commercial
14	Handwheel	Iron A126 Zinc Plated ⁵	N/A

Notes

- 1. Flanged connections optional.
- 2. Models 19, 20, 20P, 200H are brass, B283, Alloy 485, for $^{1\!/2"},\,^{3\!/4"},$ and 1".
- 3. Models 19M, 20M, and 20MP are SS A743-CF8.
- 4. Model 200A is brass B16.
- 5. Bronze B584 Alloy 84400 for $^{1/2"},\,^{3/4"},\,1^{1/4"}.$
- 6. Not used on bonnet for 21/2" and 3".


Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 8 of 27

Parts and Materials



Models 19M, 20M and 20MP 2¹/2" Seat Configuration

Par	Parts and Materials												
No.	Part Name	Material											
15	Retainer Washer	SS PH15-7MO											
16	Stem End	SS A582-303											
17	Ball	SS A756-440											
18	Insert	SS A743 GR CF8											
19	O-ring	Teflon®											

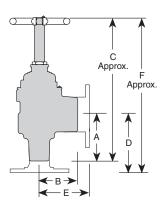
Models 19M, 20M and 20MP 3" Seat Configuration

Models 20MP and 20P With Lever

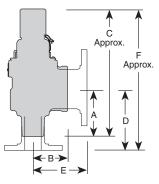
Par	ts and Mate	rials
No.	Part Name	20P, 20MP
20	Lift Cam	SS A743-316
21	Cotter Pin	Steel
22	Lever	Steel A108 Zinc Plated
23	Drive Screw	SS Commercial
24	Retainer Cam	Brass B16
25	O-ring	BUNA-N
26	Сар	Bronze B584 Alloy 84400
27	Lift Nut	Steel A108

Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 9 of 27

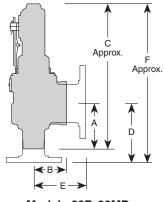
Liquid Relief Valves


Specifica	tions				
Size Inlet/Outlet NPT, (in)	19, 20, 20P	Min/Max Set Pressure, (200A, 200H		Min/Max Temp. (°F)	Approximate Wt., (Ib)
1/22	1/300	_	_	-60/406	21/4
3/4	1/300	1/200	_	-60/406	21/4
1	1/300	1/200	_	-60/406	31/2
11/4	1/300	1/200	_	-60/406	5
11/2	1/300	1/200	_	-60/406	61/4
2	1/300	1/200	_	-60/406	11
21/2	1/300	_	1/500	-60/406	16
3	1/300	_	1/500	-60/406	25

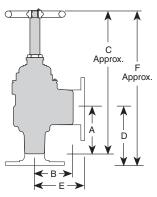
Dimensions												
Valve Model	T	hreade	d ——	15	150/300 Flange							
	Α	В	С	D	E	F						
1/2" Size												
19	2	15/8	61/8	35/16	35/16	73/8						
20	2	15/8	57/8	35/16	35/16	71/4						
20P	2	15/8	7 ³ /8	_	_	—						
³ /4" Size												
19	2	15/8	61/8	35/16	35/16	73/8						
20	2	15/8	57/8	35/16	35/16	71/4						
20P	2	1 ⁵ /8	7 ³ /8	35/16	35/16	83/4						
200A	2	15/8	57/8	_	_	_						
200H	1 15/16	15/8	57/8	35/16	35/16	7 ³ /8						
1" Size												
19	21/4	17/8	71/8	37/16	37/16	81/4						
20	21/4	17/8	6 ³ /4	37/16	37/16	77/8						
20P	21/4	17/8	83/4	37/16	37/16	91/2						
200A	21/4	17/8	6 ³ /4	—	—	—						
200H	21/4	17/8	611/16	37/16	37/16	8						


Dimensions are for reference only.

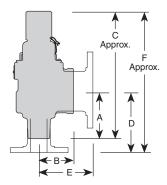
Notes


- 1. All flanges rated per ANSI B16.24.
- 2. Standard with 3/4" outlet 1/2" outlet optional.

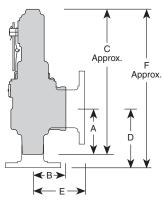
Models 19, 19M



Models 20, 20M, 200A, 200H



Models 20P, 20MP


Liquid Relief Valves

Models 19, 19M

Models 20, 20M, 200A, 200H

Models 20P, 20MP

Dimensions	, inches					
Valve Model	— Т	hreaded	1	1	50/300 Flang	
	Α	В	С	D	E	F
1 ¹ /4" Size						
19	25/8	21/16	81/8	311/16	311/16	9 ¹ /8
20	25/8	21/16	81/8	311/16	311/16	8 ³ /8
20P	25/8	2 ¹ /16	9	311/16	311/16	10
200A	25/8	21/16	73/8	—	_	_
200H	25/8	21/16	7 ³ /8	311/16	311/16	85/8
11/2" Size						
19	211/16	21/8	85/8	41/8	41/8	101/8
20	211/16	2 ¹ /8	8 ⁵ /8	41/8	41/8	91/4
20P	211/16	21/8	91/4	41/8	41/8	103/4
200A	211/16	21/8	77/8	_	_	_
200H	211/16	21/8	77/8	41/8	41/8	91/2
2" Size						
19	31/2	211/16	10 ⁵ /8	41/4	41/4	11 ¹ /4
20	3 ¹ /2	211/16	105/8	41/4	41/4	10 ⁵ /8
20P	31/2	211/16	121/2	41/4	41/4	131/8
200H	31/2	211/16	915/16	41/2	41/4	1015/16
21/2" Size						
19	37/8	3	111/8	43/4	43/4	12
19M	37/8	3	111/8	43/4	43/4	121/4
20	37/8	3	10	43/4	43/4	135/16
20M	37/8	3	10	43/4	43/4	139/16
20P	37/8	3	121/2	43/4	43/4	153/4
20MP	37/8	3	12 ¹ /2	543/4	43/4	161/16
3" Size						
19	4 ⁵ /8	37/8	12 ¹ /4	5	5	12 ⁵ /8
19M	4 ⁵ /8	37/8	12 ¹ /4	5	5	131/8
20	4 ⁵ /8	37/8	121/4	5	5	143/4
20M	45/8	37/8	121/4	5	5	151/8
20P	4 ⁵ /8	37/8	143/8	5	5	16 ⁷ /8
20MP	45/8	37/8	143/8	5	5	171/4

Dimensions are for reference only.

Kunkle Safety and Relief Products Models 19, 19M, 20, 20M, 20P, 20MP, 200A and 200H

Models 19, 19M, 20, 20M, 20MP, 20P and 200H Capacities Liquid Relief Valves

Set Pressure				Valve Inlet a	nd Outlet Siz	e ———		
(psig)	1/2"	3/4"	1"	11/4"	11/2"	2"	21/2"	3"
1	1	2	4	6	10	19	31	45
5	2	5	8	14	22	42	68	100
10	3	7	11	20	31	59	97	141
20	4	9	16	28	43	84	137	200
30	5	11	20	34	53	102	168	244
40	6	13	23	39	61	118	193	282
50	7	15	25	44	68	132	216	315
60	7	16	28	48	75	145	237	346
70	8	17	30	52	81	156	256	373
80	8	19	32	55	87	167	274	399
90	9	20	34	59	92	177	290	423
100	9	21	36	62	97	187	306	446
110	10	22	37	65	102	196	321	468
120	10	23	39	68	106	205	335	489
130	11	24	41	71	110	213	349	509
140	11	25	42	73	115	221	362	528
150	11	25	44	76	119	229	375	546
160	12	26	45	78	123	236	387	564
170	12	27	47	81	126	244	399	582
180	13	28	48	83	130	251	410	599
190	13	29	49	86	134	258	422	615
200	13	29	50	88	137	264	433	631
210	14	30	52	90	140	271	443	646
220	14	31	53	92	144	277	454	662
230	14	32	54	94	147	284	464	677
240	14	32	55	96	150	290	474	691

1. Liquid Overpressure Factors

To determine capacities at other than 25% overpressure/accumulation, multiply capacity shown by:

10% Acc. = 0.6 15% Acc. = 0.8 20% Acc. = 0.9

Models 19, 19M, 20, 20M, 20MP, 20P and 200H Capacities Liquid Relief Valves

Set Pressure				Valve Inlet an	d Outlet Size			
(psig)	1/2"	3/4"	1"	11/4"	11/2"	2"	21/2"	3"
250	15	33	56	98	153	296	484	705
260	15	34	58	100	156	301	493	719
270	15	34	59	102	159	307	503	733
280	16	35	60	104	162	313	512	746
290	16	35	61	106	165	318	521	760
300	16	36	62	107	168	323	530	773
310	_	_		_	_	_	539	785
320	_	—		—	_	—	547	798
330	_	_		_	_	_	556	810
340	_	—		—	_	—	564	823
350	_	_		_		_	572	835
360	_	—		—	_	—	580	846
370	_	_				_	588	858
380	_	—		—	_	—	596	870
390	_	_		_		_	604	881
400	_	—		—	_	—	612	892
410	_	_		_		_	619	903
420	_	—		—	_	—	627	914
430	_	_		_		_	634	925
440	_	—		—	_	—	642	936
450	_	_		_		_	649	946
460	_	_		_	_	_	656	957
470	—	—		—	—	—	663	967
480	_	—		—	_	—	670	977
490	—	—		—	—	—	677	987
500	_	_		_	_	_	684	998

Note

1. Liquid Overpressure Factors

To determine capacities at other than 25% overpressure/accumulation, multiply capacity shown by:

10% Acc. = 0.6 15% Acc. = 0.8 20% Acc. = 0.9

Kunkle Safety and Relief Products Models 19, 19M, 20, 20M, 20P, 20MP, 200A and 200H

200A Capacities at 25%, 50%, 75% and 100% Accumulation (GPM)

/lodel <u>20</u>	00A "D" -	3/4"		
noi	050/	Overpressu	ure 75%	100%
psi 5	25%	1.9	2.7	3.7
10	1.2	2.0	2.8	4.4
15	1.3	2.0	2.9	4.7
20	1.5	2.2	3.0	5.2
25	1.5	2.2	3.0	6.0
30	1.5	2.2	3.1	6.5
35	1.5	2.5	3.3	7.4
40	1.7	2.6	3.5	8.5
45	1.9	2.8	3.6	9.6
50	2.0	3.0	3.8	11.0
55	2.2	3.2	4.0	12.2
60	2.3	3.4	4.2	13.5
65	2.4	3.5	4.4	14.8
70	2.5	3.7	4.5	16.0
75	2.6	4.0	4.7	17.1
80	2.8	4.2	5.0	18.2
85	2.9	4.4	5.1	19.3
90	3.0	4.6	5.4	20.2
95	3.1	4.7	5.5	21.0
100	3.1	4.8	5.7	21.4
105	3.3	5.0	6.0	21.5
110	3.4	5.1	6.1	21.4
115	3.4	5.3	6.2	21.4
120	3.5 3.5	5.5	6.4	20.5
125		5.6	6.5	20.2
130	3.5	5.8	6.7	19.8
135	3.7	6.0	6.9	20.0
140	3.7	6.1	7.0	20.2
145	3.8	6.2	7.0	20.8
150	3.8	6.3	7.2	21.5
155	4.0	6.5	7.4	22.0
160	4.0	6.5	7.5	22.9
165	4.0	6.5	7.6	23.7
170	4.0	6.6	7.8	24.6
175	4.1	6.8	8.2	25.5
180	4.2	6.9	8.5	26.8
185	4.3	6.9	9.0	28.5
190	4.4	7.0	10.0	30.5
195	4.4	7.0	11.5	33.5
200	4.5	7.0	12.9	36.2
	4.5	7.0	12.9	36.2

Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 14 of 27

200A Capacities at 25%, 50%, 75% and 100% Accumulation (GPM)

Model 2	200A "F" -	1 ¹ /4"		
		Overpress		
si	25%	50%	75%	100%
5	1.0	4.0	5.0	7.0
10	2.5	7.0	7.0	13.5
15	4.0	10.0	12.5	20.0
20	5.0	14.0	16.5	27.5
25	7.5	18.0	21.5	35.0
30	8.0	20.2	25.0	41.5
35	9.5	25.5	29.5	48.5
40	10.0	27.0	33.5	54.5
45	11.0	28.2	38.0	60.0
50	11.8	30.0	42.5	66.5
55	12.5	31.5	47.5	73.0
60	13.0	33.0	52.0	79.0
65	14.0	34.5	56.5	85.5
70	14.8	36.0	61.0	92.0
75	15.5	37.7	65.5	97.5
80	16.2	39.0	69.5	102.7
85	17.0	40.0	73.0	102.7
90	18.0	41.0	76.0	112.0
90 95	18.5	41.0	78.0	115.5
100	17.5	42.0	78.5	116.7
105	16.5	41.0	77.5	115.7
10	15.5	39.5	74.5	113.0
115	14.5	37.5	70.5	108.5
120	13.5	35.0	66.0	103.5
125	12.5	33.7	62.7	99.8
30	11.5	33.0	60.0	98.0
135	10.5	33.5	60.5	99.0
140	11.8	35.0	63.0	103.0
145	13.0	37.5	66.5	109.0
150	14.5	40.0	71.0	116.0
155	16.0	43.5	76.0	123.7
160	17.2	47.0	81.5	132.0
165	18.8	50.5	87.0	140.0
170	20.0	54.0	92.5	148.0
175	21.5	57.8	97.5	155.5
180	23.0	61.0	102.0	160.5
185	24.0	63.5	105.0	163.0
190	25.0	65.5	106.0	160.0
190	25.0	67.5	106.5	153.5
200	27.5	69.0	106.8	147.5

Kunkle Safety and Relief Products Models 19, 19M, 20, 20M, 20P, 20MP, 200A and 200H

Model Number/Order Guide

Model Nun Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Example	0	0	1	9	—	F	0	1	—	Μ	G	0	0	7	5	
Model																
0019 0020 020P 200A	019M 020M 20MP 200H															
Inlet Size																
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		H - J -	21/2													
Variation See chart p	ane 11															
Design R Indicates r			eable	e rev	ision	. Das	h (-)	if oriç	ginal	desi	gn.					
Spring Ma	aterial															
G - 316 S H - 304 S	S	or Mo	del 1	9M-ł	< 30) psig	g or (greate	er)							
Cat Drage																

Set Pressure

0005 - 5 psig 0025 - 25 psig 0400 - 400 psig

Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 16 of 27

			Variation													
Model - Inlet Size	Inlet x Outlet	C 1/2" Male x 3/4" Female	ତ ¹/₂" Male x ¹/₂" Female	ස 1/2" Female x ³/₄" Female	은 Male x Female with Gag	유 1/2" Female x 1/2" Female	G 1/2" 150 Flg x 1/2" 150 Flg	g 1/2" 300 Flg x 1/2" 150 Flg	ට Male x Female	G Female x Female (200A)	C Female x Female	ස 150 Flg x 150 Flg	응 300 Flg x 150 Flg (200H)	운 300 Flg x 150 Flg	오 150 Flg x 150 Flg (200H)	ය ^{3/4"} 300 Fig x ^{3/4"} 150 Fig (020P-D)
19-C, 20-C, 20P-C	1/2" x 1/2" (3/4")	Х	Х	Х		Х	Х	Х								
19-D, 20-D	3/4" x 3/4"								Х		Х	Х		Х		
200A-D	3/4" x 3/4"									Х						
200H-D	³ /4" x ³ /4"								Х		Х		Х		Х	
19-E, 20-E, 20P-E ²	1" x 1"								Х		Х	Х		Х		
200A-E	1" x 1"									Х	Х					
200H-E	1" x 1"								Х		Х		Х		Х	
19-F, 20-F, 20P-F ²	1 ¹ /4" x 1 ¹ /4"								Х		Х	Х		Х		
200A-F	1 ¹ /4" x 1 ¹ /4"									Х						
200H-F	1 ¹ /4" x 1 ¹ /4"								Х		Х		Х		Х	
19-G, 20-G, 20P-G ²	11/2" x 11/2"								Х		Х	Х		Х		
200A-G	1 ¹ /2" x 1 ¹ /2"									Х						
200H-G	1 ¹ /2" x 1 ¹ /2"								Х		Х		Х		Х	
19-H, 20-H, 20P-H ²	2" x 2"								Х		Х	Х		Х		
200H-H	2" x 2"								Х		Х		Х		Х	
19-J, 19M-J, 20J, 20P-J, 20M-J, 20MP-J	21/2" x 21/2"								Х		Х	Х		Х		
19-K, 19M-K, 20-K, 20P-K, 20M-K, 20MP-K	3" x 3"								Х		Х	Х		Х		
20P-D	3/4" × 3/4"				Х				Х		Х				Х	Х

1. Not available for 20P-C

2. Variation 04 not available for 20P-E, 20P-F, 20P-G, and 20P-H

Kunkle Safety and Relief Products Models 19, 19M, 20, 20M, 20P, 20MP, 200A and 200H

Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 18 of 27

SUMP PUMP REPLACEMENT MODEL

Energy

Model

Tiberty Pumps[®]

280-Series

Cast Iron Submersible Effluent/Sump Pumps

1/2 hp 1-1/2" Discharge 3/4" Solids Handling

Features:

• Liberty's unique, one-piece "Uni-Body" casting

 Quick-disconnect 10' standard power cord allows replacement of cord in seconds without breaking seals to motor (other lengths available)

> Permanently lubricated upper and lower bearings

 Oil-filled, hermetically sealed motors with thermal overload protection

Stainless steel, removable bottom screen

Stainless steel rotor shaft

Stainless steel fasteners

115 V. Models:

280 Manual 281 Wide-Angle Float with Quick Disconnect 283 Wide-Angle Float, Series Plug 287 VMF, vertical magnetic float for heavy-duty sump pump applications

208-230 V. Models:

280HV Manual 281HV Wide-Angle Float with Quick Disconnect 283HV Wide-Angle Float, Series Plug 287HV Vertical Magnetic Float (VMF) Switch

5 ם

Wide-Angle Floats are mercury-free, mechanically activated.

One-Piece Cast Motor Housing

را

Quick-Disconnect

Power Cord

POWDER

COATED

MODEL 283

Available with Vertical Float

Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 20 of 27

Year Warrantu

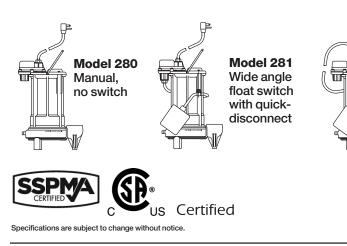
280-SERIES 1/2 hp Submersible Effluent/Sump Pumps

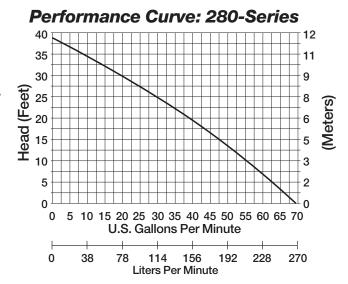
The Liberty 280-Series provides a cost effective "midrange" pump for on-site waste water systems, liquid waste transfer and commercial heavy-duty sump pump applications that require higher head or more flow. Designed around Liberty's unique "Uni-Body" casting, the 280-Series will provide years of reliable performance.

All Models Feature:

- Vortex style impeller permitting passage of solids up to ¾"
- 416 stainless steel rotor shaft
- Permanently lubricated upper and lower ball bearing
- Epoxy powder coat finish
- All fasteners corrosion-resistant stainless steel
- 1¹/₂" Discharge
- Stainless steel bottom screen easily removable
- Maximum fluid temperature: 140° F.

• 280-Series Cord Lengths


Model	10'	25'(-2)	35'(-3)	50'(-5)
280	Standard	Optional	Optional	Optional
281	Standard	Optional	Optional	Optional
283	Standard	Optional	Optional	N/A
287	Standard	Optional	N/A	N/A


10' cord length standard on all models. For optional lengths, add "-2, -3 or -5" suffix to model number. Example: for model 280 with 35' cord, order 280-3

Motor Specifications

1/2 hp 60 Hz 3450 RPM Oil filled, thermally protected

8.0 amps (115V) 4.0 amps (208/230V)

Dimensional Data:

Weight: 29 lbs. Height: 13" Major Width: 10" (model 287)

Minimum Sump Diameters:

Model 281, 283...14" Model 287 VMF...10"

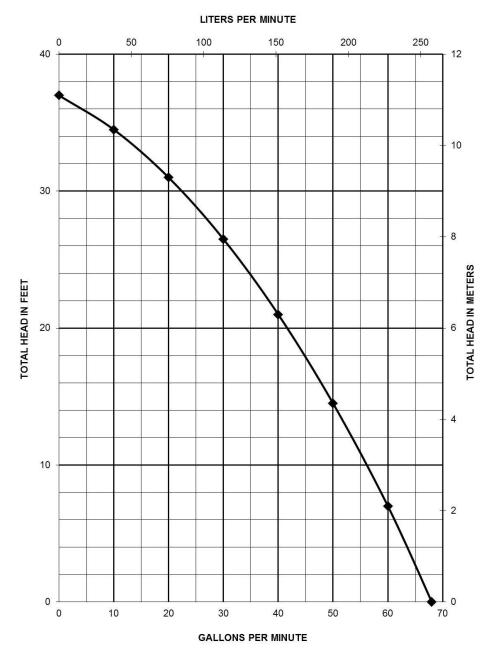
Factory switch settings	Model 281, 283	Model 287 VMF
Turn on level	13"	9.5"
Turn off level	7"	4.0"

The Model 283 features a fully adjustable wide-angle float. Differential adjustments can be made easily by tethering the float to the discharge pipe or other mounting point. Vertical float model 287 is not adjustable.

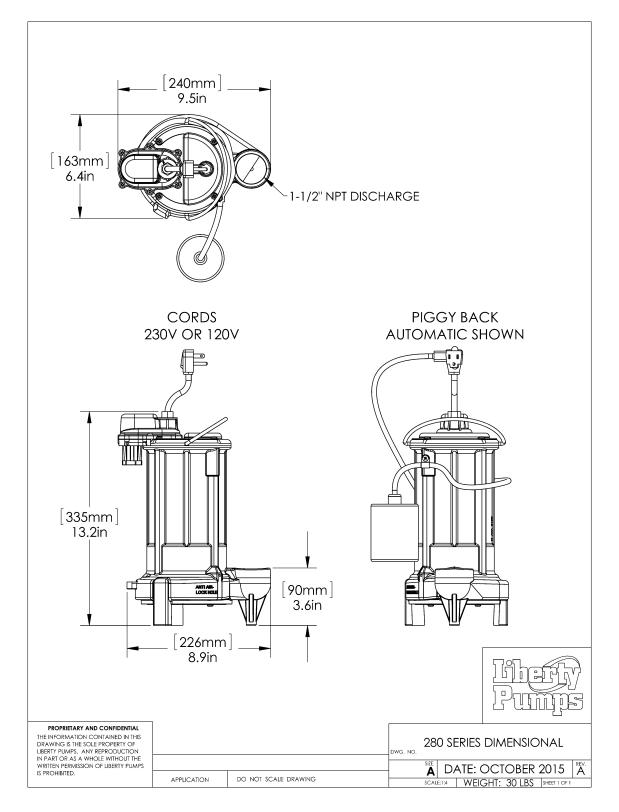
Model 283 Wide angle float switch with series (piggy-back) plug

Model 287 VMF-Series Vertical magnetic float for smaller pits – will operate in a 10" diameter sump

Liberty Pumps • 7000 Apple Tree Avenue • Bergen, New York 14416 • Phone 800-543-2550 Fax (585) 494-1839 www.libertypumps.com


Kirtland AFB BFF Operations and Maintenance Plan Groundwater Treatment System Revision R4 SWMUs ST-106/SS-111 Page 21 of 27

Pump Specifications


280 Series 1/2 hp Submersible Effluent Pump

280-Series Dimensional Data

280_P2 R010/7/2015

280-Series Electrical Data

MODEL	HP	VOLTAGE	PHASE	FULL LOAD AMPS	LOCKED ROTOR AMPS	THERMAL OVERLOAD TEMP	STATOR WINDING CLASS	CORD LENGTH FT	DISCHARGE	AUTOMATIC
280	1/2	115	1	8.0	23	105°C / 221°F	В	10	1 1/2	NO MANUAL
281	1/2	115	1	8.0	23	105°C / 221°F	В	10	1 1/2	YES INTEGRAL FLOAT
283	1/2	115	1	8.0	23	105°C / 221°F	В	10	1 1/2	YES PIGGY BACK FLOAT
287	1/2	115	1	8.0	23	105°C / 221°F	В	10	1 1/2	YES INTEGRAL VERTICLE FLOAT
280HV	1/2	208-230	1	4.0	12.5	105°C / 221°F	В	10	1 1/2	NO MANUAL
281HV	1/2	208-230	1	4.0	12.5	105°C / 221°F	В	10	1 1/2	YES INTEGRAL FLOAT
283HV	1/2	208-230	1	4.0	12.5	105°C / 221°F	В	10	1 1/2	YES PIGGY BACK FLOAT
287HV	1/2	208-230	1	4.0	12.5	105°C / 221°F	В	10	1 1/2	YES INTEGRAL VERTICLE FLOAT

280-Series Cord Length Options*

Model	10'	25'(-2)	35'(-3)	50'(-5)
280	Standard	Optional	Optional	Optional
281	Standard	Optional	Optional	Optional
283	Standard	Optional	Optional	N/A
287	Standard	Optional	N/A	N/A
or -5" suffix	to model num		For optional leng	ths, add "-2, -3

280_P3 R010/7/2015

WARNING: *Always use a replacement power cord assembly of the same length and type as originally installed on the Liberty product. Using a cord of improper gauge or length may lead to exceeding the electrical rating of the cord and could result in death, injury, fire or other significant failure.

280-Series Technical Data

IMPELLER	VORTEX ENGINEERED POLYMER
SOLIDS HANDLING SIZE	³ /4"
PAINT	POWDER COAT
MAX LIQUID TEMP	60°C/ 140°F
MAX STATOR TEMP	CLASS B 130°C/ 266°F
THERMAL OVERLOAD	105°C / 221°F
POWER CORD TYPE	SJTW (10ft & 25ft models) SJTOOW (35ft & 50ft models)
MOTOR HOUSING/ VOLUTE	CLASS 25 CAST IRON
SHAFT	STAINLESS
HARDWARE	STAINLESS
ORINGS	BUNA N
MECHANICAL SEAL	UNITIZED CERAMIC CARBON
WEIGHT	30 LBS

280-Series Specifications

1.01 GENERAL:

The contractor shall provide labor, material, equipment, and incidentals required to provide _____(QTY) centrifugal pumps as specified herein. The pump models covered in this specification are Series 280 single phase pumps. The pump furnished for this application shall be model ______as manufactured by Liberty pumps.

2.01 OPERATING CONDITIONS:

Each submersible pump shall be rated at 1/2 hp____volts, single phase, 60 Hz.,. 3450 RPM. The unit shall produce_____G.P.M. at _____feet of total dynamic head.

The submersible pump shall be capable of handling effluent with 3/4" solid handling capability. The submersible pump shall have a shutoff head of 37 feet and a maximum flow of 62 GPM @ 5 feet of total dynamic head.

The pump shall be controlled with:

_____A piggy back style on/off float switch.

_____An integrally wired on/off float switch.

_____A Vertical Mechanical Float (VMF) type on/off switch.

_____A NEMA 4X outdoor simplex control panel with three float switches and a high water alarm.

_____A NEMA 1 indoor simplex control panel with three float switches and a high water alarm.

_____A NEMA 4X outdoor simplex control panel with four float switches and a high water alarm.

____A NEMA 1 indoor simplex control panel with four float switches and a high water alarm.

___A NEMA 4X outdoor duplex control panel with three float switches and a high water alarm.

280_P4 R010/7/2015

___A NEMA 1 indoor duplex control panel with three float switches and a high water alarm.

___A NEMA 4X outdoor duplex control panel with four float switches and a high water alarm.

_A NEMA 1 indoor duplex control panel with four float switches and a high water alarm.

3.01 CONSTRUCTION:

Each submersible pump shall be equal to the course certified Series 280 SERIES pumps as manufactured by Liberty Pumps, Bergen NY. The castings shall be constructed of class 25 cast iron. The motor housing shall be oil filled to dissipate heat. Air filled motors shall not be considered equal since they do not properly dissipate heat from the motor. All mating parts shall be machined and sealed with a Buna-N o-ring. All fasteners exposed to the liquid shall be stainless steel. The motor shall be protected on the top side with sealed cord entry plate with molded pins to conduct electricity eliminating the ability of water to enter internally through the cord. The motor shall be protected on the lower side with a unitized ceramic/carbon seal with stainless steel housings and spring. The pump shall be furnished with stainless steel handle.

4.01 ELECTRICAL POWER CORD

The submersible pump shall be supplied with 10, 25, 35, or 50 feet of multiconductor power cord. It shall be cord type SJTW, or SJTOOW capable of continued exposure to the pumped liquid. The power cord shall be sized for the rated full load amps of the pump in accordance with the National Electric Code. The power cable shall not enter the motor housing directly but will conduct electricity to the motor by means of a water tight compression fitting cord plate assembly, with molded pins to conduct electricity. This will eliminate the ability of water to enter internally through the cord, by means of a damaged or wicking cord.

5.01 MOTORS

Single phase motors shall be oil filled, permanent split capacitor, class B insulated NEMA B design, rated for continuous duty. At maximum load the winding temperature shall not exceed 130 degrees C unsubmerged. Since air filled motors are not capable of dissipating heat they shall not be considered equal. The pump motor shall have an integral thermal overload switch in the windings for protecting the motor. The capacitor circuit shall be mounted internally in the pump.

6.01 BEARINGS AND SHAFT

An upper and lower ball bearing shall be required. The ball bearing shall be a single ball / race type bearing. Both bearings shall be permanently lubricated by the oil, which fills the motor housing. The motor shaft shall be made of 300 or 400 series stainless steel and have a minimum diameter of .311"

7.01 SEALS

The pump shall have a unitized carbon / ceramic seal with stainless steel housings and spring equal to Crane Type 6A. The motor plate / housing interface shall be sealed with a Buna-N o-ring.

8.01 IMPELLER

The impeller shall be vortex style made of an engineered polymer, with pump out vanes on the back shroud to keep debris away from the seal area. It shall be threaded to the motor shaft.

9.01 CONTROLS

All pumps can be supplied with a CSA and UL approved VMF type switch, an integrally wired wide angle tilt float switch, or piggy back type wide angle tilt float switches. The piggy back style switches are equipped with a plug that allows the pump to be operated manually without the removal of the pump in the event that a switch becomes inoperable. Manual pumps are operable by means of a pump control panel.

280_P5 R010/7/2015

10.01 PAINT

The exterior of the casting shall be protected with powder coat paint.

11.01 SUPPORT

The pump shall have cast iron support legs, enabling it to be a free standing unit. The legs will be high enough to allow 3/4" solids to enter the volute.

12.01 SERVICEABILTY

Components required for the repair of the pump shall be shipped within a period of 24 hours.

13.01 FACTORY ASSEMBLED TANK SYSTEMS WITH GUIDE RAIL AND QUICK DISCONNECT DISCHARGE

_____Guide factory mounted rail system with pump suspended by means of bolt on quick disconnect which is sealed by means of nitrile grommets or o-rings. The Discharge piping shall be schedule 80 PVC and furnished with a PVC check valve and shut-off ball valve. The Tank shall be wound fiberglass or roto-molded plastic. An inlet hub shall be provided with the fiberglass systems.

- Stainless steel Guide Rail Zinc plated steel Guide Rail "diameter of basin size "height of basin size "distance from top of tank to discharge pipe outlet Fiberglass cover Structural foam polymer cover Structural foam polymer cover Steel cover Duplex System with Outdoor panel and alarm
- ____Separate Outdoor Alarm
- _____Remote Outdoor Alarm

14.01 TESTING

The pump shall have a ground continuity check and the motor chamber shall be Hi-potted to test for electrical integrity, moisture content and insulation defects. The motor and volute housing shall be pressurized, and an air leak decay test is performed to ensure integrity of the motor housing. The pump shall be run, voltage and current monitored, and the tester checks for noise or other malfunction.

15.01 QUALITY CONTROL

The pump shall be manufactured in an ISO 9001 certified Facility.

16.01 WARRANTY

Standard limited warranty shall be 3 years.

280_P6 R010/7/2015

APPENDIX M

EXAMPLE REPORTS

Example Reports

- Weekly Update Report
- GWTS Monthly Summary Report
- NMOSE Monthly Reporting for GWTS

WEEKLY UPDATE REPORT

 Kirtland BFF Project - Site Monitoring Status
 Soli Vapor Monitoring - Q2 2019 sampling complete.

 Drinking Water Supply Wells - Next sampling event scheduled for 04JUN19.
 Groundwater Monitoring - Q2 2019 sampling and gauging complete.

GWTS Operation		Groundwater Treatment Totals (including Temporary Treatment System)
System Operational Dates	-	6/4/15 - present
Weekly Groundwater Treated (Gallons) ⁽¹⁾	06-Apr-19 to 13-May-19	4,860,000
Train 1 Weekly Groundwater Treated (Gallons) ⁽¹⁾	06-Apr-19 to 13-May-19	2,727,300
Train 2 Weekly Groundwater Treated (Gallons)	06-Apr-19 to 13-May-19	2,132,700
Cumulative Groundwater Treated (Gallons)	04-Jun-15 to present	637,007,400
Train 1 Cumulative Groundwater Treated (Gallons)	04-Jun-15 to present	405,106,900
Train 2 Cumulative Groundwater Treated (Gallons)	30-Jan-17 to present	231,900,500
Weekly Discharge Volume to Golf Course Main Pond (GCMP) (Gallons) ⁽¹⁾	06-Apr-19 to 13-May-19	2,180,900
Cumulative Discharge Volume to GCMP (Gallons)	01-Jan-16 to present	427,452,765
Weekly Discharge Volume to Injection Well KAFB-7 (Gallons) ⁽¹⁾	06-Apr-19 to 13-May-19	2,679,100
Cumulative Discharge Volume to Injection Well KAFB-7 (Gallons)	01-Jan-16 to present	209,554,635
Influent EDB Concentration (µg/L) ⁽²⁾	1-May-19	0.022 J
Weekly Operational Run-time % ⁽³⁾	06-Apr-19 to 13-May-19	99%
Cumulative EDB Removal (Grams) ⁽⁴⁾	04-Jun-15 to present	115.54
Weekly Average Flow Rate (gpm) ⁽⁵⁾	06-Apr-19 to 13-May-19	482
Weekly IDW Purge Water to GWTS-Golf Course (Gallons)	06-Apr-19 to 13-May-19	0
Cumulative IDW Purge Water to GWTS-Golf Course (Gallons)	24-Apr-16 to present	275,217
Weekly IDW Purge Water to GWTS-KAFB-7 (Gallons)	28-Apr-17 to present	0
Cumulative IDW Purge Water to GWTS-KAFB-7 (Gallons)	28-Apr-17 to present	0

(1) Volume totals for GCMP and KAFB-7 were calculated using the GWTS effluent totalizers.

(2) The 01MAY19 influent sample concentration for Train 1 and Train 2 were used to calculate EDB removal.

(3) All four extraction wells were in operation with effluent flow being directed approximately 55% to KAFB-7, and 45% to the GCMP to maintain the GCMP level. The entire system was shut down for 21 minutes on 08MAY19 due to one changeover in discharge between GCMP and KAFB-7 and to clean the Wye strainers, and 6 minutes on 12MAY19 due to one changeover in discharge between GCMP and KAFB-7.

(4) EDB mass removal is adjusted retroactively for the month based upon influent concentration from 01MAY19 for both Train 1 and Train 2.

GCMP

(5) Average flow is total gallons treated divided by total treatment minutes available.

Current GWTS Discharge Destination

CURRENT GWTS EFFLUENT ANALYSES	Tra	in 1	Train 2			
			Sample Date:	5/1/2019	Sample Date:	5/1/2019
Chemical Class &		Project Screening				
Analytical Method	Parameter	Levels ^a	Result	LOD	Result	LOD
Draft Analytical Data						
EDB (µg/L) SW8011	ETHYLENE DIBROMIDE	0.05	ND	0.019	ND	0.019
	BENZENE	5	ND	0.5	ND	0.5
VOC (µg/L)	ETHYLBENZENE	700	ND	0.8	ND	0.8
SW8260B	TOLUENE	750	ND	0.5	ND	0.5
	XYLENES	620	ND	2	ND	2
Metals (µg/L)	IRON, DISSOLVED	1,000	ND	100	ND	100
SW6010C	MANGANESE, DISSOLVED	200	ND	2.5	ND	2.5

Notes Laboratory results greater than EPA MCLs or NMED Groundwater Protection Standards are highlighted in yellow.

a Project Screening Levels are the lowest of either the EPA MCL (from the EPA RSL Table, dated June 2017) or the NMED Groundwater Protection Standards (NMAC 20.6.2.3103).

J = estimated value. LOD = Limit of Detection. ND = not detected. µg/L = micrograms per liter.

Well 106228 Operational Flow Rate: 140 gpm Operational Runtime: 99.1%; 0.9% offline for routine maintenance.

Well 106233 Operational Flow Rate: 161 gpm Operational Runtime: 66.1%; 33.9% offline for routine maintenance, and to facilitate GCMP level management.

Well 106234 Operational Flow Rate: 159 gpm Operational Runtime: 99.1%; 0.9% offline for routine maintenance.

Well 106239 Operational Flow Rate: 73 gpm Operational Runtime: 99.1%; 0.9% offline for routine maintenance

Well Control House (106233 and 106234) No issues.

KAFB-7 KAFB-7 is currently operational and effluent injection is ongoing, with priority to GCMP discharge.

GWTS MONTHLY WATER SUMMARY REPORT

GWTS Operation	Total Groundwater Extracted (gallons) ^a	Treated Groundwater Injected to Injection Well KAFB-7 (gallons)	Treated Groundwater Discharged to the Golf Course Main Pond (gallons) ^b	Treated Groundwater Discharged for Dust Suppression (gallons)
Dec-15	17,664,900	0	17,664,900	0
2015 Total	17,664,900	0	17,664,900	0
Jan-16	1,777,200	0	1,777,200	0
Feb-16	881,000	181,300	699,700	0
Mar-16	22,168,080	1,231,350	20,936,730	0
Apr-16	12,649,920	582,570	12,067,350	0
May-16	12,090,000	0	12,090,000	0
Jun-16	8,850,000	0	8,850,000	0
Jul-16	9,940,000	0	9,940,000	0
Aug-16	9,400,000	0	9,400,000	0
Sep-16	12,980,000	0	12,980,000	0
Oct-16	8,300,000	0	8,300,000	0
Nov-16	7,200,000	2,970,000	4,230,000	0
Dec-16	14,570,100	14,501,190	68,910	0
2016 Total	120,806,300	19,466,410	101,339,890	0
Jan-17	6,177,000	5,877,600	299,400	0
Feb-17	3,994,500	2,216,600	1,777,900	0
Mar-17	11,256,600	5,172,800	6,083,800	0
Apr-17	13,981,700	2,248,062	11,733,638	0
May-17	18,688,600	4,722,563	13,966,037	0
Jun-17	18,761,200	1,592,700	17,168,500	0
Jul-17	24,136,000	3,023,500	21,112,500	0
Aug-17	18,460,700	4,847,500	13,613,200	0
Sep-17	18,962,100	6,752,400	12,209,700	0
Oct-17	21,626,600	14,775,800	6,850,800	0
Nov-17	12,513,400	3,734,900	8,778,500	0
Dec-17	13,304,300	10,724,700	2,579,600	0
2017 Total	181,862,700	65,689,125	116,173,575	0
	15,362,700			0
Jan-18 Feb-18		13,887,700	1,475,000	0
	17,571,400	13,765,300	3,806,100	
Mar-18	18,098,900	9,235,300	8,863,600	0
Apr-18	13,268,900 19,300,000	0	13,268,900	0
May-18 Jun-18	24,933,200	0	19,300,000 24,933,200	0
Jul-18	19,939,600	0	19,939,600	0
	24,557,000	0	24,557,000	0
Aug-18 Sep-18	17,026,500	0	17,026,500	0
Oct-18	8,861,100	0	8,861,100	0
Nov-18	12,471,200	7,517,100		0
Dec-18	25,803,600	23,080,800	4,954,100 2,722,800	0
2018 Total	217,194,100	67,486,200	149,707,900	0
Jan-19	21,536,900	19,494,500	2,042,400	0
Feb-19	21,265,100	13,624,600	7,640,500	0
Mar-19	26,516,500	13,435,900	13,080,600	0
Apr-19	21,201,900	7,170,800	14,031,100	0
2019 Total	90,520,400	53,725,800	36,794,600	0

^aCorrected volumes to include temporary treatment system in 2015.

^bCorrected volumes from HMI datasets.

NMOSE MONTHLY REPORTING FOR GWTS

		Г	Well ID	KAFB-106228	KAFB-106233	KAFB-106234	KAFB-106239	KAFB-7 ^b	KAFB-IN2 ^b
			Well Type	Extraction Well	Extraction Well	Extraction Well	Extraction Well	Injection Well	Injection Well
		Effluent Totalizer Reading	RG #	RG-1579	RG-1579	RG-1579	RG-1579	RG-1587	RG-1587
Month	Date Range ^a	(gallons) ^c	POD	POD 292	POD 309	POD 310	POD 319	10 1507	10 1507
WORLD	6/4/2015	(galions) 0		3.82	0	0	NA	-	-
Jun-15	6/30/2015	143,200	Average Monthly Flow Rate (gpm) Percentage of Monthly Extraction Volume	3.82	0%	0%	NA		
Juli-13	Monthly Total (gallons)	143,200 143,200	Percentage of Monthly Extraction volume	143,200	0%	0%		0	
	6/30/2015	143,200	Average Monthly Flow Rate (gpm)	28.26	0	0		0	
Jul-15	7/31/2015	143,200	Percentage of Monthly Extraction Volume	100%	0%	0%			
Jui-12	Monthly Total (gallons)	1,404,800	Percentage of Monthly Extraction Volume	1,261,600	0%	0%		0	
	7/31/2015	1,404,800	Average Monthly Flow Rate (gpm)	93.21	0	0		0	
Aug-15	8/31/2015	5,565,900	Percentage of Monthly Extraction Volume	100%	0%	0%			
Aug 15	Monthly Total (gallons)	4,161,100	Percentage of Monthly Extraction Volume	4,161,100	0%	0%		0	
	8/31/2015	5,565,900	Average Monthly Flow Rate (gpm)	97.54	0	0		0	
Sep-15	9/30/2015	9,779,800	Percentage of Monthly Extraction Volume	100%	0%	0%			
3CP 13	Monthly Total (gallons)	4,213,900	Percentage of Monthly Extraction volume	4,213,900	0%	0%		0	
	9/30/2015	9,779,800	Average Monthly Flow Rate (gpm)	118.02	0	0		0	
Oct-15	10/30/2015	14,878,100	Percentage of Monthly Extraction Volume	1100%	0%	0%			
000 15	Monthly Total (gallons)	5,098,300	Percentage of Monthly Extraction volume	5,098,300	0%	0%		0	
	10/30/2015	14,878,100	Average Monthly Flow Rate (gpm)	31.76	0	0		0	
Nov-15	11/30/2015	16,295,700	Percentage of Monthly Extraction Volume	100%	0%	0%			
100 15	Monthly Total (gallons)	1,417,600		1,417,600	0%	0%		0	
	11/30/2015	16,295,700	Average Monthly Flow Rate (gpm)	27.82	0	0		0	
Dec-15	12/31/2015	17,373,622	Percentage of Monthly Extraction Volume	100%	0%	0%			
Dec-15		, ,		1,241,722	0	0		0	
	Monthly Total (gallons) ^c 12/31/2015	1,241,722 163,800	Average Monthly Flow Date (gnm)	23.84	2.70	2.47		0	
lan 16	1/27/2016	1,941,000	Average Monthly Flow Rate (gpm)	82.18%	9.31%	8.51%			
Jan-16		, ,	Percentage of Monthly Extraction Volume					0	
	Monthly Total (gallons) ^c	1,904,678		1,565,299	177,381	161,998		0	
Fab 1C	1/27/2016	1,941,000	Average Monthly Flow Rate (gpm)	55.44	57.89	37.75			
Feb-16	3/1/2016	6,358,500	Percentage of Monthly Extraction Volume	36.70%	38.32%	24.99%		101 200	
	Monthly Total (gallons)	4,417,500		1,621,066	1,692,566	1,103,868		-181,300	
Mar-16	3/1/2016 3/31/2016	6,358,500 24.990.080	Average Monthly Flow Rate (gpm)	85.00 22.91%	143.35 38.65%	142.58			
Iviar-16	.,.,	,,.	Percentage of Monthly Extraction Volume			38.44%		1 221 250	
	Monthly Total (gallons) 3/31/2016	18,631,580 24,990,080	Average Monthly Flow Rate (gpm)	4,269,361 52.25	7,200,347 155.50	7,161,872 152.49		-1,231,350	
Apr-16	5/2/2016	40,710,000		14.50%	43.17%	42.33%	NA		
Abi-10	5/2/2016 Monthly Total (gallons)	40,710,000	Percentage of Monthly Extraction Volume	2,279,918	6,785,746	6,654,256		-582,570	
	5/2/2016	40,710,000	Average Monthly Flow Rate (gpm)	0.00	107.14	124.88		-382,370	
May-16	5/31/2016	49,730,000		0.00%	46.18%	53.82%			
iviay-10	Monthly Total (gallons)	49,730,000 15,719,920	Percentage of Monthly Extraction Volume	0.00%		8,460,820		0	
	5/31/2016	49,730,000	Average Monthly Flow Rate (gpm)	0.00	7,259,100 57.86	167.08		0	
Jun-16	6/27/2016	58,580,000	Percentage of Monthly Extraction Volume	0.00%	25.72%	74.28%			
Juli-10	Monthly Total (gallons)	8,850,000	Percentage of Monthly Extraction volume	0.00%	2,276,436	6,573,564		0	
-	6/27/2016	58,580,000	Average Monthly Flow Rate (gpm)	79.63	0.00	126.51		0	
Jul-16	8/1/2016	68,520,000	Percentage of Monthly Extraction Volume	38.63%	0.00%	61.37%			
101-10	8/1/2016 Monthly Total (gallons)	9,940,000		38.63%	0.00%	6,100,175		0	
	8/1/2016	68,520,000	Average Monthly Flow Rate (gpm)	3,839,825	0.00	114.67		U	
Aug-16	8/29/2016	77,920,000	Percentage of Monthly Extraction Volume	50.49%	0.00%	49.51%			
Aug-10	Monthly Total (gallons)	9,400,000		4,745,722	0.00%	4,654,278		0	
	wonting rotal (gallons)	9,400,000		4,743,722	0	4,034,278		0	

	8/29/2016	77,920,000	Average Monthly Flow Rate (gpm)	146.17	0.00	134.37			r
Sep-16	10/3/2016	90,900,000	Percentage of Monthly Extraction Volume	52.10%	0.00%	47.90%			
3CP 10	Monthly Total (gallons)	12,980,000	Percentage of Monthly Extraction volume	6,762,886	0.00%	6,217,114		0	
	10/3/2016	90,900,000	Average Monthly Flow Rate (gpm)	99.28	0.00	104.84		0	
Oct-16	10/31/2016	99,200,000	Percentage of Monthly Extraction Volume	48.64%	0.00%	51.36%			
000 10	Monthly Total (gallons)	8,300,000	referrage of Montilly Extraction Volume	4,037,000	0.0070	4,263,000		0	
	10/31/2016	99,200,000	Average Monthly Flow Rate (gpm)	90.31	0.00	95.87		0	
Nov-16	11/28/2016	106,400,000	Percentage of Monthly Extraction Volume	48.51%	0.00%	51.49%			
	Monthly Total (gallons)	7,200,000	refeelinge of Montilly Excludion Volume	3,492,528	0	3,707,472		-2,970,000	
	11/28/2016	106,400,000	Average Monthly Flow Rate (gpm)	144.78	0.00	155.00		2,570,000	
Dec-16	1/3/2017	120,970,100	Percentage of Monthly Extraction Volume	48.30%	0.00%	51.70%			
00010	Monthly Total (gallons)	14,570,100	refeelinge of Montilly Excludion Volume	7,036,722	0	7,533,378		-14,501,190	
	1/3/2017	120,970,100	Average Monthly Flow Rate (gpm)	144.92	0.00	154.75		14,501,150	
Jan-17 ^d	1/30/2017	127,059,800	Percentage of Monthly Extraction Volume	48.36%	0.00%	51.64%			
5011 17	Monthly Total (gallons)	6,089,700	refeelinge of Montilly Excludion Volume	2,944,976	0	3,144,724		-5,877,600	
	1/30/2017	127,059,800	Average Monthly Flow Rate (gpm)	145.14	0.00	155.25		3,077,000	
Feb-17 ^d	2/27/2017	131,141,600	Percentage of Monthly Extraction Volume	48.32%	0.00%	51.68%			
160-17	Monthly Total (gallons)	4,081,800		1,972,238	0.0070	2,109,562		-2,216,600	
	2/27/2017	131,141,600	Average Monthly Flow Rate (gpm)	145.32	0.00	157.07		2,210,000	
Mar-17 ^d	3/27/2017	142,398,200	Percentage of Monthly Extraction Volume	48.06%	0.00%	51.94%			
Widi-17	Monthly Total (gallons)	11,256,600	referrage of Monthly Extraction Volume	5,409,542	0.0070	5,847,058		-5,172,800	
	3/27/2017	142,398,200	Average Monthly Flow Rate (gpm)	145.23	0.00	130.93		5,172,000	
Apr-17 ^d	4/24/2017	152,005,300	Percentage of Monthly Extraction Volume	52.59%	0.00%	47.41%			
Api-17	Monthly Total (gallons)	9,607,100	referrage of Montilly Extraction Volume	5,052,356	0.0070	4,554,744		-2,248,062	
	4/24/2017	152,005,300	Average Monthly Flow Rate (gpm)	145.08	177.18	171.73	NA	2,240,002	
May-17 ^d	5/30/2017	175,068,500	Percentage of Monthly Extraction Volume	29.37%	35.87%	34.76%			
Way-17	Monthly Total (gallons)	23,063,200		6,773,382	8,272,246	8,017,572		-4,722,563	
	5/30/2017	175,068,500	Average Monthly Flow Rate (gpm)	144.34	175.86	164.39		4,722,303	
Jun-17 ^d	6/26/2017	193,829,700	Percentage of Monthly Extraction Volume	29.79%	36.29%	33.92%			
Juli-17	Monthly Total (gallons)	18,761,200		5,588,212	6,808,528	6,364,460		-1,592,700	
	6/26/2017	193,829,700	Average Monthly Flow Rate (gpm)	143.73	171.77	160.63		1,552,700	
Jul-17 ^d	7/31/2017	217,965,700	Percentage of Monthly Extraction Volume	30.19%	36.08%	33.74%			
Jui-17	//31/201/	24,136,000	Percentage of Monthly Extraction Volume	7,286,046	8,707,321	8,142,633		-3,023,500	
	7/31/2017	217,965,700	Average Monthly Flow Rate (gpm)	136.63	165.44	151.92		-3,023,300	
Aug-17 ^d	8/28/2017	236,426,400	Percentage of Monthly Extraction Volume	30.10%	36.44%	33.46%			
Aug-17	0/20/2017	18,460,700		5,555,799	6,727,324	6,177,577		-4,847,500	
	8/28/2017	236,426,400	Average Monthly Flow Rate (gpm)	142.99	164.45	162.43		4,047,500	
Sept-17 ^e	9/25/2017	255.388.500	Percentage of Monthly Extraction Volume	30.43%	35.00%	34.57%			
Sept-17	5/25/2017	18,962,100	referrage of Montilly Extraction Volume	5,769,400	6,636,200	6,555,000		-6,752,400	
	9/25/2017	255,388,500	Average Monthly Flow Rate (gpm)	143.70	167.22	163.98		0,752,400	
Oct-17 ^e	10/30/2017	277,015,100	Percentage of Monthly Extraction Volume	32.83%	29.38%	37.79%			
000-17	10/30/2017	21,626,600		7,084,200	6,340,100	8,155,300		-14,775,800	
	10/30/2017	277,015,100	Average Monthly Flow Rate (gpm)	144.68	166.80	164.97		-14,775,800	
Nov-17 ^e	11/27/2017	289,528,500	Percentage of Monthly Extraction Volume	23.45%	24.98%	51.57%			
100-17	11/2//201/	12,513,400		2,934,200	3,126,300	6,452,900		-3,734,900	
	11/27/2017	289,528,500	Average Monthly Flow Rate (gpm)	0.00	163.90	162.75		-3,734,900	
Dec-17 ^e	12/26/2017	302,832,800	Percentage of Monthly Extraction Volume	0.00%	50.18%	49.82%			
Dec-17	12/20/2017	13,304,300		0.00%	6,685,500	6,638,400		-10,724,700	
		15,504,500		U	0,085,500	0,030,400		-10,724,700	

	12/26/2017	302,832,800	Average Monthly Flow Rate (gpm)	0.00	161.42	164.09			
Jan-18 ^e	1/29/2018	318,195,500	Percentage of Monthly Extraction Volume	0.00%	49.59%	50.41%	NA		
		15,362,700		0	7,609,000	7,734,900		-13,887,700	
	1/29/2018	318,195,500	Average Monthly Flow Rate (gpm)	143.31	159.42	162.84	74.80		
Feb-18 ^e	2/26/2018	335,766,900	Percentage of Monthly Extraction Volume	23.96%	34.61%	36.48%	4.95%		
		17,571,400		4,187,100	6,048,200	6,375,700	864,700	-13,765,300	
	2/26/2018	335,766,900	Average Monthly Flow Rate (gpm)	143.61	159.08	164.64	75.75		
Mar-18 ^e	4/2/2018	353,865,800	Percentage of Monthly Extraction Volume	26.18%	24.93%	35.99%	12.90%		
		18,098,900		4,733,100	4,507,500	6,507,200	2,332,500	-9,235,300	
	4/2/2018	353,865,800	Average Monthly Flow Rate (gpm)	144.91	159.78	164.66	76.30		
Apr-18 ^e	4/30/2018	367,134,700	Percentage of Monthly Extraction Volume	31.60%	7.01%	49.94%	11.45%		
		13,268,900		4,168,900	924,800	6,587,800	1,510,800	0	
	4/30/2018	367,134,700	Average Monthly Flow Rate (gpm)	141.94	162.90	164.16	73.27		
May-18 ^e	5/29/2018	386,434,700	Percentage of Monthly Extraction Volume	27.71%	24.53%	33.52%	14.24%		
	-,,	19,300,000		5,356,800	4,741,600	6,479,400	2,752,100	0	
	5/29/2018	386,434,700	Average Monthly Flow Rate (gpm)	140.50	157.90	162.51	74.38	5	
Jun-18 ^e	7/2/2018	411,367,900	Percentage of Monthly Extraction Volume	27.25%	27.36%	31.79%	13.59%		
Juli 10	77272010	24,933,200	referrage of Monthly Extraction Volume	6,767,300	6,794,100	7,894,700	3,375,500	0	
	7/2/2018	411,367,900	Average Monthly Flow Rate (gpm)	140.42	154.64	163.46	74.43	0	
Jul-18 ^e	7/30/2018	431,307,500	Percentage of Monthly Extraction Volume	25.83%	28.43%	32.05%	13.69%		
JUI-10	7/30/2018	19,939,600	Percentage of Monthly Extraction Volume	5,151,700	5,671,600	6,392,800	2,730,500	0	
	7/30/2018	431,307,500	Average Monthly Flow Rate (gpm)	139.12	154.79	162.92	73.79	0	
				25.39%					
Aug-18 ^e	9/4/2018	455,864,500	Percentage of Monthly Extraction Volume	6,207,600	28.24%	32.90%	13.47%	0	
	0/4/2010	24,557,000	Augusta Marthly Elaw Data (ange)	139.43	6,906,700	8,046,200	3,292,800	0	
C 40 ^e	9/4/2018	455,864,500	Average Monthly Flow Rate (gpm)		154.37	164.32	74.38		
Sep-18 ^e	10/1/2018	472,891,000	Percentage of Monthly Extraction Volume	28.33%	19.55%	36.51%	15.61%		
		17,026,500		4,809,100	3,318,500	6,197,900	2,649,700	0	
e	10/1/2018	472,891,000	Average Monthly Flow Rate (gpm)	135.57	174.60	162.92	71.83		
Oct-18 ^e	10/29/2018	481,752,100	Percentage of Monthly Extraction Volume	24.73%	0.62%	65.30%	9.35%		
		8,861,100		2,179,200	55,000	5,753,500	823,400	0	
	10/29/2018	481,752,100	Average Monthly Flow Rate (gpm)	140.33	167.25	162.99	77.48		
Nov-18 ^e	11/26/2018	494,223,300	Percentage of Monthly Extraction Volume	21.80%	19.83%	49.05%	9.32%		
		12,471,200		2,702,200	2,459,100	6,081,800	1,154,900	-7,517,100	
	11/26/2018	494,223,300	Average Monthly Flow Rate (gpm)	140.91	165.95	160.61	75.49		
Dec-18 ^e	12/31/2018	520,026,900	Percentage of Monthly Extraction Volume	25.47%	30.67%	29.52%	14.35%		
		25,803,600		6,560,241	7,901,436	7,603,886	3,696,058	-23,080,800	
	12/31/2018	520,026,900	Average Monthly Flow Rate (gpm)	140.60	169.32	159.30	74.03		
Jan-19 ^e	1/28/2019	541,563,800	Percentage of Monthly Extraction Volume	26.10%	31.27%	29.57%	13.06%		
		21,536,900		5,612,359	6,722,864	6,358,914	2,807,842	-19,494,500	
	1/28/2019	541,563,800	Average Monthly Flow Rate (gpm)	140.86	169.59	157.88	74.53		
Feb-19 ^e	2/25/2019	562,828,900	Percentage of Monthly Extraction Volume	25.99%	30.89%	29.36%	13.75%		
		21,265,100		5,532,600	6,575,400	6,249,900	2,927,200	-13,624,600	
	2/25/2019	562,828,900	Average Monthly Flow Rate (gpm)	139.78	166.96	157.18	73.10		
Mar-19 ^e	4/1/2019	589,345,400	Percentage of Monthly Extraction Volume	26.13%	31.22%	29.39%	13.25%		
	., _, _0 _0	26,516,500		6,913,300	8,260,200	7,776,100	3,506,400	-13,435,900	
	4/1/2019	589,345,400	Average Monthly Flow Rate (gpm)	140.00	162.98	157.42	74.23	10, 100,000	
Apr-19 ^e	4/29/2019	610,547,300	Percentage of Monthly Extraction Volume	25.98%	30.58%	29.54%	13.91%		
-upi-13	7/25/2015	21,201,900	referrage of monthly Extraction volume	5,494,700	6,468,700	6,247,900	2,941,900	-7,170,800	

Average Monthly Flow Rate (gpm)	134.18	160.37	156.66	74.42		
Percentage of Monthly Extraction Volume	27.81%	26.41%	32.51%	13.27%		
	6,349,000	6,030,700	7,423,700	3,029,800	-5,779,900	
Average Monthly Flow Rate (gpm)	141.32	159.62	146.57	72.03		
Percentage of Monthly Extraction Volume	27.01%	31.95%	27.67%	13.36%		
	4,689,600	5,546,900	4,803,600	2,319,800	-1,512,500	
Average Monthly Flow Rate (gpm)	144.15	165.55	168.91	75.72		
Percentage of Monthly Extraction Volume	30.33%	25.27%	32.43%	11.98%		
	5,419,200	4,515,300	5,793,700	2,139,800	-551,100	
Average Monthly Flow Rate (gpm)	140.65	163.19	173.78	72.44		
Percentage of Monthly Extraction Volume	25.31%	29.98%	31.94%	12.77%		
	7,002,900	8,293,700	8,835,800	3,534,300	-5,494,800	
Average Monthly Flow Rate (gpm)	141.46	162.16	173.35	73.85		
Percentage of Monthly Extraction Volume	25.84%	30.85%	33.02%	10.29%		
	5,219,200	6,232,600	6,671,400	2,078,500	-2,916,700	
Average Monthly Flow Rate (gpm)	141.07	158.18	174.63	70.34	, ,	
Percentage of Monthly Extraction Volume	29.53%	19.20%	36.61%	14.67%		
	6,938,500	4,510,600	8,603,100	3,446,400	-17,177,900	
Average Monthly Flow Rate (gpm)	140.17	0.00	175.14	72.81	, ,	
Percentage of Monthly Extraction Volume	36.11%	0.00%	45.13%	18.76%		
	5,620,700	0	7,023,800	2,919,100	-14,525,700	
Average Monthly Flow Rate (gpm)	139.90	160.27	174.75	74.42	,,	
Percentage of Monthly Extraction Volume	35.59%	1.59%	44.53%	18.30%		
	5,618,500	250,500	7,030,300	2,889,100	-15,695,800	
Average Monthly Flow Rate (gpm)	139.63	164.02	175.16	73.45	-,,	
Percentage of Monthly Extraction Volume	35.86%	0.30%	44.98%	18.86%		
	6,956,800	57,900	8,727,900	3,659,500	-18,919,600	
Average Monthly Flow Rate (gpm)	138.84	166.49	175.05	73.33	-,,	
Percentage of Monthly Extraction Volume	35.97%	0.20%	45.45%	18.38%		
	5,464,700	30,800	6,905,500	2,792,500	-12,237,600	
Average Monthly Flow Rate (gpm)	138.77	162.65	175.06	75.31	, - ,	
Percentage of Monthly Extraction Volume	35.08%	1.39%	45.09%	18.44%		
	5,407,000	214,700	6,950,100	2,843,300	-4,246,900	
Average Monthly Flow Rate (gpm)	138.77	183.80	175.15	75.62	.,,	
Percentage of Monthly Extraction Volume	34.42%	3.39%	43.44%	18.75%		
	6,981,600	688,500	8,811,600	3,804,600	-5.110.300	
Average Monthly Flow Rate (gpm)	138.94	159.46	174.66	75.15	3)110,000	
Percentage of Monthly Extraction Volume	29.21%	18.27%	36.72%	15.80%		
	5,595,400	3,500,400	7,034,100	3,026,400	-395,600	
Average Monthly Flow Rate (gpm)	139.47	159.44	173.93	71.32	000,000	
Percentage of Monthly Extraction Volume	27.30%	26.92%	34.31%	11.46%	1	
	5,579,800	5,502,000	7,012,900	2,342,200	0	
Average Monthly Flow Rate (gpm)	138.93	165.65	173.95	70.96	, j	
Percentage of Monthly Extraction Volume	27.81%	23.15%	34.83%	14.20%		
	6,299,200	5,243,800	7,887,700	3,217,000	-1,550,800	
Average Monthly Flow Pate (gpm)			, ,		1,550,800	
					-3 737 000	
	Average Monthly Flow Rate (gpm) Percentage of Monthly Extraction Volume		Percentage of Monthly Extraction Volume 26.05% 27.56%	Percentage of Monthly Extraction Volume 26.05% 27.56% 32.61%	Percentage of Monthly Extraction Volume 26.05% 27.56% 32.61% 13.78%	Percentage of Monthly Extraction Volume 26.05% 27.56% 32.61% 13.78%

Sep-20 ^e	8/31/2020	925,878,400	Average Monthly Flow Rate (gpm)	136.89	164.81	172.88	74.27		
	9/28/2020	947,154,600	Percentage of Monthly Extraction Volume	26.03%	27.38%	32.93%	13.66%		
	21,276,200		5,511,100	5,798,300	6,972,100	2,892,200	-4,711,800		
Oct-20 ^e	9/28/2020	947,154,600	Average Monthly Flow Rate (gpm)	138.28	161.18	172.80	76.26		
	11/2/2020	972,178,900	Percentage of Monthly Extraction Volume	25.04%	29.31%	31.83%	13.81%		
		25,024,300		6,261,100	7,327,300	7,958,100	3,453,000	-14,033,400	
Nov-20 ^e	11/2/2020	972,178,900	Average Monthly Flow Rate (gpm)	135.54	157.87	170.43	73.03		
	11/30/2020	992,944,800	Percentage of Monthly Extraction Volume	25.88%	28.95%	31.23%	13.94%		
	20,765,900		5,357,900	5,993,000	6,465,300	2,886,500	-11,704,300	-83,100	
Dec-20 ^e	11/30/2020	992,944,800	Average Monthly Flow Rate (gpm)	134.02	159.07	172.64	71.86		
	1/4/2021	1,019,545,300	Percentage of Monthly Extraction Volume	25.00%	29.68%	32.24%	13.09%		
		26,600,500		6,619,900	7,857,700	8,536,200	3,465,200	-23,482,400	-57,600
Total				308,389,800	247,139,695	389,450,425	97,048,400	-370,151,635	-140,700

^a Flow rate data for wells is not available prior to 15JAN2016. The average flowrate is based on available data.

^b Negative volumes presented indicate water injected.

^c Flow meter information presented is from both temporary and permanent ground water treatment systems. Both systems were used during December 2015 and January 2016 and values reflect the sum of each for these months. During December 2015 163,800 gallons were treated by the GWTS. During January 2016 127,478 gallons were treated by the temporary treatment system.

^d Average Monthly Flow Rate is calculated only during times of pump operation.

^e Beginning in September 2017 extraction well volumes utilize individual wellhead totalizer readings following the installation of more accurate flowmeters, and KAFB-7 continues to utilize the effluent totalizer data from the groundwater treatment system even following the wellhead totalizer replacement on February 27, 2018. Average Monthly Flow Rate calculated is only during times of pump operation. An additional 156,900 gallons of water was injected into the aquifer during September 2017 which was not previously accounted for as the weekly report and changeover between distribution point occurred on the same day.