

June 29, 2023

Anthony Seach
General Counsel
Ameredev II, LLC
2901 Via Fortuna
Suite 600
Austin, Texas 78746
aseach@ameredev.com

Re: NMED's Administrative Compliance Order for Ameredev II, LLC

Dear Anthony Seach,

Attached to this letter is an Administrative Compliance Order issued against Ameredev II, LLC by the New Mexico Environment Department.

Thank you,

Christoph Digitally signed by Christopher J. Vigil Date: 2023.06.29 13:26:23 -06'00'

Chris Vigil
Assistant General Counsel
Air Quality Bureau
New Mexico Environment Department
121 Tijeras Avenue NE
Albuquerque, New Mexico 87102
(505) 469-4696
christopheri.vigil@env.nm.gov

STATE OF NEW MEXICO BEFORE THE SECRETARY OF ENVIRONMENT

NEW MEXICO ENVIRONMENT DEPARTMENT

Complainant,

v. No. AQCA 2023____(CO)

AMEREDEV II, LLC,

Respondent.

ADMINISTRATIVE COMPLIANCE ORDER

Pursuant to Section 74-2-12 of the New Mexico Air Quality Control Act ("Act"), NMSA Sections 74-2-1 through -17 (as amended through 2021), the Environmental Protection Division ("Division") of the New Mexico Environment Department ("Department" or "NMED") issues this Administrative Compliance Order ("Order") to Ameredev II, LLC ("Ameredev") to require compliance and assess a civil penalty for violations of the Act, violations of the Air Quality Regulations at Title 20, Part 2 ("Regulations") of the New Mexico Administrative Code ("NMAC"), and violations of air quality permits at the following central tank battery ("CTB") facilities: Amen Corner CTB, Azalea CTB, Firethorn CTB, Nandina CTB, and Red Bud CTB (collectively, the "Facilities").

As set forth in the detailed allegations below, during 2019 and 2020 Ameredev violated multiple air quality permit regulations and conditions of their permits. A summary of these violations is set forth in Table 1 below and described in further detail in Sections I through VIII of this Order.

Table 1: Summary of Ameredev Violations

Violation	Permit Conditions	Violation Description	Facilities in Violation
Number	Violated		
1	General Construction Permit-6 ("GCP-6")	Failure to construct or modify and operate as	Amen Corner CTB Azalea CTB
	General Condition	represented in Application	Firethorn CTB
	B101.A or	or Registrations,	Nandina CTB
	B101.11 01	modifying five facilities	Red Bud CTB
	General Construction	without approval	
	Permit-Oil &Gas		
	("GCP-O&G"), Specific		
	Condition A100		
2	GCP-6 General	Failure to obtain a regular,	Amen Corner CTB
	Condition C101.D(1) or	individual construction	Azalea CTB
		permit from the	Firethorn CTB
	GCP-O&G General	Department before	Nandina CTB
	Condition C101.C(1)	modifying five Facilities	Red Bud CTB
3	GCP-O&G Specific	Failure to operate and	Nandina CTB
	Condition A209.A	control tank emissions	
		with the Vapor Recovery	
		Unit ("VRU") as	
		represented in the GCP-	
4		O&G #8189 Registration	A 1 CTD
4	GCP-O&G Specific	Failure to complete and/or	Azalea CTB
	Condition A209.A	record monthly	
		inspections of the VRUs used to control tank	
		emissions	
5	GCP-6 Specific	Failure to complete and/or	Amen Corner CTB
J	Condition A107.A	record monthly	Amen comer c1B
	Condition A107.A	inspections of the VRUs	
		used to control tank	
		emissions	
6	GCP-6 Specific	Failure to limit pound per	Amen Corner CTB
J	Condition A106.D or	hour emission rates from	Azalea CTB
	- • • •	each Facility's flare, unit	Firethorn CTB
	GCP-O&G Specific	FL-1, to the limits	Nandina CTB
	Condition A106.C	required by each permit	Red Bud CTB
7	GCP-6 Specific	Failure to comply with	Amen Corner CTB
	Condition A108.A or	operational requirements	Azalea CTB
		for each Facility flare,	Firethorn CTB
	GCP-O&G, Specific	Unit FL1	Nandina CTB
	Condition A207.B		Red Bud CTB
8	GCP-6 General	Failure to submit	Amen Corner CTB

Table 1: Summary of Ameredev Violations

Violation	Permit Conditions	Violation Description	Facilities in Violation
Number	Violated		
	Condition B110.B(1) or	notifications of the	Azalea CTB
		anticipated date of initial	Firethorn CTB
	GCP-O&G General	startup no less than 30	Nandina CTB
	Condition B110.B(1)	days prior to the date	Red Bud CTB

This Order addresses the seriousness of these violations and the necessary corrective actions required to address them.

FACTUAL BACKGROUND

- 1. Ameredev owns and operates the Amen Corner CTB, Azalea CTB, Firethorn CTB, Nandina CTB, and Red Bud CTB which are located approximately four (4) to eight (8) miles west and southwest of Bennett and Jal in Lea County, New Mexico.
- 2. Ameredev's operations may occur on New Mexico State Trust Land under the jurisdiction and authority of the New Mexico State Land Office.
- 3. At the time the violations described in this Order occurred, Ameredev was authorized to operate the Amen Corner CTB under air quality permit GCP-6, Registration #7835, issued May 31, 2018. [NMED Exhibit 1]
- 4. At the time the violations described in this Order occurred, Ameredev was authorized to operate the Azalea CTB, GCP-O&G, Registration #7601M1, issued October 3, 2019. [NMED Exhibit 2]
- 5. At the time the violations described in this Order occurred, Ameredev was authorized to operate the Firethorn CTB, GCP-O&G, Registration #7836M1, issued October 2, 2019. [NMED Exhibit 3]
 - 6. At the time the violations described in this Order occurred, Ameredev was

authorized to operate the Nandina CTB, GCP-O&G, Registration #8189, issued February 28, 2019.

[NMED Exhibit 4]

- 7. At the time the violations described in this Order occurred, Ameredev was authorized to operate the Red Bud CTB, GCP-O&G, Registration #7839M1 issued October 3, 2019. [NMED Exhibit 5]
- 8. Each of the five (5) Facilities is an oil and gas CTB that operates in the oil and gas production industry.
- 9. Each of the Facilities receives mixed streams of natural gas, water, and crude oil from surrounding oil and gas wells.
- 10. The Facilities separate the mixed streams into natural gas and crude oil for sale and produced water for disposal. The separated crude oil and produced water are temporarily stored at each of the Facilities in storage tanks.
- 11. According to General Construction Permit registration records at the time the violations occurred, natural gas emissions from storage tanks and separating tanks were to be either re-routed back to a facility inlet or routed to a facility flare, unit FL-1. [NMED Exhibit 6].
- 12. The natural gas separated at each facility inlet was to be sent downstream to a third-party gas processor via a sales gas pipeline. [NMED Exhibit 6].
- 13. The mixed natural gas and crude oil streams would pass through heater treaters and vapor recovery towers ("VRT") separating the gas and oil, and the separated gas was to be captured via Vapor Recovery Units ("VRU") and routed downstream via the sales gas pipeline. [NMED Exhibit 6].
- 14. Ameredev started operating each of the Facilities and immediately began to exceed permitted pollution limits on the following dates: Amen Corner CTB November 28, 2019; Azalea

CTB December 27, 2018; Firethorn CTB March 14, 2019; Nandina CTB July 29, 2019; and Red Bud CTB March 7, 2019. [NMED Exhibit 7; NMED Exhibit 8].

- 15. On August 12, 2019, the Air Quality Bureau ("AQB") received a citizen complaint about increased flaring at a facility meeting the location information for Azalea CTB. [NMED Exhibit 9].
- 16. On September 9, 2019, an AQB inspector received another complaint about large amounts of flaring being done by Ameredev. [NMED Exhibit 9].
- 17. On September 9, 2019, the AQB inspector contacted Ameredev, notified Ameredev of the complaint, and informed Ameredev of the requirement to submit excess emissions reports pursuant to 20.2.7 NMAC.
- 18. On November 7, 2019, AQB personnel and Ameredev representatives met in Santa Fe, New Mexico to discuss the ongoing concerns. At the meeting, Ameredev explained the cause of their excessive flaring and presented a long-term plan to stop it.
- 19. On December 20, 2019, the Department's Office of General Counsel received a further complaint about high quantities of very sour gas being flared from different facilities owned by Ameredev.
- 20. On December 30-31, 2019, AQB personnel conducted an on-site investigation of the Facilities and produced an inspection report resulting in three Post-Inspection Notifications.

 [NMED Exhibit 10; NMED Exhibit 27].
- 21. On January 2, 7, and 16, 2020 and February 21, 2020, AQB requested from Ameredev permit records and other information for the five Facilities. [NMED Exhibit 11].
- 22. On January 2, 7, and 17, 2020 and on February 24, 2020, Ameredev responded to AQB's records requests. Ameredev's responses relative to each violation are described in Sections

 Ameredev ACO Page 5 of 32

I through VIII below.

- 23. On January 20 and 28, 2020, Ameredev submitted "Voluntary Disclosures of Violations" to AQB. [NMED Exhibit 12].
- 24. AQB determined that Ameredev's disclosures failed to meet multiple conditions of the NMED-AQB Civil Penalty Policy ("Policy"), Appendix D, including Condition D.2 *Voluntary Discovery* of violations, Condition D.3 *Prompt Disclosure* of violations, and Condition D.4 *Prompt Correction and Remediation* of violations. [NMED Exhibit 13].
- 25. According to Ameredev's excess emissions reports, it took the following number of days from the reported discovery date before ending the excess emissions events:
 - 129 days at Amen Corner CTB
 - 158 days at Azalea CTB
 - 166 days at Red Bud CTB
 - 198 days at Nandina and Firethorn CTBs [NMED Exhibit 7]
- 26. Based on on-site inspections of the Facilities and review of Ameredev's records submittals, AQB identified violations of multiple air quality regulations and conditions of the Facilities' permits.
- 27. On January 10, March 16, and April 8, 2020, AQB issued to Ameredev post-inspection notifications ("PIN") listing potential air quality violations occurring at the five Facilities. [NMED Exhibit 10].
- 28. On August 17, 2022, AQB issued Notice of Violation ("NOV") No. AMDV-Multi-2001 alleging eight (8) violations described further in Sections I through VIII of this Order.

 [NMED Exhibit 14].
- 29. On September 2 and 15, 2022, Ameredev responded to the NOV, providing requested information, arguing the regulatory basis or number of claims of some alleged violations,

and requesting penalty reductions based on facility environmental audits or past emissions related projects. [NMED Exhibit 15].

- 30. On May 18, 2023, AQB requested additional records from Ameredev to evaluate current compliance status. [NMED Exhibit 16].
- 31. On May 31, 2023, Ameredev provided records in response to the May 18, 2023, request. AQB's review of Ameredev's records submittal identified current potential compliance issues at some of the Ameredev Facilities.

VIOLATIONS

Violation 1:

Failure of Ameredev to construct or modify and operate five Facilities in accordance with representations in and as specified in the current application or registration forms pursuant to GCP-6, General Condition B101-A – Legal, and to GCP-O&G Specific Condition A100 – Introduction and Applicability

Violation 1 Background

32. GCP-6, General Condition B101.A, *Legal*, states in part:

Unless modified by conditions of this permit, the permittee shall construct or modify and operate the Facility in accordance with all representations of the current application and supplemental submittals that the Department relied upon to determine compliance with applicable regulations and ambient air quality standards.

[NMED Exhibit 20 at 16-17].

- 33. GCP-O&G, Specific Condition A100, *Introduction and Applicability*, states in part: "F. The Facility shall operate as specified in the Registration Form. The emission limits and equipment specified in the Registration Form are federally enforceable and shall become the terms and conditions of this Permit." [NMED Exhibit 21 at 4].
 - 34. During the December 30-31, 2019, on-site investigations, AQB inspectors

observed multiple pieces of equipment at each of the Facilities that were not included in Ameredev's certified and approved General Construction Permit ("GCP") Application or Registration Forms.

35. On January 7, 2020, Ameredev provided to AQB a list of all equipment located at each of the Facilities. The list verified the unregistered equipment identified by AQB and identified additional unregistered equipment at all five Facilities. Table 2 lists the unauthorized equipment located at each facility. [NMED Exhibit 17].

Table 2: Unauthorized Equipment

Facility	Unreported and Unauthorized Equipment		
Amen Corner CTB	6 crude oil tanks, 1 gun barrel tank, 1 3-phase separator, 2 2-phase		
	separators, 3 combustors, 1 generator engine		
Azalea CTB	1 3-phase inlet: separator, 1 2-phase inlet separator, 1 combustor, 1		
	generator		
Firethorn CTB	3-phase inlet separator, 2-phase inlet separator, combustor, generator		
Nandina CTB	6 crude oil tanks, 1 gun barrel tank, 6 3-phase inlet separators, 2 2-phase		
	inlet separators, 3 combustors, 1 flare		
Red Bud CTB	1 3-phase inlet separator, 2 2-phase inlet separators, 1 combustor, 1 flare		

36. Ameredev delayed submitting Registrations for the unauthorized modifications for three (3) to five (5) months after AQB's January 1, 2020 PIN notifying Ameredev of the unauthorized equipment. Table 3 lists the GCP numbers and issue dates authorizing the existing, unpermitted equipment.

Table 3: Summary of GCPs Correcting Regulated Equipment

Facility	GCP#	Registration	GCP issued
		Received	
Amen Corner CTB	GCP-O&G #7835M1	May 8, 2020	June 5, 2020
Azalea CTB	GCP-O&G #7601M2	May 15, 2020	June 12, 2020
Firethorn CTB	GCP-O&G #7836M2	April 24, 2020	May 22, 2020
Nandina CTB	GCP-O&G #8189M1	March 25, 2020	April 24, 2020
Red Bud CTB	GCP-O&G #7839M2	April 15, 2020	May 15, 2020

Violation 1 Summary

- 37. Ameredev violated GCP-6 General Condition B101.A and GCP-0&G Specific Condition A100 when it unlawfully constructed and operated at the Facilities, multiple unreported and unauthorized pieces of equipment that were sources of regulated air pollutants.
- 38. Ameredev had, among other unlawful changes to the Facilities, doubled the crude oil storge capacity at the Amen Corner and Nandina CTBs, installed combustors and/or a second flare at each of the five Facilities, and installed generator engines at Amen Corner, Azalea, and Firethorn CTBs.
- 39. NMED observed five (5) occurrences at the Amen Corner CTB, Azalea CTB, Firethorn CTB, Nandina, CTB, and Red Bud CTB of this violation for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 2:

Failure of Ameredev to obtain a regular, individual construction permit for each Facility from the Department before modifying and operating five Facilities above GCP thresholds pursuant to GCP-6, General Condition C101.D(1) and GCP-O&G, General Condition C101.C(1)

Violation 2 Background

40. GCP-6, General Condition C101 – *Revision Process*, D(1) *Changes that Prevent Meeting General Permit Limits*, states:

"Changes or equipment additions that prevent the Facility from meeting the requirements of GCP-6 shall not occur before the owner or operator applies for and is issued an individual construction permit under 20.2.72.200 NMAC."

[NMED Exhibit 20 at 27].

41. GCP-6, Specific Condition A100 – *Description*, Paragraph E states, in relevant parts:

"The potential emission rate (PER) of the permitted Facility . . . shall not exceed the total potential emission rates in Table 100.A and Table 100.B. . . . Any Facility with a PER greater than the amounts in Table 100.A or Table 100.B does not qualify for GCP-6."

[NMED Exhibit 20 at 3].

42. GCP-6, Table 100.A provides GCP-6 PER limits as follows:

Table 100.A: Potential Emission Rate (PER) of the Facility

Pollutant*	Emissions	Emissions
1 Onutant	(pounds per hour)	(tons per year)
Nitrogen Oxides (NOx)	less than 10	less than 25
Carbon Monoxide (CO)	less than 10	less than 25
Volatile Organic Compounds (VOCs) from Storage	**	No PER Limit
Vessels or Truck Loading		
Sulfur Dioxide (SO2)	less than 10	less than 25
Total Suspended Particulates (TSP)	less than 2.5	less than 25
Particulate Matter less than 10 microns (PM10)	less than 2.5	less than 25
Particulate Matter less than 2.5 microns (PM2.5)	less than 2.5	less than 25
Hydrogen Sulfide (H2S)	less than 0.5	less than 5
Lead	less than 10	less than 5

[Id.].

43. GCP-O&G, General Condition C101 – Revision Process, C(1) Changes that Prevent Meeting General Permit Limits states:

"Changes or equipment additions that prevent the Facility from meeting the requirements of GCP-Oil and Gas shall not occur before the owner or operator applies for and is issued an individual construction permit under 20.2.72.200 NMAC."

[NMED Exhibit 21 at 47-48].

- 44. GCP-O&G, Specific Condition A106.A *Facility: Allowable Emissions* states, in relevant part: "In order to qualify for this permit, the Facility's annual emissions may not exceed those amounts in Table 106." [NMED Exhibit 21 at 7].
 - 45. GCP-O&G, Table 106 provides the maximum emission rates as follows:

Table 106: Maximum Eligible Emission Rates to Register Under this Permit

Pollutant	Tons per Year (tpy)
Nitrogen Oxides (Nox)	95 tpy
Carbon Monoxide (CO)	95 tpy
Volatile Organic Compounds (VOC)* (non-fugitive)	95 tpy
Sulfur Dioxide	95 tpy
Hydrogen Sulfide	25 tpy
Total Suspended Particulates (TSP)	25 tpy
Particulate Matter less than 10 Microns (PM10)	25 tpy
Particulate Matter less than 2.5 Microns (PM2.5)	25 tpy
Any Individual Hazardous Air Pollutant (HAP)	< 10 tpy
Total HAP	< 25 tpy

[Id.]

46. New Mexico's Regulations state:

"For those modifications for which the source will not continue to meet the conditions of the general construction permit after such modification, obtain a construction permit from the department under this part prior to the modification."

20.2.72.220.D(2) NMAC.

- 47. Between October 25, 2019, and April 27, 2020, Ameredev submitted ten (10) final excess emissions reports ("EER") pertaining to the five Facilities through the AQB Compliance Reporting ("AQBCR") system. Each EER reported emission rates of regulated air pollutants from each facility flare exceeding one to five of the ton per year ("tpy") permit thresholds allowed by the GCP-6 and the GCP-O&G. [NMED Exhibit 22].
- 48. In the Final EERs, Ameredev described the cause of each excess emission event as an emergency, lasting from 66 to 6300 hours, because their downstream third-party gas processor was not accepting their produced gas. None of Ameredev's GCP Applications or Registrations requested nor authorized flaring of any produced gas at the Facilities. Produced gas was to be routed offsite through a sales gas pipeline. [NMED Exhibit 6].
 - 49. EERs and other Ameredev records indicate that on the day of or day after starting

 Ameredev ACO

operations at each of the Facilities, Ameredev was unlawfully routing all produced gas to each facility flare, unit FL-1, for combustion, which resulted in exceeding the GCP thresholds. Table 4 lists each facility startup date and the earliest excess emissions start date.

Table 4: Dates of Facility Startup and Earliest Excess Emission Event Per Ameredev

Facility	Facility Startup	Earliest reported excess emission start
		dates
Amen Corner CTB	11-28-2019	11-28-2019
Azalea CTB	12-26-2018	12-27-2018
Firethorn CTB	3-14-2019	3-14-2019
Nandina CTB	7-29-2019	7-29-2019
Red Bud CTB	3-7-2019	3-7-2019

50. Pursuant to 20.2.7.113 NMAC, *Affirmative Defense for an Emergency*, Ameredev submitted Affirmative Defense Demonstrations ("ADD") for six of the excess emissions events.

[NMED Exhibit 28]. In relevant part, NMAC 20.2.7.113.B states:

An emergency constitutes an affirmative defense to an action brought for noncompliance with the technology-based emission limitation if the owner or operator of the source demonstrates through properly signed, contemporaneous operating logs, or other relevant evidence that: ... (2) the source was at the time being properly operated; (3) during the period of the emergency the owner or operator took all reasonable steps to minimize levels of emissions that exceeded the technology-based emission limitation . . .

- 51. Pursuant to 20.2.7.115 NMAC, AQB evaluated and denied five (5) of Ameredev's ADD claims. AQB determined that the excess emissions were not caused by emergencies since Ameredev continued to flare for several months after becoming aware of the excess emissions and failed to take all reasonable steps to minimize excess emissions. [NMED Exhibit 18].
 - 52. On September 2, 2022, in response to the NOV, Ameredev stated:

"[w]here actual emissions exceed what was reasonably expected, a permittee must only 're-evaluate permit applicability' – not immediately apply for an individual construction permit. Put differently, actual emissions need not be directly relevant to the CTBs' potential

to emit for permitting purposes."

[NMED Exhibit 15].

53. However, both permit conditions and 20.2.72 NMAC state that the requirement is to apply for an individual construction permit before making modifications to a facility, not after.

Violation 2 Summary

- 54. Ameredev violated 20.2.72.220.D(2) NMAC, GCP-6 General Condition C101.D(1) at Amen Corner CTB and GCP-O&G General Condition C101.C(1) at Azalea CTB, Firethorn CTB, Nandina CTB, and Red Bud CTB when it unlawfully operated the Facilities over GCP thresholds before obtaining pre-approval through a regular construction permit.
- 55. NMED observed five (5) occurrences at the Amen Corner CTB, Azalea CTB, Firethorn CTB, Nandina, CTB, and Red Bud CTB, of this violation for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 3:

Failure of Ameredev to operate and control tank emissions with the Vapor Recovery Unit (VRU) as represented in the GCP-O&G #8189 for the Nandina CTB pursuant to GCP-O&G, Specific Condition A209.A Vapor Recovery Unit or Department Approved Equivalent

Violation 3 Background

56. GCP-O&G, Specific Condition A209A, Vapor Recovery Unit or Department-approved Equivalent, states in relevant part:

"The permittee shall at all times operate the VRU as a closed vent system that captures and routes all VOC and HAP emissions ...back to the process stream or to a sales pipeline and does not vent to the atmosphere."

[NMED Exhibit 21 at 28].

57. Ameredev's GCP-O&G Registration #8189 emissions calculation form for the Nandina CTB (Air Emissions Calculation Tool, dated Jan 21, 2019) states: "Emissions will be

captured by the VRU at 95% efficiency with 100% control." [NMED Exhibit 4 at PDF 32].

- 58. In the response to "Tanks VOC Control Method, Represent VRU/ULPC Downtime Emissions at the Tank," Ameredev indicated "NA" (i.e. "not applicable"). [NMED Exhibit 4 at PDF 32].
- 59. During the onsite inspection of the Nandina CTB on December 31, 2019, AQB personnel observed that the VRUs required to control emissions at the Nandina CTB were not operating. [NMED Exhibit 10 at 2; NMED Exhibit 27].
- 60. Ameredev personnel stated that all gas from the tanks was being sent to an unregistered flare located at Nandina CTB. In addition, according to the VRU maintenance records from Ameredev, between September 19, 2019, and December 16, 2019, the VRUs were shut down for maintenance at least one day per month. [NMED Exhibit 23].
- 61. The GCP-O&G emissions calculations for the Nandina CTB represented tank emissions 100% controlled with capture by the VRU. Ameredev did not report a flare nor request emission limits for a flare in the Nandina GCP Registration. [NMED Exhibit 4 at PDF 7-8].
- 62. The Nandina CTB was modified when Ameredev routed tank emissions to an unregistered flare for combustion instead of through a closed vent system that captures and routes 100% of tank emissions back to the process stream or to a sales pipeline.

Violation 3 Summary

63. New Mexico's Regulations state:

"For those modifications for which the source will not continue to meet the conditions of the general construction permit after such modification, obtain a construction permit from the department under this part prior to the modification."

20.2.72.220.D(2) NMAC.

64. Ameredev violated GCP-O&G, Specific Condition A209.A at the Nandina CTB,

when it failed to control tank emissions with VRUs and a closed vent system, as represented in the GCP Registration, and instead routed tank emissions to an unauthorized flare for combustion.

65. NMED observed one (1) occurrence of this violation for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 4:

Failure of Ameredev to complete and/or record inspections of the Azalea CTB vapor recovery units (or "VRUs") and associated piping from the controlled units pursuant to GCP-O&G, Specific Condition A209.A Vapor Recovery Unit or Department-approved Equivalent

Violation 4 Background

66. GCP-O&G, A209.A, Vapor Recovery Unit or Department-approved Equivalent states, in pertinent part:

"Monitoring: At least once per month, the permittee shall inspect the VRU and associated piping from the controlled units, and blowback vessels, for defects that could result in air emissions. . . . Recordkeeping: The permittee shall record the results of the VRU inspections. . . . Reporting: The permittee shall report in accordance with Section B110."

[NMED Exhibit 21 at 28].

- 67. On January 2, 2020, AQB personnel requested that Ameredev provide VRU inspection records for the Azalea CTB during operations from December 30, 2017 to December 30, 2019. [NMED Exhibit 11].
- 68. On January 7, 2020, Ameredev responded via email with a table of responses. For the Azalea CTB, the response to this request states, "No responsive records." [NMED Exhibit 19, row 22].

Violation 4 Summary

69. Ameredev violated GCP-O&G, Specific Condition A209.A, when it failed to complete and/or record any monthly inspections of the VRUs used to control air emissions from

the Azalea CTB vapor recovery towers (VRTs) that recover emissions from Facility storage tanks.

70. NMED observed one (1) occurrence of this violation at Nandina CTB, for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 5:

Failure of Ameredev to perform monthly VRU inspections as of January 7, 2020, used to control air emissions from the Amen Corner CTB VRTs pursuant to GCP-6, Specific Condition A107.A Vapor Recovery Unit (VRU) or Ultra Low-Pressure Separators (ULPS) and Compressor Operation

Violation 5 Background

71. GCP-6, Specific Condition A107–A - Vapor Recovery Unit (VRU) or Ultra Low-Pressure Separators (ULPS) and Compressor states in relevant part:

"Monitoring: The permittee shall conduct the following monitoring monthly: 1) inspect for proper routing to the VRU . . . 2) inspect each Storage Vessel, VRU ... and associated piping for defects that could result in emissions... , and 3) monitor for proper operation per manufacturer's specifications . . . Recordkeeping: The permittee shall record the results of the VRU inspections..."

[NMED Exhibit 20 at 11].

- 72. On January 2, 2020, AQB personnel requested VRU inspection records from Ameredev personnel for the Amen Corner CTB for operations from December 30, 2017 to December 30, 2019. [NMED Exhibit 11].
- 73. On January 7, 2020, Ameredev stated in their response to the request that there were no records of VRU inspections at Amen Corner CTB as of December 30, 2019. [NMED Exhibit 26].

Violation 5 Summary

74. Ameredev violated GCP-O&G, Specific Condition A209.A, when it failed to complete and/or record monthly inspections, as of December 30, 2019, of the VRUs used to control

air emissions from the Amen Corner CTB vapor recovery towers (VRTs) that recover emissions from that facility's storage tanks.

75. NMED observed one (1) occurrence of this violation at Amen Corner CTB for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 6:

Failure of Ameredev to limit each of the Facilities pph and tpy emission rates to the facility-specific emission limits listed in each certified and approved Application and Registration form pursuant to GCP-6, Specific Condition A100.D, Part A Facility Specific Requirements and GCP-O&G, Specific Condition A106.C Allowable Hourly and Annual Emissions

Violation 6 Background

76. GCP-6, Specific Condition A100.D – *Description* states:

"The allowable VOC emissions from each Storage Vessel, including fugitive, startup, shutdown, and maintenance emissions, shall not exceed the total requested allowable emissions in the current Application Form (registration form)."

[NMED Exhibit 20 at 1].

77. GCP-O&G, Specific Condition A106.C. – Facility: Allowable Emissions – Allowable Hourly and Annual Emission Limits states in relevant part:

"Requirement: For each regulated emission unit in the Registration Form, the emissions specified in the Registration Form shall be the allowable emission limits in this Permit."

[NMED Exhibit 21 at 7].

- 78. At the time the violations occurred, there were no requested or authorized emission limits for produced gas flaring at any of the Facilities; emission limits for combustion of produced gas were zero.
- 79. Between October 25, 2019, and April 27, 2020, AQB received ten (10) final EERs from Ameredev pertaining to the Facilities, through the AQBCR system. Each EER reported emission rates for Facility flare, unit FL-1, exceeding its zero pound per hour ("pph") and tons per

year ("tpy") emission limits required by their GCPs from produced gas flaring. Ameredev reported each excess emission event as an emergency that lasted from 66 to 6300 hours. Overall, Ameredev emitted through its operations at the Facilities 7,648,210 total pounds of excess emissions of the regulated air pollutants nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur dioxide (SO₂), and hydrogen sulfide (H₂S). [NMED Exhibits 8]. AQB denied all Affirmative Defense Demonstration ("ADD") claims submitted by Ameredev for these excess emissions. [NMED Exhibit 18].

- 80. On September 2, 2022 in response to the NOV, Ameredev provided (confidential) records documenting that Ameredev started drilling and routing produced oil and gas to all of the Facilities, before the contractual In-Service Date, or deadline for Ameredev's third-party gas processor to start accepting and processing Ameredev's produced gas, containing up to 20,000 parts per million by volume ("ppmv") of H₂S.
- 81. To start drilling and production, Ameredev combusted 100% of its produced sour gas through facility flares and continued to drill knowing they would need to illegally flare the produced gas. [NMED Exhibit 15].

Violation 6 Summary

- 82. Ameredev violated its pph and tpy permitted emissions limits pursuant to GCP-6, Specific Condition 100.D and GCP-O&G, Specific Condition A106 when it unlawfully routed all produced sour gas to Facility flares for combustion.
- 83. NMED alleges the total quantity of excess emissions, 7,648,210 total pounds of nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur dioxide (SO₂), and hydrogen sulfide (H₂S) combined from these violations for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 7:

Failure of Ameredev to comply with operational requirements and representations made in permit Application and Registrations for each Facility flare, unit FL-1, pursuant to GCP-6, Specific Condition A108.A - Flare Operation; and GCP-O&G, Specific Condition A207.B – Pilot Flame, Visible Emissions, and Operational Requirements and General Condition B101.A – Legal

Violation 7 Background

84. GCP-6, Part A – Facility Specific Requirements, Specific Condition A108.A –

Flare Operation states in relevant part:

Requirement: . . . 4) The flare shall be equipped with a system to ensure that it is operated with a flame present at all times . . . Monitoring: The permittee shall continuously monitor the presence of the flare pilot flame using a thermocouple equipped with a continuous recorder and alarm to detect the presence of a flame.

[NMED Exhibit 20 at 12]

85. GCP-O&G, Specific Condition A207.B – Pilot Flame, Visible Emissions, and

Operational Requirements, states in pertinent part:

Requirement: Compliance with the allowable emission limits for flare(s) in the Registration Form shall be demonstrated by the following: . . . 2) The flare shall combust only gas streams represented in the Registration Form . . . 4) For flares with a continuous pilot flame or an auto-igniter, the flare shall be equipped with a system to ensure that the flare is operated with a flame present at all times that gas is sent the flare . . . 8) The flare shall be operated with no visible emissions except for periods not to exceed a total of sixty (60) seconds during any fifteen (15) consecutive minutes . . . Monitoring: 1) For flares with a continuous pilot or an auto igniter, the permittee shall continuously monitor the presence of a flare pilot flame using a thermocouple equipped with a continuous recorder and alarm to detect the presence of a flame 3) When any visible emissions are observed, the permittee shall perform a Method 22 observation while the flare pilot flame is present to certify compliance with the visible emission requirements."

[NMED Exhibit 21 at 24-25].

86. GCP-6, General Condition B101.A – *Legal* states in relevant part:

Unless modified by conditions of this permit, the permittee shall construct or modify and operate the Facility in accordance with all representations of the current application and supplemental submittals that the Department relied upon to determine compliance with applicable regulations and ambient air quality standards.

[NMED Exhibit 20 at 16].

87. Ameredev's audit disclosure letter received by the AQB on January 28, 2020, stated in part:

The alarm systems are not set up to continuously record alarms, which is a monitoring and recordkeeping requirement. Also, with respect to each of the tank batteries, the flares did not only combust gas streams represented in the registration forms. As previously disclosed, the flares have been used to combust associated gas shut-in by Salt Creek Midstream. With respect to Nandina tank battery, Ameredev is aware of instances during which the flare operated with visible emissions, but Ameredev did not conduct Method 22 inspections.

[NMED Exhibit 12 at PDF 9].

Violation 7 Summary

- 88. Ameredev violated GCP-6, Specific Condition A108.A at the Amen Corner CTB by failing to equip the flare pilot monitoring equipment with an alarm system and violated GCP-6, General Condition B101.A by failing to combust only gas streams that were represented in the Application / Registration Form.
- 89. Ameredev violated GCP-O&G, Specific Condition A207.B(2) at the Azalea, Firethorn, Nandina and Red Bud CTBs when it combusted gas streams in the flare that were not represented in the Application / Registration Forms for each facility.
- 90. Ameredev violated GCP-O&G, Specific Condition A207.B(4) at the Azalea, Firethorn, Nandina and Red Bud CTBs when it failed to equip the flare pilot monitoring equipment with an alarm system.
- 91. Ameredev violated GCP-O&G, Specific Condition A207.B(8) at the Nandina CTB by operating a flare with visible emissions without keeping records of any Method 22 observations.

92. NMED observed eleven (11) occurrences of this violation: two (2) for Amen Corner CTB, two (2) for Azalea, two for Firethorn, two for Red Bud, and three (3) for Nandina for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

Violation 8:

Failure of Ameredev to submit notifications of the anticipated date of initial startup not less than 30 days prior to the date pursuant to GCP-6 and GCP-0&G, General Condition B110.B(1) General Reporting Requirements

Violation 8 Background

93. GCP-6 and GCP-O&G General Condition B110.B - General Reporting Requirements states:

The permittee shall notify the Air Quality Bureau's Compliance and Enforcement Section using the current Submittal Form posted to NMED's Air Quality web site under Compliance and Enforcement/Submittal Forms in writing of, or provide the Department with (20.2.72.212.A and B): (1) the anticipated date of initial startup of each new or modified source not less than thirty (30) days prior to the date. Notification may occur prior to issuance of the permit, but actual startup shall not occur earlier than the permit issuance date.

[NMED Exhibit 20 at 22-23; NMED Exhibit 21 at 38].

94. Based on a review of records provided by Ameredev on January 17, 2020, AQB determined that Ameredev did not notify the Department of the initial startup of any of the Facilities. Notifications submitted by Ameredev on March 6, 2020, reported the following start-up dates: Amen Corner CTB –November 28, 2019; Azalea CTB – December 26, 2018; Firethorn CTB – March 14, 2019; Nandina CTB – July 29, 2019; and Red Bud CTB – March 7, 2019. [NMED Exhibit 24].

Violation 8 Summary

95. Ameredev violated GCP-6 and GCP-O&G, General Condition B110.B(1) when it

failed to notify the Department of the anticipated startup dates of five Facilities, information for which the Department relies on to meet its enforcement obligations.

96. NMED observed five (5) occurrences at the Amen Corner CTB, Azalea CTB, Firethorn CTB, Nandina CTB, and Red Bud CTB, of this violation for which Ameredev is subject to penalties pursuant to the NMED-AQB Civil Penalty Policy.

EFFECTIVE DATE

97. The Effective Date of this Order shall be the date upon which this Order is signed by the NMED Secretary or designee.

COMPLIANCE ORDERS

- 98. NMSA 1978, § 74-2-12(A) authorizes the New Mexico Secretary of Environment ("Secretary") to issue a compliance order requiring compliance with a regulation or permit.
- 99. Pursuant to the NMED Delegation Order dated March 24, 2023, the Environmental Protection Division Director may approve the commencement of a civil enforcement action with concurrence by the Secretary.
 - 100. The Secretary has concurred with this enforcement action.
- 101. Ameredev is ordered to take the following corrective actions for the violations specified in Sections I through VIII above.

Order 1:

Cease and Desist Excess Emissions at All Ameredev Facilities Located in New Mexico

- 102. Ameredev shall cease and desist from excess emissions that do not qualify for an affirmative defense pursuant to 20.2.7.111 NMAC; 20.2.7.112. NMAC; and 20.2.7.113 NMAC.
- 103. Beginning no later than 30 days from the Effective Date, Ameredev shall calculate and submit by the 15th of each month, reports of actual pph and tpy emission rates from each

emissions unit at each Ameredev facility operating in New Mexico. Calculations shall be submitted in sortable and editable Excel spreadsheets and in PDF. Reports shall be submitted for two years from the Effective Date.

- 104. For flares, tpy emission rates shall be reported as daily rolling 365-day totals. For all other equipment, tpy emission rates shall be reported as monthly rolling 12-month totals.
 - 105. Ameredev shall initiate prompt corrective action for any exceedances and report according to 20.2.7 NMAC.

Order 2: Submit Construction Permit Applications

- 106. Within 60 days of the Effective Date, Ameredev shall apply for non-GCP construction permits pursuant to 20.2.72, 20.2.74, or 20.2.79 NMAC as applicable to replace GCP-O&G permits for Amen Corner, Azalea, Firethorn, Nandina, and Red Bud CTBs.
- 107. Upon issuance or denial of each construction permit, the Department will cancel each existing GCP-O&G.
- 108. For any canceled permits, Ameredev shall remove or decommission equipment from the facility not permitted by a new construction permit. "Decommission" and "Decommissioning" applies to units left on site (not removed) and is defined as the complete disconnecting of equipment, emission sources or activities from the process by disconnecting all connections necessary for operation (i.e., piping, electrical, controls, ductwork, etc.).
 - 109. Each permit application shall include the following:
 - a. Facility-wide tpy emission limit caps of NOx, CO, SO₂, VOC, PM_{2.5}, and H₂S, including emissions from exempt standby generators (20.2.72.202.B(3) NMAC); fire pump engines (20.2.72.202.A(4) NMAC); emissions units or activities with a potential emission rate of no more than ½ tpy (20.2.72.202.B(5)

- NMAC); and from routine or predictable startup, shutdown, and maintenance activities (20.2.7 NMAC);
- b. Permit requirements for standby or emergency generators and fire pump engines;
- Production limits corresponding to assumptions used in emissions calculations and limits;
- d. Compliance with 40 CFR § 60, Subpart OOOOa of all existing and future tanks, including the assessment of covers and closed vent systems used to control tank emissions pursuant to 40 CFR § 60.5411a(d)(a)(i) and (ii);
- e. Compliance with 40 CFR § 60.18 of all existing and future flares and submittal of manufacturer specifications for each flare and the applicable evaluation pursuant to 40 CFR § 60.18(c) through (f); and
- f. Daily rolling 365-day total tpy emissions calculations and records for flares.

Order 3: Conduct Third-Party Audit of all other Ameredev New Mexico Facilities

- 110. Ameredev shall hire an independent, third-party contractor to complete an audit of all New Mexico facilities not subject to this enforcement action owned and/or operated by Ameredev.
 - 111. AQB shall approve the contractor selected by Ameredev for this purpose.
- 112. The contractor shall have experience in the oil and gas industry, have not completed any work for Ameredev in the past five (5) years and shall certify that no other work will be performed for Ameredev facilities in the three (3) years following the audit.
- 113. The audit shall start within 60 days of the Effective Date, shall be completed within nine (9) months of the Effective Date, and a final, certified report submitted to AQB within ten

(10) months of the Effective date.

114. Ameredev facilities subject to the third-party audit shall minimally include all tank

batteries, all gas processing facilities, all compressor stations, all power generating stations, all

water treatment facilities, all well sites, and all associated gathering lines and piping.

115. The third-party audit shall include the following for each of the Ameredev facilities

audited:

a. Facility name, location, and any current AQB notices of intent (NOI) or permit

numbers.

b. A current list of and status of all wells sending produced oil, associated gas, and

other hydrocarbons to each facility.

c. A list of all stationary equipment, regardless of exemption status, that are

sources of regulated air pollutants including unit number, description, make,

model, serial number, capacity, construction and manufacture dates, and dates

of initial startup.

d. For all equipment, the regulatory citations of all applicable emissions standards,

notifications, records, and reporting required in 40 CFR § 60 and 40 CFR § 63.

e. A list and information of all control equipment, including capture efficiency,

control efficiency, make, model, maintenance requirements and other processes

to which emissions from regulated sources are routed to or controlled by.

f. The calculations of the potential to emit (PTE), as defined at 20.2.74.7.AO

NMAC, of each emissions source and of each facility.

Order 4: Propose Mitigation Projects for NMED Approval

116. Within 30 days of the Effective Date, Ameredev shall propose, subject to NMED

approval, projects to mitigate excess emissions that occurred between 2019-2020. Costs of such projects shall not be creditable toward the assessed civil penalties and shall be borne solely by Ameredev. "Mitigation project" shall mean a project or projects to remedy, reduce, or offset past excess emissions resulting from Ameredev's alleged violations of the Act, Regulations, and/or permits in this matter.

CIVIL PENALTIES

- 117. Section 74-2-12(A) of the Act authorizes the Secretary to issue a compliance order assessing a civil penalty for a violation of the Act, the Regulations, or a condition of a permit issued under the Act.
- 118. Section 74-2-12(B) of the Act authorizes the Secretary to assess a civil penalty of up to fifteen thousand dollars (\$15,000.00) per day of non-compliance for each violation under Section 74-2-12(A).
- 119. Pursuant to the NMED Delegation Order dated March 24, 2023, the Environmental Protection Division Director may approve the commencement of a civil enforcement action with concurrence by the Secretary.
 - 120. The Secretary has concurred with this enforcement action.
- 121. For the violations described in Sections I through VIII, the Department has calculated, and hereby assesses, a civil penalty of \$40,336,818.00 consistent with the NMED-AQB Civil Penalty Policy. [NMED Exhibit 13]. Table 5 lists the violations, subject Facilities, and penalty per violation.

Violation	Facilities	Penalty Amount
Failure to construct or modify	Amen Corner	\$75,370.00
and operate as represented in	CTB	
Applications or Registrations,	Azalea CTB	
modifying five facilities	Firethorn CTB	

Violation	Facilities	Penalty Amount
without approval pursuant to GCP-6 General Condition B101.A or GCP-0&G, Specific Condition A100	Nandina CTB Red Bud CTB	·
Failure to obtain a regular, individual construction permit from the Department before	Amen Corner CTB	\$207,069.00
modifying five Facilities pursuant to GCP-6 General Condition C101.D(1) or GCP-	Azalea CTB Firethorn CTB	
O&G General Condition C101.C(1)	Nandina CTB	
	Red Bud CTB	
Failure to operate and control tank emissions with the Vapor Recovery Unit (VRU) as represented in the GCP-O&G #8189 Registration pursuant to Specific Condition A209.A	Nandina CTB	\$153,720.00
Failure to complete and/or record monthly inspections of the VRUs used to control tank emissions pursuant to GCP-O&G, Specific Condition A209.A	Azalea CTB	\$75,600.00
Failure to complete and/or record monthly inspections of the VRUs used to control tank emissions pursuant to GCP-6, Specific Condition A107.A	Amen Corner CTB	\$25,200.00
Failure to limit pound per hour emission rates from each Facility's flare, unit FL-1, to	Amen Corner CTB	\$38,913,811.00
the limits required by each permit pursuant to GCP-6,	Azalea CTB	
Specific Condition A106.D or GCP-O&G,	Firethorn CTB	
Specific Condition A106.C	Nandina CTB	
Failure to comply with operational requirements for each Facility flare, Unit FL1,	Red Bud CTB Amen Corner CTB	\$848,548.00

Violation	Facilities	Penalty Amount
pursuant to GCP-6, Specific Condition A108.A or GCP- O&G, Specific Condition	Azalea CTB	
A207.B	Firethorn CTB	
	Nandina CTB	
	Red Bud CTB	
Failure to submit notifications of the anticipated date of initial startup no less than 30 days	Amen Corner CTB	\$37,500.00
prior to the date pursuant to GCP-6, General Condition	Azalea CTB	
B110.B(1) or GCP-O&G General Condition B110.B(1)	Firethorn CTB	
	Nandina CTB	
	Red Bud CTB	

- 122. Within thirty (30) days of the Effective Date, Ameredev shall pay a civil penalty of \$40,336,818.00.
- 123. Payment shall be made to the *State of New Mexico General Fund, NMED-Air Quality Bureau*, 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505 by certified or corporate check, or by wire transfer (ACH deposit). On the date that delivery of funds is initiated, notify the Air Quality Bureau Enforcement Manager by email at ENV-AQB.Settlement.Notification@state.nm.us and notify the Enforcement Specialist at cember.hardison@env.nm.gov

Certified or corporate checks must be sent to the following address:

New Mexico Environment Department Air Quality Bureau c/o Compliance and Enforcement Manager 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505 Wire transfers must be made to Wells Fargo Bank as follows:

Wells Fargo Bank, N.A.

100 W Washington Street, Floor 20

Phoenix, AZ 85003

Routing Transit Number: 121000248

Deposit Account Number: 4123107799

Descriptor: NMED-AQB-C&E

If Ameredev fails to make timely and complete payment of the civil penalty

pursuant to Paragraphs 101 and 102, and unless the Department and Ameredev agree to extend the

time for payment of the civil penalty, Ameredev shall pay a stipulated penalty of \$1,500.00 per

day for each day the payment is not timely or complete.

If Ameredev fails to complete the corrective actions pursuant to Paragraph 122,

and unless the Department and Ameredev agree to extend the time for completion of the

requirements, Ameredev shall pay a stipulated penalty of \$1,500.00 per day for each day each

requirement is not timely or complete.

ADMINISTRATIVE COMPLIANCE COSTS

126. The Department will invoice Ameredev in the amount of \$412,960 for

administrative compliance costs incurred to date that are associated with this matter. To the extent

that Ameredev does not resolve this matter within thirty (30) days, including the payment of the

civil penalty of \$40,336,818.00, Ameredev will continue to accrue additional administrative

compliance costs of up to \$2,400 per day.

NOTICE OF OPPORTUNITY TO ANSWER AND REQUEST A HEARING

127. Pursuant to Section 74-2-12(C) of the Act and the Department's adjudicatory

procedures at 20.1.5.200 NMAC, Ameredev may request a hearing by filing a written request for

a public hearing with the hearing clerk no later than 30 days after receipt of this Order. The request

Ameredev ACO Page 29 of 32

for hearing shall include an Answer:

a. Admitting or denying each allegation. Any allegation which is not specifically

denied shall be deemed to be admitted. Ameredev may assert that it has

insufficient knowledge of any alleged finding of fact, and such finding shall be

deemed to be denied:

b. Asserting any affirmative defense upon which Ameredev intends to rely. Any

affirmative defense not asserted in the Answer, except an affirmative defense

asserting lack of subject matter jurisdiction, shall be deemed waived.

c. Signed under oath or affirmation that the information contained therein is true

and correct to the best of the signatory's knowledge; and

d. Attaching a copy of this Order.

This Order shall become final upon Ameredev's receipt of the Order, unless 128.

Ameredev files a Request for Hearing and Answer as set forth above. Ameredev may file a Request

for Hearing and Answer at the following address:

Madai Corral, Paralegal/Hearing Clerk

Office of Public Facilitation

New Mexico Environment Department

1190 St. Francis Drive

Santa Fe, New Mexico 87505

Phone: 505-490-5803

Email: Madai.corral@env.nm.gov

129. The public hearing shall be governed by the Department's adjudicatory procedures

at 20.1.5 NMAC, a copy of which is attached to this Order as NMED Exhibit 25.

SETTLEMENT CONFERENCE

130. Ameredev may confer with the Department regarding settlement at any time, but a

settlement conference or request for a settlement shall not extend or waive the deadline for filing

a Request for Hearing or Answer. Ameredev may appear at a settlement conference either pro se or through legal counsel. The Secretary or an appropriate designee shall execute any settlement as part of a Stipulated Final Order. Any Stipulated Final Order shall resolve all issues raised in this Order, shall bind all parties to this Order, and shall not be appealable. To confer regarding settlement, contact:

Chris Vigil, Assistant General Counsel New Mexico Environment Department 121 Tijeras Ave. NE, Ste. 1000 Albuquerque, New Mexico 87102

Phone: (505) 469-4696

Email: christopherj.vigil@env.nm.gov

TERMINATION

131. This Order shall terminate upon approval of the Secretary or an appropriate designee of a Stipulated Final Order.

NEW MEXICO ENVIRONMENT DEPARTMENT

Michelle Miano Digitally signed by Michelle Miano Date: 2023.06.29 13:18:34 -06'00'	DATE:	
Michelle Miano, Director		
Environmental Protection Division		
New Mexico Environment Department		

CERTIFICATE OF SERVICE

I hereby certify that on this 29th day of June 2023, a copy of the foregoing Administrative Compliance Order was mailed via certified mail-return receipt requested and by email to:

Anthony Seach, General Counsel Ameredev II, LLC 2901 Via Fortuna, Suite 600 Austin, TX 78746 aseach@ameredev.com

/s/ Chris Vigil

Chris Vigil, Assistant General Counsel New Mexico Environment Department

Via Certified Mail 7017 2680 0001 1536 2751

May 3, 2018

Mr. Ted Schooley – Permit Programs Manager New Mexico Environment Department – Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816

RE:

Ameredev II, LLC

Amen Corner CTB

GCP-6 Application for Registration

To Whom It May Concern:

Flatrock Engineering and Environmental respectfully submits the enclosed registration for General Construction Permit GCP-6 on behalf of Ameredev II, LLC (Ameredev) to authorize the construction and operation of the Amen Corner CTB in Lea County. The facility will consist of two (2) 0.75-mmBtu/hr heater treaters, six (6) 400-bbl oil tanks, six (6) 400-bbl produced water tanks, one (1) 1,000-bbl gunbarrel tank, one (1) 750-bbl skim tank, one (1) flare, two (2) vapor recovery towers, two (2) vapor recovery units, oil and produced water loading, and fugitive emissions.

Enclosed with this letter are the GCP-6 Application for Registration form, emissions calculations, CD, and support documents along with the permit fee. If there are any questions please feel free to contact me at (405) 602-1874 or Kristin.ikard@flatrockenergy.net.

Sincerely,

Kristin Ikard

Senior Project Manager

Enclosures: Original, One (1) Copy, CD, Check

FLATROCK ENGINEERING & ENVIRONMENTAL LTD - AIR PERMITS 18615 TUSCANY STONE SUITE 200 SAN ANTONIO, TX 78258 210-569-6746 PAY TO THE ORDER OF ***Four Thousand Dollars***

1025 30-9/1140 01 04/26/2018

4,000.00

_ DOLLARS

New Mexico Environment Department United States

MEMO

Ameredev - Amen Corner GCP-6 Construction

authorized skinature

FLATROCK ENGINEERING

& ENVIRONMENTAL LTD - AIR PERMITS

1025

V000811--New Mexico Environment Department Print As: New Mexico Environment Department

Date: 04/26/2018

Bill # Reference Number Date Acct Memo Department ID Amount Entered Amount Paid Location 04/26/2018 Ameredev-100022-1--Amen Comer CTB 5110--Licenses and Fees GCP-6 Construction Permit FEE_AIR FEE \$4,000.00 \$4,000.00 Net Amount:

Page 1 of 1

FLATROCK ENGINEERING

& ENVIRONMENTAL LTD - AIR PERMITS

1025

V000811--New Mexico Environment Department Print As: New Mexico Environment Department Date: 04/26/2018

Date	Biii #	Reference Number		
Acct 04/26/2018	Ameredey-100022-1Ameri Corner CTB	Department ID	Location	Amount Entered Amount Pr
5110Licenses and Fees	GCP-6 Construction Permit	FEE_AIR	FEE	\$4,000.00 \$4,000.
Net Amount:		Andrewski Constant Constant Andrews		\$4,000.

Company Name Facility Name Application Date

Mail Application To:

New Mexico Environment Department Air Quality Bureau Technical Services Unit 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 <u>www.env.nm.gov/aqb</u>

For Department use only:

AIRS #:

AI #:

General Construction Permit (GCP-6)

Storage Vessels

Application Form (Registration Form)

(Locating outside of Bernalillo County, Tribal Lands, and City of Sunland Park)

This application is being submitted as (check all that apply):
A new GCP-6 Application Form. An update to a GCP-6 Application Form currently under NMED review. This page and all pages that are being updated are included. A notification of an administrative change to a GCP-6 Facility including: a change of owner/operator or change of contact information for any person identified in the Application Form. (Complete and submit Sections 1 and 15). No public notification is required, and no filing fees or permit fees apply. A notification of a modification to a GCP-6 Facility that includes any physical change in, or change in the method of operation of, a stationary source which results in an increase in the potential emission rate (PER) of any regulated air contaminant emitted by the source or which results in the emission of any regulated air contaminant not previously emitted. See definition of PER in Section 2 line 4 of this Application Form. (Complete and submit Sections 1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, and 15). No public notification is required, and no filing fees or permit fees apply.
Construction Status: Not Constructed Existing Permitted (or NOI) Facility Existing Non-Permitted (or NOI) Facility
Acknowledgements:
I acknowledge that a pre-application meeting is available to me upon request.
Only Storage Vessels and methods of reducing VOC emissions from Storage Vessels are allowed under the GCP-6. I acknowledge any equipment at the facility other than equipment authorized under the GCP-6 may require its own Notice of Intent (NOI) or permit under 20.2.72 NMAC. If a NOI or 20.2.72 NMAC permit is required, a separate NOI application or permit application that includes the requested allowable emissions from this GCP-6 must be submitted for the entire facility.
☐ The original signed and notarized Certification for Submittal Under GCP-6 is included.
Proof of public notice is included.
This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the current application and permit fees. To see if you qualify for SBEAP assistance and a fee reduction go to https://www.env.nm.gov/aqb/sbap/small business criteria.html
This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the current application and permit fees. To see if you qualify for SBEAP assistance go to https://www.env.nm.gov/aqb/sbap/small business criteria.html
☐ I have enclosed a check for the initial GCP-6 application fee of \$4,000. For facilities qualifying as a "small business" under 20.2.75.7.F NMAC, these fees are \$2,000, provided that NMED has a Small Business Certification Form from your company on file. This form can be found at: http://www.env.nm.gov/aqb/sbap/Small_Business Forms.html
Provide your Check Number: #1025 and Amount: \$4,000.00

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #:								
1	Facility Name: Amen Corner CTB	Plant primary SIC	Code (4 digits):								
a	Facility Street Address (If no facility street address, check here 🗵 and provide directions		ALL STATE OF THE S								
2	Plant Operator Company Name: Ameredev II, LLC	Phone/Fax: 737-3	00-4700								
a	Plant Operator Address: 5707 Southwest Parkway Building 1, Suite 275, Austin, TX 7873	5									
3	Plant Owner(s) name(s): Same as Above	Phone/Fax:									
a	Plant Owner(s) Mailing Address(s):	19-									
4	Bill To (Company): Same as Above	Phone/Fax:									
a	a Mailing Address: E-mail:										
5	□ Preparer: □ Consultant: Flatrock Engineering and Environmental Ltd. Phone/Fax: 405-602-1874										
a	E-mail:										
6	Plant Operator Contact: Same as Plant Operator Phone/Fax:										
a	a Mailing Address: E-mail:										
7	Air Permit Contact: Kristin Ikard	Title: Sr. Project	Manager								
a	E-mail: Kristin.ikard@flatrockenergy.net	Phone/Fax: 405-6	02-1874								
b	Mailing Address: 5509 Main Street, Suite 105, Del City, OK 73115										
8	Will this facility operate in conjunction with other air regulated parties on the same proper	ty? No	Yes								
0	If yes, what is the name and NOI or permit number (if known) of the other facility?										
2)	Applicability										
1	Is the facility located in Bernalillo County, on tribal lands, or in the city of Sunland Park?		⊠No □Yes								
	answered Yes to the question above, your facility does not qualify for this general construct Is the facility's SIC code 1311, 4922, or 1321?	ion permit.	□No ⊠Yes								
3	Does the regulated equipment under this GCP-6 application include any combination of A	llowable	□No ⊠Yes								
	Equipment listed in Table 102.A of the GCP-6 and Allowable Methods of Reducing VOC in Table 102.B of the GCP-6, and no others?										
4	Can the regulated equipment under this GCP-6 application comply with the total potential	emission rates in	□No ⊠Yes								
	Tables 100.A and 100.B of the GCP-6? Layman's definition: Potential Emission Rate (PE	ER) is the amount									
	of emissions a facility could emit if it did not have a permit to legally limit its emissions to The legal definition of PER can be found at 20.2.72.7 NMAC.	reduced amounts.									
5	Can the regulated equipment under this GCP-6 application comply with the allowable ann	ual total VOC	□No ⊠Yes								
6	emission limits in Table 102.A of the GCP-6? If using flare(s) or thermal oxidizer(s) in this Application Form for use under this GCP-6,	are they in	□No ⊠Yes								
	compliance with the minimum height and velocity requirements as established in Table 10 6?										
If you	answered NO to any of questions 2-6, your facility does not qualify for this general construction	ction permit.									
3)	Current Facility Status										
1	Has this facility already been constructed? ☐Yes ☒No If yes, is it currently operating	ng in New Mexico?	☐ Yes ☐ No								
2	Does this facility currently have a construction permit or Notice of Intent (20.2.72 NMAC or 20.2.73 NMAC)? ☐Yes ☒No remain active		., and whether it will								
3	Is this application in response to a Notice of Violation (NOV)? If yes, NOV da ☐Yes ☐No If so, provide current permit #:	NOV Trackin	g No.								

4)	Facility Loc	ation Info	rmat	ion			inger of the grade					
Please	use Montana's Gra	phical Locater to	o conve	rt Lat/Long to	o UTM s	ystems, found at	: http://www.esg.mo	ontana.edu/ç	Ars-data-himl			
1	a) Section: 22	e) Elevation	(ft): 2908 ft									
2	a) UTM Zone:	12 or ⊠13	b) UT	ME (to nearest	0.01 km):	661749	c) UTMN (to neares	st 0.01 km): 3:	550319			
	d) Specify which See this link for m		en.wiki	NAD 27		NAD 83		3S 84				
AND	Latitude (deg., mi	n., sec.): 32° 1'2	4.0"N	Lo	ngitude (d	leg., min., sec.):	103°15'27.7"W					
3	Name and zip cod	Name and zip code of nearest New Mexico town and/or tribal community: Jal 88252										
4	if necessary). If the	Detailed Driving Instructions including direction and distance from nearest NM town and/or tribal community (attach a road map if necessary). If there is no street address, provide public road mileage marker: Head east toward S 3 rd Street in Jal, NM, turn right onto S 3 rd Street, continue 1.3 miles. Continue onto NM-205 S/Frying Pan Rd and continue 6.5 miles. Continue 118 ft to facility on right.										
5	The facility is 7.6	(distance) miles	SW (d	irection) of Ja	al (neares	t town).						
6	Land Status of fac	cility (check one): 🛛 P	rivate 🔲 Inc	dian/Puel	olo 🗌 Governm	nent BLM	Forest Servi	ce Military			
5)	Operational	Options										
1	federally enforcea malfunction emiss emissions should greatly reducing the	able 10 VOC tpy sion requirement be entered in Ta the number of ex	malfur ts descr ble 10. cess en	nction emission ibed in Cond This option hissions report	on limit. ition A10 is highly rts require	The permittee shall 4.A of GCP-6. The recommended as a for this facility	The malfunction s it has the potential y.					
2	Redundancy Option: Checking "yes" for this option indicates that the Storage Vessels listed on Table 9 that have a requested redundant method of reducing VOC emissions will have associated federally enforceable limits and requirements in the GCP-6 permit. For these Storage Vessels, the permittee shall meet the redundancy requirements in Condition A105.B of GCP-6.											
3	enforceable condi- truck loading requ emissions should	tion for reducing irements in Corbe entered in Ta	g emiss adition able 10.	ions during tr A106.A of Go If "no" is sel	ruck load CP-6. Th	ng, and the pern e resulting reduc			□Yes			
4	entered as unreduced emissions in Table 10. LACT Unit Option: Checking "yes" for this option indicates this facility operates a LACT unit and shall not vent emissions to the atmosphere under normal operation of the LACT unit, and the permittee shall meet the LACT unit requirements in Condition A106.B of GCP-6. Routine and predictable truck loading emissions that occur when the LACT unit is not operating should be entered in Table 10. Select "no" if there is not a LACT unit at this facility.								∐Yes			
6)	Other Facili	ty Informa	ation									
1	Maximum propose	ed annual throug	ghput					or	: 730,000			
2	The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. MMscf/yr:											
7)	Submittal R	equireme	nts									
1	Include one hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except landscape tables, which should be head-to-head. If 'head-to-toe printing' is not possible, print single sided. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process.											
2		ng hard copy fo	r Depar	tment use. T	his copy	does not need to	be 2-hole punched.	□No	⊠Yes			
3	The entire application package should be submitted electronically on one compact disk (CD). Include a single PDF document of the entire application as submitted and the individual documents comprising											

torage essel o.	Requesting Emissions Reduction? Yes or No	Materials Stored	Date Installed (MM/DD/YY)	Capacity (bbl)	Diameter (M)	Height (M)	True Vapor Pressure (kPa)	Annual Throughput (gal/yr)	Annual Turnovers
K-1	Yes	Crude Oil	04/2018	500	4.724	4.8768	4.4024	5,110,000	241.35
K-2	Yes	Crude Oil	04/2018	500	4.724	4.8768	4.4024	5,110,000	241.35
K-3	Yes	Crude Oil	04/2018	500	4.724	4.8768	4.4024	5,110,000	241.35
K-4	Yes	Crude Oil	04/2018	500	4.724	4.8768	4.4024	5,110,000	241.35
K-5	Yes	Crude Oil	04/2018	500	4.724	4.8768	4.4024	5,110,000	241.35
K-6	Yes	Crude Oil	04/2018	500	4.724	4.8768	4.4024	5,110,000	241.35
K-7	Yes	Prod. Water	04/2018	500	4.724	4.8768	0.3931	5,110,000	238.26
K-8	Yes	Prod. Water	04/2018	500	4.724	4.8768	0.3931	5,110,000	238.26
K-9	Yes	Prod. Water	04/2018	500	4.724	4.8768	0.3931	5,110,000	238.26
K-10	Yes	Prod. Water	04/2018	500	4.724	4.8768	0.3931	5,110,000	238.26
K-11	Yes	Prod. Water	04/2018	500	4.724	4.8768	0.3931	5,110,000	238.26
K-12	Yes	Prod. Water	04/2018	500	4.724	4.8768	0.3931	5,110,000	238.26
K-13	No	Crude Oil	04/2018	1,000	4.724	9.144	4.4024	30,660,000	749.01
K-14	No	Crude Oil	04/2018	750	4.724	7.3152	4.4024	30,660,000	944.40
									+

9) Emission Reduction Method Selection Table and Calculation Tool for Storage Vessels

Section 9: Emission Reduction Calculation Table

Version: 11/21/2013

Add Del Row	Unit No.	Program Used	Calculated Emission Rate (TPY)	Primary Reduction Device (PRD)	Primary Reduction %	Redundant Reduction Device (RRD)	Redundant Reduction % (if Selected)	
#=	TK-1	HYSIS	42.2	Flare with 98% reduction efficiency*	98	Flare with 98% reduction efficiency*	98	0.844
+	TK-7	HYSIS	0.13	Flare with 98% reduction efficiency*	98	Flare with 98% reduction efficiency*	98	0.0026
+ -	TK-1	HYSIS	28.98	Flare with 98% reduction efficiency*	98	Flare with 98% reduction efficiency*	98	0.5796
+	TK-12	HYSIS	23.4	Flare with 98% reduction efficiency*	98	Flare with 98% reduction efficiency*	98	0.468
		A					Total	1.8942

Notes: Calculation assumes that the PRD is operating 95% of the time (8,322 hours/year) and if a RRD is present, it is operating only when the PRD is down (5% of the time (438 hours/year)).

^{*} Requires documentation supporting 98% reduction efficiency

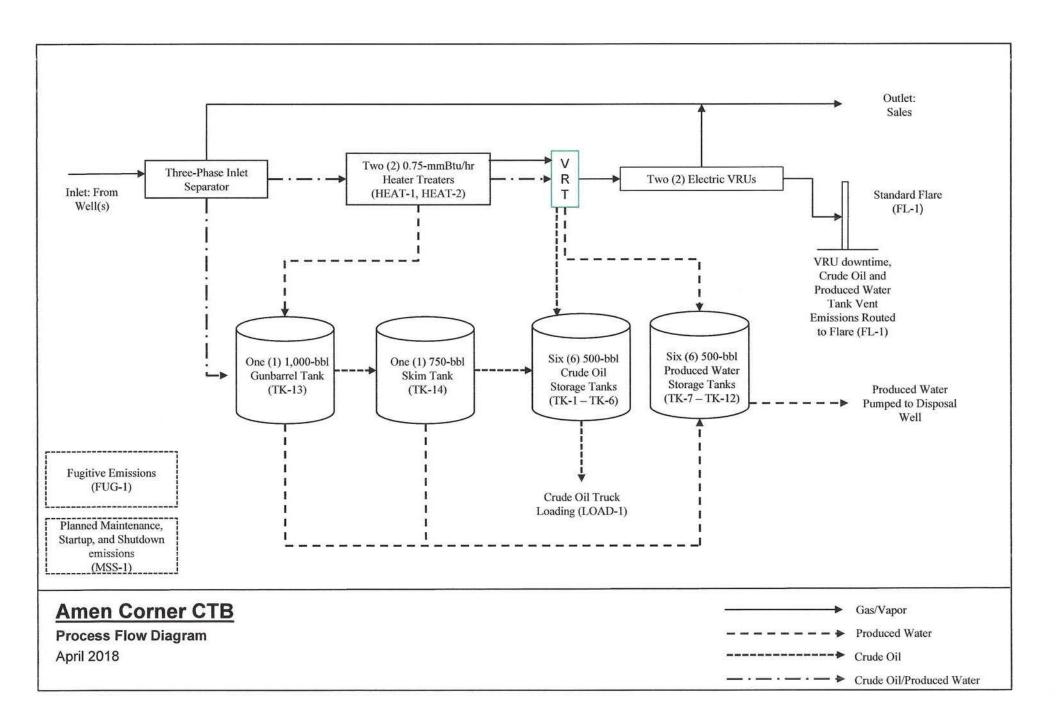
10) Annual Total Emissions For Storage Vessels that have an emissions reduction device(s), enter the requested allowable emissions limit (the reduced emissions) in this table. For Storage Vessels that do not have a reduction device, enter unreduced emissions in this table. For all emission reduction devices, enter the emissions in this table. If the Malfunction Option was selected in Section 5, enter a unit "Malf" with a limit of 10 tons per year (no lb/hr). If the Truck Loading Option was selected in Section 5, enter the reduced truck loading emissions as calculated in the All Calculation Section of this application. (If the Truck Loading Option was not selected, enter the unreduced truck loading emissions here.) If the LACT Unit Option was selected in Section 5, enter truck loading emissions that occur when the LACT unit is not operating. Total all values in the bottom row of this table. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed with a minimum of two significant figures. If there are any significant figures to the left of a decimal point, there shall be no more than one significant figure to the right of the decimal point. Please do not change the column widths on this table.

The annual total VOC emission limit in the bottom row is less than 79 tpy for the combined total VOC allowable emission rate from all Storage Vessels and truck loading.

** ** **	N	Ox	C	0	V	OC	S	Ox	TS	\mathbf{P}^2	PN	110^{2}	PM	2.5^{2}	H	S ₂ S	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HEAT-1	0.07	0.32	0.06	0.27	< 0.01	0.02	< 0.01	< 0.01	0.01	0.02	0.01	0.02	0.01	0.02	5,75	-	o ≡ o	-
HEAT-2	0.07	0.32	0.06	0.27	< 0.01	0.02	< 0.01	< 0.01	0.01	0.02	0.01	0.02	0.01	0.02	12			-
TK-1 – TK-6	3	141	-		*	*	0=0	-	=	-	3.€0	-	#0	(e)	3 .	(A)		-
TK-7 - TK-12	-	-	- +	-	*	*	-	-	-	-	-	-	-	-	1.0	(4)	1	-
TK-13) = //	-		/#.	*	*	5 = 8	-	-		-	-	3 7 .0	×-	(≔)	,#O	-	-
TK-14	-		113	-	*	*	174		-	1.5°	7	i i	70 11	-	V.=	17)	•	-
LOAD-1	-	-	2	-	39.1	51.0	141	-	-	-		-	20	-	12	120	220	2
FL-1	0.53	0.63	2.4	2.8	7.2	6.2	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-	-	
FUG-1	-	-	15	(*	2.8	12.2	: = :	-	-	2.52	453			-	2 7	1753		-
MSS-1	-	-			93.6	0.61	*			+	*	*	#	-	- 4			
									E TE						Fair	NI EN IN		
			h i san		FEXE											T-TAF	n ta	
						(
*Tank emi	ssions re	presented a	at the flar	e.														
																		LF:
Totals	0.67	1.3	2.5	3.4	142.9	71.2	<0.01	<0.01	0.01	0.05	0.01	0.05	0.01	0.05	T XM	V S 1		-

¹ Significant Figures Examples: One significant figure – 0.03, 3, 0.3. Two significant figures – 0.34, 34, 3400, 3.4

² Condensables: Include condensable particulate matter emissions in particulate matter calculations.

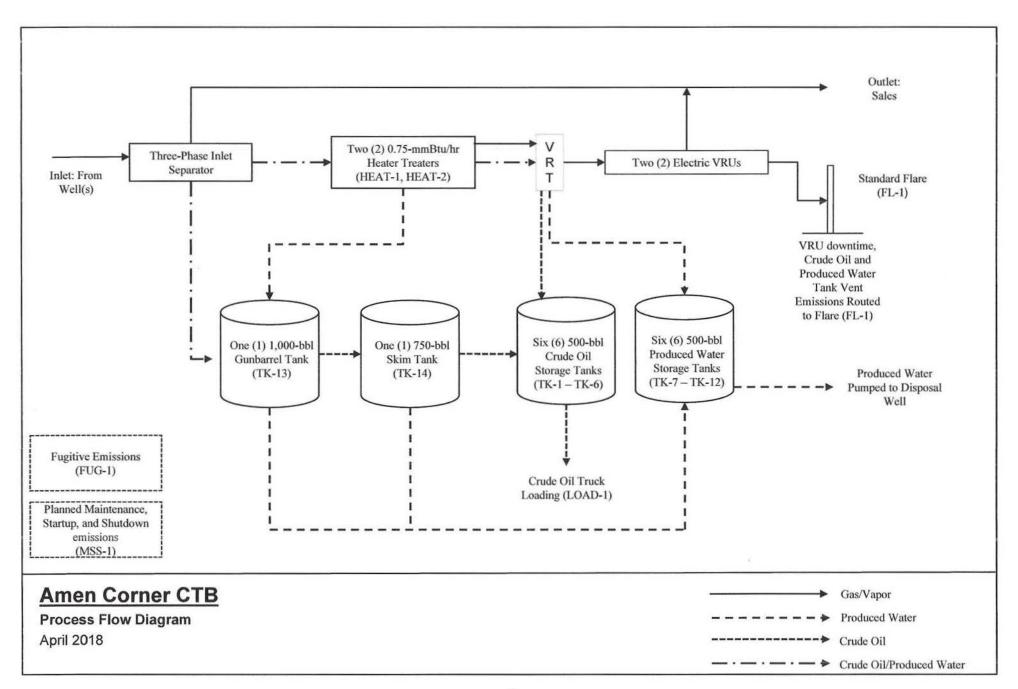

11) Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a brief description of the facility and its process. Also, describe how each piece of equipment will be operated, how methods of reducing VOC emissions will be used, the fate of both the products and emissions generated, and the air quality permit numbers associated with this site. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Ameredev II, LLC (Ameredev) submits this General Construction Permit (GCP-6) application pursuant to 20.2.72 NMAC for the construction of the Amen Corner CTB in Lea County. The facility will consist of two (2) 0.75-mmBtu/hr heater treaters, six (6) 500-bbl condensate tanks, six (6) 500-bbl produced water tanks, one (1) 1,000-bbl gunbarrel storage tank, one (1) 750-bbl skim tank, one (1) flare for tank control, two (2) electric-driven vapor recovery units, two (2) vapor recovery towers, condensate truck loading, fugitive emissions, and planned maintenance, startup, and shutdown (MSS) emissions.

A description of the facility process is as follows: The inlet stream from area well(s) enters the facility through a three-phase inlet separator. Gas from the separator exits the facility via pipeline, a produced water and crude oil stream is routed to the gunbarrel tank and a crude oil and gas is routed to the heater treaters. Gas and crude oil from the heater treaters passes through the vapor recovery towers with emissions controlled by the vapor recovery units. Crude oil and produced water from the inlet separator, vapor recovery towers, the skim tank, and the gunbarrel tank are stored in six (6) 500-bbl crude oil storage tanks and six (6) 500-bbl produced water storage tanks. Tank emissions are routed to the flare for control with 98% destruction efficiency.

Truck loading for the crude oil also takes place at the facility, as well as emissions from fugitive sources and maintenance, startup, and shutdown.


11) Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a brief description of the facility and its process. Also, describe how each piece of equipment will be operated, how methods of reducing VOC emissions will be used, the fate of both the products and emissions generated, and the air quality permit numbers associated with this site. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Ameredev II, LLC (Ameredev) submits this General Construction Permit (GCP-6) application pursuant to 20.2.72 NMAC for the construction of the Amen Corner CTB in Lea County. The facility will consist of two (2) 0.75-mmBtu/hr heater treaters, six (6) 500-bbl condensate tanks, six (6) 500-bbl produced water tanks, one (1) 1,000-bbl gunbarrel storage tank, one (1) 750-bbl skim tank, one (1) flare for tank control, two (2) electric-driven vapor recovery units, two (2) vapor recovery towers, condensate truck loading, fugitive emissions, and planned maintenance, startup, and shutdown (MSS) emissions.

A description of the facility process is as follows: The inlet stream from area well(s) enters the facility through a three-phase inlet separator. Gas from the separator exits the facility via pipeline, a produced water and crude oil stream is routed to the gunbarrel tank and a crude oil and gas is routed to the heater treaters. Gas and crude oil from the heater treaters passes through the vapor recovery towers with emissions controlled by the vapor recovery units. Crude oil and produced water from the inlet separator, vapor recovery towers, the skim tank, and the gunbarrel tank are stored in six (6) 500-bbl crude oil storage tanks and six (6) 500-bbl produced water storage tanks. Tank emissions are routed to the flare for control with 98% destruction efficiency.

Truck loading for the crude oil also takes place at the facility, as well as emissions from fugitive sources and maintenance, startup, and shutdown.

12) Proof of Public Notice

General Posting of Notice

GCP-6 Application Form vsn: 1/1/2017

I, Shane McNeely		the undersigned, c	ertify that on
5/5/18	(DATE), I posted a tru	e and correct copy	of the attached Public Notice in a
publicly accessible and co	onspicuous place, visi	ble from the neare	st public road, at the entrance of
the property on which the			AND THE SECOND S
• • .*	# 12 (% 1&)	eti.	
Signed this _5 th day	y of May	2018	
3h mm	7		5/5/18 Date
Signature	<i>y</i>		Date
Dignature			Bute
Shane McNeely	Engineer		
Printed Name	Title {APPLICA	NT OR RELATIO	NSHIP TO APPLICANT)
copy of the a publication title	dvertisement include e.	s the header shows	ement is attached. The original owing the date and newspaper of
published is at	tached. The affidavit	includes the date	of the advertisement's publication
She 4	19		5/5/18
Signature			Date
Shane McNeely	Engineer	-	
Printed Name	Title {APPLICA	NT OR RELATIO	NSHIP TO APPLICANT}

9 of 14

GCP-6 PUBLIC NOTICE

20.2.72 NMAC - General Permits, Section 220.A(2)(b)ii

NOTICE

Ameredev II, LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-6 Tank Battery). The name of this facility is Amen Corner CTB. The expected date of the submittal of our application for an air quality permit to the Air Quality Bureau is April 2018. This notice is a requirement according to New Mexico air quality regulations.

The exact location of the facility is/will be UTM Zone 13N, UTM Easting 661749, UTM Northing 3550319. The approximate location of this site is 7.6 miles southwest of Jal, New Mexico in Lea County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

		Tons Per Year (TPY)
1.	Nitrogen Oxides (NO _x)	25
2.	Carbon Monoxide (CO)	25
3.	Volatile Organic Compounds (VOC)	79
4.	Particulate Matter (PM10)	25
5.	Particulate Matter (PM2.5)	25
6.	Total Suspended Particulates	25
7.	Sulfur Dioxide (SO ₂)	25
8.	Hydrogen Sulfide (H2S)	5
9.	Any one (1) Hazardous Air Pollutant (HAP)	10
10.	Sum of all Hazardous Air Pollutants (HAPs)	25

The owner and/or operator of the Plant is:

Ameredev II, LLC, 5707 Southwest Parkway, Building 1, Suite 275, Austin, TX 78735

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department
Air Quality Bureau
Technical Services Unit
525 Camino de los Marquez, Suite 1
Santa Fe, New Mexico, 87505
Phone (505) 476-4300
Fax (505) 476-4375 www.env.nm.gov/aqb
Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice.

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non- discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination.

11

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated April 25, 2018 and ending with the issue dated April 25, 2018.

Publisher

Sworn and subscribed to before me this 25th day of April 2018.

Business Manager

My commission expires

January 29, 2019

OFFICIAL SEAL GUSSIE BLACK Notary Public My Commission Expires 1-29-19

This newspaper is duly qualified to publish. legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE April 25, 2018

NOTICE

Ameredev II, LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-6 Tank Battery). The name of this facility is Amen Corner CTB. The expected date of the submittal of our application for an air quality permit to the Air Quality Bureau is April 2018. This notice is a requirement according to New Mexico air quality regulations.

The exact location of the facility is/will be UTM Zone 13N, UTM Easting 661749, UTM Northing 3550319. The approximate location of this site is 7.6 miles southwest of Jal, New Mexico in Lea County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

	Tons Per Year (TPY))
Nitrogen Oxides (NOx)	25
2. Carbon Monoxide (CO)	25
Volatile Organic Compounds (VOC)	79
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Total Suspended Particulates	25
7. Sulfur Dioxide (SO2)	25
8. Hydrogen Sulfide (H2S)	5
9. Any one (1) Hazardous Air Pollutant (HAP)	10
10. Sum of all Hazardous Air Pollutants (HAP	

The owner and/or operator of the Plant is: Ameredev II, LLC, 5707 Southwest Parkway, Building 1, Suite 275, Austin, TX 78735

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Technical Services Unit 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit application at the time of this notice.

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor de comunicarse con la oficina de Calidad de Aire al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7 including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, New Mexico Environment Department, 1190 St. Francis Dr., Suite N4050, P.O., Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. If you believe that you have been discriminated against with respect to a NMED program or activity, you may contact the Non-Discrimination Coordinator identified above or visit our website at https://www.env.nm.gov/NMED/EJ/index.html to learn how and where to file a complaint of discrimination. #32747

02108435

00210660

MARK MARTELLI FLATROCK ENGINEERING & ENVIRON. 9341 E. LAKE HIGHLANDS DR. DALLAS, TX 75218

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated April 25, 2018 and ending with the issue dated April 25, 2018.

Publisher

Sworn and subscribed to before me this 25th day of April 2018.

Business Manager

My commission expires

January 29 (Seal)

OFFICIAL SEAL **GUSSIE BLACK** Notary Public State of New Mexico My Commission Expires 29-1

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE

You and each case on or before default and the re attorneys are Ten Mexico

Witness the h day of March, 201

Ameredev II, LLC announces its intent to apply to the New Mexico Environment Depar Construction Permit, (GCP-6 Tank Battery). The name of this facility is Amen Corner submittal of our application for an air quality permit to the Air Quality Bureau is April 20 according to New Mexico air quality regulations.

#32675

The exact location of the facility is/will be UTM Zone 13N, UTM Easting 661749, UTM No location of this site is 7.6 miles southwest of Jal, New Mexico in Lea County. The standard will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Ameredev II, LL Department for a name of this facili

- 1. Nitrogen Oxides (NO_x)
- 2. Carbon Monoxide (CO)
- 3. Volatile Organic Compounds (VOC)
- Particulate Matter (PM10) 4.
- 5. Particulate Matter (PM2.5)
- **Total Suspended Particulates** 6.
- 7. Sulfur Dioxide (SO₂)
- Hydrogen Sulfide (H2S)
- Any one (1) Hazardous Air Pollutant (HAP) 9
- Sum of all Hazardous Air Pollutants (HAPs) 10.

The owner and/or operator of the Plant is: Ameredev II, LLC, 5707 Southwest Parkway, Building 1, Suite 275, Austin, TX 78735

If you have any questions or comments about construction or operation of above facility made as a part of the permit review process, you must submit your comments in writing to

New Mexico Environment Department Air Quality Bureau Technical Services Unit 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this Please refer to the since the Department may not have received the permit application at the time of this noti

Este es un aviso de la Agencia de Calidad de Aire del Departamento de Medio Ambien emisiones producidas por un establecimiento en esta área. Si usted desea información en con la oficina de Calidad de Aire al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, ag regulations. NMED is responsing regulati Amendments of 1972. If you have any questions about this notice or any of NMED's n or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, N. Suite N4050, or procedures, you may contact: Kristine Pintado, Non-Discrimination Coordinator, Non-Piscrimination Coordinator (Non-Piscrimination) and Coordinator (Non-Pisc

Tons Pe for an air quality p according to New The exact locatic Northing 3550319 Mexico in Lea Co

Air emissions of a

1. Nitrogei

- 3. Volatile 4. Particul
- Particul 6. Total St 7. Sulfur E
- Any on 10. Sum o

The owner and/or Ameredev II, LLC If you have any q and want your co

submit your com

New Mexico Envir Air Quality Bureau Technical Service 525 Camino de lo: Santa Fe, New Me Phone (505) 476-4 Fax (505) 476-437 Other comments a

this notice along permit application

discrimination programmination Cool

02108435

00210636

MARK MARTELLI FLATROCK ENGINEERING & ENVIRON. 9341 E. LAKE HIGHLANDS DR. DALLAS, TX 75218

13) All Calculations

Show all calculations used to determine the total VOC allowable emission rate from all Storage Vessels. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula.

Storage Vessel Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate Storage Vessel flashing emissions, accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. Refer to Startup, Shutdown, and Scheduled Maintenance (SSM) in Permitting Section Guidance and Procedures (http://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions on calculating SSM emissions.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Methods of Reducing Emissions: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all methods of reducing emissions and list each pollutant reduced by the method regardless of whether the applicant takes credit for the reduction in emissions or not. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. This information is necessary to determine if federally enforceable conditions are necessary for the method of reducing emissions, and/or if the method produces its own regulated pollutants or increases emission rates of other pollutants.

Ameredev II, LLC Amen Corner CTB Summary of Criteria Air Pollutant and H₂S Emissions

Equipment	Unit ID	N	Ox	(00	VC	oc¹	S	O ₂	F	PM	ł.	I ₂ S
Equipment	Onicio	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
0.75-mmBtu/hr Heated Separator	HEAT-1	0.07	0.32	0.06	0.27	<0.01	0.02	<0.01	<0.01	0.01	0.02	-	-
0.75-mmBtu/hr Heated Separator	HEAT-2	0.07	0.32	0.06	0.27	<0.01	0,02	<0.01	<0.01	0.01	0.02		-
Six (6) 500-bbl Crude Oil Storage Tanks	TK-1 - TK-6	¥II	2	-	2	•		-	- 20	(a)		(6)	(2)
Six (6) 500-bbl Produced Water Storage Tanks	TK-7 - TK-12	2	120		-	•		-			-		140
One (1) 1,000-bbl Gunbarrel Storage Tank	TK-13		327	-	12	:•::		-				*	- 14
One (1) 750-bbl Skim Tank	TK-14	-	: e		18			(*)					
Crude Oil Truck Loading	LOAD-1	-		-		39.09	51.03		*	-	-		
Standard Flare	FL-1	0.53	0.63	2.40	2.84	7.39	7.26	<0.01	<0.01	<0.01	<0.01		-
Fugitive Emissions	FUG-1		- 35	-	-	2.80	12.24	-	-	-		3.5%	31
Planned Maintenance, Startup, Shutdown (MSS) Activities	MSS-1				-	93.61	0.61			-	-	•	
	Total =	0.67	1.28	2.52	3.38	142.89	71.17	<0.01	<0.01	0.01	0.05		

^{*}Crude oil and produced water storage tanks' emissions are routed to and reported under FL-1.

Ameredev II, LLC Amen Corner CTB Summary of Hazardous Air Pollutants

						Estima	ated Emissions	(lb/hr)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Other HAP	Total HAP
0.75-mmBtu/hr Heated Separator	HEAT-1			<0.01		<0.01	-	<0.01	<0.01	-	<0.01	<0.01
0.75-mmBtu/hr Heated Separator	HEAT-2			<0.01	-	<0.01	-	<0.01	<0.01		<0,01	<0.01
Six (6) 500-bbl Crude Oil Storage Tanks	TK-1 - TK-6	-	140	1.5		-	190		•	•		
Six (6) 500-bbl Produced Water Storage Tanks	TK-7 - TK-12		19 4 31	•	•	-	-			•	•	
One (1) 1,000-bbl Gunbarrel Storage Tank	TK-13	5				-	*.	•				•
One (1) 750-bbl Skim Tank	TK-14	3-	120	:*:		-			•			
Crude Oil Truck Loading	LOAD-1	-		0.11	0.01	-	(#:	0.92	0.24	0.15	0.06	1.49
Standard Flare	FL-1	-		0.06	0.02			0.32	0.08	0.04	<0.01	0.52
Fugitive Emissions	FUG-1	9	-	0.02	0.03			0.08	0.06	0,08	<0.01	0.26
Planned Maintenance, Startup, Shutdown (MSS) Activities	MSS-1		100	0.88	0.24	-	-	4.49	1.19	0.54	0.02	7.36
	Total =			1.07	0.29	<0.01		5.80	1.58	0.81	0.08	9.63

						Estimat	ed Emissions	(tons/yr)				
Equipment	Unit ID	Acetalde- hyde	Acrolein	Benzene	Ethyl- benzene	Formalde- hyde	Methanol	n-Hexane	Toluene	Xylenes	Other HAP	Total HAP
0.75-mmBtu/hr Heated Separator	HEAT-1	-		<0.01		<0.01		0.01	<0.01	-	<0.01	0,01
0.75-mmBtu/hr Heated Separator	HEAT-2	%	·	<0.01	-	<0.01	587	0.01	<0.01		<0.01	0.01
Six (6) 500-bbl Crude Oil Storage Tanks	TK-1 - TK-6	g e	: * :				*			•		
Six (6) 500-bbl Produced Water Storage Tanks	TK-7 - TK-12		75		•	-	-	•	•			
One (1) 1,000-bbl Gunbarrel Storage Tank	TK-13	21					-		*		3.00	
One (1) 750-bbl Skim Tank	TK-14		583	÷		-		•		*	•	
Crude Oil Truck Loading	LOAD-1			0.15	0.01	-		1.20	0.31	0.19	0.08	1.94
Standard Flare	FL-1	3	•	0.02	0,03			0.41	0.05	0.02	0.02	0.55
Fugitive Emissions	FUG-1	(4)		0.07	0.13			0.34	0.26	0.35	<0.01	1.15
Planned Maintenance, Startup, Shutdown (MSS) Activities	MSS-1	*		0.01	<0.01	-	•	0.03	0.01	<0.01	<0.01	0.05
	Total =			0.25	0.17	<0.01		1.99	0.62	0.57	0,10	3.70

^{*}Crude oil and produced water storage tanks' emissions are routed to and reported under FL-1.

Ameredev II, LLC Amen Corner CTB Heater Emissions Calculations - Criteria Air Pollutants

Equipment Information

Unit ID:	HEAT-1	HEAT-2
Description:	Heater Treater	Heater Treater
Combustor Type:	Uncontrolled	Uncontrolled
Burner Design (mmBtu/hr):	0.75	0.75
Annual Fuel Use (mmscf)	5.28	5.28
Fuel HHV (Btu/scf):	1,243	1,243
Annual Operating Hours:	8,760	8,760

Criteria Air Pollutant Emissions

Unit ID:

HEAT-1

HEAT-2

Pollutant	lb/hr	tons/yr	lb/hr	tons/yr
NOx	0.07	0.32	0.07	0.32
co	0.06	0.27	0.06	0.27
VOC	<0.01	0.02	<0.01	0.02
SO ₂	<0.01	<0.01	<0.01	<0.01
PM _{10/2.5}	<0.01	0.02	<0.01	0.02
PM _{COND}	<0.01	0.01	<0.01	0.01
PM _{TOT}	0.01	0.02	0.01	0.02

AP-42 Emission Factors for Units <100 mmBtu/hr (lb/mmBtu)^{1, 2}

Uncontrolled

Pollutant	1.4-1, -2 (7/98)
NOx	9.80E-02
co	8.24E-02
VOC	5.39E-03
SO ₂	5.88E-04
PM _{10/2.5}	5.59E-03
PM _{COND}	1.86E-03
PM _{TOT}	7.45E-03

Notes:

- To account for variation in fuel higher heating value (HHV), published AP-42 factors have been converted to lb/mmBtu by dividing by AP-42 average HHV of 1,020 Btu/scf.
- 2) All PM (total, condensable and filterable) is assumed to be <1 micrometer in diameter. Total PM is the sum of filterable PM and condensable PM.

Ameredev II, LLC Amen Corner CTB Heater Emissions Calculations - Hazardous Air Pollutants

Equipment Information

Unit ID:	HEAT-1	HEAT-2
Description:	Heater Treater	Heater Treater
Combustor Type:	Uncontrolled	Uncontrolled
Burner Design (mmBtu/hr):	0.75	0.75
Annual Fuel Use (mmscf)	5.28	5.28
Fuel HHV (Btu/scf):	1,243	1,243
Annual Operating Hours:	8,760	8,760

Hazardous Air Pollutant Emissions

Unit ID:

HEAT-1

HEAT-2

Pollutant	lb/hr	tons/yr	lb/hr	tons/yr
Benzene	<0.01	<0.01	<0.01	<0.01
Formaldehyde	<0.01	<0.01	<0.01	<0.01
n-Hexane	<0.01	0.01	<0.01	0.01
Toluene	<0.01	<0.01	<0.01	<0.01
Other HAP	<0.01	<0.01	<0.01	<0.01
Total HAP =	<0.01	0.01	<0.01	0.01

AP-42 Emission Factors (Ib/mmBtu)1

Pollutant	1.4-3 (7/98)
Benzene	2.06E-06
Formaldehyde	7.35E-05
n-Hexane	1.76E-03
Toluene	3.33E-06
Other HAP	1.86E-06

Notes:

- To account for variation in fuel higher heating value (HHV), published AP-42 factors have been converted to lb/mmBtu by dividing by AP-42 average HHV of 1,020 Btu/scf.
- 2) Published AP-42 emission factors may be converted to other heating values by multiplying the given emission factor by the ratio of the specified heating value to the average heating value.

Equipment Information

Unit ID:	TK-1 - TK-6	TK-7 - TK-12	TK-13	TK-14
Contents ¹ :	Crude Oil	Produced Water	Curde Oil (Gunbarrel)	Crude Oil (Skim Tank)
Number of Tanks:	6	6	1	1
Modeled Tank Color:	Gray/Light	Gray/Medium	Gray/Medium	Gray/Medium
Capacity (bbl):	500	500	1,000	750
Capacity (gal): Total:	21,000	21,000	42,000	31,500
Annual Throughput (bbl/yr):	730,000	730,000	730,000	730,000
Annual Throughput (gal/yr):	30,660,000	30,660,000	30,660,000	30,660,000
Daily Throughput (bbl/d): Per Tank:	2,000.00	2,000.00	2,000.00	2,000.00
Annual Throughput (bbl/yr):	121,667	121,667	730,000	730,000
Annual Throughput (gal/yr):	5,110,000	5,110,000	30,660,000	30,660,000
Daily Throughput (bbl/d):	333.33	333.33	2,000.00	2,000.00
TANKS 4.0.9d Working Losses (lb/yr):	10,597.83	200.69	45,175.53	43,364.57
TANKS 4.0.9d Breathing Losses (lb/yr):	3,051.37	67.33	3,628.13	3,441.06
Control Type:	FL-1	FL-1	FL-1	FL-1
Capture Efficiency:	100%	100%	100%	100%
Control Efficiency	98%	98%	98%	98%

Uncontrolled VOC Emissions²

Unit ID: TK-1 - TK-6 TK-7 - TK-12 TK-14 TK-13

Emissions	Avg. lb/hr3	tons/yr						
Wor	ting 7.26	31.79	0.14	0.60	5.16	22.59	4.95	21.68
Breat	ning 2.09	9.15	0.05	0.20	0.41	1.81	0.39	1.72
Flas	ning 48.46	212.24			1.05	4.58		
Tota	1 = 57.80	253.19	0.18	0.80	6.62	28.98	5.34	23.40
Per Tan	k = 9.63	42.20	0.03	0.13	6.62	28.98	5.34	23.40

Controlled VOC Emissions

Unit	ID: <u>TK-</u>	1 - TK-6	TK-7 - TK-12		TK-13		TK-14	
Emissions	Avg. lb/hr³	tons/yr	Avg. lb/hr ³	tons/yr	Avg. lb/hr³	tons/yr	Avg. lb/hr³	tons/yr
Work	ing 0.15	0.64	<0.01	0.01	0.10	0.45	0.10	0.43
Breath	ing 0.04	0.18	<0.01	<0.01	0.01	0.04	0.01	0.03
Flash	ing 0.97	4.24		-	0.02	0.09		
Tota	1.16	5.06	<0.01	0.02	0.13	0.58	0.11	0.47
Per Tank	= 0.19	0.84	<0.01	< 0.01	0.13	0.58	0.11	0.47

Notes:
1) Produced water is conservatively assumed to contain 1% crude oil modeled as Gasoline RVP 7.
2) Working and breathing calculated using EPA TANKS 4.0.9d. Flashing calculated with process simulation software. Produced Water flashing represented at the Gunbarrel Tank; Crude Oil flashing represented at the Crude Oil Tanks.
3) Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

Equipment Information

Unit ID:	TK-1 - TK-6	TK-7 - TK-12	TK-13	TK-14
Contents:	Crude Oil	Produced Water	Curde Oil (Gunbarrel)	Crude Oil (Skim Tank)
Number of Tanks:	6	6	1	1
Capacity (bbl):	500	500	1,000	750
Capacity (gal):	21,000	21,000	42,000	31,500
Total:				
Annual Throughput (bbl/yr):	730,000	730,000	730,000	730,000
Annual Throughput (gal/yr):	30,660,000	30,660,000	30,660,000	30,660,000
Daily Throughput (bbl/d):	2,000.00	2,000.00	2,000.00	2,000.00
Per Tank:				
Annual Throughput (bbl/yr):	121,667	121,667	730,000	730,000
Annual Throughput (gal/yr):	5,110,000	5,110,000	30,660,000	30,660,000
Daily Throughput (bbl/d):	333.33	333.33	2,000.00	2,000.00
Control Type:	FL-1	FL-1	FL-1	FL-1
Capture Efficiency:	100%	100%	100%	100%
Control Efficiency	98%	98%	98%	98%
Tank Vapor VOC% 3;	78.16%	78.16%	78.16%	78.16%

TK-7 - TK-12

<0.01

0.03

0.01

TK-13

0.05

1.10

0.18

0.01

0.25

0.04

TK-14

0.04

0.89

0.89

0.01

0.20

0.20

Uncontrolled Hydrogen Sulfide and Hazardous Air Pollutant Emissions

Unit ID:

TK-1 - TK-6

0.40

9.65

1.61

Pollutant	Avg. lb/hr ²	tons/yr	Avg. lb/hr ²	tons/yr	Avg. lb/hr4	tons/yr	Avg. lb/hr ²	tons/yr
Total Tank Vapors =	73.96	323.93	0.23	1.03	8.47	37.08	6.84	29.94
Total VOC =	57.80	253.19	0.18	0.80	6.62	28.98	5.34	23.40
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
n-Hexane	1.36	5.95	<0.01	0.02	0.16	0.68	0.13	0.55
Benzene	0.17	0.73	<0.01	<0.01	0.02	0.08	0.02	0.07
Toluene	0.36	1.56	<0.01	<0.01	0.04	0.18	0.03	0.14
Ethylbenzene	0.01	0.05	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
Xylenes	0.22	0.95	<0.01	< 0.01	0.02	0.11	0.02	0.09

< 0.01

0.01

<0.01

Estimated H₂S and HAP Composition (% by Weight)

2,2,4-Trimethylpentane

Total HAP =

Per Tank =

Pollutant	Wt%
Hydrogen Sulfide	0.0000%
n-Hexane	1.8360%
Benzene	0.2265%
Toluene	0.4817%
Ethylbenzene	0.0161%
Xylenes	0.2938%
2,2,4-Trimethylpentane	0.1239%
Total HAP =	2.9781%

Notes:

0.09

2.20

0.37

¹⁾ VOC emissions calculated in Criteria Air Pollutant calculations.

²⁾ Due to variable short-term emission rates, average lb/hr based on annual emissions shown for reference only.

Ameredev II, LLC Amen Corner CTB Flashing Emissions - Process Simulation

Aspen HYSYS Results¹

		2000.00	bbl/day	2000.00	bbl/day	
	Weight	Flash	Stream	VRT	Stream	
Pollutant	Fraction	lb/hr	TPY	lb/hr	TPY	
Water	0.0186	0.94	4.10	7.57	33.13	
Hydrogen Sulfide	0.0000	0.00	0.00	0.00	0.00	
Carbon Dioxide	0.0000	0.00	0.00	0.00	0.00	
Nitrogen	0.0000	0.00	0.00	0.00	0.00	
Helium	0.0000	0.00	0.00	0.00	0.00	
Oxygen	0.0000	0.00	0.00	0.00	0.00	
Methane	0.0000	0.00	0.00	0.36	1.56	
Ethane	0.0173	0.87	3.81	6.78	29.71	
Propane	0.1271	6.39	27.98	42.16	184.67	
Isobutane	0.0507	2.55	11.16	15.96	69.92	
n-Butane	0.1922	9.66	42.32	59.87	262.24	
Isopentane	0.0965	4.85	21.25	29.54	129.39	
n-Pentane	0.1127	5.66	24.80	34.39	150.63	
Cyclopentane	0.0000	0.00	0.00	0.00	0.00	
n-Hexane	0.0470	2.36	10.34	14.26	62.45	
Cyclohexane	0.0000	0.00	0.00	0.00	0.00	
Other Hexanes	0.2001	10.06	44.04	60.82	266.39	
Heptanes	0.0739	3.72	16.27	22.42	98.21	
Benzene	0.0093	0.47	2.04	2.81	12.33	
Toluene	0.0125	0.63	2.75	3.79	16.61	
Ethylbenzene	0.0026	0.13	0.56	0.78	3.40	
Xylenes	0.0058	0.29	1.27	1.75	7.68	
Octanes	0.0210	1.06	4.62	6.38	27.94	
2,2,4-Trimethylpentane	0.0000	0.00	0.00	0.00	0.00	
Nonanes	0.0074	0.37	1.63	2.25	9.85	
Decanes+	0.0054	0.27	1.18	1.64	7.19	
Total =	1.0000	50.26	220.14	313.54	1,373.30	
Total VOC =	0.9641	48.46	212.24	298.83	1,308.89	
Total HAP =	0.0771	3.88	16.97	23.39	102.46	

Ameredev II, LLC Amen Corner CTB Flashing Emissions - Process Simulation

Aspen HYSYS Results¹ - Produced Water (1% Crude Oil) Flash Calculation

		2000.00 bbl/day			
	Weight	PW Flas	h Stream		
Pollutant	Fraction	lb/hr	TPY		
Water	0.0992	0.12	0.54		
Hydrogen Sulfide	0.0000	0.00	0.00		
Carbon Dioxide	0.0000	0.00	0.00		
Nitrogen	0.0000	0.00	0.00		
Helium	0.0000	0.00	0.00		
Oxygen	0.0000	0.00	0.00		
Methane	0.0064	0.01	0.04		
Ethane	0.0535	0.07	0.29		
Propane	0.1383	0.17	0.75		
Isobutane	0.0137	0.02	0.07		
n-Butane	0.1448	0.18	0.79		
Isopentane	0.0373	0.05	0.20		
n-Pentane	0.0965	0.12	0.53		
Cyclopentane	0.0000	0.00	0.00		
n-Hexane	0.0384	0.05	0.21		
Cyclohexane	0.0000	0.00	0.00		
Other Hexanes	0.2749	0.34	1.50		
Heptanes	0.0469	0.06	0.26		
Benzene	0.0125	0.02	0.07		
Toluene	0.0167	0.02	0.09		
Ethylbenzene	0.0034	<0.01	0.02		
Xylenes	0.0077	0.01	0.04		
Octanes	0.0084	0.01	0.05		
2,2,4-Trimethylpentane	0.0000	0.00	0.00		
Nonanes	0.0014	<0.01	0.01		
Decanes+	0.0001	<0.01	<0.01		
Tota	1 = 1.0000	1.24	5.45		
Total VO	0.8408	1.05	4.58		
Total HAI	P = 0.0788	0.10	0.43		

20

Truck Loading Emissions Calculations - Criteria and Hazardous Air Pollutants

Equipment Information

Unit ID: LOAD-1 Contents Loaded: Crude Oil Fill Method: Submerged Type of Service: Dedicated Normal Mode of Operation: 0.6 Saturation Factor: 30,660.000 Annual Throughput (1000 gal): 6.25 Short-Term Emission Factor (lb/1000 gal)¹: 4.26 Annual Emission Factor (lb/1000 gal)1: Maximum Loading Rate (gal/hr): 8,000 N/A Control Type: 0.00% Vapor Capture Efficiency: N/A Captured Vapors Routed to:

Annual Loading Loss (lb/1000 gal) = 12.46 *S*P_{AVG}*M/T, where:

P = True vapor pressure of liquid loaded (avg. psia)	4.4024	
M = Molecular weight of vapor (lb/lb-mol)	68	
T = Temperature of bulk liquid loaded (average °F)	65.52	
T = Temperature of bulk liquid loaded (°F + 460 = °R)	525.52	

Short-term Loading Loss (lb/1000 gal) = 12.46 *S*P_{MAX}*M/T, where:

P = True vapor pressure of liquid loaded (max. psia)	6.4631	
M = Molecular weight of vapor (lb/lb-mol)	68	
T = Temperature of bulk liquid loaded (average °F)	65.52	
T = Temperature of bulk liquid loaded (°F + 460 = °R)	525.52	

Truck Loading Emissions Calculations - Criteria and Hazardous Air Pollutants (cont.)

Uncontrolled VOC and HAP Emissions³

Unit ID:

LOAD-1

Pollutant	Weight %	lb/hr	tons/yr
Loading Losses from Organic	c Compounds =	50.02	65.29
Component	Flash Gas Speciation		
Water	0.00%	0.00	0.00
Carbon Dioxide	1.24%	0.62	0.81
Nitrogen	0.10%	0.05	0.06
Helium	0.00%	0.00	0.00
Oxygen	0.00%	0.00	0.00
Methane	2.51%	1.26	1.64
Ethane	17.99%	9.00	11.75
Propane	29.10%	14.56	19.00
Isobutane	9.73%	4.87	6.35
n-Butane	19.24%	9.62	12.56
Isopentane	6.62%	3.31	4.32
n-Pentane	4.66%	2.33	3.04
n-Hexane	1.84%	0.92	1.20
Other Hexanes	3.09%	1.54	2.01
Heptanes	1.68%	0.84	1.10
Benzene	0.23%	0.11	0.15
Toluene	0.48%	0.24	0.31
Ethylbenzene	0.02%	0.01	0.01
Xylenes	0.29%	0.15	0.19
Octanes	0.95%	0.48	0.62
2,2,4-Trimethylpentane	0.12%	0.06	0.08
Nonanes	0.11%	0.05	0.07
Decanes+	0.00%	<0.01	<0.01
Total =	100.00%	50.02	65.29
Total VOC =	78.16%	39.09	51.03
Total HAPs =	2.98%	1.49	1.94
Total CO2e =	64.04%	32.03	41.81

Notes:

- 1) AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T. Properties based on EPA TANKS 4.0.9d.
- 2) Loading Loss speciated based on flash analysis data.
- 3) Due to variable short-term emission rates, maximum lb/hr rate shown for reference only.

Developed by Flatrock Engineering and Environmental, Ltd./Rev. 1-1-2014 All Rights Reserved

Flare Emissions Calculations - Summary of Emissions

		Emission	Emis	sions
Unit ID	Pollutant	Factors 1	lb/hr	tons/yr
FL-1	NOx	-	0.53	0.63
(Flare + Pilot)	со	-	2.40	2.84
	voc	-	7.39	7.26
	PM _{TOT}		<0.01	<0.01
	H₂S	-	0.00	0.00
	SO ₂	-	<0.01	<0.01
FL-1	NOx	0.068	0.53	0.62
(Flare Stream)	со	0.31	2.39	2.83
	voc	Mass Balance 2	7.39	7.26
	H ₂ S	Mass Balance 2	0.00	0.00
	SO ₂	Stoichiometric	0.00	0.00
FL-1	NOx	100	<0.01	0.01
(Pilot Gas)	со	84	<0.01	0.01
	voc	5.5	<0.01	<0.01
	PM _{TOT}	7.6	<0.01	<0.01
	SO ₂	Mass Balance	<0.01	<0.01

Flare Stream 2:	369.44	VOC to flare from all sources (lb/hr)3
	3,028	Flare Stream Heat Content (Btu/ft3)
	2,086,196	Flare Stream Avg. Net Btu Value (Btu/hr)
	7,721,732	Flare Stream Max Net Btu Value (Btu/hr)
	8,760	Flare Hours/Yr
	98.00%	Flare Control Efficiency
	98.00%	Propane Control Efficiency
Pilot:	1,243	Pilot Stream Heat Content (Btu/ft ³) - Fuel Gas
	25	Pilot Gas Flow Rate (scfh)
	0.03	Pilot Gas Capacity (mmBtu/hr)
	8,760	Pilot Hours/Yr

Flare Emissions Calculations - Summary of Emissions

Velocity Calculation (40 CFR	§60.18)
Gas Tip Diameter (in):	6.00
scf/day:	61,194.07
scf/hr:	2,549.75
scf/s:	0.71
Tip Area (ft²):	0.20
Velocity (fps):	3.61
Compliant (YES/NO):	YES

Notes:

- 1) Flare NOx and CO emission factors (lb/mmBtu): AP-42 Chapter 13.5: Table 13.5-1 & 13.5-2 (12/16). Pilot NOx, CO and VOC emission factors (lb/mmscf): AP-42 Table 1.4-1, -2 (7/98) SO₂: Mass balance assuming fuel sulfur content of 1 grain sulfur per 100 standard cubic feet of fuel.
- 2) Flare stream includes crude oil tank vapors, as well as purge gas used to prevent air impingement in the process header where there is little or no process flow going to the flare.
- 3) VOC and H₂S emissions estimated based on all streams routed to flare and 98% efficiency (99% for propane).

24

Ameredev II, LLC Amen Corner CTB Flare Emissions Calculations - Flare Stream Analysis

		Purge	Gas	and Gun Breathing	orage Tanks barrel Tank + Flashing TK-6, TK-13	Emissions	Working,	Water Stora Breathing + Emissions TK-7 - TK-12	Flashing		ım - During owntime		Total Str	eams Burne	d in Flare		Component		Average Ne
		30	sofh		89.26	390.95		0.23	1.03	Downtime (hr/yr):	438	Uncontrolle	d Emissions		Controlled	Emissions		Max Net Btu Value Rate	Btu Value Rate
Components	Mol Wt	Mole%	lb/hr	Weight%	lb/hr	TPY	Weight%	lb/hr	TPY	lb/hr	TPY	lb/hr	tons/yr	sofh	lb/hr	tons/yr	Btu/scf	Btu/hr	Btu/hr
Water	18,015	0.000%	0.00	0.000%	0.00	0.00	0.000%	0.00	0,00	0.00	0,00	0.00	0.00	0	0.00	0.00	0.00	0	0
Hydrogen Sulfide	34.076	0.000%	0.00	0.000%	0,00	0.00	0.000%	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	637,11	0	0
Carbon Dioxide	44,010	0.231%	0.01	1.237%	1,10	4.84	1,237%	< 0.01	0.01	0.00	0.00	1.12	4.89	10	1.12	4.89	0.00	0	0
Nitrogen	28.013	1.358%	0.03	0.096%	0.09	0.38	0.096%	< 0.01	<0.01	0.00	0.00	0.12	0.51	2	0.12	0.51	0.00	0	0
Helium	4.003	0.000%	0.00	0.000%	0.00	0.00	0.000%	0.00	0.00	0.00	0.00	0.00	80.0	0	0.00	0.08	0.00	0	0
Dxygen	15.999	0.000%	0.00	0.000%	0.00	0.00	0.000%	0.00	0.00	0.00	0.00	0.00	1,49	0	0.00	1.49	0.00	0	0
Methane	16,042	71.391%	0.91	2,512%	2,24	9.82	2,512%	0.01	0.03	0.36	0,08	3,51	23.05	83	0.07	0,46	919.00	76,302	114,368
Ethane	30.069	12,045%	0.29	17,993%	16,06	70,35	17,993%	0.04	0,19	6,78	1,49	23,17	75.28	292	0,46	1,51	1,619,00	473,354	351,107
Propane	44,096	7.733%	0.27	29,105%	25,98	113.79	29,105%	0.07	0.30	42.16	9,23	68.48	128.38	589	1,37	2.57	2,315,00	1,363,967	583,800
sobutane	58.122	1,103%	0.05	9,728%	8,68	38,03	9,728%	0.02	0,10	15,96	3,50	24.72	44,82	161	0,49	0,90	3,000,00	484,094	200,403
n-Butane	58,122	2,983%	0.14	19,235%	17,17	75.20	19,235%	0.05	0.20	59.87	13,11	77.22	83,53	504	1,54	1,67	3,011.00	1,517,793	374,834
sopentane	72,149	0,841%	0.05	6,624%	5,91	25,90	6,624%	0.02	0,07	29.54	6,47	35.52	26,18	187	0,71	0,52	3,699.00	690,877	116,243
-Pentane	72,149	0.868%	0.05	4.659%	4.16	18.21	4.659%	0.01	0.05	34.39	7,53	38.61	21.60	203	0.77	0.43	3,707.00	752,628	96,141
Cyclopentane	70,100	0.000%	0.00	0,000%	0.00	0.00	0.000%	0.00	0.00	0.00	0.00	0,00	0,00	0	0.00	0.00	3,512.10	0	0
1-Hexane	86,175	0.214%	0.01	1,836%	1.64	7.18	1.836%	< 0.01	0.02	14.26	3,12	15,92	20.58	70	0.32	0.41	4,404.00	308.595	91,104
Cyclohexane	84,160	0.000%	0.00	0.000%	0.00	0.00	0.000%	0.00	0.00	0.00	0.00	0,00	4.91	0	0,00	0.10	4,179,70	0	21,124
Other Hexanes	86,175	0.924%	0.06	3,085%	2.75	12.06	3.085%	0.01	0.03	60.82	13.32	63.64	12.99	280	1.27	0.26	4,404.00	1.234.009	57,485
deptanes (as n-Heptane)	100,202	0.099%	0.01	1,684%	1.50	6.58	1.684%	<0.01	0.02	22.42	4.91	23.94	7.46	91	0.48	0.15	5,100.00	462.228	32,910
Benzene	78.114	0.048%	< 0.01	0.226%	0.20	0.89	0.226%	<0.01	<0.01	2.81	0.62	3.02	1.07	15	0.06	0.02	3,590.90	52.676	4.263
Oluene	92,141	0.041%	< 0.01	0.482%	0.43	1.88	0.482%	<0.01	< 0.01	3.79	0.83	4.23	2.29	17	0.08	0.05	4.273.60	74.378	9,180
Ethylbenzene	106,167	0.002%	< 0.01	0.016%	0.01	0.06	0.016%	<0.01	<0.01	0.78	0.17	0.79	1.46	3	0.02	0.03	4.970.50	14,036	5,926
Kylenes	106,500	0.010%	< 0.01	0.294%	0.26	1,15	0.294%	<0.01	<0.01	1.75	0.38	2.02	1.16	7	0.04	0.02	4,957,10	35.607	4,659
Octanes (as n-Octane)	114,229	0.069%	0.01	0.951%	0.85	3.72	0.951%	<0.01	0.01	6.38	1.40	7.24	4.25	24	0.14	0.08	4.273.60	102.733	13,767
2.2.4-Trimethylpentane	114,230	0.039%	<0.01	0.124%	0.11	0.48	0.124%	<0.01	<0.01	0.00	0.00	0.11	0.86	<1	< 0.01	0.02	4.943.70	1.879	3.226
Nonanes (as n-Nonane)	128.255	0.000%	0.00	0.108%	0.10	0.42	0.108%	< 0.01	<0.01	2.25	0.49	2.35	0.92	7	0.05	0.02	6,493.00	45.054	4,024
Decanes+ (as n-Decane)	142.282	0,000%	0.00	0,003%	<0.01	0.01	0.003%	<0.01	< 0.01	1,64	0.36	1.64	0.37	4	0.03	0.01	7,190,00	31,522	1,630
	Total =	100,000%	1,89	100,000%	89.26	390.95	100,000%	0.23	1,03	305.97	67,01	397,35	468,11	2,550	9,15	16,18	Btu/hr		2,086,196
	Total VOC =	14,975%	0.66	78,161%	69.77	305.57	78,161%	0.18	0,80	298.83	65,44	369,44	362.82	2,000	7,39	7,26		- traction	2,000,100
			2.00	1.0.70176				0.10	2,00	1 230.00	Total HAP =	33,32	31,66	-	0.52	0.55	Heat Value	3.0	028
											Total H ₂ S =	0.00	0.00		0.00	0.00	(Btu/scf)		
											roun n ₂ 5 =	0.00	0.00	59,13	0.00	0,00			

Note: VRT stream routed to the flare during VRU downtime (5%).

Ameredev II, LLC Amen Corner CTB Fugitive Emissions Calculations

Equipment Information

Source Type/Service	Number of Sources	Em. Factor (lb/hr/source) ¹	LDAR?	Control Efficiency	TOC lb/hr	TOC tons/yr	VOC Wt %
Valves - Gas	39	9.92E-03	No	0.00%	0.387	1.695	35.537%
Flanges - Gas	0	8.60E-04	No	0.00%	0.000	0.000	35.537%
Connectors - Gas	72	4.41E-04	No	0.00%	0.032	0.139	35.537%
Other - Gas	0	1.94E-02	No	0.00%	0.000	0.000	35,537%
Open-Ended Lines - Gas	3	4.41E-03	No	0.00%	0.013	0.058	35.537%
Pump Seals - Gas	0	5.29E-03	No	0.00%	0.000	0.000	35.537%
,		T	otal TOC (Gas	Components) =	0.432	1.892	-
Valves - Light Oil	154	5.51E-03	No	0.00%	0.849	3.718	99.941%
Flanges - Light Oil	28	2.43E-04	No	0.00%	0.007	0.030	99.941%
Connectors - Light Oil	308	4.63E-04	No	0.00%	0.143	0.625	99.941%
Other - Light Oil	70	1.65E-02	No	0.00%	1.157	5.069	99.941%
Open-Ended Lines - Light Oil	28	3.09E-03	No	0.00%	0.086	0.379	99.941%
Pump Seals - Light Oil	14	2.87E-02	No	0.00%	0.401	1.757	99.941%
		Tot	al TOC (Liquid	Components) =	2.643	11.577	-

Proposed Emissions

Sauras TuralSaulas	V	oc		H ₄	CO ₂		
Source Type/Service	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Valves - Gas	0.14	0.60	0.19	0.83	<0.01	0.01	
Flanges - Gas	0.00	0.00	0.00	0.00	0.00	0.00	
Connectors - Gas	0.01	0.05	0.02	0.07	< 0.01	<0.01	
Other - Gas	0.00	0.00	0.00	0.00	0.00	0.00	
Open-Ended Lines - Gas	< 0.01	0.02	0.01	0.03	< 0.01	<0.01	
Pump Seals - Gas	0.00	0.00	0.00	0.00	0.00	0.00	
Total (Gas Components) =	0.15	0.67	0.21	0.93	<0.01	0.01	
Valves - Light Oil	0.85	3.72	<0.01	<0.01	0.00	0.00	
Flanges - Light Oil	0.01	0.03	< 0.01	<0.01	0.00	0.00	
Connectors - Light Oil	0.14	0.62	< 0.01	<0.01	0.00	0.00	
Other - Light Oil	1.16	5.07	<0.01	<0.01	0.00	0.00	
Open-Ended Lines - Light Oil	0.09	0.38	< 0.01	<0.01	0.00	0.00	
Pump Seals - Light Oil	0.40	1.76	< 0.01	<0.01	0.00	0.00	
Total (Liquid Components) =	2.64	11.57	<0.01	<0.01	0.00	0.00	
Total (All Components) =	2.80	12.24	0.21	0.93	< 0.01	0.01	

Ameredev II, LLC Amen Corner CTB Fugitive Emissions Calculations

Proposed Hazardous Air Pollutant (HAP) Emissions (lb/hr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Trimeth.	Total
Valves - Gas	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.01
Flanges - Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Connectors - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Other - Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Open-Ended Lines - Gas	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Pump Seals - Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total (Gas Components) =	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	0.01
Valves - Light Oil	0.02	0.01	0.02	0.01	0.03	0.00	0.08
Flanges - Light Oil	<0.01	<0.01	< 0.01	<0.01	<0.01	0.00	< 0.01
Connectors - Light Oil	< 0.01	<0.01	< 0.01	<0.01	< 0.01	0.00	0.01
Other - Light Oil	0.03	0.01	0.03	0.01	0.03	0.00	0.11
Open-Ended Lines - Light Oil	< 0.01	<0.01	< 0.01	<0.01	< 0.01	0.00	0.01
Pump Seals - Light Oil	0.01	<0.01	0.01	<0.01	0.01	0.00	0.04
Total (Liquid Components) =	0.07	0.02	0.06	0.03	0.08	0.00	0.26
Total (All Components) =	0.08	0.02	0.06	0.03	0.08	<0.01	0.26

Proposed Hazardous Air Pollutant (HAP) Emissions (tons/yr)

Source Type/Service	n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	2,2,4-Trimeth.	Total
Valves - Gas	0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	0.02
Flanges - Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Connectors - Gas	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Other - Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Open-Ended Lines - Gas	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Pump Seals - Gas	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total (Gas Components) =	0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	0.03
Valves - Light Oil	0.10	0.02	0.08	0.04	0.11	0.00	0.36
Flanges - Light Oil	< 0.01	<0.01	< 0.01	<0.01	< 0.01	0.00	<0.01
Connectors - Light Oil	0.02	<0.01	0.01	0.01	0.02	0.00	0.06
Other - Light Oil	0.14	0.03	0.11	0.06	0.15	0.00	0.49
Open-Ended Lines - Light Oil	0.01	< 0.01	0.01	<0.01	0.01	0.00	0.04
Pump Seals - Light Oil	0.05	0.01	0.04	0.02	0.05	0.00	0.17
Total (Liquid Components) =	0.32	0.07	0.25	0.13	0.35	0.00	1.12
Total (All Components) =	0.34	0.07	0.26	0.13	0.35	<0.01	1.15

Ameredev II, LLC Amen Corner CTB Fugitive Emissions Calculations

Speciated Site Gas Analysis

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	tons/yr
Water	18.015	0.000%	0.000	0.000%		0.00	0.00
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%		0.00	0.00
Carbon Dioxide	44.010	0.231%	0.102	0.426%		< 0.01	0.01
Nitrogen	28.013	1.358%	0.380	1.594%		0.01	0.03
Helium	4.003	0.000%	0.000	0.000%	(2)	0.00	0.00
Oxygen	31.999	0.000%	0.000	0.000%		0.00	0.00
Methane	16.042	71.391%	11.452	47.985%	48.975%	0.21	0.93
Ethane	30.069	12.045%	3.622	15.176%	15.489%	0.07	0.29
Propane	44.096	7.733%	3.410	14.287%	14.582%	0.06	0.28
i-Butane	58.122	1.103%	0.641	2.687%	2.742%	0.01	0.05
n-Butane	58.122	2.983%	1.734	7.264%	7.414%	0.03	0.14
i-Pentane	72.149	0.841%	0.606	2.541%	2.594%	0.01	0.05
n-Pentane	72.149	0.868%	0.626	2.625%	2.679%	0.01	0.05
Cyclopentane	70.100	0.000%	0.000	0.000%	0.000%	0.00	0.00
n-Hexane	86.175	0.214%	0.184	0.773%	0.789%	< 0.01	0.01
Cyclohexane	84.160	0.000%	0.000	0.000%	0.000%	0.00	0.00
Other Hexanes	86,175	0.924%	0.796	3.336%	3.405%	0.01	0.06
Heptanes (as n-Heptane)	100.202	0.099%	0.100	0.417%	0.426%	<0.01	0.01
Benzene	78.114	0.048%	0.037	0.157%	0.160%	<0.01	<0.01
Toluene	92.141	0.041%	0.038	0.159%	0.162%	<0.01	<0.01
Ethylbenzene	106.167	0.002%	0.002	0.009%	0.009%	<0.01	<0.01
Xylenes	106.167	0.010%	0.011	0.046%	0.047%	< 0.01	<0.01
Octanes (as n-Octane)	114.229	0.069%	0.079	0.332%	0.339%	< 0.01	0.01
2,2,4-Trimethylpentane	114.230	0.039%	0.044	0.185%	0.189%	<0.01	<0.01
Nonanes (as n-Nonane)	128.255	0.000%	0.000	0.000%	0.000%	0.00	0.00
Decanes (as n-Decane)	142.282	0.000%	0.000	0.000%	0.000%	0.00	0.00
	TOTAL =	100.000%	23.867	100.000%	100.000%	0.44	1.93
		TOTAL HC =	23.384	TOTAL VOC =	35.537%	0.15	0.67
				TOTAL HAP =	1.168%	0.01	0.03

Speciated Site Liquids Analysis

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	TPY
Water	18.015	0.000%	0.000	0.000%	-	0.00	0.00
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%		0.00	0.00
Carbon Dioxide	44.010	0.000%	0.000	0.000%	-	0.00	0.00
Nitrogen	28.013	0.000%	0.000	0.000%		0.00	0.00
Helium	4.003	0.000%	0.000	0.000%	-	0.00	0.00
Oxygen	31.999	0.000%	0.000	0.000%	-	0.00	0.00
Methane	16.042	0.016%	0.003	0.002%	0.002%	< 0.01	<0.01
Ethane	30.069	0.211%	0.064	0.056%	0.056%	<0.01	0.01
Propane	44.096	1.478%	0.652	0.579%	0.579%	0.02	0.07
i-Butane	58.122	0.737%	0.428	0.381%	0.381%	0.01	0.04
n-Butane	58.122	3.479%	2.022	1.797%	1.797%	0.05	0.21
i-Pentane	72.149	2.778%	2.004	1.781%	1.781%	0.05	0.21
n-Pentane	72.149	3.994%	2.882	2.562%	2.562%	0.07	0.30
Cyclopentane	70.100	0.000%	0.000	0.000%	0.000%	0.00	0.00
n-Hexane	86,175	3.621%	3.120	2.773%	2.773%	0.07	0.32
Cyclohexane	84,160	3.900%	3.282	2.917%	2.917%	0.08	0.34
Other Hexanes	86,175	5.953%	5.130	4.560%	4.560%	0.12	0.53
Heptanes (as n-Heptane)	100.202	12.735%	12.761	11.343%	11.343%	0.30	1.31
Benzene	78.114	0.872%	0.681	0.605%	0.605%	0.02	0.07
Toluene	92.141	2.674%	2.464	2.190%	2.190%	0.06	0.25
Ethylbenzene	106,167	1.214%	1.289	1.146%	1.146%	0.03	0.13
Xylenes	106,167	3.179%	3.375	3.000%	3.000%	0.08	0.35
Octanes (as n-Octane)	114.229	8.361%	9,551	8.489%	8.489%	0.22	0.98
2,2,4-Trimethylpentane	114.230	0.000%	0.000	0.000%	0.000%	0.00	0.00
Nonanes (as n-Nonane)	128.255	6.715%	8.613	7.655%	7.655%	0.20	0.89
Decanes (as n-Decane)	142.282	38.082%	54.184	48.162%	48.162%	1.27	5.58
	TOTAL =	100.000%	112.505	100.000%	100.000%	2.64	11.58
		TOTAL HC =	112,505	TOTAL VOC =	99.941%	2.64	11.57
				TOTAL HAP =	9.715%	0.26	1,12

Notes:

¹⁾ EPA-453/R-95-017 Emission Factors

Maintenance, Startup, and Shutdown (MSS) Emission Calculations - Maintenance Events

MSS Event Information

	Equipment						
Description	Tank Degassing	PIG MSS					
Number of Events per Year	4	12					
Number of Events per hour 1	0.25	1					
Volume per Event, scf	2,246	160					
Stream Specific Gravity	1.5171	0.7690					
Air MW, lb/mol	28.96	28.96					
Fuel Stream Density, lb/scf ²	0.116	0.059					
Captured/Controlled?	No	No					
VOC Percentage in Gas Stream, wt%	98.182%	35.537%					

Proposed Emissions^{3,4}

	Emissions									
Pollutant	Tank De	gassing	PIG	MSS	Total Maintenance Emissions					
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY				
voc	63.84	0.51	3.35	0.02	67.19	0.53				
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00				
Carbon Dioxide	0.00	0.00	0.04	<0.01	0.04	<0.01				
Methane	0.03	<0.01	4.61	0.03	4.65	0.03				
n-Hexane	3.12	0.02	0.07	<0.01	3.19	0.03				
Benzene	0.61	<0.01	0.02	<0.01	0.63	0.01				
Toluene	0.83	0.01	0.02	<0.01	0.85	0.01				
Ethylbenzene	0.17	<0.01	<0.01	<0.01	0.17	<0.01				
Xylenes	0.38	<0.01	<0.01	<0.01	0.38	<0.01				
2,2,4-Trimethylpentane	0.00	0.00	0.02	<0.01	0.02	<0.01				
Total HAP =	5.11	0.04	0.13	<0.01	5.24	0.04				

Ameredev II, LLC Amen Corner CTB Maintenance, Startup, and Shutdown (MSS) Emission Calculations - Maintenance Events Residue Gas Analysis

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight	lb/hr	TPY
Water	18.015	0.000%	0.000	0.000%	-	0.00	0.00
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.231%	0.102	0.426%	-	0.04	< 0.01
Nitrogen	28.013	1.358%	0.380	1.594%	-	0.15	0.01
Helium	4.003	0.000%	0.000	0.000%	-	0.00	0.00
Oxygen	31.999	0.000%	0.000	0.000%	-	0.00	0.00
Methane	16.042	71.391%	11.452	47.985%	48.975%	4.61	0.37
Ethane	30.069	12.045%	3.622	15,176%	15.489%	1.46	0.12
Propane	44.096	7.733%	3.410	14.287%	14.582%	1.37	0.11
i-Butane	58.122	1.103%	0.641	2.687%	2.742%	0.26	0.02
n-Butane	58.122	2.983%	1.734	7.264%	7.414%	0.70	0.06
i-Pentane	72.149	0.841%	0.606	2.541%	2.594%	0.24	0.02
n-Pentane	72.149	0.868%	0.626	2.625%	2.679%	0.25	0.02
Cyclopentane	70.100	0.000%	0.000	0.000%	0.000%	0.00	0.00
n-Hexane	86.175	0.214%	0.184	0.773%	0.789%	0.07	0.01
Cyclohexane	84.160	0.000%	0.000	0.000%	0.000%	0.00	0.00
Other Hexanes	86.175	0.924%	0.796	3.336%	3.405%	0.32	0.03
Heptanes (as n-Heptane)	100.202	0.099%	0.100	0.417%	0.426%	0.04	< 0.01
Benzene	78.114	0.048%	0.037	0.157%	0.160%	0.02	< 0.01
Toluene	92.141	0.041%	0.038	0.159%	0.162%	0.02	< 0.01
Ethylbenzene	106.167	0.002%	0.002	0.009%	0.009%	<0.01	< 0.01
Xylenes	106.167	0.010%	0.011	0.046%	0.047%	< 0.01	< 0.01
Octanes (as n-Octane)	114.229	0.069%	0.079	0.332%	0.339%	0.03	< 0.01
2,2,4-Trimethylpentane	114.230	0.039%	0.044	0.185%	0.189%	0.02	< 0.01
Nonanes (as n-Nonane)	128.255	0.000%	0.000	0.000%	0.000%	0.00	0.00
Decanes (as n-Decane)	142.282	0.000%	0.000	0.000%	0.000%	0.00	0.00
	TOTAL =			100.000%	100.000%	9.61	0.78
1	OTAL HC =	98.411%	23.384	97.980%	100.000%	9.42	0.76
TC	TAL VOC =	14.975%	8.310	34.819%	35.537%	3.35	0.27
				OTAL HAP =	1.356%	0.13	0.01

Ameredev II, LLC
Amen Corner CTB
Maintenance, Startup, and Shutdown (MSS) Emission Calculations - Maintenance Events

Crude Oil Flash Gas Analysis

Component	Molecular Weight	Mole %	Equiv. Wt. Basis	Weight %	HC Weight %	lb/hr	TPY
Water	18.015	0.065	1.173	1.893%	-	1.23	0.01
Hydrogen Sulfide	34.082	0.000	0.000	0.000%	-	0.00	0.00
Carbon Dioxide	44.010	0.000	0.000	0.000%	-	0.00	0.00
Nitrogen	28.013	0.000	0.000	0.000%	-	0.00	0.00
Helium	4.003	0.000	0.000	0.000%	-	0.00	0.00
Oxygen	31.999	0.000	0.000	0.000%	-	0.00	0.00
Methane	16.042	0.002	0.032	0.052%	0.052%	0.03	< 0.01
Ethane	30.069	0.036	1.095	1.766%	1.766%	1.15	0.01
Propane	44.096	0.182	8.039	12.973%	12.973%	8.44	0.07
i-Butane	58.122	0.055	3.208	5.178%	5.178%	3.37	0.03
n-Butane	58.122	0.209	12.153	19.614%	19.614%	12.75	0.10
i-Pentane	72.149	0.085	6.104	9.851%	9.851%	6.41	0.05
n-Pentane	72.149	0.099	7.121	11.492%	11.492%	7.47	0.06
n-Hexane	86.175	0.035	2.973	4.798%	4.798%	3.12	0.02
Other Hexanes	86.175	0.147	12.650	20.416%	20.416%	13.27	0.11
Heptanes (as n-Heptane)	100.202	0.047	4.679	7.552%	7.552%	4.91	0.04
Benzene	78.114	0.008	0.586	0.945%	0.945%	0.61	< 0.01
Toluene	92.141	0.009	0.792	1.279%	1.279%	0.83	0.01
Ethylbenzene	106.167	0.002	0.159	0.257%	0.257%	0.17	<0.01
Xylenes	106.167	0.003	0.361	0.583%	0.583%	0.38	< 0.01
Octanes (as n-Octane)	114.229	0.012	1.325	2.138%	2.138%	1.39	0.01
2,2,4-Trimethylpentane	114.230	0.000	0.000	0.000%	0.000%	0.00	0.00
Nonanes (as n-Nonane)		0.003	0.372	0.600%	0.600%	0.39	< 0.01
Decanes+ (as n-Decane)	142.282	0.002	0.313	0.505%	0.505%	0.33	< 0.01
	TOTAL =	99.910%	61.963	100.000%	100.000%	65.02	0.52
	TOTAL HC =	93.400%	61.963	100.000%	100.000%	65.02	0.52
TO	TAL VOC =	89.560%	60.837	98.182%	98.182%	63.84	0.51
			TO	OTAL HAP =	7.862%	5.11	0.04

Notes:

- 1) A single storage tank degassing event is assumed to take at least 4 hours to complete.
- 2) Gas stream density is calculated as follows:
- (28.96 lb/mole) / (379 scf/mole) * (1.5171) = 0.116 lb/scf
- 3) Hourly emission rates are calculated as follows:
- (1. event/hr) * (160 scf/event) * (0.059 lb/scf) * (35.54%) = 3.35 lb/hr
- 4) Annual emission rates are calculated as follows:
- (12 event/yr) * (160 scf/event) * (0.059 lb/scf) * (35.54 %) / (2,000 lb/T) = 0.02 T/yr

Developed by Flatrock Engineering and Environmental, Ltd./Rev. 1-1-2014 All Rights Reserved

Ameredev II, LLC Amen Corner CTB Maintenance, Startup, and Shutdown (MSS) Emission Calculations - Tank Cleaning

Material Collected by Vacuum Truck	Activity	Saturation Factor	Max. VP (psia)	Avg. VP		r MW Temp. Bulk	Liquid Heel (% Vol.	iquid Heel (% Vol. Tank) Throughput (1,000 gal)	roughput VOC ,000 gal) Fraction	VOC	(lb/1.000	Max, Load (lb/1,000 Avg. Load	vg. Load Safety Ac	Number of Activities	VOC1	
		ractor	(haid)	(psia)		Liq. (r)	Tank)			gal)	(lb/1,000)	Factor	per Year	lb/hr	TPY	
Crude Oil	Tank Cleanout	0.6	6.4631	4,4024	68.0000	65.52	0,2	4.20	0.98	6.25	4.26	1.00	6	25,78	0.08	
Produced Water	Tank Cleanout	0,6	0,5713	0.3931	19,1254	65,52	0.2	4.20	0.98	0.16	0.11	1.00	6	0.64	<0.01	
											Uncont	rolled VOC	Emissions =	26.42	0.08	
											Proj	posed VOC	Emissions =	26.42	0.08	

Flash Gas Analysis and Emissions Speciation

		Mole %	Equiv. Wt. Basis	Weight %	HC Weight	Uncor	trolled	Proposed		
Component	Molecular Weight					lb/hr	TPY	lb/hr	TPY	
Water	18,015	6.510%	1.173	1.893%		0.51	<0.01	0,51	<0.01	
Hydrogen Sulfide	34.082	0.000%	0.000	0.000%		0.00	0.00	0.00	0.00	
Carbon Dioxide	44.01	0.000%	0.000	0.000%		0.00	0.00	0.00	0.00	
Nitrogen	28.0134	0.000%	0.000	0.000%	- E	0.00	0.00	0.00	0.00	
Helium	4.0026	0.000%	0.000	0.000%	-	0.00	0.00	0.00	0.00	
Oxygen	31.9988	0.000%	0.000	0.000%		0.00	0.00	0.00	0,00	
Methane	16.042	0.200%	0.032	0.052%	0.052%	0.01	<0.01	0.01	<0.01	
Ethane	30.069	3,640%	1,095	1.766%	1.766%	0.48	<0.01	0.48	<0.01	
Propane	44.096	18.230%	8.039	12.973%	12,973%	3.49	0.01	3,49	0.01	
i-Butane	58.122	5.520%	3.208	5.178%	5.178%	1.39	<0.01	1.39	<0.01	
n-Butane	58.122	20.910%	12.153	19.614%	19.614%	5.28	0.02	5.28	0.02	
i-Pentane	72.149	8.460%	6.104	9.851%	9.851%	2,65	0.01	2.65	0.01	
n-Pentane	72.149	9.870%	7.121	11.492%	11.492%	3.09	0.01	3.09	0.01	
Cyclopentane	70.1	0.000%	0.000	0.000%	0.000%	0.00	0.00	0.00	0.00	
n-Hexane	86,175	3.450%	2.973	4.798%	4.798%	1.29	<0.01	1.29	<0.01	
Cyclohexane	84.16	0.000%	0.000	0.000%	0,000%	0.00	0.00	0.00	0.00	
Other Hexanes	86.175	14.680%	12.650	20.416%	20.416%	5.49	0.02	5.49	0.02	
Heptanes (as n-Heptane)	100.202	4.670%	4.679	7.552%	7.552%	2.03	0.01	2.03	0.01	
Benzene	78.114	0.750%	0.586	0.945%	0.945%	0.25	<0.01	0.25	<0.01	
Toluene	92.141	0.860%	0.792	1.279%	1.279%	0.34	<0.01	0.34	<0.01	
Ethylbenzene	106.167	0.150%	0.159	0.257%	0,257%	0,07	<0.01	0.07	<0.01	
Xylenes	106,167	0,340%	0,361	0.583%	0.583%	0.16	<0.01	0.16	<0.01	
Octanes (as n-Octane)	114.229	1.160%	1.325	2.138%	2.138%	0.58	<0.01	0.58	<0.01	
2,2,4-Trimethylpentane	114.23	0.000%	0.000	0.000%	0.000%	0.00	0.00	0.00	0.00	
Nonanes (as n-Nonane)	128.255	0.290%	0.372	0.600%	0.600%	0.16	<0.01	0.16	<0.01	
Decanes+ (as n-Decane)	142.282	0.220%	0.313	0.505%	0.505%	0.14	<0.01	0.14	<0.01	
	TOTAL =	99.910%	61.963	100.000%	100.000%	26.91	0.08	26.91	0.08	
	TOTAL HC =	93.400%	61.963	100.000%	100.000%	26,91	0.08	26.91	0.08	
	TOTAL VOC =	89.560%	60,837	98.182%	98.182%	26.42	0.08	26.42	0.08	
			TO	TAL HAP =	7.862%	2.12	0.01	2,12	0.01	

Ameredev II, LLC

Amen Corner CTB

Maintenance, Startup, and Shutdown (MSS) Emission Calculations - Tank Cleaning

1) AP-42 5.2-4 Eq.1: Loading Loss (lb/1000 gal) = 12.46 *S*P*M/T. Properties based on EPA TANKS 4.0.9d.

Sample Calculations

Maximum Loading Loss = 12.46 * Saturation Factor * Max. Vapor Pressure, psia * Vapor MW, lb/lb-mol/Temp. Bulk Liquid, R Maximum Loading Loss = 12.46 * (0.6) * (6.46 psia) * (68.0 lb/lb-mol) / (65.5 + 460) R = 6.2521 lb/1,000 gal

Average Loading Loss = 12.46 * Saturation Factor * Avg, True Vapor Pressure, psia * Vapor MW, lb/lb-mol/Temp. Bulk Liquid, R Average Loading Loss = 12.46 * (0.6) * (4.40 psia) * (68.0 lb/lb-mol) / (65.5 + 460) R = 4.2587 lb/1,000 gal

Hourly PTE = Amount Loaded, 1,000 gal/hr * Max. Loading Loss, lb/1,000 gal * VOC Fraction * Safety Factor Hourly PTE = (4.20 1,000 gal/hr) * (6.2521 lb/1,000 gal) * (0.9818) * (1.00) = 25.78 lb/hr

Annual PTE = Hourly VOC PTE, lb/hr * Number of Events per year/2,000 lb/Ton Annual PTE = (25.78 lb/hr) * (6 event) / (2,000 lb/T) = 0.08 TPY

14) Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

Transfer to the contract of th
If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly affect emission rates.
If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
If an older version of AP-42 is used, include a complete copy of the section.
If an EPA document or other material is referenced, include a complete copy.
Fuel specification sheet.
If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For Storage Vessel flashing emissions, include a discussion of the method used to estimate Storage Vessel flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Attached:

TANKS 4.0.9d Summary Reports
Aspen HYSYS Simulation Report
Gas Analysis
Liquids Analysis
Tables 1.4-1, -2 of AP-42 Chapter 1, 7/1998
Page 5.2-4 of AP-42 Chapter 5, Section 2, 6/2008. (Loading Calculation)
Page 2-15, Table 2-4 of EPA/R-95-017: Protocol for Equipment Leak Emission Estimates, 11/1995.

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:

One (1) 500-bbl Crude Oil Tank

City:

State:

New Mexico

Company:

Type of Tank:

Vertical Fixed Roof Tank

Description:

One (1) of Six (6) 500-bbl Crude Oil Tank RVP of 7; Throughput of

5,110,000.00

Tank Dimensions

 Shell Height (ff):
 16.00

 Diameter (ft):
 15.50

 Liquid Height (ft):
 15.00

 Avg. Liquid Height (ft):
 8.00

 Volume (gallons):
 21,172.77

 Turnovers:
 241.35

Net Throughput(gal/yr):

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone

 Height (ft)
 0.00

 Slope (ft/ft) (Cone Roof)
 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

Emissions Report - Summary Format Liquid Contents of Storage Tank

One (1) 500-bbl Crude Oil Tank - Vertical Fixed Roof Tank

			ily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 7)	All	71.74	60.33	83.15	65.52	4.4024	3.5080	5.4723	68.0000			92.00	Option 4: RVP=7, ASTM Slope=3

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

One (1) 500-bbl Crude Oil Tank - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 7)	10,597.83	3,051.37	13,649.19						

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:

One (1) 500-bbl Produced Water Tank

City:

State:

New Mexico

Company:

Type of Tank: Vertical Fixed Roof Tank

Description:

One (1) of Six (6) 500-bbl Produced Water Tanks RVP 7; Assumed 1% Oil and 99% Water

Tank Dimensions

 Shell Height (ft):
 16.00

 Diameter (ft):
 15.60

 Liquid Height (ft):
 15.00

 Avg. Liquid Height (ft):
 8.00

 Volume (gallons):
 21,446.85

 Turnovers:
 238.26

 Net Throughput(gal/yr):
 5,110,000.00

Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone

 Height (ft)
 0.00

 Slope (ft/ft) (Cone Roof)
 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

One (1) 500-bbl Produced Water Tank - Vertical Fixed Roof Tank

		Daily Liquid Sur Temperature (deg			Liquid Bulk Temp	Vapor Pressure (psia)		(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Water	All	71.74	60,33	83,15	65.52	0.3931	0.2655	0.5713	19.1254			18.17	
Gasoline (RVP 7)						4.4024	3,5080	5.4723	68,0000	0.0100	0.0786	92.00	Option 4: RVP=7, ASTM Slope=3
Water						0.3851	0.2591	0.5616	18.0200	0.9900	0.9214	18.02	Option 2: A=8.10765, B=1750.286, C=235

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

One (1) 500-bbl Produced Water Tank - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Produced Water	200.69	67.33	268.02						
Water	184.91	62.03	246.94						
Gasoline (RVP 7)	15.78	5.29	21.08						

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:

One (1) 1,000-bbl Gunbarrel Tank

City:

State:

New Mexico

Company:

Vertical Fixed Roof Tank

Type of Tank: Description:

One (1) 1,000-bbl Gunbarrel Tank RVP of 7

30,660,000.00

Tank Dimensions

 Shell Height (ft):
 30.00

 Diameter (ft):
 15.50

 Liquid Height (ft):
 29.00

 Avg. Liquid Height (ft):
 15.00

 Volume (gallons):
 40,934.03

 Turnovers:
 749.01

N

Net Throughput(gal/yr): Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

One (1) 1,000-bbl Gunbarrel Tank - Vertical Fixed Roof Tank

			illy Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 7)	All	71.74	60.33	83.15	65.52	4.4024	3.5080	5.4723	68.0000			92.00	Option 4: RVP=7, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

One (1) 1,000-bbl Gunbarrel Tank - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 7)	45,175.53	3,628.13	48,803.67						

Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification

User Identification:

One (1) 750-bbl Skim Tank

City:

State:

New Mexico

Company: Type of Tank:

k: Vertical Fixed Roof Tank

Description: One (1) 750-bbl Skim Tank RVP of 7

Tank Dimensions

 Shell Height (ff):
 24.00

 Diameter (ft):
 15.50

 Liquid Height (ft):
 23.00

 Avg. Liquid Height (ft):
 12.00

 Volume (gallons):
 32,464.92

 Turnovers:
 944.40

 Net Throughput(gal/yr):
 30,660,000.00

Net Throughput(gal/yr): Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03
Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

Emissions Report - Summary Format Liquid Contents of Storage Tank

One (1) 750-bbl Skim Tank - Vertical Fixed Roof Tank

			nily Liquid S perature (d		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract,	Weight	Calculations
Gasoline (RVP 7)	All	71.74	60.33	83 15	65.52	4 4024	3 5080	5 4723	68 0000			92.00	Ontion 4: RVP=7 ASTM Slope=3

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: Annual

One (1) 750-bbl Skim Tank - Vertical Fixed Roof Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Gasoline (RVP 7)	43,364.57	3,441.06	46,805.64						

2	CI ATROCK	ENCINEEDING AND	Case Name: Ameredev	-Boyd 11 flash.hsc					
3	aspentech Bedford, MA	ENGINEERING AND	Unit Set: Field13e						
5	USA		Date/Time: Tue Nov 2	1 08:55:42 2017					
6 7	Material Stream	n: Inlet Oil		Fluid Package: PENG-ROB Property Package: Kabadi-Danner					
9									
10			CONDITIONS						
11		Overall	Liquid Phase						
12	Vapour / Phase Fraction	0.0000	1.0000						
13	Temperature: (F)	150.0 *	150.0						
14	Pressure: (psia)	32.20 *	32.20						
15	Molar Flow (MMSCFD)	1.525	1.525						
16	Mass Flow (lb/hr)	2.117e+004	2.117e+004						
17	Std Ideal Liq Vol Flow (barrel/day)	2000 *	2000						
18	Molar Enthalpy (Btu/lbmole)	-1.055e+005	-1.055e+005						
19	Molar Entropy (Btu/lbmole-F)	47.05	47.05						
20	Heat Flow (Btu/hr)	-1.766e+007	-1.766e+007						
21	Liq Vol Flow @Std Cond (barrel/day)	1981 *	1981						
22 23			PROPERTIES						
24		Overall	Liquid Phase						
25	Molecular Weight	126.5	126.5						
26	Molar Density (Ibmole/ft3)	0.3406	0.3406						
27	Mass Density (lb/ft3)	43.07	43.07						
28	Act. Volume Flow (barrel/day)	2101	2101						
29	Mass Enthalpy (Btu/lb)	-834.0	-834.0						
30	Mass Entropy (Btu/lb-F)	0.3721	0.3721						
31	Heat Capacity (Btu/lbmole-F)	68.84	68.84						
32	Mass Heat Capacity (Btu/lb-F)	0.5444	0.5444						
33	LHV Molar Basis (Std) (Btu/lbmole)	2.417e+006	2.417e+006						
34	HHV Molar Basis (Std) (Btu/lbmole)	2.586e+006	2.586e+006						
	HHV Mass Basis (Std) (Btu/lb)	2.045e+004	2.045e+004						

2	ELATROCK	ENGINEERING AND	Case Name:	Ameredev -Boyd 11 flash.hsc
3	Bedford, MA	ENGINEERING AND	Unit Set:	Field13e
5	USA		Date/Time:	Tue Nov 21 08:55:42 2017
6 7 8	Material Stream	n: Inlet Oil (continue	Fluid Package: PENG-ROB Property Package: Kabadi-Danner
9			PROPERTIES	3
11		Overall	Liquid Phase	
12	CO2 Loading			
13	CO2 App ML Con (Ibmole/ft3)	0.0000	0.0000	
14	CO2 App WT Con (Ibmol/lb)	0.0000	0.0000	
15	LHV Mass Basis (Std) (Btu/lb)	1.912e+004	1.912e+004	
16	Phase Fraction [Vol. Basis]	0.0000	1.000	
17	Phase Fraction [Mass Basis]	0.0000	1.000	
18	Phase Fraction [Act. Vol. Basis]	0.0000	1.000	
19	Partial Pressure of CO2 (psia)	0.0000		
20	Cost Based on Flow (Cost/s)	0.0000	0.0000	
21	Act. Gas Flow (ACFM)			
22	Avg. Liq. Density (Ibmole/ft3)	0.3578	0.3578	
23	Specific Heat (Btu/lbmole-F)	68.84	68.84	
24	Std. Gas Flow (MMSCFD)	1.522	1.522	
25	Std. Ideal Liq. Mass Density (lb/ft3)	45.25	45.25	
26	Act. Liq. Flow (USGPM)	61.28	61.28	
27	Z Factor	1.445e-002	1.445e-002	
28	Watson K	12.55	12.55	
29	User Property			
30	Partial Pressure of H2S (psia)	0.0000	3795	
31	Cp/(Cp - R)	1.030	1.030	
32	Cp/Cv	1.246	1.246	
33	Heat of Vap. (Btu/lbmole)	3.371e+004		
34	Kinematic Viscosity (cSt)	0.6692	0.6692	
35	Liq. Mass Density (Std. Cond) (lb/ft3)	45.69	45.69	

36 Aspen Technology Inc.

Page 2 of 55

1 2	FLATROCK	ENGINEEDING AND	Case Name: Amerede	v -Boyd 11 flash.hsc								
3	Bedford, MA	ENGINEERING AND	Unit Set: Field13e									
5	USA		Date/Time: Tue Nov 21 08:55:42 2017									
6 7 8	Material Stream	n: Inlet Oil ((continued)	Fluid Package: PENG-ROB Property Package: Kabadi-Danner								
9	PROPERTIES											
11												
12	Liq. Vol. Flow (Std. Cond)(barrel/day)	1981	1981									
13	Liquid Fraction	1.000	1.000									
14	Molar Volume (ft3/lbmole)	2.936	2.936									
15	Mass Heat of Vap. (Btu/lb)	266.5										
16	Phase Fraction [Molar Basis]	0.0000	1.0000									
17	Surface Tension (dyne/cm)	17.68	17.68									
18	Thermal Conductivity (Btu/hr-ft-F)	6.566e-002	6.566e-002									
19	Viscosity (cP)	0.4617	0.4617									
20	Cv (Semi-Ideal) (Btu/Ibmole-F)	66.85	66.85									
21	Mass Cv (Semi-Ideal) (Btu/lb-F)	0.5287	0.5287									
22	Cv (Btu/lbmole-F)	55.25	55.25									
23	Mass Cv (Btu/lb-F)	0.4369	0.4369									
24	Cv (Ent. Method) (Btu/lbmole-F)	55.81	55.81									
25	Mass Cv (Ent. Method) (Btu/lb-F)	0.4413	0.4413									
26	Cp/Cv (Ent. Method)	1.233	1.233									
27	Reid VP at 37.8 C (psia)	7.522	7.522									
28	True VP at 37.8 C (psia)	9.549	9.549									
29	Liq. Vol. Flow - Sum(Std. (Camob)/day)	1981	1981									
30	Viscosity Index	-2.911										
31	Mass Exergy (Btu/lb)	2.496										
32 33 34 35												
36	Aspen Technology Inc.	Aspen HYS	SYS Version 8.8 (34.0.1.89	09) Page 3 of 55								

1 2		ELATROCK ENG	INCEDING AND	Case Name: Ame	eredev -Boyd 11 flash	n.hsc				
3	aspentech	FLATROCK ENGINEERING AND Bedford, MA USA USA Unit Set: Field13e			Unit Set: Field13e					
4	Coponicon				Nov 21 08:55:42 201	17	Marine San			
5	,			Date/Time: Tue	NOV 21 06.55.42 20	II.				
6		1.01		. n	Flu	id Package: PEN	IG-ROB			
7	Materi	al Stream:	iniet Oil (d	continued)	Pro	perty Package: Kab	adi-Danner			
9					110	perty rackage. Rab	adi-Daririer			
10				COMPOSITION						
11			_							
12			O	verall Phase		Vapour Fr	raction 0.0000			
13	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME			
14		(lbmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION			
15	Nitrogen	0.0000 *	0.0000	* 0.0000 *	0.0000 *	0.0000 *	0.0000 *			
16	Methane	0.0261 *	0.0002	* 0.4190 *	0.0000 *	0.0958 *	0.0000			
17	CO2	0.0000 *	0.0000	* 0.0000 *	0.0000 *	0.0000 *	0.0000			
18	Ethane	0.3538 *	0.0021	10.6382 *	0.0005 *	2.0480 *	0.0010			
19	Propane	2.4746 *	0.0148	* 109.1241 *	0.0052 *	14.7471 *	0.0074			
20	i-Butane	1.2341 *	0.0074	* 71.7330 *	0.0034 *	8.7403 *	0.0044			
21	n-Butane	5.8244 *	0.0348	* 338.5399 *	0.0160 *	39.7460 *	0.0199			
22	i-Pentane	4.6506 *	0.0278	* 335.5440 *	0.0158 *	36.8529 *	0.0184			
23	n-Pentane	6.6879 *	0.0399	482.5377 *	0.0228 *	52.4682 *	0.0262			
24	22-Mbutane	16.4960 *	0.0985	* 1421.5931 *	0.0671 *	149.1660 *	0.0746			
25	n-Hexane	6.0625 *	0.0362	522.4561 *	0.0247 *	53.9852 *	0.0270			
26	Benzene	1.4600 *	0.0087	114.0409 *	0.0054 *	8.8515 *	0.0044			
27	n-Heptane	21.3231 *	0.1274	* 2136.6793 *	0.1009 *	213.0188 *	0.1065			
28	Toluene	4.4770 *	0.0267	412.5100 *	0.0195 *	32.4647 *	0.0162			
29	n-Octane	13.9995 *	0.0836	* 1599.1859 *	0.0755 *	155.2372 *	0.0776			
30	E-Benzene	2.0335 *	0.0121		0.0102 *	16.9904 *	0.0085			
31	m-Xylene	5.3228 *	0.0318	* 565.1022 *	0.0267 *	44.6360 *	0.0223			
32	n-Nonane	11.2437 *	0.0672	* 1442.1057 *	0.0681 *	137.0989 *	0.0685			
33	n-Decane	12.7518 *	0.0762		0.0857 *	169.5543 *	0.0848			
34	n-C11	7.6746 *	0.0458	The state of the s	0.0567 *	110.5778 *	0.0553			
35	H2O	0.0000 *	0.0000	* 0.0000 *	0.0000 *	0.0000 *	0.0000			

Licensed to: FLATROCK ENGINEERING AND

Aspen Technology Inc.

Page 4 of 55

1				Case Name: Ame	eredev -Boyd 11 flash	n.hsc		
2	(db)	FLATROCK ENG	INEERING AND					
3	aspentech	Bedford, MA USA		Unit Set: Field	d13e			
5	•	USA		Date/Time: Tue	Nov 21 08:55:42 201	17		
6				The state of the s				
7	Matori	al Stream:	Inlet Oil (Fluid Package: PENG-ROB				
8	Materi	ai Sucaiii.	mier on (continueuj	Pro	perty Package: Kab	oadi-Danner	
9				COMPOSITION				
10				COMPOSITION				
11 12			Overall	Phase (continued)		Vapour Fi	raction 0.0000	
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
15	H2S	0.0000 *	0.0000	* 0.0000 *	0.0000 *	0.0000 *	0.0000 *	
16	n-C12	5.4283 *	0.0324	* 924.6511 *	0.0437 *	84.2893 *	0.0421 *	
17	n-C13	4.5583 *	0.0272	* 840.4047 *	0.0397 *	75.8353 *	0.0379 *	
18	n-C14	33.3388 *	0.1991	* 6613.7528 *	0.3124 *	593.5963 *	0.2968 *	
19	Total	167.4214	1.0000	21170.9192	1.0000	2000.0000	1.0000	
20 21			L	iquid Phase		Phase Fra	action 1.000	
22 23	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
24	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
25	Methane	0.0261	0.0002	0.4190	0.0000	0.0958	0.0000	
26	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
27	Ethane	0.3538	0.0021	10.6382	0.0005	2.0480	0.0010	
28	Propane	2.4746	0.0148	109.1241	0.0052	14.7471	0.0074	
29	i-Butane	1.2341	0.0074	71.7330	0.0034	8.7403	0.0044	
30	n-Butane	5.8244	0.0348	338.5399	0.0160	39.7460	0.0199	
31	i-Pentane	4.6506	0.0278	335.5440	0.0158	36.8529	0.0184	
32	n-Pentane	6.6879	0.0399	482.5377	0.0228	52.4682	0.0262	
33	22-Mbutane	16.4960	0.0985	1421.5931	0.0671	149.1660	0.0746	
34	n-Hexane	6.0625	0.0362	522.4561	0.0247	53.9852	0.0270	
35	Benzene	1.4600	0.0087	114.0409	0.0054	8.8515	0.0044	

Aspen Technology Inc.

Page 5 of 55

1		ELATROCK ENG	INEEDING AND	Case Name: An	neredev -Boyd 11 flash	ı.hsc		
3	aspentech	FLATROCK ENG Bedford, MA	INEERING AND	Unit Set: Fie	eld13e	Introduce In	Williams	
5	Caoponicon	USA		Date/Time: Tue Nov 21 08:55:42 2017				
6		- VIII II			Fix	id Dealteant DEN	IC DOD	
7	Materi	al Stream:	Inlet Oil (c	ontinued)	Fiu	id Package: PEN	NG-ROB	
8	Match	ai Oticaiii.	mice on (c	.onunaca)	Pro	perty Package: Kab	adi-Danner	
9			,	COMPOSITION				
10				CIMPOSITION				
11			Liquid P	hase (continued)	Phase Fra	action 1.000	
12					<u> </u>		LIQUID VOLUME	
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
15	n-Heptane	21.3231	0.1274	2136.6793	0.1009	213.0188	0.1065	
16	Toluene	4.4770	0.0267	412.5100	0.0195	32.4647	0.0162	
17	n-Octane	13.9995	0.0836	1599.1859	0.0755	155.2372	0.0776	
18	E-Benzene	2.0335	0.0121	215.8839	0.0102	16.9904	0.0085	
19	m-Xylene	5.3228	0.0318	565.1022	0.0267	44.6360	0.0223	
20	n-Nonane	11.2437	0.0672	1442.1057	0.0681	137.0989	0.0685	
21	n-Decane	12.7518	0.0762	1814.3837	0.0857	169.5543	0.0848	
22	n-C11	7.6746	0.0458	1199.6337	0.0567	110.5778	0.0553	
23	H2O	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
24	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
25	n-C12	5.4283	0.0324	924.6511	0.0437	84.2893	0.0421	
26	n-C13	4.5583	0.0272	840.4047	0.0397	75.8353	0.0379	
27	n-C14	33.3388	0.1991	6613.7528	0.3124	593.5963	0.2968	
28	Total	167.4214	1.0000	21170.9192	1.0000	2000.0000	1.0000	
29 30				K VALUE				
31								
32		Nitrogen						
33		Methane		0.0000	(0.0000		
34		CO2						
35		Ethane		0.0000	(0.0000		
36	Aspen Technology Inc		Aspen HYS)	'S Version 8.8 (34.			Page 6 of 55	

1	FLATBOOK ENGINEER	OINO AND	Case Name:	Ameredev -Boyd 11	flash.hsc			
3	aspentech FLATROCK ENGINEER Bedford, MA	RING AND	Unit Set: Field13e					
4 5	USA		Date/Time:	Tue Nov 21 08:55:4	2 2017			
6 7 8	Material Stream: Inle	et Oil (continue	d)	Fluid Package Property Pack		PENG-ROB Kabadi-Danner	
9 10			K VALUE					
11	COMPONENTS	MIX	KED	LIGHT			HEAVY	
12	Propane		0.0000		0.0000			
13	i-Butane		0.0000		0.0000			
14	n-Butane		0.0000		0.0000			
15	i-Pentane		0.0000		0.0000			
16	n-Pentane		0.0000		0.0000			
17	22-Mbutane		0.0000		0.0000			
18	n-Hexane		0.0000		0.0000			
19	Benzene		0.0000		0.0000			
20	n-Heptane		0.0000		0.0000			
21	Toluene		0.0000		0.0000			
22	n-Octane		0.0000		0.0000			
23	E-Benzene		0.0000		0.0000			
24	m-Xylene		0.0000		0.0000			
25	n-Nonane		0.0000		0.0000			
26	n-Decane		0.0000		0.0000			
27	n-C11		0.0000		0.0000			
28	H2O							
29	H2S							
30	n-C12		0.0000		0.0000			
31	n-C13		0.0000		0.0000			
32	n-C14		0.0000		0.0000			
33 34 35								
36	Aspen Technology Inc.	Aspen HYS	SYS Version 8.8	(34.0.1.8909)			Page 7	of 55

-					
1	FLATBOOK ENGINEERING AND	Case Nam	ne: Am	eredev -Boyd 11 flash.hs	0
1 2 3 4 5 6 7	aspentech FLATROCK ENGINEERING AND Bedford, MA	Unit Set:	Fiel	d13e	
4	USA	Date/Time	e: Tue	Nov 21 08:55:42 2017	
5					
ь	M-4		11	Fluid P	ackage: PENG-ROB
	Material Stream: Inlet Oil (contin	iued)	Dropor	ty Package: Kabadi-Danner
8		Property Package:			rackage. Rabaul-Dailliei
9 10	U	NIT OPER	ATIONS		
11	FEED TO	PRODUCT	FROM		LOGICAL CONNECTION
12	Mixer: MIX-100				
13	1.		YER PER		
14		UTILITI	IES		
15	(No uti	lities reference	ce this stre	am)	
	***************************************				12.00
16 17	P	ROCESS I	UTILITY		~
18					
19		DVALABA			
20		DYNAM	lics		
21	Pressure Specification (Active): 32.20 psia *				
22	Flow Specification (Active) Molar: 1.525 M	MSCFD I	Mass:	2.117e+004 lb/hr	Std Ideal Liq Volum2600 barrel/day *
23		User Vari	iables		
24		User vari	lables		
25 26		NOTE	-0		
		NOTE	_0		
27					
28 29		Descrip	tion		
		Describ			
30					=2
31					
32					
32 33 34 35					
34					
36	Aspen Technology Inc. Aspen HYS	SYS Version	88 (34 0	1 8909)	Page 8 of 55

. 1			_				
2	C STATEOUX		Case Name: A	Ameredev -Boyd 11 f	lash.hsc		
3	Bedford, MA	ENGINEERING AND	Unit Set: F				
4 5	USA		Date/Time: Tue Nov 21 08:55:42 2017				
6 7	Material Stream	n: Flash to	flare		Fluid Package:	PENG-ROB	
8			Property Package: Kabadi-Da				
9			CONDITIONS				
11		Overall	Vapour Phase	Liquid Phase			
2	Vapour / Phase Fraction	1.0000	1.0000	0.0000			
3	Temperature: (F)	146.0	146.0	146.0			
4	Pressure: (psia)	14.20	14.20	14.20			
5	Molar Flow (MMSCFD)	4.640e-002	4.640e-002	0.0000			
6	Mass Flow (lb/hr)	313.5	313.5	0.0000			
7	Std Ideal Liq Vol Flow (barrel/day)	35.35	35.35	0.0000			
8	Molar Enthalpy (Btu/lbmole)	-6.041e+004	-6.041e+004	-1.070e+005			
9	Molar Entropy (Btu/lbmole-F)	42.52	42.52	47.36			
0	Heat Flow (Btu/hr)	-3.078e+005	-3.078e+005	0.0000			
21	Liq Vol Flow @Std Cond (barrel/day)	34.34 *	34.34	0.0000			
22			PROPERTIES				
24		Overall	Vapour Phase	Liquid Phase			
25	Molecular Weight	61.54	61.54	128.3			
26	Molar Density (Ibmole/ft3)	2.228e-003	2.228e-003	0.3377			
27	Mass Density (lb/ft3)	0.1371	0.1371	43.32			
28	Act. Volume Flow (barrel/day)	9775	9775	0.0000			
9	Mass Enthalpy (Btu/lb)	-981.6	-981.6	-834.4			
30	Mass Entropy (Btu/lb-F)	0.6909	0.6909	0.3691			
31	Heat Capacity (Btu/lbmole-F)	26.27	26.27	69.49			
32	Mass Heat Capacity (Btu/lb-F)	0.4269	0.4269	0.5416			
33	LHV Molar Basis (Std) (Btu/lbmole)	1.171e+006	1.171e+006	2.451e+006			
34	HHV Molar Basis (Std) (Btu/lbmole)	1.261e+006	1.261e+006	2.623e+006			

2.048e+004

2.048e+004

(Btu/lb)

HHV Mass Basis (Std)

Aspen Technology Inc.

2.044e+004

1		
İ	2	
	3	aspentech
	4	- aspenteen
I	5	

6 7

8 9 FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc	
Unit Set:	Field13e	
Date/Time:	Tue Nov 21 08:55:42 2017	

Material Stream: Flash to flare (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

PROPERTIES

11	Overall	Vapour Phase	Liquid Phase	
12 CO2 Loading				
13 CO2 App ML Con (lbmole/ft3)				
14 CO2 App WT Con (lbmol/lb)		-	122	
15 LHV Mass Basis (Std) (Btu/lb)	1.903e+004	1.903e+004	1.911e+004	
16 Phase Fraction [Vol. Basis]	1.000	1.000		
17 Phase Fraction [Mass Basis]	1.000	1.000	0.0000	
18 Phase Fraction [Act. Vol. Basis]	1.000	1.000	0.0000	
19 Partial Pressure of CO2 (psia)	0.0000			
20 Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	
21 Act. Gas Flow (ACFM)	38.11	38.11		
22 Avg. Liq. Density (lbmole/ft3)	0.6160	0.6160	0.3539	
23 Specific Heat (Btu/lbmole-F)	26.27	26.27	69.49	
24 Std. Gas Flow (MMSCFD)	4.631e-002	4.631e-002	0.0000	
25 Std. Ideal Liq. Mass Density (lb/ft3)	37.91	37.91	45.40	
26 Act. Liq. Flow (USGPM)				
27 Z Factor		0.9806	6.470e-003	
28 Watson K	13.32	13.32	12.54	
29 User Property				
30 Partial Pressure of H2S (psia)	0.0000			
31 Cp/(Cp - R)	1.082	1.082	1.029	
32 Cp/Cv	1.089	1.089	1.244	
33 Heat of Vap. (Btu/lbmole)	1.665e+004			
34 Kinematic Viscosity (cSt)	3.803	3.803	0.6981	
35 Liq. Mass Density (Std. Cond) (lb/ft3)	39.03	39.03	45.81	
36 Aspen Technology Inc.	Aspen H	YSYS Version 8.8 (34	1.0.1.8909)	Page 10 of 55

1	- FLATBOOK		Case Name:	Ameredev -Boyd 11 f	lash.hsc			
3	aspentech Bedford, MA	The state of the s		Unit Set: Field13e				
4 5	USA	USA Date/Time: Tue Nov 21 08:55:42 2			2017			
6 7 8	Material Stream	n: Flash to	flare (cont	inued)	Fluid Package: Property Package:	PENG-ROB Kabadi-Danner		
9 10			PROPERTIES					
11		Overall	Vapour Phase	Liquid Phase				
12	Liq. Vol. Flow (Std. Cond)(barrel/day)	34.34	34.34	0.0000				
13	Liquid Fraction	0.0000	0.0000	1.000				
14	Molar Volume (ft3/lbmole)	448.8	448.8	2.961				
5	Mass Heat of Vap. (Btu/lb)	270.6						
6	Phase Fraction [Molar Basis]	1.0000	1.0000	0.0000				
7	Surface Tension (dyne/cm)			18.21				
8	Thermal Conductivity (Btu/hr-ft-F)	1.055e-002	1.055e-002	6.677e-002				
19	Viscosity (cP)	8.352e-003	8.352e-003	0.4845				
20	Cv (Semi-Ideal) (Btu/Ibmole-F)	24.29	24.29	67.50				
21	Mass Cv (Semi-Ideal) (Btu/lb-F)	0.3947	0.3947	0.5261				
22	Cv (Btu/lbmole-F)	24.14	24.14	55.85				
23	Mass Cv (Btu/lb-F)	0.3922	0.3922	0.4354				
4	Cv (Ent. Method) (Btu/lbmole-F)	7.7		56.49				
25	Mass Cv (Ent. Method) (Btu/lb-F)			0.4403				
26	Cp/Cv (Ent. Method)	***		1.230				
27	Reid VP at 37.8 C (psia)	75.13	75.13	5.852				
28	True VP at 37.8 C (psia)	100.8	100.8	7.685				
29	Liq. Vol. Flow - Sum(Std. (Camde)I/day)	34.34	34.34	0.0000				
30	Viscosity Index	-28.66						
31	Mass Exergy (Btu/lb)	3.824						
32 33 34 35								

36 Aspen Technology Inc.

Page 11 of 55

1				Case Name: Am	eredev -Boyd 11 flash	n hsc			
3	(db)	FLATROCK ENG	GINEERING AND	oudo rumo.	oreder boya rriider				
	aspentech	Bedford, MA		Unit Set: Field13e					
4	- doponio	USA		Date/Time: Tue Nov 21 08:55:42 2017					
5				Bate/Time.	MACHINERY TO BE OF BY A PROPERTY MACHINERY OF THE PROPERTY OF	***			
6 7	Motoria	al Ctrooms	Floob to f	lava (aantin	Flu	id Package: PEN	NG-ROB		
8	Materia	ai Stream:	riash to i	lare (contin	iuea) _{Pro}	perty Package: Kab	adi-Danner		
9						, , ,			
10				COMPOSITION					
11			0.	revell Dhees		Vapour Fr	raction 1.0000		
12				erall Phase	9	vapour Fi	action 1.0000		
13	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME		
14		(lbmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION		
15	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
16	Methane	0.0222	0.0044	0.3567	0.0011	0.0816	0.0023		
17	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
18	Ethane	0.2256	0.0443	6.7825	0.0216	1.3057	0.0369		
19	Propane	0.9561	0.1877	42.1622	0.1345	5.6978	0.1612		
20	i-Butane	0.2746	0.0539	15.9637	0.0509	1.9451	0.0550		
21	n-Butane	1.0301	0.2022	59.8713	0.1910	7.0291	0.1988		
22	i-Pentane	0.4094	0.0804	29.5420	0.0942	3.2446	0.0918		
23	n-Pentane	0.4766	0.0936	34.3901	0.1097	3.7394	0.1058		
24	22-Mbutane	0.7057	0.1385	60.8196	0.1940	6.3817	0.1805		
25	n-Hexane	0.1654	0.0325	14.2580	0.0455	1.4733	0.0417		
26	Benzene	0.0360	0.0071	2.8146	0.0090	0.2185	0.0062		
27	n-Heptane	0.2238	0.0439	22.4221	0.0715	2.2354	0.0632		
28	Toluene	0.0412	0.0081	3.7927	0.0121	0.2985	0.0084		
29	n-Octane	0.0559	0.0110	6.3801	0.0203	0.6193	0.0175		
30	E-Benzene	0.0073	0.0014	0.7756	0.0025	0.0610	0.0017		
31	m-Xylene	0.0165	0.0032	1.7525	0.0056	0.1384	0.0039		
32	n-Nonane	0.0175	0.0034	2.2486	0.0072	0.2138	0.0060		
33	n-Decane	0.0079	0.0015	1.1236	0.0036	0.1050	0.0030		
34	n-C11	0.0019	0.0004	0.2955	0.0009	0.0272	0.0008		
35	H2O	0.4199	0.0824	7.5650	0.0241	0.5190	0.0147		

Licensed to: FLATROCK ENGINEERING AND

36 Aspen Technology Inc.

Page 12 of 55

1 2		FLATBOOK FM	ONITEDING AND	Case Name: Am	eredev -Boyd 11 flasł	n.hsc	
3	aspentech	Bedford, MA	GINEERING AND	Unit Set: Fiel	ld13e		
5	Caopontoo	USA	Ī	Date/Time: Tue	Nov 21 08:55:42 20	17	
6					Flu	id Package: PEN	NG-ROB
7	Materi	al Stream:	Flash to f	lare (contin	nued)		
8				(0011011	Pro	perty Package: Kab	adi-Danner
9				COMPOSITION			
10							
11			Overall I	Phase (continued))	Vapour F	raction 1.0000
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	n-C12	0.0006	0.0001	0.0997	0.0003	0.0091	0.0003
17	n-C13	0.0002	0.0000	0.0330	0.0001	0.0030	0.0001
18	n-C14	0.0005	0.0001	0.0894	0.0003	0.0080	0.0002
19	Total	5.0950	1.0000	313.5381	1.0000	35.3546	1.0000
20 21			Va	pour Phase		Phase Fra	action 1.000
22 23	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
24	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
25	Methane	0.0222	0.0044	0.3567	0.0011	0.0816	0.0023
26	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
27	Ethane	0.2256	0.0443	6.7825	0.0216	1.3057	0.0369
28	Propane	0.9561	0.1877	42.1622	0.1345	5.6978	0.1612
29	i-Butane	0.2746	0.0539	15.9637	0.0509	1.9451	0.0550
30	n-Butane	1.0301	0.2022	59.8713	0.1910	7.0291	0.1988
31	i-Pentane	0.4094	0.0804	29.5420	0.0942	3.2446	0.0918
32	n-Pentane	0.4766	0.0936	34.3901	0.1097	3.7394	0.1058
33	22-Mbutane	0.7057	0.1385	60.8196	0.1940	6.3817	0.1805
34	n-Hexane	0.1654	0.0325	14.2580	0.0455	1.4733	0.0417
35	Benzene	0.0360	0.0071	2.8146	0.0090	0.2185	0.0062
36	Aspen Technology Inc		Aspen HYS	S Version 8.8 (34.0	.1.8909)		Page 13 of 55

2		FLATROCK ENGINEERING AND			Case Name: Ameredev -Boyd 11 flash.hsc				
3	aspentech	Bedford, MA	SINEERING AND	Unit Set: Field13e					
5		USA		Date/Time: Tue	Nov 21 08:55:42 201	17			
6					Flu	id Package: PEN	NG-ROB		
7	Materi	al Stream:	Flash to f	lare (contin	iued) Pro	perty Package: Kab	adi-Danner		
9 10				COMPOSITION					
11			Vanour	Phase (continued)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Phase Fra	action 1.000		
12			vapour	r nase (continued)	//	Tilase Tie			
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	FRACTION		
15	n-Heptane	0.2238	0.0439	22.4221	0.0715	2.2354	0.0632		
16	Toluene	0.0412	0.0081	3.7927	0.0121	0.2985	0.0084		
17	n-Octane	0.0559	0.0110	6.3801	0.0203	0.6193	0.0175		
18	E-Benzene	0.0073	0.0014	0.7756	0.0025	0.0610	0.0017		
19	m-Xylene	0.0165	0.0032	1.7525	0.0056	0.1384	0.0039		
20	n-Nonane	0.0175	0.0034	2.2486	0.0072	0.2138	0.0060		
21	n-Decane	0.0079	0.0015	1.1236	0.0036	0.1050	0.0030		
22	n-C11	0.0019	0.0004	0.2955	0.0009	0.0272	0.0008		
23	H2O	0.4199	0.0824	7.5650	0.0241	0.5190	0.0147		
24	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
25	n-C12	0.0006	0.0001	0.0997	0.0003	0.0091	0.0003		
26	n-C13	0.0002	0.0000	0.0330	0.0001	0.0030	0.0001		
27	n-C14	0.0005	0.0001	0.0894	0.0003	0.0080	0.0002		
28	Total	5.0950	1.0000	313.5381	1.0000	35.3546	1.0000		
29 30			L	iquid Phase		Phase Fra	action 0.0000		
31 32	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
33	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
34	Methane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
35	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
36	Aspen Technology Inc		Aspen HYS	YS Version 8.8 (34.0	.1.8909)		Page 14 of 55		

1		EL ATROCK ENG	SINEEDING AND	Case Name: Am	eredev -Boyd 11 flash	ı.hsc			
3	aspentech	FLATROCK ENG Bedford, MA	SINEEKING AND	Unit Set: Field13e					
4 5		USA		Date/Time: Tue	Nov 21 08:55:42 201	17	Len Evene		
6	-				Flu	id Package: PEN	NG-ROB		
7	Materi	al Stream:	Flash to fl	are (contin	med)				
8					Pro	perty Package: Kab	adi-Danner		
9			(COMPOSITION					
11			I to a to the		8	Dhara Fa	ti 0.0000		
12			Liquid P	hase (continued)		Phase Fra	action 0.0000		
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
15	Ethane	0.0000	0.0008	0.0000	0.0002	0.0000	0.0004		
16	Propane	0.0000	0.0093	0.0000	0.0032	0.0000	0.0046		
17	i-Butane	0.0000	0.0059	0.0000	0.0027	0.0000	0.0035		
18	n-Butane	0.0000	0.0295	0.0000	0.0134	0.0000	0.0167		
19	i-Pentane	0.0000	0.0262	0.0000	0.0147	0.0000	0.0172		
20	n-Pentane	0.0000	0.0383	0.0000	0.0215	0.0000	0.0249		
21	22-Mbutane	0.0000	0.0931	0.0000	0.0625	0.0000	0.0697		
22	n-Hexane	0.0000	0.0364	0.0000	0.0244	0.0000	0.0268		
23	Benzene	0.0000	0.0084	0.0000	0.0051	0.0000	0.0042		
24	n-Heptane	0.0000	0.1301	0.0000	0.1017	0.0000	0.1076		
25	Toluene	0.0000	0.0272	0.0000	0.0195	0.0000	0.0163		
26	n-Octane	0.0000	0.0860	0.0000	0.0766	0.0000	0.0790		
27	E-Benzene	0.0000	0.0125	0.0000	0.0103	0.0000	0.0086		
28	m-Xylene	0.0000	0.0327	0.0000	0.0271	0.0000	0.0227		
29	n-Nonane	0.0000	0.0693	0.0000	0.0692	0.0000	0.0699		
30	n-Decane	0.0000	0.0786	0.0000	0.0872	0.0000	0.0865		
31	n-C11	0.0000	0.0473	0.0000	0.0577	0.0000	0.0565		
32	H2O	0.0000	0.0012	0.0000	0.0002	0.0000	0.0001		
33	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
34	n-C12	0.0000	0.0335	0.0000	0.0445	0.0000	0.0430		
35	n-C13	0.0000	0.0281	0.0000	0.0404	0.0000	0.0387		
36	Aspen Technology Inc	C	Aspen HYS	'S Version 8.8 (34.0).1.8909)		Page 15 of 55		

1				Case Name: Am	eredev -Boyd 11 flash	n.hsc			
3	espentech	FLATROCK ENG Bedford, MA	INEERING AND	Unit Set: Field13e					
5	- doponio	USA		Date/Time: Tue	Nov 21 08:55:42 20	17			
6					. Flu	id Packa	ge: PEN	NG-ROB	
7 8	Materia	I Stream:	Flash to fl	are (contir	iued) _{Pro}	perty Pa	ckage: Kab	adi-Danner	
9			C	OMPOSITION					
11			Liquid P	hase (continued)	ĺ		Phase Fra	action 0.0	0000
12 13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION		VOLUME (barrel/day)	LIQUID VOLU	
15	n-C14	0.0000	0.2057	0.0000	0.3180	0.0000		0.3	3031
16	Total	0.0000	1.0000	0.0000	1.0000		0.0000	1.0	0000
17 18				K VALUE					
19	COMPONE	ENTS	MIXE	D	LIGHT			HEAVY	
20		Nitrogen							
21		Methane	245.7			245.7			
22		CO2							
23		Ethane	58.96		58.96				
24		Propane	20.13		20.13				
25		i-Butane	9.111		9.111				
26		n-Butane	6.844		6.844				
27		i-Pentane		3.072	3.072				
28		n-Pentane		2.443	2.443				
29	22-Mbutane			1.488		1.488			
30 31	n-Hexane			0.8929		0.8929			
-	Benzene			0.8404		0.8404			
32				0.3374		0.3374			
33	Toluene			0.2972		0.2972			
34		n-Octane	-	0.1274		0.1274			
35		E-Benzene	A	0.1149).1149		D 46	
36	Aspen Technology Inc.		Aspen HYSY	S Version 8.8 (34.0	1.1.8909)			Page 16 of	1 55

1 2	51 ATROOM SHOWS		Case Nam	e: Amerede	ev -Boyd	11 flash.hsc			
3	aspentech Bedford, MA			Unit Set: Field13e					
4 5	USA		Date/Time	: Tue Nov	21 08:55	5:42 2017			
6 7 8	Material Stream: F	lash to f	lare (d	ontinue	ed)	Fluid Pa Property	ckage: Package:	PENG-ROB Kabadi-Danner	
9			K VAL	UE					
11	COMPONENTS	MIX	ED		LIGH	T		HEAVY	
12	m-Xylene		9.910e-0	02		9.910e-002	2		
13	n-Nonane		4.969e-0	02		4.969e-002	2		
14	n-Decane		1.972e-0	02		1.972e-002	2		
15	n-C11		7.840e-0	03		7.840e-003	3		
16	H2O		69.	10		69.10)		
17	H2S	<u></u>				-			
18	n-C12	3.430e-003		03		3.430e-003	3		
19	n-C13	1.248e-003			1.248e-003	3			
20	n-C14		4.300e-004			4.300e-004	4		
21 22		U	NIT OPER	ATIONS					
23	FEED TO		PRODUCT	FROM		- 1	OGICAL C	CONNECTION	
24		Separator:		Knockout	Tank				
25		*		F0					
26			UTILIT	E2					
27		(No util	ities referen	ce this stream)					
28 29		PI	ROCESS	JTILITY					
30									
31			DYNAM	ICS					
33	Pressure Specification (Inactive) 14.20 psia								
34	Flow Specification (Inactive) Molar:	340e-002 MI	MSCFD	Mass:	3	313.5 lb/hr	Std Ideal	Liq Volum 5:35 barrel/o	day
35									
36	Aspen Technology Inc.	Aspen HYS	YS Version	8.8 (34.0.1.89	909)			Page 17 of	55

1		FLATBOOK FNOWEFFRING		Case Name: Ameredev -Boyd 11 flash.hsc					
3	aspentech E	Bedford, MA			Unit Set: Field13e				
<u>4</u> 5		USA		Date/Time:	Tue Nov 21 08:55:42	2017			
6	Matarial	Ctussus	. Flack to	flans /aand	::d)	Fluid Package:	PENG-ROB		
7 8	Materia	Stream	: Flash to	mare (cont	inuea)	Property Package:	Kabadi-Danner		
9				User Variables					
11 12				NOTES					
13									
14 15				Description					
16			•						
17		. 01				Fluid Package:	PENG-ROB		
18 19	Materia	Stream	: Flash to	Atm		Property Package:	Kabadi-Danner		
20 21				CONDITIONS					
22			Overall	Vapour Phase	Liquid Phase				
23	Vapour / Phase Fraction		1.0000	1.0000	0.0000				
24	Temperature:	(F)	145.3	145.3	145.3				
25	Pressure:	(psia)	13.20	13.20	13.20				
26	Molar Flow (1	MMSCFD)	7.238e-003	7.238e-003	0.0000				
27	Mass Flow	(lb/hr)	50.28	50.28	0.0000				
28	Std Ideal Liq Vol Flow (b	parrel/day)	5.645	5.645	0.0000				
29		stu/lbmole)	-6.013e+004	-6.013e+004	-1.073e+005				
30		/lbmole-F)	42.35	42.35	47.38				
31	Heat Flow	(Btu/hr)	-4.779e+004	-4.779e+004	0.0000				
32	Liq Vol Flow @Std Cond (b	parrel/day)	5.499 *	5.499	0.0000				
33									
33 34 35									
_									
36	Aspen Technology Inc.		Aspen HY	SYS Version 8.8 (3	4.0.1.8909)		Page 18 of 55		

	ш	
7	2	Colle
	3	agnentech
	4	- aspented
	5	

6 7

8

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc
Unit Set:	Field13e
Date/Time:	Tue Nov 21 08:55:42 2017

Material Stream: Flash to Atm (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

PROPERTIES

11	Overall	Vapour Phase	Liquid Phase	
12 Molecular Weight	63.27	63.27	128.6	
13 Molar Density (Ibmole/ft3)	2.072e-003	2.072e-003	0.3371	
14 Mass Density (lb/ft3)	0.1311	0.1311	43.36	
15 Act. Volume Flow (barrel/day)	1639	1639	0.0000	
16 Mass Enthalpy (Btu/lb)	-950.4	-950.4	-834.1	
17 Mass Entropy (Btu/lb-F)	0.6694	0.6694	0.3684	
18 Heat Capacity (Btu/lbmole-F)	26.93	26.93	69.60	
19 Mass Heat Capacity (Btu/lb-F)	0.4257	0.4257	0.5411	
20 LHV Molar Basis (Std) (Btu/lbmole)	1.210e+006	1.210e+006	2.457e+006	
21 HHV Molar Basis (Std) (Btu/lbmole)	1.302e+006	1.302e+006	2.629e+006	
22 HHV Mass Basis (Std) (Btu/lb)	2.058e+004	2.058e+004	2.044e+004	
23 CO2 Loading			-	
24 CO2 App ML Con (lbmole/ft3)				
25 CO2 App WT Con (lbmol/lb)				
26 LHV Mass Basis (Std) (Btu/lb)	1.912e+004	1.912e+004	1.911e+004	
27 Phase Fraction [Vol. Basis]	1.000	1.000		
28 Phase Fraction [Mass Basis]	1.000	1.000	0.0000	
29 Phase Fraction [Act. Vol. Basis]	1.000	1.000	0.0000	
30 Partial Pressure of CO2 (psia)	0.0000			
31 Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	
32 Act. Gas Flow (ACFM)	6.392	6.392		
33 Avg. Liq. Density (lbmole/ft3)	0.6019	0.6019	0.3532	
34 Specific Heat (Btu/lbmole-F)	26.93	26.93	69.60	
35 Std. Gas Flow (MMSCFD)	7.225e-003	7.225e-003	0.0000	
36 Aspen Technology Inc.	Aspen H	YSYS Version 8.8 (34	4.0.1.8909)	Page 19 of 55

1	
2	(A)
3	aspentach
4	- aspenteun
5	
6	

7

9

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc
Unit Set:	Field13e
Date/Time:	Tue Nov 21 08:55:42 2017

Material Stream: Flash to Atm (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

PROPERTIES

11	Overall	Vapour Phase	Liquid Phase	
12 Std. Ideal Liq. Mass Density (lb/ft3)	38.08	38.08	45.42	
13 Act. Liq. Flow (USGPM)				
14 Z Factor		0.9810	6.031e-003	
15 Watson K	13.26	13.26	12.54	
16 User Property		202		
17 Partial Pressure of H2S (psia)	0.0000	-		
18 Cp/(Cp - R)	1.080	1.080	1.029	
19 Cp/Cv	1.086	1.086	1.244	
20 Heat of Vap. (Btu/lbmole)	1.621e+004			
21 Kinematic Viscosity (cSt)	3.930	3.930	0.7026	
22 Liq. Mass Density (Std. Cond) (lb/ft3)	39.09	39.09	45.82	
23 Liq. Vol. Flow (Std. Cond)(barrel/day)	5.499	5.499	0.0000	
24 Liquid Fraction	0.0000	0.0000	1.000	
25 Molar Volume (ft3/lbmole)	482.5	482.5	2.966	
26 Mass Heat of Vap. (Btu/lb)	256.2			
27 Phase Fraction [Molar Basis]	1.0000	1.0000	0.0000	
28 Surface Tension (dyne/cm)			18.27	
29 Thermal Conductivity (Btu/hr-ft-F)	1.041e-002	1.041e-002	6.686e-002	
30 Viscosity (cP)	8.254e-003	8.254e-003	0.4880	
31 Cv (Semi-Ideal) (Btu/lbmole-F)	24.94	24.94	67.61	
32 Mass Cv (Semi-Ideal) (Btu/lb-F)	0.3943	0.3943	0.5257	
33 Cv (Btu/lbmole-F)	24.80	24.80	55.95	
34 Mass Cv (Btu/lb-F)	0.3919	0.3919	0.4350	
35 Cv (Ent. Method) (Btu/lbmole-F)	:===:	-224	56.54	
36 Aspen Technology Inc.	Aspen H	YSYS Version 8.8 (34	4.0.1.8909)	Page 20 of 55

Licensed to: FLATROCK ENGINEERING AND

_									
1		FLATROCK ENGINEERING AND Bedford, MA		Case Name:	Ameredev -Boyd 11 fla	sh.hsc			
3	aspentech			Unit Set:	Field13e				
<u>4</u>		USA		Date/Time:	Tue Nov 21 08:55:42 2	017			
6				-	F	luid Package: PEI	NG-ROB		
7	Materia	Stream:	Flash to	Atm (con	Atm (continued) Property Package: Kabadi-				
9				PROPERTIES					
10				PROPERTIES					
11			Overall	Vapour Phase	Liquid Phase				
12	Mass Cv (Ent. Method)	(Btu/lb-F)		***	0.4396				
13	Cp/Cv (Ent. Method)				1.231				
14	Reid VP at 37.8 C	(psia)	68.00	68.00	5.606				
15	True VP at 37.8 C	(psia)	86.12	86.12	7.075				
16	Liq. Vol. Flow - Sum(Std. @	camoe)l/day)	5.499	5.499	0.0000				
17	Viscosity Index		-28.21						
18	Mass Exergy	(Btu/lb)	2.582						
19 20				COMPOSITION					
21 22				Overall Phase		Vapour F	raction 1.0000		
23 24	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTIO	ON MASS FLOW (lb/hr)	MASS FRACTIO	N LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
25	Nitrogen	0.0000	0.000		0.0000		0.0000		
26	Methane	0.0016	0.002				0.0011		
27	CO2	0.0000	0.000				0.0000		
28	Ethane	0.0289	0.036				0.0296		
29	Propane	0.1449	0.182	23 6.38	82 0.1270	0.8633	0.1529		
30	i-Butane	0.0438	0.055	52 2.54	84 0.0507	0.3105	0.0550		
31	n-Butane 0.1662 0.209		9.66	15 0.1921	1.1343	0.2009			
32	i-Pentane	0.0672	0.084	4.85	19 0.0965		0.0944		
33	n-Pentane	0.0785	0.098	5.66	29 0.1126	0.6157	0.1091		
34	22-Mbutane	0.1167	0.146	8 10.05	50 0.2000	1.0551	0.1869		
	- Auto-Paradiana Artificia								

Licensed to: FLATROCK ENGINEERING AND

Aspen Technology Inc.

35

n-Hexane

2.3613

0.0470

0.0345

0.0274

Page 21 of 55

0.0432

0.2440

2	ELATROCK		SINEEDING AND	Case Name: Ameredev -Boyd 11 flash.hsc				
3	aspentech	Bedford, MA			Unit Set: Field13e			
4 5	o doponito o	USA		Date/Time: Tue Nov 21 08:55:42 2017				
6	Fluid Package: PENG-ROB							
7	Material Stream: Flash to Atm (continued) Property Package: Kabadi-Danner							
9	COMPOSITION							
11								
12	Overall Phase (continued) Vapour Fraction 1.000							
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
15	Benzene	0.0060	0.0075	0.4664	0.0093	0.0362	0.0064	
16	n-Heptane	0.0371	0.0467	3.7156	0.0739	0.3704	0.0656	
17	Toluene	0.0068	0.0086	0.6288	0.0125	0.0495	0.0088	
18	n-Octane	0.0092	0.0116	1.0559	0.0210	0.1025	0.0182	
19	E-Benzene	0.0012	0.0015	0.1284	0.0026	0.0101	0.0018	
20	m-Xylene	0.0027	0.0034	0.2901	0.0058	0.0229	0.0041	
21	n-Nonane	0.0029	0.0036	0.3715	0.0074	0.0353	0.0063	
22	n-Decane	0.0013	0.0016	0.1852	0.0037	0.0173	0.0031	
23	n-C11	0.0003	0.0004	0.0486	0.0010	0.0045	0.0008	
24	H2O	0.0518	0.0651	0.9326	0.0185	0.0640	0.0113	
25	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
26	n-C12	0.0001	0.0001	0.0164	0.0003	0.0015	0.0003	
27	n-C13	0.0000	0.0000	0.0054	0.0001	0.0005	0.0001	
28	n-C14	0.0001	0.0001	0.0146	0.0003	0.0013	0.0002	
29	Total	0.7948	1.0000	50.2836	1.0000	5.6451	1.0000	
30 31	Vapour Phase Phase Fraction 1.000							
32 33	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
34	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
35	Methane	0.0016	0.0020	0.0261	0.0005	0.0060	0.0011	
36 Aspen Technology Inc. Aspen HYSYS Version 8.8 (34.0.1.8909)							Page 22 of 55	

1	
2	(A)
3	(aspentach
4	~ aspenteum
5	
6	
7	Matoria

9 10

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11	flash.hsc
------------	-------------------	-----------

Unit Set: Field13e

Date/Time: Tue Nov 21 08:55:42 2017

Material Stream: Flash to Atm (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

COMPOSITION

10							
11 12		Phase Fra	action 1.000				
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	Ethane	0.0289	0.0364	0.8689	0.0173	0.1673	0.0296
17	Propane	0.1449	0.1823	6.3882	0.1270	0.8633	0.1529
18	i-Butane	0.0438	0.0552	2.5484	0.0507	0.3105	0.0550
19	n-Butane	0.1662	0.2091	9.6615	0.1921	1.1343	0.2009
20	i-Pentane	0.0672	0.0846	4.8519	0.0965	0.5329	0.0944
21	n-Pentane	0.0785	0.0987	5.6629	0.1126	0.6157	0.1091
22	22-Mbutane	0.1167	0.1468	10.0550	0.2000	1.0551	0.1869
23	n-Hexane	0.0274	0.0345	2.3613	0.0470	0.2440	0.0432
24	Benzene	0.0060	0.0075	0.4664	0.0093	0.0362	0.0064
25	n-Heptane	0.0371	0.0467	3.7156	0.0739	0.3704	0.0656
26	Toluene	0.0068	0.0086	0.6288	0.0125	0.0495	0.0088
27	n-Octane	0.0092	0.0116	1.0559	0.0210	0.1025	0.0182
28	E-Benzene	0.0012	0.0015	0.1284	0.0026	0.0101	0.0018
29	m-Xylene	0.0027	0.0034	0.2901	0.0058	0.0229	0.0041
30	n-Nonane	0.0029	0.0036	0.3715	0.0074	0.0353	0.0063
31	n-Decane	0.0013	0.0016	0.1852	0.0037	0.0173	0.0031
32	n-C11	0.0003	0.0004	0.0486	0.0010	0.0045	0.0008
33	H2O	0.0518	0.0651	0.9326	0.0185	0.0640	0.0113
34	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
35	n-C12	0.0001	0.0001	0.0164	0.0003	0.0015	0.0003

Licensed to: FLATROCK ENGINEERING AND

36 Aspen Technology Inc.

Aspen HYSYS Version 8.8 (34.0.1.8909)

Page 23 of 55

2		FLATROCK ENG	SINEEDING AND	Case Name: Ame	eredev -Boyd 11 flash	i.hsc	
3	aspentech	Bedford, MA	SINCERING AND	Unit Set: Fiel	d13e		
4	- doponicon	USA		Data/Times Tue	Nov 21 08:55:42 201	7	
5				Date/Time: Tue	NOV 21 08:55:42 201	1	
6					-, Flu	id Package: PEN	NG-ROB
7	Materia	I Stream:	Flash to	Atm (contir	nued)	perty Package: Kab	adi-Danner
8					- 10	perty Fackage. Kan	adi-Darinei
9				COMPOSITION			
11			V	Dhana (anntinuad)		Dhana Fre	action 1.000
12			vapour	Phase (continued))	Phase Fra	action 1.000
13	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
14		(lbmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION
15	n-C13	0.0000	0.0000	0.0054	0.0001	0.0005	0.0001
16	n-C14	0.0001	0.0001	0.0146	0.0003	0.0013	0.0002
17	Total	0.7948	1.0000	50.2836	1.0000	5.6451	1.0000
18			1	iquid Phase		Phase Fra	action 0.0000
19	- PARTIE HOLD STATE OF THE STAT	Market Appendix and Control Control Control Control		-		1	
20	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
22	Nitrogen	0.0000	0.0000		0.0000	0.0000	0.0000
23	Methane	0.0000	0.0000		0.0000	0.0000	0.0000
24	CO2	0.0000	0.0000		0.0000	0.0000	0.0000
25	Ethane	0.0000	0.0006	0.0000	0.0001	0.0000	0.0003
26	Propane	0.0000	0.0085	0.0000	0.0029	0.0000	0.0042
27	i-Butane	0.0000	0.0057	0.0000	0.0026	0.0000	0.0033
28	n-Butane	0.0000	0.0287	0.0000	0.0129	0.0000	0.0162
29	i-Pentane	0.0000	0.0259	0.0000	0.0145	0.0000	0.0169
30	n-Pentane	0.0000	0.0380	0.0000	0.0213	0.0000	0.0246
31	22-Mbutane	0.0000	0.0928	0.0000	0.0622	0.0000	0.0693
32	n-Hexane	0.0000	0.0364	0.0000	0.0244	0.0000	0.0268
33	Benzene	0.0000	0.0084	0.0000	0.0051	0.0000	0.0042
34	n-Heptane	0.0000	0.1306	0.0000	0.1017	0.0000	0.1078
35	Toluene	0.0000	0.0273	0.0000	0.0195	0.0000	0.0163

Page 24 of 55

1	FLATROCK ENGINE		INFERING AND	Case Name: An	neredev -Boyd 11 flash	n.hsc		
3	aspentech	Bedford, MA	INEERING AND	Unit Set: Field13e				
4	0.000	USA		Date/Time: Tu	e Nov 21 08:55:42 201	17		
6					Flu	id Package: PEI	NG-ROB	
7	Materia	al Stream:	Flash to	Atm (conti	nued)			
8	11100011	ar ourounn		7 (00)	Pro	perty Package: Kab	padi-Danner	
9	COMPOSITION							
11								
12			Liquid F	Phase (continued)	Phase Fra	action 0.0000	
13	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME	
14		(lbmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION	
15	n-Octane	0.0000	0.0864	0.0000	0.0767	0.0000	0.0791	
16	E-Benzene	0.0000	0.0125	0.0000	0.0103	0.0000	0.0087	
17	m-Xylene	0.0000	0.0328	0.0000	0.0271	0.0000	0.0227	
18	n-Nonane	0.0000	0.0696	0.0000	0.0694	0.0000	0.0701	
19	n-Decane	0.0000	0.0790	0.0000	0.0874	0.0000	0.0868	
20	n-C11	0.0000	0.0476	0.0000	0.0578	0.0000	0.0566	
21	H2O	0.0000	0.0009	0.0000	0.0001	0.0000	0.0001	
22	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
23	n-C12	0.0000	0.0336	0.0000	0.0446	0.0000	0.0432	
24	n-C13	0.0000	0.0283	0.0000	0.0405	0.0000	0.0388	
25	n-C14	0.0000	0.2067	0.0000	0.3188	0.0000	0.3040	
26	Total	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	
27 28	H VALUE							
29				ED	LIGHT		HEAVY	
30								
31				264.1		264.1		
32							-500 <u>0</u>	
33		Ethane		63.18		63.18		
34		Propane		21.52		21.52		
35		i-Butane		9.722		9.722	***	
_		The second secon		* (50°) * (50°		THE RESERVE OF THE PARTY OF THE		

Aspen Technology Inc.

Page 25 of 55

2	FLATROCK ENGINE	EDING AND	Case Name:	Ameredev -Boyd	11 flash.hsc		
3	Bedford, MA	ERING AND	Unit Set: Field13e				
5	USA		Date/Time:	Tue Nov 21 08:55	:42 2017		
6 7 8	Material Stream: Flash to		Atm (continued) Fluid Package Property Pack				
9			K VALUE				
11	COMPONENTS	MIX	(ED	LIGHT	г	HEAVY	
12	n-Butane		7.299		7.299		
13	i-Pentane		3.271		3.271		
14	n-Pentane		2.599		2.599	222	
15	22-Mbutane		1.582		1.582		
16	n-Hexane		0.9477		0.9477	200	
17	Benzene		0.8923		0.8923		
18	n-Heptane		0.3573		0.3573	200	
19	Toluene		0.3148		0.3148		
20	n-Octane		0.1346		0.1346		
21	E-Benzene		0.1214		0.1214		
22	m-Xylene		0.1047		0.1047		
23	n-Nonane		5.237e-002		5.237e-002		
24	n-Decane		2.074e-002		2.074e-002		
25	n-C11		8.226e-003		8.226e-003		
26	H2O		74.21		74.21		
27	H2S					***	
28	n-C12		3.592e-003		3.592e-003	विवर्तः	
29	n-C13		1.304e-003		1.304e-003		
30	n-C14		4.479e-004		4.479e-004		
31 32		UNIT OPERATIONS					
33			PRODUCT FROM	1	LOGIC	AL CONNECTION	
34		Separator:		V-100			
35							

-									
1		Case Name: Ameredev -Boyd 11 flash.hsc							
1 2 3 4 5 6	aspentech	FLATROCK ENGINEERING AND Bedford, MA	SINEERING AND	Unit Set:	Field13e				
4	- doponioon	USA		Date/Time:	Tue Nov 21 08:55:4	2 2017			
6								DEUG BOB	
7	Material	Stroam:	Flach to	Atm /co	ntinuad	Fluid P	ackage:	PENG-ROB	
	Material Stream: Flash to		Aun (co	illillueu)	Propert	y Package:	Kabadi-Danner		
9				UTILITIES					
10	OTIETTES								
11	(No utilities reference this stream)								
8 9 10 11 12 13 14 15 16 17 18 22 23 24 25 26 27 28 30 30	PROCESS UTILITY								
13									
15									
16				DYNAMICS	3				
17	7 Pressure Specification (Inactive) 13.20 psia								
18	Flow Specification (Inacti		238e-003 M	MSCFD Mas	s: 50.	28 lb/hr	Std Ideal I	_iq Volumo €45 barrel/day	
19									
20				User Variab	es				
21				NOTES					
22				110.20					
23			i i i i i i i i i i i i i i i i i i i						
24				Descriptio	n				
25									
27									
28	Material	Stroom:	Produced	d Water		Fluid P	ackage:	PENG-ROB	
20	Material	Sueam.	Produced	a water		Propert	y Package:	Kabadi-Danner	
30						- R			
31				CONDITION	IS				
32			Overall	Vapour Phase	Aqueous Phase				
33	Vapour / Phase Fraction		0.0000	0.000		0			
34	Temperature:	(F)	149.9	149.	9 149.	9			
35	Pressure:	(psia)	13.20	13.2	0 13.2	0			
36	Aspen Technology Inc.		Aspen HYS	SYS Version 8.	3 (34.0.1.8909)			Page 27 of 55	

1	FLATBOOK	Case Name: Ameredev -Boyd 11 flash.hsc				
3	aspentech FLATROCK Bedford, MA	Unit Set: Field13e				
5	USA		Date/Time:	Tue Nov 21 08:55:42	2017	
6	Matarial Ctus an	Duadua	-l \A/-4/-	4!IV	Fluid Package:	PENG-ROB
7	Material Stream	i: Produce	d water (c	ontinuea)	Property Package:	Kabadi-Danner
9			CONDITIONS			
10 11		Overall	Vapour Phase	Aqueous Phase		
12	Molar Flow (MMSCFD)	14.74	0.0000	14.74		
13	Mass Flow (lb/hr)	2.921e+004	0.0000	2.921e+004		
14	Std Ideal Liq Vol Flow (barrel/day)	2006	0.0000	2006		
15	Molar Enthalpy (Btu/lbmole)	-1.216e+005	-6.741e+004	-1.216e+005		
16	Molar Entropy (Btu/lbmole-F)	15.41	43.41	15.41		
17	Heat Flow (Btu/hr)	-1.967e+008	0.0000	-1.967e+008		
18	Liq Vol Flow @Std Cond (barrel/day)	1972 *	0.0000	1972		
19			PROPERTIES	7/200		•
20		- "				
21		Overall	Vapour Phase	Aqueous Phase		
22	Molecular Weight	18.05	49.90	18.05		
23	Molar Density (lbmole/ft3)	3.374	2.045e-003	3.374		
24	Mass Density (lb/ft3)	60.90	0.1020	60.90		_
25	Act. Volume Flow (barrel/day)	2050	0.0000	2050		
26	Mass Enthalpy (Btu/lb)	-6736	-1351	-6736		
27	Mass Entropy (Btu/lb-F)	0.8539	0.8699	0.8539		
28	Heat Capacity (Btu/lbmole-F)	15.99	21.09	15.99		
29	Mass Heat Capacity (Btu/lb-F)	0.8857	0.4226	0.8857		
30	LHV Molar Basis (Std) (Btu/lbmole)	819.2	8.768e+005	819.2		
31	HHV Molar Basis (Std) (Btu/lbmole)	1.850e+004	9.478e+005	1.850e+004		
32	HHV Mass Basis (Std) (Btu/lb)	1025	1.899e+004	1025	-	_
33	CO2 App MI Con (Ibmola/#2)	0.0000		0.0000		
34	CO2 App ML Con (Ibmole/ft3)	0.0000		0.0000		
35 36	CO2 App WT Con (Ibmol/Ib) Aspen Technology Inc.	0.0000	SYS Version 8.8 (3	0.0000		Page 28 of 5

	1	
	2	(db)
200	3	aspentech
	4	- aspentedit
- 1	\neg	

9

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc				
Unit Set:	Field13e				
Date/Time	Tue Nov 21 08:55:42 2017				

Material Stream: Produced Water (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

11		Overall	Vapour Phase	Aqueous Phase	
12	LHV Mass Basis (Std) (Btu/lb)	45.39	1.757e+004	45.39	
13	Phase Fraction [Vol. Basis]			1.000	
14	Phase Fraction [Mass Basis]	0.0000	0.0000	1.000	
15	Phase Fraction [Act. Vol. Basis]	0.0000	0.0000	1.000	
16	Partial Pressure of CO2 (psia)	0.0000			
17	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	
18	Act. Gas Flow (ACFM)				
19	Avg. Liq. Density (lbmole/ft3)	3.448	0.7640	3.448	
20	Specific Heat (Btu/lbmole-F)	15.99	21.09	15.99	
21	Std. Gas Flow (MMSCFD)	14.71	0.0000	14.71	
22	Std. Ideal Liq. Mass Density (lb/ft3)	62.23	38.13	62.23	
23	Act. Liq. Flow (USGPM)	59.80		59.80	
24	Z Factor		0.9868	5.981e-004	
25	Watson K	12.45	13.50	12.45	
26	User Property				
27	Partial Pressure of H2S (psia)	0.0000			
28	Cp/(Cp - R)	1.142	1.104	1.142	
29	Cp/Cv	1.200	1.110	1.200	
30	Heat of Vap. (Btu/lbmole)	1.861e+004			
31	Kinematic Viscosity (cSt)	0.4375	5.486	0.4375	
32	Liq. Mass Density (Std. Cond) (lb/ft3)	63.32	40.52	63.32	
33	Liq. Vol. Flow (Std. Cond)(barrel/day)	1972	0.0000	1972	
34	Liquid Fraction	1.000	0.0000	1.000	
35	Molar Volume (ft3/lbmole)	0.2964	489.0	0.2964	
36	Aspen Technology Inc.	Aspen H	YSYS Version 8.8 (3	4.0.1.8909)	Page 29 of 55

1			Case Name:	meredev -Boyd 11 flas	sh.hsc	7 7 77		
3	aspentech Bedford, MA	ENGINEERING AND	Unit Set: Field13e					
4 5	USA		Date/Time: 1	ue Nov 21 08:55:42 20)17			
6	1021 S20 1021 1021 102 102 102 102			FI	uid Package: PE	NG-ROB		
7	Material Stream	n: Produce	d Water (c	ontinued)		oadi-Danner		
9			PROPERTIES					
10	T	0		A				
11	Mana Mant of Van	Overall	Vapour Phase	Aqueous Phase				
12	Mass Heat of Vap. (Btu/lb)	1031	0.0000	4.0000				
13	Phase Fraction [Molar Basis]	0.0000	0.0000	1.0000				
14	Surface Tension (dyne/cm)	64.95		64.95				
15	Thermal Conductivity (Btu/hr-ft-F)	0.3805	1.114e-002	0.3805				
16	Viscosity (cP)	0.4268	8.967e-003	0.4268				
17	Cv (Semi-Ideal) (Btu/Ibmole-F)	14.00	19.11	14.00				
18	Mass Cv (Semi-Ideal) (Btu/lb-F)	0.7757	0.3828	0.7757				
19	Cv (Btu/lbmole-F)	13.32	19.00	13.32				
20	Mass Cv (Btu/lb-F)	0.7382	0.3808	0.7382				
21	Cv (Ent. Method) (Btu/lbmole-F)	12.23		12.23				
22	Mass Cv (Ent. Method) (Btu/lb-F)	0.6777		0.6777				
23	Cp/Cv (Ent. Method)	1.307		1.307				
24	Reid VP at 37.8 C (psia)	10.98	123.1	10.98				
25	True VP at 37.8 C (psia)	7.216	217.2	7.216				
26	Liq. Vol. Flow - Sum(Std. (Camde)/day)	1972	0.0000	1972				
27	Viscosity Index	-11.50						
28	Mass Exergy (Btu/lb)	3.949						
29			COMPOSITION					
30								
31 32			Overall Phase		Vapour F	raction 0.0000		
33 34	COMPONENTS MOLAR FLO (lbmole/hr)	and the second of the second o	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
35	Nitrogen 0.00			0.0000	0.0000	0.0000		
36	Aspen Technology Inc.		SYS Version 8.8 (34	The second second	0.000	Page 30 of 55		

	7	
	2	Calle
	3	aspentach
	4	~ aspenteen
١	-	

6

7

8 9

10 11 FLATROCK ENGINEERING AND Bedford, MA USA

Ameredev -Boyd 11 flash.hsc Case Name:

Unit Set: Field13e

Date/Time: Tue Nov 21 08:55:42 2017

Material Stream: Produced Water (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

Vapour Fraction

0.0000

COMPOSITION

Overall Phase (continued) 12 13 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION LIQUID VOLUME LIQUID VOLUME 14 FLOW (barrel/day) **FRACTION** (lbmole/hr) (lb/hr) 15 Methane 0.0005 0.0000 0.0081 0.0000 0.0019 0.0000 16 CO₂ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17 Ethane 0.0043 0.0000 0.1293 0.0000 0.0249 0.0000 18 0.0035 0.0000 0.1553 0.0000 0.0210 0.0000 Propane 19 i-Butane 0.0000 0.0001 0.0000 0.0032 0.0000 0.0004 20 n-Butane 0.0027 0.0000 0.0000 0.1569 0.0000 0.0184 21 i-Pentane 0.0002 0.0000 0.0170 0.0000 0.0019 0.0000 22 n-Pentane 0.0025 0.0000 0.1824 0.0000 0.0198 0.0000 23 22-Mbutane 0.7005 0.0004 60.3668 0.0021 6.3342 0.0032 24 n-Hexane 0.0008 0.0000 0.0720 0.0000 0.0074 0.0000 25 Benzene 0.0595 0.0000 4.6500 0.0002 0.3609 0.0002 26 n-Heptane 0.0005 0.0000 0.0519 0.0000 0.0052 0.0000 27 Toluene 0.0290 0.0000 2.6684 0.0001 0.2100 0.0001 28 n-Octane 0.0000 0.0000 0.0044 0.0000 0.0004 0.0000 E-Benzene 0.0023 0.0000 0.2480 0.0000 0.0195 0.0000 30 m-Xylene 0.0065 0.0000 0.6898 0.0545 0.0000 0.0000 31 0.0000 0.0000 0.0000 0.0000 n-Nonane 0.0003 0.0000 32 n-Decane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 33 n-C11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 34 H20 0.9995 1999.2335 0.9965 1617.4580 29138.6687 0.9976 35 H₂S 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Aspen Technology Inc.

Page 31 of 55

_								_	
1 2		ELATROCK ENG	SINEERING AND	Case Name: Am	eredev -Boyd 11 flash	n.hsc			
3	aspentech Bedford, MA		Unit Set: Field13e						
4	- aoponicoon	USA		Date/Time: Tue	Nov 21 08:55:42 20	17			
5				Date/Time. Tue	1100 21 00.55.42 20	17			
6			_		. Flu	id Package: PEI	NG-ROB		
7	Materia	l Stream:	Produced	l Water (co	ntinued) _{Pro}	pperty Package: Kab	adi-Danner		
9				COMPOSITION					
10				OOMI OOTTION					
11 12			Overall	Phase (continued))	Vapour F	raction 0.0	0000	
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLU		
15	n-C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0000	
16	n-C13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0000	
17	n-C14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0000	
18	Total	1618.2711	1.0000	29208.0724	1.0000	2006.3140	1.0	0000	
19 20			V	apour Phase		Phase Fra	action 0.0	0000	
21 22	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLU		
23	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0000	
24	Methane	0.0000	0.0201	0.0000	0.0065	0.0000	0.0	0132	
25	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0000	
26	Ethane	0.0000	0.0888	0.0000	0.0535	0.0000	0.0	0919	
27	Propane	0.0000	0.1564	0.0000	0.1382	0.0000	0.1	1666	
28	i-Butane	0.0000	0.0117	0.0000	0.0137	0.0000	0.0	0149	
29	n-Butane	0.0000	0.1243	0.0000	0.1448	0.0000	0.1	1516	
30	i-Pentane	0.0000	0.0258	0.0000	0.0373	0.0000	0.0	0365	
31	n-Pentane	0.0000	0.0667	0.0000	0.0964	0.0000	0.0	0935	
32	22-Mbutane	0.0000	0.1592	0.0000	0.2749	0.0000	0.2	2572	
33	n-Hexane	0.0000	0.0222	0.0000	0.0384	0.0000	0.0	0354	
34	Benzene	0.0000	0.0080	0.0000	0.0126	0.0000	0.0	0087	
	7031								

Aspen Technology Inc.

0.0000

35

n-Heptane

0.0000

0.0469

0.0234

Page 32 of 55

0.0417

0.0000

1 2		ELATROOK EN	NINEEDING AND	Case Name: Ame	eredev -Boyd 11 flash	i.hsc	
3	(acnontach	Dadford MAA	GINEERING AND	Unit Set: Fiel	d13e		
4	aspentech	USA	ŀ		and the second second		
5				Date/Time: Tue	Nov 21 08:55:42 201	17	
6	55WE5E4 15 Vel	NO COMMON			Flu	id Package: PEN	NG-ROB
7	Materi	al Stream:	Produced	Water (co	ntinued)	-	
8	(ANATOLITE ANALOS SERVICIOS DE		775 Transaction (1997) - 1992 (1997) (1997)		Pro	perty Package: Kab	adi-Danner
9				COMPOSITION			
10							
11			Vapour	Phase (continued)		Phase Fra	action 0.0000
13	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	Toluene	0.0000	0.0091	0.0000	0.0167	0.0000	0.0117
16	n-Octane	0.0000	0.0037	0.0000	0.0084	0.0000	0.0073
17	E-Benzene	0.0000	0.0016	0.0000	0.0034	0.0000	0.0024
18	m-Xylene	0.0000	0.0036	0.0000	0.0077	0.0000	0.0054
19	n-Nonane	0.0000	0.0005	0.0000	0.0014	0.0000	0.0012
20	n-Decane	0.0000	0.0000	0.0000	0.0001	0.0000	0.0001
21	n-C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
22	H2O	0.0000	0.2748	0.0000	0.0992	0.0000	0.0607
23	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
24	n-C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
25	n-C13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
26	n-C14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
27	Total	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000
28 29			Aq	ueous Phase		Phase Fra	action 1.000
30 31	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
32	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
33	Methane	0.0005	0.0000	0.0081	0.0000	0.0019	0.0000
34	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
35	Ethane	0.0043	0.0000	0.1293	0.0000	0.0249	0.0000
36	Aspen Technology Inc		Aspen HYS	YS Version 8.8 (34.0			Page 33 of 55

1	1	
	2	(d)
	3	Tagnentach
	4	~ aspenteen
1		

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc
------------	-----------------------------

Unit Set: Field13e

Date/Time: Tue Nov 21 08:55:42 2017

Material Stream: Produced Water (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

COMPOSITION

Aqueous Phase (continued) Phase Fraction

10			Co	OMPOSITION			
11 12		Phase Fra	action 1.000				
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	Propane	0.0035	0.0000	0.1553	0.0000	0.0210	0.0000
16	i-Butane	0.0001	0.0000	0.0032	0.0000	0.0004	0.0000
17	n-Butane	0.0027	0.0000	0.1569	0.0000	0.0184	0.0000
18	i-Pentane	0.0002	0.0000	0.0170	0.0000	0.0019	0.0000
19	n-Pentane	0.0025	0.0000	0.1824	0.0000	0.0198	0.0000
20	22-Mbutane	0.7005	0.0004	60.3668	0.0021	6.3342	0.0032
21	n-Hexane	0.0008	0.0000	0.0720	0.0000	0.0074	0.0000
22	Benzene	0.0595	0.0000	4.6500	0.0002	0.3609	0.0002
23	n-Heptane	0.0005	0.0000	0.0519	0.0000	0.0052	0.0000
24	Toluene	0.0290	0.0000	2.6684	0.0001	0.2100	0.0001
25	n-Octane	0.0000	0.0000	0.0044	0.0000	0.0004	0.0000
26	E-Benzene	0.0023	0.0000	0.2480	0.0000	0.0195	0.0000
27	m-Xylene	0.0065	0.0000	0.6898	0.0000	0.0545	0.0000
28	n-Nonane	. 0.0000	0.0000	0.0003	0.0000	0.0000	0.0000
29	n-Decane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
30	n-C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
31	H2O	1617.4580	0.9995	29138.6687	0.9976	1999.2335	0.9965
32	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
33	n-C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
34	n-C13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
35	n-C14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
36	Aspen Technology Inc	C.	Aspen HYSYS	S Version 8.8 (34.0	.1.8909)		Page 34 of 55

Licensed to: FLATROCK ENGINEERING AND

1		FLATROCK ENGINEE	DINC AND	Case Name:	Ameredev -	-Boyd 11 fla	ash.hsc			
3	aspentech	Unit Set:	Field13e							
5	aoponto	USA	Date/Time:	Tue Nov 21	08:55:42 2	2017				
6			_		192	1	Fluid Pack	age: I	PENG-ROB	
7	Material	Stream: Pr	oduce	d Water (d	contin	ued) ˌ	Property P	ackage: I	Kabadi-Dann	er
9				COMPOSITION						
10				COMPOSITION	V.					
11 12			Aqueous	s Phase (contir	nued)			Phase	Fraction	1.000
13	Total	1618.2711	1.0000	29208.07	24	1.000	0	2006.314	0	1.0000
14				K VALUE				39 117		11 22
15 16	COMPONEN	UTS	MIX			LIGHT		T	HEAVY	
17	COMPONEN	Nitrogen	IVII/	ED LIGHT		LIGHT			HEAVI	
18		Methane		6.422e+004			-	6.4	422e+004	
19		CO2								
20		Ethane		3.344e+004					3.3	344e+004
21		Propane	7.188e+004					7.	188e+004	
22		i-Butane		3.501e+005					3.5	501e+005
23		n-Butane		7.450e+004					7.450e+004	
24		i-Pentane		1.775e+005					1.775e+005	
25		n-Pentane		4.268e+004					4.2	268e+004
26		22-Mbutane		367.7			***			367.7
27		n-Hexane		4.305e+004					4.3	305e+004
		Benzene		218.2						218.2
	n-Heptane			7.296e+004			-		7.2	296e+004
29		Toluene		506.1						506.1
29 30		Toluene		300.1	1.549e+005					
29 30 31		Toluene n-Octane							1.9	549e+005
29 30 31 32									1.5	549e+005 1106
28 29 30 31 32 33		n-Octane		1.549e+005					1.9	
29 30 31 32		n-Octane E-Benzene		1.549e+005 1106						1106

1			Case Nam	e: Amere	dev -Boyd 11	flash.hsc		12-70-2-12-2-2-2
3	aspentech FLATROCK ENGINEERING AND Bedford, MA		Unit Set:	Field13	Be .			
5	USA		Date/Time:	Tue No	ov 21 08:55:42	2 2017		
6 7 8	Material Stream: Pr	oduce	d Wate	r (cont	inued)	Fluid Pac	ckage: Package:	PENG-ROB Kabadi-Danner
9			K VALU	JE				
11	COMPONENTS	MIX	KED		LIGHT			HEAVY
12	n-C11		1.170e+0	07				1.170e+007
13	H2O		0.27	oraci -				0.2749
14	H2S							
15	n-C12		1.131e+0	08				1.131e+008
16	n-C13		4.835e+008				4.835e+008	
17	n-C14		3.758e+009					3.758e+009
18 19		U	NIT OPERA	ATIONS				
20	FEED TO		PRODUCT	FROM		1	OGICAL C	ONNECTION
21		Separator:			V-105		0.0.1	
22 23			UTILITI	ES				
24		(No uti	lities referenc	e this stream)			
25 26		Р	ROCESS	JTILITY				
27								
28 29			DYNAM	cs				
30	Pressure Specification (Inactive) 13.20 psia							
31	Flow Specification (Inactive) Molar:	14.74 M	MSCFD N	/lass:	2.921e+00	04 lb/hr	Std Ideal	Liq Volum2£206 barrel/day
32 33			User Varia	ables				
34 35			NOTE	S				
36	Aspen Technology Inc.	Aspan HVC	CVS Vorsion	88/3401	8000)	_		Daga 36 of 55
50	Aspen reciniology inc.	Aspennis	SYS Version	0.0 (34.0.1.	0909)			Page 36 of 55

1			Casa Name:	American David 44	floob boo	deal Charles		
2	FLATE	Case Name: Ameredev -Boyd 11 flash.hsc						
3	aspentech Bedfor		Unit Set: Field13e					
5	USA		Date/Time:	Tue Nov 21 08:55:42	2 2017			
6	M (: 10)		110/ / /	41 B	Fluid Package:	PENG-ROB		
7	Material Str	eam: Produce	d Water (c	ontinued)	Property Package:	Kabadi-Danner		
9					. reporty r demage.	rassa. Same		
10								
11			Description					
12								
13		50,000,000			Fluid Package:	PENG-ROB		
14	Material Str	eam: Water Fla	ash					
15					Property Package:	Kabadi-Danner		
16 17			CONDITIONS					
18		Overall	Vapour Phase	Aqueous Phase				
19	Vapour / Phase Fraction	1.0000	1.0000	0.0000				
20	Temperature: (I	F) 149.9	149.9	149.9				
21	Pressure: (psi	a) 13.20	13.20	13.20				
22	Molar Flow (MMSCFI	2.271e-004	2.271e-004	0.0000				
23	Mass Flow (lb/h	r) 1.244	1.244	0.0000				
24	Std Ideal Liq Vol Flow (barrel/day	y) 0.1395	0.1395	0.0000				
25	Molar Enthalpy (Btu/lbmol	e) -6.741e+004	-6.741e+004	-1.216e+005				
26	Molar Entropy (Btu/lbmole-l	F) 43.41	43.41	15.41				
27	Heat Flow (Btu/h	r) -1681	-1681	0.0000				
28	Liq Vol Flow @Std Cond (barrel/day	y) 0.1313 *	0.1313	0.0000				
29			PROPERTIES					
30					1			
31		Overall	Vapour Phase	Aqueous Phase				
32	Molecular Weight	49.90	49.90	18.05				
33	Molar Density (lbmole/ft		2.045e-003	3.374				
34	Mass Density (lb/ft:		0.1020	60.90				
35	Act. Volume Flow (barrel/da	y) 52.12	52.12	0.0000				
36	Aspen Technology Inc.	Aspen HY	SYS Version 8.8 (3	34.0.1.8909)		Page 37 of 55		

1	
2	
3	achentech
4	- aspenteen

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc
Unit Set:	Field13e
Date/Time:	Tue Nov 21 08:55:42 2017

Material Stream: Water Flash (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

PROF	PERT	IES
------	------	------------

11	Overall	Vapour Phase	Aqueous Phase	
12 Mass Enthalpy (Btu/lb	-1351	-1351	-6736	
13 Mass Entropy (Btu/lb-F	0.8699	0.8699	0.8539	
14 Heat Capacity (Btu/lbmole-F	21.09	21.09	15.99	
15 Mass Heat Capacity (Btu/lb-F	0.4226	0.4226	0.8857	
16 LHV Molar Basis (Std) (Btu/lbmole	8.768e+005	8.768e+005	819.2	
17 HHV Molar Basis (Std) (Btu/lbmole	9.478e+005	9.478e+005	1.850e+004	
18 HHV Mass Basis (Std) (Btu/lb	1.899e+004	1.899e+004	1025	
19 CO2 Loading				
20 CO2 App ML Con (lbmole/ft3				•
21 CO2 App WT Con (lbmol/lb			(<u>10(10.4</u>)	
22 LHV Mass Basis (Std) (Btu/lb	1.757e+004	1.757e+004	45.39	
23 Phase Fraction [Vol. Basis]	1.000	1.000		
24 Phase Fraction [Mass Basis]	1.000	1.000	0.0000	
25 Phase Fraction [Act. Vol. Basis]	1.000	1.000	0.0000	
26 Partial Pressure of CO2 (psia	0.0000			
27 Cost Based on Flow (Cost/s	0.0000	0.0000	0.0000	
28 Act. Gas Flow (ACFN	0.2032	0.2032		
29 Avg. Liq. Density (Ibmole/ft3	0.7640	0.7640	3.448	
30 Specific Heat (Btu/lbmole-F	21.09	21.09	15.99	
31 Std. Gas Flow (MMSCFE	2.266e-004	2.266e-004	0.0000	
32 Std. Ideal Liq. Mass Density (lb/ft3	38.13	38.13	62.23	
33 Act. Liq. Flow (USGPN	0.0000		0.0000	
34 Z Factor		0.9868	5.981e-004	
35 Watson K	13.50	13.50	12.45	
36 Aspen Technology Inc.	Aspen H	YSYS Version 8.8 (3	34.0.1.8909)	Page 38 of 55

1	
2	
3	aspentech
4	- aspenteen

7

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc			
Unit Set:	Field13e			
Date/Time:	Tue Nov 21 08:55:42 2017			

Material Stream: Water Flash (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

PROPERTIES

0		PROPERTIES		
1	Overall	Vapour Phase	Aqueous Phase	
2 User Property				
Partial Pressure of H2S (psia)	0.0000			
4 Cp/(Cp - R)	1.104	1.104	1.142	
5 Cp/Cv	1.110	1.110	1.200	
6 Heat of Vap. (Btu/lbmole)	1.939e+004	-44		
7 Kinematic Viscosity (cSt)	5.486	5.486	0.4375	
Liq. Mass Density (Std. Cond) (lb/ft3)	40.52	40.52	63.32	
9 Liq. Vol. Flow (Std. Cond)(barrel/day)	0.1313	0.1313	0.0000	
0 Liquid Fraction	0.0000	0.0000	1.000	
1 Molar Volume (ft3/lbmole)	489.0	489.0	0.2964	
2 Mass Heat of Vap. (Btu/lb)	388.5			
Phase Fraction [Molar Basis]	1.0000	1.0000	0.0000	
4 Surface Tension (dyne/cm)			64.95	
Thermal Conductivity (Btu/hr-ft-F)	1.114e-002	1.114e-002	0.3805	
5 Viscosity (cP)	8.967e-003	8.967e-003	0.4268	
7 Cv (Semi-Ideal) (Btu/Ibmole-F)	19.11	19.11	14.00	
Mass Cv (Semi-Ideal) (Btu/lb-F)	0.3828	0.3828	0.7757	
9 Cv (Btu/lbmole-F)	19.00	19.00	13.32	
Mass Cv (Btu/lb-F)	0.3808	0.3808	0.7382	
1 Cv (Ent. Method) (Btu/lbmole-F)			12.23	
Mass Cv (Ent. Method) (Btu/lb-F)		3 444	0.6777	
3 Cp/Cv (Ent. Method)			1.307	
4 Reid VP at 37.8 C (psia)	123.1	123.1	10.98	
5 True VP at 37.8 C (psia)	217.2	217.2	7.216	

1				Case Name:	Ameredev -Boyd 11 flas	h haa			
2		FLATROCK E	NGINEERING AND	Case Name.	Ameredev -Boyd 11 has	in.nsc			
3					Init Set: Field13e				
4	o do por moon	USA		Date/Time:	Tue Nov 21 08:55:42 20	117			
5	N N			Date/Time.	Tue Nov 21 00.55.42 20	/1/			
6	Mataut	-1 04	. 14/-4 [-/4!-	FI FI	uid Package: PEN	NG-ROB		
7	iviateri	ai Stream	: water F	lash (contii	nuea) _{Pr}	operty Package: Kab	(abadi-Danner		
9						opony i donago.			
10				PROPERTIES					
11			Overall	Vapour Phase	Aqueous Phase				
12	Liq. Vol. Flow - Sum(Std	. (Chamnob)l/day)	0.1313	0.1313	0.0000				
13	Viscosity Index	3) (6)	-26.29						
14	Mass Exergy	(Btu/lb)	9.381						
15				COMPOSITION					
16				CONFOSITION					
17 18				Overall Phase		Vapour Fr	raction 1.0000		
19 20	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	ON MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
21	Nitrogen	0.000	0.00	0.000	0.0000	0.0000	0.0000		
22	Methane	0.000	5 0.02	0.008	0.0065	0.0018	0.0132		
23	CO2	0.000	0.00	0.000	0.0000	0.0000	0.0000		
24	Ethane	0.002	2 0.08	0.066	66 0.0535	0.0128	0.0919		
25	Propane	0.003	9 0.15	64 0.172	0.1382	0.0232	0.1666		
26	i-Butane	0.000	3 0.01	17 0.017	0.0137	0.0021	0.0149		
27	n-Butane	0.003	1 0.12	43 0.180	0.1448	0.0211	0.1516		
28	i-Pentane	0.000	6 0.02	58 0.046	0.0373	0.0051	0.0365		
29	n-Pentane	0.001	7 0.06	67 0.120	0.0964	0.0130	0.0935		
30	22-Mbutane	0.004	0 0.15	92 0.342	0.2749	0.0359	0.2572		
31	n-Hexane	0.000	6 0.02	22 0.047	78 0.0384	0.0049	0.0354		
32	Benzene	0.000	2 0.00	80 0.015	0.0126	0.0012	0.0087		
33	n-Heptane	0.000	6 0.02	34 0.058	0.0469	0.0058	0.0417		
34	Toluene	0.000	2 0.00	91 0.020	0.0167	0.0016	0.0117		
35	n-Octane	0.000	0.00	37 0.010	0.0084	0.0010	0.0073		

Page 40 of 55

2		ELATROCK ENG	NINEEDING AND	Case Name: Ame	eredev -Boyd 11 flash	n.hsc		
3	aspentech	Bedford, MA	SINEERING AND	Unit Set: Field13e				
4 5	Coponico	USA		Date/Time: Tue	Nov 21 08:55:42 201	17		
6	0.00000 100 000		AR. 1870AU 18 MINES	THE LONG WALL	Flu	id Package: PEN	NG-ROB	
7	Materi	al Stream:	Water Fla	sh (continu	ied)		adi-Danner	
9					- PIC	perty Fackage. Rac	au-Danner	
10				COMPOSITION				
11			Overall	Phase (continued)	1	Vapour Fr	raction 1.0000	
12		T						
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
15	E-Benzene	0.0000	0.0016	0.0042	0.0034	0.0003	0.0024	
16	m-Xylene	0.0001	0.0036	0.0096	0.0077	0.0008	0.0054	
17	n-Nonane	0.0000	0.0005	0.0017	0.0014	0.0002	0.0012	
18	n-Decane	0.0000	0.0000	0.0001	0.0001	0.0000	0.0001	
19	n-C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
20	H2O	0.0069	0.2748	0.1234	0.0992	0.0085	0.0607	
21	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
22	n-C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
23	n-C13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
24	n-C14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
25	Total	0.0249	1.0000	1.2442	1.0000	0.1395	1.0000	
26 27			Va	apour Phase		Phase Fra	action 1.000	
28 29	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION	
30	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
31	Methane	0.0005	0.0201	0.0080	0.0065	0.0018	0.0132	
32	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
33	Ethane	0.0022	0.0888	0.0666	0.0535	0.0128	0.0919	
34	Propane	0.0039	0.1564	0.1720	0.1382	0.0232	0.1666	
35	i-Butane	0.0003	0.0117	0.0170	0.0137	0.0021	0.0149	
36	Aspen Technology Inc		Aspen HYS	YS Version 8.8 (34.0			Page 41 of 55	

1	
2	
3	genentech
4	- aspenteur
5	
6	tonomer and the second
	N/I - 4 - mi

9 10 11 FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc	
Unit Set:	Field13e	
Date/Time:	Tue Nov 21 08:55:42 2017	

Material Stream: Water Flash (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

Phase Fraction

COMPOSITION

Vanour Phase (continued)

12	vapour Phase (continued)				1.000		
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION
15	n-Butane	0.0031	0.1243	0.1801	0.1448	0.0211	0.1516
16	i-Pentane	0.0006	0.0258	0.0464	0.0373	0.0051	0.0365
17	n-Pentane	0.0017	0.0667	0.1200	0.0964	0.0130	0.0935
18	22-Mbutane	0.0040	0.1592	0.3420	0.2749	0.0359	0.2572
19	n-Hexane	0.0006	0.0222	0.0478	0.0384	0.0049	0.0354
20	Benzene	0.0002	0.0080	0.0156	0.0126	0.0012	0.0087
21	n-Heptane	0.0006	0.0234	0.0583	0.0469	0.0058	0.0417
22	Toluene	0.0002	0.0091	0.0208	0.0167	0.0016	0.0117
23	n-Octane	0.0001	0.0037	0.0104	0.0084	0.0010	0.0073
24	E-Benzene	0.0000	0.0016	0.0042	0.0034	0.0003	0.0024
25	m-Xylene	0.0001	0.0036	0.0096	0.0077	0.0008	0.0054
26	n-Nonane	0.0000	0.0005	0.0017	0.0014	0.0002	0.0012
27	n-Decane	0.0000	0.0000	0.0001	0.0001	0.0000	0.0001
28	n-C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
29	H2O	0.0069	0.2748	0.1234	0.0992	0.0085	0.0607
30	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
31	n-C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
32	n-C13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
33	n-C14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
34	Total	0.0249	1.0000	1.2442	1.0000	0.1395	1.0000

Aspen Technology Inc.

Page 42 of 55

1 000

	_
aspentec	h
Caponico	•
Mater	ia

FLATROCK ENGINEERING AND Bedford, MA USA Case Name:

Ameredev -Boyd 11 flash.hsc

Unit Set:

Field13e

Date/Time:

Tue Nov 21 08:55:42 2017

Material Stream: Water Flash (continued)

Fluid Package:

PENG-ROB

Phase Fraction

Property Package:

Kabadi-Danner

0.0000

COMPOSITION

Aqueous Phase

12									
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
15	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
16	Methane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
17	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
18	Ethane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
19	Propane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
20	i-Butane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
21	n-Butane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
22	i-Pentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
23	n-Pentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
24	22-Mbutane	0.0000	0.0004	0.0000	0.0021	0.0000	0.0032		
25	n-Hexane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
26	Benzene	0.0000	0.0000	0.0000	0.0002	0.0000	0.0002		
27	n-Heptane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
28	Toluene	0.0000	0.0000	0.0000	0.0001	0.0000	0.0001		
29	n-Octane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
30	E-Benzene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
31	m-Xylene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
32	n-Nonane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
33	n-Decane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
34	n-C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
35	H2O	0.0000	0.9995	0.0000	0.9976	0.0000	0.9965		

Licensed to: FLATROCK ENGINEERING AND

36 Aspen Technology Inc.

Aspen HYSYS Version 8.8 (34.0.1.8909)

* Specified by user.

Page 43 of 55

1								
2	FLATROCK ENGIN		INFERING AND	Case Name: A	meredev -Boyd 11 flas	h.hsc		
3	aspentech	Bedford, MA		Unit Set: Field13e				
4	USA		İ	Date/Time: T	ue Nov 21 08:55:42 20	17		
5				Date/Time.				
6 7	Motori	al Ctroom	Motor Ela	ab (aantin	riad)	uid Packa	ge: PEN	NG-ROB
8	Materia	al Stream:	vvaler ria	sn (conun	ueu)	operty Pa	ckage: Kab	adi-Danner
9								
10				COMPOSITION				
11			Aguaque	Phase (continue	ad)		Phase Fra	action 0.0000
12			Aqueous	Fliase (continu	eu)		Filase Fil	action 0.0000
13	COMPONENTS	MOLAR FLOW	MOLE FRACTION	기업에서 지금 시 어린지 때에	MASS FRACTION		D VOLUME	LIQUID VOLUME
14		(lbmole/hr)	s and other section is	(lb/hr)		FLOW	(barrel/day)	FRACTION
15	H2S	0.0000	0.0000	0.0000		-	0.0000	0.0000
16	n-C12	0.0000	0.0000	0.0000			0.0000	0.0000
17	n-C13	0.0000	0.0000	0.0000			0.0000	0.0000
18	n-C14	0.0000	0.0000	0.0000			0.0000	0.0000
19	Total	0.0000	1.0000	0.0000	1.0000		0.0000	1.0000
20				K VALUE				
21	0011001	IENTO	1	TOT TREATMENT OF	LIGHT			
22	COMPON		MIX					HEAVY
23		Nitrogen		0.400004				
24		Methane		6.422e+004				6.422e+004
25		CO2				***		
26		Ethane		3.344e+004			0.0110.00	
27		Propane		7.188e+004				7.188e+004
28		i-Butane	-	3.501e+005				3.501e+005
29				7.450e+004			_	7.450e+004
30		i-Pentane		1.775e+005				1.775e+005
31		n-Pentane		4.268e+004				4.268e+004
32 33		22-Mbutane		367.7		-		367.7
		n-Hexane		4.305e+004				4.305e+004
34		Benzene		218.2				218.2
35		n-Heptane		7.296e+004				7.296e+004

Page 44 of 55

1 2	FLATBOOK FAIOINEED	INO AND	Case Name: A	meredev -Boyd	11 flash.hsc		
3	aspentech FLATROCK ENGINEER Bedford, MA	ING AND	Unit Set: Field13e				
5	USA		Date/Time: T	ue Nov 21 08:55	:42 2017		
6 7 8	Material Stream: Wa	ter Fla	sh (contin	ued)	Fluid Package: Property Packa	PENG-ROB ge: Kabadi-Danner	
9			K VALUE				
11	COMPONENTS	MIX	ŒD	LIGH	г	HEAVY	
12	Toluene		506.1			506.1	
13	n-Octane		1.549e+005			1.549e+005	
14	E-Benzene		1106			1106	
15	m-Xylene		902.5			902.5	
16	n-Nonane		4.110e+005			4.110e+005	
17	n-Decane		2.957e+006			2.957e+006	
18	n-C11	1.170e+007				1.170e+007	
19	H2O		0.2749			0.2749	
20	H2S						
21	n-C12		1.131e+008			1.131e+008	
22	n-C13		4.835e+008		-	4.835e+008	
23	n-C14		3.758e+009			3.758e+009	
24 25		U	NIT OPERATION	S			
26	FEED TO		PRODUCT FROM		LOGICA	AL CONNECTION	
27		eparator:		V-105			
28			UTILITIES				
29		(1)	The state of the s				
30		(No uti	lities reference this st	ream)			
32		Р	ROCESS UTILITY	Y			
33							
34							
35							
36	Aspen Technology Inc.	Aspen HYS	SYS Version 8.8 (34	.0.1.8909)		Page 45 of 55	

			Television of the second						
1 2	ELATROCK I	ENGINEERING AND	Case Name: Ameredev -Boyd 11 flash.hsc						
3 4	Bedford, MA	CONTROL OF THE CONTRO							
5	USA		Date/Time:	Tue Nov 21 08:55:42	2017				
6					Fluid Package:	PENG-ROB			
7	Material Stream	Property Package:	Kabadi-Danner						
9			DVNAMICE						
10			DYNAMICS						
11	Pressure Specification (Inactive) 13.20	osia							
12	Flow Specification (Inactive) Molar:	?71e-004 N	IMSCFD Mass:	1.24	4 lb/hr Std Ideal	Liq Voluml ଛେ95 barrel/day			
13	Hoor Veriables								
14	User Variables								
15	NOTES								
16			NOTEO						
17									
18			Description						
19									
20					DOSEN VANCALID DA	National Control of Control of Control			
22	Material Stream	·· Oil			Fluid Package:	PENG-ROB			
23	Material Stream	i. Oii			Property Package:	Kabadi-Danner			
24									
25			CONDITIONS						
26		Overall	Vapour Phase	Liquid Phase					
27	Vapour / Phase Fraction	0.0000	0.0000	1.0000					
28	Temperature: (F)	145.3	145.3	145.3					
29	Pressure: (psia)	13.20	13.20	13.20					
30	Molar Flow (MMSCFD)	1.469	0.0000	1.469					
31	Mass Flow (lb/hr)	2.075e+004	0.0000	2.075e+004					
32	Std Ideal Liq Vol Flow (barrel/day)	1953	0.0000	1953					
33	Molar Enthalpy (Btu/lbmole)	-1.073e+005	-6.013e+004	-1.073e+005					
34	Molar Entropy (Btu/lbmole-F)	47.38	42.35	47.38					
35	Heat Flow (Btu/hr)	-1.731e+007	0.0000	-1.731e+007					
36	Aspen Technology Inc.	Aspen HYS	SYS Version 8.8 (3	4.0.1.8909)		Page 46 of 55			

ELATRO	Case Name: Ameredev -Boyd 11 flash.hsc					
Bedford, I	CK ENGINEERING AND MA	Unit Set: Field13e				
USA		Date/Time:	ue Nov 21 08:55:42	2017		
Material Strea	ım: Oil (cont	inued)		Fluid Package: Property Package:	PENG-ROB Kabadi-Danner	
0		CONDITIONS				
1	Overall	Vapour Phase	Liquid Phase			
Liq Vol Flow @Std Cond (barrel/day)	1935 *	0.0000	1935			
3 4		PROPERTIES				
5	Overall	Vapour Phase	Liquid Phase			
6 Molecular Weight	128.6	63.27	128.6			
7 Molar Density (lbmole/ft3)	0.3371	2.072e-003	0.3371			
Mass Density (lb/ft3)	43.36	0.1311	43.36			
9 Act. Volume Flow (barrel/day)	2045	0.0000	2045			
Mass Enthalpy (Btu/lb)	-834.1	-950.4	-834.1			
1 Mass Entropy (Btu/lb-F)	0.3684	0.6694	0.3684			
2 Heat Capacity (Btu/lbmole-F)	69.60	26.93	69.60			
Mass Heat Capacity (Btu/lb-F)	0.5411	0.4257	0.5411			
4 LHV Molar Basis (Std) (Btu/lbmole)	2.457e+006	1.210e+006	2.457e+006			
HHV Molar Basis (Std) (Btu/lbmole)	2.629e+006	1.302e+006	2.629e+006			
6 HHV Mass Basis (Std) (Btu/lb)	2.044e+004	2.058e+004	2.044e+004			
7 CO2 Loading						
8 CO2 App ML Con (lbmole/ft3)	0.0000		0.0000			
9 CO2 App WT Con (lbmol/lb)	0.0000	***	0.0000			
0 LHV Mass Basis (Std) (Btu/lb)	1.911e+004	1.912e+004	1.911e+004			
Phase Fraction [Vol. Basis]			1.000			
Phase Fraction [Mass Basis]	0.0000	0.0000	1.000			
Phase Fraction [Act. Vol. Basis]	0.0000	0.0000	1.000			
Partial Pressure of CO2 (psia)	0.0000					
Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000			

1	
2	(de)
3	aspentach
4	~ aspenteen
5	

9

FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc				
Unit Set:	Field13e				
Date/Time:	Tue Nov 21 08:55:42 2017				

Material Stream: Oil (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

PR	0	PE	RT	ΊE	S
----	---	----	----	----	---

11	Overall	Vapour Phase	Liquid Phase	
12 Act. Gas Flow (ACFM)				
13 Avg. Liq. Density (lbmole/ft3)	0.3532	0.6019	0.3532	
14 Specific Heat (Btu/lbmole-F)	69.60	26.93	69.60	
15 Std. Gas Flow (MMSCFD)	1.466	0.0000	1.466	
16 Std. Ideal Liq. Mass Density (lb/ft3)	45.42	38.08	45.42	
17 Act. Liq. Flow (USGPM)	59.66		59.66	
18 Z Factor		0.9810	6.031e-003	
19 Watson K	12.54	13.26	12.54	
20 User Property				
21 Partial Pressure of H2S (psia)	0.0000			
22 Cp/(Cp - R)	1.029	1.080	1.029	
23 Cp/Cv	1.244	1.086	1.244	
24 Heat of Vap. (Btu/lbmole)	3.446e+004			
25 Kinematic Viscosity (cSt)	0.7026	3.930	0.7026	
26 Liq. Mass Density (Std. Cond) (lb/ft3)	45.82	39.09	45.82	
27 Liq. Vol. Flow (Std. Cond)(barrel/day)	1935	0.0000	1935	
28 Liquid Fraction	1.000	0.0000	1.000	
29 Molar Volume (ft3/lbmole)	2.966	482.5	2.966	
30 Mass Heat of Vap. (Btu/lb)	268.0			
31 Phase Fraction [Molar Basis]	0.0000	0.0000	1.0000	
32 Surface Tension (dyne/cm)	18.27		18.27	
33 Thermal Conductivity (Btu/hr-ft-F)	6.686e-002	1.041e-002	6.686e-002	
34 Viscosity (cP)	0.4880	8.254e-003	0.4880	
35 Cv (Semi-Ideal) (Btu/lbmole-F)	67.61	24.94	67.61	
36 Aspen Technology Inc.	Aspen H	YSYS Version 8.8 (34	1.0.1.8909)	Page 48 of 55

1		EL ATROOK EN	OINEEDING AND	Case Name: Ameredev -Boyd 11 flash.hsc					
3	aspentech	Bedford, MA	GINEERING AND	Unit Set: Field13e					
5	- портина	USA		Date/Time: Tu	e Nov 21 08:55:42 201	17			
6		104	011/		Flu	id Package: PEN	IG-ROB		
7							adi-Danner		
9				PROPERTIES					
11			Overall	Vapour Phase	Liquid Phase				
12	Mass Cv (Semi-Ideal)	(Btu/lb-F)	0.5257	0.3943	0.5257				
13	Cv (Bi	tu/lbmole-F)	55.95	24.80	55.95				
14	Mass Cv	(Btu/lb-F)	0.4350	0.3919	0.4350				
15	Cv (Ent. Method) (Bt	tu/lbmole-F)	56.54		56.54				
16	Mass Cv (Ent. Method)	(Btu/lb-F)	0.4396		0.4396				
17	Cp/Cv (Ent. Method)		1.231		1.231				
18	Reid VP at 37.8 C	(psia)	5.606	68.00	5.606				
19	True VP at 37.8 C	(psia)	7.075	86.12	7.075				
20	Liq. Vol. Flow - Sum(Std.	(Coamob)I/day)	1935	0.0000	1935				
21	Viscosity Index		-2.086						
22	Mass Exergy	(Btu/lb)	2.108						
23 24				COMPOSITION					
25				Overall Phase		Vapour Fr	action 0.0000		
26		· · · · · · · · · · · · · · · · · · ·		STATE OF STA					
27 28	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTIO	N MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
29	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
30	Methane	0.0013	0.000	0.0201	0.0000	0.0046	0.0000		
31	CO2	0.0000	0.000	0.0000	0.0000	0.0000	0.0000		
32	Ethane	0.0928	0.0006	2.7910	0.0001	0.5373	0.0003		
33	Propane	1.3662	0.008	60.2465	0.0029	8.1417	0.0042		
34	i-Butane	0.9153	0.0057	7 53.2008	0.0026	6.4823	0.0033		
35	n-Butane	4.6224	0.028	7 268.6701	0.0129	31.5430	0.0162		
36	Aspen Technology Inc.		Aspen HYS	SYS Version 8.8 (34.	0.1.8909)		Page 49 of 55		

1	FLATBOOK ENGINEEDING AND		Case Name: Am	eredev -Boyd 11 flash	i.hsc				
3 4	acnontach	D 15 1 144	SINEERING AND	Unit Set: Field13e					
4	aspentech USA Bedford, MA								
5				Date/Time: Tue	Nov 21 08:55:42 201	7			
6					Flu	id Package: PEN	NG-ROB		
7	Materia	al Stream:	Oil (contir	iued)	Dro	perty Package: Kab	adi-Danner		
8			•		PIC	perty Package. Kap	adi-Danner		
9			C	OMPOSITION					
11									
12			Overall P	hase (continued))	Vapour Fr	raction 0.0000		
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
15	i-Pentane	4.1730	0.0259	301.0867	0.0145	33.0684	0.0169		
16	n-Pentane	6.1286	0.0380	442.1824	0.0213	48.0802	0.0246		
17	22-Mbutane	14.9691	0.0928	1290.0098	0.0622	135.3591	0.0693		
18	n-Hexane	5.8683	0.0364	505.7171	0.0244	52.2556	0.0268		
19	Benzene	1.3583	0.0084	106.0942	0.0051	8.2347	0.0042		
20	n-Heptane	21.0611	0.1306	2110.4314	0.1017	210.4019	0.1078		
21	Toluene	4.3998	0.0273	405.3994	0.0195	31.9051	0.0163		
22	n-Octane	13.9342	0.0864	1591.7351	0.0767	154.5140	0.0791		
23	E-Benzene	2.0226	0.0125	214.7277	0.0103	16.8994	0.0087		
24	m-Xylene	5.2970	0.0328	562.3602	0.0271	44.4194	0.0227		
25	n-Nonane	11.2233	0.0696	1439.4837	0.0694	136.8496	0.0701		
26	n-Decane	12.7426	0.0790	1813.0747	0.0874	169.4320	0.0868		
27	n-C11	7.6724	0.0476	1199.2896	0.0578	110.5461	0.0566		
28	H2O	0.1416	0.0009	2.5506	0.0001	0.1750	0.0001		
29	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
30	n-C12	5.4276	0.0336	924.5350	0.0446	84.2787	0.0432		
31	n-C13	4.5581	0.0283	840.3663	0.0405	75.8318	0.0388		
32	n-C14	33.3383	0.2067	6613.6489	0.3188	593.5870	0.3040		
33	Total	161.3137	1.0000	20747.6211	1.0000	1952.5469	1.0000		

Aspen HYSYS Version 8.8 (34.0.1.8909)

Page 50 of 55

1	
2	(d)
3	Caspentach
4	- aspented
5	

8

9 10 11 FLATROCK ENGINEERING AND Bedford, MA USA

Case Name:	Ameredev -Boyd 11 flash.hsc				
Unit Set:	Field13e				

Date/Time: Tue Nov 21 08:55:42 2017

Material Stream: Oil (continued)

Fluid Package: PENG-ROB

Property Package: Kabadi-Danner

Phase Fraction

0.0000

COMPOSITION

Vapour Phase

12	vapour riasc					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION		
15	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
16	Methane	0.0000	0.0020	0.0000	0.0005	0.0000	0.0011		
17	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
18	Ethane	0.0000	0.0364	0.0000	0.0173	0.0000	0.0296		
19	Propane	0.0000	0.1823	0.0000	0.1270	0.0000	0.1529		
20	i-Butane	0.0000	0.0552	0.0000	0.0507	0.0000	0.0550		
21	n-Butane	0.0000	0.2091	0.0000	0.1921	0.0000	0.2009		
22	i-Pentane	0.0000	0.0846	0.0000	0.0965	0.0000	0.0944		
23	n-Pentane	0.0000	0.0987	0.0000	0.1126	0.0000	0.1091		
24	22-Mbutane	0.0000	0.1468	0.0000	0.2000	0.0000	0.1869		
25	n-Hexane	0.0000	0.0345	0.0000	0.0470	0.0000	0.0432		
26	Benzene	0.0000	0.0075	0.0000	0.0093	0.0000	0.0064		
27	n-Heptane	0.0000	0.0467	0.0000	0.0739	0.0000	0.0656		
28	Toluene	0.0000	0.0086	0.0000	0.0125	0.0000	0.0088		
29	n-Octane	0.0000	0.0116	0.0000	0.0210	0.0000	0.0182		
30	E-Benzene	0.0000	0.0015	0.0000	0.0026	0.0000	0.0018		
31	m-Xylene	0.0000	0.0034	0.0000	0.0058	0.0000	0.0041		
32	n-Nonane	0.0000	0.0036	0.0000	0.0074	0.0000	0.0063		
33	n-Decane	0.0000	0.0016	0.0000	0.0037	0.0000	0.0031		
34	n-C11	0.0000	0.0004	0.0000	0.0010	0.0000	0.0008		
35	H2O	0.0000	0.0651	0.0000	0.0185	0.0000	0.0113		
36	Aspen Technology In	C.	Aspen HYSYS	S Version 8.8 (34.0	.1.8909)		Page 51 of 55		

1		ELATROCK ENG	GINEERING AND	Case Name: Am	eredev -Boyd 11 flash	n.hsc			
3	aspentech	Bedford, MA	SINEERING AND	Unit Set: Field13e					
4	- doponitoon	USA		Date/Time: Tue	e Nov 21 08:55:42 20	17			
5				Date/Time: Tue	e NOV 21 06.55,42 20				
6	** * *		011 / //		Flu	id Package: PEN	NG-ROB		
7	Materia	I Stream:	Oil (conti	Property Package: Kabadi-Danner					
8									
10	9 10 COMPOSITION								
11 12	Vapour			Phase (continued)	Phase Fra	action 0.0000		
13	COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME		
14		(lbmole/hr)		(lb/hr)		FLOW (barrel/day)	FRACTION		
15	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
16	n-C12	0.0000	0.0001	0.0000	0.0003	0.0000	0.0003		
17	n-C13	0.0000	0.0000	0.0000	0.0001	0.0000	0.0001		
18	n-C14	0.0000	0.0001	0.0000	0.0003	0.0000	0.0002		
19	Total	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000		
20 21			L	iquid Phase		Phase Fra	action 1.000		
22 23	COMPONENTS MOLAR FLOW MOLE FRACTION (Ibmole/hr)		MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
24	Nitrogen	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
25	Methane	0.0013	0.0000	0.0201	0.0000	0.0046	0.0000		
26	CO2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
27	Ethane	0.0928	0.0006	2.7910	0.0001	0.5373	0.0003		
28	Propane	1.3662	0.0085	60.2465	0.0029	8.1417	0.0042		
29	i-Butane	0.9153	0.0057	53.2008	0.0026	6.4823	0.0033		
30	n-Butane	4.6224	0.0287	268.6701	0.0129	31.5430	0.0162		
31	i-Pentane	4.1730	0.0259	301.0867	0.0145	33.0684	0.0169		
32	n-Pentane	6.1286	0.0380	442.1824	0.0213	48.0802	0.0246		
33	22-Mbutane	14.9691	0.0928	1290.0098	0.0622	135.3591	0.0693		
34	n-Hexane	5.8683	0.0364	505.7171	0.0244	52.2556	0.0268		
						The contract of the contract o			

1.3583

35

Benzene

106.0942

0.0051

0.0084

Page 52 of 55

0.0042

8.2347

2		FLATROCK ENG	INFEDING AND	Case Name: Ar	meredev -Boyd 11 flash	n.hsc				
3	aspentech	Bedford, MA	INCERING AND	Unit Set: Field13e						
5	Coponico	USA		17						
6				Fluid Package: PENG-ROB						
7	Materi	al Stream:	Oil (contin	nued)		Control of the Contro				
8			(Pro	perty Package: Kat	oadi-Danner			
9	COMPOSITION									
11										
12			Liquid F	hase (continued	1)	Phase Fr	action 1.000			
13 14	COMPONENTS	MOLAR FLOW (lbmole/hr)	MOLE FRACTION	MASS FLOW (lb/hr)	MASS FRACTION	LIQUID VOLUME FLOW (barrel/day)	LIQUID VOLUME FRACTION			
15	n-Heptane	21.0611	0.1306	2110.4314	0.1017	210.4019	0.1078			
16	Toluene	4.3998	0.0273	405.3994	0.0195	31.9051	0.0163			
17	n-Octane	13.9342	0.0864	1591.7351	0.0767	154.5140	0.0791			
18	E-Benzene	2.0226	0.0125	214.7277	0.0103	16.8994	0.0087			
19	m-Xylene	5.2970	0.0328	562.3602	0.0271	44.4194	0.0227			
20	n-Nonane	11.2233	0.0696	1439.4837	0.0694	136.8496	0.0701			
21	n-Decane	12.7426	0.0790	1813.0747	0.0874	169.4320	0.0868			
22	n-C11	7.6724	0.0476	1199.2896	0.0578	110.5461	0.0566			
23	H2O	0.1416	0.0009	2.5506	0.0001	0.1750	0.0001			
24	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
25	n-C12	5.4276	0.0336	924.5350	0.0446	84.2787	0.0432			
26	n-C13	4.5581	0.0283	840.3663	0.0405	75.8318	0.0388			
27	n-C14	33.3383	0.2067	6613.6489	0.3188	593.5870	0.3040			
28	Total	161.3137	1.0000	20747.6211	1.0000	1952.5469	1.0000			
29 30				K VALUE						
31	COMPO	COMPONENTS MIX			LIGHT		HEAVY			
32				(***)						
33				264.1		264.1				
34										
35		Ethane		63.18		63.18				
36	Aspen Technology Inc	2.	Aspen HYS)	'S Version 8.8 (34.	0.1.8909)		Page 53 of 55			

2	ELATROCK ENCINEERING	Case Name:	Ameredev -Boyd 11 flash.hsc				
3	aspentech FLATROCK ENGINEERING Bedford, MA	Unit Set:	Field13e				
4	USA	D 1 5	T - N - 04 00 55 40 0047	A 10 M - 91 37 M			
5		Date/Time:	Tue Nov 21 08:55:42 2017				
6			Fluid Packag	je: PENG-ROB			
7	Material Stream: Oil (c	ontinued)	Property Package: Kal				
8		-					
9		K VALUE					
11	COMPONENTS	MIXED	LIGHT	HEAVY			
12	Propane	21.52	21.52				
13	i-Butane	9.722	9.722	(202			
14	n-Butane	7.299	7.299	***			
15	i-Pentane	3.271	3.271				
16	n-Pentane	2.599	2.599				
17	22-Mbutane	1.582	1.582	-			
18	n-Hexane	0.9477	0.9477				
19	Benzene	0.8923	0.8923				
20 21	n-Heptane	0.3573	0.3573	-			
	Toluene	0.3148	0.3148				
22	n-Octane	0.1346	0.1346				
23	E-Benzene	0.1214	0.1214				
24	m-Xylene	0.1047	0.1047				
25	n-Nonane	5.237e-002	5.237e-002				
26	n-Decane	2.074e-002	2.074e-002	9 410 2			
27	n-C11	8.226e-003	8.226e-003				
28	H2O	74.21	74.21				
29	H2S	***					
30	n-C12	3.592e-003	3.592e-003	2 705 0			
31	n-C13	1.304e-003	1.304e-003				
32	n-C14	4.479e-004	4.479e-004				
33							
34							
35							

Page 54 of 55

1 2		Case Name	e: Ameredev -Boyd	11 flash.hsc	15.41.24		
3 4	aspentech FLATROCK ENGINEERING AND Bedford, MA	Unit Set:	Field13e				
5	USA	Date/Time:	Tue Nov 21 08:5	5:42 2017			
6 7 8	Material Stream: Oil (cont	inued)			PENG-ROB Kabadi-Danner		
9	U	NIT OPERA	TIONS				
11	FEED TO	PRODUCT F	ROM	LOGICAL C	ONNECTION		
12	Separator:		V-100				
13							
14 15							
16							
17		ROCESS U	IILIIY				
18							
19 20		DYNAMI	cs				
21	Pressure Specification (Inactive) 13.20 psia						
22	Flow Specification (Inactive) Molar: 1.469 M	MSCFD M	ass: 2.075e	+004 lb/hr Std Ideal	Liq Volumle253 barrel/day		
23 24		User Varia	bles				
25 26		NOTES	3				
27							
28 29		Descripti	on				
30							
31							
32					ılı		
33 34 35							
36	Aspen Technology Inc. Aspen HYS	SYS Version	8.8 (34.0.1.8909)		Page 55 of 55		

Natural Gas Analysis Report AKM Measurement Services

Sample Information

	Sample Information
Sample Name	BOYD 11-10H (90-301-01)
Sample Date	6/8/17
Meter ID	90-301-01
Technician Name	C GOMEZ
Lab Technician	C HEWITT
Method Name	AKM (2).met
Injection Date	2017-06-09 09:08:11

Component Results

Component Name	Raw Amount	Norm%	GPM (Dry) (Gal. / 1000 cu.ft.)	
Nitrogen	1.3750	1.3581	0.000	
Methane	72.2780	71.3906	0.000	
CO2	0.2340	0.2311	0.000	
Ethane	12.1950	12.0453	3.236	
H2S	0.0000	0.0000	0.000	
Propane	7.8290	7.7329	2.140	
iso-Butane	1.1170	1.1033	0.363	
n-Butane	3.0200	2.9829	0.945	
iso-Pentane	0.8510	0.8406	0.309	
n-Pentane	0.8790	0.8682	0.316	
Hexanes Plus	1.4650	1.4470	0.631	
Water	0.0000	0.0000	0.000	
Total:	101.2430	100.0000	7.939	

Results Summary

Result	Dry	Sat.
Total Raw Amount	101.2430	
Pressure Base (psia)	14.730	
Flowing Temperature (Deg. F)	111.0	
Flowing Pressure (psia)	61.0	
Gross Heating Value (BTU / Real cu.ft.)	1414.7	1390.7
Relative Density (G), Real	0.8296	0.8264
Total GPM	7.939	7.905
Total Molecular Weight	23.923	23.820

MITCHELL ANALYTICAL LAB 2638 FAUDREE ODESSA, TEXAS 79765-8538 432.561.5579

SUMMARY OF CHROMATOGRAPHIC ANALYSIS

COMPANY:

AMI

Lab Ref #:

PRODUCER:

Ameredev

17-NOV-94702

LEASE:

Boyd 11 101H

SAMPLED BY: n.a. SAMPLE DATE 10/26/17

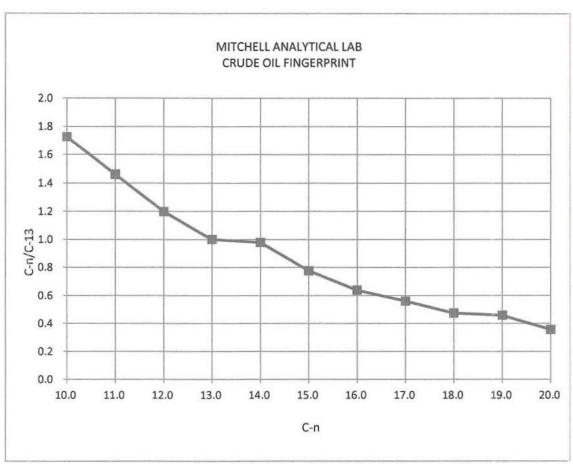
STATION #:

n.a.

SAMPLE PRES 19.0

DATE RUN:

11/7/2017


SAMPLE TEMP n.a.

COMPONENT	MOLE %	WEIGHT %	VOLUME %	6 CALCULATED PARAMET	
HYDROGEN SULFIDE	0.0000	0.0000	0.0000	TOTAL ANALYSIS	SUMMARY
NITROGEN	0.0000	0.0000	0.0000		
OXYGEN	0.0000	0.0000	0.0000	AVE MOLE WT	138.6947
METHANE	0.0156	0.0018	0.0045	SP GRAV, 60F/60	0.7724
CARBON DIOXIDE	0.0000	0.0000	0.0000	API GRAVITY	51.7
ETHANE	0.2113	0.0458	0.0963	REL DENS, AIR=1	4.7886
PROPANE	1.4780	0.4699	0.6942	VAPOR PRESS PSIA	9.78
ISO-BUTANE	0.7371	0.3089	0.4113		
N-BUTANE	3.4787	1.4578	1.8709	HEXANES PLUS	SUMMARY
ISO-PENTANE	2.7776	1.4449	1.7340		
N-PENTANE (C-5)	3.9944	2.0779	2.4679	AVE MOLE WT	149.6331
2,2 DIMETHYL BUTANE	0.0000	0.0000	0.0000	SP GRAV, 60F/60	0.7984
CYCLOPENTANE	0.0000	0.0000	0.0000	API GRAVITY	45.7
2-METHYLPENTANE	2.3373	1.4523	1.6550	LBS/GAL	6.388
3-METHYLPENTANE	1.5113	0.9391	1.0523	REL DENS, AIR=1	5.1663
N-HEXANE (C-6)	3.6209	2.2499	2.5408	VAPOR PRESS PSIA	1.15
METHYLCYCLOPENTANE	2.1040	1.2767	1.2693		
BENZENE	0.8720	0.4911	0.4169	BTEX SUM	MARY
CYCLOHEXANE	3.8998	2.3664	2.2640		
2-METHYLHEXANE	0.5408	0.3907	0.4292	WT % BENZENE	0.4911
3-METHYLHEXANE	1.9016	1.3738	1.4864	WT % TOLUENE	1.7764
DIMETHYLCYCLOPENTA	1.3295	0.9412	0.9330	WT % E BENZENE	0.9297
HEPTANES	0.9364	0.6765	0.7368	WT % XYLENES	2.4336
N-HEPTANE (C-7)	3.2727	2.3644	2.5751		
METHYLCYCLOHEXANE	4.7544	3.2967	3.1897	DECANES PLUS	SUMMARY
TOLUENE	2.6739	1.7764	1.5230		
OCTANES	5.8414	4.8110	5.1011	AVE MOLE WT	211.7363
N-OCTANE (C-8)	2.5199	2.0754	2.2005	SP GRAV, 60F/60	0.8658
ETHYL BENZENE	1.2145	0.9297	0.7970	API GRAVITY	31.9
P-M-XYLENE	2.3873	1.8275	1.5781	LBS/GAL	6.927
O-XYLENE	0.7918	0.6061	0.5135	REL DENS, AIR=1	7.3105
NONANES	4.3451	4.0182	4.1727	VAPOR PRESS PSIA	0.016
N-NONANE (C-9)	2.3703	2.1920	2.2763		

CONTINUED ON NEXT PAGE

Boyd 11 101H

COMPONENT	MOLE %	WEIGHT %	VOLUME %	CRUDE OIL FINGERPR C-n/C-13 RATIO SUMM	
DECANES	5.8578	6.0092	6.1353		
N-DECANE (C-10)	1.7583	1.8038	1.8416	C-n	C-n/C-13
UNDECANES	3.2280	3.6380	3.6629		
N-UNDECANE (C-11)	1.3557	1.5279	1.5383	10.0	1.724
DODECANES	2.2211	2.7279	2.7163	11.0	1.460
N-DODECANE (C-12)	1.0210	1.2540	1.2487	12.0	1.199
TRIDECANES	1.9415	2.5807	2.5394	13.0	1.000
N-TRIDECANE (C-13)	0.7871	1.0463	1.0296	14.0	0.979
TETRADECANES	1.2295	1.7587	1.7270	15.0	0.775
N-TETRADECANE (C-14)	0.7162	1.0245	1.0061	16.0	0.638
PENTADECANES	1.2559	1.9235	1.8672	17.0	0.560
N-PENTADECANE (C-15)	0.5297	0.8113	0.7875	18.0	0.473
HEXADECANES	0.5824	0.9509	0.9171	19.0	0.458
N-HEXADECANE (C-16)	0.4088	0.6674	0.6437	20.0	0.357
HEPTADECANES	0.6551	1.1358	1.0920		
N-HEPTADECANE (C-17)	0.3382	0.5864	0.5638	BIO-MARKER	SUMMARY
OCTADECANES	0.5518	1.0125	0.9706		
N-OCTADECANE (C-18)	0.2699	0.4953	0.4748	Farnesane/C-14	0.180
NONADECANES	0.3690	0.7144	0.6805	Pristane/C-17	0.752
N-NONADECANE (C-19)	0.2475	0.4792	0.4564	Phytane/C-18	0.567
EICOSANES	0.2149	0.4378	0.4147		
N-EICOSANES (C-20)	0.1832	0.3732	0.3535	Weight % Sulfur	n.a.
HENEICOSANE + (C-21+)	12.3598	25.1792	23.3432		
TOTALS	100 0000	100.0000	100.0000	Gravity,	45.7
IUIALS	100.0000	100.0000	100.0000	API @ 60 F	

Boyd 11 101H

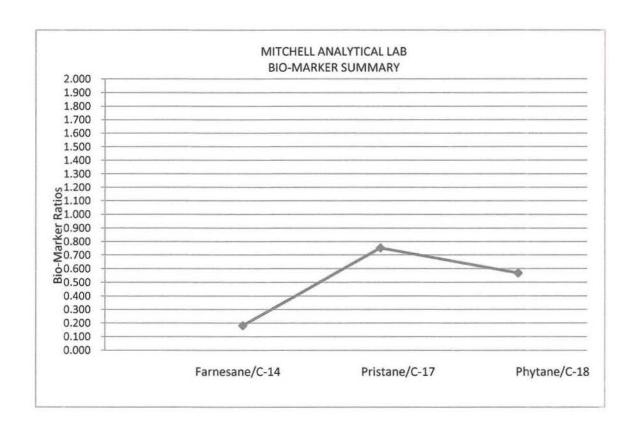


Table 5.1-1 (Metric And English Units). EMISSIONS FACTORS FOR PETROLEUM REFINERIES a

Process	Particulate	Sulfur Oxides (as SO ₂)	Carbon Monoxide	Total Hydro- carbons ^b	Nitrogen Oxides (as NO ₂)	Aldehydes	Ammonia	EMISSION FACTOR RATING
Boilers and process heaters								
Fuel oil			See See	ction 1.3 - "Fue	l Oil Combustion"			
Natural gas		v.	See Secti	on 1.4 - "Natur	al Gas Combustion"			
Fluid catalytic cracking units (FCC) ^c								
Uncontrolled								
kg/103 L fresh feed	0.695	1.413	39.2	0.630	0.204	0.054	0.155	В
	(0.267 to 0.976)	(0.286 to 1.505)			(0.107 to 0.416)			
lb/103 bbl fresh feed	242	493	13,700	220	71.0	19	54	В
	(93 to 340)	(100 to 525)			(37.1 to 145.0)			
Electrostatic precipitator and CO boiler								
kg/103 L fresh feed	0.128 d	1.413	Neg	Neg	0.204 °	Neg	Neg	В
	(0.020 to 0.428)	(0.286 to 1.505)			(0.107 to 0.416)			
lb/103 bbl fresh feed	45 ^d	493	Neg	Neg	71.0 °	Neg	Neg	В
	(7 to 150)	(100 to 525)			(37.1 to 145.0)			
Moving-bed catalytic cracking units ^f								
kg/103 L fresh feed	0.049	0.171	10.8	0.250	0.014	0.034	0.017	В
lb/103 bbl fresh feed	17	60	3,800	87	5	12	6	В
Fluid coking units g								
Uncontrolled								
kg/103 L fresh feed	1.50	ND	ND	ND	ND	ND	ND	С
lb/103 bbl fresh feed	523	ND	ND	ND	ND	ND	ND	С
Electrostatic precipitator and CO boiler								
kg/103 L fresh feed	0.0196	ND	Neg	Neg	ND	Neg	Neg	C
lb/103 bbl fresh feed	6.85	ND	Neg	Neg	ND	Neg	Neg	C

Table 5.1-1 (cont.).

Process	Particulate	Sulfur Oxides (as SO ₂)	Carbon Monoxide	Total Hydro- carbons ^b	Nitrogen Oxides (as NO ₂)	Aldehydes	Ammonia	EMISSION FACTOR RATING
Delayed coking units	ND	ND	ND	ND n	ND	ND	ND	NA
Compressor engines h								
Reciprocating engines								
kg/103 m3 gas burned	Neg	2s j	7.02	21.8	55.4	1.61	3.2	В
lb/103 ft3 gas burned	Neg	2s	0.43	1.4	3.4	0.1	0.2	В
Gas turbines	39,49							
kg/103 m3 gas burned	Neg	2s	1.94	0.28	4.7	ND	ND	В
lb/103 ft3 gas burned	Neg	2s	0.12	0.02	0.3	ND	ND	В
Blowdown systems k								
Uncontrolled								
kg/103 L refinery feed	Neg	Neg	Neg	1,662	Neg	Neg	Neg	С
lb/103 bbl refinery feed	Neg	Neg	Neg	580	Neg	Neg	Neg	C
Vapor recovery system and flaring							~	
kg/103 L refinery feed	Neg	0.077	0.012	0.002	0.054	Neg	Neg	C
lb/103 bbl refinery feed	Neg	26.9	4.3	0.8	18.9	Neg	Neg	C
Vacuum distillation column condensers m								
Uncontrolled								
kg/103 L vacuum feed	Neg	Neg	Neg	0.14	Neg	Neg	Neg	C
	25		- =1	(0 to 0.37)				
1b/103 bbl vacuum feed	Neg	Neg	Neg	50	Neg	Neg	Neg	C
				(0 to 130)				
Controlled (vented to heater or incinerator)	Neg	Neg	Neg	Neg	Neg	Neg	Neg	C

Table 5.1-1 (cont.).

Process	Particulate	Sulfur Oxides (as SO ₂)	Carbon Monoxide	Total Hydro- carbons ^b	Nitrogen Oxides (as NO ₂)	Aldehydes	Ammonia	EMISSION FACTOR RATING
Claus plant and tail gas treatment		1	See S	ection 8.13 - "S	Sulfur Recovery"	1		1

^a Numbers in parentheses indicate range of values observed. Neg = negligible. ND = no data.

^b Overall, less than 1 weight % of total hydrocarbon emissions is methane.

c References 2-8.

^d Under the New Source Performance Standards, controlled FCC regenerators must have particulate emissions lower than 0.054 kg/10³ L (19 lb/10³ bbl) fresh feed.

^e May be higher, from the combustion of ammonia.

f Reference 2.

g Reference 5.

h References 9-10.

Based on 100% combustion of sulfur to SO₂. s = refinery gas sulfur content (in kg/1000 m³ or lb/1000 ft³, depending on desired units for emission factor).

k References 2,11.

m References 2,12-13. If refinery feed rate is known, rather than vacuum feed rate, assume vacuum feed is 36% of refinery feed. Refinery feed rate is defined as the crude oil feed rate to the atmospheric distillation column.

ⁿ Methods for estimating hydrocarbon emissions from decoking operations are presented in Reference 18.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

Combuston Tons	NO	x	CC)
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	Α	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NOx burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NOx burners	50	D	84	В
Controlled - Low NOx burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]			Assert	
Uncontrolled	94	В	40	В

Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 6 scf to kg/106 m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 6 scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

SSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	Α
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds.
VOC = Volatile Organic Compounds.

Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb/} 10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

Based on 100% conversion of fuel sulfur to SO₂.
Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T} \tag{1}$$

where:

L_L = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

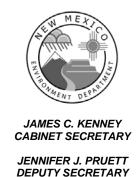
 $T = \text{temperature of bulk liquid loaded, } ^{\circ}R (^{\circ}F + 460)$

15) Certification for Submittal Under GCP-6

Company Name: Ameredev Operating, LLC	
I, Shane McNeely , hereby certify that the information	tion and data submitted in this application
are true and as accurate as possible, to the best of my knowledge and profession	nal expertise and experience.
Signed this 11th day of April , 2018 , upon my oath or affir	mation, before a notary of the State of
Texas	
Shy With	04/11/2018
*Signature	Date
Shane McNeely	Engineer
Printed Name	Title
Scribed and sworn before me on this 11th day of April	2018
My authorization as a notary of the State of	expires on the
2nd day of October , 2019.	
Notary's Signature	04/11/2018 Date
Erin Pearcy	
Notary's Printed Name	
ERIN PEARCY Notary Public, State of Texas Comm. Expires 10-02-2019 Natary ID 130392911	

GCP-6 Application Form vsn: 1/1/2017

14 of 14



HOWIE C. MORALES

LT. GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

October 3, 2019

<u>Certified Mail No. 7018 0680 0002 2228 6686</u> <u>Return Receipt Requested</u>

Shane McNeely Engineer Ameredev II LLC 5707 Southwest Parkway Building 1 Suite 275 Ausitn, TX 78735 Air Quality General Permit GCP- Oil & Gas 7601M1 IDEA No. 38183 - PRN20190001 Azalea Battery AIRS No. 350251328

Dear Mr. Neely:

This letter is in response to your air quality General Construction Permit - Oil & Gas (GCP-O&G) application dated August 22, 2019 to construct an oil and gas facility in New Mexico. The application was received by the Department on September 3, 2019.

A review has been completed and the information provided is sufficient to issue your permit in accordance with the GCP-O&G conditions as established under 20.2.72.220 NMAC.

This GCP-O&G Permit number (7601M1) supersedes GCP-6 permit number (7601).

Attached is a copy of your permit registration and the GCP-O&G. The GCP-O&G includes the terms and conditions for operation as well as emission and compliance requirements.

Pursuant to 20.2.75.11 NMAC, the Department will assess an annual fee for this facility. This regulation set the fee amount at \$1,500 through 2004 and requires it to be adjusted annually for the Consumer Price Index on January 1. The current fee amount is available by contacting the Department or can be found on the Department's website. The AQB will invoice the permittee for the annual fee amount at the beginning of each calendar year. This fee does not apply to sources which are assessed an annual fee in accordance with 20.2.71 NMAC. For sources that satisfy the definition of "small business" in subsection F of 20.2.75.7 NMAC, this annual fee will be divided by two.

All fees shall be remitted in the form of a corporate check, certified check, or money order made payable to the "NM Environment Department, AQB" mailed to the address shown on the invoice, and shall be accompanied by the remittance slip attached to the invoice.

If you have any questions, please contact me in Santa Fe at 505-476-4326.

Sincerely,

Leslee Kimbrell Air Permit Specialist Permits Section Air Quality Bureau

cc via email: Kristin Ikard, Flatrock Engineering and Environmental Ltd

Enclosure: Paid in full Invoice

Leder himpell

Sections 1-5, 7-10 of the current registration

GCP-Oil and Gas Permit

Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

This Registration is being submitted as (check all that apply):

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

Received

SEP 0 3 2019

Air Quality bureau
AIRS #: AI #:

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Non-Attainment Areas)

An initial GCP-Oil and Gas Registration Form for a new facility (Registration An updated GCP-Oil and Gas Registration Form for a modification to an exi ☐ A GCP-Oil and Gas Registration Form for an existing facility previously or crequired) ☐ A notification of an administrative change, including: a change of owner/ope submit Section 1 and Section 10). No public notification is required, and no filing	sting facility (Registration featurently operating under GCP rator or change of contact info	-1 or GCP-4 (No fee
Construction Status: Not Constructed Existing Permitted (or NO) Facility Existing Non-Pe	rmitted (or NOI) Facility
Acknowledgements: I acknowledge that a pre-application meeting is available to me upon request An original signed and notarized Certification for Submittal for this GCP-Oi Proof of public notice is included, if required. The Air Emission Calculation Tool (AECT) is included. The emissions specified in this Registration Form will establish the emission For new Registrations or modifications, a check for the GCP-Oil and Ga "small business" under 20.2.75.7.F NMAC qualify for reduced fees, provided th your company on file. This form can be found at: http://www.env.nm.gov/aqb/sl Provide your Check Number: 1413 and Amount: \$4,190	and Gas Registration is included limits in the GCP-Oil and Gas s Registration fee is included at NMED has a Small Busines pap/Small Business Forms.htm	s. d. Facilities qualifying as a sess Certification Form from ml
1) Company Information	AI # (if known):	If updating, provide Permit/NOI #: 8081
	Plant primary SIC Code (
1 Facility Name: Azalea Battery	Plant NAIC code (6 digits	s): 211120

CONTRACTOR IN	The same of the same of							
1		Facility Name: Azalea Battery	Plant primary SIC Code (4 digits): 1311					
1		Tacinty Name. Azarea Battery	Plant NAIC code (6 digits): 211120					
	a	Facility Street Address (If no facility street address, check here and pro-	vide directions in Section 4):					
2		Plant Operator Company Name: Ameredev II, LLC	Phone/Fax: 737-300-4700					
	a	Plant Operator Address: 5707 Southwest Parkway Building 1, Suite 275, A	austin, TX 78735					
3		Plant Owner(s) name(s): Ameredev II, LLC	Phone/Fax: 737-300-4700					
	a	Plant Owner(s) Mailing Address(s): 5707 Southwest Parkway Building 1, Suite 275, Austin, TX 78735						
4		Bill To (Company): Ameredev II, LLC	Phone/Fax: 737-300-4700					

	,	Ş								
a	Mailing Address: 5707 Southwest Parkway Building 1, Suite 275, Austin, TX 78735	E-mail:								
5		Phone/Fax: 405-605-0328								
a	Mailing Address: 5509 Main Street, Suite 105 Del City, OK 73115 E-mail: Kristin.Ikard@flatrockenergy.net									
6	Plant Operator Contact: Shane McNeely	Phone/Fax: 737-300-4729								
a	Mailing Address: 5707 Southwest Parkway Building 1, Suite 275, Austin, TX 78735	E-mail: smcneely@ameredev.com								
7	Air Permit Contact: Shane McNeely	Title: Engineer								
a	E-mail: smcneely@ameredev.com	Phone/Fax: 737-300-4729								
b	Mailing Address: 5707 Southwest Parkway Building 1, Suite 275, Austi	n, TX 78735								
8	Will this facility operate in conjunction with other air regulated parties of If yes, what is the name and NOI or permit number (if known) of the other than the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with other air regulated parties of the conjunction with the conjunction wi	· · · · — —								
2)	Applicability									
1	Is the facility located in Bernalillo County, on tribal lands, or in a nonat	tainment area? No Yes								
	answered <i>Yes</i> to the question above, your facility does not qualify for this									
2	Is the facility's SIC code 1311, 1321, 4619, 4612 or 4922?	□ No ⊠Yes								
3	Does the regulated equipment under this GCP-Oil and Gas Registration Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit,	include any combination of No Yes								
4	Will the regulated equipment as specified in this GCP-Oil and Gas Regi									
5	emissions in Table 106 of the GCP-Oil and Gas permit? Does all equipment comply with the stack parameter requirements as es	tablished in the GCP-Oil and Gas No Yes								
(Permit?	t is five (5) or more meters above the No Yes								
6	Equipment shall be at least 100 meters (m) from any stack to terrain tha top of the stack. Will the equipment at the facility meet this terrain requ									
7	Is the facility at least 150 m from any source that emits over 25 tons/yea									
8	Is the facility at least 3 miles from any Class I area?	No ⊠Yes								
If you	answered NO to any of questions 2-8, your facility does not qualify for the	nis general construction permit.								
3)	Current Facility Status									
1	Has this facility already been constructed? ⊠Yes □No If yes, is i	t currently operating in New Mexico? 🛛 Yes 🔲 No								
2	Does this facility currently have a construction permit or Notice of Inte (NOI) (20.2.72 NMAC or 20.2.73 NMAC)? ∑Yes ☐No	nt If yes, the permit No. or NOI No., and whether it will remain active or not: 7601, no								
3	Is this Registration in response to a Notice of Violation (NOV)? If Yes No If so, provide current permit #:	yes, NOV date: NOV Tracking No.								
4	Check if facility is a:	F : : > 90 TBV (14.1 : 114.0 \ \frac{1}{2}								
4)	Minor Source: Synthetic Minor Source: M80 = Controlled Facility Location Information	Emissions > 80 TPY of any regulated air pollutant):								
	use Montana's Graphical Locater to convert Lat/Long to UTM systems, f	Count at http://www.commontona.adu/al/tus data html								
Flease										
1	a) Section: 28 b) Range: 36E c) Township: 26S d) Co	e) Elevation (ft): 2,913								
2	a) UTM Zone: 12 or 13 b) UTME (to nearest 10 meters): 662,65									
	d) Specify which datum is used: NAD 27 See this link for more info. http://en.wikipedia.org/wiki/North America	NAD 83 WGS 84 n Datum								
AND		., sec.): 103°16'39.66"W								
3	Name and zip code of nearest New Mexico town and/or tribal communi	ty: Jal, 88252								

4	Detailed Driving Instructions including direction and distance from nearest NM town and/or tribal community (attach a road map if necessary). If there is no street address, provide public road mileage marker: Head east toward S 3 rd Street in Jal, NM, turn right onto S 3 rd Street, continue 1.3 miles. Continue onto NM-205 S/Frying Pan Rd and continue 6.8 miles. Turn right onto Beckham Rd. and continue 0.7 miles to site.							
5	The facility is 8.4 (distance) miles southwest (direction) of Jal (nearest town).							
6	Land Status of facility (check one): Private Indian/	Pueblo Government	BLM Forest Service Military					
5)	Other Facility Information							
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL). Oil (bbl/day): 2,000 Gas (MMscf/day): 10 NGL (bbl/day): N/A (bbl/yr): 730,000 (MMscf/yr): 3,650 (bbl/yr): N/A							
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.	□No ⊠Yes						
Sec	tion 2) Submittal Requirements							
1	Include one hard copy original signed and notarized Reg as we bind the document on top, not on the side; except lar is not possible, print single sided. Please use numbered to process.	ndscape tables, which should be	e head-to-head. If 'head-to-toe printing'					
2	Include one double sided hard copy for Department use.	This <u>copy</u> does not need to be	2-hole punched.					
3	The entire Registration package should be submitted electric the entire Registration as submitted and the individual document submitted in Microsoft Office compatible file format (Wormaste). Any documents that cannot be submitted in a Microsoft electronic document that created the file. If you are unagenerated PDF files of files (items that were not created electronic documents. Spreadsheets must be unlocked since we	uments comprising the Registra d, Excel, etc.) allowing us to a osoft Office compatible format able to provide Microsoft offic ectronically: i.e. brochures, ma	ation. The documents should also be coess the text in the documents (copy & t shall be saved as a PDF file from within the compatible electronic files or internally the ps, graphics, etc.), submit these items in					

Table 1) Regulated Equipment (Include all regulated equipment and control devices): Equipment that qualifies for an exemption under 20.2.72.202.B NMAC does not need to be included on this table. Include exempt equipment in Section 3. Add additional rows as necessary.

				Source Classifica		Maximum Capacity/			% Control	Applicable
Unit	Equipment			tion Code		Permitted	Date of	Controlled	Efficiency and	NSPS
No.	Description	Manufacturer	Make/Model	(SCC)	Serial #	Capacity	Manufacture	by Unit #	Pollutant	MACT
HEAT-1	0.75-mmBTU/hr Heater Treater	-	-	31000404	-	0.75- mmBTU/hr	-	-	-	-
HEAT-2	0.75-mmBTU/hr Heater Treater	-	-	31000404	-	0.75- mmBTU/hr	-	-	-	-
TK-1	500-bbl Crude Oil storage tank	N/A	N/A	40400312	-	500-bbl	2017	FL-1	98% combustion	-
TK-2	500-bbl Crude Oil storage tank	N/A	N/A	40400312	-	500-bbl	2017	FL-1	98% combustion	-
TK-3	500-bbl Crude Oil storage tank	N/A	N/A	40400312	-	500-bbl	2017	FL-1	98% combustion	-
TK-4	500-bbl Crude Oil storage tank	N/A	N/A	40400312	-	500-bbl	2017	FL-1	98% combustion	-
TK-5	500-bbl Crude Oil storage tank	N/A	N/A	40400312	-	500-bbl	2017	FL-1	98% combustion	-
TK-6	500-bbl Crude Oil storage tank	N/A	N/A	40400312	-	500-bbl	2017	FL-1	98% combustion	-
TK-7	500-bbl Produced Water storage tank	N/A	N/A	40400315	-	500-bbl	2017	FL-1	98% combustion	-
TK-8	500-bbl Produced Water storage tank	N/A	N/A	40400315	-	500-bbl	2017	FL-1	98% combustion	-
TK-9	500-bbl Produced Water storage tank	N/A	N/A	40400315	-	500-bbl	2017	FL-1	98% combustion	-
TK-10	500-bbl Produced Water storage tank	N/A	N/A	40400315	-	500-bbl	2017	FL-1	98% combustion	-
TK-11	500-bbl Produced Water storage tank	N/A	N/A	40400315	-	500-bbl	2017	FL-1	98% combustion	-
TK-12	500-bbl Produced Water storage tank	N/A	N/A	40400315	-	500-bbl	2017	FL-1	98% combustion	-
TK-13	1,000-bbl Produced Water Gunbarrel tank	N/A	N/A	40400312	-	1,000-bbl	2017	FL-1	98% combustion	-

Table 1) Regulated Equipment (Include all regulated equipment and control devices): Equipment that qualifies for an exemption under 20.2.72.202.B NMAC does not need to be included on this table. Include exempt equipment in Section 3. Add additional rows as necessary.

Unit	Equipment			Source Classifica tion Code		Maximum Capacity/ Permitted	Date of	Controlled	% Control Efficiency and	Applicable NSPS
No.	Description	Manufacturer	Make/Model	(SCC)	Serial #	Capacity	Manufacture	by Unit #	Pollutant	MACT
TK-14	750-bbl Crude Oil (Skim) tank	N/A	N/A	40400312	-	750-bbl	2017	FL-1	98% combustion	-
LOAD-1	Crude Oil Truck Loading	N/A	N/A	40600132	-	30,660,000 gal/yr	N/A	-	N/A	-
FL-1	Standard Flare	Vaprox	N/A	31000205	-	2,550 scfh	-	-	98% combustion	-
FUG-1	Fugitives	N/A	N/A	31000220	-	N/A	N/A	N/A	15%	NSPS OOOOa
MSS-1	Planned Maintenance, Startup, Shutdown Emissions	N/A	N/A	31088811	1	N/A	N/A	N/A	N/A	-
Malfuncti on	Malfunction	N/A	N/A	31088811	-	N/A	N/A	N/A	N/A	-

Table 2A): Maximum Uncontrolled Emissions (under normal operating conditions):

☐ This Table was intentionally left blank because it would be identical to Table 2B.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. List Hazardous Air Pollutants (HAP) in Table 3. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	NO	Ox	C	O	VC	OC	S	Ox	TS	SP ²	PM	10^2	PM	(2.5^2)	Н	$_{2}S$	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/ hr	ton /yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/ hr	ton/y r
HEAT-1	0.07	0.32	0.06	0.27	0.0040	0.018	4.4E-4	0.019	-	-	0.0042	0.018	0.0042	0.018	-	-	-	-
HEAT-2	0.07	0.32	0.06	0.27	0.0040	0.018	4.4E-4	0.019	-	-	0.0042	0.018	0.0042	0.018	-	-	-	-
TK-1	-	-	-	-	9.63	42.20	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	9.63	42.20	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	9.63	42.20	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	9.63	42.20	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	-	-	-	-	9.63	42.20	-	-	-	-	-	-	-	-	-	-	-	-
TK-6	-	-	-	-	9.63	42.20	-	-	-	-	-	-	-	-	-	-	-	-
TK-7	-	-	-	-	0.03	0.13	-	-	-	-	-	-	-	-	-	-	-	-
TK-8	-	-	-	-	0.03	0.13	-	-	-	-	-	-	-	-	-	-	-	-
TK-9	-	-	-	-	0.03	0.13	-	-	-	-	-	-	-	-	-	-	-	-
TK-10	-	-	-	-	0.03	0.13	-	-	-	-	-	-	-	-	-	-	-	-
TK-11	-	-	-	-	0.03	0.13	-	-	-	-	-	-	-	-	-	-	-	-
TK-12	-	-	-	-	0.03	0.13	-	-	-	-	-	-	ı	-	-	-	ı	ı
TK-13	-	-	1	-	6.62	28.98	1	-	-	-	-	ı	1	-	1	-	ı	ı
TK-14	-	-	-	-	5.34	23.40	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	39.50	62.94	-	-	-	-	-	-	ı	-	-	-	ı	ı
FL-1*	0.0025	0.011	0.0021	0.0092	298.83	65.45	7.1E-6	3.1E-5	-	-	1.9E-4	8.3E-4	1.9E-4	8.3E-4	-	-	ı	1
FUG-1	-	-	-	-	2.74	12.02	-	-	-	-	-	-	-	-	0.014	0.059	-	-
MSS-1	-	-	-	-	86.18	0.58	-	-	-	-	-	-	-	-	0.29	0.040	-	-
Malfunct ion	-	-	-	-	-	10.0	-	-	-	-	-	-	-	-	-	-	-	-
Totals	0.14	0.65	0.12	0.55	497.18	457.39	0.01	0.04	-	-	0.01	0.04	0.01	0.04	0.31	0.10	-	-

GCP-Oil and Gas Registration Form vsn: 13 Sept 2018

Page 6 of 31

Table 2A): Maximum Uncontrolled Emissions (under normal operating conditions):

☐ This Table was intentionally left blank because it would be identical to Table 2B.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. List Hazardous Air Pollutants (HAP) in Table 3. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox		0	VC	OC	S	Ox	TS	SP ²	PN	10^2	PM	(2.5^2)	H	$_2$ S	L	Lead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/ hr	ton /yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/ hr	ton/y r

^{1.} Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

Table 2B) Allowable Emission Limits: Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed with a minimum of two significant figures. If there are any significant figures to the left of a decimal point, there shall be no more than one significant figure to the right of the decimal point. Total the emissions from all equipment in the Totals row. Add additional rows as necessary.

	N	Ox	C	O	VC	OC	S	Ox	TS	\mathbf{P}^2	PM	10^2	PM	(2.5^2)	Н	$_{2}S$	Ot	ther
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/ yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/h r	ton/y r
HEAT-1	0.07	0.32	0.06	0.27	0.0040	0.018	4.4E- 4	0.019	-	-	0.0042	0.018	0.0042	0.018	-	-	-	-
HEAT-2	0.07	0.32	0.06	0.27	0.0040	0.018	4.4E- 4	0.019	-	-	0.0042	0.018	0.0042	0.018	-	-	-	-
TK-1	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-		-
TK-3	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-
TK-5	-	-	1	-	*	*	-	-	-	-	-	-	-	-	1	-	-	-
TK-6	-	-	-	-	*	*	-	-	-	-	-	=	-	-	-	-	=-	-
TK-7	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-
TK-8	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-
TK-9	-	-	ı	-	*	*	-	-	-	-	-	-	-	-	1	-	-	-
TK-10	-	-	-	-	*	*	-	-	-	-	-	=	-	-	-	-	=-	-
TK-11	-	-	1	-	*	*	-	-	-	-	-	-	-	-	1	-	-	-
TK-12	-	-	1	-	*	*	-	-	-	-	-	-	-	-	1	-	-	-
TK-13	-	-	1	-	*	*	-	-	-	-	-	-	-	-	1	-	-	-
TK-14	-	-	-	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	39.50	62.94	-	-	-	-	-	=	-	-	-	-	=-	-
FL-1	0.53	0.63	2.39	2.83	7.38	7.23	0.10	0.44	-	-	1.9E-4	8.3E-4	1.9E-4	8.3E-4	0.0011	0.0047	-	-
FUG-1	-	-	-	-	2.74	12.02	-	-	-	-	-	-	-	-	0.014	0.059	-	-
MSS-1	-	-	-	-	86.18	0.58	-	-	-	-	-	-	-	-	0.29	0.040	-	-
Malfunction	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	0.67	1.27	2.52	3.37	135.81	92.81	0.10	0.44	-	_	0.01	0.04	0.01	0.04	0.31	0.10	_	_

¹ Significant Figures Examples: One significant figure – 0.03, 3, 0.3. Two significant figures – 0.34, 34, 3400, 3.4

² Condensable PM: Include condensable particulate matter emissions in particulate matter calculations.

^{*}Tank emissions reported at FL-1.

Table 3) Emission Rates for HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the threshold amounts described above. Add additional rows as necessary.

Stack Unit No. No.(s)		Total HAP		n-hexane □ HAP		Toluene □ HAP		Provide Pollutant Name Here HAP		Provide Pollutant Name Here HAP		Provide Pollutant Name Here		Provide Pollutant Name Here HAP		Provide Pollutant Name Here	
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
	HEAT-1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1										
	HEAT-2	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1										
	TK-1	*	*	*	*	*	*										
	TK-2	*	*	*	*	*	*										
	TK-3	*	*	*	*	*	*										
	TK-4	*	*	*	*	*	*										
	TK-5	*	*	*	*	*	*										
	TK-6	*	*	*	*	*	*										
	TK-7	*	*	*	*	*	*										
	TK-8	*	*	*	*	*	*										
	TK-9	*	*	*	*	*	*										
	TK-10	*	*	*	*	*	*										
	TK-11	*	*	*	*	*	*										
	TK-12	*	*	*	*	*	*										
	TK-13	*	*	*	*	*	*										
	TK-14	*	*	*	*	*	*										
	LOAD-1	3.2	5.0	1.9	3.1	0.5	0.8										
	FL-1	0.5	0.6	0.3	0.4	0.1	0.1										
	FUG-1	0.3	1.2	0.1	0.3	0.1	0.3										
	MSS-1	8.1	0.1	4.8	< 0.1	1.4	<0.1										
Totals:		12.0	6.8	7.1	3.9	2.0	1.1										

Table 4: Stack Parameters

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each equipment type that emits from a stack:

Stack Type (Engine, Turbine, Flare, ECD, or Thermal Oxidizer Etc.)	Serving Unit Number(s) from Table 1	Stack Orientation (Vertical, horizontal etc.)	Height Above Ground (ft)	Temp. (F)	Velocity (ft/sec)	Flow Rate (acfm)	Inside Diameter (ft)
Heater	HEAT-1	Vertical	20	700	31.32	368.97	0.5
Heater	HEAT-2	Vertical	20	700	31.32	368.97	0.5
Flare	FL-1	Vertical	65	1,200	3.61	42.5	0.5

GCP-Oil and Gas Form vsn: 13 Sept 2018 Page 10 of 31 Printed: 8/30/2019

Table 5: Allowable Fuels and Fuel Sulfur for Combustion Emission Units:

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	Fuel Source (purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO ₂ percentage of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value	Annual Fuel Usage	Does the Allowable Fuel and Fuel Sulfur Content meet GCP O&G Condition A110.A?
HEAT- 1	Natural Gas	Field Natural Gas	0	N/A	1,182 Btu/scf	5,559,787 scf	Yes ⊠ No□
HEAT-	Natural Gas	Field Natural Gas	0	N/A	1,182 Btu/scf	5,559,787 scf	Yes ⊠ No□
FL-1	Natural Gas	Field Natural Gas	N/A	N/A	1,182 Btu/scf	219,000 scf (pilot only)	Yes ⊠ No□
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No
							Yes No

GCP-Oil and Gas Form vsn: 13 Sept 2018 Page 11 of 31 Printed: 8/30/2019

Table	e 6: Tar	nk Data										
Unit	Date Installed	Materials Stored	Seal Type	Roof Type	Capa	acity	Diameter (M)	Vapor Space (M)	Co	lor	Annual Throughput (gal/yr)	Turn- overs (per
					(bbl)	(M ³)		(1/1)	Roof	Shell	(gal/yl)	year)
TK-1	2017	Crude Oil	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-2	2017	Crude Oil	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-3	2017	Crude Oil	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-4	2017	Crude Oil	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-5	2017	Crude Oil	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-6	2017	Crude Oil	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-7	2017	Produced Water	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-8	2017	Produced Water	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-9	2017	Produced Water	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-10	2017	Produced Water	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-11	2017	Produced Water	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-12	2017	Produced Water	N/A	Fixed	500	79.5	4.724	2.4	Gray	Gray	5,110,000	241.35
TK-13	2017	Crude Oil	N/A	Fixed	1,000	159	4.724	4.6	Gray	Gray	30,660,000	749.01
TK-14	2017	Crude Oil	N/A	Fixed	750	119.2	4.724	3.7	Gray	Gray	30,660,000	944.40

Section 3 Registration Summary

The **Registration Summary** shall include a brief description of the facility and its process. In case of a modification to a

facility, please describe the proposed changes. Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM): Provide an overview of how SSM emissions are accounted for in this Registration. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions. **Specify Facility Type:** Check the appropriate box below: Production Site Tank Battery Compressor Station Natural Gas Plant Other, please specify: Registration Summary: Ameredev II, LLC (Ameredev) operates the Azalea Battery (Site) under GCP-6 Permit No. 7601 in Lea County, New Mexico. With this application, Ameredev requests to update the flare, fugitive, and MSS emissions using a current gas analysis which includes hydrogen sulfide emissions. Ameredev also request authorization to operate the Site under the Air Quality General Construction Permit (GCP) – Oil & Gas application. The Site consists two (2) 0.75-mmBtu/hr heater treaters, six (6) 500-bbl crude oil tanks, six (6) 500-bbl produced water tanks, one (1) 1,000-bbl gunbarrel storage tank, one (1) 750-bbl skim tank, one (1) flare for tank control, two (2) electric-driven vapor recovery units, two (2) vapor recovery towers, crude oil truck loading, fugitive emissions, and planned maintenance, startup, and shutdown (MSS) emissions. SSM Summary: Planned SSM emissions, which includes start-up, shutdown, and routine maintenance of facilities, and temporary maintenance emissions, are estimated. See attached emissions calculations for additional information. **Allowable Operations:** Check the appropriate box below: Facility operates continuously (8760 hours per year) The following regulated equipment will operate less than 8760 hours per year. Add additional rows as necessary. These units are subject to Condition A108.C of the Permit. Table A – Equipment Operating Less Than 8760 hours per year Requested Annual Unit# **Operating Hours**

Exempt Equipment: List all exempt equipment qualified under 20.2.72.202 NMAC.

Printed: 8/30/2019 GCP-Oil and Gas Form vsn: 13 Sept 2018 Page 13 of 31

August 2019 Ameredev II, LLC Azalea Battery

Verification of Compliance with Stack Parameter Requirements:

Check the box for each type of equipment at this facility:
☐ Engine(s)
☐ Turbine(s)
\boxtimes Flares(s)
☐ Enclosed Combustion Device (s)
Heater(s)
Reboiler(s)
For each type of equipment checked above, complete the applicable section below.

For each type of equipment checked above, complete the applicable section below.

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emis	sion Rate: <u>0.67</u>	lb/hr		
Engine/Generator/Heater/Reboiler Unit Number	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
HEAT-1	20	700	31.32	0.50
HEAT-2	20	700	31.32	0.50
Table 1 Minimum Parameters: For verification, list the minimum parameters based on the NOx lb/hr emission rate from the GCP O&G Table 1.	5.9	571	49.2	0.30

4.	Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP O&G?
	Yes. Skip step 5 below.
\boxtimes	No. Go to step 5 below.

5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

An engine or heater with a temperature or velocity that is less than the minimum that would apply to that unit may choose to add 3.3 feet to the unit's required minimum stack height to be considered to be in compliance with these stack parameter requirements. The stack heights for the heaters are already more than 3.3 feet above the minimum stack height. Additioanlly, the heaters are in compliance with A203C of the GP: If, after the above adjustments, any heater or reboiler is unable to meet the minimum stack parameter requirements in Table 1 or 2 of Condition A202.I, the maximum total emission rate allowed for those heaters and reboilers is 1.23 lb/hr of NOx.

GCP-Oil and Gas Form vsn: 13 Sept 2018 Printed: 10/1/2019 Page 14 of 32

Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Table C: Turbine/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total N	NOx Emission Rate:	lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

	O&G?
	Yes. Skip step 5 below.
	No. Go to step 5 below.
5.	For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G,
	explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page
	18 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

4. Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP

GCP-Oil and Gas Form vsn: 13 Sept 2018 Page 15 of 31 Printed: 8/30/2019

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Table D: Flare Stack Height Parameter Verification:

Flare Unit Number	SO ₂ Emission Rate (lb/hr)		Table 3 Minimum Stack Height: For verification, list the minimum height parameters based on the SO2 emission rate from the GCP O&G Table 3.
FL-1	0.10	65	6.6

4.	Do all flares comply with minimum stack height requirements? ☐ Yes ☐ No
5.	Does the flare gas contain no higher than 6% H₂S by volume (pre-combustion)? ☐ Yes. Skip step 6 below. ☐ No. Go to step 6 below.
6.	Explain in detail how assist gas will be added to reduce the gas composition to 6% H ₂ S or less by volume.

Enclosed Combustion Device(s) (ECD):

According to GCP O&G Condition A208.A, the facility must meet one of the following options if an ECD is installed at the facility:

\sim	. •	1
()	ntion	-
\sim	Otion	-

Option	
1.	Will the ECD(s) meet the SO₂ emission limit of 0.7 lb/hr and operate with a velocity of at least two (2) feet per second? ☐ Yes. Skip Option 2 below. ☐ No. Go to Option 2 below.
Option	<u>2:</u>
2.	Will the ECD(s) meet the SO ₂ emission limit of 0.9 lb/hr and operate with a velocity of at least one (1) foot per
	second?
	☐ Yes
	□ No

GCP-Oil and Gas Form vsn: 13 Sept 2018 Page 17 of 31 Printed: 8/30/2019

Section 4

Process Flow Sheet and Description of Routine Operations

A <u>process flow sheet</u> indicating all individual equipment, all emission points, and types of control applied to those points. All units should be labeled and the unit numbering system should be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water).

Written description of the routine operations of the facility: Include a detailed description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated.

Outlet Sales Two (2) 0.75-mmBtu/hr Three-Phase Inlet R Two (2) Electric VRUs Heater Treaters Separator Inlet: From (HEAT-1, HEAT-2) Т Well(s) VRT emissions to Flare (FL-1) during Storage tank nissions to Flare (FL-1) Six (6) 500-bbl Six (6) 500-bbl One (1) 1,000-bbl One (1) 750-bbl Produced Water Crude Oil Gunbarrel Tank Skim Tank Storage Tanks Storage Tanks (TK-13) (TK-14) Produced Water (TK-7 - TK-12) (TK-1 - TK-6) Pumped to Disposal Well Fugitive Emissions (FUG-1) Crude Oil Truck Loading (LOAD-1) Planned Maintenance, Startup, and Shutdown (MSS-1) **Azalea Battery** Gas/Vapor **Process Flow Diagram** — — — — ➤ Produced Water July 2019 Crude Oil Crude Oil/Produced Water

Process Description:

A description of the facility process is as follows: The inlet stream from area well(s) enters the facility through a three-phase inlet separator. Gas from the separator exits the facility via pipeline, a produced water and crude oil stream is routed to the gunbarrel tank and a crude oil and gas is routed to the heater treaters. Gas and crude oil from the heater treaters pass through the vapor recovery towers with emissions controlled by the vapor recovery units. Crude oil and produced water from the inlet separator, vapor recovery towers, the skim tank, and the gunbarrel tank are stored in six (6) 500-bbl crude oil storage tanks and six (6) 500-bbl produced water storage tanks. Tank emissions are routed to the flare for control with 98% destruction efficiency.

Truck loading for the crude oil also takes place at the facility, as well as emissions from fugitive sources and maintenance, startup, and shutdown.

GCP-Oil and Gas Form vsn: 13 Sept 2018 Page 18 of 31 Printed: 8/30/2019

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration If the AECT, for a piece of equipment is under development, provide alternate calculations. Other calculations may be accepted if pre-approved by the Department. The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the <u>input and output</u> summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

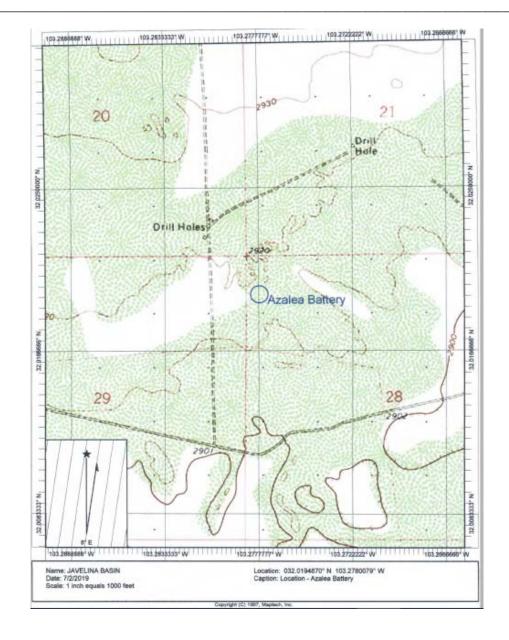
SSM Calculations: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications"

Control Devices: Report all control devices and list each pollutant controlled by the control device. The applicant can indicate in this section of the Registration if they chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Equipment Forms Submitted in this Section (add additional rows as necessary):

Check to Indicate Types of Regulated Equipment Included	Quantity	Equipment Type	Check Bo to Indicat Units tha are Controlle	Enter Co	ntrol Device Type utant Controlled
		Engine			
		Turbine			
	14	Tanks	\boxtimes	F	are; VOC
		Generator			
	2	VRU			
	2	VRT	\boxtimes	VRU	//Flare; VOC
		ULPS			
		Glycol Dehydrator			
	1	Flare			
		Amine Unit			
		Cryogenic Unit			
		Fugitive Emissions			
	2	Heater			
	1	Truck Loading			
		Enclosed Combustion Device (ECD)			
		Thermal Oxidizer (TO)			
		Other			
		Other			

		ower Located Upstream of Storage Vessels: If the age vessels and is used to flash and capture flashing
 □ Vapor Recovery Tower and VRU Computer □ ULPS and VRU Compressor □ Flash Tower and VRU Compressor 	pressor	
capture flashing emissions prior to any stora	ge vessels to limit the PTE	Check the box below if the facility is using a VRU to of the storage vessels to below applicability thresholds ation should be prepared for this type of VRU
☐ VRU capturing emissions prior to any s	storage vessel and routing of	irectly to the sales pipeline
Vapor Recovery Unit (VRU) attached to storage vessel emissions to limit the PTE to		e box below if this facility is using a VRU to reduce PS OOOOa applicability thresholds:
60.5411		ect to the requirements under NSPS OOOO, 40 CFR
60.5411a	ions and the facility is subje	et to the requirements under 11515 0000u, 10 CFR
scenario. Flares shall assume a destruction	efficiency of 95%, unless	check the box next to any appropriate facility operating the facility is <u>subject</u> to requirements for flares under 40 ted by a manufacturer specification sheet (MSS) for that
vessels in accordance with 40 CFR 60, The flare, vapor combustion unit (VCU federally enforceable control for the st	Subpart OOOO or OOOOa (), enclosed combustion dev	vice (ECD), thermal oxidizer (TO), controls storage a vice (ECD), or thermal oxidizer (TO) provides a TE to below applicability thresholds of 40 CFR 60,
Subpart OOOO or OOOOa. The flare, vapor combustion unit (VCU dehydrator.	(), enclosed combustion dev	vice (ECD), or thermal oxidizer (TO) controls the glycol
), enclosed combustion dev	vice (ECD), or thermal oxidizer (TO) controls the amine
☐ The flare, vapor combustion unit (VCU), enclosed combustion dev	rice (ECD), or thermal oxidizer (TO) controls truck
operates only during maintenance events, su The emissions during VRU do	ich as VRU downtime, cheo owntime are represented as	ombustion device (ECD), or thermal oxidizer (TO) that ck one below: uncontrolled VOC emissions from the compressor presented as controlled emissions from the flare
☐ The flare controls the facility during pla		
Amine Unit: Provide the following information	ation for each amine unit.	
Design Capacity in MMscf/day		
Rich Amine Flowrate in gal/min		
Lean Amine Flowrate in gal/min		
Mole Loading H2S		
Sour Gas Input in MMscf/day		
requirements of 40 CFR 60.5416(a). This m	nonitoring program will be vidual equipment. Ceasing	eck the box(s) to implement a program that meets the conducted in lieu of the monitoring requirements to implement this alternative monitoring must be
 □ Condition A205.B Control Device Opti □ Condition A206.B Truck Loading Cont □ Condition A206.C Vapor Balancing Du 	trol Device Inspection	pections for Tanks
Form Revision: 13 Sept 2018	Page 20 of 31	Print NWFD Exhibit 2


Ameredev II, LLC	Azaiea Battery	August 2019
Condition A209.A Vapor Reco	overy Unit or Department-approved Equivalent t Control Device Inspection	
Fugitive H ₂ S Screening Threshold	d and Monitoring in accordance with Condition	A212: Check the box that applies.
	$_2$ S screening threshold in Condition A212, and Con H ₂ S screening threshold in Condition A212, or the Lion A212.A applies	

Section 7

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

Section 8A

Applicable State & Federal Regulations

<u>Provide a discussion demonstrating compliance with each applicable state & federal regulation</u>. All input cells should be filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

Applicable STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Applicable to Unit No(s).	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m ³ , 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	20.2.1 NMAC specifies general requirements such as confidentiality, significant figures, and electronic applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.	Facility	20.2.3 NMAC specifies various maximum allowable concentrations.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	20.2.7 NMAC specifies the excess emission definition and reporting requirements.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	Use the regulation link (left) then cut & paste applicable sections.	TK-1 – TK-14	20.2.38 NMAC specifies that the owner or operator of a new tank battery shall not place, store, or hold in a stationary tank or other container, if the tank battery has a storage capacity of 65,000 gallons or greater, any hydrocarbon liquid unless the tank or other container is equipped withany other device which is at least as effective to minimize vapor or gas loss to the atmosphere. The storage tanks at Site meet the storage capacity limit. Therefore, the facility is subject to this regulation.
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	HEAT-1, HEAT-2	20.2.61 NMAC sets forth an opacity of 20% for emissions from stationary combustion equipment. Opacity is determined via EPA Test Method 9, which is specified

Form Revision: 13 Sept 2018 Page 24 of 31 Printed: 8/30/2019

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Applicable to Unit No(s).	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m ³ , 3. VOL)
					at 40 CFR 60, Appendix A. Per current NMED policy, the exclusive combustion of gaseous streams is adequate to ensure compliance with this regulation. Therefore, the Site is considered to meet the requirements of this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	NOI: 20.2.73.200 NMAC applies (requiring a NOI application)	Facility	20.2.73 NMAC specifies Notice of Intent (NOI) and emission inventory requirements. This filing includes the NOI as specified by 20.2.73.200.B. NMAC, Contents of Notice. The facility will not be subject to 20.2.73 NMAC Subpart III reporting requirements because the site potential emissions shall be less than those specified in 20.2.73.300.B. However, reports will be submitted upon request, as required.
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended through September 23, 2013.	FUG-1	This is a stationary source which is subject to the requirements of 40 CFR Part 60, Subpart OOOOa.
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended through December 31, 2010.	N/A	20.2.78 NMAC incorporates federal standards for HAPs (NESHAPs) into the New Mexico air quality control program. There are no source operations at the Site that are subject to NESHAP. This regulation also specifies registration and reporting requirements for certain sources of hazardous air pollutants (HAPs). The Site is an oil and gas production facility, as defined in 20.2.78 NMAC. Therefore, the facility is not subject to this regulation.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended through August 29, 2013.	N/A	There are no source categories at the facility. Therefore, the facility is not subject to this regulation.

Applicable FEDERAL REGULATIONS (This is not an exhaustive list; add applicable regulations such as NSPS GG and KKKK):

	such as NSPS GG and KKKK):					
FEDERAL REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Applicable to Unit No(s).	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)	
40 CFR 50	NAAQS	Yes	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	HEAT-1, HEAT-2	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard. Compliance with the GCP-Oil and Gas shows compliance with the NAAQS therefore the Site is in compliance with this standard.	
40 CFR 60, Subpart A	General Provisions	Yes	Applies if any other NSPS subpart applies.	FUG-1	Applies if any other NSPS subpart applies.	
40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution	Yes	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375); centrifugal compressors (60.5380); reciprocating compressors (60.5385): controllers (60.5390); storage vessels (60.5395); equipment leaks (60.5400); sweetening units (60.5405). If standards apply, list the unit number(s) and regulatory citation of the standard that applies to that unit (e.g. Centrifugal Compressors 1a-3a are subject to the standards at 60.5380(a)(1) and (2) since we use a control device to reduce emissions)	N/A	This Site does not have reciprocating or centrifugal compressors with wet gas seals, storage tanks, natural gas processing, or pneumatic controllers constructed, modified or reconstructed after August 23, 2011, and on or before September 18, 2015. Therefore, the Site will not be subject to the requirements of this subpart.	
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5385a): controllers (60.5390a); storage vessels (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	FUG-1	There is no well at this location; therefore, the facility is not subject to the well completion requirements of this subpart. The storage vessels have potential emissions less than six (6) tons per year (tpy) VOC and are not subject to this subpart. There are no compressors located at this site. However, Ameredev is voluntarily accepting the fugitive monitoring requirements of this subpart. Ameredev plans to use instrument air pneumatic controllers or pneumatics with natural gas bleed rates of less than 6 SCFH. Ameredev will comply with all applicable requirements. This facility is not currently planned to have reciprocating or centrifugal compressors using wet gas seals, pneumatic pumps, or natural gas processing or sweetening units constructed, modified, or reconstructed after September 18, 2015 and will not be subject to the	

Form Revision: 13 Sept 2018 Page 26 of 31 Printed: 8/30/2019

FEDERAL REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Applicable to Unit No(s).	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
					requirements of NSPS Subpart OOOOa for those affected facilities.
40 CFR 60, Subpart IIII		Yes	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	N/A	There are no affected facilities at the facility. Therefore, the facility is not subject to this regulation.
40 CFR 60, Subpart JJJJ		Yes	See 40 CFR 60.4230(a), 1 through 5 to determine applicable category and state engine size, fuel type, and date of manufacture.	N/A	There are no affected facilities at the facility. Therefore, the facility is not subject to this regulation.
40 CFR 63, Subpart A	General Provisions	Yes	Applies if any other subpart applies.	N/A	Applies if any other subpart applies.
40 CFR 63, Subpart HH	NESHAP for Glycol Dehydrators	Yes	See 40 CFR 63, Subpart HH	N/A	There are no affected facilities at the facility. Therefore, the facility is not subject to this regulation.
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	N/A	There are no affected facilities at the facility. Therefore, the facility is not subject to this regulation.

Section 8B

Compliance Test History

To evaluate the requirement for compliance tests, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
N/A		

Form Revision: 13 Sept 2018 Page 28 of 31 Printed: 8/30/2019