Natural Gas Dehydration Units

Melanie Roberts, Targa

9/13/2019 PRESENTATION TO METHANE ADVISORY PANEL

Need for Dehydration in Gathering System

- Remove water vapor found in raw natural gas
- Prevent hydrates (solid, ice-like crystallization formed from hydrocarbons and water) that can block pipelines, jam valves, and be destructive to pipeline equipment and instrumentation
- Prevent corrosion of pipelines that can cause leaks

Types of Dehydration Found in Natural Gas Gathering System

- Solid Desiccant, Molecular Sieve, Dehydration Beds
 - Typically only found at cryogenic gas plants due to lower water content specifications due to extremely cold operating temperatures
- Liquid Desiccant Dehydration Systems
 - Ethylene Glycol System used for dew point suppression
 - Triethylene Glycol (TEG) System majority of dehydration systems use this technology

Tri-ethylene Glycol (TEG) Dehydration Units

- Uses absorption process to transfer water into the glycol
 Typically found at midstream compressor stations
 Can be found at existing and new natural gas well sites
 Emission sources:
 - Still Vent Vapors top of regeneration unit
 - Flash Tank Vapor if flash tank installed

Glycol Dehydration Unit

Triethylene Glycol Dehydration Unit

Regulated Under Federal Air Rules: 40 CFR 63, Subpart HH

- 40 CFR Part 63, Subpart HH (MACT HH) National Emission Standards for Hazardous Air Pollutants (HAPs) From Oil and Natural Gas Production Facilities
- TEG Units at Major Sources (> 10 TPY single HAP or > 25 TPY combined HAPs)
 - Large Dehys (> 3 MMSCFD and > 1 TPY benzene) must reduce total air toxics emissions by 95 percent or reduce benzene emissions to less than 1 ton per year
 - Small Dehys must meet unit-specific BTEX limit for emissions based on natural gas throughput and gas composition

TEG Units Regulated Under 40 CFR 63, Subpart HH

- Area Source TEG Units over 1 TPY Benzene and over 3 MMSCFD gas throughput
 - Send emissions to a control device for sources in densely populated areas
 - Limit maximum glycol circulation rate for sources in certain rural locations
- Area Sources TEG Units less than 1 TPY Benzene or under 3 MMSCFD gas throughput
 - Exempt from controls due to small emission rates
- Rule last updated in 2012 and found current control requirements were adequate

Air Permitting Regulations

NMED Air Permitting (New Source Review)

- Monitoring required of glycol circulation rate
- Control device monitoring required, if emissions are controlled
- Typical Controls Installed with NSR Synthetic Minor Emission Limits
 - Flash tank
 - Flash tank routed to control or recycled to process
 - BTEX condenser on still vent
 - BTEX condenser with combustor on still vent
 - BTEX condenser with Vapor Recovery Unit (VRU) back to process

Emission Reduction Strategies

Operators typically control glycol dehydration unit emissions to reduce VOC and HAP emissions with Federally Enforceable NSR permit limits to remain below thresholds:

- General Construction Permit (GCP)
- Title V Permitting
- MACT HH control exemption for area sources (less than 1 tpy benzene)
- These reductions have the co-benefit of also reducing methane emissions in these process vents

Emission Reduction Strategies

- Limit glycol circulation rate to amount needed to meet pipeline spec
- Flash Tank installed before glycol regeneration
 - Flash gas typically routed back to the process, used as fuel, or routed to combustion device
 - Most absorbed methane flashes off in Flash Tank (90% recovery)
- BTEX Condenser installed after Still Vent to condense water and heavier hydrocarbons (VOC/HAPs)
 - Combustion Device installed after BTEX condenser to further reduce VOC/HAP emissions, equally reduces methane

Vapor Recovery Unit (VRU) after BTEX condenser to route gas back to process