SOUTHERN UTE INDIAN TRIBE AMBIENT MONITORING UPDATE

AND METHANE RANGER STUDY

Four Corners Air Quality Group Meeting, 2017

Presented by: Andrew Switzer, Air Quality Technician Matt Wampler, Air Quality Analyst / MSP

2017 AMBIENT MONITORING UPDATE

- Air monitoring stations:
 - Ute 1 (Ignacio)
 - Ute 3 (Bondad)
 - Mobile Monitoring Station (Lake Capote)
- Criteria pollutants measured:
 - Ozone
 - Nitrogen Dioxide
 - Carbon Monoxide (Ute 1 only)
 - Sulfur Dioxide (Lake Capote only)
 - PM10 (Ute 3 only)
 - PM2.5 (Ute 3 only)

- Meteorological conditions measured:
 - Wind speed and direction
 - Relative humidity
 - Ambient temperature
 - Solar radiation
 - Precipitation
 - Visibility (Ute 3 only)

AMBIENT MONITORING 2012 – 2016 UTE 1 OZONE DESIGN VALUES

- Ozone Design Values (Fourth highest maximum averaged over a three year period):
 - Design Values are calculated for each air monitoring station within a county. The highest values reported by an air monitoring station in that county is the Design Value for that county.
- Design values for Ute1 are listed below:
 - 2016:68
 - 2015: 68
 - 2014: 67
 - 2013: 69
 - 2012: 69

AMBIENT MONITORING 2012 – 2016 UTE 3 OZONE DESIGN VALUES

- Ozone Design Values (Fourth highest maximum averaged over a three year period)
- Design values for Ute 3 are listed below:
 - 2016: 67
 - 2015: 66
 - 2014: 67
 - 2013: 68
 - 2012: 68

AMBIENT METHANE MONITORING UPDATE

Ambient methane is measured at two locations:

- Ute 3 air monitoring Station
- Lake Capote air monitoring station.
 - The lake capote station was setup May 1, 2017.
- Ambient concentrations at both stations are measured using Thermo Scientific methane and non-methane gas analyzers.
- Average Methane concentrations measured:
 - Bondad: 2.1ppm
 - Lake Capote: 1.9ppm

Bondad
Lake Capote

SOUTHERN UTE INDIAN RESERVATION REAL-TIME AQI AND WEATHER

Air Quality Health Notifications

Southern Ute E.P.D. Air Quality Measurements

Ignacio Air Monitoring Station

	°F	%	Last 24Hrs.	Mph	MM/HG			
/	×11/		NIL CONTRACTOR	NY L'	NY L'	Pollutant	Concentration	Units
12	Temp	- Humdity -	Rainfall	Wind Speed-	Pressure	Ozone	26.75	PPB
-	Ø.	ニ) (ニーダ・ニ)	(= 🔎 =) (=		(= 💉 =)	NO2	3.75	PPB
1-	-50 12		5.5	0 50	- 540 830 -	CO	0.17	PPM
	E1 0			107	COE 27			
	51.8	54.85	0	1.97	605.37 ⁶³⁰			
AQI	51.8 Level		Activity Caution	1.97 Risk Group				
	51.8	54.85		Risk Group		group most	at risk.	
	51.8 Level	Responsible Pollutant	Activity Caution	Risk Group People with	os			

https://www.southernutensn.gov/environmentalprograms/airquality/ambient/

METHANE RANGER STUDY

- Study of mobile methane detection methods on the Southern Ute Indian Reservation.
- Vehicle mounted mobile methane detection system.
- Utilizes a Boreal laser and Red Hen Systems, LLC technology.
- Calculates methane concentrations, GPS location, and wind direction once every 2 seconds.

STUDY GOALS

- Evaluate the performance of mobile monitoring equipment.
 - Accuracy, reliability, practicality
- Measure ambient methane concentrations on the Reservation and assess diurnal methane concentrations and trends.
- Evaluate the effectiveness of the equipment for easily locating methane emission sources.

STUDY GOALS CONTINUED....

- Determine if a statistical correlation can be found between methane concentrations measured with mobile methane detection system and methane emissions identified with optical gas imaging (OGI) camera.
 - Is there a methane concentration that can be a reliable indicator of methane leaks?
 - Is there an "action signal" or methane concentration that warrants further investigation?
- Determine which factors (equipment type, location, facility age, etc) correlate to the presence of leaks.
- Assess the usefulness of mobile monitoring equipment for development of air programs.

COULD THIS TYPE OF EQUIPMENT BE USED FOR AIR PROGRAMS?

- Could equipment be used to develop simplified equivalency program to federally mandated methane leak detection and repair programs?
 - New Source Performance Standard OOOOa
 - BLM Onshore Order 9
- Possibility for the development of Leak Detection and Repair (LDAR) Programs?
 - If no abnormal methane concentrations are discovered using mobile monitoring equipment, an OGI survey would not be needed.
 - If abnormal methane concentrations were discovered, an OGI survey would be conducted.
- Has the potential to reduce the time needed to complete LDAR surveys for large numbers of facilities.

METHANE RANGER STUDY CHALLENGES

- Every facility / site has a methane concentration that is considered normal.
 - Distinguishing between normal and abnormal concentrations can be difficult.
- Methane emissions can be found from many types of oil and gas equipment (pneumatics, tanks, engines, separators, etc).
- To detect some emissions with mobile equipment, some facilities must be:
 - In production, or
 - Equipment must be situated in a favorable wind direction.

- Methane Ranger vehicle traveled along this highway over multiple days.
- Increased methane concentrations detected.
- Wind directions suggested a methane source was located on north side of road.

- The Air Quality Program deployed an OGI camera to determine the source of the methane.
- A possible source was located at the bottom of a wash.

- The Air Quality Program contacted pipeline operators.
- Operator determined the leak was from a pipeline and promptly shut down the pipeline.
- The Air Quality Program has reinvestigated and determined the pipeline leak has been repaired.

- Morning survey with the Methane Ranger.
- Favorable wind direction blowing from Northwest to Southeast.

- Highest methane concentration found was 123.7ppm.
- OGI camera deployed
- Two sources found:
 - 1.) Venting Tank
 - 2.) Building between tank and meter house

- OGI video of emissions
- Contacted well pad operator
- Operator confirmed the presence of a leak
- Operator determined cause to be a bad dry seal and a open valve.

- Methane Ranger on an early morning survey.
- Favorable wind direction blowing from East to West

- Increasing ambient concentrations were noticed while approaching the well site.
- Highest methane concentration: 339ppm.
- Suspected location: Compressor Building

- The Air Quality Program recorded OGI camera video from a distance with a telephoto lens.
- Downwind OGI video
- OGI video confirmed emissions originating from the Compressor Building.
- Unable to determine exact source of emissions.

- From the upwind side of the well pad, an open door can be seen.
- The OGI camera showed a noticeable emission source.
- The Southern Ute Department of Energy contacted the well pad operator.
- Operator determined the source was from a loose compressor / engine union and was promptly repaired.

MOVING FORWARD

- For the remainder of 2017, the study will continue to evaluate the equipment performance and effectiveness in mobile methane detection.
- Over the next year, evaluating data to set an "action signal" which can be correlated with methane emissions.
 - Work with industry on air program development ideas
- Following year, evaluate equivalency with LDAR requirements and network with industry.

THE SOUTHERN UTE INDIAN TRIBE AIR QUALITY PROGRAM THANKS YOU FOR YOUR TIME

Andrew Switzer Air Quality Technician <u>aswitzer@southernute-nsn.gov</u> (970) 563-2216

Matt Wampler Air Quality Analyst / MSP <u>mwampler@southernute-nsn.gov</u> (970) 563-2202