Unit Number ¹	Source Description	Manufacturer	Model #	Serial #	Maximum or Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture or <u>Reconstruction²</u> Date of Installation /Construction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
Silo 1	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,800	ft^3	New D/C, 2017 1975	DC 1 DC 1		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 2	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	2,300	ft^3	New D/C, 2017 1975	DC 2 DC 2		□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
Silo 3	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	2,300	ft^3	New D/C, 2017 1975	DC 3 DC 3		□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
Silo 4	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	2,300	ft^3	New D/C, 2017 1975	DC 4 DC 4		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 5	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,700	ft^3	New D/C, 2017 1975	DC 5 DC 5		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 6	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	2,300	ft^3	New D/C, 2017 1975	DC 6 DC 6		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 7	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,700	ft^3	New D/C, 2017 1975	DC 7 DC 7		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 8	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,700	ft^3	New D/C, 2017 1975	DC 8 DC 8		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 9	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,700	ft^3	New D/C, 2017 1975	DC 9 DC 9		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Silo 10	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,700	ft^3	New D/C, 2017 1975	DC 10 DC 10		□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
Silo 12	Cement product storage tank	Schlumberger	Custom Fabrication	N.A.	1,700	ft^3	New D/C, 2017 1975	DC 12 DC 12		Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		

 Table 2-A:
 Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Manufacturer	Model #	Serial #	Maximum or Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture or <u>Reconstruction²</u> Date of Installation /Construction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equ	uipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
TK-13	Pre-Blend Tank	Schlumberger	Custom Fabrication	N.A.	1,200	ft^3	1975	DC 13 DC 13		□ New/Additional [] To be Removed] Replacement Unit] To be Replaced 	N/A	N/A
TK-14	Vent Tank	Schlumberger	Custom Fabrication	N.A.	1,200	ft^3	1975	DC 13 DC 13		New/Additional	☐ To be Removed ☐ Replacement Unit ☐ To be Replaced	N/A	N/A
TK-15	Weigh Batcher Tank	Schlumberger	Custom Fabrication	N.A.	650	ft^3	Mar 2017	DC 15 DC 15		New/Additional	☐ To be Removed ■Replacement Unit ☐ To be Replaced	N/A	Existing TK-15
TK-16	Double Stack Tank	Schlumberger	Custom Fabrication	N.A.	(2) 250	ft^3	Mar 2017	DC 13 DC 13		Existing (unchanged)	To be Removed ■Replacement Unit To be Replaced	N/A	Existing TK-16
TK-17	Holding Tank	Schlumberger	Custom Fabrication	N.A.	1800	ft ³	Mar 2017	DC 13 DC 13		Existing (unchanged)	☐ To be Removed ■ Replacement Unit ☐ To be Replaced	N/A	Existing TK-17
HP-1	Additive Hopper	Schlumberger	Custom Fabrication	N.A.	N.A.	N.A.	Mar 2017	N.A. Indoors		 Existing (unchanged) New/Additional 	☐ To be Removed ■ Replacement Unit ☐ To be Replaced	N/A	Existing HP-1
Sand-1	Sand Storage Silo	Schlumberger	Custom Fabrication	N.A.	3,350	ft^3	1975	DC S1		Existing (unchanged) New/Additional	To be Removed Replacement Unit To be Replaced	N/A	N/A
Sand-2	Sand Storage Silo	Schlumberger	Custom Fabrication	N.A.	3,350	ft^3	1975	2001		Existing (unchanged) New/Additional	To be Removed Replacement Unit To be Replaced	N/A	N/A
Sand-3	Sand Storage Silo	Schlumberger	Custom Fabrication	N.A.	3,350	ft^3	1975			 Existing (unchanged) New/Additional 	To be Removed Replacement Unit To be Replaced	N/A	N/A
Sand-4	Sand Storage Silo	Schlumberger	Custom Fabrication	N.A.	3,350	ft^3	1975			Existing (unchanged)	☐ To be Removed ☐ Replacement Unit ☐ To be Replaced	N/A	N/A
Sand-5	Sand Loading System	Schlumberger	Custom Fabrication	N.A.	25	tph	1975			Existing (unchanged)	To be Removed Replacement Unit To be Replaced		
Acid 1	Bulk Acid	Schlumberger	Acid Tanks	N.A.	(3) 12,000	gal	1975			Existing (unchanged)	To be Removed Replacement Unit To be Replaced		
Acid 2	Blending/Loading System	Schlumberger	Mix Tank	N.A.	(1) 8,500	gal	1975			Existing (unchanged)	To be Removed Replacement Unit To be Replaced		
Gel 1	Gel Tank	Schlumberger	Pre-Mixed Gel Storage	N.A.	(1) 7,350	gal	2012			Existing (unchanged)	To be Removed Replacement Unit To be Replaced		
										Existing (unchanged)	To be Removed Replacement Unit To be Replaced		

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

Table 2-B: Insignificant Activities1 (20.2.70 NMAC)ORExempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.nmenv.state.nm.us/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.nmenv.state.nm.us/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
HTR-1 to HTR-	Truck Shop, Head Dock Space	Desta	3E143E	90,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged)
10	Heaters, Gas Fired, 10 units	Dayton	Not Avail.	Btu/hr		Prior to 2000	□ To Be Modified □ To be Replaced
HTR-11 to HTR-	Pump Shop Space Heaters - Gas		DK160-N5B	160,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged) To be Removed
15	Fired, 5 units	Space Ray	Not Avail.	Btu/hr		Prior to 2000	New/Additional Replacement Unit To Be Modified To be Replaced
	Liquid Whse Space Heater - Gas		LTU S130NS2	130,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged)
HTR-16	Fired	Space Ray	Not Avail.	Btu/hr		Prior to 2000	New/Additional Replacement Unit To Be Modified To be Replaced
	Bulk Plant Space Heater -		SPSU100NS	100,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged)
HTR-17	Gas Fired	Sun Star	Not Avail.	Btu/hr		Prior to 2000	New/Additional Replacement Unit To Be Modified To be Replaced
HTR-18 to HTR-	Lab, Break Rm, ET Space		GNE 100F20G1	100,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged)
21	Heaters - Gas Fired, 4 units	Comfort Maker	Not Avail.	Btu/hr		Prior to 2000	New/Additional Replacement Unit To Be Modified To be Replaced
	HSE Office Space Heater -		E8MPN07561231	75,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged)
HTR-22	Gas Fired	Comfort Maker	Not Avail.	Btu/hr		Prior to 2000	New/Additional Replacement Unit To Be Modified To be Replaced
	Main Office Space Heater -		G8MSN90211A2	90,000	202.2.72.202.B.1.a	Prior to 2000	Existing (unchanged)
HTR-23	Gas Fired	Comfort Maker	Not Avail.	Btu/hr	20212112120212110	Prior to 2000	New/Additional Replacement Unit To Be Modified To be Replaced
			Not Applicable	24	202.2.72.B.5	Prior to 2000	Existing (unchanged) To be Removed
Road	In-Plant Truck Traffic	Not Applicable	Not Applicable	Trucks/day	202.2.12.0.5	Prior to 2000	□ New/Additional □ Replacement Unit
			Not Applicable	TTUCKS/day		FII0I to 2000	□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed
							□ New/Additional □ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed
							New/Additional
							To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed
							□ New/Additional □ Replacement Unit
							To Be Modified To be Replaced Existing (unchanged) To be Removed
1							New/Additional
							☐ To Be Modified ☐ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
DC 1	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 1	99.93%	Vendor/AP-42
DC 2	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 2	99.93%	Vendor/AP-42
DC 3	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 3	99.93%	Vendor/AP-42
DC 4	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 4	99.93%	Vendor/AP-42
DC 5	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 5	99.93%	Vendor/AP-42
DC 6	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 6	99.93%	Vendor/AP-42
DC 7	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 7	99.93%	Vendor/AP-42
DC 8	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 8	99.93%	Vendor/AP-42
DC 9	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 9	99.93%	Vendor/AP-42
DC 10	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 10	99.93%	Vendor/AP-42
DC 12	Silo Dust Collector, C&W Mfg. Co., Model LPR-8-S	2017	TSP, PM ₁₀ , PM _{2.5}	Silo 12	99.93%	Vendor/AP-42
DC 13	Cylcone Filter Dust Collector, M-Plex, Model CF-600	2017	TSP, PM ₁₀ , PM _{2.5}	TK 13, TK 14, TK 16, TK 17	99.93%	Vendor/AP-42
DC 15	Cylcone Filter Dust Collector, M-Plex, Model CF-600	2017	TSP, PM ₁₀ , PM _{2.5}	TK 15	99.93%	Vendor/AP-42
DC S1	Cylcone Filter Dust Collector, M-Plex, Model CF-600	2012	TSP, PM ₁₀ , PM _{2.5}	Sand Plant Silo	99.93%	Vendor/AP-42
¹ List each co	ntrol device on a separate line. For each control device, list all o	emission units co	ontrolled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed with a minimum of two significant figures¹. If there are any significant figures to the left of a decimal point, there shall be no more than one significant figure to the right of the decimal point.

Unit No.	N	O_X	С	0	V	DC	S	O _X	TS	\mathbf{P}^2	PN	I_{10}^{2}	PM	$I_{2.5}^{2}$	Н	$_2$ S	Le	ad
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1- Bulk Cement Plant (See Note 1)									503.7	642.4	324.3	413.6	324.3	413.6				
2 - Sand Plant									0.18	0.79	0.085	0.37	0.034	0.15				
4- Gel Tank					Negl.	Negl.												
DC 1									36.5	36.5	23.5	23.5	23.5	23.5				
DC 2									36.5	36.5	23.5	23.5	23.5	23.5				
DC 3									36.5	36.5	23.5	23.5	23.5	23.5				
DC 4									36.5	36.5	23.5	23.5	23.5	23.5				
DC 5									36.5	36.5	23.5	23.5	23.5	23.5				
DC 6									36.5	36.5	23.5	23.5	23.5	23.5				
DC 7									36.5	36.5	23.5	23.5	23.5	23.5				
DC 8									36.5	36.5	23.5	23.5	23.5	23.5				
DC 9									36.5	36.5	23.5	23.5	23.5	23.5				
DC 10									36.5	36.5	23.5	23.5	23.5	23.5				
DC 12									36.5	36.5	23.5	23.5	23.5	23.5				
DC 13									36.5	80.3	23.5	23.5	23.5	23.5				
DC 15									36.5	80.3	23.5	23.5	23.5	23.5				
DC-S1									0.18	0.079	0.085	0.37	0.034	0.150				
Totals			mificent fig			anificant fig		24 2400 2	474.68	562.18	305.59	305.87	305.53	305.65				

¹ Significant Figures Examples: One significant figure – 0.03, 3, 0.3. Two significant figures – 0.34, 34, 3400, 3.4

² Condensables: Include condensable particulate matter emissions in particulate matter calculations.

Note 1 - The emissions for Bulk Cement Plant storage tanks (Silos 1 through Silo 12, TK 13 to TK 17) assume equal throughput on an annual average basis for the group of tanks. Individual silos will operate intermittently and throughput will vary, however, the throughput for the Cement Plant on an annual period is a reasonable basis for emission tracking. **''Maximum Emissions'' can only be evaluated for the Bulk Plant in total (line 1 of this form). The maximum throughput can deviate from the calculation basis. Because actual throughput will deviate from the calculation basis of equal throughput for each tank, the individual tank emissions will vary.**

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI	N	O _X	С	0	V	C	S	O _X	TS	SP^2	PN	${1_{10}}^2$	PM	$I_{2.5}^{2}$	Н	$_2$ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1- Bulk Cement Plant (See Note 1)	-								<1.0	<1.0	<0.50	<0.50	<0.50	<0.50				
2 - Sand Plant									< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
4- Gel Tank																		
DC 1									0.026	0.026	0.016	0.016	0.016	0.016				
DC 2					-				0.026	0.026	0.026	0.016	0.016	0.016				
DC 3									0.026	0.026	0.016	0.016	0.016	0.016				
DC 4									0.026	0.026	0.026	0.016	0.016	0.016				
DC 5									0.026	0.026	0.016	0.016	0.016	0.016				
DC 6									0.026	0.026	0.026	0.016	0.016	0.016				
DC 7									0.026	0.026	0.016	0.016	0.016	0.016				
DC 8									0.026	0.026	0.026	0.016	0.016	0.016				
DC 9									0.026	0.026	0.016	0.016	0.016	0.016				
DC 10									0.026	0.026	0.026	0.016	0.016	0.016				
DC 12									0.026	0.026	0.016	0.016	0.016	0.016				
DC 13									0.037	0.08	0.024	0.052	0.024	0.052				
DC 15									0.037	0.080	0.024	0.052	0.024	0.052				
DC-S1									0.018	0.079	0.0085	0.037	0.0034	0.015				
Totals									0.38	0.53	0.28	0.32	0.23	0.30				

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations.

Note 1 - The emissions for Unit 1 Bulk Cement Plant are for the totals for the group of silos and dust collectors. There is uncertainty in the distribution of emissions among dust collector units. Individual silos will operate intermittently, however, the level of activity for the Cement Plant on a total daily or annual basis is a reasonable basis for emission tracking.

Note 1 - The emissions for Bulk Cement Plant tanks (Silos 1 through Silo 12, TK 13 to TK 17) assume equal throughput on an annual average basis for the group of tanks.

Individual silos will operate intermittently and throughput will vary, however, the throughput total for the Cement Plant on an annual period is a reasonable basis for emission tracking. "Requested Emissions" can only be evaluated for the Bulk Plant in total (line 1 of this form). The actual throughput will deviate from the calculation basis.

Because actual throughput will deviate from the calculation basis of equal throughput for each tank, the individual tank emissions will vary.

Note 2 - Source ID "Road" is the fugitive emissions from in-plant truck traffic path, refer to Table 6-5.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	0 _x			V		S	O_X	TS	SP^2		${1_{10}}^2$	PN	$I_{2.5}^{2}$	Η	$_{2}S$	Le	ead
Unit No.	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Totals																	

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in the table below. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensables: Include condensable particulate matter emissions in particulate matter calculations.

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

L have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	0 _x	C	0	V	C	S	0 _x	TS	\mathbf{SP}^2	PM	${\bf I_{10}}^2$	PM	$I_{2.5}^{2}$	H2S of	r 🗌 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
DC 13	TK 13, TK 14, TK 16, TK 17									0.037	0.080	0.024	0.052	0.024	0.052		
DC S1	Sand 1, Sand 2, Sand 3, Sand 4, Sand 5									0.018	0.079	0.0085	0.037	0.0034	0.015		
	Totals:	0	0	0	0	0	0	0	0	0.055	0.159	0.0325	0.089	0.0274	0.067	0	0

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package.

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside Diameter or
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	L x W (ft)
DC 1	Silo 1	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 2	Silo 2	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 3	Silo 3	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 4	Silo 4	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 5	Silo 5	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 6	Silo 6	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 7	Silo 7	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 8	Silo 8	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 9	Silo 9	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 10	Silo 10	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 12	Silo 12	Down (Perimeter slot, see Fig 4-1)	Ν	30	75	40		0.04	40	Perimeter x 1"
DC 13	TK 13, TK 14, TK 16, TK 17	Down	Ν	30	75	42		0.04	30	0.8 x 1.5
DC 15	TK 15	Down	Ν	30	75	42		0.04	30	0.8 x 1.5
DC S1	Unit 2	Down	Ν	30	75	25		0.04	30	0.8 x 1.5
DC S1	Sand 1, Sand 2, Sand 3, Sand 4, Sand 5	Down	Ν	30	75	25		0.04	30	0.8 x 1.5

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

	Unit No.(s)	Total	HADe	Provide Name	Pollutant Here	Provide Name	Pollutant e Here	Provide Name	Pollutant e Here or □TAP	Name	Pollutant e Here or □TAP	Name	Pollutant e Here or □TAP	Nam	Pollutant e Here or □TAP	Nam	Pollutant e Here or □TAP	Nome Her	Pollutant e □ r □ TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
NO HAP S	SOURCES																		
																			-
																			<u> </u>
																			<u> </u>
																			<u> </u>
																			<u> </u>
Tota	als:																		

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	Diesel, ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
HTR-1 through HTR-23	Natural Gas (@50% max. hourly capacity factor, 25% annual capacity factor)	Purchased commercial pipeline quality natrual gas	1,020	1,200 scfh	2.7 MMscf	Negl.	Negl.

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

Tank No. Material Name Composition Density Code (b/gal)	Vapor	Average Stora	ge Conditions	Max Storag	ge Conditions
6 Gel (Guar Gum/Diesel) Diesel (30 - 60%) 60 °F 7 Diesel 7.1 lb/gal @	Molecular	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
7 Diagel No. 2 7.1 lb/gal @	130	Ambient	0.009	Ambient 100	0.022
	150	70 - 80 ^o F	@ 70 oF	°F	@ 100 °F
Image: select	130	Ambient 70 - 80 ^o F	0.009 @ 70 oF	Ambient 100 °F	0.022 @ 100 °F
Image: select					
Image: select					
Image: select					
Image:					
Image: select					
Image: Constraint of the second sec					

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2-	Roof Type (refer to Table 2-	Сар	acity	Diameter (M)	Vapor Space	Color Table	(from VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
5	2007	Gel (Guar Gum/Diesel		FX	160	25.4	3.51		OT	OT	Good	30,000	4.5
6	2007	Gel (Guar Gum/Diesel		FX	23	3.8	2.44		OT	OT	Good	25,000	26
7	2007	Diesel, No. 2		FX	24	3.8	3.29		OT	OT	Good	21,000	21
							L						
							L						

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	lient seal Vapor-mounted resilient seal Seal Type WH: White		WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$1^3 = 42.0 \text{ gal}$				BL : Black	
					OT: Other (specify)	

	Materi	al Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Cement and Additive Products	Inorganic salts, Portland Cement, limestone	Solid Powder	220,000 tons/yr	Cement and Additive Products	Inorganic salts, Portland Cement, limestone	Solid Powder	220,000 tons/yr
Gel	Guar Gum (30 - 60%) Diesel (30 - 60%)	Liquid Slurry	76,000 gal/yr	Gel	Guar Gum (30 - 60%) Diesel (30 - 60%)	Liquid Slurry	76,000 gal/yr

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
NO CE	M EQUIPMENT USED AT	THE SITE							

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
Differential Pressure	Across Filter Elements	inches H2O	0.5 - 6 inches	Monthly	Inspections	Manual Reading	Daily
Differential Pressure	Across Filter Elements	inches H2O	0.5 - 6 inches	Monthly	Inspections	Manual Reading	Daily
	Differential Pressure	Differential Pressure Across Filter Elements	Differential Pressure Across Filter Elements inches H2O	Differential Pressure Across Filter Elements inches H2O 0.5 - 6 inches	Differential Pressure Across Filter Elements inches H2O 0.5 - 6 inches Monthly	Differential Pressure Across Filter Elements inches H2O 0.5 - 6 inches Monthly Inspections	Differential Pressure Across Filter Elements inches H2O 0.5 - 6 inches Monthly Inspections Manual Reading

Table 2-P: Green House Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC that are Major for GHGs as determined in Section 22 of this application are required to complete this Table if so directed in Section 22 or are major for GHGs and have an existing GHG BACT. Applicants must report potential emission rates in short tons per year. Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²							Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3								
	mass GHG	NO PROC	ESS EQUIP	MENT GH	G EMISSIC	DNS, COMFOI	RT HEATIN	NG ONLY						1
	CO ₂ e													
	mass GHG													
	CO ₂ e													1
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													1
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													1
	mass GHG													
	CO ₂ e													
	mass GHG													
	CO ₂ e													1
	mass GHG								_	_				
	CO ₂ e													
	mass GHG													
	CO ₂ e													
	mass GHG								_	_				
	CO2e													
	mass GHG													
	CO ₂ e													
Tatal	mass GHG													
Total	CO ₂ e													

Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

EMISSION CALCULATIONS - TSP / PM10 / PM2.5: Bulk Cement Plant - Controlled

Permit No. 2715-R8 NSR Permit Revision Application Schlumberger Technology Corp. - Hobbs District

Bulk Cement Plant:	Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collectors
Storage Silo Controls:	Silo Dust Collectors (DC 1 - 12) C&W Manufacturing Co., 2,340 cfm (typical), 8-cartidge filters, pulse-jet cleaning
Control Efficiency %:	99.93% is used for emissions estimates, vendor specifications (without reference to particle size) is 99.99% control.
and other tank controls:	Cyclone-Filter Dust Collectors (DC 13 and DC 15) Metroplex, 2,000 - 3,000 cfm (typical), fabric filters, pulse-jet cleaning
Control Efficiency:	99.0% is used for emissions estimates, vendor specifications (without reference to particle size) is 99.9% control.
Max. Hourly Transfer:	50 tons per hour per truck load/unload pipe (pneumatic loading capacity)
Annual Production:	Assume PTE scenario for maximum hourly emissions, and requested maximum annual throughput of 100,000 tons/yr per silo for annual emissions.
Emission Factors:	AP-42, Chapter 11.12, (June 2006) Table 11.12-2. Emission factors: Cement unloading to elevated storage silo (pneumatic).

Unit No.	Emission Point Description	Process Description, Emissions Basis	PTE Process Rates ¹		Control Efficiency % ² AP-42 Emission Factor ³		TSP PTE Emissions		AP-42 Emission Factor ³) PTE ssions	Emission		5 PTE ssions
			(ton/hr)	(ton/yr)	(%)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)
DC 1	Silo 1 Dust Collector (DC 1)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
	Silo 2 Dust Collector (DC 2)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	
DC 3	Silo 3 Dust Collector (DC 3)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 4	Silo 4 Dust Collector (DC 4)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 5	Silo 5 Dust Collector (DC 5)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 6	Silo 6 Dust Collector (DC 6)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 7	Silo 7 Dust Collector (DC 7)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 8	Silo 8 Dust Collector (DC 8)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 9	Silo 9 Dust Collector (DC 9)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 10	Silo 10 Dust Collector (DC 10)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 12	Silo 12 Dust Collector (DC 12)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	99.93%	0.73	0.026	0.026	0.47	0.016	0.016	0.47	0.016	0.016
DC 13	TK 13, 14, 16,17 Cyclone- Filter Dust Coll. (DC 13)	Transfer to Pre Blend, Vent/Holding Tank, and Double Stack Tanks ⁴	50	220,000	99.90%	0.73	0.037	0.080	0.47	0.024	0.052	0.47	0.024	0.052
	Cyclone-Filter Dust Coll. (DC 15)	Transfer to Weigh Batcher Tank (TK 15) ⁴	50	220,000	99.90%	0.73	0.037	0.080	0.47	0.024	0.052	0.47	0.024	0.052
		Total Emissions					0.35	0.44		0.23	0.28		0.23	0.28

1 - The total facility maximum process rate is 2,200 tons per day, and 803,000 tons per year. These throughputs are distributed across 5 truck unload/load points, each capable of 50 tons per hour.

The 220,000 tons/yr is conservatively represented as 100,000 tons/yr maximum throughput for each of the 11 Silos.

2 - The control efficiency conservatively assumed for estimates is lower than specified by vendor (C&W), but matches the PM10 control efficiency used in Table 11.12-2 for cement loading (SCC 3-05-011-07) The vendor also does not specify control efficiency dependency on particle size.

3 - Uncontrolled emissions fractors from Document AP-42, Chapter 11.12, (June 2006) Table 11.12-1. Emission factors: Cement unloading to elevated storage silo (pneumatic). The PM_{2.5} factor is conservatively assumed to be equal to PM₁₀ factor.

4 - Transfer operations consist of pneumatic conveying of product materials from silos to the tank vessels, vented emissions are controlled by M-Plex cyclone-filter units. It is assumed the full annual throughput is transferred though these tanks.

5 - Loading of trucks is via pneumatic conveying, with vented are from truck vessel returned to the Vent tank, and controlled by a dust collector. It is assumed the full annual throughput is transferred to trucks.

EMISSION CALCULATIONS - TSP / PM10 / PM25: Sand Plant - Controlled

Permit No. 2715-R8 NSR Permit Revision Application Schlumberger Technology Corp. - Hobbs District

Sand Plant: Controls:	Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collector DC-S1 Metro-Plex Cyclone-Filter Dust Collector
Control Efficiency:	90% Conservatively reduced from 99.9% filter efficiency quoted by vendor, to account for uncertainty in capture efficiency
Max. Hourly Transfer:	25 tons per hour - Loading to silos 25 tons per hour - Truck Loadout
Annual Production:	Assume PTE scenario of 8,760 hours per year at Max. Hourly Transfer rate for controlled truck/railcar delivery and truck loadout. Actual throughput anticipated to be less than 100,000 tons/yr
Emission Factors:	AP-42, Chapter 11.12, June 2006, Table 11.12-2. (PM and PM ₁₀ emission factors)

AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles, Equation 1, November 2006 (PM_{2.5} emission factors)

Unit No.	Emission Point Description	Process Description, Emissions Basis	PTE Process Rates		Control Efficiency AP-42 Emission Factor		TSP PTE	Emissions	AP-42 Emission PM ₁₀ PTE Emissions Factor ¹		AP-42 Emission Factor ^{1, 2}	ission PM _{2.5} PTE Emission		
			(ton/hr)	(ton/yr)	(%)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)
DCSL	Cyclone-Filter Dust Collector	Transfer to Sand Plant Silos from railcar/truck	25	219,000	90.0%	0.0021	0.0053	0.023	0.00099	0.0025	0.0108	0.00099	0.0025	0.0108
Sand 5	Truck Loading - controlled by DC S1	Transfer pneumatically to truck	25	219,000	90.0%	0.0051	0.013	0.056	0.0024	0.0060	0.0263	0.00037	0.00093	0.0041
		Total Emissions					0.018	0.079		0.0085	0.037		0.0034	0.015

1 - The emission factor in Table 11.12.-2 for Sand Transfer to elevated silo, uncontrolled. For truck loading, AP-42 batch drop Equation 1 (below) was used with a mean moisture of 4.17%.

 $3 - PM_{2.5}$ emission factor not provided in AP-42, Chapter 11.12 for sand transfer. However as footnoted in Table 11.12-2, the emission factors for PM and PM₁₀ were each derived from the the AP-42 Aggegate Handling and Storage Pile (Equation 1). Refering to AP-42, Chapter 13.2.4, a separate PM_{2.5} emission factor can be calculated from Equation 1.

Sand - As received and loade	d	E (PM) =	0.00513 lt
M = material moisture content	(%)		
U = mean wind speed in miles	1 1 /		
k = particle size multiplier = 0	0.74 for PM, 0.35 for PM ₁₀ , 0.053 for PM	2.5	
E = emission factor (lb/ton)			
WHERE:			
AP-42 13.2.4-3 (Eq. 1)	E=(k(0.0032)(U/5)^1.3)/(m/2)^1.4		

Sand - As received and loaded	E (PM) =	0.00513 lb/ton						
	$E(PM_{10}) =$	0.00243 lb/ton						
	$E(PM_{2.5}) =$	0.00037 lb/ton						
U for exposed handling areas = 20 mph (assumed conserva-	tive annual average).							
M is estimated at 4.17%, based on average of "sand" materials provided in AP-42 Table 11.12-2 footnote b.								

EMISSION CALCULATIONS - TSP / PM10 / PM2.5: Bulk Cement Plant - Uncontrolled

Permit No. 2715-R8 NSR Permit Revision Application Schlumberger Technology Corp. - Hobbs District

Bulk Cement Plant: Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collectors Neglected

Max. Hourly Transfer:50 tons per hour per truck load/unload pipe (pneumatic loading capacity)Annual Production:Assume PTE scenario for maximum hourly emissions, and requested maximum annual throughput of 100,000 tons/yr per silo for annual emissions.

Emission Factors: AP-42, Chapter 11.12, (June 2006) Table 11.12-2. Emission factors: Cement unloading to elevated storage silo (pneumatic).

	Emission Point				Control	AP-42	TSP	PTE	AP-42	PM ₁₀) PTE	AP-42	PM ₂	5 PTE
Unit No.		Process Description, Emissions Basis	PTE Pro	ocess Rates ¹	Efficiency	Emission	Uncon	trolled	Emission	Uncor	trolled	Emission	Uncor	ntrolled
	Description				% 2	Factor ³	Emis	sions	Factor ³	Emis	ssions	Factor ³	Emi	ssions
			(ton/hr)	(ton/yr)	(%)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)
DC 1	Silo 1 Dust Collector (DC 1)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 2	Silo 2 Dust Collector (DC 2)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 3	Silo 3 Dust Collector (DC 3)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 4	Silo 4 Dust Collector (DC 4)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 5	Silo 5 Dust Collector (DC 5)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 6	Silo 6 Dust Collector (DC 6)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 7	Silo 7 Dust Collector (DC 7)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 8	Silo 8 Dust Collector (DC 8)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 9	Silo 9 Dust Collector (DC 9)	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 10	Silo 10 Dust Collector (DC 10	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 12	Silo 12 Dust Collector (DC 12	Solids transfer to Silo, PTE schedule and throughput	50	100,000	0.0%	0.73	36.5	36.5	0.47	23.5	23.5	0.47	23.5	23.5
DC 13	TK 13, 14, 16,17 Cyclone-	Transfer to Pre Blend, Vent/Holding Tank, and Double												
		Stack Tanks ⁴	50	220,000	0.0%	0.73	36.5	80.3	0.47	23.5	51.7	0.47	23.5	51.7
	. ,	Stuck Funks	50	220,000	0.070	0.75	50.5	00.5	0.47	23.5	51.7	0.47	23.5	51.7
DC 15	Cyclone-Filter Dust Coll.	Transfer to Weigh Batcher Tank (TK 15) ⁴	50	220,000	0.0%	0.73	36.5	80.3	0.47	23.5	51.7	0.47	23.5	51.7
	(DC 15)			,										
										205 -	201.0		205 5	2(1.0
		Total Emissions					474.5	562.1		305.5	361.9		305.5	361.9

1 - The total facility maximum process rate is 2,200 tons per day, and 803,000 tons per year. These throughputs are distributed across 5 truck unload/load points, each capable of 50 tons per hour. The 803,000 tons/yr is conservatively represented as 100,000 tons/yr maximum throughput for each of the 11 Silos.

2 - The control efficiency of the installed dust collectors is neglected for the uncontrolled case.

3 - Uncontrolled emissions fractors from Document AP-42, Chapter 11.12, (June 2006) Table 11.12-1. Emission factors: Cement unloading to elevated storage silo (pneumatic). The PM_{2.5} factor is conservatively assumed to be equal to PM₁₀ factor.

4 - Transfer operations consist of pneumatic conveying of product materials from silos to the tank vessels. It is assumed the full annual throughput is transferred though these tanks.

5 - Loading of trucks is via pneumatic conveying, with vented are from truck vessel returned to the Vent tank. It is assumed the full annual throughput is transferred to trucks.

EMISSION CALCULATIONS - TSP / PM_{10} / $PM_{2.5}{\colon}$ Sand Plant - Controlled

Permit No. 2715-R8 NSR Permit Revision Application Schlumberger Technology Corp. - Hobbs District

Sand Plant:	Storage Silos, Truck/Railcar receiving, Truck loadout, Dust Collector Neglected
Max. Hourly Transfer:	25 tons per hour - Loading to silos 25 tons per hour - Truck Loadout
Annual Production:	Assume PTE scenario of 8,760 hours per year at Max. Hourly Transfer rate for controlled truck/railcar delivery and truck loadout. Actual throughput anticipated to be less than 100,000 tons/yr
Emission Factors:	AP-42, Chapter 11.12, June 2006, Table 11.12-2. (PM and PM ₁₀ emission factors)

AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles, Equation 1, November 2006 (PM_{2.5} emission factors)

Unit No.	Emission Point Description	Process Description, Emissions Basis	PTE Proc	cess Rates	Control Efficiency ²	AP-42 Emission Factor ³		PTE sions	AP-42 Emission Factor ³) PTE ssions	AP-42 Emission Factor ^{1, 3}		5 PTE ssions
			(ton/hr)	(ton/yr)	(%)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)	(lb/ton)	(lb/hr)	(ton/yr)
DC S1	Cyclone-Filter Dust Collector	Transfer to Sand Plant Silos from railcar/truck	25	219,000	0.0%	0.0021	0.0525	0.230	0.00099	0.0248	0.1084	0.00099	0.0248	0.1084
Sand 5	Truck Loading - controlled by DC S1	Transfer pneumatically to truck	25	219,000	0.0%	0.0051	0.128	0.558	0.0024	0.0600	0.2628	0.00037	0.00925	0.0405
		Total Emissions					0.180	0.788		0.0848	0.371		0.0340	0.149

1 - The emission factor in Table 11.12.-2 for Sand Transfer to elevated silo, uncontrolled. For truck loading, AP-42 batch drop Equation 1 (below) was used with a mean moisture of 4.17%.

2 - For the uncontrolled case, the control efficiency of the installed dust collector is neglected.

3 - PM_{2.5} emission factor not provided in AP-42, Chapter 11.12 for sand transfer. However as footnoted in Table 11.12-2, the emission factors for PM and PM₁₀ were each derived from the the

AP-42 Aggegate Handling and Storage Pile (Equation1). Refering to AP-42, Chapter 13.2.4, a separate PM_{2.5} emission factor can be calculated from Equation 1.

Sand - As received and loaded		$E (PM) = E (PM_{10}) =$	0.00513 lb/ton 0.00243 lb/ton
k = particle size multiplier = 0.74 U = mean wind speed in miles per l M = material moisture content (%)	for PM, 0.35 for PM_{10} , 0.053 for $PM_{2.5}$ hour (mph)		
AP-42 13.2.4-3 (Eq. 1) WHERE: E = emission factor (lb/ton)	E=(k(0.0032)(U/5)^1.3)/(m/2)^1.4		

U for exposed handling areas = 20 mph (assumed conservative annual average). M is estimated at 4.17%, based on average of "sand" materials provided in AP-42 Table 11.12-2 footnote b.

Table 6-5 EMISSION CALCULATIONS - TSP / PM10 / PM2.5: Fugitive Dust from Paved Haul Road Inside Facility

Permit No. 2715-R8 NSR Permit Revision Application Schlumberger Technology Corp. - Hobbs District

Fugitive Dust from Paved Haul Road Inside Facility

Controls:	roadway paving, limited truck speed
Control Efficiency:	Included in emissions factor at speed < 10 mph
Max. Hourly Transfer:	24 Trucks per Day 690 meters/truck trip = 0.429 miles/trip. For the truck route from primary entrance, to cement plant load station, and back to entrance
Annual Production:	Assume maximum annual production corresponding to 24 trucks per day, 365 days per year, combined load, unload and blending operations
Emission Factors:	AP-42, Chapter 13.2.1-5 (January 2011), Background Documentation, pgs. 4-36 to 4-54, and Figure "PM10 Emissions Factor by Vehicle Speed" AP-42, Chapter 13.2.1-5 Equation 2, (PM _{2.5} , PM and PM ₁₀ size weighting factors)

Emission Source Description	Process Description, Emissions Basis	PTE Proc	ess Rates	Control Efficiency	AP-42 Emission Factor ¹	TSP PTE I	Emissions	AP-42 Emission Factor ¹	PM ₁₀ PTE	Emissions	AP-42 Emission Factor ¹	PM _{2.5} PTE	Emissions
Truck Traffic on Paved Interior Haul Roads	Paved Roads, Limited Speed, Truck Wt 37 tons	trips /day 24	VMT/trip 0.429	(%) 0.0%	(lb/VMT) 0.270		(ton/yr) 0.50	(lb/VMT) 0.220		0.41	(lb/VMT) 0.054	(lb/hr) 0.02	(ton/yr) 0.10
	Total Emissions					0.12	0.50		0.094	0.41		0.023	0.10

1 = The emission factor calculated using supporting AP-42 data at vehicle speed < 10 mph, from Background Documentation, reference noted above.

Paved Road Emission Factors (see Section 6)	E (PM) =	0.270 lb/VMT
	$E(PM_{10}) =$	0.220 lb/VMT
	$E(PM_{2.5}) =$	0.054 lb/VMT