

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

November 9, 2020

<u>Via Electronic</u> <u>Certified Mail #9171999991703579972722</u> <u>Return Receipt Requested</u>

New Mexico Environment Department Air Quality Bureau Permitting Section 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816

Dear Permitting Section Manager:

Re: Freeport-McMoRan Tyrone Inc. - Tyrone Mine NSR Significant Permit Revision Application for NSR Permit No. PSD2448-M5

Freeport-McMoRan Tyrone Inc. is submitting this enclosed NSR significant permit revision application for its existing Tyrone Mine facility, which is located 4.5 miles southwest of Tyrone, New Mexico in Grant County. This permit application is being submitted under 20.2.72.219.D NMAC to allow for mining and hauling activities in six (6) new operating scenarios. These new operating scenarios encompass the following pits in various combinations: Mohawk, Copper Mountain, Copper Leach, Burro Chief, and Little Rock 6. Each scenario, which is detailed in the enclosed permit application, contains two pits in operation at a time.

The existing operating scenario in the Gettysburg and Mohawk pits, as approved in NSR Permit No. PSD2448-M5, will continue to be utilized, so the new scenarios in this permit application will be in addition to the existing scenario. No other operating scenarios are currently needed by the Tyrone Mine, including the previously permitted operating scenarios in NSR Permit Nos. PSD2448-M2 and -M3.

New reclamation hauling and material handling activities are also represented in this permit application, which will supersede the reclamation activities allowed by NSR Permit Nos. PSD2448-M5, -M3, and -M2.

Other changes requested in this permit application include:

- The addition of two new boilers that will serve as the SX heat exchanger hot water heaters.
- Updates to the Crushing & Screening Plant (C&S Plant; previously listed in the permit as SP-7A) emissions due to the planned activities. The C&S Plant will be owned and operated by a contractor that has an approved registration to operate under General Construction Permit-

New Mexico Environment Department Air Quality Bureau – Permitting Section November 9, 2020 Page 2

2 (GCP-2), Revision 3, dated 9/12/2006, an approved Relocation Notice, and an approved equipment list. The C&S Plant will be powered by facility-provided electric power.

- Updates to the existing Gasoline Dispensing Facilities (GDF1, GDF2) VOC emission calculations based on the June 2020 updated AP-42 Chapter 7 (Liquid Storage Tanks). The HAP emission calculations were also updated to reflect accurate gasoline HAP constituents. The throughput of each GDF was increased to a maximum of 9,950 gal/month.
- Updates to the SO₂ and VOC emission factors for the two existing cathode washing hot water heaters. The SO₂ emission factor was updated to reflect the correct sulfur content of propane and the VOC emission factor was updated to reflect only the non-methane portion of the TOC emission factor.
- Various updates to the diesel engine/pump emissions, which include some engine horsepower changes, emission factor changes, fuel usage rate changes, and greenhouse gas calculation changes.

For all of the other existing equipment, no changes are being requested.

As a result of these changes, annual stack emissions at the facility will decrease for all pollutants except CO, which will increase by 17.3 tpy. Annual fugitive emissions at the facility will increase for all pollutants except TSP/PM₁₀/PM_{2.5} and HAPs.

The format and content of this application are consistent with the Air Quality Bureau's current policy regarding NSR applications and uses the most current required forms. Enclosed is one hard copy and one working copy of the application, including an original certification page and an application check. Electronic copies will be submitted via the Secure Electronic Transfer option.

If you have any questions or need additional information, please don't hesitate to contact me at (575) 912-5777 or via e-mail at lnix@fmi.com.

Sincerely,

Lee a. Nix

Lee A. Nix Chief Environmental Engineer Environmental Services

LAN Enclosures: Significant Permit Revision Application 20201109-100

c: Array Environmental, LLC

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)

Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Existing Permitted (or NOI) Facility Construction Status: Not Constructed Existing Non-permitted (or NOI) Facility Minor Source: a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application Title V Source: Title V (new) Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal PSD Major Source: PSD major source (new) minor modification to a PSD source a PSD major modification

Acknowledgements:

 \blacksquare I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

 \blacksquare \$500 NSR application Filing Fee enclosed OR The full permit fee associated with 10 fee points (required w/ streamline applications).

☑ Check No.: **957563** in the amount of **\$500**.

 \blacksquare I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D.(1)(a) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 527	Updating Permit/NOI #: PSD2448-M5	
Facility Name: Tvrone Mine	Plant primary SIC Code (4 digits): 1021		
	Plant NAIC code (6 digits): 212230		
Facility Street Address (If no facility street address, provide directions fro Highway 90 South, Tyrone Mine Road, Tyrone, NM 88065	m a prominent landmark)	:	
Plant Operator Company Name: Freeport-McMoRan Tyrone Inc.	Phone/Fax: (575) 912-5101 / (575) 912-5021		
Plant Operator Address: P.O. Box 571, Tyrone, NM 88065			
Plant Operator's New Mexico Corporate ID or Tax ID: 02-952187-004			
	Tyrone Mine Facility Street Address (If no facility street address, provide directions fro Highway 90 South, Tyrone Mine Road, Tyrone, NM 88065 Plant Operator Company Name: Freeport-McMoRan Tyrone Inc. Plant Operator Address: P.O. Box 571, Tyrone, NM 88065	tion 1-A: Company InformationIDEA ID No.): 527Facility Name: Tyrone MinePlant primary SIC Cod Plant primary SIC CodFacility Street Address (If no facility street address, provide directions from a prominent landmark)Highway 90 South, Tyrone Mine Road, Tyrone, NM 88065Plant Operator Company Name: Freeport-McMoRan Tyrone Inc.Plant Operator Address: P.O. Box 571, Tyrone, NM 88065	

3	Plant Owner(s) name(s): Freeport-McMoRan Tyrone Inc.	Phone/Fax: (575) 912-5101 / (575) 912-5021
a	Plant Owner(s) Mailing Address(s): P.O. Box 571, Tyrone, NM 88065	
4	Bill To (Company): Freeport-McMoRan Tyrone Inc.	Phone/Fax: (575) 912-5101 / (575) 912-5021
a	Mailing Address: P.O. Box 571, Tyrone, NM 88065	E-mail: Ebower@fmi.com
5	Preparer: Consultant: Claire Booth, Array Environmental, LLC	Phone/Fax: (720) 316-9935
a	Mailing Address: 1496 Conestoga Circle, Steamboat Springs, CO 80487	E-mail: claire@arrayenvironmental.com
6	Plant Operator Contact: Erich Bower	Phone/Fax: (575) 912-5101 / (575) 912-5021
a	Address: P.O. Box 571, Tyrone, NM 88065	E-mail: Ebower@fmi.com
7	Air Permit Contact: Lee Nix	Title: Chief Environmental Engineer
a	E-mail: lnix@fmi.com	Phone/Fax: (575) 912-5777 / (575) 912-5031
b	Mailing Address: P.O. Box 571, Tyrone, NM 88065	
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? Z Yes No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes No
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? Yes Z No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes No
3	Is the facility currently shut down? Yes Z No	If yes, give month and year of shut down (MM/YY): N/A
4	Was this facility constructed before 8/31/1972 and continuously operated	since 1972? 🗹 Yes No
5	If Yes to question 4, has this facility been modified (see 20.2.72.7.P NMA \blacksquare Yes No N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes No	If yes, the permit No. is: P147-R2M1
7	Has this facility been issued a No Permit Required (NPR)? Yes ☑ No	If yes, the NPR No. is: N/A
8	Has this facility been issued a Notice of Intent (NOI)? Yes Z No	If yes, the NOI No. is: N/A
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes No	If yes, the permit No. is: PSD2448-M5
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? Yes ☑ No	If yes, the register No. is: N/A

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)						
a	a Current Hourly: N/A Daily: 400,000 tons rock (PSD2448-M5) An		Annually: 146,000,000 tons rock (PSD2448-M5)				
b	Proposed	Hourly: N/A	Daily: 400,000 tons rock (max)	Annually: 146,000,000 tons rock (max)			
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)						
a	Current	Hourly: N/A	Daily: 225 tons copper cathode	Annually: 82,125 tons copper cathode			
b	Proposed	Hourly: N/A	Daily: 225 tons copper cathode	Annually: 82,125 tons copper cathode			

~	tion 1-D: Facilit	*						
1	Section: 10, 11, 13-17, 21-28	Range: 15W	Township: 198	County: Grant			Eleva 5,801	tion (ft):
2	UTM Zone: 🗹 12	or 13		Datum:	NAD 27	NAD	83	X WGS 84
a	UTM E (in meters, to nearest 10 meters): 744,430 m E			UTM N (in me	UTM N (in meters, to nearest 10 meters): 3,618,400 m N			
b	AND Latitude (deg., r	AND Latitude (deg., min., sec.): 32° 40' 34.5" N			ıde (deg., mi	n., sec.):	: -108	23' 35.8" W
3	Name and zip code of nearest New Mexico town: Tyrone, NM 88065							
4	Detailed Driving Instr From Tyrone, NM h					vill be o	n the	right.
5	The facility is 5 miles	southwest of T	yrone.					
6	Status of land at facili	ty (check one):	Private Indian/P	Pueblo 🗹 Federal	BLM 🗹 Fe	ederal Fo	orest S	ervice 🗹 Other: State
7		List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities: Silver City, NM. Indian Tribes: None. Counties: Grant. Luna						
8	20.2.72 NMAC applic closer than 50 km (3 <u>www.env.nm.gov/aqb/mod</u> distances in kilomete	1 miles) to othe eling/class1areas.htm	er states, Bernalillo (<u>ml</u>)? 🗹 Yes No ((s I area (see			ucted or operated be h corresponding
9	Name nearest Class I	area: Gila Wild	erness Area					
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 37 km							
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 110 m							
	Method(s) used to delineate the Restricted Area: Fencing, rugged physical terrain with steep grades. "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.							
12	continuous walls, or o that would require spe	ther continuous cial equipment	barriers approved by to traverse. If a large	the Department, s property is comp	such as rugge letely enclos	ed by fe	ncing,	a restricted area
12 13	continuous walls, or o that would require spe within the property ma Does the owner/opera Yes ☑ No A portable stationary s	ther continuous cial equipment ay be identified tor intend to ope source is not a n	barriers approved by to traverse. If a large with signage only. P erate this source as a p nobile source, such as	the Department, s property is comp ublic roads canno portable stationary s an automobile, b	such as rugge letely enclos t be part of a source as d ut a source th	ed by fe <u>Restrict</u> efined ir hat can b	ncing, ted Ar n 20.2. pe inst	a restricted area ea. 72.7.X NMAC?

Section 1-D: Facility Location Information

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24 $(\frac{\text{days}}{\text{week}})$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}}): 8,760$		
2	Facility's maximum daily operating schedule (if less than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	AM PM	End: N/A	AM PM	
3	Month and year of anticipated start of construction: Upon receipt of permit and payment of application fees				
4	Month and year of anticipated construction completion: TBD				
5	Month and year of anticipated startup of new or modified facility: TBD				
6	Will this facility operate at this site for more than one year? $\mathbf{\nabla}$ Yes No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), complia	ance orders, or any of	ther compl	iance or enforcement issues related		
•	to this facility? Yes 🗹 No If yes, specify: N/A					
а	a If yes, NOV date or description of issue: N/A			If yes, NOV date or description of issue: N/A		
b	b Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes \square No If Yes, provide the 1c & 1d info below: N/A					
	Document	Date:	Require	ment # (or		
с	Title: N/A	N/A	-	nd paragraph #): N/A		
d	Provide the required text to be inserted in this permit: N/A					
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🗹 Yes No					
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? Yes 🗹 No					
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🗹 Yes No					
a	If Yes, what type of source?Major (≥ 10 tpy of arOR \blacksquare Minor ($\blacksquare < 10$ tpy of a			tpy of any combination of HAPS) 5 tpy of any combination of HAPS)		
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Z Yes No					
	If yes, include the name of company providing commercia	l electric power to the	e facility: I	PNM		
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	y company, which sp	ecifically o	does not include power generated on		

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Addendum for Streamline Applications."	\blacksquare N/A (This is not a Streamline application.)
---	---	--

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))
--

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Erich J. Bower		Phone: (575) 912-5101		
а	R.O. Title: President, General Manager	General Manager R.O. e-mail: ebow			
b	R. O. Address: Hwy 90 South, Tyrone Mine Road, Tyrone, NM	88065			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Ronald Gerdes	Phone: (575) 912-5801			
а	A. R.O. Title: Manager, Operations	A. R.O. e-mail: <u>rgerdes@fmi.com</u>			
b	A. R. O. Address: Hwy 90 South, Tyrone Mine Road, Tyrone, NM 88065				
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Chino Mines Company				
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Freeport-McMoRan Inc.				
а	Address of Parent Company: 333 N. Central Ave, Phoenix, AZ 85004				
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, brancl	hes, divisions or subsidiaries, which are		
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations: N/A		

	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes:
	Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other
7	states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which
	ones and provide the distances in kilometers: Municipalities: Silver City (9.5 km), Deming (66 km). Indian Tribes: None.
	States: Arizona (57 km).

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

 \blacksquare secure electronic transfer. Air Permit Contact Name: <u>Lee Nix</u>

Email: <u>lnix@fmi.com</u>

Phone number: (575) 912-5777

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling summary report only should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: **General Facility Information** Section 2: Tables Section 3: **Application Summary** Section 4: **Process Flow Sheet** Section 5: **Plot Plan Drawn to Scale** Section 6: **All Calculations** Section 7: **Information Used to Determine Emissions** Section 8: Map(s) Section 9: **Proof of Public Notice** Section 10: Written Description of the Routine Operations of the Facility Section 11: **Source Determination** Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation Section 14: **Operational Plan to Mitigate Emissions** Section 15: **Alternative Operating Scenarios** Section 16: **Air Dispersion Modeling** Section 17: **Compliance Test History** Addendum for Streamline Applications (streamline applications only) Section 18: (This is not a Streamline Application) Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only) Section 19: (This is not a Title V Application) Section 20: **Other Relevant Information** Section 21: **Addendum for Landfill Applications** (This is not a Landfill Application)
- Section 22: Certification Page

FREEPORT-MCMORAN

Freeport-McMoRan Inc. Attention: Accounts Payable 4340 E Cotton Center Blvd, Suite 110 Phoenix, AZ. 85040

RETURN SERVICE REQUESTED

NEW MEXICO ENVIRONMENT DEPT

525 CAMINO DE LOS MARQUEZ STE 1

OD-000006 0001 0001 000006

AIR QUAILITY BUREAU

SANTE FE, NM 87505-1837

Check No. Check Date **Check Amount** Vendor No. Payment Reference No.

0000957563 10/05/2020 \$500.00 0000804346 20605887321899

00

\$500.00

PLEASE DIRECT ANY INQUIRIES TO THE AP HELP DESK: AP@FMI.COM

Invoice Date	Invoice Number	PO#/Freeport Site/ Description	Invoice Amount	Discount Amount	Net Amount
L0/02/2020	10022020LP	FM Tyrone Mining LLC 2020 NSR Application Filing Fe	\$500.00		\$500.
			2		

TOTAL

Page 1 of 1 ↓ PLEASE FOLD ON PERFORATION AND DETACH HERE ↓ VERIFY THE AUTHENTICITY OF THIS MULTI-TONE SECURITY DOCUMENT. CHECK BACKGROUND AREA CHANGES COLOR GRADUALLY FROM TOP TO BOTTOM. FREEPORT MINERALS CORPORATION 0000957563 FREEPORT- MCMOBAN 333 NORTH CENTRAL AVE PHOENIX, AZ 85004-2121 October 05, 2020 64-1278/611 OID AFTER 180 DAYS PAY IN US DOLLARS TAXXXXXXXXXX Amount: **Five Hundred dollars and 00 cents** **\$500.00** Pay to NEW MEXICO ENVIRONMENT DEPT AIR QUAILITY BUREAU the order of Bank of America N.A. Atlanta, Dekalb County, Georgia AUTHORIZED SIGNATURE

"0000957563" C61112788: 3299998445"

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufacturer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
	Mixer/Settlers (6	X 7/4	27/1	27/4	<1.0<5 0E	<1.2<5 OF	1/2/2001	N/A	20200001	Existing (unchanged) To be Removed	N7/4	27/1
SX/EW-1 (Fugitive)	Extraction & 4 Stripping)	N/A	N/A	N/A	61,366 SF	61,366 SF	1/2/2001	N/A	30388801	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
SX/EW-2 (Fugitive)	SX/EW (3) Acid Tank House	N/A	N/A	N/A	24,000 gal/min	24,000 gal/min	1/2/1984 1/2/1984	N/A N/A	30388801	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
SX/EW-3 (Fugitive)	Raffinate Tank 1 -	N/A	N/A	N/A	2 million	2 million	1/2/2001	N/A	30388801	Io be Modified Io be Replaced Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A
	Open				gallons	gallons	1/2/2001	N/A		To Be Modified To be Replaced		
SX/EW-4 (Fugitive)	Raffinate Tank 2 - Open	N/A	N/A	N/A	0.4 million gallons	0.4 million gallons	1/2/2001 1/2/2001	N/A N/A	30388801	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	N/A	N/A
	Hot Water Boiler	Lochinvar			1.256	1.256	6/26/2012	N/A		Existing (unchanged) To be Removed		
B-748	(Cathode Washing)	Corporation	Unknown	C11H00231748	MMBtu/hr	MMBtu/hr		SXWBOIL	10201002	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
	Hot Water Boiler	Lochinvar			1.256	1.256	2/28/2012	N/A		Existing (unchanged) To be Removed		
B-951	(Cathode Washing)	Corporation	Unknown	DI2H00239951	MMBtu/hr	MMBtu/hr		SXWBOIL	10201002	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
D 40001	Hot Water Boiler	Parker Boiler				3.6	2000	N/A		Existing (unchanged) To be Removed		
B-3891	(Heat Exchanger)	Co.	T3600	963891	3.6 MMBtu/hr	MMBtu/hr	2020-2021	B-3891	10201002	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
	Hot Water Boiler	Parker Boiler				3.6	2000	N/A		Existing (unchanged) To be Removed		
B-1454	(Heat Exchanger)	Co.	T3600	961454	3.6 MMBtu/hr	MMBtu/hr	2020-2021	B-1454	10201002	Image: Wew/Additional Image: Replacement Unit Image: To Be Modified Image: To be Replaced	N/A	N/A
61D 1	Diesel Engine for	G (11	<i>C</i> 0	1001/014	200.1	200.1	9/2/2010	N/A	20200102	Existing (unchanged) To be Removed	CI	N1/A
SD-1	Water Pump	Caterpillar	C9	JSC16214	300 hp	300 hp	12/16/2010	SD-1	20200102	New/Additional Replacement Unit To Be Modified To be Replaced	CI	N/A
SD-2	Diesel Engine for	Caterpillar	C9	JSC25024	300 hp	300 hp	5/24/2012	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
3D- 2	Water Pump	Caterphia	09	JSC25024	500 llp	300 lip	2/1/2013	SD-2	20200102	To Be Modified To be Replaced	CI	IN/A
ENV-101	Diesel Engine for	John Deere	4045TE250	T04045T780502	125 hp	125 hp	7/23/1998	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
ERV-101	Water Pump	John Deere	404511250	1040451780502	125 np	125 np	1/25/2000	ENV-101	20200102	To Be Modified To be Replaced	Ci	10/14
ENV-111	Diesel Engine for	John Deere	4045TF250	T04045T884613	125 hp	125 hp	5/16/2001	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
ENV-III	Water Pump	John Deere	404511250	1040451884015	125 np	125 np	12/8/2004	ENV-111	20200102	To Be Modified To be Replaced	Ci	10/14
ENV-117	Diesel Engine for	John Deere	4045TF275	PE4045T491314	115 hp	115 hp	10/22/2002	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
	Water Pump	bolin Boolo	1010112/0		110 lip	110 llp	TBD	ENV-117	20200102	To Be Modified To be Replaced		
ENV-122	Diesel Engine for	Caterpillar	3054C	33408431	125 hp	125 hp	5/1/2005	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
	Water Pump				· 1	- 1	6/3/2005	ENV-122		To Be Modified To be Replaced	-	
ENV-123	Diesel Engine for Water Pump	Caterpillar	3126B	BEJ10905	225 hp	225 hp	6/29/2005	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
	water Pump						12/14/2005	ENV-123		To Be Modified To be Replaced		
Mine Blasting (Fugitive)	Blasting	N/A	N/A	N/A	N/A	N/A	1/2/2001	N/A N/A	30388801	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Mine Handling (Fugitive)	Handling	N/A	N/A	N/A	N/A	N/A	1/2/2001	N/A N/A	30388801	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Mine Hauling	Haulia a	NI/A	N/A	N/A	NT/ A	N/A	1/2/2001	N/A	20200001	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	NI/A
(Fugitive)	Hauling	N/A	IN/A	IN/A	N/A	IN/A		N/A	30388801	To Be Modified To be Replaced	IN/A	N/A
Mine Stockpiles	Stockpiles	N/A	N/A	N/A	N/A	N/A	1/2/2001	N/A	30388801	Existing (unchanged) To be Removed [combined with "Mine Handling (Fugitive)"]	N/A	N/A
(Fugitive)	Stockpiles	11/21	11/17	1.0/14	1.1/11	11/11		N/A	50500001	New/Additional Replacement Unit To Be Modified To be Replaced	nya.	11/73

MoRan Tyrone Inc.						Tyron	e Mine				-	November 20
					Manufacturer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacin Unit No.
Reclamation							1/2/2001	N/A		Existing (unchanged) To be Removed		
Handling (Fugitive)	Handling	N/A	N/A	N/A	N/A	N/A		N/A	30388801	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
Reclamation							1/2/2001	N/A		Existing (unchanged) To be Removed		
Hauling (Fugitive)	Hauling	N/A	N/A	N/A	N/A	N/A		N/A	30388801	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
C&S Plant	Crushing and						7/16/2010	N/A		Existing (unchanged) To be Removed		-
(formerly SP-7A) Handling (Fugitive)	Screening Plant Handling	N/A	N/A	N/A	N/A	N/A		N/A	30388801	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A
C&S Plant	Crushing and						7/16/2010	N/A		Existing (unchanged) To be Removed		
(formerly SP-7A) Hauling (Fugitive)	Screening Plant Hauling	N/A	N/A	N/A	N/A	N/A		N/A	30388801	New/Additional Replacement Unit Image: To Be Modified To be Replaced	N/A	N/A
SPCC-TYR-061	Gasoline Dispensing						N/A	N/A		Z Existing (unchanged)		
(GDF1)	Facility	N/A	N/A	N/A	20,000 gal	20,000 gal	1984	N/A	30388801	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
SPCC-TYR-119	Gasoline Dispensing						N/A	N/A		Z Existing (unchanged) 🗌 To be Removed		1
(GDF2)	Facility	N/A	N/A	N/A	2,000 gal	2,000 gal	2008	N/A	30388801	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
	Diesel Engine for						2/27/2006	N/A		Z Existing (unchanged)		
OP-2	Water Pump	Perkins	403C-15	401164N	32.5 hp	32.5 hp	3/19/2008	OP-2	20200102	New/Additional Replacement Unit To Be Modified To be Replaced	CI	N/A
OP-4	Diesel Engine for	Caterpillar	C6.6	66609304	225 hp	225 hp	7/27/2008	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
01-4	Water Pump	Caterpina	0.0	00007504	225 np	225 np	2/4/2013	OP-4	20200102	To Be Modified To be Replaced	CI	10/7
OP-7	Diesel Engine for	Caterpillar	C7	JTF19093	225 hp	225 hp	2/26/2013	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
	Water Pump	1			Ĩ	1	6/11/2013	OP-7		To Be Modified To be Replaced		
OP-8	Diesel Engine for Water Pump	Caterpillar	C7	JTF16844	225 hp	225 hp	5/29/2012	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	CI	N/A
	-						11/21/2012	OP-8		To Be Modified To be Replaced Existing (unchanged) To be Removed		
ENV-120	Diesel Engine for Water Pump	Caterpillar	C6.6	66609306	225 hp	225 hp	7/27/2008	N/A ENV-120	20200102	New/Additional Replacement Unit To Be Modified To be Replaced	CI	N/A
	Diesel Engine for						4/21/1998	N/A		✓ Existing (unchanged)		-
EMP-1	Water Pump	Caterpillar	3126	7AS10507	190 hp	190 hp	5/7/1998	EMP-1	20200102	 New/Additional Replacement Unit To Be Modified To be Replaced 	CI	N/A
EMP-2	Diesel Engine for	Q 4	3126B	BEJ08982	200.1	200.1	1/12/2005	N/A	20200102	Existing (unchanged) 🗌 To be Removed	CI	
EMP-2	Water Pump	Caterpillar	3126B	BEJ08982	200 hp	200 hp	7/29/2005	EMP-2	20200102	New/Additional Replacement Unit To Be Modified To be Replaced	CI	N/A
CE-1	Diesel Cold Start	Ford-New	N/A	544593-T26KK	100 hp	100 hp	1/1/1967	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
021	Compressor Engine	Holland	1.011	511555 120111	100 mp	100 mp	7/11/2005	CE-1	20200102	To Be Modified To be Replaced		
PPG-1	Natural Gas/Diesel	Nordberg	FSG-1316-	10301202	3,090 hp	3,090 hp	1/1/1967	N/A	20200402	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	SI/CI	N/A
	Generator Engine		HSC		-	-	7/11/2005	PPG-1		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
PPG-3	Natural Gas/Diesel Generator Engine	Nordberg	FSG-1316- HSC	10301207	3,090 hp	3,090 hp	1/1/1967	N/A	20200402	New/Additional	SI/CI	N/A
			FSG-1316-				7/11/2005	PPG-3 N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		+
PPG-4	Natural Gas/Diesel Generator Engine	Nordberg	HSC	10301208	3,090 hp	3,090 hp	7/11/2005	PPG-4	20200402	New/Additional Replacement Unit To Be Modified To be Replaced	SI/CI	N/A
	Natural Gas/Diesel		FSG-1316-				1/1/1967	N/A		Existing (unchanged) To be Removed		+
PPG-7	Generator Engine	Nordberg	HSC	10301211	3,090 hp	3,090 hp	7/11/2005	PPG-7	20200402	New/Additional Replacement Unit To Be Modified To be Replaced	SI/CI	N/A
PPG-8	Natural Gas/Diesel	Nordborg	FSG-1316-	10301212	3,090 hp	3,090 hp	1/1/1971	N/A	20200402	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI/CI	N/A
PPG-8	Generator Engine	Nordberg	HSC	10501212	5,090 np	3,090 np	7/11/2005	PPG-8	20200402	To Be Modified To be Replaced	51/C1	IN/P

					Manufacturer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
PPG-11	Natural Gas/Diesel	Nordberg	FSG-1316-	10301283	3,090 hp	3,090 hp	1/1/1971	N/A	20200402	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI/CI	N/A
FFG-11	Generator Engine	Notaberg	HSC	10301283	3,090 lip	3,090 lip	7/11/2005	PPG-11	20200402	To Be Modified To be Replaced	51/C1	IN/A
PPG-12	PPG-12 Natural Gas/Diesel Generator Engine	Nordberg	FSG-1316-	10301304	3,090 hp	3,090 hp	1/1/1972	N/A	20200402	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI/CI	N/A
110-12		Notuberg	HSC	10501504	5,090 np	5,090 np	7/11/2005	PPG-12	20200402	To Be Modified To be Replaced	51/01	11/74
PPG-13	Natural Gas/Diesel	Nordberg	FSG-1316-	10301305	3,090 hp	3,090 hp	1/1/1972	N/A	20200402	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI/CI	N/A
110-15	Generator Engine	Notuberg	HSC	10501505	5,090 lip	5,090 np	7/11/2005	PPG-13	20200402	□ To Be Modified □ To be Replaced	51/01	11/74
PPG-14	Natural Gas/Diesel	Nordberg	FSG-1316-	10301306	3,090 hp	3,090 hp	1/1/1972	N/A	20200402	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI/CI	N/A
110-14	Generator Engine	wordberg	HSC	10501500	5,090 lip	5,090 lip	7/11/2005	PPG-14	4 20200402	To Be Modified To be Replaced	51/C1	18/24
PPG-15	Diesel Generator	Nordberg	FSG-1316-	10301307	3,090 hp	3,090 hp	1/1/1972	N/A	20200402	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI/CI	N/A
110-15	Engine	Notuberg	HSC	10501507	5,090 lip	5,090 lip	7/11/2005	PPG-15	20200402	□ To Be Modified □ To be Replaced	51/01	11/74

⁺ _ in numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates re luired to determine regulatory applicability.

³ To properly account for power conversion efficiencies: generator set rated capacity shall be reported as the rated capacity of the engine in horsepower into the illowatt capacity of the generator set.

"=SLB" means four strole lean burn engine="SRB" means four strole rich burn engine="2SLB" means two strole lean burn engine="CI" means compression ignition_and "SI" means spar_ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC ATV Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	Eas Each Diass at	Fourisment Check One
Omt Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	FOF Each Flece of	f Equipment, Check Onc
SPCC-TYR-261	6000 weight lube eil	Advanced Pacific	N/A	2,000	20.2.72.202.B.2 NMAC	Unknown	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
SPCC-11R-201	6000 weight lube oil	Tank Manufacturing, - Inc.	N/A	gal	IA List Item #5	Sep-16	To Be Modified	To be Replaced
SPCC-TYR-264	Diesel Tank	Unknown	N/A	300	20.2.72.202.B.2 NMAC	Unknown	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SFCC-11K-204	Diesei Talik	UIKIIOWII	N/A	gal	IA List Item #5	Aug-17	To Be Modified	To be Replaced
Generac Emergency	Generac Guardian Series	Generac	5872	14,000	20.2.72.202.B.3 NMAC	6/9/2014	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Generator 1	5872	Generac	E897264613305	W	Regulated under Title V	7/25/2015	To Be Modified	To be Replaced
Generac Emergency	Generac Guardian Series	Generac	5872	14,000	20.2.72.202.B.3 NMAC	8/7/2015	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Generator 2	5872	Generac	E922169515155	W	Regulated under Title V		To Be Modified	To be Replaced
Generac Emergency	Generac Guardian Series	Generac	6462	16,000	20.2.72.202.B.3 NMAC	10/2015	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Generator 3	6462	Generac	9001396	W	Regulated under Title V		To Be Modified	To be Replaced
Generac Emergency	Generac Guardian Series		6462	16,000	20.2.72.202.B.3 NMAC	1/1/2016	Existing (unchanged)	To be Removed
Generator 4	6462	Generac	9972091	W	Regulated under Title V	5/2016	 New/Additional To Be Modified 	 Replacement Unit To be Replaced
		_	OHVI	19	20.2.72.202.B.3 NMAC	7/24/2018	 Existing (unchanged) 	To be Removed
IPG	Indian Peak Generator	Generac	3003527048	hp	Regulated under Title V	10/2018	 New/Additional To Be Modified 	 Replacement Unit To be Replaced
GO Generator Backup	Onan Genset	Onan Genset/Ford	LRG-425I6005A	97	20.2.72.202.B.3 NMAC	1/8/1999	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
E1-128	onan Genser	Ontail Genset Ford	1494610899	hp	Regulated under Title V		To Be Modified	To be Replaced
SX/EW Fire Water	Cummins Fire Water Pump	Cummins	Cummins	122	20.2.72.202.A.4 NMAC	1/29/2000	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
Pump	Cummins The water Tump	Cummis	73388396	hp	Regulated under Title V		To Be Modified	To be Replaced
SX Tankhouse	Emergency Generator for	Caterpillar	DG60	67	20.2.72.202.B.3 NMAC	May 2019	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Emergency Generator	Tankhouse Control Room	Caterpinar	CT3700362	hp	Regulated under Title V	5/28/2019	To Be Modified	To be Replaced
Maintenance Area	[Г Г Г				1	 Existing (unchanged) 	To be Removed
SPCC-TYR-001, -190	Diesel Storage Tanks	Unknown	N/A	500 to 550	20.2.72.202.B.(2) NMAC		New/Additional	Replacement Unit
			N/A	gal	IA List Item #8		 To Be Modified Existing (unchanged) 	To be Replaced To be Removed
SPCC-TYR-002	Safety Kleen - Petroleum Based Solvent Storage Tank	Unknown	N/A N/A	500	20.2.72.202.B.(2) NMAC IA List Item #5		New/Additional	Replacement Unit
	Dabed borrent biorage Tank		N/A N/A	gal 550	20.2.72.202.B.(2) NMAC		 To Be Modified Existing (unchanged) 	To be Replaced To be Removed
SPCC-TYR-003	Motor Oil Storage Tank	Unknown	N/A N/A	gal	IA List Item #5		New/Additional	Replacement Unit
			N/A N/A	550	20.2.72.202.B.(2) NMAC		 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
SPCC-TYR-004, -005, - 006, -007	Power Drive Fluid Storage Tanks	Unknown	N/A N/A	gal	IA List Item #5		New/Additional To Be Modified	Replacement Unit To be Replaced
	SAE 15W-40 Motor Oil		N/A	132	20.2.72.202.B.(2) NMAC		 For Bernounieu Existing (unchanged) 	To be Removed
SPCC-TYR-014	SAE 15W-40 Motor Oll Storage Tank	Unknown	N/A N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	SAE 10W Motor Oil		N/A N/A	132	20.2.72.202.B.(2) NMAC		Existing (unchanged)	To be Removed
SPCC-TYR-015	SAE TOW Motor On Storage Tank	Unknown	N/A N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced

Unit North an	Source Description	Monuferterer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	Fan Fack Biose of Fundament (1, 1, 2)
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check On
SPCC-TYR-016	SAE 30W Motor Oil	University	N/A	132	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
SPCC-11K-010	Storage Tank	Unknown	N/A	gal	IA List Item #5		New/Additional Replacement Unit To Be Modified To be Replaced
PCC-TYR-012, -017, -018, - 019, -020, -021, -022, -023, -		II.I.	N/A	55 to 5,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) To be Removed New/Additional Replacement Unit
24, -166, -167, -189, -201, - 205, -206, -207, -208, -253; Drum Storage Areas A and P	Used Oil Storage Tanks	Unknown	N/A	gal	IA List Item #5		New/Additional Replacement Unit To Be Modified To be Replaced
SPCC-TYR-177	Safety Kleen - Petroleum	Unknown	N/A	460	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
SFCC-11K-1//	Based Solvent Storage Tank	Ulkilowii	N/A	gal	IA List Item #5		□ To Be Modified □ To be Replaced
SPCC-TYR-191, -192	Clean Oil Storage Tanks	Unknown	N/A	200	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
x ee 11k 191, 192	Clean on Storage Tanks	Clikilowii	N/A	gal	IA List Item #5		To Be Modified To be Replaced
Drum Storage Areas B, C, J, D, AA, Y; SPCC-TYR-	Lube and Oil Storage Tanks	Unknown	N/A	55 to 2,000	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
263	and Drums	Cirkilowii	N/A	gal	IA List Item #5		To Be Modified To be Replaced
owerhouse Area Tank	is .						
PCC-TYR-025, -026, -027, - 28, -031, -033, -034, -037, - 38, -041, -042, -043, -044, -	Diesel Storage Tanks	Unknown	N/A	800 to 500,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) To be Removed New/Additional Replacement Unit
045	-		N/A	gal	IA List Item #5		To Be Modified To be Replaced
NCC TVD 020 050	Used Oil Sterror Tenk	University	N/A	270 to 20,000	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
SPCC-TYR-029, -059	Used Oil Storage Tank	Unknown	N/A	gal	IA List Item #5		To Be Modified To be Replaced
PCC-TYR-030, -046, -048, - 49, -052, -053, -056, -058, - 209, -210, -211, -212, -213, -			N/A	55 to 15,000	20.2.72.202.B.(2) NMAC		☑ Existing (unchanged) □ To be Removed
214, -215, -216, -217, -218, - 19, -220; Drum Storage Area W	Lube Oil Storage Tanks	Unknown	N/A	gal	IA List Item #5		New/Additional Replacement Unit To Be Modified To be Replaced
SPCC-TYR-255	Oil Storage Tank	Unknown	N/A	55	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
5100-118-255	On Storage Talk	Clikilowii	N/A	gal	IA List Item #5		□ To Be Modified □ To be Replaced
ube Shop Area Tanks							
SPCC-TYR-061	Unleaded Gasoline Storage	Unknown	N/A	20,000	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
	Tank		N/A	gal	IA List Item #5		To Be Modified To be Replaced
SPCC-TYR-062, -063	Red Dyed Diesel Storage	Unknown	N/A	40,000 to 50,000	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
	Tanks		N/A	gal	IA List Item #5		To Be Modified To be Replaced
PCC-TYR-065, -074, -096, - 97, -133, -238, -239, -240, -	Diesel Storage Tanks	Unknown	N/A	300 to 40,000	20.2.72.202.B.(2) NMAC		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
241, -242			N/A	gal	IA List Item #5		To Be Modified To be Replaced
PCC-TYR-066, -086, -087, - 88, -089, -104, -165, -184, - 31, -232, -233, -234, -245, -	Used Oil Storage Tanks	Unknown	N/A	55 to 10,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) To be Removed New/Additional Replacement Unit
46, -247; Drum Storage Area G, O			N/A	gal	IA List Item #5		To Be Modified To be Replaced
SPCC-TYR-077	SAE 10 Motor Oil Storage	Unknown	N/A	1,500	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
	Tank		N/A	gal	IA List Item #5		To Be Modified To be Replaced
PCC-TYR-080, -083, -	SAE 10W Motor Oil	Unknown	N/A	450 to 2,700	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
094	Storage Tanks		N/A	gal	IA List Item #5		To Be Modified To be Replaced
PCC-TYR-073, -075, -	SAE 15W-40 Motor Oil	Unknown	N/A	70 to 2,700	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
079, -093, -237, -244	Storage Tanks	Cimilo wit	N/A	gal	IA List Item #5		To Be Modified To be Replaced
PCC-TYR-076, -081, -	•	Unknown	N/A	450 to 2,700	20.2.72.202.B.(2) NMAC		Existing (unchanged) To be Removed New/Additional Replacement Unit
082, -095	Tanks	UIKIUWII	N/A	gal	IA List Item #5		To Be Modified To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²		Equipment, Check Ond
Unit Number	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	FOI Each Field of	Equipment, Check One
SPCC-TYR-078	SAE 60 Motor Oil Storage	Unknown	N/A	2,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
SFCC-11K-0/8	Tank	Ulkilowii	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
SPCC-TYR-084	Oily Water Storage Tank	Unknown	N/A	10,000 (estimated)	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
	, ,		N/A	gal	IA List Item #5		To Be Modified	To be Replaced
SPCC-TYR-174, -204	Megaplex XD5 #2 Grease	Unknown	N/A	333 to 1,050	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
л сс-т пс-174, -204	Storage Tanks	Clikilowii	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
SPCC-TYR-230	Gear Oil Storage Tank	Unknown	N/A	55	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
51 CC-11R-250	Gear On Storage Tank	Clikilowii	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
PCC-TYR-236; Drum	Turbine Oil Storage Tanks	Unknown	N/A	55 to 100	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Storage Area F	Turonie On Storage Tanks	Clikilowii	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
PCC-TYR-250, -251, -	Lube Oil Storage Tanks	Unknown	N/A	150 to 250	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
252	Lube On Storage Tanks	Clikilowii	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
Drum Storage Area X	ATF and Lube Oil Storage	Unknown	N/A	55 (2) drums	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Storage Area A	Tank	UIKIOWI	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
SPCC-TYR-235	Oil Storage Tank	Unknown	N/A	70	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
51 CC-11 R-255	On Storage Talik	UIKIIOWII	N/A	gal	IA List Item #5		To Be Modified	To be Replaced
lagazine Area Tanks						1	 Existing (unchanged) 	To be Removed
SPCC-TYR-090, -091	Diesel Storage Tanks	Unknown	N/A	1,000 to 9,500	20.2.72.202.B.(2) NMAC		New/Additional	Replacement Unit
X/EW Area Tanks			N/A	gal	IA List Item #5		To Be Modified	To be Replaced
A/E W AICa Taliks	Extractant Acorga M5910		N/A	10,000	20.2.72.202.B.(2) NMAC		Existing (unchanged)	To be Removed
SPCC-TYR-105, -106	Storage Tanks	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Diluent (Organic) - Conosol		N/A	34,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) 	To be Removed
SPCC-TYR-107	170 Storage Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Organic Makeup (Diluent-		N/A	13,500	20.2.72.202.B.(2) NMAC		 For Bernhounded Existing (unchanged) 	To be Removed
SPCC-TYR-109	Conosol 170) Storage Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Barren Organic Surge Tank		N/A	120,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) 	To be Removed
SPCC-TYR-110	Storage Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Barren Organic Holding		N/A	120,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) 	To be Removed
SPCC-TYR-111	Tank Storage Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	"Organic Gunk" Storage		N/A	15,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) 	To be Removed
SPCC-TYR-112, -113	Tanks	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Organic Recovery (Acorga		N/A	12,000	20.2.72.202.B.(2) NMAC		 For the windumed Existing (unchanged) 	To be Removed
SPCC-TYR-114, -115	M5910) Storage Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Organic Wash (Acorga		N/A	137,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) 	To be Removed
SPCC-TYR-116	M5910) Storage Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Acorga M5910 Storage		N/A	50,000	20.2.72.202.B.(2) NMAC		 It is the would be would b	To be Removed
SPCC-TYR-117	Tank	Unknown	N/A	gal	IA List Item #5		 New/Additional To Be Modified 	 Replacement Unit To be Replaced

Unit Number	Source Description	Monufootono-	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Fosh Biggs of Freeing	mont Chook Or
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equip	ment, Check Ond
SDCC TVD 118 120	Direct Store or Tariha	Linkanan	N/A	100 to 2,000	20.2.72.202.B.(2) NMAC			be Removed
SPCC-TYR-118, -120	Diesel Storage Tanks	Unknown	N/A	gal	IA List Item #5			placement Unit be Replaced
SPCC-TYR-119	Unleaded Gasoline Storage	Unknown	N/A	2,000	20.2.72.202.B.(2) NMAC			be Removed placement Unit
SPCC-11R-119	Tank	Unknown	N/A	gal	IA List Item #5			be Replaced
PCC-TYR-140, -141, -142, - 43, -144, -145, -146, -147, -	Reagent Mix Storage Tanks	Unknown	N/A	Approx. 118,000 to 127,500	20.2.72.202.B.(2) NMAC		New/Additional	be Removed placement Unit
148, -149			N/A	gal	IA List Item #5			be Replaced
Drum Storage Area H	Super Hydraulic Oil Storage	Unknown	N/A	55	20.2.72.202.B.(2) NMAC			be Removed placement Unit
Stani Storage Thea T	Tank	Cimilo III	N/A	gal	IA List Item #5		To Be Modified To B	be Replaced
Drum Storage Area R	Lube Oil Storage Tank	Unknown	N/A	55	20.2.72.202.B.(2) NMAC			be Removed placement Unit
Brain Storage Thea It	Ŭ	Cimilo III	N/A	gal	IA List Item #5			be Replaced
Drum Storage Area I	Super Hydraulic Oil, Used Oil, 90W Motor Oil, 10W	Unknown	N/A	55 (7 drums)	20.2.72.202.B.(2) NMAC			be Removed placement Unit
Dium Storage Area i	Motor Oil Storage Tank	Clikilowii	N/A	gal	IA List Item #5			be Replaced
Den Stannag Arra K	Used Oil and Motor Oil	Unknown	N/A	55	20.2.72.202.B.(2) NMAC			be Removed placement Unit
Drum Storage Area K	Storage Tank	Unknown	N/A	gal	IA List Item #5			be Replaced
SPCC-TYR-249	Organic Recovery Storage	Unknown	N/A	500	20.2.72.202.B.(2) NMAC			be Removed placement Unit
SFCC-11K-249	Tank	Ulkilowii	N/A 500 20.2.72.202.B.(2) NM N/A gal IA List Item #5		IA List Item #5			be Replaced
ther Areas/Transform	iers							
PCC-TYR-137A, -188, 254, -256, -257, -258, -	Diesel Storage Tanks	Unknown	N/A	164 to 12,000	20.2.72.202.B.(2) NMAC			be Removed placement Unit
260			N/A	gal	IA List Item #5			be Replaced
Drum Storage Area M	Grease, Used Oil, Transformers, Used	Unknown	N/A	55 (50 - 150 drums)	20.2.72.202.B.(2) NMAC		New/Additional	be Removed placement Unit
	Absorbents Storage Tank		N/A	gal	IA List Item #5		10 M	be Replaced
T1-T129 and misc.	Transformer Oil Storage	Unknown	N/A	varies	20.2.72.202.B.(2) NMAC			be Removed placement Unit
transformers	Tanks	Chikhowh	N/A	gal	IA List Item #5			be Replaced
SPCC-TYR-103	Megaplex XD5 #2 Storage	Linhanna	N/A	540	20.2.72.202.B.(2) NMAC			be Removed
SPCC-11R-105	Tank	Unknown	N/A	gal	IA List Item #5			placement Unit be Replaced
	Polyurea Grease #2 Storage		N/A	620	20.2.72.202.B.(2) NMAC			be Removed
SPCC-TYR-172	Tank	Unknown	N/A	gal	IA List Item #5			placement Unit be Replaced
			N/A	2,000 to 20,000	20.2.72.202.B.(2) NMAC			be Removed
SPCC-TYR-203, -248	Oily Water Storage Tanks	Unknown	N/A	gal	IA List Item #5			placement Unit be Replaced
			N/A	213	20.2.72.202.B.(2) NMAC			be Removed
SPCC-TYR-243	Used Oil Storage Tank	Unknown	N/A	gal	IA List Item #5			placement Unit be Replaced
			N/A	625	20.2.72.202.B.(2) NMAC		~ ~	be Removed
SPCC-TYR-262	Grease Storage Tank	Unknown	- "**	520				placement Unit

Ran Tyrone Inc.				Tyrone Mine				Nove
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Fosh Diago of J	Equipment, Check O
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	FOF Each Flece of F	equipment, Check Of
Iobile Service Tanks								
SPCC-TYR-151, -152, -153, - 154, -155, -156, -157, -158, -	Diesel Storage Tanks	Unknown	N/A	100 to 250	20.2.72.202.B.(2) NMAC			To be Removed Replacement Unit
159, -160, -161, -162, -163, - 164, -170, -171, -173	Ŭ		N/A	gal	IA List Item #5		To Be Modified	To be Replaced
SPCC-TYR-185, -186	Used Oil Sterrog Tenks	Unknown	N/A	130 to 500	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SPCC-11K-185, -180	Used Oil Storage Tanks	Unknown	N/A	gal	IA List Item #5			To be Replaced
ervice Vehicles					-			
LS 3, 5, 8, 15, 16, 17;	Misc. Storage Tanks w/	Unknown	N/A	900 to 1,400	20.2.72.202.B.(2) NMAC		0,	To be Removed Replacement Unit
FM 8	Vapor Pressure < 10 mmHg		N/A	gal	IA List Item #5		To Be Modified	To be Replaced
LS 23	Grease Storage Tank	Unknown	N/A	75	20.2.72.202.B.(2) NMAC			To be Removed Replacement Unit
15 25	Grease Storage Tank	Clikilowi	N/A	gal	IA List Item #5			To be Replaced
FM19	Grease, Used Oil, Lube	Unknown	N/A	1500	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
FINIT9	Glease, Used Oll, Lube	Ulikilowli	N/A	gal	IA List Item #5			To be Replaced
LS4, LS21; SPCC-TYR-	Diard Evel Sterror	I laba anna	N/A	90 to 2,750	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	To be Removed
268	Diesel Fuel Storage	Unknown	N/A	gal	IA List Item #5			Replacement Unit To be Replaced
REC20	Diesel, Oil, and Grease	Unknown	N/A	1000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
RECEO	Storage	Clinkilöwii	N/A	gal	IA List Item #5			To be Replaced
Other Tanks			[
SPCC-TYR-032, -035, -	Diesel Storage Tanks	Unknown	N/A	700 to 800	20.2.72.202.B.(2) NMAC		Existing (unchanged)	To be Removed Replacement Unit
036, -039, -040, -125	Ŭ		N/A	gal	IA List Item #5		1000	To be Replaced
SPCC-TYR-047, -050, -	Lube Oil Storage Tanks	Unknown	N/A	1,100 to 1,500	20.2.72.202.B.(2) NMAC		Existing (unchanged)	To be Removed Replacement Unit
051, -054, -055, -057	Ŭ		N/A	gal	IA List Item #5			To be Replaced
SPCC-TYR-121	Oily Water Storage Tank	Unknown	N/A	20,000	20.2.72.202.B.(2) NMAC			To be Removed Replacement Unit
	, ,		N/A	gal	IA List Item #5			To be Replaced
SPCC-TYR-194	Used Oil Storage Tank	Unknown	N/A	10,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
	ũ n		N/A	gal	IA List Item #5			To be Replaced
SPCC-TYR-202	Diesel Fuel Additive	Unknown	N/A	1,000	20.2.72.202.B.(2) NMAC		 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
	Storage Tank		N/A	gal	IA List Item #5		To Be Modified	To be Replaced
Non-Road Engines ³			1				1	
NR1	Miscellaneous Pumps, Engines, Small Generators,	Varies	N/A	Varies	40 CFR 89; 40 CFR 90			To be Removed Replacement Unit
INKI	Compressors	· 1105	N/A	hp	IA List Item #6			To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

³ For informational purposes only. These engines satisfy the federal definition of "non-road engine" under 40 CFR \$\$ 89 and 90 (for compression and spark-ignition engines, respectively) and are therefore regulated by EPA as mobile sources and are not subject to state NSR and Title V permitting for stationary sources.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
N/A	Water application, water sprays, and other method(s) approved	N/A	PM ₁₀ , PM _{2.5}	Mine Fugitives (Hauling)	88.8%	NMED guidance; WRAP guidance
IN/A	by NMED to control fugitive dust.	N/A	r w ₁₀ , r w _{2.5}	C&S Plant (formerly SP-7A) Fugitives	80%	NMED guidance
N/A	Air Fuel Ratio Controllers (AFRs) on each of the Nordberg engines that were specifically designed for the Tyrone Power House to reduce emissions.	2000	NOx, CO, VOC	PPG-1, 3, 4, 7, 8, 11-15	Unknown	N/A
		-				

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

$11^\circ~$ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions at if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox	С	0	V	DC	S	Ox	P	M ^{1,2}	PM	10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SX/EW-1 (Fugitive)	-	-	-	-	5.15	22.54	-	-	-	-	-	-	-	-	-	-	-	-
SX/EW-2 (Fugitive)	-	-	-	-	-	-	-	-	1.82	7.98	1.82	7.98	-	-	-	-	-	-
SX/EW-3 (Fugitive)	-	-	-	-	0.95	4.15	-	-	-	-	-	-	-	-	-	-	-	-
SX/EW-4 (Fugitive)	-	-	-	-	0.32	1.39	-	-	-	-	-	-	-	-	-	-	-	-
B-748															-	-	-	-
B-951	0.36	1.56	0.21	0.90	0.022	0.096	0.044	0.19	0.019	0.084	0.019	0.084	0.019	0.084	-	-	-	-
B-3891	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	-	-	-	-
B-1454	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	-	-	-	-
SD-1	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	-	-	-	-
SD-2	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	-	-	-	-
ENV-101	3.88	16.97	0.84	3.67	0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20	0.28	1.20	-	-	-	-
ENV-101	3.88	16.97	0.84	3.67	0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20	0.28	1.20	-	-	-	-
ENV-117	0.95	4.18	0.22	0.94	0.050	0.22	0.20	0.98	0.052	0.23	0.052	0.23	0.052	0.23	-	-	-	-
ENV-122	1.29	5.65	1.03	4.50	0.068	0.22	0.22	1.12	0.062	0.23	0.062	0.23	0.062	0.23	_	-	-	-
ENV-122 ENV-123	2.19	9.61	1.03	5.36	0.008	0.50	0.20	1.12	0.002	0.27	0.002	0.27	0.002	0.27	-		-	
Mine Blasting					0.12	0.51									-	_	_	_
(Fugitive)	180.00	114.98	4,064.00	2,595.88	-	-	0.36	0.23	618.72	451.66	321.73	234.87	18.56	13.55	-	-	-	-
Mine Handling									0.70	6.10	0.27	2.34	0.040	0.35	-	-	-	
(Fugitive)									0.70	0.10	0.27	2.54	0.040	0.55				
Mine Hauling (Fugitive)	-	-	-	-	-	-	-	-	3,989.06	21,276.60	1,016.67	5,422.62	101.67	542.26	-	-	-	-
Reclamation																		
Handling (Fugitive)	-	-	-	-	-	-	-	-	0.12	0.53	0.047	0.20	0.0070	0.031	-	-	-	-
Reclamation Hauling	-	-	_	-	-	-	-	-	2,485.50	8,798.67	633.46	2,242.46	63.35	224.25		-	-	-
(Fugitive) C&S Plant										,								
(formerly SP-7A)	_	-	-	-	-	-	-	-	40.89	89.56	15.75	34.50	2.37	5.18	-	_	_	-
Handling (Fugitive)									10105	07100	10.70	5 1150	2.07	5.10				
C&S Plant																		
(formerly SP-7A)	-	-	-	-	-	-	-	-	83.15	147.18	21.19	37.51	2.12	3.75	-	-	-	-
Hauling (Fugitive) SPCC-TYR-061																		
(GDF1)	-	-	-	-	2.41	10.57	-	-	-	-	-	-	-	-	-	-	-	-
SPCC-TYR-119					0.39	1.70												
(GDF2)	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-
OP-2	0.36	1.58	0.28	1.22	0.019	0.083	0.063	0.28	0.030	0.13	0.030	0.13	0.030	0.13	-	-	-	-
OP-4	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
OP-7	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
OP-8	1.33	5.82	1.22	5.36	0.074	0.32	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
ENV-120	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
EMP-1	2.72	11.91	3.37	14.75	0.38	1.68	0.37	1.61	0.16	0.70	0.16	0.70	0.16	0.70	-	-	-	-
EMP-2	1.95	8.54	1.09	4.77	0.10	0.45	0.39	1.70	0.062	0.27	0.062	0.27	0.062	0.27	-	-	-	-
CE-1	3.10	0.78	0.67	0.17	0.25	0.063	0.21	0.051	0.22	0.055	0.22	0.055	0.22	0.055	-	-	-	-
PPG-1,3,4,7,8,11-15	499.70	56.20	257.13	37.39	29.00	2.12	12.50	0.49	15.08	0.73	12.39	0.64	10.36	0.58	•	-	-	-
Totals w/ Fugitives	710.26	292.23	4,339.64	2,711.57	40.39	50.95	18.39	24.09	7,236.79	30,785.76	2,025.08	7,989.85	200.21	796.69	-	-	-	-
Totals w/o Fugitives	530.26	177.25	275.64	115.69	33.97	22.87	18.03	23.86	16.82	7.47	14.14	7.38	12.11	7.32	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² The TSP NMAAQS standard was repealed on November 30, 2018. PM emissions are included for informational purposes only.

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V)C	SO	x	PM	I ^{1,2}	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SX/EW-1 (Fugitive)	-	-	-	-	5.15	22.54	-	-	-	-	-	-	-	-	-	-	-	-
SX/EW-2 (Fugitive)	-	-	-	-	-	-	-	-	1.82	7.98	1.82	7.98	-	-	-	-	-	-
SX/EW-3 (Fugitive)	-	-	-	-	0.95	4.15	-	-	-	-	-	-	-	-	-	-	-	-
SX/EW-4 (Fugitive)	-	-	-	-	0.32	1.39	-	-	-	-	-	-	-	-	-	-	-	-
B-748	0.26	1.50	0.21	0.00	0.022	0.000	0.044	0.10	0.010	0.084	0.010	0.084	0.010	0.084				
B-951	0.36	1.56	0.21	0.90	0.022	0.096	0.044	0.19	0.019	0.084	0.019	0.084	0.019	0.084	-	-	-	-
B-3891	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	-	-	-	-
B-1454	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	-	-	-	-
SD-1	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	-	-	-	-
SD-2	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	-	-	-	-
ENV-101	3.88	16.97	0.84	3.67	0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20	0.28	1.20	-	-	-	-
ENV-111	3.88	16.97	0.84	3.67	0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20	0.28	1.20	-	-	-	-
ENV-117	0.95	4.18	0.22	0.94	0.050	0.22	0.22	0.98	0.052	0.23	0.052	0.23	0.052	0.23	-	-	-	-
ENV-122	1.29	5.65	1.03	4.50	0.068	0.30	0.26	1.12	0.062	0.27	0.062	0.27	0.062	0.27	-	-	-	-
ENV-122	2.19	9.61	1.03	5.36	0.12	0.51	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
Mine Blasting																		
(Fugitive)	180.00	114.98	4064.00	2595.88	-	-	0.36	0.23	618.72	451.66	321.73	234.87	18.56	13.55	-	-	-	-
Mine Handling	-	-	-	-	-	-	-	-	0.70	6.10	0.27	2.34	0.040	0.35	-	-	-	-
(Fugitive) Mine Hauling																		
(Fugitive)	-	-	-	-	-	-	-	-	446.78	2382.98	113.87	607.33	11.39	60.73	-	-	-	-
Reclamation Handling	_	_	_	_	-	-	-	_	0.12	0.53	0.047	0.20	0.0070	0.031	-	_	-	_
(Fugitive)									0.112	0.00	0.017	0.20	0.0070	0.001				
Reclamation Hauling (Fugitive)	-	-	-	-	-	-	-	-	278.38	985.45	70.95	251.16	7.09	25.12	-	-	-	-
C&S Plant																		
(formerly SP-7A)	-	-	-	-	-	-	-	-	8.45	18.50	3.68	8.07	0.57	1.25	-	-	-	-
Handling (Fugitive)																		
C&S Plant (formerly SP-7A)	-	_	_	_	_	-	_	_	9.31	16.48	2.37	4.20	0.24	0.42	_	_	_	_
Hauling (Fugitive)									2.51	10.40	2.57	4.20	0.24	0.42				
SPCC-TYR-061					2.41	10.57							-	_				_
(GDF1)	-	-	-		2.41	10.57	-	-	-	-	-	-	-	-	-	-	-	-
SPCC-TYR-119 (GDF2)	-	-	-	-	0.39	1.70	-	-	-	-	-	-	-	-	-	-	-	-
(GDF2) OP-2	0.36	1.58	0.28	1.22	0.019	0.083	0.063	0.28	0.030	0.13	0.030	0.13	0.030	0.13	-	_	-	-
OP-4	1.33	5.82	1.22	5.36	0.070	0.005	0.44	1.91	0.070	0.13	0.070	0.31	0.030	0.13	-	-	-	_
OP-7	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
OP-7 OP-8	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
ENV-120	1.33	5.82	1.22	5.36	0.074	0.32	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	-	-	-	-
ENV-120 EMP-1	2.72	5.82		14.75	0.070		0.44			0.31		0.31		0.31	-	-	-	-
			3.37			1.68		1.61	0.16		0.16		0.16				-	-
EMP-2 CE-1	1.95 3.10	8.54 0.78	1.09 0.67	4.77	0.10	0.45	0.39	1.70 0.05	0.062	0.27	0.062	0.27	0.062	0.27	-	-	-	-
CE-1	3.10	0.78	0.67	0.17	0.25	0.003	0.21	0.05	0.22	0.055	0.22	0.055	0.22	0.06	-	-	-	-
PPG-1,3,4,7,8,11-15	499.70	56.20	257.13	37.39	29.00	2.12	12.50	0.49	15.08	0.73	12.39	0.64	10.36	0.58	-	-	-	-
Totals w/ Fugitives	710.26	292.23	4,339.64	2,711.57	40.39	50.95	18.39	24.09	1,381.09	3,877.16	528.88	1,123.53	50.01	108.77	-	-	-	-
Totals w/o Fugitives	530.26	177.25	275.64	115.69	33.97	22.87	18.03	23.86	16.82	7.47	14.14	7.38	12.11	7.32	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² The TSP NMAAQS standard was repealed on November 30, 2018. PM emissions are included for informational purposes only.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	С	0	V	DC	S	Ox	PI	M^2	PM	[10²	PM	2.5^{2}	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "- " symbol and on significant figures.

	Serving Unit	N	Ox	С	0	V	DC	SC	Dx	PI	M	PM	110	PM	2.5	□ H ₂ S o	r 🗌 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
SXWBOIL (common stack)	B-748 B-951	0.36	1.56	0.21	0.90	0.022	0.096	0.044	0.19	0.019	0.084	0.019	0.084	0.019	0.084	-	-
B-1454 (dual stacks)	B-1454	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12		
То	tals	0.87	3.80	0.50	2.19	0.053	0.23	0.11	0.47	0.047	0.20	0.047	0.20	0.047	0.20	-	-

¹ The TSP NMAAQS standard was repealed on November 30, 2018. PM emissions are included for informational purposes only.

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Stack Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
SXWBOIL (B-748 & B-951)	Cathode Washing Hot Water Boilers (B-951 & B-748; common stack)	V	Yes	35.1	401	2.6	-	-	31.2	0.33
B-3891	New Heat Exchanger Hot Water Boiler (Serial # 963891)	V	Yes	15.0	450	1.0	-	-	0.45	1.67
B-1454	New Heat Exchanger Hot Water Boiler (Serial # 961454) (dual stacks)	v	Yes	15.0	450	0.80	-	-	0.45	1.50
SD-1	SD-1	V	Yes	8.0	900	12.9	-	-	138.6	0.34
SD-2	SD-2	V	Yes	8.0	900	12.9	-	-	138.6	0.34
ENV-101	ENV-101	V	Yes	9.8	923	12.2	-	-	136.4	0.34
ENV-111	ENV-111	V	Yes	9.8	923	12.2	-	-	136.4	0.34
ENV-117	ENV-117	v	Yes	8.0	900	12.5	-	-	129.4	0.35
ENV-122	ENV-122	V	Yes	9.8	900	11.8	-	-	128.9	0.34
ENV-123	ENV-123	V	Yes	8.0	833	16.8	-	-	87.5	0.50
OP-2	OP-2	V	Yes	8.0	833	12.5	-	-	114.6	0.37
OP-4	OP-4	V	Yes	8.0	833	15.4	-	-	162.4	0.35
OP-7	OP-7	V	Yes	8.0	833	16.8	-	-	87.5	0.50
OP-8	OP-8	V	Yes	8.0	833	16.8	-	-	87.5	0.50
ENV-120	ENV-120	V	Yes	8.0	833	15.4	-	-	162.4	0.35
EMP-1	EMP-1	V	Yes	8.0	833	16.8	-	-	87.5	0.50
EMP-2	EMP-2	V	Yes	8.0	833	16.8	-	-	87.5	0.50
CE-1	CE-1	V	Yes	25.0	886.7	0.0	-	-	0.0	3.30
PPG-1	PPG-1	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-3	PPG-3	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-4	PPG-4	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-7	PPG-7	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-8	PPG-8	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-11	PPG-11	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-12	PPG-12	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-13	PPG-13	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-14	PPG-14	V	Yes	60.7	830.9	435.8	-	-	108.3	2.26
PPG-15	PPG-15	v	Yes	60.7	830.9	435.8	-	-	108.3	2.26

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold above.

Stack No.	Unit No.(s)	Total	HAPs		oenzene or 🗌 TAP		uene or 🗌 TAP		enes or 🗌 TAP		Name Here 🗆 HAP] TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
N/A	SX/EW-1 (Fugitive)	1.65	7.23	0.65	2.87	0.14	0.60	0.85	3.74		
N/A	SX/EW-2 (Fugitive)	-	-	-	-	-	-	-	-		
N/A	SX/EW-3 (Fugitive)	0.30	1.33	0.12	0.53	0.03	0.11	0.16	0.69		
N/A	SX/EW-4 (Fugitive)	0.10	0.42	0.04	0.17	0.01	0.03	0.05	0.22		
SXWBOIL	B-748 B-951	4.65E-03	2.04E-02	-	-	8.37E-06	3.67E-05	-	-		
B-3891	B-3891	6.67E-03	2.92E-02	-	-	1.20E-05	5.26E-05	-	-		
B-1454	B-1454	6.67E-03	2.92E-02	-	-	1.20E-05	5.26E-05	-	-		
SD-1	SD-1	6.80E-03	2.98E-02	-	-	8.12E-05	3.56E-04	5.66E-04	2.48E-03		
SD-2	SD-2	6.80E-03	2.98E-02	-	-	8.12E-05	3.56E-04	5.66E-04	2.48E-03		
ENV-101	ENV-101	3.46E-03	1.52E-02	-	-	3.58E-04	1.57E-03	2.49E-04	1.09E-03		
ENV-111	ENV-111	3.46E-03	1.52E-02	-	-	3.58E-04	1.57E-03	2.49E-04	1.09E-03		
ENV-117	ENV-117	2.61E-03	1.14E-02	-	-	3.12E-05	1.37E-04	2.18E-04	9.53E-04		
ENV-122	ENV-122	3.46E-03	1.52E-02	-	-	3.58E-04	1.57E-03	2.49E-04	1.09E-03		
ENV-123	ENV-123	5.10E-03	2.23E-02	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03		
N/A	SPCC-TYR-061 (GDF1)	2.72E-01	1.19E+00	4.34E-03	1.90E-02	8.66E-02	3.79E-01	1.65E-02	7.25E-02		
N/A	SPCC-TYR-119 (GDF2)	4.38E-02	1.92E-01	7.00E-04	3.07E-03	1.40E-02	6.12E-02	2.67E-03	1.17E-02		
OP-2	OP-2	7.37E-04	3.23E-03	-	-	8.80E-06	3.86E-05	6.13E-05	2.69E-04		
OP-4	OP-4	5.10E-03	2.23E-02	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03		
OP-7	OP-7	5.10E-03	2.23E-02	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03		
OP-8	OP-8	5.10E-03	2.23E-02	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03		
ENV-120	ENV-120	5.10E-03	2.23E-02	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03		
EMP-1	EMP-1	4.31E-03	1.89E-02	-	-	5.15E-05	2.25E-04	3.59E-04	1.57E-03		
EMP-2	EMP-2	4.53E-03	1.99E-02	-	-	5.42E-05	2.37E-04	3.77E-04	1.65E-03		
CE-1	CE-1	2.77E-03	6.93E-04	-	-	2.86E-04	7.16E-05	2.00E-04	4.99E-05		
PPG- 1,3,4,7,8,11-15	PPG- 1,3,4,7,8,11-15	3.69E-01	1.11E-02	-	-	6.08E-02	1.82E-03	4.17E-02	1.25E-03		
Totals (w/ Fugiti	ives):	2.82	10.73	0.82	3.59	0.33	1.19	1.13	4.75		
Totals (w/o Fugi	tives):	0.77	1.74	0.0050	0.022	0.16	0.45	0.066	0.11		

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
B-748	Propane	Purchased commercial	91.5 MMBtu/10 ³ gal	13.7 gal	120,247 gal	N/A	N/A
B-951	Propane	Purchased commercial	91.5 MMBtu/10 ³ gal	13.7 gal	120,247 gal	N/A	N/A
B-3891	Propane	Purchased commercial	91.5 MMBtu/10 ³ gal	39.3 gal	344,656 gal	N/A	N/A
B-1454	Propane	Purchased commercial	91.5 MMBtu/10 ³ gal	39.3 gal	344,656 gal	N/A	N/A
SD-1	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	14.5 gal	127,022 gal	0.0015%	N/A
SD-2	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	14.5 gal	127,022 gal	0.0015%	N/A
ENV-101	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	6.0 gal	52,560 gal	0.0015%	N/A
ENV-111	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	6.0 gal	52,560 gal	0.0015%	N/A
ENV-117	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	5.6 gal	48,831 gal	0.0015%	N/A
ENV-122	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	6.0 gal	52,560 gal	0.0015%	N/A
ENV-123	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	10.9 gal	95,267 gal	0.0015%	N/A
OP-2	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	0.98 gal	8,562 gal	0.0015%	N/A
OP-4	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	10.9 gal	95,267 gal	0.0015%	N/A
OP-7	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	10.9 gal	95,267 gal	0.0015%	N/A
OP-8	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	12.4 gal	108,765 gal	0.0015%	N/A
ENV-120	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	10.9 gal	95,267 gal	0.0015%	N/A
EMP-1	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	9.2 gal	80,447 gal	0.0015%	N/A
EMP-2	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	9.7 gal	84,682 gal	0.0015%	N/A
CE-1	Biodiesel/Diesel Blend	Purchased commercial	137,000 Btu/gal	158.0 gal	13,262 gal	0.0015%	N/A
-	peration of Nordberg Engines				8		
PPG-1	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-3	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-4	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-7	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-8	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-11	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-12	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-13	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
PPG-14	Natural Gas	Purchased commercial	1,050 Btu/scf	20.97 Mscf	6,989.3 Mscf	0.05%	N/A
•	on of Nordberg Engines		127.000 Dr. / 1	150 1	12.262 1	0.05%	N7/4
PPG-1	Diesel	Purchased commercial	137,000 Btu/gal	158 gal	13,262 gal	0.05%	N/A
PPG-3	Diesel	Purchased commercial	137,000 Btu/gal	159 gal	13,262 gal	0.05%	N/A
PPG-4	Diesel	Purchased commercial	137,000 Btu/gal	160 gal	13,262 gal	0.05%	N/A
PPG-7	Diesel	Purchased commercial	137,000 Btu/gal	161 gal	13,262 gal	0.05%	N/A
PPG-8	Diesel	Purchased commercial	137,000 Btu/gal	162 gal	13,262 gal	0.05%	N/A
PPG-11	Diesel	Purchased commercial	137,000 Btu/gal	163 gal	13,262 gal	0.05%	N/A
PPG-12	Diesel	Purchased commercial	137,000 Btu/gal	164 gal	13,262 gal	0.05%	N/A
PPG-13	Diesel	Purchased commercial	137,000 Btu/gal	165 gal	13,262 gal	0.05%	N/A
PPG-14	Diesel	Purchased commercial	137,000 Btu/gal	165 gal	13,262 gal	0.05%	N/A
PPG-15	Diesel	Purchased commercial	137,000 Btu/gal	166 gal	13,262 gal	0.05%	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

				Liquid	Vapor	Average Ann Tempe			ual Maximum erature
Tank No.	SCC Code	Material Name	Composition	Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature, T _{AN} (°F)	Vapor Pressure at T _{LA} (psia)	Temperature, T _{AX} (°F)	Vapor Pressure at T _{LA} (psia)
SPCC-TYR-061 (GDF1)	40400150	Gasoline	Mixed Hydrocarbons	6.17	66	46.2	6.554	76.6	6.554
SPCC-TYR-119 (GDF2)	40400150	Gasoline	Mixed Hydrocarbons	6.17	66	46.2	5.961	76.6	5.961

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2-		Cap	acity	Diameter (M)	Vapor Space	Co (from Ta	lor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)		(M)	Roof	Shell	C)	(gal/yr)	(per year)
SPCC-TYR-061 (GDF1)	1984	Gasoline	N/A	FX	476	75.7	3.35	See calcs	OT: Red	OT: Red	Poor	119,400	5.9
SPCC-TYR-119 (GDF2)	2008	Gasoline	N/A	FX	48	7.6	1.58	See calcs	OT: Beige	OT: Beige	Poor	119,400	115.6
-													

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	lded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
-					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}^3$	= 42.0 gal				BL: Black	
					OT: Other (specify)	

Table 2-M:	Materials	Processed	and Pro	oduced	(Use additional sheets as necessary.)
------------	-----------	-----------	---------	--------	---------------------------------------

	Materia	al Processed			Material Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units) ¹	Description	Chemical Composition	Phase	Quantity (specify units) ¹
Mined Material	Copper, minerals, and trace metals	Solid	400,000 tons/day	Copper Cathode	Copper	Solid	225 tons/day

¹ Quantities specified here are for informational purposes only and are not intended to be used for permit conditions.

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A - Facility does	s not have CEM equipment.								
-									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A - Facilit	y does not have PEM equipment.							

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75.000 tons per year.

		CO ₂	CH ₄	N ₂ O	SF ₆	PFC/HFC					Total GHG	Total CO2e
		ton/yr	ton/yr	ton/yr	ton/yr	ton/yr ²					Mass Basis	metric ton/yr ⁵
XT */ NT	arren 1	1.00	25	298	-						metric ton/yr4	metric ton/yr
Unit No.	GWPs ¹ mass GHG	1,521.81	0.073	0.015	22,800	footnote 3					1,521.9	
B-748/B-951	CO ₂ e	1,521.81	1.82	4.33	-	-			-		1,321.9	1,528.0
	mass GHG	2,180.94	0.10	0.021	-	-					2,181.1	1,528.0
B-3891	CO ₂ e	2,180.94	2.60	6.20	-	-					2,101.1	2,189.7
	mass GHG	2,180.94	0.10	0.021	-	-					2,181.1	2,109.7
B-1454	CO ₂ e	2,180.94	2.60	6.20		-			-		2,101.1	2,189.7
	mass GHG	1,296.45	0.053	0.20	-	-					1,296.5	2,109.7
SD-1	CO ₂ e	1,296.45	1.31	3.13							1,270.5	1,300.9
	mass GHG	1,296.45	0.053	0.011	-	-					1,296.5	1,500.9
SD-2	CO2e	1,296.45	1.31	3.13	-	-					1,270.5	1,300.9
	mass GHG	536.45	0.022	0.0044	-	-					536.5	1,0001
ENV-101	CO2e	536.45	0.54	1.30	-	-						538.3
	mass GHG	536.45	0.022	0.0044	-	-					536.5	
ENV-111	CO ₂ e	536.45	0.54	1.30	-	-						538.3
	mass GHG	498.39	0.020	0.0040	-	-					498.4	
ENV-117	CO ₂ e	498.39	0.51	1.20	-	-						500.1
ENU/ 100	mass GHG	536.45	0.022	0.0044	-	-					536.5	
ENV-122	CO2e	536.45	0.54	1.30	-	-						538.3
ENV-123	mass GHG	972.34	0.039	0.0079	-	-					972.4	
EIN V-125	CO2e	972.34	0.99	2.35	-	-						975.7
Mine Blasting	mass GHG	24,021.12	0.97	0.19	-	-					24,022.3	
(Fugitive)	CO ₂ e	24,021.12	24.36	58.07	-	-						24,103.6
OP-2	mass GHG	87.39	0.0035	0.00071	-	-					87.4	
01-2	CO2e	87.39	0.089	0.21	-	-						87.7
OP-4	mass GHG	972.34	0.039	0.0079	-	-					972.4	
01 1	CO ₂ e	972.34	0.99	2.35	-	-						975.7
OP-7	mass GHG	972.34	0.039	0.0079	-	-					972.4	
01 /	CO ₂ e	972.34	0.99	2.35	-	-						975.7
OP-8	mass GHG	1,110.11	0.045	0.0090	-	-					1,110.2	
	CO ₂ e	1,110.11	1.13	2.68	-	-						1,113.9
ENV-120	mass GHG	972.34	0.039	0.0079	-	-		 			972.4	
	CO2e	972.34	0.99	2.35	-	-					821.1	975.7
EMP-1	mass GHG	821.09	0.033	0.0067	-	-			-		821.1	822.0
	CO ₂ e	821.09	0.83	1.98	-	-					964.2	823.9
EMP-2	mass GHG CO2e	864.30	0.035	0.0070	-	-					864.3	967.2
	2	864.30	0.88	2.09	-	-					002.4	867.3
CE-1	mass GHG CO2e	882.37 882.37	0.036	0.0072	-	-			+		882.4	885.4
					-		_				5 ((0.4	003.4
PPG-1,3,4,7,8,11-	mass GHG	5,668.15	0.23	0.046	-	-					5,668.4	
15	CO ₂ e	5,668.15	5.75	13.70	-	-						5,687.6
Total w/	mass GHG	47,928.21	1.99	0.40	•	-					47,930.6	
Fugitives	CO ₂ e	47,928.21	49.65	118.38	-	-						48,096.2
Total w/o	mass GHG	/	1.01	0.20	•	-					23,908.3	
Fugitives	CO ₂ e	23,907.09	25.30	60.30	-	-						23,992.7

¹GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The <u>Process</u> <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Freeport-McMoRan Tyrone Inc. (Tyrone) operates the Tyrone Mine, which is located near Tyrone, New Mexico within Grant County. The Tyrone Mine's major product is copper cathode, which is produced using the solution extraction/electrowinning (SX/EW) process. Boilers are used to heat water at the SX/EW process to rinse the copper cathode product. In addition to the SX/EW plant and associated processes, the Tyrone Mine operations include blasting; hauling and dumping of ore and waste rock; the emergency operation of a power plant; and environmental pumping systems.

Tyrone has prepared a significant permit revision application pursuant to 20.2.72.219.D.(1)(a) NMAC for its Tyrone Mine currently permitted under NSR Permit No. PSD2448-M5 and Title V Permit No. P147-R2M1. The proposed action will allow for mining and hauling activities in six (6) new operating scenarios that encompass the following pits in various combinations: Mohawk, Copper Mountain, Copper Leach, Burro Chief, and Little Rock 6. Each scenario, which is detailed in Section 10 of this application, contains two pits in operation at a time.

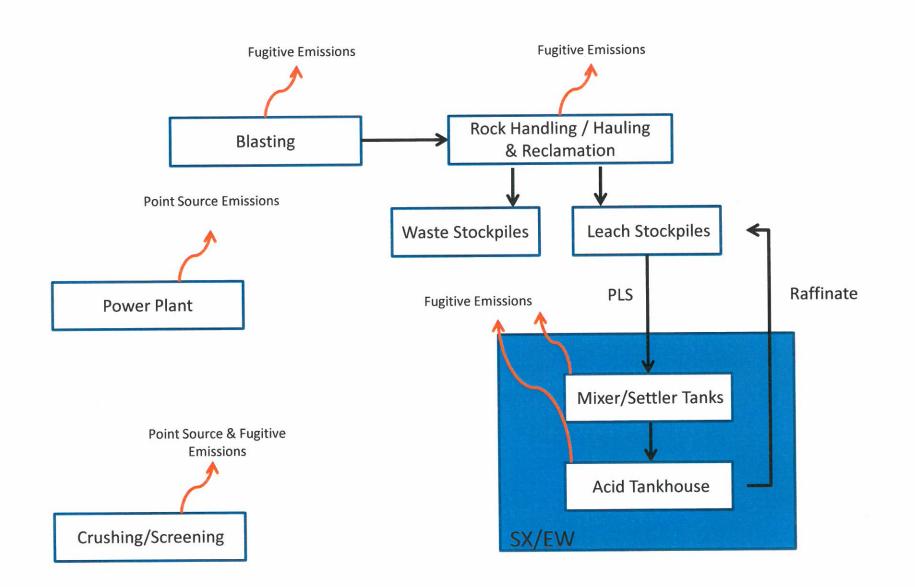
The existing operating scenario in the Gettysburg and Mohawk pits, as approved in NSR Permit No. PSD2448-M5, will continue to be utilized, so the new scenarios in this permit application will be in addition to the existing scenario. No other operating scenarios are currently needed by the Tyrone Mine, including the previously permitted operating scenarios in NSR Permit Nos. PSD2448-M2 and -M3.

New reclamation hauling and material handling activities are also represented in this permit application, which will supersede the reclamation activities allowed by NSR Permit Nos. PSD2448-M5, -M3, and -M2.

Other changes requested in this permit application include:

-) The addition of two new boilers that will serve as the SX heat exchanger hot water heaters.
- Updates to the Crushing & Screening Plant (C&S Plant; previously listed in the permit as SP-7A) emissions due to the planned activities. The C&S Plant will be owned and operated by a contractor that has an approved registration to operate under General Construction Permit-2 (GCP-2), Revision 3, dated 9/12/2006, an approved Relocation Notice, and an approved equipment list. The C&S Plant will be powered by facility-provided electric power.
- Updates to the existing Gasoline Dispensing Facilities (GDF1, GDF2) VOC emission calculations based on the June 2020 updated AP-42 Chapter 7 (Liquid Storage Tanks). The HAP emission calculations were also updated to reflect accurate gasoline HAP constituents. The throughput of each GDF was increased to a maximum of 9,950 gal/month.
- Updates to the SO₂ and VOC emission factors for the two existing cathode washing hot water heaters. The SO₂ emission factor was updated to reflect the correct sulfur content of propane and the VOC emission factor was updated to reflect only the non-methane portion of the TOC emission factor.
-) Various updates to the diesel engine/pump emissions, which include some engine horsepower changes, emission factor changes, fuel usage rate changes, and greenhouse gas calculation changes.

For all of the other existing equipment, no changes are being requested.

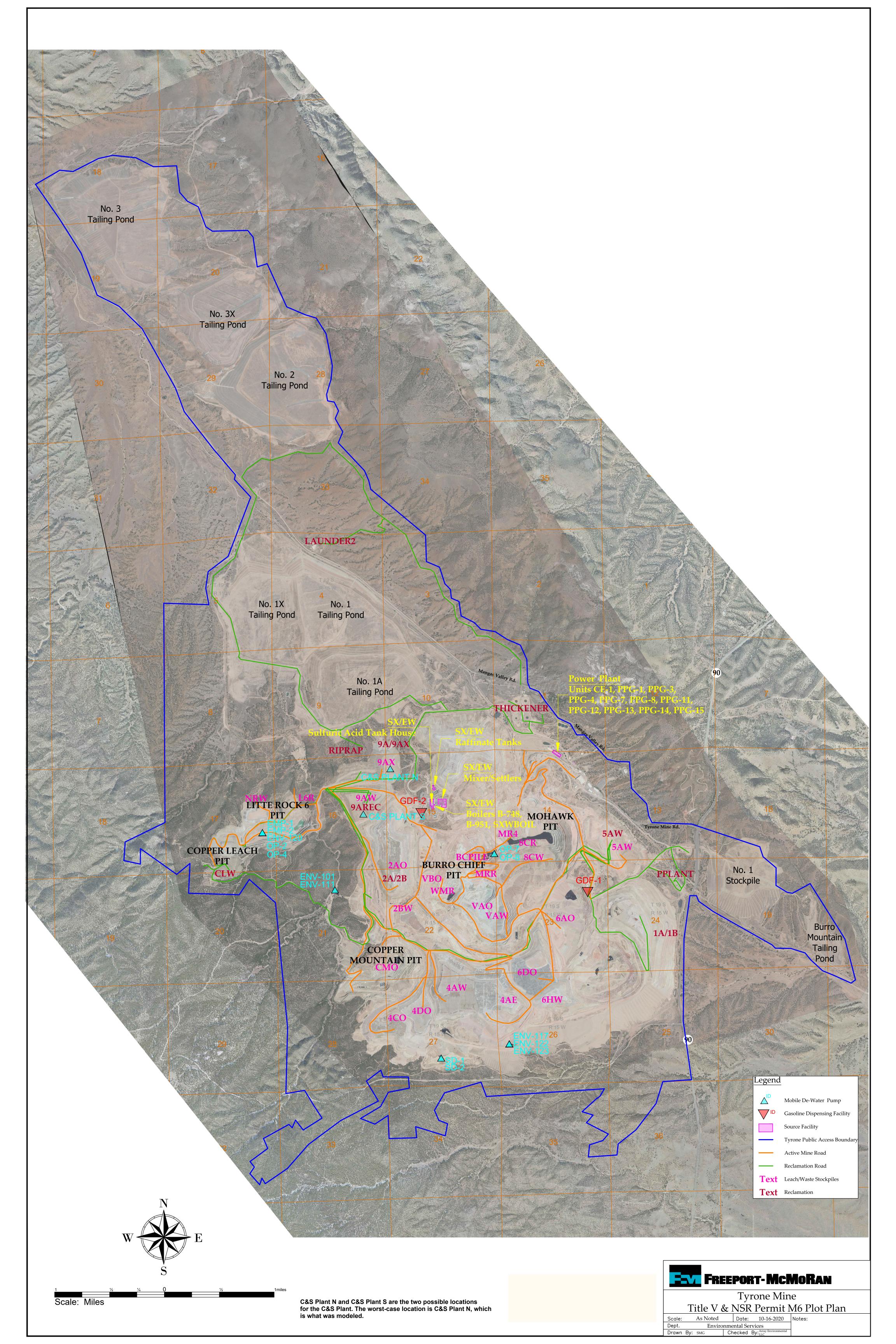

Tyrone's emissions during startup, shutdown, and maintenance (SSM) do not differ from normal operations and Tyrone is not requesting different limits during these times. The facility will remain a Title V major and PSD minor source with the proposed changes.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Please see the enclosed process flow sheet.


FREEPORT- McMoRan Copper & Gold Freeport-McMoRan Tyrone Inc.	Figure 1: Tyrone Mine Process Flow Diagram
--	---

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

Please see the enclosed plot plan.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Freeport-McMoRan Tyrone Inc.

Tyrone Mine

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

This section describes the emissions calculations for units that were updated as part of this permit application. Detailed information on the emission calculation inputs, assumptions, and emission factors are provided in the following tables. Calculations for all other emission sources are included in this section for informational purposes only.

Mine Blasting (Fugitive)

For the new operating scenarios, gaseous emissions from blasting are calculated based on the pounds of blasting agent used per blast per pit and the number of blasts per day per pit according to the table below. No pit will have more than two (2) blasts per day. Particulate matter emissions from blasting are based on a maximum blast area of 125,000 ft²/blast.

Operating Scenario	Pit Name	Maximum Blasting Agent Usage per Blast (lbs/blast)	Maximum No. of Blasts per Day	Maximum Daily Blasting Agent Usage (lbs/day)	Maximum Blast Area per Blast (ft ² /blast)
2, 3, 4, 7	Mohawk	150,000	2	300,000	125,000
2	Copper Mountain	100,000	1	100,000	125,000
4, 6	Copper Leach	50,000	1	50,000	125,000
5, 6, 7	Burro Chief	200,000	2	400,000	125,000
3, 5	Little Rock 6	100,000	1	100,000	125,000

From permit M5, both Gettysburg and Mohawk pits are allowed a maximum of 160,000 lbs of blasting agent per blast with the option of two (2) blasts per day.

There are no changes to the previously used emission factors. The NOx emission factor is the average of measurements from "NOx Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008). The CO emission factor is the average of the measurements in "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001). The SO₂ emissions are based on a diesel sulfur content of 15 ppm assuming complete conversion to SO₂. Particulate blasting emissions are based on emission factors from AP-42 Table 11.9-1. Greenhouse gas emissions associated with blasting are calculated using emission factors from 40 CFR 98 Subpart C, Tables C-1 and C-2 and global warming potentials from 40 CFR 98 Subpart A, Table A-1.

Mine and Reclamation Handling (Fugitive)

Mining material handling emissions are calculated based on emission factors from AP-42 Chapter 11.19.2 and a maximum mining material throughput that varies by pit. See the table below. The stockpile material handling emissions have been combined with the pit material handling such that the emissions from both activities are represented in this permit application as "Mining Material Handling".

Operating Scenario	Pit Name	Maximum Mining Rates (tons/day)
2, 3, 4, 7	Mohawk	200,000
2	Copper Mountain	200,000
4, 6	Copper Leach	90,000
5, 6, 7	Burro Chief	200,000
3, 5	Little Rock 6	90,000

Reclamation material handling emissions are also calculated based on emission factors from AP-42 Chapter 11.19.2 and a maximum material throughput that varies by reclamation area. See the table below.

Reclamation Area	Maximum Reclamation Rates (tons/day)
Launder Line	5,000
Thickener	15,000
P-Plant	15,000
1A/1B Stockpile	20,000
2A/2B Stockpile	20,000
CLW Stockpile	15,000

Crushing & Screening Plant (formerly SP-7A) Handling (Fugitive)

Material handling emissions from the contractor C&S Plant are based on AP-42 Chapters 11.19.2 and 13.2.4.

Mine, Reclamation, and Crushing & Screening Plant (formerly SP-7A) Hauling (Fugitive)

Emissions from unpaved haul road truck traffic are calculated using the methodology from AP-42 Chapter 13.2.2. A control efficiency of 88.8%, consistent with the M5 calculations, was applied to the uncontrolled emissions, which is based on 80% control for base course and watering (NMED guidance, January 1, 2017) and 44% control for an average speed limit of 25 mph (WRAP Fugitive Dust Handbook, September 7, 2006).

Gasoline Dispensing Facilities (GDF1 and GDF2)

Emissions from GDF1 and GDF2 are calculated using the updated June 2020 AP-42 Chapter 7 methodology and an updated throughput. The gasoline HAP constituents are based on data from EPA's SPECIATE 5.0 database. Specifically, the HAP values are based on the maximum percentages measured for a non-ethanol gasoline headspace vapor sample and a 10% ethanol gasoline headspace vapor sample since Tyrone's gasoline can be 10% or less ethanol.

SX Heat Exchanger Hot Water Boilers (B-3891 and B-1454)

Emissions from the new boilers are calculated based on AP-42 Chapter 1.5, a sulfur content of 15.9 grains/100 ft³ for propane, AP-42 Chapter 1.4 for the HAP emission factors, and 40 CFR 98 methodology for the GHG emissions.

Engines

Emissions of NO_X, CO, VOC, and PM are based on EPA Tier emissions standards for units SD-1, SD-2, ENV-122, ENV-123, OP-2, OP-4, OP-7, OP-8, ENV-120, EMP-1, and EMP-2. Emissions of NO_X, CO, VOC, and PM are based on the EPA FEL Certification Test results for ENV-117. Emissions of NO_X, CO, PM, SO₂, and VOC are based on AP-42 Chapter 3.3 for units ENV-101 and ENV-111. SO₂ and HAP emissions are based on factors from AP-42 Chapter 3.3. Greenhouse gas emissions are calculated using the factors and calculation methodology from 40 CFR 98 Subparts A and C.

No changes were made to the emergency engines (Generac GEN1-GEN4, IPG, GO Generator Backup EI-128, SX/EW Fire Water Pump, and SX Tankhouse Emergency Generator), which are exempt from construction permitting, so no calculations are provided for these engines in this permit application.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

Manufacturer's Data

AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html

EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

) Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Freeport-McMoRan Tyrone Inc. Facility-Wide Emissions Summary

Unit	N	Ox		со	v	ос	S	0 ₂	т	SP	PN	M ₁₀	PN	N _{2.5}	Tota	І НАР	Ethyli	enzene	Be	enzene	He	exane	2,2,4-Trim	ethylpentane	То	uene	Xyl	enes	Formale	lehyde	CO2	CH4	N ₂ O	CO ₂ e
onit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	metric tpy	metric tpy	metric tpy	metric t
SX/EW-1 (Fugitive)	-	-	-	-	5.15	22.54	-	-	-	-	-	-	-	-	1.65	7.23	6.55E-01	2.87E+00	6.92E-0	3 3.03E-02	-	-	-	-	1.36E-01	5.98E-01	8.53E-01	3.74E+00	-	-	-	-	-	-
SX/EW-2 (Fugitive)	-	-	-	-		-		-	1.82	7.98	1.82	7.98	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SX/EW-3 (Fugitive)	-	-	-	-	0.95	4.15		-	-	-	-		-	-	0.30	1.33		5.28E-01	1.28E-0		-	-	-	-	2.51E-02		1.57E-01		-	-	-	-	-	-
SX/EW-4 (Fugitive)	-	-	-	-	0.32	1.39	-	-	-	-	-		-	-	0.097	0.42	3.85E-02	1.68E-01	3.88E-0	4 1.70E-03	-	-	-	-	7.69E-03	3.37E-02	5.01E-02	2.19E-01	-	-	-	-	-	-
Water Boiler B-748	0.36	1.56	0.21	0.90	0.022	0.096	0.044	0.19	0.019	0.084	0.019	0.084	0.019	0.084	0.0047	0.020	-	-	-	-			-		8.37E-06	3.67E-05	-		1.85E-04	8.09E-04	1,521.81	0.073	0.015	1,527.9
Water Boiler B-9511																																		
Water Boiler B-3891	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	0.0067	0.029	-	-	-	-	-	-	-	-	1.20E-05		-	-		1.16E-03	2,180.94	0.10	0.021	2,189.7
Water Boiler B-1454	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	0.0067	0.029	-	-	-	-	-	-	-	-	1.20E-05		-	- 2.48E-03		1.16E-03	2,180.94	0.10	0.021	2,189.7
SD-1	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	0.0068	0.030	-	-	-	-		-	-		8.12E-05					1.03E-02	1,296.45	0.053	0.011	1,300.9
SD-2	1.77 3.88	7.77 16.97	1.63 0.84	7.15 3.67	0.093	0.41 1.37	0.58	2.55 1.12	0.093	0.41	0.093	0.41	0.093	0.41 1.20	0.0068	0.030	-	-	-	-			-		8.12E-05 3.58E-04			2.48E-03 1.09E-03		1.03E-02	1,296.45 536.45	0.053	0.011 0.0044	1,300.9
ENV-101 ENV-111	3.88	16.97	0.84	3.67	0.31 0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20 1.20	0.28 0.28	1.20	0.0035	0.015 0.015	-	-	-	-			-		3.58E-04 3.58E-04			1.09E-03	1.03E-03	4.52E-03	536.45	0.022	0.0044	538.2
ENV-111 ENV-117	3.88	4.18	0.84	0.94	0.31	0.22	0.26	0.98	0.28	0.23	0.28	0.23	0.28	0.23	0.0035	0.015	-	-	-	-			-	-	3.58E-04 3.12E-05			9.53E-04		4.52E-03 3.95E-03	498.39	0.022	0.0044	538.2
ENV-117 ENV-122	1.29	4.18	1.03	4.50	0.050	0.22	0.22	1.12	0.052	0.23	0.052	0.23	0.052	0.23	0.0026	0.011	-	-	-	-					3.12E-05 3.58E-04		2.18E-04 2.49E-04			4.52E-03	498.39 536.45	0.020	0.0040	538.2
ENV-122 ENV-123	2.19		1.03		0.068		0.26	1.12	0.062	0.27	0.062	0.27	0.062	0.27	0.0035	0.015	-	-	-	-			-	-	3.58E-04 6.09E-05						972.34	0.022	0.0044	975.6
Mine Blasting	180.00	9.61 114.98	4.064.0	5.36 2.595.88	-	0.51	0.44	0.23	618.72	451.66	321.73	234.87	18.56	13.55	-	0.022									0.09E-03	2.072-04	4.232-04	1.002-03	1.702-05	7.70E-05	24,021.12	0.039	0.19	24,103
(Fugitive)			.,	-,																											,			,===
Mine Handling																																		
(Fugitive) (Pit and Stockpile)	-	-	-	-		-		-	0.70	6.10	0.27	2.34	0.040	0.35	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Mine Hauling																																		
(Fugitive)	-	-	-	-		-		-	3,989.06	21,276.60	1,016.67	5,422.62	101.67	542.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
eclamation Handling																																		
(Fugitive)	-	-	-	-	-	-	-	-	0.12	0.53	0.047	0.20	0.0070	0.031	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Reclamation Hauling									2,485.50	8,798.67	633.46	2,242.46	63.35	224.25																		-		
(Fugitive)	-		-		-		-		2,403.30	0,750.07	055.40	2,242.40	05.55	224.25	-		-		-		-		-		-		-		-	-				
S Plant (formerly SP-7A)			-	-	-				40.89	89.56	15.75	34.50	2.37	5.18			-	-	-	-			-		-		-		-	-	-	-	-	-
Handling (Fugitive) S Plant (formerly SP-7A)																																		
Hauling (Fugitive)			-	-	-	-		-	83.15	147.18	21.19	37.51	2.12	3.75	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-
SPCC-TYR-061 (GDF1)					2.41	10.57									0.27	1.19	4 245-02	1.90E-02	9 225.0	3 3.65E-02	2 505-02	1.14E-01	1 205-01	5.71E-01	9 67E-02	3.80E-01	1.66E-02	7.25E-02				-		
SPCC-TYR-119 (GDF2)					0.39	1.70									0.044	0.19		3.07E-02	1.34E-0					9.21E-01	1.40E-02					-		-		
OP-2	0.36	1.58	0.28	1.22	0.019	0.083	0.063	0.28	0.030	0.13	0.030	0.13	0.030	0.13	0.00074		7.012-04	3.072-03	1.546-0.	J J.00L-0J	4.102-03	1.051-02	2.101-02	5.211-02		3.86E-05		2.69E-04	2.54E-04	1 115-02	87.39	0.0035	0.00071	87.69
OP-4	1.33	5.82	1.22	5.36	0.019	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022									6.09E-05					7.70E-03	972.34	0.039	0.0079	975.6
OP-7	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022							-		6.09E-05		4.25E-04		1.76E-03		972.34	0.039	0.0079	975.6
OP-8	1.33	5.82	1.22	5.36	0.070	0.32	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022									6.09E-05		4.25E-04			7.70E-03	1,110.11	0.045	0.0090	1,113.9
ENV-120	1.33	5.82	1.22	5.36	0.074	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022									6.09E-05			1.86E-03	1.76E-03		972.34	0.039	0.0050	975.6
EMP-1	2.72	11.91	3.37	14.75	0.38	1.68	0.37	1.61	0.16	0.70	0.16	0.70	0.16	0.70	0.0043	0.022										2.25E-04		1.57E-03			821.09	0.033	0.0067	823.9
EMP-2	1.95	8.54	1.09	4.77	0.10	0.45	0.39	1.70	0.062	0.27	0.062	0.27	0.062	0.27	0.0045	0.019									5.42E-05			1.65E-03		6.84E-03	864.30	0.035	0.0070	867.2
CE-1	3.10	0.78	0.67	0.17	0.25	0.06	0.21	0.051	0.22	0.055	0.22	0.055	0.22	0.055	0.0028	0.00069		-	6.53E-0	4 1.63E-04			_		2.86E-04			4.99E-05			882.37	0.035	0.0070	885.3
PG-1, 3, 4, 7, 8, 11-15	499.70	56.20	257.13		29.00	2.12	12.50	0.49	15.08	0.73	12.39	0.64	10.36	0.58	0.37	0.00003			1.68E-0						6.08E-02					2.56E-03	5.668.15	0.23	0.046	5.687.6
Total	710.26	292.23		2.711.57	40.39	50.95	18.39	24.09	7.236.79		2.025.08		200.21	796.69	2.82	10.73	0.82	3.59	0.19	0.085	0.030	0.13	0.15	0.66	0.33	1.322-05	1.13	4.75	11.04	0.10	47.928.21	1.99	0.40	48.096.3
Total w/o Fugitives ²		177.25	275.64	, .	33.97	22.87	18.03	23.86	16.82	7.47	14.14	7.38	12.11	7.32	0.77	1.75	0.0050	0.022	0.15	0.048	0.030	0.13	0.15	0.66	0.16	0.45	0.07	0.11	11.04	0.10	23,907.09	1.01	0.20	23,992.0
otnotes:			I		1		1				1				L		L						1		1		1		1					L
hese two boilers share a ugitive criterial pollutant						ility of the f	acility; ther	efore, they	are not inclu	uded in the p	ermittable l	limit.																						

Freeport-McMoRan Tyrone Inc. Facility-Wide Emissions Summary

	N		1	со		ос	50	n		SP	DA	٨	DM	1	Tota	HAD	Fabulba		Bons		Haw		2,2,4-Trimet	hulacatono	Tak	uene	Vula		Formald	ahuda	60	CH	NO	60
Unit		IOX					S					A ₁₀	PN				Ethylbe		Benz		Hex						Xyle		Formald		CO ₂	CH₄	N ₂ O	CO2
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	metric tpy	metric tpy	metric tpy	metric
SX/EW-1 (Fugitive)	-	-	-	-	5.15	22.54	-	-	-	-	-	-	-	-	1.65	7.23	6.55E-01	2.87E+00	6.92E-03	3.03E-02	-	-	-	-	1.36E-01	5.98E-01	8.53E-01	3.74E+00			-	-	-	
SX/EW-2 (Fugitive)	-	-	-		-	-	-	-	1.82	7.98	1.82	7.98	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
SX/EW-3 (Fugitive)	-	-	-		0.95	4.15	-	-	-	-	-	-	-	-	0.30	1.33			1.28E-03		-	-	-	-	2.51E-02			6.88E-01		-	-	-	-	-
SX/EW-4 (Fugitive)	-	-	-		0.32	1.39	-	-	-	-	-	-	-	-	0.097	0.42	3.85E-02	1.68E-01	3.88E-04	1.70E-03	-	-	-	-	7.69E-03	3.37E-02	5.01E-02	2.19E-01		-	-	-	-	-
Vater Boiler B-748 ¹	0.36	1.56	0.21	0.90	0.022	0.096	0.044	0.19	0.019	0.084	0.019	0.084	0.019	0.084	0.0047	0.020		-			-	-	-	-	8.37E-06	3.67E-05	-	-	1.85E-04	8.09E-04	1,521.81	0.073	0.015	1,527
Vater Boiler B-951 ¹																																		
Vater Boiler B-3891	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	0.0067	0.029	-	-	-	-	-	-	-	-	1.20E-05		-	-			2,180.94	0.10	0.021	2,189
Vater Boiler B-1454	0.51	2.24	0.30	1.29	0.031	0.14	0.063	0.27	0.028	0.12	0.028	0.12	0.028	0.12	0.0067	0.029	-	-	-	-	-	-	-	-	1.20E-05		-	-			2,180.94	0.10	0.021	2,18
SD-1	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	0.0068	0.030	-	-	-	-	-	-	-	-					2.34E-03		1,296.45	0.053	0.011	1,30
SD-2	1.77	7.77	1.63	7.15	0.093	0.41	0.58	2.55	0.093	0.41	0.093	0.41	0.093	0.41	0.0068	0.030	-	-	-	-	-	-	-	-		3.56E-04	5.66E-04		2.34E-03		1,296.45	0.053	0.011	1,30
ENV-101	3.88	16.97	0.84	3.67	0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20	0.28	1.20	0.0035	0.015	-	-	-	-	-	-	-	-	3.58E-04		2.49E-04		1.03E-03		536.45	0.022	0.0044	538
ENV-111	3.88	16.97	0.84	3.67	0.31	1.37	0.26	1.12	0.28	1.20	0.28	1.20	0.28	1.20	0.0035	0.015	-	-	-	-	-	-	-	-	3.58E-04		2.49E-04				536.45	0.022	0.0044	53
ENV-117	0.95	4.18	0.22	0.94	0.050	0.22	0.22	0.98	0.052	0.23	0.052	0.23	0.052	0.23	0.0026	0.011	-	-	-	-	-	-	-	-	3.12E-05		2.18E-04				498.39	0.020	0.0040	50
ENV-122	1.29	5.65	1.03	4.50	0.068	0.30	0.26	1.12	0.062	0.27	0.062	0.27	0.062	0.27	0.0035	0.015	-	-	-	-	-	-	-	-				1.09E-03		4.52E-03	536.45	0.022	0.0044	53
ENV-123	2.19	9.61	1.22	5.36	0.115	0.51	0.44	1.91	0.0700	0.307	0.0700	0.307	0.070	0.31	0.0051	0.022	-	-	-	-	-	-	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03	1.76E-03	7.70E-03	972.34	0.039	0.0079	97
Mine Blasting (Fugitive)	180.00	114.98	4,064.0	0 2,595.88	-	-	0.36	0.23	618.72	451.66	321.73	234.87	18.56	13.55	-	-	-	-		-	-	-	-	-	-		-	-			24,021.12	0.97	0.19	24,
Mine Handling																																		
(Fugitive)	-	-	-		-		-	-	0.70	6.10	0.27	2.34	0.040	0.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	
Pit and Stockpile) Mine Hauling																																		
(Fugitive)	-	-	-		-	-	-	-	446.78	2,382.98	113.87	607.33	11.39	60.73	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	
clamation Handling																																		
(Fugitive)	-	-	-		-	-	-	-	0.12	0.53	0.047	0.20	0.0070	0.031	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	
eclamation Hauling									278.38	985.45	70.95	251.16	7.09	25.12																				
(Fugitive)									270.50	505.45	70.55	201.10	7.05	20.12																				
Plant (formerly SP-7A)	-	-	-		-		-	-	8.45	18.50	3.68	8.07	0.57	1.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	
Iandling (Fugitive) Plant (formerly SP-7A)																																		
Hauling (Fugitive)	-	-	-		-	-	-	-	9.31	16.48	2.37	4.20	0.24	0.42	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	
CC-TYR-061 (GDF1)	-				2.41	10.57	-	-	-		-	-	-	-	0.27	1.19	4.34E-03	1.90E-02	8.33E-03	3.65E-02	2.59E-02	1.14E-01	1.30E-01	5.71E-01	8.67E-02	3.80E-01	1.66E-02	7.25E-02			-		-	
CC-TYR-119 (GDF2)			-		0.39	1.70	-	-	-		-		-	-	0.044	0.19	7.01E-04	3.07E-03	1.34E-03	5.88E-03	4.18E-03	1.83E-02	2.10E-02	9.21E-02	1.40E-02	6.12E-02	2.67E-03	1.17E-02		-		-		
OP-2	0.36	1.58	0.28	1.22	0.019	0.083	0.063	0.28	0.030	0.13	0.030	0.13	0.030	0.13	0.00074	0.0032	-	-			-	-	-	-	8.80E-06	3.86E-05	6.13E-05	2.69E-04	2.54E-04	1.11E-03	87.39	0.0035	0.00071	8
OP-4	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022	-	-			-	-	-	-	6.09E-05	2.67E-04	4.25E-04	1.86E-03	1.76E-03	7.70E-03	972.34	0.039	0.0079	9
OP-7	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022		-			-	-	-	-	6.09E-05			1.86E-03			972.34	0.039	0.0079	9
OP-8	1.33	5.82	1.22	5.36	0.074	0.32	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022		-			-	-	-	-	6.09E-05		4.25E-04	1.86E-03	1.76E-03		1,110.11	0.045	0.0090	1,
ENV-120	1.33	5.82	1.22	5.36	0.070	0.31	0.44	1.91	0.070	0.31	0.070	0.31	0.070	0.31	0.0051	0.022					-		-		6.09E-05			1.86E-03			972.34	0.039	0.0079	-,
EMP-1	2.72	11.91	3.37	14.75	0.38	1.68	0.37	1.61	0.160	0.70	0.16	0.70	0.16	0.70	0.0043	0.019		-			-		-	-		2.25E-04	3.59E-04				821.09		0.0067	8
EMP-2	1.95	8.54	1.09	4.77	0.10	0.45	0.39	1.70	0.062	0.27	0.062	0.27	0.062	0.27	0.0045	0.020	-				-		-		5.42E-05		3.77E-04		1.56E-03		864.30	0.035	0.0070	8
CE-1	3.10	0.78	0.67	0.17	0.25	0.063	0.21	0.051	0.22	0.055	0.22	0.055	0.22	0.055	0.0028	0.00069	-		6.53E-04	1.63E-04	-		-			7.16E-05	2.00E-04				882.37	0.036	0.0072	8
G-1, 3, 4, 7, 8, 11-15	499.70	56.20	257.13		29.00	2.12	12.50	0.49	15.08	0.73	12.39	0.64	10.36	0.58	0.37	0.011	-		1.68E-01		-		-	-	6.08E-02		4.17E-02				5,668.15	0.23	0.046	5,
Total	710.26	292.23	4.339.6		40.39	50.95	18.39	24.09	1.381.09	3.877.16	528.88	1.123.53	50.01	108.77	2.82	10.73	0.82	3.59	0.19	0.085	0.030	0.13	0.15	0.66	0.33	1.19	1.13	4.75	11.04		47,928.21	1.99	0.40	48,
			,																										-		-			
otal w/o Fugitives ²	530.26	177.25	275.64	115.69	33.97	22.87	18.03	23.86	16.82	7.47	14.14	7.38	12.11	7.32	0.77	1.75	0.0050	0.022	0.18	0.048	0.030	0.13	0.15	0.66	0.16	0.45	0.066	0.11	11.04	0.097	23,907.09	1.01	0.20	23,9

Footnotes: ¹ These two bollers share a common stack. ² Fugitive emissions do not count towards the TV and PSD applicability of the facility; therefore, they are not included in the permittable limit.

Freeport-McMoRan Tyrone Inc. Blasting Emissions

Table 1: Input Parameters

	700,000	lbs blasting agent/day	See Table 3 below
Maximum Blasting	125,000	ft ² blast area/blast	See Table 3 below
Operational Scenario	365	days/yr	
operational occitatio	200,000	lbs blasting agent/blast event	See Table 3 below
	127,750	tons blasting agent/year	
	6%	blasting agent fuel oil %	
	6.5	lb/gal density	
Maximum Diesel Fuel	0.138	MMBtu/gal	40 CFR 98, Subpart C, Table C–1 (default HHV for GHG calculations)
in Blasting Agent	6,462	gal/day	
	1,846	gal/blast event	
	2,358,462	gal/yr	

Table 2: Maximum Emissions from Blasting

Pollutant	Emission Factor	Emission Factor	Emission Factor		<u>m</u> Operational S ntial Emission Ra		
		Units	Reference	(lb/hr)	(lb/day)	(ton/yr)	
		Uncontrolled a	nd Controlled ^b				
NO _x	1.8	lb/ton blasting agent	1	180.00	630.00	114.98	
CO	40.64	lb/ton blasting agent	2	4,064.00	14,224.00	2,595.88	
SO ₂	0.0036	lb/ton blasting agent	3	0.36	1.26	0.23	
TSP	618.72	lb/blast event	4	618.72	2,474.87	451.66	
PM ₁₀	321.73	lb/blast event	4	321.73	1,286.93	234.87	
PM _{2.5}	18.56	lb/blast event	4	18.56	74.25	13.55	
CO ₂	162.71	lb/MMBtu	5	41,454.01	145,089.04	26,478.75	24,021.12 metric tons/yr
N ₂ O	0.0013	lb/MMBtu	6	0.34	1.18	0.21	0.19 metric tons/yr
CH_4	0.0066	lb/MMBtu	6	1.68	5.89	1.07	0.97 metric tons/yr
CO ₂ e ^c				41,596.26	145,586.92	26,569.61	24,103.55 metric tons/yr

Emission Factor References:

1. NOx emission factor is the average of measurements from "NOx Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).

2. CO emission factor is the average of the measurements in "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001).

3. SO₂ emission factor is based on a stoichiometric conversion of all the sulfur in the diesel fuel in ANFO to SO₂. The conversion was based on 6% fuel oil in the blasting agent and a diesel fuel sulfur content of 15 ppm.

4. PM emission factors are based on emission factors from AP-42, Chapter 11.9, Table 11.9-1 (July 1998).

5. CO2 emission factor is based on 40 CFR 98 Subpart C, Table C-1 for Distillate Fuel Oil No. 2. The emission factor is converted from kg/MMBtu to lb/MMBtu using a conversion factor of 2.2 lb/kg.

6. N2O and CH4 emission factors are based on 40 CFR 98 Subpart C, Table C-2 for Petroleum Products. The emission factors are converted from kg/MMBtu to lb/MMBtu using a conversion factor of 2.2 lb/kg.

Footnotes:

^a Because only one pit can be blasted in an hour, the maximum hourly emissions are based on the maximum emissions at an individual pit; whereas the maximum daily and annual emissions are based on the maximum of the sum of both pits operating within each scenario.

^b For blasting, uncontrolled emissions equal controlled emissions because no additional control measures are applied during blasting.

^c Calculated based on a Global Warming Potentail (GWP) of 1 for CO₂, 298 for N₂O, and 25 for CH₄ as per 40 CFR 98, Table A-1.

Table 3: Proposed Mining Scenarios

	Operating Scenario	Pit Name	Maximum Blasting Agent Usage per Blast (Ibs/blast)	Maximum No. of Blasts per Day	Maximum Daily Blasting Agent Usage (Ibs/day)	Maximum Blast Area per Blast (ft ² /blast)	Scenario 1, which was permitted in M5 for Gettysburg and Mohawk, is not being
ſ	2, 3, 4, 7	Mohawk	150,000	2	300,000	125,000	repeated here. Scenarios 2 through 5 are
	2	Copper Mountain	100,000	1	100,000	123,000	being proposed in addition to the M5
	4, 6	Copper Leach	50,000	1	50,000	123,000	scenario as potential operating scenarios.
	5, 6, 7	Burro Chief	200,000	2	400,000	123,000	None of the scenarios, including Scenario 1
ſ	3, 5	Little Rock 6	100,000	1	100,000	125,000	in M5, can operate simultaneously.

Table 4: Scenario-Specific Blasting Emission Rates

		NOx			со			SO2			TSP			PM ₁₀			PM _{2.5}	
Mining Area	(lb/hr)	(lb/day)	(ton/yr)	(lb/hr)	(lb/day)	(ton/yr)	(lb/hr)	(lb/day)	(ton/yr)	(lb/hr)	(lb/day)	(ton/yr)	(lb/hr)	(lb/day)	(ton/yr)	(lb/hr)	(lb/day)	(ton/yr)
Scenario 2																		
Mohawk	135.00	270.00	49.28	3,048.00	6,096.00	1,112.52	0.27	0.54	0.10	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77
Copper Mountain	90.00	90.00	16.43	2,032.00	2,032.00	370.84	0.18	0.18	0.03	618.72	618.72	112.92	321.73	321.73	58.72	18.56	18.56	3.39
Scenario 3																		
Mohawk	135.00	270.00	49.28	3,048.00	6,096.00	1,112.52	0.27	0.54	0.10	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77
Little Rock 6	90.00	90.00	16.43	2,032.00	2,032.00	370.84	0.18	0.18	0.03	618.72	618.72	112.92	321.73	321.73	58.72	18.56	18.56	3.39
Scenario 4						•												
Mohawk	135.00	270.00	49.28	3,048.00	6,096.00	1,112.52	0.27	0.54	0.10	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77
Copper Leach	45.00	45.00	8.21	1,016.00	1,016.00	185.42	0.090	0.090	0.016	618.72	618.72	112.92	321.73	321.73	58.72	18.56	18.56	3.39
Scenario 5																		
Burro Chief	180.00	360.00	65.70	4,064.00	8,128.00	1,483.36	0.36	0.72	0.13	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77
Little Rock 6	90.00	90.00	16.43	2,032.00	2,032.00	370.84	0.18	0.18	0.03	618.72	618.72	112.92	321.73	321.73	58.72	18.56	18.56	3.39
Scenario 6																		
Burro Chief	180.00	360.00	65.70	4,064.00	8,128.00	1,483.36	0.36	0.72	0.13	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77
Copper Leach	45.00	45.00	8.21	1,016.00	1,016.00	185.42	0.090	0.090	0.016	618.72	618.72	112.92	321.73	321.73	58.72	18.56	18.56	3.39
Scenario 7																		
Mohawk	135.00	270.00	49.28	3,048.00	6,096.00	1,112.52	0.27	0.54	0.10	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77
Burro Chief	180.00	360.00	65.70	4,064.00	8,128.00	1,483.36	0.36	0.72	0.13	618.72	1,237.44	225.83	321.73	643.47	117.43	18.56	37.12	6.77

Freeport-McMoRan Tyrone Inc. Mining Material Handling Emissions

Table 1: Input Parameters

	PM ₁₀	1.60E-05 lb/ton ¹	
Uncontrolled	Ratio of PM _{2.5} / PM ₁₀	0.15 ²	
Emission Factors	PM _{2.5}	2.40E-06 lb/ton ²	
Emission Factors	Ratio of TSP / PM_{10}	2.61 ³	
	TSP	4.18E-05 lb/ton ³	
	24	hours/day	
Hours of Operation	365	days/year	
	8,760	hours/year	

Footnotes:

¹ The PM₁₀ emission factor is based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing Operations (August 2004) for Truck Unloading - Fragmented Stone. The Truck Unloading emission factor is used for truck loading and truck unloading since the quantity of emissions from unloading would essentially be the same as loading. No TSP or PM₂₅ emission factors for Truck Unloading are provided in the AP-42 table.

² The PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5} / PM₁₀ as recommended in the AP-42 *Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors* (November 2006).

³ An uncontrolled TSP emission factor was calculated based on an average of the TSP/PM₁₀ ratios using the available uncontrolled emission factors in AP-42 Table 11.19.2-2. The associated ratios are: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). The average of these ratios is 2.61.

Table 2: Maximum Emissions from Mine Material Handling

	Maximu	m Operational Scena	rio								
Pollutant	Poter	ntial Emission Rates ¹									
	(lb/hr)	(lb/day)	(ton/yr)								
	Uncontrolled and Controlled ²										
TSP	0.70	33.41	6.10								
PM ₁₀	0.27	12.80	2.34								
PM _{2.5}	PM _{2.5} 0.040 1.92 0.35										
Faataataa											

Footnotes:

¹ Because only one pit can be blasted in an hour, the maximum hourly emissions are based on the maximum emissions at an individual pit; whereas the maximum daily and annual emissions are based on the maximum of the sum of both pits operating within each scenario.

² Uncontrolled emissions equal controlled emissions for these activities.

Table 3: Proposed Mining Scenarios

Operating Scenario	Pit Name	Maximum Mining Rates (tons/day)	No. of Handling Steps ¹	Scenario 1, which was permitted in M5 for Gettysburg and Mohawk, is not being repeated
2, 3, 4, 7	Mohawk	200,000	2	here. Scenarios 2 through 5 are being proposed
2	Copper Mountain	200,000	2	in addition to the M5 scenario as potential
4, 6	Copper Leach	90,000	2	operating scenarios. None of the scenarios,
5, 6, 7	Burro Chief	200,000	2	including Scenario 1 in M5, can operate
3, 5	Little Rock 6	90,000	2	simultaneously.

Footnotes:

¹ The handling instances consists of truck loading at the pit and truck unloading at the waste or leach stockpile.

Mining Area (Material	(Material Model R			Maxin	num Hourly Emis (lb/hr) ²	ssion Rates	Maximu	um Daily Emissio (lb/day) ²	on Rates	Maximum Annual Emission Rates (ton/yr) ²			
Origination)	(Material Destination)	(tons/day)	Steps ¹	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	
Scenario 2								-					
Mohawk	VAO	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	
Copper Mountain ³	CMO (33%), 4DO (33%), 4CO (33%)	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.175	
Scenario 3													
Mohawk	VAO	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	
Little Rock 6	CLW	90,000	2	0.31	0.12	0.018	7.52	2.88	0.43	1.37	0.53	0.08	
Scenario 4													
Mohawk	VAO	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	
Copper Leach	CLW	90,000	2	0.30	0.11	0.017	7.10	2.72	0.41	1.30	0.50	0.07	
Scenario 5						1	1		1		1	1	
Burro Chief	2AO (50%), 2BW (50%)	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	
Little Rock 6	CLW	90,000	2	0.31	0.12	0.018	7.52	2.88	0.43	1.37	0.53	0.08	
Scenario 6							•		•			•	
Burro Chief	2AO (50%), 2BW (50%)	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	
Copper Leach	CLW	90,000	2	0.30	0.11	0.017	7.10	2.72	0.41	1.30	0.50	0.07	
Scenario 7				•	•			•				•	
Mohawk	6DO	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	
Burro Chief	5AW	200,000	2	0.70	0.27	0.040	16.70	6.40	0.96	3.05	1.17	0.18	

Table 4: Scenario-Specific Mining Material Handling Emission Rates

Footnotes:

¹ The handling steps consist of truck loading at the pit and truck unloading at the waste or leach stockpile.

² Uncontrolled emissions equal controlled emissions for these activities.

³ Unlike the other mining areas, Copper Mountain will not have material loaded, hauled, or unloaded from the pit when the material destination is CMO. CMO is an in-pit stockpile, but to be conservative, we are accounting for the same number of material handling steps as the other pits.

Freeport-McMoRan Tyrone Inc. Mining Haul Road Emissions

Table 1: Input Parameters

PM _{2.5}
0.15
0.9
0.45
0

Footnotes:

¹ AP-42 13.2.2 (Unpaved Roads) Equation 1a is applicable to industrial roads with a mean vehicle weight from 2 to 290 tons. The Average Vehicle Weight is based on the haul trucks being full traveling in one direction and being empty traveling in the other direction.

² The combined control efficiency of 88.8% is based on 80% control for base course and watering (NMED guidance, January 1, 2017) and 44% control for an average speed of 25 mph (WRAP Fugitive Dust Handbook, September 7, 2006).

³ This refers to the number of days in a year with at least 0.01 inches of precipitation and is based on Figure 13.2.2-1 in AP-42. This factor is only taken into account in the annual emissions calculation.

⁴ These emission equation constants are provided in Table 13.2.2-2 in AP-42 for Industrial Roads (Equation 1a).

Table 2: Maximum Emissions from Mine Hauling

	Maxim	um Operational Scen	ario						
Pollutant	Pote	ential Emission Rates	1						
	(lb/hr)	(lb/day)	(ton/yr)						
	Uncontr	olled							
TSP	3,989.06	144,248.16	21,276.60						
PM ₁₀	1,016.67	36,763.55	5,422.62						
PM _{2.5}	101.67	3,676.36	542.26						
	Contro	lled							
TSP	446.78	16,155.79	2,382.98						
PM ₁₀	113.87	4,117.52	607.33						
PM _{2.5}	11.39 411.75 60.73								
Footnotes:		-							

Footnotes:

¹ Because only one pit can be blasted in an hour, the maximum hourly emissions are based on the maximum emissions at an individual pit; whereas the maximum daily and annual emissions are based on the maximum of the sum of both pits operating within each scenario.

Mining Area (Material	Worst-Case Stockpiles in the Model		Total Length of Worst-Case Roads	Maximum Haulage Rate	Max No. of Trips/Day	Max No. of Trips/Hour	VMT/hr*	Maximum Un	controlled Hourly (lb/hr)	Emission Rates	Maximum Ur	ncontrolled Daily E (Ib/day)	mission Rates	Maximum Und	controlled Annual I (ton/yr)	Emission Rates
Origination)	(Material Destination)	Model	(ft, one-way)	(tons/day)				TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
cenario 2		T														
Mohawk	VAO	Roads 11G, 30	7,340	200,000	673.4	28.1	78.0	1,643.8	418.9	41.9	39,451	10,055	1,005	5,819.0	1,483.0	148.3
Copper Mountain	CMO (33%), 4DO (33%), 4CO (33%)	Roads 16A, 16B, 18J, 20A	10,587	200,000	673.4	28.1	112.5	2,370.9	604.3	60.4	56,902	14,502	1,450	8,393.1	2,139.1	213.9
icenario 3																
Mohawk	VAO	Roads 11G, 30	7,340	200,000	673.4	28.1	78.0	1,643.8	418.9	41.9	39,451	10,055	1,005	5,819.0	1,483.0	148.3
Little Rock 6	CLW	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	1,317.9	335.9	33.6	31,630	8,061	806	4,665.4	1,189.0	118.9
icenario 4																
Mohawk	VAO	Roads 11G, 30	4,829	200,000	673.4	28.1	51.3	1,081.4	275.6	27.6	25,954	6,615	661	3,828.3	975.7	97.6
Copper Leach	L6R	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	1,317.9	335.9	33.6	31,630	8,061	806	4,665.4	1,189.0	118.9
icenario 5																
Burro Chief	2BW (50%), 2AO (50%)	Roads 17, 18, 21	17,813	200,000	673.4	28.1	189.3	3,989.1	1,016.7	101.7	95,738	24,400	2,440	14,121.3	3,599.0	359.9
Little Rock 6	CLW	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	1,317.9	335.9	33.6	31,630	8,061	806	4,665.4	1,189.0	118.9
cenario 6							•		•							
Burro Chief	2BW (50%), 2AO (50%)	Roads 17, 18, 21	10,341	200,000	673.4	28.1	109.9	2,315.7	590.2	59.0	55,578	14,165	1,416	8,197.8	2,089.3	208.9
Copper Leach	L6R	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	1,317.9	335.9	33.6	31,630	8,061	806	4,665.4	1,189.0	118.9
cenario 7			·													
Mohawk	6DO	Roads 9, 11C, 11E, 11F, 12B	11,937	200,000	673.4	28.1	126.9	2,673.2	681.3	68.1	64,157	16,351	1,635	9,463.1	2,411.8	241.2
Burro Chief	5AW	Roads 6, 7, 11E, 12B, 30A, 30B	14,902	200,000	673.4	28.1	158.4	3,337.2	850.5	85.1	80,092	20,412	2,041	11,813.5	3,010.8	301.1

Table 4: Scenario-Specific Mine Hauling Controlled Emission Rates

Mining Area (Material Origination)	Worst-Case Stockpiles in the Model (Material		Haul Roads in the Worst-Case Roads Haulage Rate Max No. of Max No. of VMT/hr* (lb/hr) Model (ft, one-way) (tons/day) Trips/Day Trips/Hour				nission Rates	Maximum C	ontrolled Daily En (Ib/day)	nission Rates	Maximum Controlled Annual Emission Rates (ton/yr)					
origination	Destination)	Model	(it, one-way)	(10113/0447)				TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Scenario 2																
Mohawk	VAO	Roads 11G, 30	7,340	200,000	673.4	28.1	78.0	184.1	46.9	4.7	4,418	1,126	113	651.7	166.1	16.6
Copper Mountain	CMO (33%), 4DO (33%), 4CO (33%)	Roads 16A, 16B, 18J, 20A	10,587	200,000	673.4	28.1	112.5	265.5	67.7	6.8	6,373	1,624	162	940.0	239.6	24.0
Scenario 3								-						-		
Mohawk	VAO	Roads 11G, 30	7,340	200,000	673.4	28.1	78.0	184.1	46.9	4.7	4,418	1,126	113	651.7	166.1	16.6
Little Rock 6	CLW	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	147.6	37.6	3.8	3,543	903	90	522.5	133.2	13.3
Scenario 4																
Mohawk	VAO	Roads 11G, 30	4,829	200,000	673.4	28.1	51.3	121.1	30.9	3.1	2,907	741	74	428.8	109.3	10.9
Copper Leach	L6R	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	147.6	37.6	3.8	3,543	903	90	522.5	133.2	13.3
Scenario 5		•				•	•			•						
Burro Chief	2BW (50%), 2AO (50%)	Roads 17, 18, 21	17,813	200,000	673.4	28.1	189.3	446.8	113.9	11.4	10,723	2,733	273	1,581.6	403.1	40.3
Little Rock 6	CLW	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	147.6	37.6	3.8	3,543	903	90	522.5	133.2	13.3
Scenario 6																
Burro Chief	2BW (50%), 2AO (50%)	Roads 17, 18, 21	10,341	200,000	673.4	28.1	109.9	259.4	66.1	6.6	6,225	1,586	159	918.1	234.0	23.4
Copper Leach	L6R	Roads 18D, 18E, 18G, 18H	13,528	90,000	303.0	12.6	62.5	147.6	37.6	3.8	3,543	903	90	522.5	133.2	13.3
Scenario 7																
Mohawk	6DO	Roads 9, 11C, 11E, 11F, 12B	11,937	200,000	673.4	28.1	126.9	299.4	76.3	7.6	7,186	1,831	183	1,059.9	270.1	27.0
Burro Chief	5AW	Roads 6, 7, 11E, 12B, 30A, 30B	14,902	200,000	673.4	28.1	158.4	373.8	95.3	9.5	8,970	2,286	229	1,323.1	337.2	33.7

Haul Road	Total Length of Road	Max Haulage Rate	Max No. of	Max No. of	VMT/hr*	Uncontro	olled Hourly Emissi (lb/hr)	ion Rates	Uncontr	olled Daily Emissio (lb/day)	on Rates	Uncontro	olled Annual Emissi (ton/yr)	on Rates
naurnoau	(ft, one-way)	(tons/day)	Trips/Day	Trips/Hour	•••••	TSP	PM10	PM _{2.5}	TSP	PM10	PM _{2.5}	TSP	PM10	PM _{2.5}
Road4	2,809	200,000	673.4	28.1	29.9	629.1	160.3	16.0	15,098	3,848	385	2,226.9	567.6	56.8
Road4A	885	200,000	673.4	28.1	9.4	198.1	50.5	5.0	4,754	1,212	121	701.2	178.7	17.9
Road5A	6,321	200,000	673.4	28.1	67.2	1,415.6	360.8	36.1	33,974	8,659	866	5,011.1	1,277.2	127.7
Road5B	3,501	200,000	673.4	28.1	37.2	783.9	199.8	20.0	18,815	4,795	480	2,775.2	707.3	70.7
Road5C	3,320	200,000	673.4	28.1	35.3	743.5	189.5	18.9	17,843	4,548	455	2,631.8	670.8	67.1
Road6	2,927	200,000	673.4	28.1	31.1	655.4	167.0	16.7	15,731	4,009	401	2,320.3	591.3	59.1
Road7	3,729	200,000	673.4	28.1	39.6	835.2	212.8	21.3	20,044	5,108	511	2,956.4	753.5	75.3
Road8	1,255	200,000	673.4	28.1	13.3	281.0	71.6	7.2	6,745	1,719	172	994.8	253.5	25.4
Road9	4,112	200,000	673.4	28.1	43.7	920.9	234.7	23.5	22,101	5,633	563	3,260.0	830.8	83.1
Road10	6,905	200,000	673.4	28.1	73.4	1,546.3	394.1	39.4	37,111	9,458	946	5,473.8	1,395.1	139.5
Road11	3,625	200,000	673.4	28.1	38.5	811.8	206.9	20.7	19,483	4,965	497	2,873.7	732.4	73.2
Road11A	714	200,000	673.4	28.1	7.6	159.8	40.7	4.1	3,835	977	98	565.7	144.2	14.4
Road11B2	1,306	200,000	673.4	28.1	13.9	292.6	74.6	7.5	7,022	1,790	179	1,035.7	264.0	26.4
Road11C	3,010	200,000	673.4	28.1	32.0	674.2	171.8	17.2	16,180	4,124	412	2,386.6	608.3	60.8
Road11D	1,683	200,000	673.4	28.1	17.9	377.0	96.1	9.6	9,048	2,306	231	1,334.5	340.1	34.0
Road11E	1,191	200,000	673.4	28.1	12.7	266.7	68.0	6.8	6,401	1,631	163	944.1	240.6	24.1
Road11F	1,158	200,000	673.4	28.1	12.3	259.3	66.1	6.6	6,223	1,586	159	917.9	233.9	23.4
Road11G	1,847	200,000	673.4	28.1	19.6	413.6	105.4	10.5	9,927	2,530	253	1,464.3	373.2	37.3
Road12B	2,466	200,000	673.4	28.1	26.2	552.1	140.7	14.1	13,251	3,377	338	1,954.6	498.1	49.8
Road13	2,905	200,000	673.4	28.1	30.9	650.6	165.8	16.6	15,614	3,979	398	2,303.1	587.0	58.7
Road13A	4,311	200,000	673.4	28.1	45.8	965.3	246.0	24.6	23,168	5,905	590	3,417.3	870.9	87.1
Road13B	1,533	200,000	673.4	28.1	16.3	343.3	87.5	8.7	8,238	2,100	210	1,215.1	309.7	31.0
Road15	2,689	200,000	673.4	28.1	28.6	602.2	153.5	15.3	14,454	3,684	368	2,132.0	543.4	54.3
Road16A	6,397	200,000	673.4	28.1	68.0	1,432.5	365.1	36.5	34,379	8,762	876	5,071.0	1,292.4	129.2
Road16B	1,587	200,000	673.4	28.1	16.9	355.3	90.6	9.1	8,527	2,173	217	1,257.8	320.6	32.1
Road17	3,498	200,000	673.4	28.1	37.2	783.4	199.7	20.0	18,802	4,792	479	2,773.3	706.8	70.7
Road18	8,193	200,000	673.4	28.1	87.1	1,834.8	467.6	46.8	44,035	11,223	1,122	6,495.2	1,655.4	165.5
Road18C	1,083	200,000	673.4	28.1	11.5	242.5	61.8	6.2	5,821	1,483	148	858.6	218.8	21.9
Road18D	3,290	90,000	303.0	12.6	15.7	331.5	84.5	8.4	7,957	2,028	203	1,173.7	299.1	29.9
Road18E	5,156	90,000	303.0	12.6	24.7	519.6	132.4	13.2	12,471	3,178	318	1,839.4	468.8	46.9
Road18F	917	200,000	673.4	28.1	9.7	205.4	52.4	5.2	4,930	1,257	126	727.2	185.3	18.5
Road18G	1,030	90,000	303.0	12.6	4.9	103.8	26.5	2.6	2,492	635	64	367.5	93.7	9.4
Road18H	4,052	80,000	269.4	11.2	17.2	362.9	92.5	9.3	8,711	2,220	222	1,284.8	327.5	32.7
Road18I	512	200,000	673.4	28.1	5.4	114.7	29.2	2.9	2,753	702	70	406.0	103.5	10.3
Road18J	1,497	200,000	673.4	28.1	15.9	335.3	85.4	8.5	8,046	2,051	205	1,186.8	302.5	30.2
Road19	6,258	200,000	673.4	28.1	66.5	1,401.3	357.1	35.7	33,632	8,571	857	4,960.7	1,264.3	126.4
Road19B	5,724	200,000	673.4	28.1	60.8	1,281.9	326.7	32.7	30,765	7,841	784	4,537.8	1,156.5	115.7
Road20	5,737	200,000	673.4	28.1	61.0	1,284.6	327.4	32.7	30,832	7,858	786	4,547.7	1,159.0	115.9
Road20A	1,107	200,000	673.4	28.1	11.8	247.9	63.2	6.3	5,949	1,516	152	877.5	223.7	22.4
Road21	6,121	200,000	673.4	28.1	65.1	1,370.8	349.4	34.9	32,900	8,385	838	4,852.7	1,236.8	123.7
Road22	3,001	200,000	673.4	28.1	31.9	672.0	171.3	17.1	16,129	4,111	411	2,379.0	606.3	60.6
Road30	5,493	200,000	673.4	28.1	58.4	1,230.1	313.5	31.4	29,523	7,524	752	4,354.7	1,109.8	111.0
Road30A	1,895	200,000	673.4	28.1	20.1	424.3	108.1	10.8	10,183	2,595	260	1,502.0	382.8	38.3
Road30B	2,695	200,000	673.4	28.1	28.6	603.4	153.8	15.4	14,482	3,691	369	2,136.1	544.4	54.4
Road30C	518	200,000	673.4	28.1	5.5	116.1	29.6	3.0	2,786	710	71	410.9	104.7	10.5

Table 5: Individual Mining Haul Road Uncontrolled Emissions

Haul Road	I Mining Haul Road Cont Total Length of Road		Max No. of	Max No. of	VMT/hr*	Control	led Hourly Emissic (lb/hr)	on Rates	Contro	lled Daily Emission (lb/day)	n Rates	Controll	led Annual Emissio (ton/yr)	on Rates
Haurkoau	(ft, one-way)	(tons/day)	Trips/Day	Trips/Hour	VIVIT/III	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Road4	2,809	200,000	673.4	28.1	29.9	70.5	18.0	1.8	1,691	431	43	249.4	63.6	6.4
Road4A	885	200,000	673.4	28.1	9.4	22.2	5.7	0.6	532	136	14	78.5	20.0	2.0
Road5A	6,321	200,000	673.4	28.1	67.2	158.5	40.4	4.0	3,805	970	97	561.2	143.0	14.3
Road5B	3,501	200,000	673.4	28.1	37.2	87.8	22.4	2.2	2,107	537	54	310.8	79.2	7.9
Road5C	3,320	200,000	673.4	28.1	35.3	83.3	21.2	2.1	1,998	509	51	294.8	75.1	7.5
Road6	2,927	200,000	673.4	28.1	31.1	73.4	18.7	1.9	1,762	449	45	259.9	66.2	6.6
Road7	3,729	200,000	673.4	28.1	39.6	93.5	23.8	2.4	2,245	572	57	331.1	84.4	8.4
Road8	1,255	200,000	673.4	28.1	13.3	31.5	8.0	0.8	755	193	19	111.4	28.4	2.8
Road9	4,112	200,000	673.4	28.1	43.7	103.1	26.3	2.6	2,475	631	63	365.1	93.1	9.3
Road10	6,905	200,000	673.4	28.1	73.4	173.2	44.1	4.4	4,156	1,059	106	613.1	156.2	15.6
Road11	3,625	200,000	673.4	28.1	38.5	90.9	23.2	2.3	2,182	556	56	321.9	82.0	8.2
Road11A	714	200,000	673.4	28.1	7.6	17.9	4.6	0.5	430	109	11	63.4	16.1	1.6
Road11B2	1,306	200,000	673.4	28.1	13.9	32.8	8.4	0.8	786	200	20	116.0	29.6	3.0
Road11C	3,010	200,000	673.4	28.1	32.0	75.5	19.2	1.9	1,812	462	46	267.3	68.1	6.8
Road11D	1,683	200,000	673.4	28.1	17.9	42.2	10.8	1.1	1,013	258	26	149.5	38.1	3.8
Road11E	1,191	200,000	673.4	28.1	12.7	29.9	7.6	0.8	717	183	18	105.7	26.9	2.7
Road11F	1,158	200,000	673.4	28.1	12.3	29.0	7.4	0.7	697	178	18	102.8	26.2	2.6
Road11G	1,847	200,000	673.4	28.1	19.6	46.3	11.8	1.2	1,112	283	28	164.0	41.8	4.2
Road12B	2,466	200,000	673.4	28.1	26.2	61.8	15.8	1.6	1,484	378	38	218.9	55.8	5.6
Road13	2,905	200,000	673.4	28.1	30.9	72.9	18.6	1.9	1,749	446	45	257.9	65.7	6.6
Road13A	4,311	200,000	673.4	28.1	45.8	108.1	27.6	2.8	2,595	661	66	382.7	97.5	9.8
Road13B	1,533	200,000	673.4	28.1	16.3	38.4	9.8	1.0	923	235	24	136.1	34.7	3.5
Road15	2,689	200,000	673.4	28.1	28.6	67.5	17.2	1.7	1,619	413	41	238.8	60.9	6.1
Road16A	6,397	200,000	673.4	28.1	68.0	160.4	40.9	4.1	3,850	981	98	567.9	144.7	14.5
Road16B	1,587	200,000	673.4	28.1	16.9	39.8	10.1	1.0	955	243	24	140.9	35.9	3.6
Road17	3,498	200,000	673.4	28.1	37.2	87.7	22.4	2.2	2,106	537	54	310.6	79.2	7.9
Road18	8,193	200,000	673.4	28.1	87.1	205.5	52.4	5.2	4,932	1,257	126	727.5	185.4	18.5
Road18C	1,083	200,000	673.4	28.1	11.5	27.2	6.9	0.7	652	166	17	96.2	24.5	2.5
Road18D	3,290	90,000	303.0	12.6	15.7	37.1	9.5	0.9	891	227	23	131.5	33.5	3.4
Road18E	5,156	90,000	303.0	12.6	24.7	58.2	14.8	1.5	1,397	356	36	206.0	52.5	5.3
Road18F	917	200,000	673.4	28.1	9.7	23.0	5.9	0.6	552	141	14	81.4	20.8	2.1
Road18G	1,030	90,000	303.0	12.6	4.9	11.6	3.0	0.3	279	71	7	41.2	10.5	1.0
Road18H	4,052	80,000	269.4	11.2	17.2	40.7	10.4	1.0	976	249	25	143.9	36.7	3.7
Road18I	512	200,000	673.4	28.1	5.4	12.8	3.3	0.3	308	79	8	45.5	11.6	1.2
Road18J	1,497	200,000	673.4	28.1	15.9	37.5	9.6	1.0	901	230	23	132.9	33.9	3.4
Road19	6,258	200,000	673.4	28.1	66.5	156.9	40.0	4.0	3,767	960	96	555.6	141.6	14.2
Road19B	5,724	200,000	673.4	28.1	60.8	143.6	36.6	3.7	3,446	878	88	508.2	129.5	13.0
Road20	5,737	200,000	673.4	28.1	61.0	143.9	36.7	3.7	3,453	880	88	509.3	129.8	13.0
Road20A	1,107	200,000	673.4	28.1	11.8	27.8	7.1	0.7	666	170	17	98.3	25.0	2.5
Road21	6,121	200,000	673.4	28.1	65.1	153.5	39.1	3.9	3,685	939	94	543.5	138.5	13.9
Road22	3,001	200,000	673.4	28.1	31.9	75.3	19.2	1.9	1,806	460	46	266.5	67.9	6.8
Road30	5,493	200,000	673.4	28.1	58.4	137.8	35.1	3.5	3,307	843	84	487.7	124.3	12.4
Road30A	1,895	200,000	673.4	28.1	20.1	47.5	12.1	1.2	1,141	291	29	168.2	42.9	4.3
Road30B	2,695	200,000	673.4	28.1	28.6	67.6	17.2	1.7	1,622	413	41	239.2	61.0	6.1
Road30C	518	200,000	673.4	28.1	5.5	13.0	3.3	0.3	312	80	8	46.0	11.7	1.2

Table 6: Individual Mining Haul Road Controlled Emissions

Freeport-McMoRan Tyrone Inc. Reclamation Material Handling Emissions

Table 1: Input Parameters

	PM ₁₀	1.60E-05	lb/ton ¹			
Uncontrolled Emission	Ratio of PM _{2.5} / PM ₁₀	0.15	2			
Factors	PM _{2.5}	2.40E-06 lb/ton ²				
ractors	Ratio of TSP / PM ₁₀	2.61 ³				
	TSP	4.18E-05	lb/ton ³			
	24	hours/day				
Hours of Operation	365	days/year				
	8,760	hours/year				

Footnotes:

¹ The PM₁₀ emission factor is based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing Operations (August 2004) for Truck Unloading - Fragmented Stone. The Truck Unloading emission factor is used for truck loading and truck unloading since the quantity of emissions from unloading would essentially be the same as loading. No TSP or PM_{2.5} emission factors for Truck Unloading are provided in the AP-42 table.

² The PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5} / PM₁₀ as recommended in the AP-42 Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors (November 2006).

³ An uncontrolled TSP emission factor was calculated based on an average of the TSP/PM₁₀ ratios using the available uncontrolled emission factors in AP-42 Table 11.19.2-2. The associated ratios are: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). The average of these ratios is 2.61.

Table 2: Maximum Emissions from Reclamation Material Handling

	Maximum	Operational Scenar	io									
Pollutant	Potenti	al Emission Rates ¹										
	(lb/hr)	(lb/day)	(ton/yr)									
	Uncontrolled and Controlled ²											
TSP	0.12	2.92	0.53									
PM ₁₀	0.047	1.12	0.20									
PM _{2.5}	0.0070	0.17	0.031									

Footnotes:

¹ The maximum emissions are based on the maximum of the sum of both reclamation areas operating within each active mining scenario.

² Uncontrolled emissions equal controlled emissions for these activities.

Reclamation Area	Maximum Reclamation Rates	No. of Handling	Maximu	m Hourly Emissi (lb/hr) ²	on Rates	Maximu	um Daily Emissio (Ib/day) ²	on Rates	Maximum Annual Emission Rates (ton/yr) ²		
	(tons/day)	Instances [*]	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Scenario 2 - Mohawk + C	opper Mountain				•		•		•	•	
P-Plant	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.072	0.23	0.088	0.013
2A/2B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.096	0.30	0.12	0.018
Scenario 3 - Mohawk + Li	ittle Rock 6				•		•		•	•	
1A/1B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.096	0.30	0.12	0.018
Thickener	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.072	0.23	0.09	0.013
Scenario 4 - Mohawk + C	opper Leach				•		•		•	•	
1A/1B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.096	0.30	0.12	0.018
Thickener	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.072	0.23	0.09	0.013
Scenario 5 - Burro Chief +	Little Rock 6				•		•		•	•	
Launder Line	5,000	2	0.017	0.007	0.0010	0.42	0.16	0.024	0.076	0.029	0.0044
2A/2B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.096	0.30	0.12	0.018
Scenario 6 - Burro Chief +	Copper Leach				•		•		•	•	-
Launder Line	5,000	2	0.017	0.007	0.0010	0.42	0.16	0.024	0.076	0.029	0.0044
2A/2B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.096	0.30	0.12	0.018
Scenario 7 - Mohawk + B	urro Chief										
CLW Stockpile	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.072	0.23	0.088	0.013
2A/2B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.096	0.30	0.12	0.018

Table 3: Scenario-Specific Reclamation Material Handling Emission Rates

Footnotes:

¹ Handling instances consist of truck loading at the material origination location and truck unloading at the material destination location (i.e., the reclamation area).

² Uncontrolled emissions are equal to controlled emissions for these activities.

Table 4: Individual Reclamation Material Handling Emissions

Reclamation Area	Maximum Reclamation Rates Instances ¹		Но	urly Emission Ra (lb/hr) ²	tes	Da	aily Emission Rat (Ib/day) ²	ies	Annual Emission Rates (ton/yr) ²			
	(tons/day)	Instances	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	
Launder Line	5,000	2	0.017	0.007	0.0010	0.42	0.16	0.02	0.08	0.03	0.004	
Thickener	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.07	0.23	0.09	0.013	
P-Plant	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.07	0.23	0.09	0.013	
1A/1B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.10	0.30	0.12	0.018	
2A/2B Stockpile	20,000	2	0.070	0.027	0.0040	1.67	0.64	0.10	0.30	0.12	0.018	
CLW Stockpile	15,000	2	0.052	0.020	0.0030	1.25	0.48	0.07	0.23	0.09	0.013	

Footnotes:

 1 Handling instances consist of truck loading at the material origination location and truck unloading at the reclamation area.

² Uncontrolled emissions are equal to controlled emissions for these activities.

Freeport-McMoRan Tyrone Inc. Reclamation Haul Road Emissions

Table 1: Input Parameters

	Truck T	уре	Small Trucks ¹	Large Trucks	
Reclamation Haul	Empty Vehicle V	Veight (tons)	33.0	170.6	
	Max Load Capa	acity (tons)	37.6	297.0	
Truck Inputs	Full Vehicle We	eight (tons)	68.5	467.6	
	Average Vehicle V	Veight (tons) ²	50.7	319.1	
	Silt Conte	nt (%)	4.8		
	Control Effici	ency (%) ³	88.8	3	
Reclamation Haul	No. of Precip	. Days, P ⁴	70		
Road Inputs	Hours of Operat	ion (hrs/day)	24		
	Hours of Operation	on (days/year)	365	5	
	Hours of Opera	tion (hrs/yr)	8,76	0	
	Constant	TSP	PM ₁₀	PM _{2.5}	
Emission Factor	k (lb/VMT)	4.9	1.5	0.15	
Equation Inputs ⁵	а	0.7	0.9	0.9	
	b	0.45	0.45	0.45	
	Pollutant	Smal	ll Trucks	Large T	rucks
Calculated Emission	Foliutalit	Uncontrolled	Controlled	Uncontrolled	Controlled
Factors	TSP (lb/VMT)	9.21	1.03	21.07	2.36
ractors	PM ₁₀ (lb/VMT)	2.35	0.26	5.37	0.60
	PM _{2.5} (lb/VMT)	0.23	0.026	0.54	0.060

Footnotes:

¹ Both Cat 730s and Cat 769s small vehicles can operate on the reclamation roads, so for the small vehicle routes, we are representing the emissions based on an average of the Cat 730 and Cat 769 specifications.

² The Average Vehicle Weight is based on the haul trucks being full traveling in one direction and being empty traveling in the other direction.

³ The combined control efficiency of 88.8% is based on 80% control for base course and watering (NMED guidance, January 1, 2017) and 44% control for an average speed limit of 25 mph (WRAP Fugitive Dust Handbook, September 7, 2006).

⁴ This refers to the number of days in a year with at least 0.01 inches of precipitation and is based on Figure 13.2.2-1 in AP-42. This factor is only taken into account in the annual emissions calculation.

⁵ These emission equation constants are provided in Table 13.2.2-2 in AP-42 for Industrial Roads (Equation 1a).

Table 2: Maximum Emissions from Reclamation Hauling

	Maximu	<u>im</u> Operational So	enario
Pollutant	Pote	ential Emission Ra	tes
	(lb/hr)	(lb/day)	(ton/yr)
	Uncontro	lled	
TSP	2,485.50	59,651.99	8,798.67
PM ₁₀	633.46	15,203.10	2,242.46
PM _{2.5}	63.35	1,520.31	224.25
	Controll	ed	
TSP	278.38	6,681.02	985.45
PM ₁₀	70.95	1,702.75	251.16
PM _{2.5}	7.09	170.27	25.12

Footnotes:

¹ The maximum emissions are based on the maximum of the sum of both reclamation areas operating within each active mining scenario.

Table 3: Scenario-Specific Reclamation Hauling Uncontrolled Emission Rates

				Manimum												
		Total Length of		Maximum				Maximum U	ncontrolled Ho	urly Emission	Maximum U	ncontrolled Da	aily Emission	Maximum Un	controlled An	nual Emission
Reclamation Area	Road Numbers	Road	Vehicle Type on Reclamation Route	Reclamation Rates	Max No. of Trips/Day	Max No. of Trips/Hour	VMT/hr		Rates (lb/hr) ²		I	Rates (lb/day)	2	1	Rates (ton/yr) ²	2
		(ft, one-way)	Reclamation Route	(tons/day)	TTIps/ Day	Day Thps/Hour		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Scenario 2 - Mohawk +	+ Copper Mountain															
P-Plant	RECPPR1,2,3	3,947	Small	15,000	398.9	16.6	24.9	228.9	58.3	5.8	5,494.4	1,400.3	140.0	810.4	206.5	20.7
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	407.4	103.8	10.4	9,776.9	2,491.8	249.2	1,442.1	367.5	36.8
Scenario 3 - Mohawk +	+ Little Rock 6															
Thickener	RECTHR1,3	2,759	Small	15,000	398.9	16.6	17.4	160.0	40.8	4.1	3,840.5	978.8	97.9	566.5	144.4	14.4
1A/1B Stockpile	REC1ALR1	12,877	Large	20,000	67.3	2.8	13.7	288.4	73.5	7.3	6,920.8	1,763.9	176.4	1,020.8	260.2	26.0
Scenario 4 - Mohawk +	+ Copper Leach															
Thickener	RECTHR1,3	2,759	Small	15,000	398.9	16.6	17.4	160.0	40.8	4.1	3,840.5	978.8	97.9	566.5	144.4	14.4
1A/1B Stockpile	REC1ALR1	12,877	Large	20,000	67.3	2.8	13.7	288.4	73.5	7.3	6,920.8	1,763.9	176.4	1,020.8	260.2	26.0
Scenario 5 - Burro Chie	ef + Little Rock 6															
Launder Line	RECLLR1,2	23,261	Small	5,000	133.0	5.5	48.8	449.7	114.6	11.5	10,793.0	2,750.7	275.1	1,592.0	405.7	40.6
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	407.4	103.8	10.4	9,776.9	2,491.8	249.2	1,442.1	367.5	36.8
Scenario 6 - Burro Chie	ef + Copper Leach															
Launder Line	RECLLR1,2	23,261	Small	5,000	133.0	5.5	48.8	449.7	114.6	11.5	10,793.0	2,750.7	275.1	1,592.0	405.7	40.6
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	407.4	103.8	10.4	9,776.9	2,491.8	249.2	1,442.1	367.5	36.8
Scenario 7 - Mohawk +	+ Burro Chief															
CLW Stockpile	RECCLWR2,6	35,830	Small	15,000	398.9	16.6	225.6	2,078.1	529.6	53.0	49,875.1	12,711.3	1,271.1	7,356.6	1,874.9	187.5
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	407.4	103.8	10.4	9,776.9	2,491.8	249.2	1,442.1	367.5	36.8

Table 4: Scenario-Specific Reclamation Hauling Controlled Emission Rates

Reclamation Area Road Numbers	Total Length of Road	Vehicle Type on Reclamation Route	Maximum Reclamation Rates	Max No. of Trips/Day	Max No. of Trips/Hour	VMT/hr	Maximum	Controlled Hou Rates (lb/hr) ²			Controlled Dai Rates (lb/day)	.'		ontrolled Ann Rates (ton/yr)		
		(ft, one-way)	Reclamation Noute	(tons/day)	TTP3/Day	Trips/Hour		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Scenario 2 - Mohawk -	+ Copper Mountain															
P-Plant	RECPPR1,2,3	3,947	Small	15,000	398.9	16.6	24.9	25.6	6.5	0.7	615.4	156.8	15.7	90.8	23.1	2.3
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	45.6	11.6	1.2	1,095.0	279.1	27.9	161.5	41.2	4.1
Scenario 3 - Mohawk -	+ Little Rock 6															
Thickener	RECTHR1,3	2,759	Small	15,000	398.9	16.6	17.4	17.9	4.6	0.5	430.1	109.6	11.0	63.4	16.2	1.6
1A/1B Stockpile	REC1ALR1	12,877	Large	20,000	67.3	2.8	13.7	32.3	8.2	0.8	775.1	197.6	19.8	114.3	29.1	2.9
Scenario 4 - Mohawk -	+ Copper Leach															
Thickener	RECTHR1,3	2,759	Small	15,000	398.9	16.6	17.4	17.9	4.6	0.5	430.1	109.6	11.0	63.4	16.2	1.6
1A/1B Stockpile	REC1ALR1	12,877	Large	20,000	67.3	2.8	13.7	32.3	8.2	0.8	775.1	197.6	19.8	114.3	29.1	2.9
Scenario 5 - Burro Chie	ef + Little Rock 6															
Launder Line	RECLLR1,2	23,261	Small	5,000	133.0	5.5	48.8	50.4	12.8	1.3	1,208.8	308.1	30.8	178.3	45.4	4.5
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	45.6	11.6	1.2	1,095.0	279.1	27.9	161.5	41.2	4.1
Scenario 6 - Burro Chie	ef + Copper Leach															
Launder Line	RECLLR1,2	23,261	Small	5,000	133.0	5.5	48.8	50.4	12.8	1.3	1,208.8	308.1	30.8	178.3	45.4	4.5
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	45.6	11.6	1.2	1,095.0	279.1	27.9	161.5	41.2	4.1
Scenario 7 - Mohawk -	+ Burro Chief															
CLW Stockpile	RECCLWR2,6	35,830	Small	15,000	398.9	16.6	225.6	232.8	59.3	5.9	5,586.0	1,423.7	142.4	823.9	210.0	21.0
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	45.6	11.6	1.2	1,095.0	279.1	27.9	161.5	41.2	4.1

Table 5: Individual Reclamation Haul Road Uncontrolled Emissions

Reclamation Area	Road Number	Total Length of Road	Vehicle Type on	Maximum Reclamation	Max No. of	Max No. of	VMT/hr	Uncontroll	ed Hourly Emi (lb/hr)	ssion Rates	Uncontrol	led Daily Emis (lb/day)	sion Rates	Uncontroll	ed Annual Emi (ton/yr)	ssion Rates
		(ft, one-way)	Reclamation Route	Rates (tons/day)	Trips/Day		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	
Launder Line	RECLLR1,2	23,261	Small	5,000	133.0	5.5	48.8	449.7	114.6	11.5	10,793.0	2,750.7	275.1	1,592.0	405.7	40.6
Launder Line	RECLLR1,3	52,068	Siliali	5,000	133.0	5.5	109.3	1,006.6	256.6	25.7	24,159.2	6,157.3	615.7	3,563.5	908.2	90.8
	RECTHR1,2	14,271		15,000	398.9	16.6	89.9	827.7	211.0	21.1	19,865.6	5,063.0	506.3	2,930.2	746.8	74.7
Thickener	RECTHR1,4	18,150	Small	15,000	398.9	16.6	114.3	1,052.7	268.3	26.8	25,265.0	6,439.1	643.9	3,726.6	949.8	95.0
	RECTHR1,3	2,759		15,000	398.9	16.6	17.4	160.0	40.8	4.1	3,840.5	978.8	97.9	566.5	144.4	14.4
	RECPPR1,2,3	3,947		15,000	398.9	16.6	24.9	228.9	58.3	5.8	5,494.4	1,400.3	140.0	810.4	206.5	20.7
P-Plant	RECPPR1,6,4,3	5,350	Small	15,000	398.9	16.6	33.7	310.3	79.1	7.9	7,447.7	1,898.1	189.8	1,098.5	280.0	28.0
	RECPPR1,6,5	11,185		15,000	398.9	16.6	70.4	648.7	165.3	16.5	15,569.0	3,968.0	396.8	2,296.4	585.3	58.5
1A/1B Stockpile	REC1ALR1	12,877	Large	20,000	67.3	2.8	13.7	288.4	73.5	7.3	6,920.8	1,763.9	176.4	1,020.8	260.2	26.0
TAY ID SLOCKPILE	REC1ASR1	7,849	Small (in-pit)	15,000	398.9	16.6	49.4	455.3	116.0	11.6	10,926.3	2,784.7	278.5	1,611.6	410.7	41.1
	REC2ALR1,3	8,099	Large	20,000	67.3	2.8	8.6	181.4	46.2	4.6	4,353.1	1,109.4	110.9	642.1	163.6	16.4
2A/2B Stockpile	REC2ALR1,2	18,191	Large	20,000	67.3	2.8	19.3	407.4	103.8	10.4	9,776.9	2,491.8	249.2	1,442.1	367.5	36.8
ZAJ ZD Stockpile	REC2ASR1,2	8,779	Small	15,000	398.9	16.6	55.3	509.2	129.8	13.0	12,219.7	3,114.3	311.4	1,802.4	459.4	45.9
	REC2ASR1,3	22,299	Siliali	15,000	398.9	16.6	140.4	1,293.3	329.6	33.0	31,039.8	7,910.9	791.1	4,578.4	1,166.9	116.7
	RECCLWR1	1,583		15,000	398.9	16.6	10.0	91.8	23.4	2.3	2,204.0	561.7	56.2	325.1	82.9	8.3
	RECCLWR2,4	22,310		15,000	398.9	16.6	140.5	1,294.0	329.8	33.0	31,054.9	7,914.8	791.5	4,580.6	1,167.4	116.7
	RECCLWR3,4	12,839		15,000	398.9	16.6	80.8	744.6	189.8	19.0	17,871.2	4,554.7	455.5	2,636.0	671.8	67.2
CLW Stockpile	RECCLWR2,5	21,613	Small	15,000	398.9	16.6	136.1	1,253.6	319.5	31.9	30,085.4	7,667.7	766.8	4,437.6	1,131.0	113.1
	RECCLWR3,5	12,142		15,000	398.9	16.6	76.5	704.2	179.5	17.9	16,901.6	4,307.6	430.8	2,493.0	635.4	63.5
	RECCLWR2,6	35,830	1 –	15,000	398.9	16.6	225.6	2,078.1	529.6	53.0	49,875.1	12,711.3	1,271.1	7,356.6	1,874.9	187.5
	RECCLWR3,6	26,359		15,000	398.9	16.6	166.0	1,528.8	389.6	39.0	36,691.4	9,351.3	935.1	5,412.0	1,379.3	137.9

Table 6: Individual Reclamation Haul Road Controlled Emissions

Reclamation Area	Road Number			Max Haulage Rate	Max No. of Trips/Day	Max No. of Trips/Hour	VMT/hr	Controlled H	ourly Emission	Rates (lb/hr)	Controlled Da	aily Emission R	ates (lb/day)	Controlle	d Annual Emis: (ton/yr)	sion Rates
		(ft, one-way)	Reclamation Route	(tons/day)	TTIPS/Day	mps/Hour		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Launder Line	RECLLR1,2	23,261	Small	5,000	133.0	5.5	48.8	50.4	12.8	1.3	1,208.8	308.1	30.8	178.3	45.4	4.5
Launder Line	RECLLR1,3	52,068	Silidii	5,000	133.0	5.5	109.3	112.7	28.7	2.9	2,705.8	689.6	69.0	399.1	101.7	10.2
	RECTHR1,2	14,271		15,000	398.9	16.6	89.9	92.7	23.6	2.4	2,224.9	567.1	56.7	328.2	83.6	8.4
Thickener	RECTHR1,4	18,150	Small	15,000	398.9	16.6	114.3	117.9	30.0	3.0	2,829.7	721.2	72.1	417.4	106.4	10.6
	RECTHR1,3	2,759		15,000	398.9	16.6	17.4	17.9	4.6	0.5	430.1	109.6	11.0	63.4	16.2	1.6
	RECPPR1,2,3	3,947		15,000	398.9	16.6	24.9	25.6	6.5	0.7	615.4	156.8	15.7	90.8	23.1	2.3
P-Plant	RECPPR1,6,4,3	5,350	Small	15,000	398.9	16.6	33.7	34.8	8.9	0.9	834.1	212.6	21.3	123.0	31.4	3.1
	RECPPR1,6,5	11,185		15,000	398.9	16.6	70.4	72.7	18.5	1.9	1,743.7	444.4	44.4	257.2	65.6	6.6
1A/1B Stockpile	REC1ALR1	12,877	Large	20,000	67.3	2.8	13.7	32.3	8.2	0.8	775.1	197.6	19.8	114.3	29.1	2.9
IA/ IB Stockpile	REC1ASR1	7,849	Small (in-pit)	15,000	398.9	16.6	49.4	51.0	13.0	1.3	1,223.7	311.9	31.2	180.5	46.0	4.6
	REC2ALR1,3	8,099	Large	20,000	67.3	2.8	8.6	20.3	5.2	0.5	487.5	124.3	12.4	71.9	18.3	1.8
2A/2B Stockpile	REC2ALR1,2	18,191	Laige	20,000	67.3	2.8	19.3	45.6	11.6	1.2	1,095.0	279.1	27.9	161.5	41.2	4.1
ZA/ZD Stockpile	REC2ASR1,2	8,779	Small	15,000	398.9	16.6	55.3	57.0	14.5	1.5	1,368.6	348.8	34.9	201.9	51.4	5.1
	REC2ASR1,3	22,299	Siliali	15,000	398.9	16.6	140.4	144.9	36.9	3.7	3,476.5	886.0	88.6	512.8	130.7	13.1
	RECCLWR1	1,583		15,000	398.9	16.6	10.0	10.3	2.6	0.3	246.8	62.9	6.3	36.4	9.3	0.9
	RECCLWR2,4	22,310		15,000	398.9	16.6	140.5	144.9	36.9	3.7	3,478.2	886.5	88.6	513.0	130.8	13.1
	RECCLWR3,4	12,839		15,000	398.9	16.6	80.8	83.4	21.3	2.1	2,001.6	510.1	51.0	295.2	75.2	7.5
CLW Stockpile	RECCLWR2,5	21,613	Small	15,000	398.9	16.6	136.1	140.4	35.8	3.6	3,369.6	858.8	85.9	497.0	126.7	12.7
	RECCLWR3,5	12,142		15,000	398.9	16.6	76.5	78.9	20.1	2.0	1,893.0	482.5	48.2	279.2	71.2	7.1
	RECCLWR2,6	35,830		15,000	398.9	16.6	225.6	232.8	59.3	5.9	5,586.0	1,423.7	142.4	823.9	210.0	21.0
	RECCLWR3,6	26,359		15,000	398.9	16.6	166.0	171.2	43.6	4.4	4,109.4	1,047.3	104.7	606.1	154.5	15.4

Freeport-McMoRan Tyrone Inc. Crushing and Screening Plant Material Handling Emissions

Table 1: Input Parameters

	Hourly Production Rate (tons/hour)	600
GCP-2 Quarrying,	Daily Operating Hours (hours/day)	12
Crushing, and Screening Facilities Operational	Daily Production Rate (tons/day)	7,200
Constraints (9/12/2006)	Annual Operating Hours (hours/year)	4,380
constraints (5/12/2000)	Annual Production Rate (tons/year)	2,628,000
	Particle Size Multiplier, k (TSP)	0.74
Aggregate Handling	Particle Size Multiplier, k (PM ₁₀)	0.35
Emission Factor Equation	Particle Size Multiplier, k (PM _{2.5})	0.053
Inputs ¹	Mean Wind Speed, U (mph) ²	7.6
	Material Moisture Content, M (%) ²	4.3

Footnotes:

¹ AP-42, Chapter 13.2.4, Equation 1 (November 2006). This is an uncontrolled emission factor equation.

² Historically used average wind speed and material moisture content.

Table 2: Maximum Crushing and Screening Material Handling Uncontrolled Emission Rates

Activity	Uncontrolled Emission Factors (Ib/ton)		Emission Factor	No. of Handling	Maximum U	ncontrolled Ho Rates (lb/hr)	urly Emission		Incontrolled Da Rates (lb/day)	•		ncontrolled An Rates (ton/yr)		
	TSP	PM ₁₀	PM _{2.5}	Reference	Reference Instances		PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Crushing	5.40E-03	2.40E-03	3.60E-04	1,2	2	6.48	2.88	0.43	77.76	34.56	5.18	14.19	6.31	0.95
Screening	2.50E-02	8.70E-03	1.31E-03	1,2	1	15.00	5.22	0.78	180.00	62.64	9.40	32.85	11.43	1.71
Conveyor Transfers	3.00E-03	1.10E-03	1.65E-04	1,2	8	14.40	5.28	0.79	172.80	63.36	9.50	31.54	11.56	1.73
Drop onto Pile	1.39E-03	6.59E-04	9.98E-05	3	6	5.01	2.37	0.36	60.17	28.46	4.31	10.98	5.19	0.79
	Total Uncontrolled Emiss		led Emissions =	40.89	15.75	2.37	490.73	189.02	28.39	89.56	34.50	5.18		

Emission Factor References:

1 AP-42, Chapter 11.19.2, Crushed Stone Processing Operations (August 2004).

2 The PM_{2.5} emission factor was calculated from the available PM₁₀ emission factors using the ratio of 0.15 PM_{2.5} / PM₁₀ as recommended in the AP-42 Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors (Nove 3 AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles, Equation 1 (November 2006).

Table 3: Maximum Crushing and Screening Material Handling Controlled Emission Rates

Activity	Controlled Emission Factors Activity (lb/ton)		Emission No. of M Factor Handling		Maximum Cor	trolled Hourly (lb/hr)	Emission Rates	Maximum Co	ntrolled Daily E (lb/day)	mission Rates	Maximum Con	trolled Annual (ton/yr)	Emission Rates	
	TSP	PM ₁₀	PM _{2.5}	Reference Instances		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Crushing	1.20E-03	5.40E-04	1.00E-04	1	2	1.44	0.65	0.12	17.28	7.78	1.44	3.15	1.42	0.26
Screening	2.20E-03	7.40E-04	5.00E-05	1	1	1.32	0.44	0.03	15.84	5.33	0.36	2.89	0.97	0.07
Conveyor Transfers	1.40E-04	4.60E-05	1.30E-05	1	8	0.67	0.22	0.06	8.06	2.65	0.75	1.47	0.48	0.14
Drop onto Pile	1.39E-03	6.59E-04	9.98E-05	2	6	5.01	2.37	0.36	60.17	28.46	4.31	10.98	5.19	0.79
			Total Control	led Emissions =	8.45	3.68	0.57	101.35	44.21	6.86	18.50	8.07	1.25	

Emission Factor References:

1 AP-42, Chapter 11.19.2, Crushed Stone Processing Operations (August 2004). Controls include wet suppression techniques.

2 AP-42, Chapter 13.2.4, Aggregate Handling and Storage Piles, Equation 1 (November 2006).

Freeport-McMoRan Tyrone Inc. Crushing and Screening Plant Haul Road Emissions

Table 1: Input Parameters

	Truck Ty	pe	Small Trucks ¹	Large Trucks
Crushing and	Empty Vehicle We	eight (tons)	33.0	170.6
Screening Plant Haul	Max Load Capac	tity (tons)	35.5	297.0
Truck Inputs	Full Vehicle Wei	ght (tons)	68.5	467.6
	Average Vehicle W	eight (tons) ²	184	1.9
	Silt Content	t (%)	4.	8
	Control Efficier	ncy (%) ³	88	.8
Crushing and	No. of Precip. I	Days, P ⁴	7	0
Screening Plant Haul Road Inputs	Hours of Operatio	n (hrs/day)	1	2
Koau inputs	Hours of Operation	(days/year)	36	55
	Hours of Operation	on (hrs/yr)	4,3	80
	Constant	TSP	PM ₁₀	PM _{2.5}
Emission Factor	k (lb/VMT)	4.9	1.5	0.15
Equation Inputs ⁵	а	0.7	0.9	0.9
	b	0.45	0.45	0.45
	Pollutant	Uncontrolled	Controlled	
Calculated Emission	TSP (lb/VMT)	16.48	1.85	
Factors	PM ₁₀ (lb/VMT)	4.20	0.47	
	PM _{2.5} (lb/VMT)	0.42	0.047	

Footnotes:

¹ Both Cat 730s and Cat 769s small trucks can haul material to the crushing and screening plant, so the average of the small truck capacities are used to represent the small trucks.

² AP-42 13.2.2 (Unpaved Roads) Equation 1a is applicable to industrial roads with a mean vehicle weight from 2 to 290 tons. The Average Vehicle Weight is based on the haul trucks being full traveling in one direction and being empty traveling in the other direction and 50% small haul trucks.

³ The combined control efficiency of 88.8% is based on 80% control for base course and watering (NMED guidance, January 1, 2017) and 44% control for an average speed limit of 25 mph (WRAP Fugitive Dust Handbook, September 7, 2006).

⁴ This refers to the number of days in a year with at least 0.01 inches of precipitation and is based on Figure 13.2.2-1 in AP-42. This factor is only taken into account in the annual emissions calculation.

⁵ These emission equation constants are provided in Table 13.2.2-2 in AP-42 for Industrial Roads (Equation 1a).

Table 2: Maximum Crushing and Screening Hauling Uncontrolled Emission Rates

Haul Road	Total Length of Road	Max Haulage Rate	Average No. of Trips/Day	Average No. of Trips/Hour	Average VMT/hr		n Uncontroll sion Rates (l	•		m Uncontrol ion Rates (lb	•		n Uncontroll ion Rates (to	
	(ft, one-way)	(tons/day)	Thps/ Day	Thps/Hour	VIVIT/III	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Crushing and														
Screening Plant (CSROADN)	3,690	7,200	43.3	3.6	5.0	83.15	21.19	2.12	997.81	254.30	25.43	147.18	37.51	3.75

Table 3: Maximum Crushing and Screening Hauling Controlled Emission Rates

Haul Road	Total Length of Road (ft, one-way)	Max Haulage Rate	Average No. of Trips/Day	Average No. of Trips/Hour	Average VMT/hr		ım Controlle sion Rates (l		Maximum C F	ontrolled Da lates (lb/day			m Controllec ion Rates (to	
	(ft, one-way)	(tons/day)	TTIps/ Day	mps/ Hour	vivi1/11	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Crushing and														
Screening Plant	3,690	7,200	43.3	3.6	5.0	9.31	2.37	0.24	111.75	28.48	2.85	16.48	4.20	0.42
(CSROADN)														

Freeport-McMoRan Tyrone Inc. GDF1 and GDF2 VOC and HAP Emissions

Table 1: Maximum VOC Emissions

	Tank Size		n Gasoline e Rate ¹	Maximum VO	OC Emissions ²
Emission Unit	(gal)	gal/month	gal/yr	Total Losses (ton/yr)	Total Losses (lb/hr)
GDF1	20,000	9,950	119,400	10.57	2.41
GDF2	2,000	9,950	119,400	1.70	0.39
			Total =	12 28	2 80

Footnotes:

¹ Based on an estimated maximum gasoline usage rate.

² Based on the GDF calculation methodology in AP-42 Chapter 7 (June 2020). Separate tables detailing the tank VOC emission calculations are provided.

Table 2: Gasoline HAP Constituents

Constituent	% by weight ¹
Benzene	0.35
n-Hexane	1.07
Toluene	3.59
o,m,p-Xylene	0.69
Ethylbenzene	0.18
2,2,4-Trimethylpentane	5.40

Footnotes:

¹ Based on the maximum of the SPECIATE 5.0 database HAP percentages for non-ethanol gasoline (2009 sampling data, profile no. 8762, gasoline headspace vapor, data quality "A") and 10% ethanol gasoline (2009 sampling data, profile no. 8763, gasoline headspace vapor, data quality "A") since Tyrone's gasoline can be 10% or less ethanol.

Table 3: Maximum HAP Emissions

Emission Unit	Benze	ene	n-H	exane	Tolu	iene	Xyl	ene	Ethylbe	nzene	2,2,4-Trime	thylpentane	Total	HAPs
	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr
GDF1	0.036	0.0083	0.11	0.026	0.38	0.087	0.073	0.017	0.019	0.0043	0.57	0.13	1.19	0.27
GDF2	0.0059	0.0013	0.018	0.0042	0.061	0.014	0.012	0.0027	0.0031	0.00070	0.092	0.021	0.19	0.044
Total	0.042	0.0097	0.13	0.030	0.44	0.10	0.084	0.019	0.022	0.0050	0.66	0.15	1.38	0.32

Footnotes:

¹ Based on applying the gasoline HAP constituent percentages in Table 2 to the total tank VOC emissions in Table 1.

Tyrone Mine VOC Emissions from GDF1 AP-42 Chapter 7 (June 2020)

Shell length Hs 28.3 feet This is actual length of the tan Shell diameter D 11.0 feet This is the actual width of the cylindrical shell. Shell radius Rs 5.5 feet Calculated radius Shell effective height H 6.6 feet Calculated effective height of the tan Shell effective diameter D 1 12 feet Calculated effective diameter of the cylindrical shell. Malmum licuid height H 8.6 feet Calculated effective diameter of the cylindrical shell. funnown@assume pict Average licuid height H 8.6 feet Avarage height of the licuid within the tan shell. funnown@assume pict Minimum licuid height H 0.00 feet Minimum height of the licuid within the tan shell. funnown@assume 0. Wording volume 201.1 gallons Calculated volume Calculated volume funnown@assume 0. feet Minimum height of the licuid within the tan shell. funnown@assume 0. Wording volume 201.1 gallons Calculated volume funnown@assume. funnown@assume. funnown@assume. </th <th></th> <th></th> <th>GDF1 (SPCC TYR 1061</th> <th>,</th> <th></th>			GDF1 (SPCC TYR 1061	,	
ank Summary Value Units Description Storage analposition Actual hours permitted 87000 Field Storage 77000 Actual hours permitted 87000 Storage analposition 17200 The storage analposition Actual hours permitted 87000 Nons year Calculated enlastoration 17200 VOC catacutated enlastoration 533 only Around 10/000 potentially released over a 12/2001h period. Appricial Properties of the Tank Value Units Description 100 Stell denoter 0 560 first Calculated endation of the storage Stell denoter 0 560 first Calculated endation of the storage Stell denoter 0 112 first Calculated endation of the storage More particle hours 0 112 first Calculated endation of the storage Stell condition 0 112 first Calculated first and any storage first and any storage More partial visit hour partial v	Descri	ption	Hori contal 20 000 Gallo	on Gasoline Tan⊡	
Flast type Calcoling (RVP 10) Select one Actual hours operator Type of Reit stored in the tuni: Actual hours operator 7.00 Nonry Syet Calcoling (RVP 10) Select one Potential throughput Throughput throughput Select one Potential throughput Throughput throughput Select one Potential throughput Throughput throughput Select one Potential throughput Select one Potential throughput	Location	(city)	Tyrone Mine (Tyrone	lew Me⊡ico)	
Flast type Calcoling (RVP 10) Select one Actual hours operator Type of Reit stored in the tuni: Actual hours operator 7.00 Nonry Syet Calcoling (RVP 10) Select one Potential throughput Throughput throughput Select one Potential throughput Throughput throughput Select one Potential throughput Throughput throughput Select one Potential throughput Select one Potential throughput					
Storage tail_position Addual hours operated 37:00 Sensity corr Potential throughput First end of structure. VOC calculated emissions 5.20 sonly Amount of VOCs potentially released over a 12 month period. VOC calculated emissions 5.20 sonly Amount of VOCs potentially released over a 12 month period. Hysical Properties of the Tank Value Units Description Shell denote the Shell denote	nk Summary		Value	Units	Description
Actual Tours operated Potential throughout Table 119.400 9.80/yr Cumber of hours the tan:: is used. VOC calculated emissions 5.2 0.87 tonylyr Ansunt of VOCs potentially released over a 12 month period. Voc potential emissions 5.2 0.87 tonylyr Calculated VOC emissions :: 2. *hysical Properties of the Tank Value Units Description Shell length 10 East This is the adual longth of the tan:: Calculated effective dameter Shell length 10 East This is the adual longth of the tan:: Calculated effective dameter Shell ength 10 East This is the adual longth of the linit within the tan::theil. If un:hown::assume at Average hird height Shell color shade 10 East Average height of the linit within the tan::theil. If un:hown::assume at Average anotal minimum emperior 201.1 Shell color shade East of 128 in AP.22 (Line 2020) Shell color shade East of 128 in AP.22 (Line 2020) East of 128 in AP.22 (Line 2020) Calculated advalue East of 128 in AP.22 (Line 2020) Shell color shade East Prime shade Shell color shade East of 128 in AP.22 (Line 2020) East of 128 in AP.21 (Line 202) 30 (Line 10) (Line 200) (Line 200) (Line 200) (Li	Fuel	l type	Gasoline (RVP 10)	select one	Type of fuel stored in the tan□
Potential throughput 19.400 gatlyr VOC calculated emissions VOC potential emissions 5.3 tonlyr Amount of VOCs potentially released over a 12/month period. Applicated Properties of the Tank Vate Units Description Shell leagh H 22.3 Feet This is a bacala with the cylindical allel. Shell readin R 6.5 Feet Calculated officities dualed the cylindical allel. Shell readin R 6.5 Feet Calculated officities dualed the cylindical allel. Shell readin R 6.5 Feet Calculated officities the allel within the tan	Storage tan⊡po	sition	Above	select one	Fi⊡ed roof structure.
VOC calculated emissions 5.2 (0.5) Onlyf tonlyf Amount of VOCs potentially released over a 12/month period. hysical Properties of the Tank Value Units Description This is adual length of the tan;; This is adual length of the tan;; This is adual length of the tan;; Shell length if is 5.5 Feet Calculated emissions Calculated emissions Shell length if is 5.5 Feet Calculated emissions Calculated emissions Shell emissions 0 11.0 Feet Calculated emissions Calculated emissions Shell contradue the intervent inte	Actual hours ope	rated	81760	hoursiyear	□umber of hours the tan is used.
V9C potential emissions 19.57 on/yr Calculated VOC emissions 2. hysical Properties of the Tank Value Units Description Shell diamet 0 11.0 Feet This is actual with of the opindrical shell. Shell diffective height 1 661 Calculated effective height 663 Shell effective height 1 661 Calculated effective height 10.22 Shell effective diameter 0 0.00 Feet Calculated effective height 10.12 Average field 1 0.00 Feet Calculated effective height 10.12 Calculated effective height 10.12 Calculated within the stanishell. If unit nown Tassure 9.2 Mainum hild height 6.00 Feet Calculated within the stanishell. If unit nown Tassure 9.2 Minimum hild height 6.00 Feet Calculated within the stanishell. If unit nown Tassure 9.2 Shell contains 7.10 Galotated volume Calculated within the stanishell. If unit nown Tassure 9.2 Paint staft and barptance 0.00 Galotated volume Calculated within the stanishell. If unit nown Tassure 9.2 Paint staft and barptance 0.01 darnen height of the fill within the stanishell within the stanishell. If unit nown Tassure 9.2 Paint staft and barptance 0.02	Potential throug	Jhput	119,400	gal/yr	
Voc potential emission 19.57 on/yr Calculated VOC emissions 2. hysical Properties of the Tank Value Units Description Shell endine 0 11.0 Feet This is edual length of the tan Shell effective hight 6.5. Feet Calculated effective hight of the tan Shell effective diameter 0 11.3.2 Feet Calculated effective hight of the tan Shell effective diameter 0.6.0 Feet Calculated effective hight of the tan Hom Conclusions and the tan Mariners 13.2. Feet Calculated within the tan Hom Conclusions and the tan					
Value Units Description Shell end, Shell diameter 11.0 Feet This is the actual length of the tam Shell and Shell and Shell diameter 0 15.5 Feet Calculated fieldive height height of the tam Shell and Shell diameter 0 15.12 Feet Calculated fieldive height of the tam Mailmum bidd height Average likid height Working volume 6.65 Feet Calculated fieldive height of the tam Mailmum bidd height Working volume 0.01 dimensionless Mailmum bied of the fieldive height of	VOC calculated emiss	sions	5.29	ton/yr	Amount of VOCs potentially released over a 12 month period.
Shell ends He 28.3 Feet This is actual length of the tan:: Shell reface to a shell and the data with of the cylindrical shell. 5.5 Feet Calculated radius Shell reface to a shell reface to a shell reface to a shell of the tan:: 6.5 Feet Calculated radius Shell reface to a shell reface to a shell reface to a shell of the tan:: 6.5 Feet Calculated effective dignets 10.0 Maintown in Lide heght H, 6.50 Feet Maintown in Lide heght H, 6.00 Feet Maintown in the tan:: shell. If un::hown::assume 0.2 Worting volume 20.3.1 galors Calculated volume Calculated volume Calculated volume Turnovers per year 7 6.0.2 dimensionless Calculated volume Calculated volume Paint solar absorption: Rad/Primer shade select one Tan::shell color and shear used to identify paint solar absorption column Paint solar absorption: Rad/Primer shade select one Tan::shell color and shear used to identify paint solar absorption: Vacuum setting Per 10.3.3 pressure setting is a value set of heat in the indicity. Pressure setting is a value set of heat indicity. Pressure setting Per Dering::::::::::::::::::::::::::::::::::::	VOC potential emiss	sions	10.57	ton/yr	Calculated VOC emissions 2.
Shell ender Pic 22.3 Feet This is actual length of the familian in the fa				_	
Shell damer D 11.0 feet This is the actual wide of the optimidical shell. Shell effective height disticut H 6.5 feet Calculated effective dignets of the optimidical shell. Mainum Euch dight H 8.6 feet Calculated effective dignets of the optimidical shell. Mainum Euch dight H 8.6 feet Mainum height of the Euch within the tam_shell. If unchown assume of the optimidical shell. Mainum Euch dight H 6.0 Good Feet Calculated volume Worting volume 20.31 galon Calculated volume Calculated volume Turnovers per year Red Primer shead select one Tam_condition is used to identify paint solar absorptance. Paint solar absorptance Period 0.03 psig Breater water shead to identify paint solar absorptance. Parts solar absorptance Period Calculated volume Tam_condition is used to identify paint solar absorptance. Pressure setting Period 0.03 psig Breater water shead to identify paint solar absorptance. Pressure setting Period Calculated volume Tam_condition is used to identify paint solar absorptance. Vacum setting Period Calculated volume Tam_condition is used to identify paint solar absorptance. Vacum seteling <td< td=""><td>ysical Properties of the Tank</td><td></td><td>Value</td><td>Units</td><td>Description</td></td<>	ysical Properties of the Tank		Value	Units	Description
Shell effective height of the tam 5.5 Feet Calculated radius Shell effective diamet D. 11:12 Feet Calculated effective diameter of the cylindrical shell, Mailmun Hild height H, 6.50 Feet Maintain Hild height H, 6.50 Minimum Hild height H, 6.50 Feet Maintain Hild height H, 0.00 Worling volume D.01 dimensionless Calculated volume Calculated volume Worling volume D.01 dimensionless Calculated volume Calculated volume Turnovers per year D.01 dimensionless Calculated volume Calculated volume Pessure setting Pain 10.03 paing Beact one TamE wheil color and beact are used to identify paint solar absorbing radiant ener Average annual maintrum temporature TamE wheil color and beact are used to identify paint solar absorbing radiant ener TamE wheil color and beact are used to identify paint solar absorbing radiant ener Average annual maintrum temporature TamE wheil color and beact are used to identify paint solar absorbing radiant ener TamE wheil color and beact are used to identify paint solar absorbing radiant ener Average annual maintrum tempo	Shell length	H_{S}	28.3	feet	This is actual length of the tan□
Shell effective fameter 6 6 Calculated effective diameter of the cylindrical shell. If unDrownBaseume pit Average field the stander of the cylindrical shell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell of the ILiad within the tamBell of the ILiad within the tamBell. If unDrownBaseume pit Average shelph of the ILiad within the tamBell of tamBell of the ILiad within the tamBell of tamBell of the ILiad within the tamBell of the ILiad within the tamBell of tamBell of the ILiad within the tamBell of tamBell of the ILiad within the tamBell of	Shell diameter	D	11.0	feet	This is the actual width of the cylindrical shell.
Shell effective diameter D 11.12 Feet Calculated effective diameter of the cylindrical shell. Maintom Rical height H, 8.60 Feet Maintom height of the ILidd within the tancishell. If unchown assume p.2 Maintom Rical height H, 0.00 Feet Maintom height of the ILidd within the tancishell. If unchown assume p.2 Working volume 2013:1 galons Calculated volume Calculated volume Working volume 5.0 dimensionless Calculated volume Calculated volume Working volume 0.3 dimensionless Calculated volume Calculated volume Paint solar absorptance. 0.3 dimensionless Insert value (fon table 7.16, Paint effectiveness in absorptance. Paint solar absorptance. 0.33 psig Breather vent pressure is a reading from the tancimonitoring system. Kesther Data Value Units Description Average annual maintemperature T ₁₀ 76 Average over a calendar year. Average annual maintemperature T ₁₀ 10,572.3 b/yr Luston 13 Average over a calendar year. 71,6 10,572.3 b/yr Luston 13 Average over a calendar year. 71,6 10,572.3 b/yr Luston 13 Average overta calendar year. 71,2 10,572.3	Shell radius	R_s	5.5	feet	Calculated radius
Mailman Flick height H_ 8.60 rest Average height of the FLick within the ani-shell. If un-hown: Easure D 2. Minimum Flick height H_ 5.00 feet Average height of the FLick within the ani-shell. If un-hown: Easure D 2. Working volume 20.11 galons Calculated volume Calculated volume Turnovers privar 5.0 dimensionless Turnovers privar 5.0 Shell coordition Aged sket one TaniBook of the fLick within the ani-shell. If un-hown: Easure 20. Shell coordition Aged sket one TaniBook of the fLick within the ani-shell. If un-hown: Easure 20. Paint solar absorption: Priv 0.03 priv TaniBook of the fLick within the ani-shell. If un-hown Easure 20. Vector absorption: Priv 0.03 priv TaniBook of the fLick within the ani-shell. If un-hown Easure 20. Average annual mailmin temperature: Tac. 10.2 the fLick within the ani-shell. If un-hown Easure 20. Average annual mailmin temperature: Tac. 10.2 the fLick within the ani-shell. If un-hown Easure 20. Average annual mailmin temperature: Tac. 10.2 the fLick within the ani-shell. If un-hown Easure 20. Average annual mai	Shell effective height	H_{\Box}	8.6	feet	Calculated effective height of the tan□
Average Haid height H, Mirimum Haidh eight H, Worling volume Turnovers per year 5.50 feet Average height of the Hild within the tanishell. If un nononitasume D. Calculated volume Calculated	Shell effective diameter	D_{\Box}	1∟□2	feet	Calculated effective diameter of the cylindrical shell.
Average Haid height H, Mirimum Haidh eight H, Worling volume Turnovers per year 5.50 feet Average height of the Hild within the tanishell. If un nononitasume D. Calculated volume Calculated	Ma⊡mum li⊒uid height	$H_{L\square}$	8.6	feet	Ma imum height of the li uid within the tan shell. If un nown assume pito
Minimum Bind Height Height 0.00 Feet Minimum Bindling of the II.divid within the tamEshell. If unEncomEasume 0. Worling volume 5.0 dimensionless Claulated volume Shell color Bhade Aged select one TamEshell color Bhade Shell color Bhade Aged select one TamEshell color and shade are used to identify paint solar absorptance. Only abovegon Paint start absorptance Aged select one TamEshell color and shade are used to identify paint solar absorptance. Only abovegon Paint start absorptance Paint Start absorptance Distart absorptance TamEshell color and shade are used to identify paint solar absorptance. Only abovegon Paint start absorptance Paint Start absorptance Distart absorptance TamEshell color and shade are used to identify paint solar absorptance. Only abovegon Paint start absorptance Paint Start absorptance TamEshell color Bhade TamEshell color Bhade Average annual minimum temperature Ta Ta TamEshell color and shade Average annual minimum temperature Ta Ta Ta TamEshell color and shade are used to identify paint solar absorptance. Average annual minimum temperature Ta Defining: TM Exercities and color and shade are used to identify paint solar absorptance. Average annual minimum temperature Ta Ta TamEshell c	•			feet	Average height of the li□uid within the tan⊡shell. If un⊡nown⊡assume Di2.
Worling volume 201:31 galons Calculated volume Turnovers per year 5:0 dimensionless Latton 113 in AP2 (Lue 2020) Red Primer shade select one Tan::shell constitution Tan::shell constitution Select one Paint shafe absorptione 0:13 dimensionless Tan::shell constitution Lised Value from table 7, 18, Paint effectiveness in absorptione. Vacuum setting Per 0:03 paig Breather vent pressure is a reading from the tan::ait the facility. Perseure setting Per 0:66 'F Average over a calendar year. Average annual mainmum temperature Te 7, 76.6 'F Average over a calendar year. 11772 Btu (f* day) Total forses Standing storage losses 1 11772 Btu (f* day) Total forse Standing storage losses 1 9,374.5 Ibby' Duation 13 Annual net throughput 1 1075 btby' Duation 13 Vapor space setting Viv 0.075 bth' Duation 13 Vapor space setting Viv 0.075 bth' Duation 13 Annual net throughput 1 1.075 btby' Duation 13 Vapor space in point Vive 1.057 bth' Duation 13 Vapor				_	
Turnoves by year 5.0 immensionless □Lation 131 APU2 (June 2020) Shell coloritable Aged select one Tan.:centilian APU2 (June 2020) Paint solar absorptione 0.2 dimensionless Instruction APU2 (June 2020) Paint solar absorptione 0.2 dimensionless Instruction APU2 (June 2020) Pressure setting Paint solar absorptione 0.2 instructione Instructione Value 0.2 paint solar absorptione Instructione Instructione Pressure setting Paint solar absorptione 0.2 instructione Instructione Value Units Description Instructione Instructione Pressure setting / Paint solar absorptione Value Units Description Average annual minimum temperature Ta 76.6 'F Average over a calendary year. Average annual minimum temperature Ta 76.6 'F Average over a calendary year. Average annual minimum temperature Ta 76.6 'F Average over a calendary year. Average over a calendary year. Average over a calendary year. Average over a calendary year. Average over a calendary year. 10.72.3 Ibin'r Ibin'r Total losses La 10	•				•
Shell coinsthide Red Primer shade select one Tar@shell coir and shade are used to identify paint solar absorptance. Only absorption. Paint solar absorptance Aged select one Tar@shell coir and shade are used to identify paint solar absorptance. Only absorption. Pressure setting Pay 0.03 psig Breather Vacuum Star absorptance. Shall coir the tan@star absorptance. Pressure setting Pay 0.03 psig Breather Vert pressure is a reading from the tan@nothing system. Average annual minimum temperature TAR Deming TM r Cearest main of ty Average annual minimum temperature TAR 76.6 r Average over a calendar year. Average over a calendar year. 12.5 psia Average over a calendar year. Average over a calendar year. 12.5 psia Average over a calendar year. Atmospheric pressure Pay 10.672.3 byr Data instation 13 Start instation 1 1772 Bturff' day) Total for a hori instal surface. Bising storage losses s 9.374.5 bbyr Datation 13 Working losse Law up of the tan@store is a calendar year. 10.0 dimensionless Start instation 1 12.72 bbyr Datation 13 Working losse Law up of tand to tan borbin 13 tan in tan tan tan tan	-				
Shell condition Aged select one Tan_condition is used to identify paint solar absorptance. Only abovegrou, was a solar absorptance. Solar absorptance and the solar absorptance and the solar absorptance and the solar absorptance. Only abovegrou, and the solar absorptance and the s		_			, ,
Paint solar absorptione 0.1 dimensionless Insert value from table 7, 18, Paint effectiveness in absorbing radiant ener Vacuum setting is a value set for the tan-line facility. Pressure setting Paint Doi:1 Display Display Vacuum setting is a value set for the tan-line table facility. Attender Data Cearest main city Deming TM Cearest main city Paint effectiveness in absorbing radiant ener vacuum setting is a value set for the tan-line and the facility. Average annual minimum temperature Average annual minimum temperature Solar insolation Deming TM r Average over a calendar year. Average over a calendar year. Average over a calendar year. Average over a calendar year. Attrasphric pressure Attrasphric pressure F Calculated value Notes (equations are from AP-42, Chapter 7) Calculation of VOC Emissions = Total Losses (L-) Calculated value Notes (equations are from AP-42, Chapter 7) Standing isorge losses Image over a calendar year. Standing isorge losses Standing isorge losses Standing isorge losses Working losse Lr 0.672.3 Ib/yr Cluation 13 Cluation 13 Working losse turve factor G.55 psia Calculated value Calculated value Calculated based on Tu.					
Vacuum setting Par 0.03 psig Vacuum setting is a value set for the tan_at the facility. Pressure setting Par 0.03 psig Breather vent pressure is a reading from the tan_monitoring system. Accenter Data Calculation Value Units Description Carrier and reality Tra 76.6 "F Average over a calendar year. Average annual minimum temperature Tra 76.6 "F Average over a calendar year. Average annual minimum temperature Tra 76.6 "F Average over a calendar year. Average annual minimum temperature Tra 76.6 "F Average over a calendar year. Average over a calendar year. Tra 76.6 "F Average over a calendar year. Average insolation 1 1772 Bturft ² day) Total forse a calendar year. Standing storage losses tra 9.374.5 Ib/yr Calution 12 Working losses tra 9.374.5 Ib/yr Calution 12 Vapor pressore PA 66 Ib/br/ Calutation 136 Vapor pressore average over a calendar year 1.00 dimensionless Calutation 137 Vapor space value Viaor space value Viaor space value 1.00 <td< td=""><td></td><td></td><td>•</td><td></td><td>•••••••••••••••••••••••••••••••••••••••</td></td<>			•		•••••••••••••••••••••••••••••••••••••••
Pressure setting P _p 0.03 psig Breather vent pressure is a reading from the tan monitoring system. Veather Data Value Units Description arrest main city Average annual maintum temperature T_{AC} Disting Average over a calendar year. But (ttr' day) Total for a horibontal surface. calculation of VOC Emissions = Total Losses (L₁) Calculated value Notes (equations are from AP-42, Chapter 7) Total losses L₁ 1,197.9 Ib/yr Duation 13 Calculated value Notes (equations are from AP-42, Chapter 7) Calculated value Notes (equations are from AP-42, Chapter 7) Calculated value Notes (equations are from AP-42, Chapter 7) Calculated value Noticy (triange value of 1) Standing losses L₁ 1,197.9 Ib/yr Duation 13 Calculated value Annual net throughput Calculated value Calculated value Voring loss unover factor O.00 dimensionless Calculated based on T_L. Vapor space value on tallog and the particip is an average on tallog an average in a value on tallog (triange value on tallog (t					
Veather Data Value Units Description Average annual mainrum temperature TA 76.6 "F Average over a calendar year. Average annual minimum temperature TA 10.5 "F Average over a calendar year. Average annual minimum temperature TA 12.5 pia Average over a calendar year. Average over a calendar year. Startinsplation 11.772 pia Dista for a horizontal urface. Startinsplation of VOC Emissions = Total Losses (L.) Calculated value Notes (equations are from AP-42, Chapter 7) Standing storage losses L 9.374.5 Ib/yr Utation 13 Standing storage losses L 9.374.5 Ib/yr Utation 13 Morting loss turnover frame 10.0 100 idmensionless Saturation 13 Stoc: vapor density W 0.075 Ib th" Cuation 13 Vapor space volume Viapor space volume 1316.30 n² Cuation 13 Vapor space volume Viapor space anion factor 0.636 dimensionless Cuation 13 Vapor space anion factor 0.30 dimensionless Cuation 13 Sustor 12 Vapor space anion factor 0.30 dimensionless Cuation 13 Sustor 12	•	-			•
Centrest main drug Deming ⊡ M Centrest main drug Centrest main dr	Pressure setting	FBP	0.03	psig	breather vent pressure is a reading from the tan infonitoring system.
⊡earest maior city Deming:::M □carest maior city to the tanilocation. Average annual maimum temperature T _A . 76.6 "F Average over a calendar year. Average annual minimum temperature T _A . 12.5.0 psia Average over a calendar year. Atmosphetic pressure P _A . 12.5.0 psia Average over a calendar year. Atmosphetic pressure P _A . 12.5.0 psia Average over a calendar year. alculation of VOC Emissions = Total Losses (L_T) Calculated value Notes (equations are from AP-42, Chapter 7) Total losses L _B . 9.374.5 lb/yr □uation 13 Working losses L _B . 9.374.5 lb/yr □uation 13 Working losse L _B . 10.0 dimensionless Statution.1umovers 36 [180 □ □] 16 □tumovers at 36 or lower □ 1 Stoci vapor density W _Y . 6.55 □ psia Calculated based on T _L . Vapor Molecular Weight at 60 "F M _Y Vapor space upansion factor D _Y . 0.636 timensionless □uation 135 □uation 13 Vapor space volume V _Y . 6.55 □ psia ft ² (Ho-mole** R □uation 132 □di	athar Data		Value	Unite	Description
Average annual maimum temperature T _A 76.6 *F Average over a calendar year. Average annual minimum temperature T _A 18.2 *F Average over a calendar year. Atmospheric present PA 12.5 psia Average over a calendar year. Atmospheric present 1 1772 Btur(ft ² day) Total for a hori:Contal surface. alculation of VOC Emissions = Total Losses (L _T) Catculated value Notes (equations are from AP-42, Chapter 7) Total losses tr 10,572.3 tblyr Luation 13 Working losses tr 10,572.3 tblyr Luation 12 Working losses tr 10,972.3 tblyr Luation 13 Manual ent throughput 2,874.5 bblyr Luation 13 Working losse turnover factor themsionless Saturation:Lumovers: 136 (180) 16::::::::::::::::::::::::::::::::::::				Units	
Average annual minimum temperature T _x 16.2 *F Average over a calendar year. Atmospheric pressure PA 12.5:2 psia Average for the location. Solar insolation 1 1.772 Bitu (ft²-day) Total for a horizontal surface. alculation of VOC Emissions = Total Losses (L ₁) Calculated value Note (equations are from AP-42, Chapter 7) Total losses L ₁ 9.374.5 tb/yr Luation 1.1 Standing storage losses Is 9.374.5 tb/yr Luation 1.35 Colculated value Vorking loss turnover factor 10.0 dimensionless Saturation.1umovers 36 (180) 6.8 Dimover 36 (180) 0.0 Dimover 36 (180) Dimo		т	*	٥r	
Atmospheric pressure P _n Solar insolation 12.5□ 1772 psia Average for the location.' alculation of VOC Emissions = Total Losses (L ₁) Calculated value Notes (equations are from AP-42, Chapter 7) Total losses L ₁ 10.572.3 Ib/yr □lation 12 Working losses L ₁ 9.374.5 Ib/yr □lation 13 Morking losses L ₁ 10.772.3 Ib/yr □lation 137 Morking losses L ₁ 1.00 dimensionless Saturation:Lunovers 36 [180 □] □6□Lunovers at 36 or lower □1 Stoc Vapor density V ₁ 0.075 Ib/3 [*] □lation 132 Vapor Molecular Weight at 0° TF 655□ psia Calculated based on T _{Lu} . Vapor space tanual net troughput 30.20 fet □lation 136 Vapor space tanual net troughput 0.636 dimensionless □lation 132 Vapor space tanual net troughput 537.06 R □lation 121 Vaerage vapor temperature T _V 537.06 R □lation 123 Vapor space tanual net temperature T _V 537.06 R □lation 121 Vaerage vapor temperature T					
Solar insolation I 1772 Btur (ff ² day) Total for a horiDontal surface. alculation of VOC Emissions = Total Losses (L-) Calculated value Notes (equations are from AP-42, Chapter 7) Total losses L- 10,572.3 Ib/yr □ Ludion 10 Standing storage losses L- 9,374.5 Ib/yr □ Ludion 10 Working losse L- 10,077.3 Ib/yr □ Ludion 10 Moring loss turnover factor 10.0 dimensionless Saturation 100 overs 36 (180 □.) 160 dumovers at 36 or lower 01 Stocvapor density Wv 0.075 Ib ff ³ □ Ludion 112 Vapor Molecular Weight at 00 °F M 66 Ib Ib Info Table 7.12 Vapor Molecular Weight at 00 °F M 66 Ib Ib Info Table 7.12 Vapor space analoutage Wv 0.075 Ib ff ³ □Ludion 113 Vapor space analoutage Ga32 feet □Ludion 113 Vapor space analoutage Is 37.06 TR □Ludion 113 Vapor space analoutage Is 37.0				-	• •
ialculation of VOC Emissions = Total Losses (L-) Calculated value Notes (equations are from AP-42, Chapter 7) Total losses L- 9,374.5 lb/yr □ Lation 1□ Standing storage losses L- 9,374.5 lb/yr □ Lation 1□ Working losses L- 9,374.5 lb/yr □ Lation 1□ Working losse L- 1,197.9 lb/yr □ Lation 1□ Annual net throughput 2.812.0 bb/lyr □ Lation 1□ Worling loss turnover factor 1.00 dimensionless Saturation 1100 Stoclwapor density 0.075 bt/fit □ Lation 112 Vapor Molecular Weight at 60 °F M 66 tb1binole Table 7.12 Vapor space suportessure Pw 6.550 psia Calculated based on T _{LA} . Vapor space suportessure Pw 6.655 psia Calculated based on T _{LA} . Vapor space suportes Pw 6.550 psia Calculated based on T _{LA} . Vapor space suportes Pw 6.655 psia Calculated based on T _{LA} . Vapor space suportes Pw 6.550 msia Calculated based on T _{LA} . Vapor space suportes Pw 6.550 msia Calculated based on T _{LA} . Vapor		PA			•
Total losses Lr 10,572.3 Iblyr □uation 11 Standing storage losses Ls 9,374.5 Iblyr □uation 13 Working losses Lw 1,197.9 Iblyr □uation 135 Annual net throughput 2,812.2 bbligr □uation 137 Worling loss turnover factor 1,00 dimensionless Saturation Turnovers 36 (180 □) 16 □turnovers at 36 or lower 1 Stoc=vapor density Wv 0.075 Ib ft ³ □uation 137 Vapor Molecular Weight at 60 °F Mv 6.55 psia Calculated based on T _{LA} . Vapor space ano-loutage Hvo 32.5 feet □uation 115 Vapor space ano-loutage Hvo 32.5 feet □uation 115 Vapor space ano-loutage Hvo 32.5 feet □uation 116 Worling loss product factor 0 0.636 dimensionless □uation 121 Worling loss product factor 1 dimensionless □uation 13 122 Vapor space ano-loutage Tv 532.06 "R □uation 121 Moring loss product factor 1 1 dimensi	Solar Insolation	1	1472	Btu (ft-day)	
Total losses Lr 10,572.3 Iblyr □uation 11 Standing storage losses Ls 9,374.5 Iblyr □uation 13 Working losses Lw 1,197.9 Iblyr □uation 135 Annual net throughput 2,812.2 bbligr □uation 137 Worling loss turnover factor 1,00 dimensionless Saturation Turnovers 36 (180 □) 16 □turnovers at 36 or lower 1 Stoc=vapor density Wv 0.075 Ib ft ³ □uation 137 Vapor Molecular Weight at 60 °F Mv 6.55 psia Calculated based on T _{LA} . Vapor space ano-loutage Hvo 32.5 feet □uation 115 Vapor space ano-loutage Hvo 32.5 feet □uation 115 Vapor space ano-loutage Hvo 32.5 feet □uation 116 Worling loss product factor 0 0.636 dimensionless □uation 121 Worling loss product factor 1 dimensionless □uation 13 122 Vapor space ano-loutage Tv 532.06 "R □uation 121 Moring loss product factor 1 1 dimensi	Iculation of VOC Emissions - Total Losses (I		Coloulated value		Notes (equations are from AP 42 Chapter 7)
Standing storage losses La 9,374.5 bb/yr □uation 12 Working losse Lw 1,197.9 bb/yr □uation 135 Annual net throughput 2.812. bb/yr □uation 137 Worling loss tunover factor 1.00 dimensionless Saturation 1unovers 36 (180 □) 6.000 movers at 36 or lower 1 Stoc⊡vapor density Wv 0.075 bt ft³ □uation 122 Vapor Molecular Weight at 60 °F Mv 66 bt ft³ □uation 122 Vapor pressure Vv 0.075 bt ft³ □uation 137 Vapor space volume Vv 6.655 psia Calculated based on T _{LA} . Vapor space volume Vv 0.322 feet □uation 13 Vapor space apansin factor 0.636 dimensionless □uation 15 Vented vapor saturation factor 0.00 dimensionless □uation 121 Worling loss product factor F 1 dimensionless □uation 123 Daily average vapor temperature range T _V 537.06 °R □uation 123 Daily average apor temperature range T _A 30.00 °R <		.,		lb/vr	
Working losses Lw 1,197.9 Ib/yr □uation 1:35 Annual net throughput 2:8:2. bblyr □uation 1:37 Wor⊡ng loss turnover factor □ 1.00 dimensionless Staturation:Turnovers:06 [(160 □) [6:]]turnovers at 36 or lower] 1 Stoc□vapor density Wor⊡ng loss turnover factor □ 1.00 dimensionless Staturation:Turnovers:036 [(160 □) [6:]]turnovers at 36 or lower] 1 Vapor Space volume Wv 0.075 ib ft³ □uation 1:22 Vapor space volume Vv 0.55: psia Calculated based on T _{LA} . Vapor space or pansion factor □ 0.636 dimensionless □uation 1:36 Vapor space a: pansion factor □ 0.636 dimensionless □uation 1:21 Wording loss product factor □ 0.00 dimensionless □uation 1:21 Wording loss product factor □ 1.0731 psiaft ³ /b-mole**R Constant:□uation 1:22 Average vapor temperature T _{LA} 532.07 *R □uation 1:33 Daily average line dis surface temperature T _A 533.53 *R □uation 1:31 Daily avapor temperature		-			
Annual net throughput $2182.$ bblyr $21810.$ Worling loss turnover factor1.00dimensionlessSaturation 11:movers 136 (180) $616.$ turnovers at 36 or lower 1StocTvapor densityW0.075tb ft³Cuation 122Vapor Molecular Weight at 60 °FMy66tb lb:moleTable 7.112Vapor passurePvA6.551psiaCalculated based on TLA.Vapor space tanDoutageHvo1.32feetCuation 113Vapor space tanDoutageHvo1.32feetCuation 116Vapor space tanDoutageHvo1.32feetCuation 15Vented vapor saturation factor0.636dimensionlessCuation 15Vented vapor saturation factor10.10dimensionlessAssume value of 1 for gasoline or diesel.Ideal gas constantR10.731psia1ft³/lb-mole**RConstantTurtation 1122Daily average tanjent temperature rangeTV53.207*RCuation 113Daily average tanjent temperature rangeTV53.63*RCuation 126Daily andimum ambient temperature rangeTV536.30*RTable 7.17. Conversion factor: RanTue Fahrenheit 15.7Daily average ambient temperatureTvA522.61*RCuation 130LiCuld bul chemperatureTvA521.10*RCuation 130Daily average ambient temperatureTvA525.51*RCuation 130Daily average ambient temperatureTvA525.51*RCuation 130Daily average					
Wording loss turnover factor1.00dimensionlessSaturation lurnovers 36 (180) 6 lurnovers at 36 or lower 1Stocl vapor densityWv0.075lb ft ³ uation 1122Vapor Molecular Weight at 60 "FMv66lb lbmoleTable 7.12Vapor pressurePvA6.55psiaCalculated based on TLA.Vapor space volumeVv13.6.30ft ³ uation 13Vapor space tan outageHvo0.636dimensionlessuation 160Vapor space elpansion factor0.636dimensionlessuation 116Vented vapor saturation factor0.00dimensionlessuation 1121Wording loss product factorP1dimensionlessMaution 1122Average vapor temperatureTV537.06"Ruation 122Average vapor temperature rangeTV532.07"Ruation 123Daily average lifuid surface temperatureTA30.10"Ruation 111Daily average abient temperature rangeTA536.30"Ruation 124Daily average abient temperatureTA536.30"Rtable 7.117. Conversion factor: Ranille Estrenheit 15.7Daily average abient temperatureTA521.10"Ruation 131Daily average abient temperatureTA521.10"Ruation 131Daily average abient temperatureTA521.10"Ruation 131Daily average abient temperatureTA521.10"Ruation 131Daily average abient temperatureTA	-				
Stocl vapor densityW 0.075 Ib ft³Ill uation 1/22Vapor Molecular Weight at 60 °FM66Ib Ib ImoleTable 7.112Vapor space volumeV $3.16.30$ ft³Ill uation 1/3Vapor space all outageHvo $3.26.50$ psiaCalculated based on T _{LA} .Vapor space all outageHvo $3.26.50$ feetIll uation 1/3Vapor space all outageHvo $3.26.50$ feetIll uation 1/2Vapor space all outageHvo $3.27.57.56$ feetIll uation 1/2Vapor sutration factorIll dimensionlessIll uation 1/2Ill of gasoline or diesel.Vending loss product factorIll of 1/31gias constantR10.731Ideal gas constantR10.731psiaiff*/Ib-mole**RConstantIIII uation 1/22Average vapor temperatureTv 537.06 °RIll uation 1/23Daily average liTuid surface temperature rangeITv 53.53 °RIll uation 1/21Daily avapor temperature rangeITv 53.53 °RIll uation 1/21Daily avapor temperature rangeITv 53.53 °RIll uation 1/21Daily avapor temperature rangeITv $53.63.0$ °RTable 7/17. Conversion factor: RanIneDaily avapor gessure algo montantTv 525.0 °RIll uation 1/30Daily average ambient temperatureTa 525.0 °RIll uation 1/31Daily average ambient temperatureTa 525.0 °RIll uation 1/31	•			· ·	
Vapor Molecular Weight at 60 °F Mv 66 b1b1mole Table 7.12 Vapor pressure PvA 6.55 psia Calculated based on TvA. Vapor space volume Vv 1316.30 ft ³ uation 1.36 Vapor space tan Outage Hvo 3.2 feet uation 1.16 fonde for Hvo horiEontal Vapor space elpansion factor 0 0.636 dimensionless uation 1.15 fonde for Hvo horiEontal Vented vapor saturation factor s 0.00 dimensionless uation 1.16 fonde for Hvo horiEontal Verilag lass constant R 10.731 psiaiff ³ /lb-mole**R Constant constant Average vapor temperature Tv 537.06 °R uation 1.28 Daily average liDuld surface temperature Tv 532.07 °R uation 1.21 Daily aubient temperature range Tv 536.30 °R uation 1.21 Daily maimum ambient temperature Tac 536.30 °R table 7.37.00 Conversion factor: Ranline Fahrenheit 1.55.7 Daily minimum ambient temperature Tac 536.30 °R table 7.37.00 Conversi	-				
Vapor pressure P_{VA} 6.55 psiaCalculated based on T_{LA} .Vapor space volume V_v $13\overline{16.30}$ t^3 $\Box tion 113$ Vapor space an outage H_vo $\Box 32$ feet $\Box uation 116$ Inote for H_{vo} horizontalVapor space an outage H_vo $\Box 32$ feet $\Box uation 116$ Inote for H_{vo} horizontalVapor space an outage H_vo $\Box 32$ feet $\Box uation 116$ Inote for H_{vo} horizontalVapor space an outage H_vo $\Box 32$ feet $\Box uation 116$ Inote for H_{vo} horizontalVapor space an outage H_vo $\Box 32$ feet $\Box uation 116$ Inote for H_{vo} horizontalVapor space an outage H_vo $\Box 32$ feet $\Box uation 115$ Vented vapor saturation factor P_v 1 dimensionless $\Box uation 112$ Woriling loss product factor P_v 1 dimensionless $\Box uation 113$ Morigi loss product factor P_v 537.06 R $\Box uation 113$ Daily average vapor temperature T_A 532.07 R $\Box uation 117$ Daily vapor temperature range T_A 30.00 R $\Box uation 117$ Daily mainmum ambient temperature T_{AC} 536.30 R $\Box uation 113$ Daily average ambient temperature T_A 505.10 R $\Box uation 1130$ Daily average ambient temperature T_A 525.10 R $\Box uation 1130$ Daily average ambient temperature T_A 525.10 R $\Box uation 1130$					
Vapor space volumeVv 13 ± 3.0 t^3 $\Box tation 13$ Vapor space $tan outage$ H_{vo} $\Box 32$ feet $\Box tation 136 \Box tote for H_{vo} horiontalVapor space e \Box pansion factor\Box0.636dimensionless\Box tation 15Vented vapor saturation factor\Box_80.\Box 0dimensionless\Box tation 121Worling loss product factor\Box_P1dimensionlessAssume value of 1 for gasoline or diesel.Ideal gas constantR10.731p tisith^3/lb-mole*RConstant \Box tation 1.22Average vapor temperatureT_v537.06^{\circ}R\Box tation 1.28Daily average licuid surface temperatureT_v535.3^{\circ}R\Box tation 1.17Daily aupor temperature rangeT_v536.30^{\circ}R\Box tation 1.11Daily malmum ambient temperature rangeT_A505.00^{\circ}RTable 7 \Box 7. Conversion factor: Ran \Box e Fahrenheit \Box 5 \Box 7Daily average ambient temperatureT_{AC}505.00^{\circ}RTable 7 \Box 7. Conversion factor: Ran \Box e Fahrenheit \Box 5 \Box 7Daily average ambient temperatureT_{AC}525.\Box^{\circ}R\Box tation 1.30Licuid bull temperatureT_B525.\Box^{\circ}R\Box tation 1.30Daily vapor pressure setting rangeP_P0.06psi\Box tation 1.30Daily average ambient temperatureT_B525.\Box^{\circ}R\Box tation 1.30Daily average ambient temperatureT_B525.\Box^{\circ}R\Box$					
Vapor space tan \Box outageHvo \Box \Box \exists \exists \Box feet \Box uation 1 \Box 6 note for Hvo hori \Box ontalVapor space e \Box pansion factor \Box $O.636$ dimensionless \Box uation 1121Vented vapor saturation factor \Box I dimensionless \Box uation 1121Worling loss product factor \Box I dimensionless \Box uation 1121Average vapor temperature T_V $\overline{537.06}$ R \Box uation 1133Daily average li \Box uid surface temperature T_V $\overline{535.3}$ R \Box uation 1128Daily vapor temperature range T_V $\overline{536.30}$ R \Box uation 111Daily minimum ambient temperature T_A $\overline{536.30}$ R \Box uation 1130Daily average ambient temperature T_A $\overline{525.0}$ R \Box uation 1130Li \Box ubul temperature T_A $\overline{525.0}$ R \Box uation 1130Daily vapor pressure range P_V 3.26 psia \Box uation 1130Daily vapor pressure end P_V 3.26 psia \Box uation 1130Daily vapor pressure range P_V 3.26 psia \Box uation 1130Vapor pressure eluation constant A 11.72 dimensionless \Box uation 1130Vapor pressure eluation constant A 11.72 dimensionlessTable 7.112Vapor pressure eluation constant A 11.72 dimensionlessTable 7.12Vapor pressure eluation constant A 11.72 gimensionlessTable 7		P_{VA}		10010	
Vapor space e □pansion factor □ 0.636 dimensionless □uation 115 Vented vapor saturation factor □s 0.00 dimensionless □uation 1121 Wor □ng loss product factor □p 1 dimensionless Assume value of 1 for gasoline or diesel. Ideal gas constant R 10.731 psialft³/lb-mole*°R Constant□_uation 1122 Average vapor temperature Tv 537.06 °R □uation 1133 Daily average li□uid surface temperature rature Tv 535.33 °R □uation 117 Daily ambient temperature rate Tv 536.30 °R □uation 117 Daily ambient temperature rate Ta 505.00 °R Table 7017. Conversion factor: Ran□ne □ Fahrenheit □ 50.7 Daily average ambient temperature Ta 505.00 °R Table 7017. Conversion factor: Ran□ne □ Fahrenheit □ 55.7 Daily average ambient temperature Ta 525 °R □uation 1130 Li□uid bul temperature Ta 525 °R □uation 1131 Daily average ambient temperature Ta 525 °R □uation 120 Breather vent pressure aciting consta		11			
Vented vapor saturation factor S 0.00 dimensionless uation 1/21 Wor ing loss product factor P 1 dimensionless Assume value of 1 for gasoline or diesel. Ideal gas constant R 10.731 psiaft ³ /lb-mole**R Constantation 1/22 Average vapor temperature Tv 537.06 °R Cuation 1/33 Daily average licuid surface temperature Tv 532.07 °R Cuation 1/28 Daily avor temperature range Tv 536.30 °R Cuation 1/21 Daily ambient temperature range Ta 30.00 °R Cuation 1/28 Daily ambient temperature range Ta 30.00 °R Cuation 1/21 Daily mailmum ambient temperature Ta 536.30 °R Table 7/17. Conversion factor: Ran ine Fahrenheit :::5::7 Daily average ambient temperature Ta 505::00 °R Table 7/17. Conversion factor: Ran ine Fahrenheit ::::5::7 Daily average ambient temperature Ta 525:::::::::::::::::::::::::::::::::::	Vapor space volume		13□6.30	ft ³	□□uation 1⊡
Worling loss product factor P 1 dimensionless Assume value of 1 for gasoline or diesel. Ideal gas constant R 10.731 psiaff ³ /lb-mole**R Constantuation 1122 Average vapor temperature Tv 537.06 °R uation 1133 Daily average liLuid surface temperature Tv 532.07 °R uation 128 Daily avpor temperature range Tv 53.53 °R uation 117 Daily ambient temperature range Tv 536.30 °R uation 111 Daily maimum ambient temperature Ta 505.00 °R Table 7117. Conversion factor: Ran Ine Fahrenheit IIISIT Daily average ambient temperature Ta 505.00 °R Table 7117. Conversion factor: Ran Ine Fahrenheit IIISIT Daily average ambient temperature Ta 505.00 °R Table 7117. Conversion factor: Ran Ine Fahrenheit IIISIT Daily average ambient temperature Ta 525.00 °R Iuation 1130 LiLuid bull temperature Ta 525.00 °R Iuation 1131 Daily average setting range Py 3.26 psia Iuation 1131	Vapor space volume Vapor space tan⊡outage	${\rm H}_{\rm VO}$	13⊑6.30 □.32	ft ³ feet	□□uation 1⊡ □□uation 1⊡16□note for H _{vo} hori⊡ontal
Ideal gas constantR10.731psiafff3/lb-mole**RConstant luation 1122Average vapor temperatureTv 537.06 °Rluation 1133Daily average liLuid surface temperatureTLA 532.07 °Rluation 1128Daily apor temperature rangeTv 53.53 °Rluation 117Daily ambient temperature rangeTA 30.00 °Rluation 111Daily mailmum ambient temperatureTA 536.30 °RTable 7d17. Conversion factor: Ran lineFahrenheit507Daily minimum ambient temperatureTA 505.00 °RTable 7d17. Conversion factor: Ran lineFahrenheit507Daily average ambient temperatureTA 505.00 °RTable 7d17. Conversion factor: Ran lineFahrenheit507Daily average ambient temperatureTA 505.00 °RTable 7d17. Conversion factor: Ran lineFahrenheit507Daily average ambient temperatureTA 505.00 °RCuation 1130LiLuid bull temperatureTB 525.00 °RLuation 1131Daily vapor pressure rangePV 3.26 psiaLuation 1101Vapor pressure eluation constantA $11.72-0$ dimensionlessTable 7.112Vapor pressure eluation constantB 5237.33 °RTable 7.112Vapor pressure eluation constantB 5237.33 °RTable 7.112Vapor pressure eluation constantB 5237.33 °RTable 7.112Vapor pressure eluation constantB 5237.3	Vapor space volume Vapor space tan⊟outage Vapor space e⊐pansion factor	H _{vo} □□	13⊑6.30 □32 0.636	ft ³ feet dimensionless	□□uation 1:3 □□uation 1:16□note for H _{vo} hori⊡ontal □□uation 1:5
Average vapor temperatureTv 537.06 °R \Box uation 1:33Daily average li Luid surface temperatureTLA 532.07 °R \Box uation 1:28Daily vapor temperature range \Box_V 53.53 °R \Box uation 1:7Daily aubient temperature range \Box_V $53.6.30$ °R \Box uation 1:11Daily minimum ambient temperature T_A $30.\Box$ °R \Box allo 7:17. Conversion factor: Ran IneFahrenheit I:5:17Daily minimum ambient temperature T_A $505.\Box$ °R \Box allo 7:17. Conversion factor: Ran IneFahrenheit I:5:17Daily average ambient temperature T_{AC} $505.\Box$ °R \Box allo 1:30Li Luid bul temperature T_B $525.\Box$ °R \Box uation 1:31Daily vapor pressure range P_V 3.26 psia \Box uation 1:31Vapor pressure setting range P_B 0.06 psi \Box uation 1:10Vapor pressure eluation constantA 11.72 dimensionlessTable 7.112Vapor pressure eluation constantB 5237.3 °RTable 7.12Vapor pressure eluation constantB 5237.3 °RTable 7.12Vapor pressure eluation constant <td< td=""><td>Vapor space volume Vapor space tan⊟outage Vapor space e⊐pansion factor Vented vapor saturation factor</td><td>H_{vo} □_ □s</td><td>13⊑6.30 □ 32 0.636 0.⊡0</td><td>ft³ feet dimensionless dimensionless</td><td>□□uation 1:3 □□uation 1:16□note for H_{vo} hori⊡ontal □□uation 1:5 □□uation 1:21</td></td<>	Vapor space volume Vapor space tan⊟outage Vapor space e⊐pansion factor Vented vapor saturation factor	H _{vo} □_ □s	13⊑6.30 □ 32 0.636 0.⊡0	ft ³ feet dimensionless dimensionless	□□uation 1:3 □□uation 1:16□note for H _{vo} hori⊡ontal □□uation 1:5 □□uation 1:21
Daily average li□uid surface temperature T _{LA} 532.07 °R □uation 1:28 Daily vapor temperature range T _V 53.53 °R □uation 1:7 Daily ambient temperature range T _A 30.00 °R □uation 1:11 Daily mailmum ambient temperature T _A 536.30 °R Table 7:17. Conversion factor: Ran Ine Fahrenheit 55.7 Daily average ambient temperature T _A 505.00 °R Table 7:17. Conversion factor: Ran Ine Fahrenheit 55.7 Daily average ambient temperature T _A 505.00 °R Table 7:17. Conversion factor: Ran Ine Fahrenheit 55.7 Daily average ambient temperature T _A 521.10 °R □uation 1:30 Li□uid bull temperature T _A 525.00 °R □uation 1:31 Daily vapor pressure ange P _V 3.26 psia □uation 1:10 Breather vent pressure setting range P _B 0.06 psi □uation 1:10 Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.33 °R Table 7.12 Vapor pressure el	Vapor space volume Vapor space tan⊒outage Vapor space e⊡pansion factor Vented vapor saturation factor Wor⊡ng loss product factor	H _{VO} □ □ □ S	13⊑6.30 □ 32 0.636 0.⊡0 1	ft ³ feet dimensionless dimensionless dimensionless	□Luation 1:3 □Luation 1:16 note for H _{vo} hori ontal □Luation 1:5 □Luation 1:21 Assume value of 1 for gasoline or diesel.
Daily vapor temperature range Tv 53.53 °R □uation 17 Daily ambient temperature range TA 30.00 °R □uation 11 Daily ambient temperature range TA 30.00 °R □uation 11 Daily mailmum ambient temperature TA 536.30 °R Table 7017. Conversion factor: Rantine = Fahrenheit = 55.7 Daily minimum ambient temperature TA 505.00 °R Table 7017. Conversion factor: Rantine = Fahrenheit = 55.7 Daily average ambient temperature TA 505.00 °R □uation 130 Linuid buil temperature TA 521.10 °R □uation 130 Daily vapor pressure arge PV 3.26 psia □uation 131 Daily vapor pressure setting range PV 3.26 psia □uation 110 Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12	Vapor space volume Vapor space tan⊒outage Vapor space e⊒pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant	H _{VO} S P R	13::6.30 ::32 0.636 0.:0 1 10.731	ft ³ feet dimensionless dimensionless dimensionless psia⊡ft ³ /lb-mole*°R	□Luation 1:3 □Luation 1:16 note for H _{vo} hori ontal □Luation 1:5 □Luation 1:21 Assume value of 1 for gasoline or diesel. Constant □Luation 1:22
Daily ambient temperature range \Box_A $30.\Box$ $^\circ$ R \Box uation 1 1Daily mailmum ambient temperature $T_{A_{-}}$ 536.30 $^\circ$ RTable 7 1.7. Conversion factor: Ran in e Fahrenheit $\Box 5 \Box 7$ Daily minimum ambient temperature $T_{A_{-}}$ $505.\Box$ $^\circ$ RTable 7 1.7. Conversion factor: Ran in e Fahrenheit $\Box 5 \Box 7$ Daily average ambient temperature $T_{A_{-}}$ $505.\Box$ $^\circ$ RTable 7 1.7. Conversion factor: Ran in e Fahrenheit $\Box 5 \Box 7$ Daily average ambient temperature $T_{A_{-}}$ 521.10 $^\circ$ R \Box uation 1 130Li uid bull temperature $T_{B_{-}}$ $525.\Box$ $^\circ$ R \Box uation 1 131Daily vapor pressure setting range P_V 3.26 psia \Box uation 1 10Vapor pressure eluation constantA11.72dimensionlessTable 7.12Vapor pressure eluation constant B 5237.3 $^\circ$ RTable 7.12Vapor pressure at $T_{L_{-}}$ $P_{V_{-}}$ $8.3 \Box 2$ psia \Box uation 1 \Box note 5	Vapor space volume Vapor space tan⊡outage Vapor space e⊡pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature	H _{VO} S P R T _V	13::6.30 32 0.636 0.:0 1 10.731 537.06	ft ³ feet dimensionless dimensionless dimensionless psiaːtf³/lb-mole*°R °R	□Luation 1:3 □Luation 1:16 note for H _{vo} hori ontal □Luation 1:5 □Luation 1:21 Assume value of 1 for gasoline or diesel. Constant □Luation 1:22
Daily mailmum ambient temperature Table Table 7 [] 7. Conversion factor: Ranine Fahrenheit 5 5 2 Daily minimum ambient temperature Table 7 [] 7. Conversion factor: Ranine Fahrenheit 5 5 2 Daily average ambient temperature Table 7 [] 7. Conversion factor: Ranine Fahrenheit 5 5 2 Daily average ambient temperature Table 7 [] 7. Conversion factor: Ranine Fahrenheit 5 5 1 Daily average ambient temperature Table 5 25 [] °R Cuation 130 Licuid bul temperature Table 7 [] 3.26 psia Cuation 131 Daily vapor pressure setting range Py 3.26 psia Cuation 10 Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure eluation constant B <td< td=""><td>Vapor space volume Vapor space tan⊡outage Vapor space e⊡pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature</td><td>H_{VO} S P R T_V</td><td>13::6.30 32 0.636 0.:0 1 10.731 537.06</td><td>ft³ feet dimensionless dimensionless dimensionless psia_ft³/Ib-mole**R *R</td><td>□Luation 113 □Luation 115 □Luation 115 □Luation 1121 Assume value of 1 for gasoline or diesel. Constant □Luation 1122 □Luation 1133</td></td<>	Vapor space volume Vapor space tan⊡outage Vapor space e⊡pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature	H _{VO} S P R T _V	13::6.30 32 0.636 0.:0 1 10.731 537.06	ft ³ feet dimensionless dimensionless dimensionless psia_ft ³ /Ib-mole**R *R	□Luation 113 □Luation 115 □Luation 115 □Luation 1121 Assume value of 1 for gasoline or diesel. Constant □Luation 1122 □Luation 1133
Daily minimum ambient temperature TAL 505.00 °R Table 7117. Conversion factor: Rantine = Fahrenheit = 55.7 Daily average ambient temperature TAL 505.00 °R Table 7117. Conversion factor: Rantine = Fahrenheit = 55.7 Daily average ambient temperature TAL 521.10 °R =uation 1:30 Licuid builtemperature TB 525.0 °R =uation 1:31 Daily vapor pressure range PV 3.26 psia =uation 1:01 Breather vent pressure setting range PB 0.06 psi =uation 1:00 Vapor pressure eluation constant A 11.72 dimensionless Table 7.112 Vapor pressure eluation constant B 5237.3 °R Table 7.112 Vapor pressure at TL PV 8.3 = 2 psia =uation 1 == 5	Vapor space volume Vapor space tan⊡outage Vapor space e⊡pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature Daily average li⊡uid surface temperature	H _{VO} S P R T _V T _{LA}	13:6.30 32 0.636 0.00 1 10.731 537.06 532.07	ft ³ feet dimensionless dimensionless dimensionless psia_ft ³ /Ib-mole**R *R	□uation 1:3 □uation 1:16□note for H _{vo} hori⊡ontal □uation 1:5 □uation 1:21 Assume value of 1 for gasoline or diesel. Constant□uation 1:22 □uation 1:33 □uation 1:28
Daily minimum ambient temperature Table 7 1 7. Conversion factor: Ran Ine _ Fahrenheit _ 5 7 Daily average ambient temperature TAA 521.10 °R □uation 1 130 Li_uid bul temperature TB 525.0 °R □uation 1 130 Daily vapor pressure range Pv 3.26 psia □uation 1 10 Breather vent pressure setting range PB 0.06 psi □uation 1 10 Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure at TL_ Pv_2 8.32 psia □uation 1note 5	Vapor space volume Vapor space tan □ outage Vapor space e□pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature Daily average li❑uid surface temperature Daily vapor temperature range	$\begin{array}{c} H_{VO} \\ \Box_{G} \\ \Box_{S} \\ \Box_{P} \\ R \\ T_{V} \\ T_{LA} \\ \Box T_{V} \end{array}$	13 ⊡6.30 □.32 0.636 0.⊡0 1 10.731 537.06 532.07 53.53	ft ³ feet dimensionless dimensionless dimensionless psiattf ³ /Ib-mole**R °R °R °R	Luation 1:3 Luation 1:16 Luation 1:5 Luation 1:21 Assume value of 1 for gasoline or diesel. Constant Luation 1:33 Luation 1:28
Daily average ambient temperature T _{AA} 521.10 °R □uation 1:30 Li_uid bull_temperature T _B 525 °R □uation 1:31 Daily vapor pressure range P _V 3.26 psia □uation 1:10 Breather vent pressure setting range P _B 0.06 psi □uation 1:10 Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure at T _L P _{V2} 8.32 psia □uation 1	Vapor space volume Vapor space tan outage Vapor space e_pansion factor Vented vapor saturation factor Woring loss product factor Ideal gas constant Average vapor temperature Daily average li_uid surface temperature Daily vapor temperature range Daily ambient temperature range	$\begin{array}{c} H_{VO} \\ & \square_{S} \\ & \square_{P} \\ & R \\ & T_{V} \\ & T_{LA} \\ & \square T_{V} \\ & \square T_{A} \end{array}$	13 □6.30 □32 0.636 0. □0 1 10.731 537.06 532.07 53.53 30. □0	ft ³ feet dimensionless dimensionless psia_ft ³ /Ib-mole**R °R °R °R °R °R	Image: Constant in the second seco
Liuid bull temperature TB 525 °R uation 1:31 Daily vapor pressure range PV 3.26 psia uation 1:01 Breather vent pressure setting range PB 0.06 psi uation 1:10 Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure at TL Pv 8.32 psia uation 1note 5	Vapor space volume Vapor space tan outage Vapor space e pansion factor Vented vapor saturation factor Wor ing loss product factor Ideal gas constant Average vapor temperature Daily average lilouid surface temperature Daily vapor temperature range Daily ambient temperature range Daily mailmum ambient temperature	$\begin{array}{c} H_{VO} \\ \Box_{S} \\ \Box_{P} \\ R \\ T_{V} \\ T_{LA} \\ \Box T_{V} \\ \Box T_{A} \\ T_{A\Box} \end{array}$	13 □6.30 □.32 0.636 0. □0 1 10.731 537.06 532.07 53.53 30. □0 536.30	ft ³ feet dimensionless dimensionless dimensionless psiaft ³ /Ib-mole**R °R °R °R °R °R °R °R °R	Cuation 1:3 Luation 1:16 note for Hvo horicontal Luation 1:5 Luation 1:21 Assume value of 1 for gasoline or diesel. Constant::::::::::::::::::::::::::::::::::
Daily vapor pressure range Pv 3.26 psia □uation 1 □ Breather vent pressure setting range PB 0.06 psi □uation 1 □ Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure at TL Pv2 8.3 □2 psia □uation 1 □□note 5	Vapor space volume Vapor space tan outage Vapor space e_pansion factor Vented vapor saturation factor Woring loss product factor Ideal gas constant Average vapor temperature Daily average liouid surface temperature Daily vapor temperature range Daily ambient temperature range Daily ambient temperature Daily maimum ambient temperature Daily minimum ambient temperature	$\begin{array}{c} H_{VO} \\ \Box_{s} \\ \Box_{p} \\ R \\ T_{V} \\ T_{LA} \\ \Box T_{V} \\ \Box T_{A} \\ T_{A \Box} \\ T_{A \Box} \end{array}$	13 □6.30 □.32 0.636 0. □0 1 10.731 537.06 532.07 53.53 30. □0 536.30 505. □0	ft ³ feet dimensionless dimensionless dimensionless psia[ft ³ /Ib-mole**R °R °R °R °R °R °R °R °R	Cuation 1:3 Luation 1:16 inote for Hvo hori iontal Luation 1:5 Luation 1:21 Assume value of 1 for gasoline or diesel. Constant::::::::::::::::::::::::::::::::::
Breather vent pressure setting range □PB 0.06 psi □uation 1□10 Vapor pressure e□uation constant A 11.72□ dimensionless Table 7.1□2 Vapor pressure e□uation constant B 5237.3 °R Table 7.1□2 Vapor pressure at T _{L□} P _{V□} 8.3□□2 psia □□uation 1□10	Vapor space volume Vapor space tan⊡outage Vapor space e⊡pansion factor Vented vapor saturation factor Vor⊡ng loss product factor Ideal gas constant Average vapor temperature Daily average li⊡uid surface temperature Daily avpor temperature range Daily ambient temperature range Daily ma⊡mum ambient temperature Daily naumum ambient temperature Daily average ambient temperature	$\begin{array}{c} H_{VO} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	13 □6.30 □.32 0.636 0.0 1 10.731 537.06 532.07 53.53 30.0 536.30 505.0 521.10	ft ³ feet dimensionless dimensionless psia.ft ³ /lb-mole**R °R °R °R °R °R °R °R °R °R °R °R	□uation 1:3 □uation 1:16□note for H _{vo} hori⊡ontal □uation 1:5 □uation 1:21 Assume value of 1 for gasoline or diesel. Constant□□uation 1:22 □uation 1:33 □uation 1:28 □uation 1:28 □uation 1:7 □uation 1:11 Table 7:17. Conversion factor: Ran⊡ne □ Fahrenheit □:5:17 Table 7:17. Conversion factor: Ran⊡ne □ Fahrenheit □:5:17 □uation 1:30
Vapor pressure eluation constant A 11.72 dimensionless Table 7.12 Vapor pressure eluation constant B 5237.3 °R Table 7.12 Vapor pressure at TL Pv2 8.3 psia Duation 1	Vapor space volume Vapor space tan outage Vapor space e pansion factor Vented vapor saturation factor Vented vapor saturation factor Ideal gas constant Average vapor temperature Daily average li uid surface temperature Daily vapor temperature range Daily ambient temperature Daily maimum ambient temperature Daily average ambient temperature Daily average ambient temperature	$\begin{array}{c} H_{VO} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	13 □6.30 □.32 0.636 0.00 1 10.731 537.06 532.07 53.53 30.0 536.30 505.0 521.10 525.□	ft ³ feet dimensionless dimensionless dimensionless psia_ft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R °R °R °R	□uation 1:3 □uation 1:16□note for H _{vo} hori⊡ontal □uation 1:5 □uation 1:21 Assume value of 1 for gasoline or diesel. Constant□uation 1:22 □uation 1:33 □uation 1:28 □uation 1:7 □uation 1:7 □uation 1:7 Table 7:17. Conversion factor: Ran⊡ne □ Fahrenheit □:50.7 Table 7:17. Conversion factor: Ran⊡ne □ Fahrenheit □:50.7 □uation 1:30
Vapor pressure e luation constant B 5237.3 °R Table 7.12 Vapor pressure at T _{L0} P _{V0} 8.3 II 2 psia Induction 1 III note 5	Vapor space volume Vapor space tan outage Vapor space e pansion factor Vented vapor saturation factor Vented vapor saturation factor Ideal gas constant Average vapor temperature Daily average li uid surface temperature Daily vapor temperature range Daily ambient temperature Daily ma mbient temperature Daily ma umbient temperature Daily average ambient temperature Daily average ambient temperature Daily average rambient temperature Daily average rambient temperature Daily average rambient temperature Daily average rambient temperature	$\begin{array}{c} H_{VO} \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	13 □6.30 □.32 0.636 0.00 1 10.731 537.06 532.07 53.53 30.□0 536.30 505.□0 521.10 525.□ 3.26	ft ³ feet dimensionless dimensionless dimensionless psia_ft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R °R °R °R °R	□uation 1:3 □uation 1:16□note for H _{vo} hori⊡ontal □uation 1:5 □uation 1:5 □uation 1:21 Assume value of 1 for gasoline or diesel. Constant□uation 1:22 □uation 1:33 □uation 1:33 □uation 1:28 □uation 1:7 □uation 1:11 Table 7:117. Conversion factor: Ran⊡ne □ Fahrenheit □ :5□.7 Table 7:17. Conversion factor: Ran⊡ne □ Fahrenheit □ :5□.7 □uation 1:30 □uation 1:31 □uation 1:1
Vapor pressure at T _{L□} P _{V□} 8.3□2 psia □□uation 1□□note 5	Vapor space volume Vapor space tan outage Vapor space e pansion factor Vented vapor saturation factor Wor ing loss product factor Ideal gas constant Average vapor temperature Daily average li uid surface temperature Daily vapor temperature range Daily ambient temperature Daily maimum ambient temperature Daily maimum ambient temperature Daily average ambient temperature	$\begin{array}{c} H_{VO} \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	13 □6.30 □.32 0.636 0.00 1 10.731 537.06 532.07 53.53 30.00 536.30 505.00 521.10 525.□ 3.26 0.06	ft ³ feet dimensionless dimensionless dimensionless spsiaft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R °R °R °R °R	Luation 1:3 Luation 1:16 Luation 1:5 Luation 1:21 Assume value of 1 for gasoline or diesel. Constant=Luation 1:22 Luation 1:33 Luation 1:28 Luation 1:11 Table 7:17. Conversion factor: Ranine = Fahrenheit = 5:57 Table 7:17. Conversion factor: Ranine = Fahrenheit = 5:57 Luation 1:30 Luation 1:31 Luation 1:31
	Vapor space volume Vapor space tan outage Vapor space e pansion factor Vented vapor saturation factor Wor ing loss product factor Ideal gas constant Average vapor temperature Daily average li uid surface temperature Daily vapor temperature range Daily ambient temperature Daily mailmum ambient temperature Daily minimum ambient temperature Daily average ambient temperature Daily average ambient temperature Daily vapor pressure range Breather vent pressure setting range Vapor pressure e uation constant	$\begin{array}{c} H_{VO} \\ & \square \\ & $	13 □6.30 □.32 0.636 0.0 1 10.731 537.06 532.07 53.53 30.0 536.30 505.0 521.10 525.0 3.26 0.06 11.72□	ft ³ feet dimensionless dimensionless dimensionless psia_ft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R °R °R °R °R	Luation 1:3 Luation 1:16 Luation 1:5 Luation 1:21 Assume value of 1 for gasoline or diesel. Constant: Luation 1:22 Luation 1:28 Luation 1:17 Luation 1:11 Table 7:17. Conversion factor: Ran@ne @ Fahrenheit @ 50.7 Table 7:17. Conversion factor: Ran@ne @ Fahrenheit @ 55.7 Luation 1:30 Luation 1:31 Luation 1:31 Luation 1:31 Luation 1:30
Vapor pressure at I Lo PVo 5.0870 psia Oution 1 Control 5	Vapor space volume Vapor space tan⊡outage Vapor space tan⊡outage Vapor space e⊡pansion factor Vented vapor saturation factor Ideal gas constant Average vapor temperature Daily average li⊔id surface temperature Daily avpor temperature range Daily ambient temperature range Daily ma⊡mum ambient temperature Daily average ambient temperature Daily vapor pressure range Vapor pressure e⊡uation constant Vapor pressure e⊡uation constant	$\begin{array}{c} H_{VO} \\ & \square_{S} \\ & \square_{P} \\ & R \\ & T_{V} \\ & T_{LA} \\ & \square T_{V} \\ & \square T_{A} \\ & T_{A} \\ & T_{A} \\ & \square P_{V} \\ & \square P_{B} \\ & A \\ & B \end{array}$	13 □6.30 □32 0.636 0.□0 1 10.731 537.06 532.07 53.53 30.□0 536.30 505.□0 521.10 525.□ 3.26 0.06 11.72□ 5237.3	ft ³ feet dimensionless dimensionless dimensionless spsiaft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R °R °R °R spsia psia dimensionless °R	Image: Constant in the image: Constan
	Vapor space volume Vapor space tan⊡outage Vapor space el⊐pansion factor Vented vapor saturation factor Udeal gas constant Average vapor temperature Daily average li⊡uid surface temperature Daily avpor temperature range Daily ambient temperature range Daily ma⊡mum ambient temperature Daily average ambient temperature Daily average ambient temperature Daily average ambient temperature Baily average ambient temperature Daily oper pressure setting range Vapor pressure e⊡uation constant Vapor pressure e T _L	$\begin{array}{c} H_{VO} \\ & \square_{S} \\ & \square_{P} \\ & R \\ & T_{V} \\ & \square T_{A} \\ & \square T_{V} \\ & \square T_{A} \\ & T_{A\square} \\ & T_{A\square} \\ & T_{A\square} \\ & B \\ & P_{V\square} \end{array}$	13 □ 6 .30 □ .32 0 .636 0 .0 1 10.731 537.06 532.07 53.53 30.0 536.30 505.0 521.10 525.0 3.26 0.06 11.72 5237.3 8.3 □ 2	ft ³ feet dimensionless dimensionless psia.ft ³ /lb-mole**R °R °R °R °R °R °R °R °R °R °R °R °R psia psi dimensionless °R psia	□uation 1:3 □uation 1:15 □uation 1:5 □uation 1:21 Assume value of 1 for gasoline or diesel. Constant□uation 1:22 □uation 1:33 □uation 1:28 □uation 1:28 □uation 1:28 □uation 1:7 □uation 1:11 Table 7:17. Conversion factor: Ran □ne □ Fahrenheit □:5□.7 Table 7:17. Conversion factor: Ran □ne □ Fahrenheit □:5□.7 Table 7:17. Conversion factor: Ran □ne □ Fahrenheit □:5□.7 Iuation 1:30 □uation 1:31 □uation 1:10 Table 7.1:2 Table 7.1:2 □uation 1:□note 5
Ma⊡mum T _{LA} T _{L□} 5⊡5.⊡5 °R ⊡⊔uation 1 ⊞note to Figure 7.1⊡17 Minimum T _{LA} T _{L□} 518.68 °R ⊡⊔uation 1 ⊞note to Figure 7.1⊡17	Vapor space volume Vapor space tan □ outage Vapor space e □ pansion factor Vented vapor saturation factor Vented vapor saturation factor Ideal gas constant Average vapor temperature Daily average li □ uid surface temperature Daily apor temperature range Daily ambient temperature range Daily ambient temperature range Daily minimum ambient temperature Daily average ambient temperature Daily average ambient temperature Daily average ambient temperature Daily vapor pressure range Breather vent pressure setting range Vapor pressure e □ uation constant Vapor pressure at T _L Vapor pressure at T _L	$\begin{array}{c} H_{VO} \\ & \square \\ & $	13 □ 6 .30 □ .32 0 .636 0 .00 1 10.731 537.06 532.07 53.53 30.00 536.30 505.00 521.10 525.00 3.26 0.06 11.720 5237.3 8.302 5.0870	ft ³ feet dimensionless dimensionless dimensionless or sraft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R psia psia dimensionless °R psia psia	□uation 1:3 □uation 1:16□note for H _{vo} hori⊡ontal □uation 1:5 □uation 1:5 □uation 1:21 Assume value of 1 for gasoline or diesel. Constant□uation 1:22 □uation 1:33 □uation 1:28 □uation 1:28 □uation 1:17 □uation 1:11 Table 7:17. Conversion factor: Ran□ne □ Fahrenheit □:50.7 Table 7:17. Conversion factor: Ran□ne □ Fahrenheit □:50.7 Table 7:17. Conversion factor: Ran□ne □ Fahrenheit □:50.7 Iuation 1:30 □uation 1:31 □uation 1:30 □uation 1:30 Table 7.1:2 Table 7.1:2 □uation 1:□note 5 □uuation 1:□note 5

Tyrone Mine VOC Emissions from GDF2 AP-42 Chapter 7 (June 2020)

		GDF2 (SPCC TYR 11)		
Descr	iption	Vertical Filled Roof 2 00	0 Gallon Gasoline Tan	
Location	(city)	Tyrone Mine (Tyrone □□e	ew Me⊡co)	
				- · · ·
nk Summary	ماله	Value Gasoline (RVP 10)	Units select one	Description Type of fuel stored in the tan
Type o	el type	Cone	select one	Fi⊡ed roof structure.
Actual hours ope		8 760	hoursyear	\Box umber of hours the tan \Box is used.
Potential through		119,400	gal/yr	
	• •	, ,		
VOC calculated emis	sions	0.43	ton/yr	Amount of VOCs potentially released over a 12 month period.
VOC potential emis	sions	1.70	ton/yr	Calculated VOC emissions
and Branchiller of the Taulo				
ysical Properties of the Tank Shell height	Ha	Value 8.58	Units feet	Description This is actual length of the tan□
Shell diameter		5.17	feet	This is the width of the cylindrical shell.
Shell radius		2.58	feet	Calculated radius
Ma⊡mum li⊡uid height	-	7.58	feet	Ma⊡mum height of the li⊡uid within the tan⊡shell. If un⊡nown⊡assume Hs □1
Average li⊒uid height		□.2□	feet	Average height of the li⊡uid within the tan⊡shell. If un⊡nown⊡assume Hi2.
Minimum li⊡uid height	H_{LD}	1.00	feet	Minimum height of the li uid within the tan shell. If un nown assume 1.
Wor⊑ing volume		118.2	gallons	Calculated volume
Turnovers per year		115.6	dimensionless	□□uation 1 ⊡36 in AP □□2 (□une 2020)
Shell color shade		Beige Cream	select one	Tan⊡shell color and shade are used to identify paint solar absorptance.
Shell condition		Aged	select one	Tan⊡condition is used to identify paint solar absorptance.
Paint solar absorptance		0.	dimensionless	Insert value from table 7.1 16. Paint effectiveness in absorbing radiant energy.
Roof height		0.02	feet	Calculated roof height.
Dome roof radius			feet	Calculated radius. Only applies to a "Dome" roof.
Cone roof slope		0.0625	ftfft	If un hown 0.0625. If nown insert value. Only applies to a "Cone" roof.
Vacuum setting		0.03	psig	Vacuum setting is a value set for the tan□at the facility. Breather vent pressure is a reading from the tan□monitoring system.
Pressure setting	г _{ВР}	0.03	psig	
eather Data		Value	Units	Description
□earest malor city		Deming⊡M	Select one	□earest malor city to the tan⊡location.
Average annual ma imum temperature	$T_{A\square}$	76.6	°F	Average over a calendar year.
Average annual minimum temperature	$T_{A\square}$	□6.2	°F	Average over a calendar year.
Atmospheric pressure	PA	12.5□	psia	Average for the location.
Solar insolation		10772	Btu⊈ft²·day)	Total for a hori⊡ontal surface.
Solar insolation	I	<u> </u>	_Btu⊈ft ² ·day)	
Solar insolation	ι (L _T)	Calculated value		Notes (equations are from AP-42, Chapter 7)
Solar insolation Iculation of VOC Emission = Total Losses (Total losses	ι (L_T) L _T	Calculated value 852.5	lb/yr	Notes (equations are from AP-42, Chapter 7)
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses	ι (L _T) L _T L _S	Calculated value	lb/yr lb/yr	Notes (equations are from AP-42, Chapter 7)
Solar insolation Iculation of VOC Emission = Total Losses (Total losses	Ι [L _T] L _T L _S L _W	Calculated value 852.5 381.8	lb/yr	Notes (equations are from AP-42, Chapter 7) □ □uation 1□ □ □uation 1□ □ □ uation 1□
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses	∣ L _T L _S L _W	Calculated value 852.5 381.8 470.7	lb/yr lb/yr lb/yr	Notes (equations are from AP-42, Chapter 7) □ □uation 1 □ □uation 1 □ □uation 1 □ □ □uation 1 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput	I L _T L _S L _W	Calculated value 852.5 381.8 470.7 218 2.	lb/yr lb/yr lb/yr bbl⊡yr	Notes (equations are from AP-42, Chapter 7) □uation 1:1 □uation 1:2 □uation 1:35 □uation 1:37
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor	I L _T L _s L _w 0 W _v	Calculated value 852.5 381.8 470.7 2/8°[2.] 0.] 3 0.06 66	lb/yr lb/yr lb/yr bblːŷr dimensionless	Notes (equations are from AP-42, Chapter 7) □uation 1 □ 5 □uation 1 □ 7 Saturation turnovers □36 □ (180 □ □) □6 □□ turnovers at 36 or lower □ 1
Solar insolation Iculation of VOC Emission = Total Losses Total losses Standing storage losses Working losses Annual net throughput Woring loss turnover factor Stocovapor density Vapor Molecular Weight at 60 °F Vapor pressure	I L _T Ls Lw Wv Mv Pva	Calculated value 852.5 381.8 470.7 2'8°2.0 0.03 0.060 66 5.061	Ib/yr Ib/yr Ib/yr bblːŷr dimensionless Ib.ft ³ Ib.fb.fmole psia	Notes (equations are from AP-42, Chapter 7) Cuation 11 Cuation 112 Cuation 1135 Cuation 1137 Saturation Turnovers 136 (180) 6 Curnovers at 36 or lower 1 Cuation 1122 Table 7.112 Calculated based on T _{LA} .
Solar insolation Iculation of VOC Emission = Total Losses Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume	I L _T L _s L _w W _V M _V P _{VA} V _V	Calculated value 852.5 381.8 470.7 2.8 2. 0. 3 0.06 66 5. 66 5. 61 0.0	Ib/yr Ib/yr Ib/yr bblːŷr dimensionless Ib.ft ³ Ib.fb.fmole psia ft ³	Notes (equations are from AP-42, Chapter 7)
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡vapor density Vapor Molecular Weight at 60 °F Vapor space volume Vapor space volume Vapor space roof outage	I L _T L _s L _w U U W V M _V P _{VA} V _V H _{RO}	Calculated value 852.5 381.8 470.7 2'8°2.0 0.03 0.060 66 5.061 0.00 0.01	Ib/yr Ib/yr Ib/yr bbl:yr dimensionless Ib:ft ³ Ib:Ib:Imole psia ft ³ feet	Notes (equations are from AP-42, Chapter 7)
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space tool outage Vapor space tan⊡outage	I L _T L _S L _W C U U V M _V M _V H _{RO} H _{VO}	Calculated value 852.5 381.8 470.7 2:8:2 0.:3 0.06: 66 5.:61 :0.0: 0.01 .30	Ib/yr Ib/yr Ib/yr bblːŷr dimensionless Ib.ft ³ Ib.fb.fmole psia ft ³	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1137 Saturation 1urnovers 136 □ (180 □) 16 □ □ turnovers at 36 or lower □ 1 □uation 1122 Table 7.112 Calculated based on TLA- □uation 113 □uation 117 Cone □uation 11 □ Dome □uation 116_vertical
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space tor outage Vapor space e_pansion factor	I L _T Ls Lw Uv Wv Mv Pva Vv H _{RO} H _{VO} Uv	Calculated value 852.5 381.8 470.7 218 2 03 0.06 66 561 0.0 0.01 30 00	Ib/yr Ib/yr Ib/yr bblːyr dimensionless Ibːft ³ IbːIbːmole psia ft ³ ffeet feet	Notes (equations are from AP-42, Chapter 7) Cuation 11 Cuation 112 Cuation 112 Cuation 1135 Cuation 1137 Saturation Curnovers 136 (180) 6 Continuovers at 36 or lower 11 Cuation 1122 Table 7.112 Calculated based on TLA- Cuation 113 Cuation 113 Cuation 116 Contical Cuation 115
Solar insolation Iculation of VOC Emission = Total Losses Total losses Standing storage losses Annual net throughput Wor ing loss turnover factor Stoc vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space cof outage Vapor space e_pansion factor Vented vapor saturation factor	I L _T L _S L _W U _V W _V W _V W _V N _V	Calculated value 852.5 381.8 470.7 218°2.0 0.03 0.06° 66 5.061 0.00 0.01 300 0.01 0.00 0.02	Ib/yr Ib/yr Ib/yr dimensionless Ibft ³ Ibftbfmole psia ft ³ feet feet feet dimensionless	Notes (equations are from AP-42, Chapter 7) Cuation 1:1 Cuation 1:2 Cuation 1:35 Cuation 1:37 Saturation:Turnovers: 36 (180)6 Calculated based on TLA. Cuation 1:3 Cuation 1:4
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space tan⊡outage Vapor space e_pansion factor Vented vapor saturation factor Wor⊡ng loss product factor	I L _T Ls Lw Uv Mv Vv H _{RO} Vv H _{RO} Co S P	Calculated value 852.5 381.8 470.7 21812.0 0.13 0.060 66 5.161 0.01 0.01 300 0.01 300 0.12 1	Ib/yr Ib/yr Ib/yr bbl:yr dimensionless Ib:ft ³ Ib:fb:mole psia ft ³ feet feet feet dimensionless dimensionless	Notes (equations are from AP-42, Chapter 7) Cuation 11 Cuation 12 Cuation 135 Cuation 137 Saturation furnovers 36 (180) 6 Curnovers at 36 or lower 1 Cuation 122 Table 7.12 Calculated based on T _{LA} . Cuation 13 Cuation 13 Cuation 117 Cone Cuation 11 Dome Cuation 15 Cuation 15 Cuation 121 Assume value of 1 for gasoline or diesel.
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡ vapor density Vapor Molecular Weight at 60 °F Vapor pace volume Vapor space volume Vapor space of outage Vapor space tan⊡outage Vapor space dan_outage Vapor space dan_outage Vapor space tan⊡outage Vapor space dan_outage Vapor space solutator Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant	$ \begin{array}{c} I \\ L_{T} \\ L_{S} \\ L_{W} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Calculated value 852.5 381.8 470.7 2/8/2.2 0.3 0.06 66 5.61 0.0 0.01 300 0.01 130 0.00 0.12 1 10.731	Ib/yr Ib/yr Ib/yr bblːyr dimensionless Ibːft³ Ibːfbːmole psia ft³ feet feet feet dimensionless dimensionless psiaːft³/Ib-mole**R	Notes (equations are from AP-42, Chapter 7)
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor pace volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space e□pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature	$ \begin{array}{c} I \\ \hline \begin{array}{c} \textbf{L}_{T} \end{array} \\ \hline \begin{array}{c} \textbf{L}_{s} \\ \hline \begin{array}{c} \textbf{L}_{s} \end{array} \\ \hline \begin{array}{c} \textbf{W} \end{array} \\ \hline \begin{array}{c} \textbf{W} \end{array} \\ \hline \end{array} \\ \end{array} \\$	Calculated value 852.5 381.8 470.7 2'8°2.0 0.06 66 5.061 0.00 0.01 30 0.01 0.00 0.02 1 10.731 520.68	Ib/yr Ib/yr Ib/yr bblːyr dimensionless Ibːtf³ Ibːtbːmole psia ft³ feet feet dimensionless dimensionless psiaːtf³/lb-mole*°R °R	Notes (equations are from AP-42, Chapter 7) Cuation 11 Cuation 112 Cuation 1135 Cuation 1135 Cuation 1137 Saturation Turnovers 136 (180) 6 Continuovers at 36 or lower 1 Cuation 1122 Table 7.112 Calculated based on TLA. Cuation 113 Cuation 115 Cuation 1121 Assume value of 1 for gasoline or diesel.
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space cof outage Vapor space e⊡pansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature Daily average li∟uid surface temperature	I L _T) L _T L _s L _w W _V M _V M _V M _V H _{RO} C _o R T _V T _L	Calculated value 852.5 381.8 470.7 218 2. 0.3 0.06 66 5.61 0.0 0.01 30 0.0 1 10.731 52.68 526.	Ib/yr Ib/yr Ib/yr bblːyr dimensionless Ibːft³ Ibːfbːmole psia ft³ feet feet feet dimensionless dimensionless psiaːft³/Ib-mole**R	Notes (equations are from AP-42, Chapter 7) uation 11 uation 112 uation 1135 uation 1137 Saturation 1:00 Saturation 1:120 Table 7.112 Calculated based on TLA. uation 1:31 uation 1:32 Table 7.112 Calculated based on TLA. uation 1:31 uation 1:31 uation 1:31 uation 1:32 Calculated based on TLA. Constation 1:31 constant uation 1:51 uation 1:51 uation 1:51 uation 1:121 Assume value of 1 for gasoline or diesel. Constant uation 1:22 uation 1:33
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor pace volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space e□pansion factor Vented vapor sururation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature	I L _T) L _T L _s L _w = W _V W _V V _N R _{NO} S P R T _V L _K T _V T _L T _V	Calculated value 852.5 381.8 470.7 2'8°2.0 0.06 66 5.061 0.00 0.01 30 0.01 0.00 0.02 1 10.731 520.68	Ib/yr Ib/yr Ib/yr bblːyr dimensionless Ibːft ³ IbːIbːmole psia ft ³ feet feet dimensionless dimensionless psia.ft ³ /Ib-mole*°R °R	Notes (equations are from AP-42, Chapter 7) Cuation 1 Saturation Curron Cuation 1 Cuation 1 Cuation 1 Cuation 1 Cuation 1 Calculated based on TLA. Cuation 1 Cuation 1 Constant Cuation 1 Constant Cuation 1 Calculated of 1 Constant Cuation 1 Cuation 1 Constant Cuation 1 Calculated based on Tla Dome Cuation 1 Constant Cuation 1 Cuation 1 Cuation 1 Cuation 1 Cuation 1 Calculated based on 1 Constant Cuation 1 Cuation 1 Cuation 1 Cuation 1 Cuation 1 Cuation 1 C
Solar insolation Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space cof outage Vapor space tan_outage Vapor space an_outage Vapor space an_outage Vapor space elpansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature Daily average li⊡uid surface temperature Daily vapor temperature range	$ \begin{array}{c} I \\ L_{T} \\ L_{S} \\ L_{W} \\ W_{V} \\ W_{W} \\ W_{V} \\ W_{V} \\ W_{V} \\ W_{V} \\ W_{V} \\ W_{W} \\ W_{W \\ W \\ $	Calculated value 852.5 381.8 470.7 218 2 03 0.06 66 561 0.0 0.01 30 00 00 02 1 10.731 5268 526 38.65	Ib/yr Ib/yr Ib/yr imensionless Ib/ft ³ Ib/Ib/Imole psia ft ³ feet feet dimensionless dimensionless gsia/ft ³ /Ib-mole**R °R °R	Notes (equations are from AP-42, Chapter 7) Utation 11 Utation 112 Utation 1135 Utation 1137 Saturation Turnovers 136 (180) 6turnovers at 36 or lower 1 Utation 1137 Saturation Turnovers 136 (180) 6turnovers at 36 or lower 1 Utation 1137 Calculated based on TLA. Utation 113 Utation 116 Overtical Utation 115 Utation 1121 Assume value of 1 for gasoline or diesel. Constant Utation 1133 Utation 1128 Utation 1128
Solar insolation Iculation of VOC Emission = Total Losses Total losses Standing storage losses Morking losses Annual net throughput Wor⊡ng loss turnover factor Stoc□ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space tan□outage Vapor space tan□outage Vapor space elpansion factor Vented vapor saturation factor Wor⊡ng loss product factor Ideal gas constant Average vapor temperature Daily average li⊡iid surface temperature Daily ambient temperature range	I L _T L _S L _W L _V L _S L _W L _V L _S L _W L _V L _V L _V L _V L _V L _T L _T L_T	Calculated value 852.5 381.8 470.7 218 2 03 0.06 66 561 0.00 0.01 30 0.00 0.01 10.731 52.68 526 38.65 300	Ib/yr Ib/yr Ib/yr dimensionless Ib/ft ³ Ib/Ib/mole psia ft ³ feet feet dimensionless dimensionless giantsingless oral ft ³ /Ib-mole**R °R °R °R °R	Notes (equations are from AP-42, Chapter 7) Cuation 11 Cuation 112 Cuation 1135 Cuation 1137 SaturationTurnovers 136 (180) 6turnovers at 36 or lower 11 Cuation 1137 SaturationTurnovers 136 (180) 6turnovers at 36 or lower 11 Cuation 1137 Calculated based on TLA- Calculated based on TLA- Cuation 113 Cuation 113 Cuation 116 Cuation 115 Cuation 115 Cuation 1121 Assume value of 1 for gasoline or diesel. ConstantCultution 1122 Cuation 1133 Cuation 1128 Cuation 117 Cuation 117
Solar insolation Iculation of VOC Emission = Total Losses Total losses Standing storage losses Morking losses Annual net throughput Wor⊡ng loss turnover factor Stoc□ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space e_pansion factor Vented vapor saturation factor Uoring loss product factor Ideal gas constant Average vapor temperature Daily average temperature range Daily ambient temperature range Daily ambient temperature	$ \begin{array}{c} I \\ L_{T} \\ L_{S} \\ L_{W} \\ W \\ \mathsf$	Calculated value 852.5 381.8 470.7 218°2 0.°3 0.06° 66 5.°61 °0.0° 0.01 °30 0.01 °30 0.00 0.°2 1 10.731 52°68 526. 38.65 30.°0 536.2°	Ib/yr Ib/yr Ib/yr Ib/yr dimensionless Ibft ³ Ibfb	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1135 □uation 1137 SaturationTurnovers 136 (180 □ 0) 6 □ 0 turnovers at 36 or lower 1 □uation 1122 Table 7.112 Calculated based on TLA. □uation 113 □uation 113 □uation 113 □uation 116 □uation 117 Cone □uation 116 □uation 115 □uation 115 □uation 115 □uation 1121 Assume value of 1 for gasoline or diesel. Constant □uation 1133 □uation 1134 □uation 117 □uation 117 □uation 111 Table 7117. Conversion factor: Ran □ne □ Fahrenheit □ 517
Iculation of VOC Emission = Total Losses Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space volume Vapor space tan⊜outage Vapor space dan∋outage Vapor space dan∋outage Vapor space dan∋outage Daily average li⊔uid surface temperature Daily vapor temperature range Daily ma⊡mum ambient temperature	$ \begin{array}{c} I \\ \hline \\ L_T \\ L_S \\ W_V \\ H_{ROO} \\ \odot \\ S \\ P \\ R \\ T_V \\ T_{LA} \\ T_{AA} \\ T_{AA} \end{array} $	Calculated value 852.5 381.8 470.7 2/8/2.2 0.3 0.06 66 5.61 0.0 0.01 300 0.01 10.731 52.68 526. 38.65 30.0 536.2 505.88	Ib/yr Ib/yr Ib/yr bbl:yr dimensionless Ib:ft ³ Ib:Ib:mole psia ft ³ feet feet dimensionless dimensionless psia:ft ³ /Ib-mole**R °R °R °R °R °R	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1135 □uation 1137 Saturation Turnovers 136 (180 0 0) 6 000000000000000000000000000000
Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc⊡vapor density Vapor Molecular Weight at 60 °F Vapor pace volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space color outage Vapor space	$ \begin{array}{c} I \\ L_T \\ L_S \\ W_V \\ H_{RO} \\ \odot \\ \odot \\ B \\ P \\ R \\ T_V \\ T_{LA} \\ T_A \\ T_A \\ T_A \\ T_B \end{array} $	Calculated value 852.5 381.8 470.7 2/8/2.0 0.3 0.06 66 5.61 0.0 0.01 30 0.00 0.01 10.731 52.68 526.0 38.65 30.0 536.2 505.88 521.0	Ib/yr Ib/yr Ib/yr bbl:yr dimensionless Ib:ft ³ Ib:Ib:Tmole psia ft ³ feet feet dimensionless dimensionless psia:ft ³ /Ib-mole**R °R °R °R °R °R °R °R °R	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1137 Saturation Turnovers 136 (180) 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Iculation of VOC Emission = Total Losses Total losses Standing storage losses Annual net throughput Wor⊡ng loss turnover factor Stoc□ vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space tan⊡outage Vapor space tan⊡outage Vapor space tan⊡outage Vapor space tan⊡outage Vapor space dan⊡outage Vapor space tan⊡outage Uagor space dan⊡outage Uagor space tan⊡outage Uagor temperature Daily average i⊡uid surface temperature Daily average ambient temperature ambient temperature Daily average ambient temperature ambient tem	I L _T L _S U U V V V V V V C C C C L L V V V V V N C C V V V N V N C C C C C C C C C C C C C	Calculated value 852.5 381.8 470.7 218 2 03 0.06 66 561 0.0 0.01 30 000 001 30 000 002 1 10.731 5268 526 38.65 3000 536.2 505.88 521.0 523.6	Ib/yr Ib/yr bb/yr bb/yr bbl/yr bbl/yr bbl/bl/br bb/fi ³ lb/fi ³ lb/fi ³ feet feet dimensionless omain fi ³ psiaff ³ /lb-mole**R °R °R	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1137 Saturation 1urnovers 136 (180 □) □6 □□ turnovers at 36 or lower □1 □uation 1137 Saturation 1urnovers 136 (180 □) □6 □□ turnovers at 36 or lower □1 □uation 1137 Saturation 1urnovers 136 (180 □) □6 □□ turnovers at 36 or lower □1 □uation 1132 Table 7.112 Calculated based on TLA. □uation 113 □uation 113 □Dome □uation 116 □vertical □uation 1121 Assume value of 1 for gasoline or diesel. Constant::::::::::::::::::::::::::::::::::
Iculation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□ vapor density Vapor Molecular Weight at 60 °F Vapor pace volume Vapor space coof outage Vapor space coof outage Vapor space coof outage Vapor space coof outage Vapor space tan_outage Vapor space tan_outage Vapor space tan_outage Vapor space tan_outage Uago space coof utage State and outage Vapor space tan_outage Vapor space tan_outage Daily average li∟uid surface temperature Daily vapor temperature range Daily ma⊡mum ambient temperature Daily minimum ambient temperature Daily average ambient temperature	I L _T L _S U U V V V V V V C C C C L L V V V V V N C C V V V N V N C C C C C C C C C C C C C	Calculated value 852.5 381.8 470.7 218°2 0.03 0.06° 66 561 0.00 0.01 30 0.01 0.01 0.01 10.731 52°.68 526 38.65 300 536.2° 505.88 521.0° 523.6° 2.18 0.06 11.72°	Ib/yr Ib/yr Ib/yr imensionless Ib/ff ³ Ib/Ib/mole psia ft ³ feet dimensionless dimensionless offreet dimensionless psia/ft ³ /Ib-mole**R °R off psia psi dimensionless	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1137 Saturation lumovers 136 (180 □) 6 □ tumovers at 36 or lower □1 □uation 1137 Saturation lumovers 136 (180 □) 6 □ tumovers at 36 or lower □1 □uation 1137 Calculated based on TLA. □uation 113 Cone □ uation 11 □ Dome □uation 116 Vertical □uation 115 □uation 1121 Assume value of 1 for gasoline or diesel. Constant □ uation 1122 □uation 1133 □uation 113 □uation 113 □uation 113 □uation 113 □uation 1131 □uation 113 □uation 113 □uation 1131 □uation 1131 □uation 1130 □uation 1131 □uation 131
Idulation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊟ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space can_outage Vapor space eulamon factor Wor⊟ng loss product factor Ideal gas constant Average vapor temperature Daily average li⊡id surface temperature Daily average ambient temperature Daily ma⊡mum ambient temperature Daily ma⊡mum ambient temperature Daily average ambient temperature Daily average ambient temperature Daily average ambient temperature Daily avor pressure range Breather vent pressure setting range Vapor pressure e⊡uation constant	$ \begin{array}{c} I \\ L_T \\ L_S \\ W^{\vee} $	Calculated value 852.5 381.8 470.7 218°2 0.3 0.06° 66 5.°61 °0.0° 0.01 0.01 0.01 0.01 0.01 0.01 0.02 1 10.731 52°68 526. 38.65 30.°C 536.2° 505.88 521.0° 523.6° 2.18 0.06 11.72° 5237.3	Ib/yr Ib/yr Ib/yr obl:yr dimensionless lb:ft ³ lb:Dib:mole psia ft ³ feet feet dimensionless dimensionless psia/ft ³ /lb-mole**R °R	Notes (equations are from AP-42, Chapter 7) Cuation 11 Cuation 112 Cuation 1135 Cuation 1137 SaturationTurnovers 136 (180 0) 6 00 turnovers at 36 or lower 01 Cuation 1137 SaturationTurnovers 136 (180 0) 6 00 turnovers at 36 or lower 01 Cuation 1137 Calculated based on TLA- Cuation 113 Cuation 113 Cuation 113 Cuation 1136 Cuation 1136 Cuation 1131 Constant Constant Cuation 122 Constant Cuation 121 Assume value of 1 for gasoline or diesel. Constant Cuation 122 Cuation 123 Cuation 124 Assume value of 1 for gasoline or diesel. Constant Constant Cuation 128 Cuation 129 Cuation 121 Table 7217. Conversion factor: Rantine Fahrenheit 0517 Cuation 130 Cuation 131 Cuation 131 Cuation 131
Idulation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space eiDansion factor Vented vapor sauration factor Vented vapor space temperature Daily average li∟uid surface temperature Daily vapor temperature range Daily ambient temperature Daily average ambient temperature ambient temperature Daily average ambient temperature ambient temperature Daily average ambient temperature	I LT L L U W V V R V V R V V R V V R V V V R V	Calculated value 852.5 381.8 470.7 218 2. 0.3 0.06 66 5.61 0.0 0.01 30 0.0 0.2 1 10.731 52.68 526. 38.65 30.0 536.2 505.88 521.0 523.6 2.18 0.06 11.72 523.7.3 7.13	Ib/yr Ib/yr Ib/yr imensionless Ib/ff ³ Ib/Ib/mole psia ft ³ feet dimensionless dimensionless offreet dimensionless psia/ft ³ /Ib-mole**R °R off psia psi dimensionless	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1135 □uation 1137 Saturation Turnovers 136 (180 0 0) 16 000 turnovers at 36 or lower 11 □uation 1172 Table 7.112 Calculated based on T _{LA} . □uation 113 □uation 113 □uation 113 □uation 113 □uation 113 □uation 113 □uation 115 □uation 115 □uation 115 □uation 115 □uation 1121 Assume value of 1 for gasoline or diesel. Constant □uation 1122 □uation 1133 □uation 1131 □uation 117 □uation 117 □uation 117 □uation 117 □uation 117 □uation 111 Table 7127. Conversion factor: Ran_ineFahrenheit517 □uation 1131 □uation 1131 □uation 1131 □uation 1131 □uation 1131 □uation 110
Idulation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space cof outage Vapor space cof outage Vapor space cof outage Vapor space e⊡pansion factor Vented vapor saturation factor Vented vapor sproduct factor Ideal gas constant Average vapor temperature Daily average li∟uid surface temperature Daily vapor temperature range Daily ma⊡mum ambient temperature Daily ambient temperature Daily average ambient temperature Daily average ambient temperature Daily average ambient temperature Daily average ambient temperature Daily vapor pressure range Breather vent pressure setting range Vapor pressure e⊡uation constant Vapor pressure e⊡uation constant	I L L W U W V V V R V O B V V R V V R V V R V V R V V R V V V V	Calculated value 852.5 381.8 470.7 218 2. 0.3 0.06 66 5.61 0.0 0.01 30 0.0 0.0 1 10.731 52.68 526. 38.65 30.0 536.2 505.88 521.0 523.6 2.18 0.06 11.72 523.73 7.13 55	Ib/yr Ib/yr Ib/yr iblyr dimensionless Ib/ft ³ Ib/Ib/mole psia ft ³ feet feet dimensionless dimensionless psia/ft ³ /Ib-mole**R °R psia psia psia psia psia psia psia	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1137 Saturation lumovers 136 (180) 6 □ tumovers at 36 or lower 1 □uation 1137 Saturation lumovers 136 (180) 6 □ tumovers at 36 or lower 1 □uation 1137 Saturation lumovers 136 (180) 6 □ tumovers at 36 or lower 1 □uation 1137 Calculated based on T _{LA} . □uation 113 □uation 113 □ tumovers □uation 113 □ tumovers □uation 113 □uation 116_vertical □uation 116_vertical □uation 1121 Assume value of 1 for gasoline or diesel. Constant::::::::::::::::::::::::::::::::::
Idulation of VOC Emission = Total Losses (Total losses Standing storage losses Working losses Annual net throughput Wor⊡ng loss turnover factor Stoc□vapor density Vapor Molecular Weight at 60 °F Vapor pressure Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space volume Vapor space cof outage Vapor space eiDansion factor Vented vapor sauration factor Vented vapor space temperature Daily average li∟uid surface temperature Daily vapor temperature range Daily ambient temperature Daily average ambient temperature Daily average ambient temperature ambient temperature Daily average ambient temperature ambie	$ \begin{array}{c} I \\ L_{T} \\ L_{S} \\ L_{W} \\ W \\ \mathsf$	Calculated value 852.5 381.8 470.7 218 2. 0.3 0.06 66 5.61 0.0 0.01 30 0.0 0.2 1 10.731 52.68 526. 38.65 30.0 536.2 505.88 521.0 523.6 2.18 0.06 11.72 523.7.3 7.13	Ib/yr Ib/yr Ib/yr Ib/yr dimensionless Ib/tf ³ Ib/tb/mole psia ft ³ feet feet dimensionless psia/ft ³ /Ib-mole**R °R °R °R °R °R °R °R °R °R °R °R °R °R	Notes (equations are from AP-42, Chapter 7) □uation 11 □uation 112 □uation 1135 □uation 1137 Saturation turnovers 36 (180 °) 6 ° 10000000000000000000000000000000000

Freeport-McMoRan Tyrone Inc.

SX/EW Plant - Chemical Constituent Concentrations for SX/EW Extractants and Diluents

Please note that the information provided in the table below is considered CONFIDENTIAL BUSINESS INFORMATION by the chemical suppliers that provided the information.

			Chemi	cal Concentratior	n [ppm]		
Reagent Name	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4 - TMB	1,3,5 - TMB	Other VOC
Extractants							
ACORGA M5640	5	17.9	23.3	34.8			
ACORGA M5774	5	17.9	23.3	34.8			
ACORGA M5850	5	17.9	23.3	34.8			
ACORGA M5910	3.35	7.25	3.4	8.6	6.35	3.35	13.9
Diluents							
Conosol 170ES	50	50	50	50			
SX-80	5.4	110	530	690	2100	830	
Escaid 110		169					

Data for ACORGA extractants provided by Cytec.

Data for Conosol 170ES provided by Calumet Specialty Products.

Data for SX-80 provided by Chevron Phillips.

Blank cells indicate that data for this chemical was not available from the chemical supplier.

1,2,4 - TMB = 1,2,4-trimethylbenzene

1,3,5 - TMB = 1,3,5-trimethylbenzene

Other VOCs represented by octane, heptane, hexane, and pentane.

The combination of chemicals which results in the highest emission rate is represented in the permit application.

The following calculations are based on the BHP Copper VOC study conducted in 1997.

Emissions from the use of ACORGA M5774 also represent emissions from the use of ACORGA M5640 and ACORGA M5850 since the chemical constituents are the same for all three extractants.

	10	area of each	ı tank	6,137	ft^2	total area	61,366	ft^2		
Chemical Product	Percent									
SX-80	90%									
ACORGA M5774	10%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate lb/hr	Emission Rate tons/year
Benzene	0.090	78.11	5.360	0.017	0.0018	5.71E-06	1.53E-07	4.94E-07	0.007	0.030
Toluene	0.080	92.14	100.790	0.377	0.0668	2.50E-04	3.02E-06	9.74E-06	0.14	0.60
Ethylbenzene	0.070	106.2	479.330	2.067	0.0568	2.45E-04	1.45E-05	4.67E-05	0.65	2.87
Total Xylene	0.070	106.2	624.480	2.693	0.0371	1.60E-04	1.89E-05	6.09E-05	0.85	3.74
Total HAPs					I	ļi			1.65	7.23
1,2,4 - trimethylbenzene	0.060	120.2	1890.00	9.23	0.023	1.12E-04	5.54E-05	1.79E-04	2.51	10.97
1,3,5 - trimethylbenzene	0.060	120.2	747.00	3.65	0.010	4.93E-05	2.19E-05	7.07E-05	0.99	4.34
	1		0.00	0.0	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
Other VOCs	0.000	0.0	0.00	0.0	0.00	0.00E+00	0.00L+00	0.00E+00	0.00	0.00
Other VOCs Total VOCs DiffF= $(Ci-Ch) \times$	D/H	D = constitu	uent diffusivity (from EPA I	Reference Lin	k for Estimat	ted Diffusior	n Coefficient	5.15	22.54
Total VOCs	D/H	D = constitu Assumed Pr MW = const Ci = constit Ci, g/m ³ , ca meteorolog Ch = consti	uent diffusivity (ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Averag tuent concentrat e above liquid s	from EPA I , and Tempe ur weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 n	Reference Lin rature of 25.8 surface, ppm Conservative dard Deviatic er, ppm. Ass n from BHP s	ik for Estimat 34 deg. C per 1. (from manu e temperature on). sumed same a	ted Diffusion 1995 met. d facturer data of 25.84 de	n Coefficient ata) 1) g. C used ba:	5.15 is in Air and sed on 1995	22.54 Water;
Total VOCs DiffF=(Ci−Ch)×	D/H Where:	D = constitu Assumed Pi MW = const Ci = constit Ci, g/m^3 , ca meteorolog Ch = consti H = distanc	uent diffusivity (ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Avera- tuent concentrat e above liquid s Conce	from EPA I , and Tempe ur weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 n	Reference Lin rature of 25.8 surface, ppm Conservative dard Deviatic er, ppm. Ass n from BHP s	ik for Estimat 84 deg. C per 1. (from manu e temperature n). umed same a tudy	ted Diffusion 1995 met. d facturer data of 25.84 de s BHP's mea	n Coefficient ata) 1) g. C used ba:	5.15 is in Air and sed on 1995 ntrations at 1	22.54 Water;
Total VOCs	D/H	D = constitu Assumed Pr MW = const Ci = constit Ci, g/m ³ , ca meteorolog Ch = consti	uent diffusivity (ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Averag tuent concentrat e above liquid s	from EPA I , and Tempe ur weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 n	Reference Lin rature of 25.8 surface, ppm Conservative dard Deviatic er, ppm. Ass n from BHP s	ik for Estimat 34 deg. C per 1. (from manu e temperature on). sumed same a	ted Diffusion 1995 met. d facturer data of 25.84 de	n Coefficient ata) 1) g. C used bas 1sured conce	5.15 is in Air and sed on 1995 ntrations at 2 Notes	22.54 Water; H=1 m
Total VOCs DiffF=(Ci−Ch)×	D/H Where:	D = constitu Assumed Pi MW = const Ci = constit Ci, g/m^3 , ca meteorolog Ch = consti H = distanc	uent diffusivity (ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Avera- tuent concentrat e above liquid s Conce	from EPA I , and Tempe ur weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 n	Reference Lin rature of 25.8 surface, ppm Conservative dard Deviatic er, ppm. Ass n from BHP s	ik for Estimat 84 deg. C per 1. (from manu e temperature n). umed same a tudy	ted Diffusion 1995 met. d facturer data of 25.84 de s BHP's mea	n Coefficient ata) 1) g. C used bas nsured conces confidential by Chevron	5.15 is in Air and sed on 1995 ntrations at 1 Notes information Phillips	22.54 Water; H=1 m
Total VOCs DiffF= $(Ci - Ch) \times$	D/ H Where: Benzene	D = constitu Assumed Pr MW = cons Ci = constit Ci, g/m^3 , ca meteorolog Ch = consti H = distanc	lent diffusivity (ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Averag tuent concentrat e above liquid s <u>Concc</u> <u>Ethylbenzene</u>	from EPA I and Tempe ar weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 m entration in Xylene	Reference Lin rature of 25.8 surface, ppm Conservative dard Deviatio er, ppm. Ass n from BHP s ppm 1,2,4 - tmb	k for Estimat 34 deg. C per 1. (from manu e temperature n). .umed same a tudy 1,3,5 - tmb	ed Diffusion 1995 met. d facturer data of 25.84 de s BHP's mea Other	n Coefficient ata) 1) g. C used bas nsured conces confidential by Chevron	5.15 is in Air and sed on 1995 ntrations at 1 <u>Notes</u>	22.54 Water; H=1 m

The combination of chemicals which results in the highest emission rate is represented in the permit application.

Chemical Product	Percent									
Conosol 170ES	90%									
ACORGA M5774	10%									
	D	MW	Ci	Ci	Ch		Diff F	Emission	Emission	Emission
Component	cm ² /sec	g/gmole	ppm	g/m ³	ppm	Ch g/m ³	g/m ² -s	Rate	Rate	Rate
		00		0			U	ton/yr-ft ²	lb/hr	tons/year
Benzene	0.090	78.11	45.500	0.145	0.0018	5.73E-06	1.30E-06	4.21E-06	0.059	0.258
Toluene	0.080	92.14	46.790	0.176	0.0668	2.51E-04	1.40E-06	4.53E-06	0.06	0.278
Ethylbenzene	0.070	106.2	47.330	0.205	0.0568	2.46E-04	1.43E-06	4.62E-06	0.06	0.284
Total Xylene	0.070	106.2	48.480	0.210	0.0371	1.61E-04	1.47E-06	4.74E-06	0.07	0.291
Total HAPs									0.25	1.11
1,2,4 - trimethylbenzene	0.060	120.2	0.00	0.00	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
1,3,5 - trimethylbenzene	0.060	120.2	0.00	0.00	0.000	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
Other VOCs	0.000	0.0	0.00	0.0	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
Total VOCs DiffF= $(Ci-Ch) \times$		Assumed Pr	uent diffusivity ressure of 1 atm	, and Tempe					0.25 is in Air and	1.11 Water;
		Assumed Pr MW = const Ci = constit Ci, g/m3, ca meteorologi Ch = consti	ressure of 1 atm tituent molecula uent concentrat ilculated from ic ical data (Avera tuent concentrat e above liquid s	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan tion at 1 met urface = 1 n	erature of 25.8 surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s	84 deg. C per . (from manu e temperature on). sumed same a	1995 met. d facturer data of 25.84 de	ata) 1) g. C used ba	ts in Air and sed on 1995	Water;
DiffF=(<i>Ci−Ch</i>)×	Where:	Assumed Pr MW = const Ci = constit Ci, g/m^3 , ca meteorologi Ch = consti H = distanc	ressure of 1 atm tituent molecula uent concentrat ilculated from ic ical data (Avera tuent concentrat e above liquid s <u>Conc</u>	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan tion at 1 met urface = 1 n entration in	erature of 25.8 surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s ppm	34 deg. C per . (from manu e temperature on). sumed same a tudy	1995 met. d facturer data of 25.84 dej s BHP's mea	ata) 1) g. C used ba	is in Air and sed on 1995 ntrations at l	Water;
		Assumed Pr MW = const Ci = constit Ci, g/m3, ca meteorologi Ch = consti	ressure of 1 atm tituent molecula uent concentrat ilculated from ic ical data (Avera tuent concentrat e above liquid s	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan tion at 1 met urface = 1 n	erature of 25.8 surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s	84 deg. C per . (from manu e temperature on). sumed same a	1995 met. d facturer data of 25.84 de	ata) 1) g. C used ba 1sured conce	ts in Air and sed on 1995 ntrations at Notes	Water; H=1 m
DiffF=(<i>Ci−Ch</i>)×	Where:	Assumed Pr MW = const Ci = constit Ci, g/m^3 , ca meteorologi Ch = consti H = distanc	ressure of 1 atm tituent molecula uent concentrat ilculated from ic ical data (Avera tuent concentrat e above liquid s <u>Conc</u>	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan tion at 1 met urface = 1 n entration in	erature of 25.8 surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s ppm	34 deg. C per . (from manu e temperature on). sumed same a tudy	1995 met. d facturer data of 25.84 dej s BHP's mea	ata)) g. C used ba usured conce confidential by Calumet	sed on 1995 ntrations at <u>Notes</u> informatior Specialty Pr	Water; H=1 m
DiffF= $(Ci - Ch) \times$	Where:	Assumed Pr MW = cons Ci = constit Ci, g/m ³ , ca meteorologi Ch = consti H = distanc	ressure of 1 atm tituent molecula uent concentrat deulated from ic ical data (Avera tuent concentrat e above liquid s <u>Conc</u> Ethylbenzene	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan tion at 1 met urface = 1 n entration in Xylene	surface, ppm Conservative dard Deviation er, ppm. Ass h from BHP s ppm 1,2,4 - tmb	34 deg. C per 1. (from manu e temperature on). uumed same a tudy 1,3,5 - tmb	1995 met. d facturer data of 25.84 de, s BHP's mea	ata)) g. C used ba usured conce confidential by Calumet	sed on 1995 ntrations at <u>Notes</u>	Water; H=1 m supplied roducts

The combination of chemicals which results in the highest emission rate is represented in the permit application.

Chemical Product	Percent									
Conosol 170ES	95%									
ACORGA M5910	5%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate	Emission Rate	Emission Rate
				0			-	ton/yr-ft ²	lb/hr	tons/year
Benzene	0.090	78.11	47.714	0.152	0.0018	5.73E-06	1.37E-06	4.42E-06	0.062	0.271
Toluene	0.080	92.14	47.905	0.180	0.0668	2.51E-04	1.44E-06	4.64E-06	0.07	0.285
Ethylbenzene	0.070	106.2	47.717	0.206	0.0568	2.46E-04	1.44E-06	4.66E-06	0.07	0.286
Total Xylene	0.070	106.2	47.971	0.208	0.0371	1.61E-04	1.45E-06	4.69E-06	0.07	0.288
Total HAPs			· · · · · · · · · · · · · · · · · · ·						0.26	1.13
1,2,4 - trimethylbenzene	0.060	120.2	0.31	0.00	0.02	1.13E-04	8.47E-09	2.74E-08	3.83E-04	1.68E-03
1,3,5 - trimethylbenzene	0.060	120.2	0.16	0.00	0.010	4.95E-05	4.53E-09	1.46E-08	2.05E-04	8.97E-04
Other VOCs	0.070	112.1	0.68	0.0	0.00	0.00E+00	2.18E-08	7.03E-08	9.85E-04	4.32E-03
Total VOCs									0.26	1.14
$DiffF = (Ci - Ch) \times$		Assumed Pr	uent diffusivity (ressure of 1 atm,	, and Tempe						
DiffF=(<i>Ci−Ch</i>)×		Assumed Pr MW = const Ci = constit Ci, g/m3, ca meteorologi Ch = consti		, and Tempe ar weight ion at liquid leal gas law. ge plus Stan ion at 1 met	surface, ppm Conservative dard Deviation er, ppm. Ass	84 deg. C per n. (from manu e temperature on). sumed same a	1995 met. d facturer data of 25.84 de	ata) 1) g. C used ba	ts in Air and sed on 1995	Water;
	Where:	Assumed Pr MW = const Ci = constit Ci, g/m^3 , ca meteorologi Ch = consti H = distance	ressure of 1 atm, titituent molecula uent concentrati ilculated from id ical data (Averag tuent concentrat e above liquid su Conce	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan ion at 1 met urface = 1 m	surface, ppm Conservative dard Deviation er, ppm. Ass h from BHP s	84 deg. C per n. (from manu e temperature on). sumed same a study	1995 met. d facturer data of 25.84 de, s BHP's mea	ata) 1) g. C used ba	ts in Air and sed on 1995 ntrations at l	Water;
DiffF= $(Ci - Ch)$ ×		Assumed Pr MW = const Ci = constit Ci, g/m3, ca meteorologi Ch = consti	ressure of 1 atm, tituent molecula uent concentrati ilculated from id ical data (Averag tuent concentrat e above liquid so	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan ion at 1 met urface = 1 m	surface, ppm Conservative dard Deviation er, ppm. Ass h from BHP s	84 deg. C per n. (from manu e temperature on). sumed same a	1995 met. d facturer data of 25.84 de	ata) 1) g. C used ba 1sured conce	ts in Air and sed on 1995 ntrations at 1 Notes	Water; H=1 m
	Where:	Assumed Pr MW = const Ci = constit Ci, g/m^3 , ca meteorologi Ch = consti H = distance	ressure of 1 atm, titituent molecula uent concentrati ilculated from id ical data (Averag tuent concentrat e above liquid su Conce	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan ion at 1 met urface = 1 m	surface, ppm Conservative dard Deviation er, ppm. Ass h from BHP s	84 deg. C per n. (from manu e temperature on). sumed same a study	1995 met. d facturer data of 25.84 de, s BHP's mea	ata)) g. C used ba usured conce confidential by Calumet	ts in Air and sed on 1995 ntrations at 1 Notes l informatior Specialty Pr	Water; H=1 m
Chemical	Where: Benzene	Assumed Pr MW = cons Ci = constit Ci, g/m ³ , ca meteorologi Ch = consti H = distance	ressure of 1 atm, tituent molecula uent concentrati diculated from id ical data (Averaş tuent concentrat e above liquid su <u>Conce</u> Ethylbenzene	, and Tempe ar weight ion at liquid leal gas law. ge plus Stan ion at 1 met urface = 1 m entration in Xylene	surface, ppm Conservative dard Deviatio er, ppm. Ass n from BHP s ppm 1,2,4 - tmb	84 deg. C per n. (from manu e temperature on). sumed same a study 1,3,5 - tmb	1995 met. d facturer data of 25.84 de s BHP's mea Other	ata)) g. C used ba usured conce confidential by Calumet	ts in Air and sed on 1995 ntrations at 1 Notes I informatior	Water; H=1 m

The combination of chemicals which results in the highest emission rate is represented in the permit application.

Chemical Product	Percent									
SX-80	90%									
ACORGA M5910	10%				-	-		-	-	
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate	Emission Rate	Emission Rate
_		00		8				ton/yr-ft ²	lb/hr	tons/year
Benzene	0.090	78.11	5.195	0.016	0.0018	5.71E-06	1.48E-07	4.79E-07	0.007	0.029
Toluene	0.080	92.14	99.725	0.373	0.0668	2.50E-04	2.98E-06	9.64E-06	0.14	0.591
Ethylbenzene	0.070	106.2	477.340	2.059	0.0568	2.45E-04	1.44E-05	4.65E-05	0.65	2.856
Total Xylene	0.070	106.2	621.860	2.682	0.0371	1.60E-04	1.88E-05	6.06E-05	0.85	3.720
Total HAPs					1	1			1.64	7.20
1,2,4 - trimethylbenzene	0.060	120.2	1890.64	9.23	0.023	1.12E-04	5.54E-05	1.79E-04	2.51	10.98
1,3,5 - trimethylbenzene	0.060	120.2	747.34	3.65	0.010	4.93E-05	2.19E-05	7.07E-05	0.99	4.34
Other VOCs	0.070	112.1	1.39	0.01	1.69E+01	0.00E+00	4.43E-08	1.43E-07	0.00	0.01
Total VOCs									5.14	22.52
DiffF= $(Ci-Ch)$ ×		Assumed Pr	uent diffusivity (ressure of 1 atm	, and Tempe						
DiffF=(<i>Ci−Ch</i>)×		Assumed Pr MW = const Ci = constit Ci, g/m3, ca meteorologi Ch = consti	ressure of 1 atm tituent molecula uent concentrati lculated from id cal data (Average tuent concentrati e above liquid s	, and Tempe r weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 n	surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s	84 deg. C per . (from manu e temperature on). sumed same a	1995 met. d facturer data of 25.84 de	ata) 1) g. C used ba	ts in Air and sed on 1995	Water;
	Where:	Assumed Pr MW = cons Ci = constit $Ci, g/m^3, ca$ meteorologi Ch = constit H = distance	ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Averag tuent concentrat e above liquid s Conce	and Tempe ur weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 m entration in	surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s	34 deg. C per . (from manu e temperature on). sumed same a tudy	1995 met. d facturer data of 25.84 de s BHP's mea	ata) 1) g. C used ba	ts in Air and sed on 1995 ntrations at l	Water;
DiffF= $(Ci - Ch)$ ×		Assumed Pr MW = const Ci = constit Ci, g/m3, ca meteorologi Ch = consti	ressure of 1 atm tituent molecula uent concentrati lculated from id cal data (Average tuent concentrati e above liquid s	, and Tempe r weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 n	surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s	84 deg. C per . (from manu e temperature on). sumed same a	1995 met. d facturer data of 25.84 de	ata) 1) g. C used ba 1sured conce	ts in Air and sed on 1995 ntrations at 1 Notes	Water; H=1 m
	Where:	Assumed Pr MW = cons Ci = constit $Ci, g/m^3, ca$ meteorologi Ch = constit H = distance	ressure of 1 atm tituent molecula uent concentrati lculated from id ical data (Averag tuent concentrat e above liquid s Conce	and Tempe ur weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 m entration in	surface, ppm Conservative dard Deviation er, ppm. Ass n from BHP s	34 deg. C per . (from manu e temperature on). sumed same a tudy	1995 met. d facturer data of 25.84 de s BHP's mea	ata)) g. C used ba usured conce confidential by Chevron	ts in Air and sed on 1995 ntrations at <u>Notes</u> l informatior Phillips	Water; H=1 m
Chemical	Where:	Assumed Pr MW = cons Ci = constit Ci, g/m3, ca meteorologi $Ch = constit H = distanceToluene$	ressure of 1 atm tituent molecula uent concentrati lculated from id cal data (Averag tuent concentrat e above liquid s <u>Conce</u> Ethylbenzene	and Tempe r weight on at liquid eal gas law. ge plus Stan ion at 1 met urface = 1 m entration in Xylene	surface, ppm Conservative dard Deviatic er, ppm. Ass n from BHP s ppm 1,2,4 - tmb	34 deg. C per 1. (from manu e temperature on). uumed same a tudy 1,3,5 - tmb	1995 met. d facturer data of 25.84 de s BHP's mea	ata)) g. C used ba usured conce confidential by Chevron	ts in Air and sed on 1995 ntrations at 1 Notes I informatior	Water; H=1 m

The combination of chemicals which results in the highest emission rate is represented in	the nermit application
The combination of chemicals which results in the highest emission rate is represented in	the permit application.

Chemical Product	Percent									
Escaid 110	95%									
ACORGA M5910	5%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate	Emission Rate	Emission Rate
		88		0			-	ton/yr-ft ²	tons/year	lb/hr
Benzene	0.093	78.11	0.175	0.001	0.0018	5.73E-06	5.14E-09	1.66E-08	0.001	0.000
Toluene	0.083	92.14	160.557	0.603	0.0668	2.51E-04	5.02E-06	1.62E-05	0.995	0.23
Ethylbenzene	0.076	106.2	0.177	0.001	0.0568	2.46E-04	3.97E-09	1.28E-08	0.001	0.00
Total Xylene	0.076	106.2	0.449	0.002	0.0371	1.61E-04	1.35E-08	4.37E-08	0.003	0.00
Total HAPs									1.00	0.23
1,2,4 - trimethylbenzene	0.070	120.2	0.33	0.00	0.02	1.13E-04	1.06E-08	3.42E-08	0.00	0.00
1,3,5 - trimethylbenzene	0.070	120.2	0.17	0.00	0.010	4.95E-05	5.67E-09	1.83E-08	0.00	0.00
Other VOCs	0.070	112.1	0.73	0.00	16.92	0.00E+00	2.32E-08	7.49E-08	0.00	0.00
Total VOCs									1.01	0.23

 $DiffF = (Ci - Ch) \times D/eH$ D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight

Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Deviation).

Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m H = distance above liquid surface = 1 m per BHP Study

Chemical	Benzene	Toluene	Ethylbenzene	Xylene	1,2,4 - tmb	1,3,5 - tmb	Other	Notes
Escaid 110	0	169	0	0	0	0	0	confidential information supplied
ACORGA M5910	3.35	7.25	3.40	8.60	6.35	3.35	13.90	confidential information supplied
Organic in ppm	0.17	160.56	0.18	0.45	0.33	0.17	0.73	composite concentration, Ci

Freeport-McMoRan Tyrone Inc.

SX/EW-2 - Sulfuric Acid Emissions Estimates for the Tyrone SX/EW Tank House

Parameter	Value	Units
A1 (Inlet Area)	1647	sqft
A2 (Outlet Area)	2625	sqft
H (Height separating inlet from outlet)	38.9	ft
Ti (Inside Temperature)	523	deg R
To (Outside Temperature)	515	deg R
h (Natural plane calculation)	27.79	ft
Cw (Orifice Constant)	0.55	-
Aw (Area of windward openings)	730	sqft
V (Wind speed)	10	MPH
Qw (Wind effect calc.)	353,320	cfm
A (Area)	1647	sqft
Cs (Coefficient of Openings)	0.55	-
h (Natural plane calculation)	27.79	ft
Ti (Inside Temperature)	523	deg R
dT (Temperature difference)	8	deg R
Fc (Correction Factor)	1.18	-
Qs (Thermal effect calc.)	335,353	cfm
Qtotal (combined wind & thermal)	487,131	cfm
H2SO4 Concentration	1	mg/cm
H2SO4 Concentration	6.237E-08	lb/cf
ACID MIST EMISSIONS (as PM10)	15,969	lb/yr
	7.98	ΤΡΥ

1.82 lb/hr based on 8,760 hr/yr

Conversions:

1 lb = 454 grams

1 ft = 0.3048 m

cf = cubic foot

cm = cubic meter cfm = cubic feet per minute

Freeport-McMoRan Tyrone Inc. SX/EW-3 - 2,000,000 Gallon Raffinate Tank Emissions

The following calculations are based on the BHP Copper VOC study conducted in 1997.

Emissions from the use of ACORGA M5774 also represent emissions from the use of ACORGA M5640 and ACORGA M5850 since the chemical constituents are the same for all three extractants. SX-80 and ACORGA M5774 were used as the reagent mix in calculating emissions due to yielding the highest representative emissions.

Number of tanks 1		area of each tank		11,304	ft ²	total area	11,304	ft ²]	
Chemical Product SX-80	Percent 90%									
ACORGA M5774	10%									
Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate Ib/hr	Emission Rate tons/yr
Benzene	0.090	78.11	5.360	0.017	0.0018	5.71E-06	1.53E-07	4.94E-07	1.28E-03	5.59E-03
Toluene	0.080	92.14	100.790	0.377	0.0668	2.50E-04	3.02E-06	9.74E-06	2.51E-02	1.10E-01
Ethylbenzene	0.070	106.2	479.330	2.067	0.0568	2.45E-04	1.45E-05	4.67E-05	1.21E-01	5.28E-01
Total Xylene	0.070	106.2	624.480	2.693	0.0371	1.60E-04	1.89E-05	6.09E-05	1.57E-01	6.88E-01
Total HAPs									0.30	1.33
1,2,4 - trimethylbenzene	0.060	120.2	1890.00	9.23	0.023	1.12E-04	5.54E-05	1.79E-04	4.62E-01	2.02E+00
1,3,5 - trimethylbenzene	0.060	120.2	747.00	3.65	0.010	4.93E-05	2.19E-05	7.07E-05	1.82E-01	7.99E-01
Other VOCs	0.000	0.0	0.00	0.0	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total VOCs									0.95	4.15

 $DiffF = (Ci - Ch) \times D/H$

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight

Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Deviation).

Ch = constituent concentration at 1 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m H = distance above liquid surface = 1 m per BHP Study

			Con					
Chemical	Benzene	Toluene	Ethylbenzene	Xylene	1,2,4 - tmb	1,3,5 - tmb	Other	Notes
SX-80	5.4	110	530	690	2100	830	0.00	confidential information supplied by Chevron Phillips
ACORGA M5774	5.00	17.90	23.30	34.80	0.00	0.00	0.00	confidential information supplied by Cytec
Organic in ppm	5.36	100.79	479.33	624.48	1890.00	747.00	0.00	composite concentration, Ci

Freeport-McMoRan Tyrone Inc. SX/EW 4 - 400,000 Gallon Raffinate Tank Emissions

The following calculations are based on the BHP Copper VOC study conducted in 1997.

Emissions from the use of ACORGA M5774 also represent emissions from the use of ACORGA M5640 and ACORGA M5850 since the chemical constituents are the same for all three extractants. SX-80 and ACORGA M5774 were used as the reagent mix in calculating emissions due to yielding the highest representative emissions.

Number of tanks	1	area of eac	h tank	3,320.0	ft ²	total area	3,320.0	ft ²		
Chemical Product	Percent									
SX-80	90%									
ACORGA M5774	10%									
Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate Ib/hr	Emission Rate tons/year
Benzene	0.093	78.11	5.360	0.017	0.0011	3.49E-06	1.59E-07	5.12E-07	3.88E-04	1.70E-03
Toluene	0.083	92.14	100.790	0.377	0.0065	2.41E-05	3.14E-06	1.01E-05	7.69E-03	3.37E-02
Ethylbenzene	0.076	106.2	479.330	2.067	0.0010	4.31E-06	1.57E-05	5.07E-05	3.85E-02	1.68E-01
Total Xylene	0.076	106.2	624.480	2.693	0.0020	8.54E-06	2.05E-05	6.61E-05	5.01E-02	2.19E-01
Total HAPs									0.10	0.42
1,2,4 - trimethylbenzene	0.070	120.2	1890.00	9.23	0.0022	1.07E-05	6.47E-05	2.09E-04	1.58E-01	6.94E-01
1,3,5 - trimethylbenzene	0.070	120.2	747.00	3.65	0.001	5.03E-06	2.56E-05	8.27E-05	6.27E-02	2.75E-01
Other VOCs	0.000	0.0	0.00	0.0	3.98	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total VOCs									0.32	1.39

 $DiffF = (Ci - Ch) \times D/H$

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight

Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Deviation).

Ch = constituent concentration at 1 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m H = distance above liquid surface = 1 m per BHP Study

Chemical	Benzene	Toluene	Ethylbenzene	Xylene	1,2,4 - tmb	1,3,5 - tmb	Other	Notes
SX-80	5.4	110	530	690	2100	830	0	confidential information supplied by Chevron Phillips
ACORGA M5774	5.00	17.90	23.30	34.80	0.00	0.00	0.00	confidential information supplied by Cytec
Organic in ppm	5.36	100.79	479.33	624.48	1890.00	747.00	0.00	composite concentration, Ci

Cathode Washing Hot Water Boilers (B-951 and B-748) Emissions

Table 1: Input Parameters

Fuel Type =	Propane
Maximum Heat Capacity (B-951) =	1.256 MMBtu/hr
Maximum Heat Capacity (B-748) =	1.256 MMBtu/hr
Maximum Heat Capacity (total) =	2.512 MMBtu/hr
Propane Heating Value =	91.5 MMBtu/10 ³ gal
Annual Operating Hours =	8,760 hr/yr
Maximum Propane Usage (each) =	13.7 gal/hr
Maximum Propane Usage (each) =	329.4 gal/day
Maximum Propane Usage (each) =	120,246.6 gal/yr
Maximum Propane Usage (total) =	27.5 gal/hr
Maximum Propane Usage (total) =	658.9 gal/day
Maximum Propane Usage (total) =	240,493.1 gal/yr

Table 2: Maximum Emission Rates

Pollutant	Emission Factors	Emission Factor	Conversion Factors ^a	Factors			on Rates
		Ref		Factors	lb/hr	lb/day	tpy
NOx	13 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.14 lb/MMBtu	0.36	8.57	1.56
СО	7.5 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.082 lb/MMBtu	0.21	4.94	0.90
SO ₂	1.59 lb/10 ³ gallons	1,2	91.5 MMBtu/10 ³ gal	0.017 lb/MMBtu	0.044	1.05	0.19
VOC	0.8 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.0087 lb/MMBtu	0.022	0.53	0.096
PM	0.7 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.0077 lb/MMBtu	0.019	0.46	0.084
Hexane	1.8 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	1.76E-03 lb/MMBtu	0.0022	0.05	0.000
Formaldehyde	7.5E-02 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	7.35E-05 lb/MMBtu	0.00018	0.0044	0.00081
Toluene	3.4E-03 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	3.33E-06 lb/MMBtu	8.37E-06	0.00020	3.67E-05
Total HAPs ^c	1.89 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	0.0019 lb/MMBtu	0.0047	0.11	0.020
CO ₂	62.87 kg/MMBtu	4	2.2 lb/kg	138.31 lb/MMBtu	347.44	8,338.67	1,521.81
CH ₄	0.003 kg/MMBtu	4	2.2 lb/kg	0.0066 lb/MMBtu	0.017	0.40	0.073
N ₂ O	0.0006 kg/MMBtu	4	2.2 lb/kg	0.0013 lb/MMBtu	0.0033	0.080	0.015
CO ₂ e	63.12 kg/MMBtu	5	2.2 lb/kg	138.87 lb/MMBtu	348.85	8,372.34	1,527.95

Emission Factor References:

1. AP-42, Table 1.5-1 (7/08). The emission factor for methane has been subtracted from the TOC emission factor to represent VOC emissions since TOC includes VOCs plus "exempt" compounds such as methane and ethane.

2. Per the Gas Processors Association, the sulfur content in commercial propane is 254 ppmv as S. Using the ideal gas law conversion factor of 359.05 scf/lb-mol at 32°F and 1 atm and a molecular weight of 32.065 lb/lb-mol for sulfur, the sulfur content for propane is 15.9 grains/100 ft³.

3. AP-42, Tables 1.4-3 and 1.4-4 (7/98). The emission factors for natural gas combustion are used since there are no HAP emission factors for propane combustion. The three highest HAPs hexane, formaldehyde, and toluene are listed in the table.

4. 40 CFR 98, Subpart C, Tables C-1 and C-2. The emission factors for CH₄ and N₂O are based on the "Petroleum Products" category, which is not propane-specific.

5. 40 CFR 98, Subpart A, Table A-1. Global Warming Potentials are 1 for CO₂, 25 for CH₄, and 298 for N₂O. Emissions are reported in short tons. To convert to metric tons, divide the short tons by 1.1.

Footnotes:

^a The higher heating values for propane and natural gas are used to convert the corresponding emission factors to lb/MMBtu.

^b These emissions represent both boilers combined since they exhaust out a common stack.

^c Includes HAPs not listed in the table.

Freeport-McMoRan Tyrone Inc. Heat Exchanger Hot Water Boiler (B-3891) Emissions

Table 1: Input Parameters

Fuel Type =	Propane
Maximum Heat Capacity =	3.6 MMBtu/hr
Propane Heating Value =	91.5 MMBtu/10 ³ gal
Annual Operating Hours =	8,760 hr/yr
Maximum Propane Usage =	39.3 gal/hr
Maximum Propane Usage =	944.3 gal/day
Maximum Propane Usage =	344,655.7 gal/yr

Table 2: Maximum Emission Rates

Pollutant	Emission Factors	Emission Factor	Conversion Factors ^a	Converted Emission	Max	imum Emission	Rates
		Ref	conversion ractors	Factors	lb/hr	lb/day	tpy
NOx	13 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.14 lb/MMBtu	0.51	12.28	2.24
СО	7.5 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.082 lb/MMBtu	0.30	7.08	1.29
SO ₂	1.59 lb/10 ³ gallons	1,2	91.5 MMBtu/10 ³ gal	0.017 lb/MMBtu	0.063	1.50	0.27
VOC	0.8 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.0087 lb/MMBtu	0.031	0.76	0.14
PM	0.7 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.0077 lb/MMBtu	0.028	0.66	0.12
Hexane	1.8 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	1.76E-03 lb/MMBtu	0.0064	0.15	0.028
Formaldehyde	7.5E-02 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	7.35E-05 lb/MMBtu	0.00026	0.0064	0.0012
Toluene	3.4E-03 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	3.33E-06 lb/MMBtu	0.000012	0.00029	0.000053
Total HAPs ^b	1.89 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	0.00185 lb/MMBtu	0.0067	0.16	0.029
CO ₂	62.87 kg/MMBtu	4	2.2 lb/kg	138.31 lb/MMBtu	497.93	11,950.33	2,180.94
CH ₄	0.003 kg/MMBtu	4	2.2 lb/kg	0.0066 lb/MMBtu	0.024	0.57	0.10
N ₂ O	0.0006 kg/MMBtu	4	2.2 lb/kg	0.0013 lb/MMBtu	0.0048	0.11	0.021
CO ₂ e	63.12 kg/MMBtu	5	2.2 lb/kg	138.87 lb/MMBtu	499.94	11,998.57	2,189.74

Emission Factor References:

1. AP-42, Table 1.5-1 (7/08). The emission factor for methane has been subtracted from the TOC emission factor to represent VOC emissions since TOC includes VOCs plus "exempt" compounds such as methane and ethane.

2. Per the Gas Processors Association, the sulfur content in commercial propane is 254 ppmv as S. Using the ideal gas law conversion factor of 359.05 scf/lb-mol at 32°F and 1 atm and a molecular weight of 32.065 lb/lb-mol for sulfur, the sulfur content for propane is 15.9 grains/100 ft³.

3. AP-42, Tables 1.4-3 and 1.4-4 (7/98). The emission factors for natural gas combustion are used since there are no HAP emission factors for propane combustion. The three highest HAPs hexane, formaldehyde, and toluene are listed in the table.

4. 40 CFR 98, Subpart C, Tables C-1 and C-2. The emission factors for CH₄ and N₂O are based on the "Petroleum Products" category, which is not propane-specific.

5. 40 CFR 98, Subpart A, Table A-1. Global Warming Potentials are 1 for CO₂, 25 for CH₄, and 298 for N₂O. Emissions are reported in short tons. To convert to metric tons, divide the short tons by 1.1.

Footnotes:

^a The higher heating values for propane and natural gas are used to convert the corresponding emission factors to lb/MMBtu.

^b Includes HAPs not listed in the table.

Freeport-McMoRan Tyrone Inc. Heat Exchanger Hot Water Boiler (B-1454) Emissions

Table 1: Input Parameters

Fuel Type =	Propane
Maximum Heat Capacity =	3.6 MMBtu/hr
Propane Heating Value =	91.5 MMBtu/10 ³ gal
Annual Operating Hours =	8,760 hr/yr
Maximum Propane Usage =	39.3 gal/hr
Maximum Propane Usage =	944.3 gal/day
Maximum Propane Usage =	344,655.7 gal/yr

Table 2: Maximum Emission Rates

Pollutant	Emission Factors	Emission Factor	Conversion Factors ^a	Converted Emission			
		Ref		Factors	lb/hr	lb/day	tpy
NOx	13 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.14 lb/MMBtu	0.51	12.28	2.24
СО	7.5 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.082 lb/MMBtu	0.30	7.08	1.29
SO ₂	1.59 lb/10 ³ gallons	1,2	91.5 MMBtu/10 ³ gal	0.017 lb/MMBtu	0.063	1.50	0.27
VOC	0.8 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.0087 lb/MMBtu	0.031	0.76	0.14
PM	0.7 lb/10 ³ gallons	1	91.5 MMBtu/10 ³ gal	0.0077 lb/MMBtu	0.028	0.66	0.12
Hexane	1.8 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	1.76E-03 lb/MMBtu	0.0064	0.15	0.028
Formaldehyde	7.5E-02 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	7.35E-05 lb/MMBtu	0.00026	0.0064	0.0012
Toluene	3.4E-03 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	3.33E-06 lb/MMBtu	0.000012	0.00029	0.000053
Total HAPs ^b	1.89 lb/MMscf nat gas	3	1,020 MMBtu/MMscf	0.0019 lb/MMBtu	0.0067	0.16	0.029
CO ₂	62.87 kg/MMBtu	4	2.2 lb/kg	138.31 lb/MMBtu	497.93	11,950.33	2,180.94
CH ₄	0.003 kg/MMBtu	4	2.2 lb/kg	0.0066 lb/MMBtu	0.024	0.57	0.10
N ₂ O	0.0006 kg/MMBtu	4	2.2 lb/kg	0.0013 lb/MMBtu	0.0048	0.11	0.021
CO ₂ e	63.12 kg/MMBtu	5	2.2 lb/kg	138.87 lb/MMBtu	499.94	11,998.57	2,189.74

Emission Factor References:

1. AP-42, Table 1.5-1 (7/08). The emission factor for methane has been subtracted from the TOC emission factor to represent VOC emissions since TOC includes VOCs plus "exempt" compounds such as methane and ethane.

2. Per the Gas Processors Association, the sulfur content in commercial propane is 254 ppmv as S. Using the ideal gas law conversion factor of 359.05 scf/lb-mol at 32°F and 1 atm and a molecular weight of 32.065 lb/lb-mol for sulfur, the sulfur content for propane is 15.9 grains/100 ft³.

3. AP-42, Tables 1.4-3 and 1.4-4 (7/98). The emission factors for natural gas combustion are used since there are no HAP emission factors for propane combustion. The three highest HAPs hexane, formaldehyde, and toluene are listed in the table.

4. 40 CFR 98, Subpart C, Tables C-1 and C-2. The emission factors for CH_4 and N_2O are based on the "Petroleum Products" category, which is not propane-specific. 5. 40 CFR 98, Subpart A, Table A-1. Global Warming Potentials are 1 for CO_2 , 25 for CH_4 , and 298 for N_2O . Emissions are reported in short tons. To convert to metric tons, divide the short tons by 1.1.

Footnotes:

^a The higher heating values for propane and natural gas are used to convert the corresponding emission factors to lb/MMBtu.

^b Includes HAPs not listed in the table.

SD-1 [Caterpillar C9 300hp]

□nit □umber:	SD1						
Source Description:	Diesel Powere	d □ngine					
Engine Info							
Manufacturer:	Caterpillar						
Model:	C□						
Aspiration:	Turbocharged						
□ngine speed:		rpm	Mfg data				
Sea level hp:		hp %	Mfg data Per 1 000 ft a	above 🗆 1000) ft		
□levation	5 801		Google □arth				
Derated hp:	283.8	hp	Calculated				
Conversion Factor	1.3	hp⊡W					
Conversion Factor	0.002	2 g∄b					
Conversion Factor		0 lb ton					
Hours of Operation	8 76	0 hr⊡yr					
Fuel Heating Value:	137 000	Btu gal	AP 2				
Fuel □sage Rate:	1⊡.5	gal∄r	Calculated ba	ased on 710	00 Btu∄p∄r		
Fuel □sage Rate:	127 1022	gal⊡r					
Emission Calculations							
	$\Box O \Box^1$	СО	PM ²	SO2 ³			
	2.83	2.61	0.15		għpħr		3
				0.0021	lbfbpfbr	AP⊡2 Tal	
	1.77	1.63	0.09	0.58	lbthr	,	ission rate
	7.77	7.15	0.41	2.55	tpy	Annual en	nission rate
	VOC	Total HAPs ⁵	Toluene	□ylenes	Formaldehyde	_	
	0.15			0.05		għpħr	□PA Tier 3 □mission Standards
		3. 2 03		2.85 0		lb1MMBtu	
	0.093	0.0068	8.12E-05	5.66E-04		lb∄n trau	Hourly emission rate
	0.41	0.030	3.56E-04	2.48E-03	1.03E-02	tpy	Annual emission rate
	CO ₂	CH₄	N₂O	CO₂e			
	73.⊡6	0.003	0.0006		gtMMBtu	🗆 0 CFR 🗆	8⊡Tables C⊡ and C⊡
	163.1	0.0066	0.00132		lb:MMBtu		
	1	25	2⊡8		GWP	□0 CFR 🛛	8⊡Table A⊡
	2□5.□□	0.012	0.002	2□7.01	lbħr		
	1,296.45	0.053	0.0105	1,300.90	tpy (metric)		8 unitions C1 and C18 Table C1 HV of 0.138 MMBtugal)

Footnotes:

 1 \square mission factor for $\square O \square$ is assumed to be $\square 5\%$ of the $\square PA$ Tier 3 emission factor for $\square O \square \square$ MHC. 2 It is assumed that TSP \square PM₁₀ \square PM_{2.5}.

³ Sulfur content is ta \Box en from AP \Box 2 Table 3.3 \Box 1.

[□] □mission factor for VOC is assumed to be 5% of the □PA Tier 3 emission factor for □O□□ □MHC. ⁵ Total HAPs are based on AP □□2 Table 3.3.2 and an average bra □e specific fuel consumption rate of 7 □000 Btu □hp □hr.

SD-2 [Caterpillar C9 300hp]

□nit □umber:	SD12	
Source Description:	Diesel Powered ⊡ngine	
Engine Info		
Manufacturer:	Caterpillar	
Model:	C	
Aspiration:	Turbocharged ATAAC	
□ngine speed:	21200 rpm	Mfg data
Sea level hp:	300 hp	Mfg data
	3.0 %	Per 1 000 ft above ⊡000 ft
□levation	5:801 ft	Google ⊟arth
Derated hp:	283.8 hp	Calculated
Conversion Factor	1.3□ hp⊞W	
Conversion Factor	0.0022 g∄b	
Conversion Factor	2:000 lb:ton	
Hours of Operation	8⊡760 hr⊡yr	
Fuel Heating Value:	1371000 Btulīgal	AP 12
Fuel □sage Rate:	1⊡5 galthr	Calculated based on 7ː000 Btuthpthr
Fuel □sage Rate:	127 : 022 gallyr	

~

Emission Calculations

		СО	PM ²	SO23			
_	2.83	2.61	0.15		għpħr		3 ⊡mission Standards
	1.77 7.77	1.63 7.15	0.093 0.41	0.0021 0.58 2.55	lb∄p∄hr lb∄r tpy	AP ⊞2 Tab Hourly em Annual em	
	VOC□	Total HAPs ⁵	Toluene	□ylenes	Formaldehyde		
	0.15 0.093	3.□2□103 0.0068	□.0 □□ 105 8.12E-05	2.85 0 5.66E-04	1.18⊡03 2.34E-03	g℔p℔r Ib℔MBtu Ib℔r	□PA Tier 3 ⊡mission Standards AP ⊡2 Hourly emission rate
	0.41	0.030	3.56E-04	2.48E-03	1.03E-02	tpy	Annual emission rate
	CO2	CH₄	N₂O	CO ₂ e			
	73.⊑6 163.1	0.003 0.0066	0.0006 0.00132		⊑g1MMBtu Ib1MMBtu	⊡0 CFR ⊡8	B⊡Tables C⊡ and C⊡2
	1	25	2⊡8		GWP	⊡0 CFR ⊡8	3⊡Table A⊡
	2 5. 🗆	0.012	0.002	2□7.01	lbthr		BTTTuations CI1 and CI8TTable CI1
	1,296.45	0.053	0.0105	1,300.90	tpy (metric)		HV of 0.138 MMBtugal)

Footnotes:

¹ \Box mission factor for \Box O \Box is assumed to be \Box 5% of the \Box PA Tier 3 emission factor for \Box O \Box \Box MHC.

 2 It is assumed that TSP $\square\, \text{PM}_{10} \ \square\, \text{PM}_{2.5}.$

³ Sulfur content is ta \Box en from AP \Box 2 Table 3.3 \Box .

□ mission factor for VOC is assumed to be 5% of the □PA Tier 3 emission factor for □O□□ □MHC.

⁵ Total HAPs are based on APIII2 Table 3.3.2 and an average braileispecific fuel consumption rate of 71000 Btuftpfthr.

Criteria Pollutant Emission Factors:	
NOx:	Source: 2014 Title V Permit Renewal Application
	NOx = 0.0310 (lb/hp-hr)
CO:	Source: 2014 Title V Permit Renewal Application
	CO = 0.0067 (lb/hp-hr)
*PM:	Source: 2014 Title V Permit Renewal Application
	PM = 0.0022 (lb/hp-hr)
HC:	Source: 2014 Title V Permit Renewal Application
	HC = 0.0025 (lb/hp-hr)
SO ₂ :	Source: 2014 Title V Permit Renewal Application
	SO ₂ = 0.0021 (lb/hp-hr)

 \ast Tyrone uses the same emission factor for PM, $\text{PM}_{\!10}$ and $\text{PM}_{\!2.5}$

HAP Emission Factors:

Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-2.

Source. Ar -42 Chapter 5.5 Gasonne and Dieser industrial Engines, Table 5.5-2.									
		To convert from lb/MMBTU to lb/hp-hr:							
Emission Fact	ors	(Emission Factor/1E06 BTU) * (7,000 BTU/ hp-hr)							
9.33E-0	4 lb/MMBTU	6.53E-06 lb/hp-hr							
4.09E-0	4 lb/MMBTU	2.86E-06 lb/hp-hr							
2.85E-0	4 lb/MMBTU	2.00E-06 lb/hp-hr							
3.91E-0	5 lb/MMBTU	2.74E-07 lb/hp-hr							
1.18E-0	3 lb/MMBTU	8.26E-06 lb/hp-hr							
7.67E-0	4 lb/MMBTU	5.37E-06 lb/hp-hr							
9.25E-0	5 lb/MMBTU	6.48E-07 lb/hp-hr							
8.48E-0	5 lb/MMBTU	5.94E-07 lb/hp-hr							
1.68E-0	4 lb/MMBTU	1.18E-06 lb/hp-hr							
3.96E-0	3 lb/MMBTU	2.77E-05 lb/hp-hr							
73.96	kg/MMBtu	40 CFR 98 Table C-1							
0.003	kg/MMBtu	40 CFR 98 Table C-2							
0.0006	kg/MMBtu	40 CFR 98 Table C-2							
	Emission Fact 9.33E-0 4.09E-0 2.85E-0 3.91E-0 1.18E-0 7.67E-0 9.25E-0 8.48E-0 1.68E-0 3.96E-0 73.96 0.003	Emission Factors 9.33E-04 lb/MMBTU 4.09E-04 lb/MMBTU 2.85E-04 lb/MMBTU 3.91E-05 lb/MMBTU 1.18E-03 lb/MMBTU 7.67E-04 lb/MMBTU 9.25E-05 lb/MMBTU 8.48E-05 lb/MMBTU 1.68E-04 lb/MMBTU 3.96E-03 lb/MMBTU 73.96 kg/MMBtu 0.003 kg/MMBtu							

Fuel		Diesel			
Equipment	Stationary Stormwater Pump Engine				
Number of Units		1			
Hours of Operation [hr/year]		8,760			
Fuel Heat Value (Btu/gal) (AP-42)		137,000			
Fuel Usage Rate (gal/hr)		6			
Fuel Usage Rate (gal/yr)		52,560			
Heat Rate (MMBtu/hr)		0.82			
Capacity [hp]		125			
		Diesel Combu	stion		
Criteria Pollutants	Emission	Emission Rate	Emission Rate		
	Factor [lb/hr]	[lb/yr]	[ton/yr]		
Nitrogen Oxides (NO _x)	3.875	33,945	16.973		
Carbon Monoxide (CO)	0.838	7,337	3.6683		
Particulate Matter (PM)	0.275	2,409	1.205		
Hydrocarbons (HC)	0.313	2,738	1.369		
Sulfur Dioxide (SO ₂)	0.256	2,245	1.122		
HAPs					
Benzene	8.16E-04	7.15	3.58E-03		
Toluene	3.58E-04	3.13	1.57E-03		
Xylenes	2.49E-04	2.18	1.09E-03		
1,3-Butadiene	3.42E-05	0.30	1.50E-04		
Formaldehyde	1.03E-03	9.04	4.52E-03		
Acetaldehyde	6.71E-04	5.88	2.94E-03		
Acrolein	8.09E-05	0.71	3.55E-04		
Naphthalene	7.42E-05	0.65	3.25E-04		
Total Polycyclic Aromatic Hydrocarbons (PAHs)	1.47E-04	1.29	6.44E-04		
Total Hazardous Air Pollutants (HAPs)	3.46E-03	30.34	1.52E-02		
Greenhouse Gases					
CO ₂ (metric tpy)	122.48	1,072,905	536.45		
CH ₄ (metric tpy)	0.0050	43.5	0.022		
N ₂ O (metric tpy)	0.00099	8.7	0.0044		
CO ₂ e [1] (metric tpy)			538.29		

Notes:

1. Based on Global Warming Potentials from IO CFR I8 Table AI and a default HHV of 0.138 MMBtugal

Criteria Pollutant Emission Factors:						
NOx:	Source: 2014 Title V Permit	le V Permit Renewal Application				
	NOx =	0.0310 (lb/hp-hr)				
CO:	Source: 2014 Title V Permit	Renewal Application				
	CO =	0.0067 (lb/hp-hr)				
*PM:	Source: 2014 Title V Permit	Renewal Application				
	PM =	0.0022 (lb/hp-hr)				
HC:	Source: 2014 Title V Permit	Renewal Application				
	HC =	0.0025 (lb/hp-hr)				
SO ₂ :	Source: 2014 Title V Permit	Renewal Application				
	SO ₂ =	0.0021 (lb/hp-hr)				

* Tyrone uses the same emission factor for PM, PM_{10} , and $PM_{2.5}$

HAP Emission Factors:

Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-2.

Source: AP-42 Chapter 3.3 Gasoline and Diesel Ir	idustrial Engines, Table 3.	3-2.
		To convert from lb/MMBTU to lb/hp-hr:
Pollutant	Emission Factors	(Emission Factor/1E06 BTU) * (7,000 BTU/ hp-hr)
Benzene	9.33E-04 lb/MMBT	U 6.53E-06 lb/hp-hr
Toluene	4.09E-04 lb/MMBT	U 2.86E-06 lb/hp-hr
Xylenes	2.85E-04 lb/MMBT	U 2.00E-06 lb/hp-hr
1,3-Butadiene	3.91E-05 lb/MMBT	U 2.74E-07 lb/hp-hr
Formaldehyde	1.18E-03 lb/MMBT	U 8.26E-06 lb/hp-hr
Acetaldehyde	7.67E-04 lb/MMBT	U 5.37E-06 lb/hp-hr
Acrolein	9.25E-05 lb/MMBT	U 6.48E-07 lb/hp-hr
Naphthalene	8.48E-05 lb/MMBT	U 5.94E-07 lb/hp-hr
Total Polycyclic Aromatic Hydrocarbons (PAHs)	1.68E-04 lb/MMBT	U 1.18E-06 lb/hp-hr
Total Hazardous Air Pollutants (HAPs)	3.96E-03 lb/MMBT	U 2.77E-05 lb/hp-hr
Greenhouse Gas Emission Factors:		
CO ₂	73.96 kg/MMBt	u 40 CFR 98 Table C-1
CH_4	0.003 kg/MMBt	u 40 CFR 98 Table C-2
N ₂ O	0.0006 kg/MMBt	u 40 CFR 98 Table C-2

Fuel	Diesel					
Equipment	Stationary Stormwater Pump Engine					
Number of Units		1				
Hours of Operation [hr/year] ¹		8.76)			
Fuel Heat Value (Btu/gal) (AP-42)		137,00				
Fuel Usage Rate (gal/hr)		6				
Fuel Usage Rate (gal/yr)		52,56	0			
Heat Rate (MMBtu/hr)		0.82				
Capacity [hp]		125				
		Diesel Com	bustion			
Criteria Pollutants	Emission Factor [lb/hr]	Emission Rate [lb/yr]	Emission Rate [ton/yr]			
Nitrogen Oxides (NO _x)	3.875	33,945	16.973			
Carbon Monoxide (CO)	0.838	7,337	3.668			
Particulate Matter (PM)	0.275	2,409	1.205			
Hydrocarbons (HC)	0.313	2,738	1.369			
Sulfur Dioxide (SO ₂)	0.256	2,245	1.122			
HAPs						
Benzene	8.16E-04	7.15	3.58E-03			
Toluene	3.58E-04	3.13	1.57E-03			
Xylenes	2.49E-04	2.18	1.09E-03			
1,3-Butadiene	3.42E-05	0.30	1.50E-04			
Formaldehyde	1.03E-03	9.04	4.52E-03			
Acetaldehyde	6.71E-04	5.88	2.94E-03			
Acrolein	8.09E-05	0.71	3.55E-04			
Naphthalene	7.42E-05	0.65	3.25E-04			
Total Polycyclic Aromatic Hydrocarbons (PAHs)	1.47E-04	1.29	6.44E-04			
Total Hazardous Air Pollutants (HAPs)	3.46E-03	30.34	1.52E-02			
Greenhouse Gases						
CO ₂ (metric tpy)	122.48	1,072,905	536.45			
CH ₄ (metric tpy)	0.0050	43.5	0.022			
N ₂ O (metric tpy)	0.00099	8.7	0.0044			
CO ₂ e [1] (metric tpy)			538.29			
Notes:	1					

Notes:

1. Based on Global Warming Potentials from
CFR
BUTable AU and a default HHV of 0.138 MMBtugal

ENV-117 [John Deere 4045TF275 115hp]

□nit □umber:	□□V □ 117						
Source Description:	Diesel Powere	ed Pump					
Engine Info							
Manufacturer:	⊡ohn Deere						
Model:	□0□5TF275						
Sea level hp:		5 hp	□ngine □ame				
		3 %	Per 1 000 ft a	bove ⊡0 00	ft		
□levation	5180						
Derated hp:		1 hp					
Derated DW:		5 ⊡W 2 atth					
Conversion Factor Conversion Factor	0.002	-					
		0 lb₫on					
Conversion Factor Hours of Operation		⊡ hp⊞W 0 hr⊡yr					
Diesel Heating Value		0 Btuīgal	From AP 2				
Fuel sage Rate:		o biulgai Sigal∄r	Calculated ba	and on 7700	0 Ptuthothr		
Fuel □sage Rate:		lgal⊡r	Calculated ba	sed on 7 D0	овишрші		
		gailyi					
Emission Calculations							
		СО	PM ²	SO23			
	3.⊡7	0.8□	0.22		g thp thr	F⊡L Certification Tes 5⊡D⊒L06.8082 (nam	st for □PA Family □o. peplate)
				0.00205	lbfhpfhr	AP	ieplate)
	0.95	0.22	0.05	0.00200	lbthr	Hourly emission rate	
	4.18	0.94	0.23	0.98	tpy	Annual emission rate	
	VOC□	Total HAPs ^t	Toluene	□ylenes	Formaldehyde		
		Total The G	Toluerie	Sienes	1 offinalderlyde	_	F□L Certification Test for □PA
	0.21					g℔p℔r	Family Do. 5 D L06.8082 (nameplate)
		3. 2 03	.005	2.85 0	1.18□03	lb™MBtu	APII2
	0.050	0.0026	3.12E-05	2.18E-04		lbthr	Hourly emission rate
	0.22	0.011	1.37E-04	9.53E-04		tpy	Annual emission rate
	CO2	CH₄	N ₂ O	CO ₂ e			
	73.⊡6	0.003	0.0006		_g™MBtu	□0 CFR □8□Tables 0	CL1 and CL2
	163.1	0.0066	0.00132		lb:MMBtu		
	1	25	2□8	44-42	GWP	□0 CFR □8□Table A	1
	113.7 🗆	0.00□6	0.000□	11□.18	lbħr		
	498.39	2.02E-02	4.04E-03	500.10	tpy (metric)	□0 CFR □8□□□uation HHV of 0.138 MMBt	ns C⊡ and Cı8⊡Table C⊡ (defaul u⊡gal)

Footnotes:

¹ Imission factor for IOI is based on 5% of the FIL Certification Test for IPA Family Io. 5. DL06.8082 emission factor for IOI IMHC.

 2 It is assumed that TSP $\square\, \text{PM}_{10} \square\, \text{PM}_{2.5}.$

 3 Sulfur content is ta \hfillet en from AP \hfillet Table 3.3 \hfillet .

[©] Imission factor for VOC is based on 5% of the FIL Certification Test for IPA Family Io. 5 ID L06.8082 emission factor for IO II MHC.

⁵ Total HAPs are based on APII2 Table 3.3.2 and an average braIe specific fuel consumption rate of 71000 BtuIhpIhr.

Criteria Pollutant Emission Factors:					
NOx:	Source: Tier 2 Emission Standards; 95% of NOx+NMHC				
	NOx =	0.010 (lb/hp-hr)			
CO:	Source: Tier 2 Emission Standards				
	CO =	0.0082 (lb/hp-hr)			
*PM:	Source: Tier 2 Emission Standards				
	PM =	0.00049 (lb/hp-hr)			
VOC:	Source: Tier 2 Emission S	Standards; 5% of NOx+NMHC			
	VOC =	0.00054 (lb/hp-hr)			
SO ₂ :	Source: 2014 Title V Permit Renewal Application				
	$SO_2 =$	0.0021 (lb/hp-hr)			

* Tyrone uses the same emission factor for PM, $\text{PM}_{10}\text{,}$ and $\text{PM}_{2.5}$

HAP Emission Factors:

Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-2.

		To convert from lb/MMBTU to lb/hp-hr:
Pollutant	Emission Factors	(Emission Factor/1E06 BTU) * (7,000 BTU/ hp-hr)
Benzene	9.33E-04 lb/MMBT	U 6.53E-06 lb/hp-hr
Toluene	4.09E-04 lb/MMBT	U 2.86E-06 lb/hp-hr
Xylenes	2.85E-04 lb/MMBT	U 2.00E-06 lb/hp-hr
1,3-Butadiene	3.91E-05 lb/MMBT	U 2.74E-07 lb/hp-hr
Formaldehyde	1.18E-03 lb/MMBT	U 8.26E-06 lb/hp-hr
Acetaldehyde	7.67E-04 lb/MMBT	U 5.37E-06 lb/hp-hr
Acrolein	9.25E-05 lb/MMBT	U 6.48E-07 lb/hp-hr
Naphthalene	8.48E-05 lb/MMBT	U 5.94E-07 lb/hp-hr
Total Polycyclic Aromatic Hydrocarbons (PAHs)	1.68E-04 lb/MMBT	U 1.18E-06 lb/hp-hr
Total Hazardous Air Pollutants (HAPs)	3.96E-03 lb/MMBT	U 2.77E-05 lb/hp-hr
Greenhouse Gas Emission Factors:		
CO ₂	73.96 kg/MMBt	40 CFR 98 Table C-1
CH_4	0.003 kg/MMBt	40 CFR 98 Table C-2
N ₂ O	0.0006 kg/MMBt	40 CFR 98 Table C-2

Fuel							
Equipment	Stationary Stormwater Pump Engine (Cat 30540						
Number of Units	1						
Hours of Operation [hr/year]		8,7	60				
Fuel Heat Value (Btu/gal) (AP-42)		137	,000				
Fuel Usage Rate (gal/hr)		6	<u>5</u>				
Fuel Usage Rate (gal/yr)		52,	560				
Heat Rate (MMBtu/hr)		0.3	82				
Capacity [hp]		12					
	Di	iesel Combusti	on				
Criteria Pollutants	Emission Factor [lb/hr]	Emission Rate [lb/yr]	Emission Rate [ton/yr]				
Nitrogen Oxides (NO _x)	1.29	11,295	5.65				
Carbon Monoxide (CO)	1.03	9,008	4.50				
Particulate Matter (PM)	0.062	540	0.27				
Hydrocarbons (HC)	0.068	594	0.30				
Sulfur Dioxide (SO ₂)	0.26	2,245	1.12				
HAPs	•	•	•				
Benzene	8.16E-04	7.15	3.58E-03				
Toluene	3.58E-04	3.13	1.57E-03				
Xylenes	2.49E-04	2.18	1.09E-03				
1,3-Butadiene	3.42E-05	0.30	1.50E-04				
Formaldehyde	1.03E-03	9.04	4.52E-03				
Acetaldehyde	6.71E-04	5.88	2.94E-03				
Acrolein	8.09E-05	0.71	3.55E-04				
Naphthalene	7.42E-05	0.65	3.25E-04				
Total Polycyclic Aromatic Hydrocarbons (PAHs)	1.47E-04	1.29	6.44E-04				
Total Hazardous Air Pollutants (HAPs)	3.46E-03	30.34	1.52E-02				
Greenhouse Gases							
CO ₂ (metric tpy)	122.48	1,072,905	536.45				
CH_4 (metric tpy)	0.0050	43.5	0.022				
N ₂ O (metric tpy)	0.00099	8.7	0.0044				
CO ₂ e [1] (metric tpy)			538.29				
Notes:			•				

1. Based on Global Warming Potentials from IO CFR I8 Table AI and a default HHV of 0.138 MMBtugal

ENV-123 [Caterpillar 3126B 225hp]

□nit □umber:	□□V □ 123						
Source Description:	Diesel Powere	d Pump					
Engine Info							
Manufacturer:	Caterpillar						
Model:	3126B						
Sea level hp:	22	5 hp	Mfg data				
	:	3 %	Per 1 000 ft a	bove ⊡000 f	ft		
□levation	5 80	1 ft					
Derated hp:	212.						
Derated □W:	158.7						
Conversion Factor	0.002	•					
Conversion Factor		0 lb ton					
Conversion Factor		□ hpW					
Hours of Operation		0 hr⊡yr					
Bra e Specific Fuel Consumption		0 Btuthpthr	AP 2 Section	า 3.3			
Diesel Heating Value		0 Btu gal	From AP 2				
Fuel □sage Rate:	10.	□ gal∄r	Calculated				
Fuel sage Rate:	5 26	7 gal <u></u> yr	Calculated				
Emission Calculations							
		CO	PM ²	SO23			
	□.68	2.61	0.15		g fhp fhr	□PA Tier 2 □missions	s Standards
				0.00205	lb fhp fhr	AP	
	2.19	1.22	0.0700	0.44	lbthr	Hourly emission rate	
	9.61	5.36	0.307	1.91	tpy	Annual emission rate	
	VOC□	Total HAPs⁵	Toluene	□ylenes	Formaldehyde		
	0.25					g thp thr	□PA Tier 2 □missions Standards
	0.20	3. 2 03	.005	2.85 0	1.18□03	b1MMBtu	APII2
	0.115	0.0051	6.09E-05	4.25E-04		lbħr	Hourly emission rate
	0.51	0.022	2.67E-04	1.86E-03		tpy	Annual emission rate
						17	
	CO2	CH₄	N₂O	CO ₂ e			
	73. 🗆 6	0.003	0.0006		□g IMMBtu	□0 CFR □8□Tables C	I and CI2
	163.1	0.0066	0.00132		lb MMBtu		
	1	25	2⊡8		GWP	□0 CFR □8□Table A 1	
	222.00	0.00	0.0018	222.76	lbthr		
	972.34	0.039	0.0079	975.68	tpy (metric)	□0 CFR □8□□□uations HHV of 0.138 MMBtu	s CI and CI8ITable CI (default īgal)

Footnotes:

¹ Imission factor for IIOI is assumed to be II5% of the IIPA Tier 2 emission factor for IIOI IIIMHC.

 2 It is assumed that TSP $\Box\, \text{PM}_{10} \, \Box\, \text{PM}_{2.5}.$

 3 Sulfur content is ta $\ensuremath{\mbox{en}}$ from AP $\mbox{II}2$ Table 3.3 \mbox{I}

 $^{\scriptscriptstyle \Box}$ $_{\scriptscriptstyle }$ Imission factor for VOC is assumed to be 5% of the $_{\scriptscriptstyle }$ PA Tier 2 emission factor for $_{\scriptscriptstyle }$ O $_{\scriptscriptstyle }$ $_{\scriptscriptstyle }$ $_{\scriptscriptstyle }$ MHC.

⁵ Total HAPs are based on AP II Table 3.3.2 and an average bra especific fuel consumption rate of 7 1000 Btu hp hr.

OP-2 [Perkins 403C-15 32.5hp]

□nit □umber:	OP 2						
Source Description:	Diesel Powere	d Pump					
Engine Info							
Manufacturer:	Per⊡ns						
Model: □ngine speed:	⊡03C⊡5 3⊡000	rom	Mfa data				
Sea level hp:	32.5	•	Mfg data Mfg data				
		%	Per 1 1000 ft ab	ove ⊡000 1	ft		
□levation	5 801		Google □arth				
Derated hp:	30.7	hp	Calculated				
Conversion Factor		hp⊞W					
Conversion Factor	0.0022						
Conversion Factor Hours of Operation		lb₫on hr⊡yr					
Fuel Rate		Lībr	Manufacturer				
Fuel Rate		galthr					
Fuel □sage Rate:		2 gal⊡yr	Calculated				
Fuel Heating Value:	1371000	Btuīgal	APⅢ2				
Emission Calculations							
	$\Box \mathbf{O} \Box^{1}$	со	PM ²	SO23			
	5.3	□.10	0.⊡5		g∄p∄hr	□PA Tier 2	2
				0.00205	lb∄np∄nr	AP <u>∎</u> 2 Tab	
	0.36 1.58	0.28 1.22	0.030 0.13	0.0630 0.28	lb⊡hr tau		ission rate
	1.50	1.22	0.13	0.20	tpy	Annual en	nission rate
	VOC□	Total HAPs ⁵	Toluene	□ylenes	Formaldehyde	e	
	0.28					għpħr	□PA Tier 2 □mission Standards
		3. 2 03		2.85 0		lb1MMBtu	APII2
	0.019 0.083	0.00074 3.23E-03	8.80E-06 3.86E-05	6.13E-05 2.69E-04		lb∄r tpy	Hourly emission rate Annual emission rate
	0.005	J.25E-05	3.00E-03	2.032-04	1.112-05	ιpy	Annual emission rate
	CO ₂	CH₄	N ₂ O	CO ₂ e			
	73.⊡6	0.003	0.0006		⊑gIMMBtu	⊡0 CFR ⊡8	3⊡Tables C⊡ and C⊡2
	163.1	0.0066	0.00132		lb⊡MMBtu GWP		
	1 1∟⊡5	25 8.0□□0□	2⊡8 1.62⊡10⊡		Gw₽ lbtħr		3⊡Table A⊡
			1.02				B⊡⊡uations C⊡ and CB⊡Table C⊡
	87.39	3.54E-03	7.09E-04	87.7	tpy (metric)		HV of 0.138 MMBtu gal)

Footnotes:

¹ Imission factor for $\Box O \Box$ is assumed to be $\Box 5\%$ of the $\Box PA$ Tier 2 emission factor for $\Box O \Box \Box \Box MHC$.

 2 It is assumed that TSP \square PM $_{10}$ \square PM $_{2.5}.$

³ Sulfur content is ta \Box en from AP \Box Table 3.3 \Box .

 $^{\scriptscriptstyle \Box}$ $\square mission$ factor for VOC is assumed to be 5% of the $\square PA$ Tier 2 emission factor for $\square O \square \square MHC.$

⁵ Total HAPs are based on APII Table 3.3.2 and an average bra especific fuel consumption rate of 7000 Btu hpthr.

OP-4 [Caterpillar C6.6 225hp]

□nit □umber:	OP						
Source Description:	Diesel Po	wered Pump					
Engine Info Manufacturer: Model: Sea level hp: □levation		5 hp 3 %	Mfg data Per 1⊡000 ft a	bove ⊡000 t	ft		
Derated hp: Derated □W: Conversion Factor Conversion Factor Conversion Factor	212. 158. 0.002 2⊡00 1.3	8 hp 7 ⊡W 2 g1b 0 lb1ton □ hp⊞W					
Hours of Operation Bra e Specific Fuel Consumption		0 hr⊡yr 0 Btuīħpīħr	AP	133			
Diesel Heating Value		0 Btu⊡gal	From AP 12	10.0			
Fuel ⊡sage		□ gal ħr	Calculated				
Fuel ⊡sage	526	7 gal⊡r	Calculated				
Emission Calculations		00	PM ²	SO ₂ ³			
	2.83	CO 2.61	0.15	302	gīhpīhr	_ □PA Tier 3 □mission 3	Standarde
	2.00	2.01	0.15	0.00205	lbfbpfbr	AP 12 Table 3.31	Standards
	1.33	1.22	0.070	0.44	lb∄r	Hourly emission rate	
	5.82	5.36	0.31	1.91	tpy	Annual emission rate	
	VOC□	Γotal HAPs	Toluene	□ylenes	Formaldehyde	_	
	0.15	3. 2 03		2.85 0		gtħptħr IbtħMBtu	□PA Tier 3 □mission Standards APⅢ2
	0.070 0.31	0.0051 0.022	6.09E-05 2.67E-04	4.25E-04 1.86E-03	1.76E-03 7.70E-03	lbtħr tpy	Hourly emission rate Annual emission rate
	CO ₂	CH₄	N ₂ O	CO ₂ e	_		
	73.⊡6 163.1	0.003 0.0066	0.0006 0.00132		_g IMMBtu lb IMMBtu	□0 CFR □8□Tables C	1 and Cī2
	1	25	2□8		GWP	⊡0 CFR ⊡8⊡Table A⊡	
	222.00	0.00□0	0.0018	222.76	lbħr		
	972.34	0.039	0.0079	975.68	tpy (metric)	□0 CFR □8□□□uations HHV of 0.138 MMBtu	s C⊡ and Cı®⊡Table C⊡ (default īgal)

Footnotes:

¹ Imission factor for $\Box O \Box$ is assumed to be $\Box 5\%$ of the $\Box PA$ Tier 3 emission factor for $\Box O \Box \Box \Box MHC$.

² It is assumed that TSP \Box PM₁₀ \Box PM_{2.5}.

³ Sulfur content is ta en from AP 2 Table 3.3 1.

□ mission factor for VOC is assumed to be 5% of the □PA Tier 3 emission factor for □O□□ □MHC.

⁵ Total HAPs are based on AP II Table 3.3.2 and an average bra especific fuel consumption rate of 7 000 Btu hp thr.

OP-7 [Caterpillar C7 225hp]

	OP 7						
Source Description:	Diesel Powere	d Pump					
Engine Info							
Manufacturer:	Caterpillar						
Model:	C7						
Sea level hp:		5 hp	Mfg data				
		3 %	Per 11000 ft a	bove ⊡ 1 000 f	ït		
□levation	580						
Derated hp:	212.						
Derated ⊡W:		7 ⊑W					
Conversion Factor	0.002	-					
Conversion Factor		0 lb₫on					
Conversion Factor Hours of Operation		□ hp.⊡W 0 hr⊡yr					
•			AP				
Bra e Specific Fuel Consumption		0 Btu∄p∄r 0 Btu⊡rel	From AP 2	13.3			
Diesel Heating Value		0 Btu⊡gal 8. rol≣tr					
Fuel ⊡sage		8 galthr 7 galt⊮r	Calculated				
Fuel ⊡sage	_ J _20	7 gal⊡r	Calculated				
Emission Calculations							
		СО	PM ²	SO23		_	
	2.83	2.61	0.15		g∄p∄hr	□PA Tier 3 □mission	Standards
				0.00205	lb∄p∄r	APⅢ2 Table 3.3 1	
	1.33	1.22	0.0700	0.44	lbthr	Hourly emission rate	
	5.82	5.36	0.31	1.91	tpy	Annual emission rate	
	VOC□	Total HAPs⁵	Toluene	□ylenes	Formaldehyde		
	0.15			-		_ gfhpfhr	□PA Tier 3 □mission Standards
		3. 2 03	0.0005	2.85 0	1.18□103	lb1MMBtu	APII2
	0.070	0.0051	6.09E-05	4.25E-04	1.76E-03	lbħr	Hourly emission rate
	0.31	0.022	2.67E-04	1.86E-03	7.70E-03	tpy	Annual emission rate
	CO₂	CH₄	N₂O	CO₂e			
	73.□6	0.003	0.0006		_gIMMBtu	□0 CFR □8□Tables C	I and CI2
	163.1	0.0066	0.00132		lb MMBtu		
	1	25	2□8		GWP	□0 CFR □8□Table A 1	l
	222.00	0.00□0	0.0018	222.76	lbħr		
	972.34	0.039	0.0079	975.68	tpy (metric)	□0 CFR □8□□□uations HHV of 0.138 MMBtu	s C⊡ and Cı8⊡Table C⊡ (default iğal)

Footnotes:

¹ mission factor for $\bigcirc \bigcirc$ is assumed to be $_5\%$ of the \bigcirc PA Tier 3 emission factor for $\bigcirc \bigcirc \bigcirc$ \bigcirc MHC. ² It is assumed that TSP \bigcirc PM₁₀ \bigcirc PM_{2.5}.

³ Sulfur content is ta \Box en from AP \Box 2 Table 3.3 \Box .

⁵ Total HAPs are based on APT2 Table 3.3.2 and an average brate specific fuel consumption rate of 7:000 Btuthpthr.

OP-8 [Caterpillar C7 225hp]

□nit □umber:	OP 🛚 8						
Source Description:	Diesel □ngine						
Engine Info							
Manufacturer:	Caterpillar						
Model:	C7						
Aspiration:	Turbocharged	ATAAC					
□ngine speed:	2 200) rpm	Manufacturer	data			
Sea level hp:		5 hp) %	Manufacturer Per 1 000 ft al		ft		
□levation	51801		Google □arth				
Derated hp:	212.8		Calculated				
Conversion Factor		hp⊡W					
Conversion Factor		2 g1b					
Conversion Factor) İbīton					
Hours of Operation) hr⊡yr					
Fuel □sage Rate	□7.00)Lībr	Manufacturer	data			
Fuel □sage Rate	12. 🗆	2 galthr					
Fuel	108 765	5 gal⊡yr					
Fuel Heating Value:) Btuīgal	APⅢ2				
Emission Calculations							
		СО	PM ²	SO23			
	2.83	2.61	0.15	0.0021	ցີաներ լթարնեւ	□PA Tier : AP2 Tat	3 ⊡mission Standards ble 3.3⊓1
	1.33	1.22	0.070	0.4363	lbthr		lission rate
	5.82	5.36	0.31	1.91	tpy	,	nission rate
	VOC	Total HAPs⁵	Toluene	□ylenes	Formaldehyde		
	0.15					għpħr	□PA Tier 3 □mission Standards
		3. 2 03		2.85 0		lb ™MBtu	
	0.074	0.0051	6.09E-05	4.25E-04		lbħr	Hourly emission rate
	0.32	0.022	2.67E-04	1.86E-03	7.70E-03	tpy	Annual emission rate
	CO ₂	CH ₄	N₂O	CO ₂ e	_		
	73.⊡6	0.003	0.0006		⊑g1MMBtu	⊡0 CFR ⊡8	8⊡Tables C⊡ and C⊡
	163.1	0.0066	0.00132		lb ⊡ MMBtu		
	1	25	2⊡8		GWP	□0 CFR □	8⊡Table A⊡
	253.⊒5	0.010	0.0021	25⊡.3	lbthr		
	1,110.11	0.045	0.0090	1,113.9	tpy (metric)		B□□□uations C□ and CB□Table ult HHV of 0.138 MMBtu⊡gal)

Footnotes:

¹ Imission factor for IOI is assumed to be I5% of the IPA Tier 3 emission factor for IOI IMHC. ² It is assumed that TSP IPM₁₀ IPM_{2.5}.

³ Sulfur content is ta en from AP 22 Table 3.3 1.

 \Box mission factor for VOC is assumed to be 5% of the \Box PA Tier 3 emission factor for \Box O \Box \Box MHC.

⁵ Total HAPs are based on AP II Table 3.3.2 and an average bra especific fuel consumption rate of 7 000 Btu hp hr.

ENV-120 [Caterpillar C6.6 225hp]

□nit □umber:	□□V □ 120
Source Description:	Diesel □ngine

Engine Info		
Manufacturer:	Caterpillar	
Model:	C6.6	
□ngine speed:	21200 rpm	Mfg data
Sea level hp:	225 hp	Mfg data
	3.0 %	Per 1 000 ft above □000 ft
□levation	51801 ft	
Derated hp:	212.8 hp	
Conversion Factor	1.3□ hpW	
Conversion Factor	0.0022 g∄b	
Conversion Factor	21000 lb1ton	
Hours of Operation	81760 hrtyr	
Fuel	10.⊡ gal∄r	Calculated
Fuel	⊡5⊡267 gal⊡yr	Calculated
Fuel Heating Value:	1371000 Btutgal	APII2

Emission Calculations

$\Box O \Box^1$	со	PM ²	SO23			
 2.83	2.61	0.15		għpħr	□PA Tier 3	l ⊟mission Standards
			0.00205	lbħpħr	AP I I 2 Tab	
1.33	1.22	0.070	0.436	lbħr	Hourly emi	ssion rate
5.82	5.36	0.31	1.91	tpy	Annual em	ission rate
VOC□	Total HAPs⁵	Toluene	□ylenes	Formaldehyde		
 0.15					g∄hp∄hr	□PA Tier 3 □mission Standards
	3. 2 03	0.000	2.85 0	1.18□103	lb MMBtu	AP 2
0.070	0.0051	6.09E-05	4.25E-04	1.76E-03	lbħr	Hourly emission rate
0.31	0.022	2.67E-04	1.86E-03	7.70E-03	tpy	Annual emission rate
 CO ₂	CH₄	N₂O	CO ₂ e	_		
73.⊡6	0.003	0.0006		⊑g1MMBtu	□0 CFR □8	⊡Tables C⊡ and C⊡
163.1	0.0066	0.00132		lb MMBtu		
1	25	2□8		GWP	□0 CFR □8	⊡Table A⊡
222.00	0.00□	0.0018	222.8	lbthr		
972.34	0.039	0.0079	975.7	tpy (metric)		uations C⊡ and Cı8⊡Table C⊡ V of 0.138 MMBtuīgal)

Footnotes:

¹ Imission factor for $\Box O \Box$ is assumed to be $\Box 5\%$ of the $\Box PA$ Tier 3 emission factor for $\Box O \Box \Box \Box MHC$.

² It is assumed that TSP \square PM₁₀ \square PM_{2.5}.

³ Sulfur content is ta \Box en from AP \Box 2 Table 3.3 \Box .

^{\Box} \Box mission factor for VOC is assumed to be 5% of the \Box PA Tier 3 emission factor for \Box O \Box \Box MHC.

⁵ Total HAPs are based on APII2 Table 3.3.2 and an average brallespecific fuel consumption rate of 71000 Btuthpthr.

EMP-1 [Caterpillar 3126 190hp]

□nit □umber:	□MP 1						
Source Description:	Diesel Powe	red Pump					
Engine Info							
Manufacturer:	Caterpillar						
Model:	3126						
Sea level hp:	1 🗆) hp	Mfg data				
	:	3 %	Per 1 000 ft	above ⊡00	0 ft		
□levation	580	1 ft					
Derated hp:	17 🗆 1						
Derated □W:		W⊐ C					
Conversion Factor	0.0022						
Conversion Factor) lb1ton					
Conversion Factor		□ hp ⊡W					
Hours of Operation) hr⊡yr					
Bra De Specific Fuel Consumption) Btu∄p∄r	AP 2 Section	on 3.3			
Diesel Heating Value	137 1000) Btu⊡gal	From AP 2				
Fuel □sage		2 galħr	Calculated				
Fuel	80 💷	7 gal⊡r	Calculated				
Emission Calculations							
		CO ¹	PM ¹²	SO_2^3			
	6. 🗆	8.5	0.⊡0		gthpthr	 □PA Tier 1 □missio	n Standards
				0.00205	lb fbp fbr	APⅢ2 Table 3.3 1	
	2.72	3.37	0.160	0.37	lbthr	Hourly emission rat	е
	11.91	14.75	0.70	1.61	tpy	Annual emission ra	
	VOC ¹	Total HAPs [□]	Toluene	□ylenes	Formaldehyd	e	
	1.0			,	,		□PA Tier 1 □mission Standards
						lbthpthr	APⅢ2 Table 3.3 1
		0.003□2	00005	2.85□0□	0.00118	Ib₫MMBtu	AP 12 Table 3.3 2
	0.38	0.0043	5.15E-05	3.59E-04		lbthr	Hourly emission rate
	1.68	0.019	2.25E-04	1.57E-03		tpy	Annual emission rate
	CO2	CH₄	N ₂ O	CO ₂ e	_		
	73.⊡6	0.003	0.0006		_g™MBtu	□0 CFR □8□Tables	C⊡ and C⊡2
	163.1	0.0066	0.00132		lb1MMBtu		
	1	25	2⊡8		GWP	□0 CFR □8□Table A	
	187.⊡6	0.0076	0.0015	188.11	lb∄r		
	821.09	0.033	0.0067	823.90	tpy (metric)	HHV of 0.138 MMB	ons C⊡ and Cı8⊡Table C⊡ (default tuīđal)
Footnotes:							ugu/

Footnotes:

 1 \squaremission factors for $\squareO_{\square}\squareCO\squarePM\squareand$ VOC are based on Tier 1 \squaremission Standards.

 2 It is assumed that TSP \Box PM $_{10}$ \Box PM $_{2.5.}$

³ Sulfur content is ta en from AP 2 Table 3.3 1.

[□] Total HAPs are based on AP III Table 3.3.2 and an average bra especific fuel consumption rate of 7 1000 Btu hp thr.

EMP-2 [Caterpillar 3126B 200hp]

□nit □umber:	□MP□2						
Source Description:	Diesel Powere	d Pump					
Engine Info							
Manufacturer:	Caterpillar						
Model:	3126B						
Sea level hp:) hp	Mfg data				
		3 %	Per 1 000 ft al	bove ⊡ 1 000 f	ft		
□levation	580						
Derated hp:	18□.						
Derated ⊡W:		1 ⊑W					
Conversion Factor	0.002	-					
Conversion Factor) lb1ton					
Conversion Factor		□ hp ⊡W					
Hours of Operation		0 hr⊡yr					
Bra E Specific Fuel Consumption)Btutħptħr	AP	1 3.3			
Diesel Heating Value) Btuīgal	From AP				
Fuel □sage		7 gal∄r	Calculated				
Fuel □sage	8 68	2 gal⊡r	Calculated				
Emission Calculations							
		CO	PM ²	SO23			
	□.68	2.61	0.15		għpħr	□PA Tier 2	□missions Standards
				0.00205	lb fhp fhr	APⅢ2 Tabl	e 3.31
	1.95	1.09	0.062	0.39	Ib∄r	Hourly emis	sion rate
	8.54	4.77	0.27	1.70	tpy	Annual emi	ssion rate
	VOC□	Total HAPs⁵	Toluene	□ylenes	Formaldehyd	e	
	0.25			,	,		□PA Tier 2 □missions Standards
	0.20	3. 2 03	□.0□□105	2.85 0	1.18□03	lb.tMMBtu	
	0.103	0.0045	5.42E-05	3.77E-04		lb thr	Hourly emission rate
	0.45	0.020	2.37E-04	1.65E-03		tpy	Annual emission rate
	CO2	CH₄	N ₂ O	CO ₂ e	_		
	73.⊡6	0.003	0.0006		_g™MBtu	□0 CFR □8	Tables C⊡ and C⊡
	163.1	0.0066	0.00132		lb:1MMBtu		
	1	25	2⊡8		GWP	□0 CFR □8	Table A⊡
	1 🗆 7.33	0.008	0.0016	1 8.0	lb∄r		
	864.30	0.035	0.007	867.3	tpy (metric)		□□□uations C⊡ and Cı8⊡Table C⊡ V of 0.138 MMBtuɪɡal)
						Jaolaan	· · · · · · · · · · · · · · · · · · ·

Footnotes: ¹ Imission factor for IOI is assumed to be I5% of the IPA Tier 2 emission factor for IOI IMHC. ² It is assumed that TSP IPM₁₀ IPM_{2.5}.

³ Sulfur content is ta⊡en from AP ^{III}2 Table 3.3 ^{II}. [□] □mission factor for VOC is assumed to be 5% of the □PA Tier 2 emission factor for □O□□ □MHC.

⁵ Total HAPs are based on APII Table 3.3.2 and an average bra especific fuel consumption rate of 7000 Btu hpthr.

Indian Peak Generator

Unit No(s):	IPG									
Description:	Indian Pe	a□Generato	r							
Engine Data										
Horsepower:	18.8	hp	Manufacture	r Data	(1□⊐W)					
Fuel usage:	27 🗆	ft3 hr	MFG Data							
Fuel heat value:	2500	Btu scf	□ominal for p	oropane						
Heating rate:	0.70	MMBtu∄hr		-						
Fuel usage:	2.70	MMscfthr								
0	2. 🗆	MMscf⊡yr								
Operating hours:		hoursyear								
Emission Rates										
						Total				
HC + NO _X ¹	NO _x ¹	CO ¹	HC (VOC) ¹	SO22	PM ³	HAPs ⁴	Toluene ⁴	Xylenes ⁴	_	
7.5	7.125	610	0.375						g⊡W⊡hr	□SPS □□□Iimit
					0.010				lb MMBtu	AP 2 Table 3.2 2
0.23	0.22	18.83	0.012	0.0028	6.97E-03	9.91E-03	4.57E-05	2.28E-05	lb/hr	
1.01	0.96	82.46	0.051	0.012	0.031	0.043	2.00E-04	1.00E-04	tpy (8760 hours	6)
Greenhouse Gas En	nissions									
	CO ₂	CH₄	N ₂ O	CO ₂ e						
	53.06	0.0010	0.00010	-	a MMBtu	□0 CFR □	8 Subpart C	;		
	357.37	6.74E-03	6.74E-04	357.74						
	1	25	2□8		GWP					
Notes										

¹ OCCO and VOC emissions based on SPS III limits for nonhandheld Class II engines.

 \Box MHC and \Box O_{\Box} combined emission factor was bro \Box en down assuming 5% \Box MHC and \Box 5% \Box O_{\Box} per CARB policy dated \Box une 28 \Box 200 \Box ² SO₂ emissions are based on the average national sulfur content of LPG which is 0.012% by mass (appro \Box mately 2.6 g of SO2 \Box G \Box of heat

input) per Appendi C 2 of undated document at S Department of Cnergy website: http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/22.pdf

 3 PM emission were calculated using AP III Table 3.2 I. It is assumed that TSP \square PM $_{10}$ = PM $_{2.5}$

[□] HAPs calculated using GRI HAPCalc 3.01

Nordberg Engine and CE-1 Emission Factors

A. Dual Fuel Engine - Natural Gas with Diesel

- CO: Source: NSR Permit No. 2448A-R1, Condition 2.d) Average Value = **2.857E+01 [lb/hr]**
- NOx: Source: 2005 Cubix Emission Tests Average Value = 3.434E+01 [lb/hr]

Note: AP-42 Chapter 3.4, Large Stationary Diesel and All Stationary Dual-Fuel Engines, does not have emission factors for particulates. Therefore, particulate emission factors from AP-42 Chapter 3.2, Natural Gas-Fired Reciprocating Engines, were selected to estimate particulate emissions for dual fuel engine combustion of natural gas.

Natural gas-fired engine Brake Specific Fuel Consumption of 7500 Btu/hp-hr is from US Department of the Interior document

PM _{2.5} :	Source: AP-42 Chapter	3.2 Natural Gas-Fired Reciprocating	Engines, Table 3.2	2-3			
	$PM_{2.5} = 9$	0.50E-03 lb/MMBtu					
	9.50E-03	lb/MMBtu * 7500 Btu/hp-hr * 1MM	Btu/1E06Btu =	7.13E-05 [lb/hp-hr]			
PM ₁₀ :	Source: AP-42 Chapter	3.2 Natural Gas-Fired Reciprocating	Engines, Table 3.2	2-3			
	$PM_{10} = 9$	0.50E-03 lb/MMBtu					
	9.50E-03	lb/MMBtu * 7500 Btu/hp-hr * 1MM	Btu/1E06Btu =	7.13E-05 [lb/hp-hr]			
TSP:	Source: AP-42 Chapter	ource: AP-42 Chapter 3.2 Natural Gas-Fired Reciprocating Engines, Table 3.2-3					
	TSP = 9	0.91E-03 lb/MMBtu					
	9.91E-03	lb/MMBtu * 7500 Btu/hp-hr * 1MM	Btu/1E06Btu =	7.43E-05 [lb/hp-hr]			
SO_2 :	Source: AP-42, Chapter 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-1						
	$SO_2 = 4.06E - 4*S_1 + 9.57$	$^{\prime}\text{E-3*S}_2$ [lb/hp-hr] where:	S ₁ =	= % sulfur in fuel oil			
			S ₂ =	= % sulfur in natural gas			
	For Tyrone:	% sulfur in fuel oil	0.0	5 % (500 ppm low sulfur diesel fuel)			
		% sulfur in natural gas	0.00104	4 % (10.4 ppm S in natural gas)			
	$SO_2 = 3.02$	253E-05 (lb/hp-hr)					
VOC:	Source: 1997 Cubix Em	ission Tests					
	Average Value =	1.040 (lb/hr)					
HAPs: S	ource: AP-42, Chapter 3.2	2 Natural Gas-Fired Reciprocating	Engines, Table 3.	2-2			
			0	lb/MMBTU to lb/hp-hr:			
	Pollutant	Emission Easter	(Emission Easter	(1E06 BTU) * (7500 BTU/hp hr) =			

Formaldehyde	5.28E-02 lb/MMBT	TU 3.96E-04 lb/hp-hr
Pollutant	Emission Factor	(Emission Factor/1E06 BTU) * (7500 BTU/ hp-hr) =
		To convert from 10/ white FO to 10/ np-m.

B. Non-Dual Fuel Engine - Diesel Combustion

CO:	Source: 2005 Cubix Emission Tests Average Value =	1.036E+01 (lb/hr)				
NOx:	Source: 2004 Cubix Emission Tests Average Value =	4.997E+01 (lb/hr)				
PM _{2.5} :	Source: AP-42 Chapter 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-2 PM _{2.5} = 0.0479 (lb/MMBTU)					
	To convert from lb/MMBTU to lb/hp (0.0479 lb/1E06 BTU) * (7000 BTU/		3.353E-04 (lb/hp-hr)			
	Diesel Brake Specific Fuel Consump	tion of 7000 Btu/hp-hr is from Note e o	of Table 3.4-1.			
PM ₁₀ :	Source: AP-42 Chapter 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Table 3.4-2 PM ₁₀ = 0.0573 (lb/MMBTU)					
	(0.0573 lb/1E06 BTU) * (7000 BTU/	/ hp-hr) = 4.01	E-04 (lb/hp-hr)			
TSP:	Source: AP-42 Chapter 3.4 Large S TSP = 0.0697 (lb.	tationary Diesel and All Stationary Dua /MMBTU)	ll-Fuel Engines, Table 3.4-2			
	To convert from lb/MMBTU to lb/hp (0.0697 lb/1E06 BTU) * (7000 BTU/		E-04 (lb/hp-hr)			
SO ₂ :	Source: AP-42 Chapter 3.4 Large Source: $SO_2 = 8.09E-03*S_1$ [lb/hp-hr]	tationary Diesel and All Stationary Dua where	I-Fuel Engines, Table 3.4-1 $S_1 = \%$ sulfur in fuel oil			
	For Tyrone Emission factor for $SO_2 =$	% sulfur in fuel oil = 0.05 4.045E-04 (lb/hp-hr)	% (500 ppm low sulfur diesel fuel)			
VOC:	1997 Cubix Emission Tests Average Value =	2.9 (lb/hr)				

HAPs: Source: AP-42, Chapter 3.4 Large Stationary Diesel and All Stationary Dual-Fuel Engines, Tables 3.4-3 and 3.4-4

		To convert from lb/MMBTU to lb/hp-hr:
Pollutant	Emission Factors	(Emission Factor/1E06 BTU) * (7000 BTU/ hp-hr) =
Benzene	7.76E-04 lb/MMBTU	5.43E-06 lb/hp-hr
Toluene	2.81E-04 lb/MMBTU	1.97E-06 lb/hp-hr
Xylenes	1.93E-04 lb/MMBTU	1.35E-06 lb/hp-hr
Formaldehyde	7.89E-05 lb/MMBTU	5.52E-07 lb/hp-hr
Acetaldehyde	2.52E-05 lb/MMBTU	1.76E-07 lb/hp-hr
Acrolein	7.88E-06 lb/MMBTU	5.52E-08 lb/hp-hr
Naphthalene	1.30E-04 lb/MMBTU	9.10E-07 lb/hp-hr
Total Polycyclic Aromatic	2.12E-04 lb/MMBTU	1.48E-06 lb/hp-hr
Total Hazardous Air Pollutants	1.70E-03 lb/MMBTU	1.19E-05 lb/hp-hr

C. Cold Start Compressor Engine and 7A Screening Plant Engine - Diesel Combustion

CO:	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 CO = 6.68E-03 (lb/hp-hr)
NOx:	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 NOx = 0.031 (lb/hp-hr)
PM _{2.5} :	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 PM _{2.5} = 2.20E-03 (lb/hp-hr)
	Note: no published value for $PM_{2.5}$, assumed equal to PM_{10}
PM ₁₀ :	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1
	$PM_{10} =$ 2.20E-03 (lb/hp-hr)
TSP :	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 PT = No Data
SO ₂ :	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1 SO ₂ = $2.05E-03$ (lb/hp-hr)
VOC:	Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-1VOC = 2.51E-03 (lb/hp-hr) (VOC as total TOC)

D. Cold Start Compressor Engine and 1A, 7A Screening Plant Engines - Diesel Combustion

HAPs: Source: AP-42 Chapter 3.3 Gasoline and Diesel Industrial Engines, Table 3.3-2.

		To convert from lb/MMBTU to lb/hp-hr:
Pollutant	Emission Factors	(Emission Factor/1E06 BTU) * (7,000 BTU/ hp-hr) =
Benzene	9.33E-04 lb/MMBT	U 6.53E-06 lb/hp-hr
Toluene	4.09E-04 lb/MMBT	U 2.86E-06 lb/hp-hr
Xylenes	2.85E-04 lb/MMBT	U 2.00E-06 lb/hp-hr
1,3-Butadiene	3.91E-05 lb/MMBT	U 2.74E-07 lb/hp-hr
Formaldehyde	1.18E-03 lb/MMBT	U 8.26E-06 lb/hp-hr
Acetaldehyde	7.67E-04 lb/MMBT	U 5.37E-06 lb/hp-hr
Acrolein	9.25E-05 lb/MMBT	U 6.48E-07 lb/hp-hr
Naphthalene	8.48E-05 lb/MMBT	U 5.94E-07 lb/hp-hr
Total Polycyclic Aromatic	1.68E-04 lb/MMBT	U 1.18E-06 lb/hp-hr
Total Hazardous Air Pollutants	3.96E-03 lb/MMBT	U 2.77E-05 lb/hp-hr

Note: Brake Specific Fuel Consumption of 7,000 Btu/hp-hr is from Note E of Table 3.4-1.

Nordberg Engines and CE-1 Emission Calculations

					Power P	lant Emi	issions - l	PPG-3 Die	esel]	
Fuel		Dual	-Fuel			D	iesel			Di	esel		Permitted Op	perating Hours		
		ordberg FSG		0		0	G-1316-HSC	0	Ford-New Holland Compressor			3.000	Nordberg Engine			
Equipment	(Units PF	its PPG-1, 3, 4, 7, 8, 11, 12, 13, and 14) (Units PPG-1, 3, 4, 7,			G-1, 3, 4, 7,	8, 11, 12, 13,	14, and 15)		(Unit	CE-1)		- ,	Permitted Hours			
Number of Units	1				1				1		500	CE-1 Permitted Hour	rs			
Hours of Operation [hr/year]	255		255				500									
Fuel Usage	7,500	Btu/hp-hr	1	Interior	7,000	,										
Capacity [hp]		3,0)90			3.	,090			1	00			Total PPG E		
	Dua	al-Fuel Com	bustion (PF	Gs)]	Diesel Comb	oustion (PPC	Fs)	D	iesel Comb	ustion (CE-	1)	(Does not include con	npressor engine)	
Criteria Pollutants	Emission Factor ¹	Units	Emission Rate [lb/yr]	Emission Rate [ton/yr]	Emission Factor	Units	Emission Rate [lb/yr]	Emission Rate [ton/yr]	Emission Factor [lb/hp-hr]	Emission Rate [lb/yr]	Emission Rate [ton/yr]	Emission Rate [lb/hr]	Annual Dual-Fuel Emission Rate [ton/yr] ²	Hourly Dual-Fuel Emission Rate [lb/hr] ^{3, 4}	Hourly Diesel Emission Rate [lb/hr] ⁵	Annual Maximum Emission Rate (tpy)
Nitrogen Oxides (NO _x)	34.34	[lb/hr]	8,756.7	4.38	49.97	[lb/hr]	12,742.4	6.37	0.031	1,550.0	0.78	3.10	4.38	34.34	49.97	6.37
Carbon Monoxide (CO)	28.57	[lb/hr]	7,285.4	3.64	10.36	[lb/hr]	2,641.8	1.32	6.68E-03	334.0	0.17	0.67	3.64	28.57	10.36	3.64
Particulate Matter (PM _{2.5})	7.13E-05	[lb/hp-hr]	56.1	0.028	3.35E-04	[lb/hp-hr]	264.2	0.13	2.20E-03	110.0	0.055	0.22	0.03	0.22	1.04	0.13
Particulate Matter (PM ₁₀)	7.13E-05	[lb/hp-hr]	56.1	0.028	4.01E-04	[lb/hp-hr]	316.0	0.16	2.20E-03	110.0	0.055	0.22	0.03	0.22	1.24	0.16
Total Suspended Particulates (TSP)	7.43E-05	[lb/hp-hr]	58.6	0.029	4.88E-04	[lb/hp-hr]	384.4	0.19	2.20E-03	110.0	0.055	0.22	0.03	0.23	1.51	0.19
Sulfur Dioxide (SO ₂)	3.03E-05	[lb/hp-hr]	23.8	0.012	4.05E-04	[lb/hp-hr]	318.7	0.16	2.05E-03	102.5	0.051	0.21	0.01	0.09	1.25	0.16
Volatile Organic Compounds (VOC)	1.04	[lb/hr]	265.2	0.13	2.9	[lb/hr]	739.5	0.37	2.51E-03	125.5	0.063	0.25	0.13	1.04	2.90	0.37
Hazardous Air Pollutants (HAPs) ⁶														•		
Benzene	-	-	-	-	5.43E-06	[lb/hp-hr]	4.28	2.14E-03	6.53E-06	0.33	1.63E-04	6.53E-04	-	-	1.68E-02	2.14E-03
Toluene	-	-	-	-	1.97E-06	[lb/hp-hr]	1.55	7.75E-04	2.86E-06	0.14	7.16E-05	2.86E-04	-	-	6.08E-03	7.75E-04
Xylenes	-	-	-	-	1.35E-06	[lb/hp-hr]	1.06	5.32E-04	2.00E-06	0.10	4.99E-05	2.00E-04	-	-	4.17E-03	5.32E-04
1,3-Butadiene	-	-	-	-	-	-	-	-	2.74E-07	0.014	6.84E-06	2.74E-05	-	-	-	
Formaldehyde	3.96E-04	[lb/hp-hr]	312.0	0.16	5.52E-07	[lb/hp-hr]	0.44	2.18E-04	8.26E-06	0.41	2.07E-04	8.26E-04	0.16	1.22	1.71E-03	1.56E-01
Acetaldehyde	-	-		-	1.76E-07	[lb/hp-hr]	0.14	6.95E-05	5.37E-06	0.27	1.34E-04	5.37E-04	-	-	5.45E-04	6.95E-05
Acrolein	-	-	-	-	5.52E-08	[lb/hp-hr]	0.043	2.17E-05	6.48E-07	0.032	1.62E-05	6.48E-05	-	-	1.70E-04	2.17E-05
Naphthalene	-	-	-	-	9.10E-07	[lb/hp-hr]	0.72	3.59E-04	5.94E-07	0.030	1.48E-05	5.94E-05	-	-	2.81E-03	3.59E-04
Total PAHs	-	-	-	-	1.48E-06	[lb/hp-hr]	1.17	5.85E-04	1.18E-06	0.059	2.94E-05	1.18E-04	-	-	4.59E-03	5.85E-04
Total HAPs	-	-	-	-	1.19E-05	[lb/hp-hr]	9.40	4.70E-03	2.77E-05	1.39	6.93E-04	2.77E-03	-	-	3.69E-02	4.70E-03

Footnotes:

¹ See 'Engine Emission Factors' tab for specific emission factor references.

² The annual dual-fuel emission rate is the sum of dual-fuel operation for 2,400 hr/yr and diesel operation for 600 hr/yr. The 2,400 hr/yr of dual-fuel operation is 80% of the total 3,000 allowable hours and the 600 hr/yr of diesel operation is 20% of the total 3,000 allowable hours.

³ Hourly dual-fuel emission rates are based on applying the hourly dual-fuel emission factor to all 10 Nordbergs operating simultaneously. The actual average daily hourly rate would be less than this value.

⁴ Hourly dual-fuel HAPs emission rates for HAPs without a lb/hp-hr emission factor are based on the annual emission rate divided by 3,000 hr/yr.

⁵ The hourly diesel emission rate is based on applying the hourly diesel emission factor to all 10 Nordbergs operating simultaneously. The actual average daily hourly rate would be less than this value.

⁶ Among the HAP emission factors available in AP-42, Chapter 3.2, Natural Gas-Fired Reciprocating Engines, the emission factor for formaldehyde is the highest and is used here to represent HAP emissions. AP-42 emission factors for other HAPs genererated from natural gas combustion in reciprocating engines are orders of magnitude less than formaldehyde and result in negligible emissions even when combined with formaldehyde emissions.

Nordberg Engines and CE-1 Greenhouse Gas Calculations

Nordberg Engines Units PPG-1, 3, 4, 7, 8, 11-15

Hours of Operation			annual hours	of operation	on for all eng	ines			
Horsepower	30⊡0	hp							
Fuel	7 500	Btu∄p∄hr	For dual fire scenario⊡from □S Department of Interior						
Heat Rate	23.2	MMBtu∄r							
□umber of engines	10								
Total Emissions									
Diesel									
-	CO2	CH₄	N₂O	CO ₂ e	_				
	73.⊑6	0.003	0.0006		⊑gtMMBtu	□0 CFR □8 Subpart C			
	163.1	0.0066	0.00132		lb1MMBtu				
	5668.15	0.23	0.046	5687.60	tpy				
Dual-Fired									
	CO2	CH₄	N ₂ O	CO ₂ e					
-	53.06	0.001	0.0001		_g™MBtu	□0 CFR □8 Subpart C			
	117.0	0.0022	0.00022		lb MMBtu				
	□066.□2	0.077	0.0077	□070.62	tpy				
Maximum									
	CO2	CH₄	N ₂ O	CO ₂ e					
-	5668.15	0.23	0.05	5687.60	tpy				

Diesel Cold-Start Engine Unit CE-1

Hours of Operation 500 Ma Imum annual hours of operation									
Horsepower	1000	hp							
Fuel	158	gal∄r							
Fuel Heating Value	137000	Btuīgal							
Heat Rate	21.6	MMBtu∄r							
	CO2	CH₄	N₂O	CO₂e					
	73.⊡6	0.003	0.0006		_g MMBtu	□0 CFR □8 Subpart C			
	163.1	0.0066	0.0013		lb MMBtu				
	882.37	0.036	0.0072	885.39	tpy				
	CO2	CH₄	N₂O						

	002	0114	1420	
GWP	1	25	2 🛛 8	Table A⊡ of ⊡0 CFR ⊡8 Subpart A

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
 If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the

one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.

- \blacksquare If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

This section describes the information used to determine emissions for the units that were updated as part of this permit application. Calculations for all other emission sources have remained the same since Permit No. PSD2448-M5 was issued and are included in this section for informational purposes only.

Mine Blasting (Fugitive)

-) "NOx Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).
- "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001)
- AP-42 Table 11.9-1
- 40 CFR 98 Subpart A, Table A-1
- 40 CFR 98 Subpart C, Tables C-1 and C-2

Mine, Reclamation, and Crushing & Screening Plant (formerly SP-7A) Handling (Fugitive)

-) AP-42 Chapter 11.19.2
- AP-42 Chapter 13.2.4

Mine, Reclamation, and Crushing & Screening Plant (formerly SP-7A) Hauling (Fugitive)

- AP-42 Chapter 13.2.2
- NMED Memo: "Department Accepted Values for: Aggregate Handling, Storage Pile, and Haul Road Emissions"
- Western Regional Air Partnership (WRAP) Fugitive Dust Handbook, September 7, 2006

Gasoline Dispensing Facilities (GDF1 and GDF2)

- AP-42 Chapter 7, Sections 7.1.1, 7.1.2, and 7.1.3.1
-) EPA's SPECIATE 5.0 database profiles for HAP data source

Boilers

- AP-42 Table 1.5-1
- Propane sulfur content references
- AP-42 Tables 1.4-3 and 1.4-4
- 40 CFR 98 Subpart A, Table A-1 (not repeated)
- 40 CFR 98 Subpart C, Tables C-1 and C-2 (not repeated)

Engines

- AP-42 Tables 3.3-1 and 3.3-2
- EPA Tier 1, 2, and 3 Emission Standards
-) Engine spec sheets

No changes were made to the emergency engines (Generac GEN1-GEN4, IPG, GO Generator Backup EI-128, SX/EW Fire Water Pump, and SX Tankhouse Emergency Generator), which are exempt from construction permitting, so no calculations are provided for these engines in this permit application. However, for completeness, the spec sheets associated with these engines are enclosed.

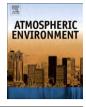
- J 40 CFR 98 Subpart A, Table A-1 (not repeated)
- 40 CFR 98 Subpart C, Tables C-1 and C-2 (not repeated)
- CARB Policy dated June 28, 2004: Emission Factors for CI Diesel Engines Percent HC in Relation to NMHC + NOx

SX/EW Mixer/Settler Tank and Raffinate Tanks (Units SX/EW-1, SX/EW-3, and SX/EW-4)

) "Quantification of Volatile Organic Compound Emissions from the Solvent Extraction Process" prepared for BHP Copper, July 16, 1997.

Section 7

Information Used to Determine Emissions


Mine Blasting (Fugitives)

- "NOx Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).
- "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001)
- AP-42 Table 11.9-1
- 40 CFR 98 Subpart A, Table A-1
- 40 CFR 98 Subpart C, Tables C-1 and C-2

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/atmosenv

NO_x emissions from blasting operations in open-cut coal mining

Moetaz I. Attalla*, Stuart J. Day, Tony Lange, William Lilley, Scott Morgan

CSIRO Energy Technology, P.O. Box 330, Newcastle, NSW 2300, Australia

ARTICLE INFO

Article history: Received 1 February 2008 Received in revised form 1 July 2008 Accepted 7 July 2008

Keywords: NO_x Open-cut mining Australia Miniaturised ultraviolet spectrometer Mini-DOAS

ABSTRACT

The Australian coal mining industry, as with other industries is coming under greater constraints with respect to their environmental impacts. Emissions of acid gases such as NO_x and SO_x to the atmosphere have been regulated for many years because of their adverse health effects. Although NO_x from blasting in open-cut coal mining may represent only a very small proportion of mining operations' total NO_x emissions, the rapid release and high concentration associated with such activities may pose a health risk. This paper presents the results of a new approach to measure these gas emissions by scanning the resulting plume from an open-cut mine blast with a miniaturised ultraviolet spectrometer. The work presented here was undertaken in the Hunter Valley, New South Wales, Australia during 2006. Overall this technique was found to be simpler, safer and more successful than other approaches that in the past have proved to be ineffective in monitoring these short lived plumes. The average emission flux of NO_x from the blasts studied was about 0.9 kt t⁻¹ of explosive. Numerical modelling indicated that NO_x concentrations resulting about 5 km from the source.

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Open-cut coal mining is widespread in the upper Hunter Valley in New South Wales (NSW) with several large mines operating within close proximity to the towns of Muswellbrook and Singleton. Consequently, there is community concern about the potential environmental impacts of mining on nearby populations.

Blasting, in particular, has the potential to affect areas outside the mine boundary and accordingly, vibration and dust emission limits are set in each mine's environmental licence. However, gaseous emissions of environmental concern, such as nitrogen dioxide (NO₂) may also be released during blasting operations. Currently, there are very little quantitative data relating to the magnitude of these emissions and it is not yet possible to determine if they contribute significantly to ambient levels in the main population centres.

* Corresponding author. *E-mail address:* moetaz.attalla@csiro.au (M.I. Attalla). The explosive ammonium nitrate/fuel oil (ANFO) is used almost universally throughout the open-cut coal mining industry. Under ideal conditions, the only gaseous products from the explosion are carbon dioxide (CO₂), water (H₂O) and nitrogen (N₂).

$$3NH_4NO_3 + CH_2 \rightarrow 3N_2 + CO_2 + 7H_2O$$
 (1)

However, even quite small changes in the stoichiometry (either in the bulk material or caused by localised conditions such as moisture in the blast hole, mineral matter or other factors) can lead to the formation of substantial amounts of the toxic gases carbon monoxide (CO) and nitric oxide (NO) as shown.

$$2NH_4NO_3 + CH_2 \rightarrow 2N_2 + CO + 5H_2O \tag{2}$$

 $5NH_4NO_3 + CH_2 \rightarrow 4N_2 + 2NO + CO_2 + 7H_2O$ (3)

In addition, some of the NO formed may oxidise in the presence of oxygen (O_2) to produce NO₂.

^{1352-2310/\$ –} see front matter Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.atmosenv.2008.07.008

$$2NO + O_2 \rightarrow 2NO_2$$

(4)

Often in practice, large quantities of NO₂ are released from blasts which are observed as intense orange plumes.

Although these gases are not considered in their environmental licences, each mine is required to estimate annual emissions of CO, NO_x and SO_2 for the National Pollutant Inventory (NPI), compiled each year by the Australian government. These estimates are made by multiplying the amount of explosive consumed by an emission factor which is currently 8 kg t⁻¹ for NO_x, 34 kg t⁻¹ for CO and 1 kg t⁻¹ for SO₂ (National Pollutant Inventory, 1999). These emission factors, however, are based on limited overseas data and are subject to high uncertainty.

Most of the studies which have examined NO_x formation from blasting have used blast chambers. The results from these studies do not necessarily correlate with what is observed during actual blasts. Few studies have attempted to measure NO_x emissions under actual field conditions, presumably because of the practical difficulties involved. Plumes from blasting lack confinement, can be very large in size and are affected by prevailing weather conditions. There is also a large quantity of dust associated with the blast and these factors combine to make physical sampling of the plume very difficult. There are also the obvious safety implications which restrict access to blast sites. Consequently, quantitative measurements of plume characteristics are generally unavailable. Nevertheless, it is important for mine operators, particularly when their operations are close to residential areas, to have some method for assessing NO_x formation and more importantly, predicting the severity of the NO_x plume. At present predictions of NO_x formation are subjective and are based on the blast engineer's knowledge of the area to be blasted (e.g. rock type, area of the mine, presence of water in the holes, etc.) and the ratings obtained from blasts performed under similar conditions. Quantitative flux estimations of NO_x released from a blast require measurement of concentration through the plume in both the horizontal and vertical axes.

Some of the options available to make these measurements are given in the following sections.

1.1. Physical sampling

Sampling of blasting fumes involves taking a sample of gas from the plume for subsequent analysis, which could be either on site or in an off site laboratory. Although physical sampling could in principle provide sufficient information to characterise a plume, there are a number of serious logistical problems with this approach:

- The size of the plume means that a large number of sample points would be required to sample across the width and height of the plume.
- The force of the explosion and the resulting debris would restrict the proximity of any sampling packages to the initial gas release.
- The potential toxicity of the plume; personnel cannot move through it to take samples, hence sampling stations must be fixed prior to the blast. This means

that the path of the plume must be anticipated before the blast.

1.2. Continuous analysis

Another option is to use portable analysers to measure NO_x concentrations in real time. There are, however, disadvantages with this approach since a sample of the plume must be presented to the instrument for analysis. Usually a pump draws air through a small diameter tube into the instrument, but to achieve the necessary spatial characterisation of the plume, sample tubes would need to be positioned at various points throughout the plume. Thus many of the problems identified for the physical sampling would also apply to the use of continuous analysers.

1.3. Optical methods

There are several optical methods of analysis currently available that may be applicable to field measurements of NO_x. These include open-path Fourier Transform Infra-Red Spectroscopy (FT-IR), Correlation Spectroscopy (COSPEC) and Differential Optical Absorption Spectroscopy (DOAS). FT-IR has often been used in air pollution studies (e.g. Levine and Russwurm, 1994). It has also been used in mine situations to measure fugitive methane emissions. Kirchgessner et al. (1993) used open-path FT-IR (op-FT-IR) to estimate methane emissions from open-cut coal mines in the United States. The technique relies on passing a collimated infrared beam through ambient air over a path length of up to several hundred metres. In the Kirchgessner et al. (1993) study, the concentration of methane across the plume was measured then wind speed data and a Gaussian plume dispersion model were used to estimate the methane emission rate from the mine. These authors subsequently developed a modification of their method which improved its accuracy (Piccot et al., 1994, 1996). The improved method was essentially the same as described above except that methane concentrations were measured at several elevations to better characterise the plume.

In principle, open-path FT-IR could be used to measure NO_x in blast plumes since it is sensitive to NO, NO_2 , and CO along with other gases. Infrared radiation is also strongly absorbed in many parts of the spectrum by both CO_2 and water which are very likely to be present in high concentrations in blast plumes and this may tend to obscure the NO_x signal. High resolution instruments may resolve at least some of the NO_x absorption lines, however, a more serious drawback with op-FT-IR is that the infrared beam would be substantially attenuated by the dust thrown up by the blast. In the period immediately after the blast when the dust level is very high it is likely that the IR beam would be completely blocked thus making measurements impossible.

Another well established optical method is Correlation Spectroscopy (COSPEC). The system was first described by Moffat and Milan (1971) and was designed to measure point source emissions of SO₂ and NO₂ from industrial plants but found a niche application in the measurement of SO₂ fluxes from volcanoes (Galle et al., 2002). The COSPEC system utilises a "mask correlation" spectrometer and was designed to measure vertical or slant columns using sky-scattered sunlight. By traversing beneath plumes with the mobile instrument, the concentration of the column is calculated and, once multiplied by the plume velocity, produces a source emission rate. These instruments are limited to detecting only those species where masks are available. They also suffer from interferences from other atmospheric gases and light scattering from clouds or aerosols that can produce errors in column densities (Chalmers Radio and Space Science, website).

The DOAS technique is a relatively new technique that is gaining widespread acceptance as an air pollution monitoring method. Like the open-path FT-IR method, the DOAS can simultaneously measure concentrations of a number of species over path lengths which typically range from hundreds of metres to kilometres.

A DOAS, configured as an 'active system', Fig. 1, has three main parts - a light emitter, a light receiver and a spectrometer. The emitter sends a beam of light to the receiver (in some cases the emitter and receiver are contained in the same unit and the light beam is reflected off a remotely located passive reflector). The light beam contains a range of wavelengths, from ultraviolet to visible, although instruments are now available with an infrared source, which extends the range of compounds that can be detected. Different pollutant molecules absorb light at different wavelengths along the path between the emitter and receiver. The receiver is connected to the spectrometer which measures the intensity of the different wavelengths over the entire light path and through the data system converts this signal into concentrations for each of the species being monitored.

DOAS instruments are routinely used to measure SO_2 , NO_2 and O_3 .

More recently, advances in miniaturising UV–vis spectrometers has lead to the development of much more compact DOAS units, configured as a passive system (Fig. 1), which have come to be known as "mini-DOAS". The mini-DOAS system has so far been used mainly in the study of SO₂ fluxes in volcanic emissions (McGonigle et al., 2003).

2. Methodology

2.1. Field measurements

A portable DOAS (mini-DOAS) manufactured by Resonance Ltd was used in this study. The instrument covers a spectral range of 280–420 nm and can measure sub-part per million levels of NO₂ and SO₂. The unit, which comprises a telescope, scanning mirrors, calibration cells and a miniature CCD array spectrometer (Ocean Optics USB2000 spectrometer), is housed in a small package which is mounted on a tripod. Calibration of the instrument was carried out using the internal calibration cell. The concentration of the cell was equivalent 50 ppm m. No SO_x measurements were undertaken.

Data collection and processing were performed by Ocean Optics OOIBase32 software loaded in a laptop computer. This results in a more compact system that is easier to deploy at mine sites and provides greater flexibility in positioning the instrument in relation to the blast plume.

Prior to each monitored blast, a dark spectrum was collected by blocking light from entering the spectrometer and a scan was performed. To produce a reference spectrum, a further scan was performed in a clear sky back-ground which contained background absorption from NO₂. The reference spectrum was required in order to determine the increase in concentration of NO₂ above ambient levels in the blast plumes.

The plume resulting from each blast was tracked with the spectrometer until the NO₂ concentration was indistinguishable from the surrounding sky. During each field measurement, the mini-DOAS and a video camera were positioned a safe operating distance from the blast at all times.

 NO_2 concentrations in the plume were calculated by subtracting the dark spectrum from the measured spectrum and the reference spectrum using the supplied software.

The results obtained from the mini-DOAS are a pathaveraged NO₂ concentration profile measured in units of parts per million metre (ppm m). The mini-DOAS results must be divided by the path length through the plume to yield a concentration. To estimate the amount of NO₂ released from each blast it was necessary to multiply the concentration by the volume of the plume. Hence it was necessary to estimate the dimensions of each plume.

All of the blasts monitored were video-taped using at least one, and sometimes two, video recorders. The distances between the cameras and the blast were measured by locating their positions with a handheld GPS receiver.

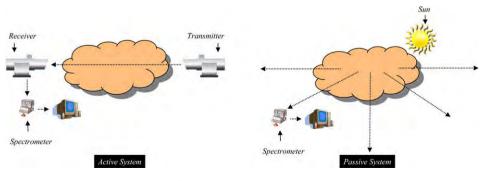


Fig. 1. Schematic diagram of DOAS systems operating in both active and passive modes.

Wind speed and directional data used to plot the directional path of the plume were obtained from a series of meteorological stations located around the mining lease. Simple trigonometry was employed to determine the distance from the video camera to the plume at the corresponding time intervals.

A rudimentary method of photogrammetry was then used to estimate the size of the plume based on still images extracted from the videos. Ratios of the plume to picture size in both the vertical and horizontal planes were made.

Once the plume to camera distance and the constraining angle for the plume is known, a crude three-dimensional estimate of the plume dimension was calculated using basic trigonometric functions. An example of the dimensions determined for a plume using this method is shown in Fig. 2.

Ground level measurements were carried out using a Greenline 8000 portable gas analyser. This instrument is capable of continuous, simultaneous analysis of O₂, CO₂, CO, SO₂, NO and NO₂. It is battery powered and can operate unattended for up to about 2 h. The instrument was calibrated against a standard gas mixture before each use. Data were logged on a laptop computer connected to the instrument.

For each experiment, the instrument was set up downwind of the blast in a location where the plume was expected to pass, but far enough away to avoid flying debris. The inlet probe was fixed at about 2 m above ground level.

It must be noted that selecting an appropriate location for the instrument was often difficult. In many cases, the wind conditions were quite variable, especially within the pit so it was not always possible to correctly anticipate the path of the blast plume. As well, the layout of the mine pit and safety considerations imposed constraints on where the instrument could be placed. Because of these problems, the plumes from many of the blasts did not pass over the analyser and data was not recorded.

2.2. Modelling

A simple modelling exercise was undertaken for this study to determine if the release of NO_2 from a blast could be of detriment to persons exposed to the plume within

5 km of the release. The results of this study are indicative and based on the assumption that the model used is appropriate. Modelling generally relies on local observational data to confirm the performance of the model. The difficulty in measuring emissions from mining blasts has meant that in this case the model is used as an indicator relying on the verifications used in the development of the chosen model. For this reason we have modelled concentrations directly downwind of theoretical blasts with AFTOX (Kunkel, 1991), a USEPA approved dispersion model (http:// www.epa.gov/scram001/dispersion_alt.htm#aftox). The original DOS based QuickBasic code was transformed into Excel macros to enable many scenarios to be run.

AFTOX is a Gaussian Puff model developed for the United States Air Force to assess real time toxic chemical releases. The model uses information from US Air Weather Service (AWS) stations to calculate dispersion based on measured atmospheric conditions. As for all Gaussian models, the spread of pollutants is governed by dispersion coefficients in the horizontal (σ_v) and vertical (σ_z) directions. These coefficients depend on the atmospheric stability derived from the AWS data. In this study, the scenarios were modelled by predefining the wind speed and atmospheric stability classes. The wind speeds modelled ranged from very low (0.5 m s^{-1}) to moderate (10 m s^{-1}) . Stability was modelled in six steps representing the standard Pasquill-Gifford stability classes, i.e. A-F, where A, B and C represent unstable conditions (where A is the most unstable), D is neutral and E and F are stable conditions. These stability classes are used to categorise the rate at which a plume will disperse. Unstable conditions might be found on a sunny day with light winds leading to rapid plume dispersion while the stable conditions may occur in clear skies with light winds and perhaps a temperature inversion present. Plume spread is slow in these circumstances.

AFTOX is operated by assuming an emission release from a single location. The emissions can be either continuous or instantaneous. In this study AFTOX was used to describe an area source by representing it as a large number of individual points. The area of the emission (i.e. the area over which the explosives were distributed) was

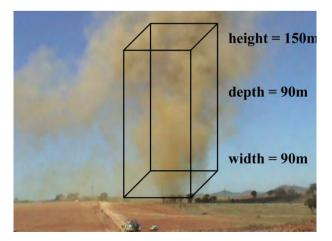


Fig. 2. Blast plume with estimated dimensions.

One hundred and twenty scenarios were modelled in which the 100 kg of emissions were spread randomly throughout the source area. A multi-stage process was employed for this task. In the first step, the total maximum number of points emitting was determined. This was defined by a random number between 20% and 80% of the maximum number of sources (in this case 231). The range chosen was an estimate from the portion of blasts that appeared to fume in conditions witnessed during this study. The total emission was then divided by this number. Each portion of the total emission was then placed randomly within the emission area. This process allowed certain points to receive multiple portions of the total emissions enabling the formation of hot spots. An example of one emission grid (Scenario 1 of 120) is displayed in Fig. 4.

Concentrations were determined for each of the 120 emission scenarios at distances of 200 m, 300 m, 400 m, 500 m, 750 m, 1 km, 1.25 km, 1.5 km, 2 km, 2.5 km, 3 km, 4 km and 5 km from the origin of the source. A concentration was determined for a number of discrete times that encompassed the complete plume travelling past the receptor. Further the concentrations were determined at 21 locations 10 m apart in a plane parallel and directly downwind of the source area (see Fig. 3). An average concentration from each of the receptors was determined; in this case with *N* equal to 21.

$$C^{*} = \frac{1}{N} \sum_{i=1}^{N} C_{i}$$
(5)

The average for each scenario was then used to create an ensemble average and standard deviation for the entire run (i.e. N = 120).

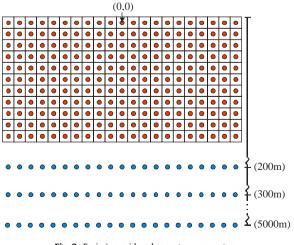


Fig. 3. Emission grid and receptor array setup.

$$\overline{C} = \frac{1}{N} \sum_{j=1}^{N} C_j^*$$
(6)

$$\sigma_{\overline{C}} = \frac{1}{N} \sum_{j=1}^{N} \left(C_{j}^{*} - \overline{C} \right)^{2}$$
(7)

$$C_{\max} = \max_{k=1}^{N} [\overline{C}_k]$$
(8)

A dosage expressed in ppm s was determined from the times when the ensemble average plume travelled past the receptors located at each distance downwind of the source. Again N represents each discrete time step (dt) where $C' \neq 0$.

$$C_{\text{dose}} = \sum_{k=1}^{N} (\overline{C}_k) \mathrm{d}t \tag{9}$$

The relative variation for the dosage is provided by similarly treating the ensemble standard deviation.

$$\sigma_{\text{dose}} = \sum_{k=1}^{N} (\sigma_{\overline{C}k}) dt$$
(10)

3. Results and discussion

3.1. Field measurements

Plume measurements were made using the mini-DOAS spectrometer at two open-cut mine sites located in the Hunter Valley. The combination of the spectral analysis and the plume estimation technique allowed for NO₂ concentration and mass flux estimates to be made remotely, totally eliminating the requirement of physical sampling.

An example of the spectral output produced by the mini-DOAS is shown in Fig. 5. The spectral output consists of the NO_2 concentration (ppm m) as a function of time. The figure also contains a series of photographs depicting the formation of a blast plume at time intervals of 70, 110, 163, 250 and 350 s post-blast initiation. It is worth noting the change in intensity of the colour of plume and size as a function of time.

Reliable concentration measurements with the mini-DOAS may only be made when the spectrometer is aimed into a sky background above the horizon from the point of observation. In this example, a peak concentration of 580 ppm m was achieved in 163 s post-blast initiation (third image from the left). At this time the plume has risen above the horizon from the point of observation. The plume to mini-DOAS distance at this stage is approximately 500 m, with an estimated plume depth of 105 m. This results in a NO₂ concentration of 5.6 ppm at that particular stage of the plumes' dispersion.

After 350 s, the plume is barely visible and is now estimated to be approximately 650 m from the mini-DOAS unit. The plume depth has increased to 125 m with

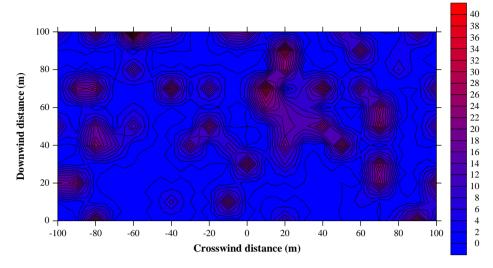


Fig. 4. Example of emission grid for 1 of the 120 scenarios modelled (the scale on the right hand side refers to NO₂ concentration in ppm).

a corresponding increase in plume volume by a factor of two. This expansion of the plume corresponds to a decrease in NO_2 concentration to 2.8 ppm.

At 360 s the plume was no longer visible to the eye and was lost for a short period of time to the mini-DOAS. This, however, was rectified with scanning of the sky with the spectrometer until the invisible plume was tracked for a further period.

Results for all plumes monitored during field work at both mine sites are given in Table 1. The table gives the peak NO₂ concentration as measured by the mini-DOAS above the horizon. Also given in the table is the plume volume at peak concentration and the calculated mass of NO₂ released from the blast. The mass of ANFO typically used in a blast was on average 210 tonnes, ranging from 60 to 565 tonnes. The explosive was distributed over an area of typically $200 \text{ m} \times 100 \text{ m}$ containing approximately 200 bole holes with 200 mm diameter and to a depth of 25 m.

From the table the maximum NO_2 concentrations were found to range from 0 to about 7 ppm. This range of concentrations translated to 0–63.3 kg of NO_2 in the plume. However, no correlation can be made between blast charge and NO_2 levels.

During the measurements with the mini-DOAS ground level measurements were also carried out using a portable combustion gas analyser (Greenline 8000) to augment the airborne measurements made by the mini-DOAS. For NO₂ the ground level measures were higher than those observed using the mini-DOAS at higher altitudes. When the results of both measurement methods were applied to

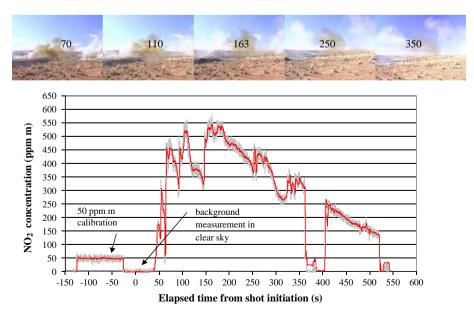


Fig. 5. Typical NO₂ spectrum demonstrating plume colour characteristics relative to concentration level.

Table 1

Through plume measurement results

Date	Total ANFO	Peak NO ₂	Plume volume	Mass of	Emission flux (kg t^{-1} ANFO)			
	charge (t)	Conc (ppm)	$(m^3 imes 10^{-6})$	NO_2 (kg)	NO	NO ₂	NO _x	
12/12/2005	281	3.7	1.4	9.9	0.5	0.03	0.6	
13/12/2005	150	0.4	5.3	3.7	0.4	0.03	0.4	
14/12/2005	119	0.0	0.0	0.0	0.0	0.00	0.0	
21/12/2005	229	1.0	4.4	7.9	0.6	0.04	0.6	
22/12/2005	211	0.0	0.0	0.0	0.0	0.00	0.0	
23/12/2005	222	0.0	0.0	0.0	0.0	0.00	0.0	
5/01/2006	177	1.0	0.2	0.4	0.0	0.00	0.0	
6/01/2006	275	1.1	15.3	30.6	1.8	0.12	1.9	
12/01/2006	225	1.6	6.2	18.3	1.3	0.08	1.4	
18/01/2006	169	1.3	1.7	0.2	0.4	0.02	0.4	
23/01/2006	139	2.1	4.2	16.7	1.9	0.12	2.0	
25/01/2006	155	0.4	4.4	2.9	0.3	0.02	0.4	
30/01/2006	132	0.7	5.3	7.1	0.8	0.05	0.9	
22/02/2006	224	0.0	0.00	0.0	0.0	0.00	0.0	
1/03/2006	194	1.6	20.6	63.3	5.0	0.32	5.3	
12/05/2006	362	6.5	1.9	23.3	1.0	0.06	1.1	
15/05/2006	131	0.3	3.2	1.7	0.2	0.01	0.2	
19/05/2006	168	0.0	0.00	0.0	0.0	0.00	0.0	
30/05/2006	100	0.8	0.00	1.0	0.0	0.00	0.0	
1/06/2006	365	0.7	3.5	4.9	0.2	0.01	0.2	
6/06/2006	145	0.8	11.5	17.5	1.9	0.12	2.0	
15/06/2006	60	0.0	0.00	0.0	0.0	0.00	0.0	
26/06/2006	254	4.3	0.3	2.1	0.1	0.01	0.2	
27/06/2006	212	5.6	0.9	10.0	0.7	0.04	0.7	
28/06/2006	241	0.0	0.00	0.0	0.0	0.00	0.0	
6/07/2006	565	2.8	2.7	14.0	0.4	0.03	0.4	
13/07/2006	184	7.0	1.0	12.6	1.1	0.07	1.2	

dispersion modelling techniques strong agreement was observed.

Point measurements which were made on Greenline 8000 indicated that a loose relationship existed between

NO and NO₂ concentration. Although a strong correlation was not found, there is a general trend of increasing NO₂ with increasing NO. It was generally found that the relative proportion of NO to NO₂ from our data set was 27 to 1. This

Table 2

Maximum calculated NO2 concentrations downwind of source

	200 m	300 m	400 m	500 m	750 m	1000 m	1250 m	1500 m	2000 m	2500 m	3000 m	4000 m	5000 m
WSPD =	$0.5 \mathrm{ms^{-1}}$												
Stab A	83.0	30.0	14.4	7.9	2.5	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	145.8	69.3	40.8	25.4	10.1	4.8	2.6	1.6	0.7	0.4	0.2	0.1	0.1
Stab C	219.4	122.0	80.8	55.9	26.8	14.3	8.6	5.6	2.8	1.6	1.0	0.5	0.3
Stab D	321.1	201.5	146.0	113.1	64.6	40.2	26.1	18.6	10.5	6.7	4.5	2.4	1.4
Stab E	390.2	267.4	204.3	165.5	109.6	75.9	54.6	41.3	26.4	17.9	12.7	7.1	4.5
Stab F	464.1	339.8	269.0	222.6	154.5	114.9	88.6	69.7	50.4	37.0	27.8	16.7	11.0
WSPD =	$3 { m m s^{-1}}$												
Stab A	78.5	29.1	14.2	7.7	2.4	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	137.6	67.7	39.7	25.1	10.0	4.8	2.6	1.6	0.7	0.4	0.2	0.1	0.1
Stab C	211.6	118.7	77.6	55.2	26.0	14.0	8.6	5.6	2.8	1.6	1.0	0.5	0.3
Stab D	312.5	197.9	143.2	110.0	62.5	39.3	26.1	18.2	10.5	6.7	4.5	2.4	1.4
Stab E	383.0	267.0	202.1	162.6	106.3	73.7	54.1	40.3	26.1	17.7	12.5	7.2	4.5
Stab F	461.5	344.6	268.4	220.8	151.1	112.3	86.1	67.6	48.9	36.4	27.5	16.6	11.0
WSPD =	7.5 m s ⁻¹												
Stab A	62.5	25.5	13.0	7.3	2.3	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	111.9	56.1	34.2	22.6	9.4	4.6	2.6	1.6	0.7	0.4	0.2	0.1	0.1
Stab C	173.3	100.4	66.5	47.7	23.8	13.2	8.2	5.4	2.7	1.6	1.0	0.5	0.3
Stab D	261.2	167.9	122.1	92.3	54.8	35.3	23.7	17.2	10.1	6.5	4.4	2.3	1.4
Stab E	325.9	232.2	175.8	139.6	89.5	63.8	46.7	36.0	23.9	16.8	12.1	7.0	4.4
Stab F	394.6	302.7	237.0	194.3	132.2	96.1	73.3	59.0	43.6	33.3	25.7	15.8	10.5
WSPD =	10 m s ⁻¹												
Stab A	53.0	22.6	11.9	6.9	2.3	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	92.3	49.7	31.0	20.9	9.0	4.5	2.5	1.5	0.7	0.4	0.2	0.1	0.1
Stab C	140.1	84.2	57.7	42.1	21.7	12.6	7.9	5.3	2.7	1.6	1.0	0.5	0.3
Stab D	205.5	138.3	102.4	79.9	48.6	31.8	22.1	16.4	9.7	6.4	4.3	2.3	1.4
Stab E	254.0	184.0	143.0	116.4	78.0	56.2	42.6	33.1	22.7	16.0	11.6	6.9	4.4
Stab F	306.8	235.8	189.6	157.9	109.9	82.8	64.5	52.2	40.0	30.9	24.0	15.2	10.2

relationship enabled the estimation of the NO fluxes in the blast plume with a reasonable level of confidence.

The results obtained in this study are the only published quantitative data available on blast plume gas composition that the authors are aware of and it is useful to compare them to the emission factors currently used for NPI estimates.

Based on the NO₂ measurements and estimates of NO, the flux for NO_x was calculated to be in the range of 0.04– 5.3 kg t^{-1} ANFO. The average flux level for all the blast plumes measured was 0.9 kg t⁻¹. This figure is considerably lower than the current NPI emission factor which is 8 kg t⁻¹.

3.2. Modelling

Results of the modelling runs are summarised in Table 2 and show the peak NO_2 concentrations (ppm) at various points downwind of the blast for the six atmospheric stability classes considered.

Examples of the modelled data are plotted in Fig. 6 and Fig. 7. In Fig. 6 a plot is displayed for the concentration estimate of one scenario at a distance of 200 m from the source origin and for a wind speed of 2 m s^{-1} and a stability class C. In this plot 21 lines are shown representing the dose received directly downwind of the source at the locations displayed in Fig. 3. In this figure it is apparent that there is a considerable difference in the concentration predicted at each of the 21 receptors. It should be noted that the distance of 200 m is defined from the origin of the source area (0, 0) as displayed in Fig. 3. At this distance emission sources at 100 m will cause significantly higher concentrations than those occurring at positions toward the origin. In comparison the concentrations predicted at the receptor array 1 km from the source show more normally defined distributions with maxima occurring towards the middle receptors as a result of crosswind diffusion.

Receptors toward the edge of the sample array receive less crosswind influence and are, therefore, smaller in concentration. Also apparent in these two figures is the considerable difference in the predicted peak concentrations with the values at 1 km up to 25 times lower than at 200 m. When viewing Table 2, the peak values at 5 km approach ambient levels for all but the most stable conditions which are quite commonly over predicted with Gaussian models. For future studies it is recommended that a long path technique on a mining lease boundary may provide both a measure of the model accuracy as well as a direct measure of the impact in areas directly surrounding the mining area.

The data presented in this study represent a dose directly downwind of the source and as such are a worst case scenario for exposure. The averages of the 21 receptors (i.e. the average concentration directly downwind of the source) for each of the 120 scenarios modelled were used to determine the selected data. The number of scenarios modelled was arbitrarily chosen to allow 10 scenarios to be run on each machine in a cluster of 12 computers. The maximum concentration in Table 2 is the maximum ensemble average obtained from the average of the 21 receptors for the 120 scenarios modelled. Maximum concentrations at individual locations directly downwind of hot spots are obviously higher than the values reported in this table.

When viewing Table 2 it is apparent that the peak concentrations drop dramatically as the receptor moves away from the source. It is also apparent that the peak concentrations vary little as a function of wind speed although the plume width will vary. In AFTOX a downwind concentration is determined in two steps. In the first step the size of the initial plume envelope is estimated. In its default mode AFTOX determines the size of the envelope (assumed to be a cylinder of equal height and width) from the magnitude of the emission rate. In this report the size is set at 10 m to match the grid structure used for the area

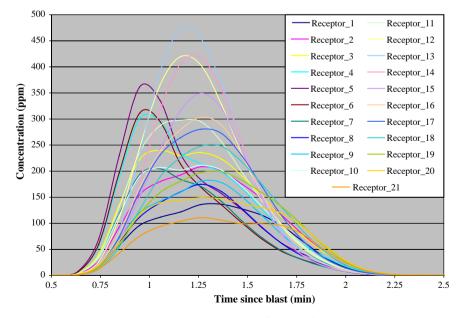


Fig. 6. Calculated NO₂ concentration profiles 200 m from source.

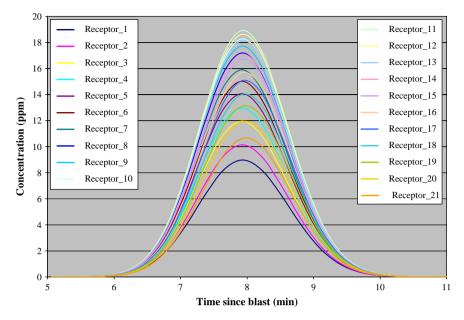


Fig. 7. Calculated NO₂ concentration profiles 1 km from source.

source. AFTOX in this regard ignores the effect of wind speed on the size of the initial envelope and as such the initial concentration of the plume is identical irrespective of wind speed by ignoring longitudinal (i.e. downwind) spread of the initial release. In the second step the concentration downwind of the initial release is determined by estimating the growth of a puff in three dimensions which in this case explicitly includes longitudinal plume spread which is assumed to be equal to the degree of crosswind spread. The degree of this spread is determined solely from the prescribed atmospheric stability class which ignores any wind speed dependence.

While the peak concentrations are similar, the dose received at a receptor is linearly dependent on wind speed. Emissions released into an atmosphere with higher wind speeds result in a receptor receiving doses for a smaller period of time. It should be noted that some of the differences in the peak concentrations displayed in Table 2 result from the number of discrete time steps used to calculate the concentrations. This was set at 25 intervals between the onset and finish of a plume as it passes by the receptor. This time is dependent on atmospheric stability and the distance from the source. In AFTOX, the puffs are assumed to disperse in the direction of plume travel proportionally with the degree of crosswind spread. As such, portions of the plume arrive before and after the main bulk of the emissions and the effect clearly demonstrated in Figs. 6 and 7. The moderate number of discrete times modelled to capture this effect while generally adequate may have led to a degree of variation particularly at larger distances from the source.

Again it should be noted that the modelled figures assume an area wide flux of 100 kg which is larger than observed in the blast recorded during this study. It should also be noted that while some of the concentrations are high close to the source the concentration at a particular location occurs for a brief period of time which is determined by the wind speed.

4. Conclusions

A portable open-path spectroscopic method was found to be effective for measuring NO_2 emissions from blasting. Overall this technique was found to be simpler, safer and more successful than other approaches that in the past have proved to be ineffective in monitoring these short lived plumes.

Quantitative measurements of NO_2 in plumes from blasting were made at two open-cut mines. The results showed that NO_2 was present in most of the plumes but in relatively low concentrations (typically ranging between 0 and 7 ppm). The highest concentration measured during all the field campaigns was about 17 ppm at ground level.

Based on field measurements, the emission factor currently used in compiling the Australian National Pollutant Inventory was found to be approximately eight times greater than that observed in our investigation. This would suggest that an over estimation of NO_x is made if the current factor is used.

Numerical modelling of the behaviour of plumes resulting from blasting was made to assess the possible downwind concentrations of NO₂. These results were compared to ambient NO_x measurements made in Muswellbrook.

- Modelling results were consistent with concentration measurements within the plumes at relatively short distances from the blast (i.e. up to about 1 km).
- Ambient monitoring did not detect NO_x events that could be attributed to individual blasts. Modelling suggested that these emissions would be very low at

distances greater than 5 km from the blast and may be indistinguishable from background levels; typically of the order of several parts per billion, in most cases.

Acknowledgements

We gratefully acknowledge the financial support of the Australian Coal Association Research Program (ACARP) and the staff at the Hunter Valley mine sites.

References

- Chalmers Radio, Space Science. The optical remote sensing group. Available from: http://www.rss.chalmers.se/ors/ >.
- Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A.J.S., Edmonds, M., Horrocks, L., 2002. A miniaturised ultraviolet spectrometer for remote sensing of SO₂ fluxes: a new tool for volcano surveillance. Journal of Volcanology and Geothermal Research 119, 241–254.
- Kirchgessner, D.A., Piccot, S.D., Chadha, A., 1993. Estimation of methane emissions from a surface coal mine using open-path FTIR spectroscopy and modelling techniques. Chemosphere 26, 23–44.

- Kunkel, B.A., 1991. AFTOX 4.0 The Air Force Toxic Chemical Dispersion Model – A User's Guide. PL-TR-91-2119, Environmental Research Papers No. 1083, Phillips Laboratory, Directorate of Geophysics, Air Force Systems Command, Hanscom AFB, MA 01731-5000, p. 62.
- Levine, S.P., Russwurm, G.M., 1994. Fourier transform infrared optical remote sensing for monitoring airborne gas and vapour contaminants in the field. Trends in Analytical Chemistry 13, 263–266.
- Moffat, A.J., Milan, M.M., 1971. The applications of optical correlation techniques to the remote sensing of SO₂ plumes using sky light. Atmospheric Environment 5, 677–690.
- McGonigle, A.J.S., Thomson, C.L., Tsanev, V.I., Oppenheimer, C., 2003. A simple technique for measuring power station SO₂ and NO₂ emissions. Atmospheric Environment 38, 21–25.
- National Pollutant Inventory, 1999. Emission Estimation Technique Manual for Explosives Detonation and Firing Ranges. Environment Australia. Available from: http://www.npi.gov.au/handbooks/ approved_handbooks/fexplos.html>.
- Piccot, S., Masemore, S., Ringler, E., Srinivasan, S., Kirchgessner, D., Herget, W., 1994. Validation of a method for estimating pollution emission rates from area sources using open-path FTIR spectroscopy and dispersion modelling techniques. Journal of the Air & Waste Management Association 44, 271–279.
- Piccot, S., Masemore, S., Ringler, E., Bevan, W.L., Harris, D.H., 1996. Field assessment of a new method for estimating emission rates from volume sources using open-path FTIR spectroscopy. Journal of the Air & Waste Management Association 46, 159–171.

FACTORS AFFECTING ANFO FUMES PRODUCTION

James H. Rowland III and Richard Mainiero

ABSTRACT

For many years there have been small scale tests available for evaluating the toxic fumes production by capsensitive explosives (DOT Class 1.1), but these could not be used with blasting agents due to the large charge sizes and heavy confinement required for proper detonation. Considering the extensive use of blasting agents in construction and mining, there is a need to determine the quantities of toxic fumes generated by blasting agents. At the International Society of Explosive Engineers Twenty Third Annual Conference on Explosives and Blasting Technique in 1997, the authors reported on a facility for detonating large (4.54 kg), confined blasting agent charges in a controlled volume that had been constructed at the National Institute for Occupational Safety and Health's Pittsburgh Research Lab's Experimental Mine. Since 1997, this facility has been used to collect data on toxic fumes produced by the detonation of various ammonium nitrate/fuel oil (ANFO) mixtures and several cap-sensitive explosives.

ANFO composition ranging from 1 to 10 percent (pct) fuel oil have been studied. As expected from previous studies, with an increase in fuel oil content the carbon monoxide production increases, while nitric oxide and nitrogen dioxide production decrease. The detonation velocity varies from 3,000 to 4,000 m/sec for the 1 to 10 pct range of fuel oil content, suggesting that ANFO mixes with improper fuel oil content may appear to detonate properly, while their fume production differs significantly from optimum. The study also considers such factors as degree of confinement, water contamination, and aluminum content on blasting agent fume production, but causes significant increase in nitric oxide and nitrogen dioxide production. Decreasing confinement from Schedule 80 steel pipe to 0.4-mm thick sheet metal also has little effect on carbon monoxide production, but significantly increases nitric oxide and nitrogen dioxide production. Adding 5 and 10 pct aluminum to the ANFO had no clear effect on carbon monoxide, nitric oxide, or nitrogen dioxide production.

INTRODUCTION

In February of 1997 a paper entitled "A Technique for Measuring Toxic Gases Produced by Blasting Agents" was presented at the 23rd Annual Conference on Explosives & Blasting Technique in Las Vegas, Nevada. That paper discussed a method for measuring toxic fumes produced by detonation of blasting agents. The research reported here is a continuation of that work.

Detonating ANFO in steel pipe in the Pittsburgh Research Lab (PRL) mine fumes chamber yields a baseline for comparing relative fumes production for blasting agents, but is by no means a predictor of what will happen in the field. In actual blasting operations, the confinement of the detonating ANFO will probably be less than that offered by the 4-in, Schedule 80 steel pipe employed in most tests. Additionally the ANFO evaluated in the PRL mine chamber is carefully mixed the day before and care is taken to prevent contamination. In practice, ANFO may not be exactly the 94/6 ammonium nitrate/fuel oil ratio desired or may be loaded into boreholes weeks before it is shot, exposing the explosive to water seeping into loaded boreholes and possible fuel oil evaporation. The current research looks at these factors and others in an effort to determine how they affect fumes production. Fumes measurements in the mine chamber were carried out for ANFO mixtures other than 94/6, ANFO contaminated with up to 10 pct water, ANFO detonated with less confinement than that offered by Schedule 80 steel pipe, and ANFO containing up to10 pct aluminum were also studied to gain an understanding of how detonation behavior affects fumes production. In each case carbon monoxide, nitrogen oxides, and ammonia were the toxic gases of primary interest.

EXPERIMENTAL APPROACH

Detonating large blasting agent charges and confining the fumes requires a larger experimental chamber than was employed in past work on cap-sensitive explosives. Towards this end, a chamber was created in the experimental mine at PRL. The facility consists of a portion of mine entry enclosed between two explosion proof bulkheads. Each bulkhead is 40 inches (1 m) thick, constructed of solid concrete block hitched 1 foot (30 cm) into the roof, ribs, and floor. On the intake side, the bulkhead is fitted with a submarine mandoor and a small port for control and sampling lines. On the return side, the bulkhead is fitted with two sealed ventilation ports. Total volume of the chamber is 9,666 ft³ (274 m³). The chamber volume was determined by releasing a known quantity of carbon monoxide into the chamber and sampling the atmosphere after it had mixed. Following the shot, a fan mounted at one end of the chamber mixes the chamber atmosphere at 3,500 ft³/min, after which the chamber is vented using the mine's airflow. The layout of the chamber is illustrated in Figure 1. Up to 10 pound (4.54 kg) charges can be detonated in the chamber using a variety of confinements.

EXPERIMENTAL

A 28-inch (71-cm) length of 4-inch (20-cm) Schedule 80 seamless steel pipe was chosen to provide confinement in most tests of blasting agents and cap-sensitive explosives. Prior to loading the pipe with explosive, a continuous velocity probe of the type described by Santis is taped to the inner surface of the pipe along its length¹. In conducting a test of a blasting agent, the commercial blasting agent minus its wrapper, or premixed ANFO are loaded into the pipe to a weight of 10 lb (4.54 kg). Initiation is provided by a 2-inch (5-cm) diameter, 2-inch (5-cm) thick cast pentolite booster, initiated by a number 8 instantaneous electric

blasting cap. In conducting a test of a cap-sensitive explosive, the cartridge explosive is loaded into the pipe to a weight of about 10 lb (4.54 kg). Cap-sensitive explosives are initiated by a number 8 instantaneous electric blasting cap.

Following detonation of an explosive in the chamber, the fan is run for about 10 minutes to uniformly mix the chamber atmosphere before fumes samples are taken out of the chamber through 1/4-inch (0.6-cm) Teflon or polyethylene tubes for analysis. Teflon sample lines are used for nitrogen oxides and ammonia to minimize loss of these constituents to absorption on the tube surface. Vacutainer¹ samples are taken and sent to the analytical laboratory for analysis; this technique is appropriate for components that are stable in the Vacutainer, namely hydrogen, carbon monoxide, and carbon dioxide. Nitrogen dioxide, nitrogen oxides, and ammonia are not amenable to analysis by the Vacutainer technique and are instead absorbed in chemical solutions in bubbler trains using the technique described by Santis². That method was modified by eliminating the purging of the system with helium and using a gas meter to measure the volume of fumes bubbled through the solutions rather than measuring gas flow rate. An electrochemical carbon monoxide monitor was also employed to act as a backup to the analytical lab's carbon monoxide analysis of the Vacutainer and to allow monitoring of the mixing of the chamber atmosphere.

RESULTS

An ANFO mixture of 94 pct ammonium nitrate, 6 pct fuel oil is close to optimum from the perspective of minimum toxic fumes production. Previous research and theory show that the detonating ANFO will produce excessive levels of nitrogen oxides if the fuel oil content is too low and will produce excessive levels of carbon monoxide and ammonia if the fuel oil content is too high.^{3,4,5} This behavior is supported by data collected in the current research, as illustrated in Figures 2, 3, and 4.

In Figure 5 the data from figures 2, 3, and 4 is presented in terms of oxygen balance. Figure 5 is a plot of carbon monoxide production versus oxygen balance for ANFO and several cap-sensitive explosives. As the oxygen balance is increased for ANFO the carbon monoxide production decreases. This would be expected since there is increasing oxygen to convert the carbon monoxide to carbon dioxide. ANFO mixed at 6 pct fuel oil produces approximately the same amount of carbon monoxide as cap-sensitive explosives of equivalent oxygen balance. The opposite is true when looking at nitrogen oxides production as a function of oxygen balance, as illustrated in Figure 6. When the oxygen balance is increased, the nitrogen oxides and nitrogen dioxide production increased. ANFO mixed at 6 pct fuel oil produces and nitrogen dioxide production increased. Sensitive explosives. Figure 7 illustrates that as the oxygen balance for ANFO is increased the ammonia production decreases. With the exception of a couple data points that may be anomalous, ANFO mixed at 6 pct fuel oil produced about the same quantity of ammonia as cap-sensitive explosives of equivalent oxygen balance.

Figure 8 shows that adding water to an ANFO mixture of 94 pct ammonium nitrate and 6 pct fuel oil had little effect on carbon monoxide production for water percentages from 0 to 10 pct. However the nitrogen oxides and nitrogen dioxide increased dramatically when water is added to the ANFO mixture. This is demonstrated in Figure 9. Figure 10 shows the effect of water on ammonia fumes production; adding water to the ANFO yields an erratic trend, indicating that further study is needed.

¹Reference to Specific products is for informational purposes and does not imply endorsement by NIOSH.

As mentioned earlier, shooting ANFO in 4-inch schedule 80 seamless steel pipe is probably much more confinement than seen in the field. To examine the effect of reduced confinement on fumes production, ANFO was tested in sheet metal and PVC pipe. As seen in Figure 11, reduced confinement doesn't have much effect on carbon monoxide production. Carbon monoxide production for ANFO shot in the PVC pipe was much higher than that for the steel or sheet metal pipe. The high carbon monoxide might be attributed to burning of the PVC pipe. The degree to which the PVC pipe reacted was not studied in detail, but it is safe to assume that at least some of the PVC burned during the ANFO detonation. The high carbon monoxide production would be consistent with the earlier observation that the higher the fuel content of the explosive, the higher the carbon monoxide production.

Explosive packaging is an important consideration relative to toxic fumes production. For example, a blast pattern may contain a number of boreholes that are contaminated with water and the blaster may decide to insert sleeves into the boreholes contaminated with water to keep the ANFO dry. If the sleeves are made of a combustible material they could add to the carbon monoxide production. Figure 12 shows that the production of nitrogen oxides and nitrogen dioxide increases dramatically with lower confinement, while Figure 13 shows that with less confinement ammonia decreases.

Limestone rock dust (approximately 73 pct through 200 mesh) was added to the ANFO mixture to simulate drill cuttings being mixed with the ANFO as it was loaded into a borehole. The rock dust had little effect on the carbon monoxide production, as illustrated in Figure 14. Figure 15 shows that the addition of the rock dust led to an increase in nitrogen oxides production and a decrease in nitrogen dioxide production. Since the nitrogen oxides consist essentially of nitric oxide and nitrogen dioxide, this indicates that nitric oxide production increased significantly. Figure 16 shows that adding rock dust to the ANFO caused a significant increase in ammonia production.

Aluminum is sometimes added to ANFO to increase the velocity and the output energy. Figure 14 illustrates that the aluminum added to the ANFO mixture has little effect on the production of carbon monoxide. From Figure 15 it is not clear whether or not the nitrogen oxides and nitrogen dioxide production is affected by the added aluminum. The ammonia increased with the added aluminum, as illustrated in figure 16. It should be noted that the addition of aluminum had no clear effect on the ANFO's detonation velocity. The aluminum added to the ANFO mixture was Fine Aluminum Paint Pigment Powder, Alcoa # 422 flake. This type was used to give the fastest possible burning rate for experimental purposes. For commercial explosives, the lowest and least expensive grade of aluminum is typically used, consisting of ground scrap aluminum of various particle sizes.

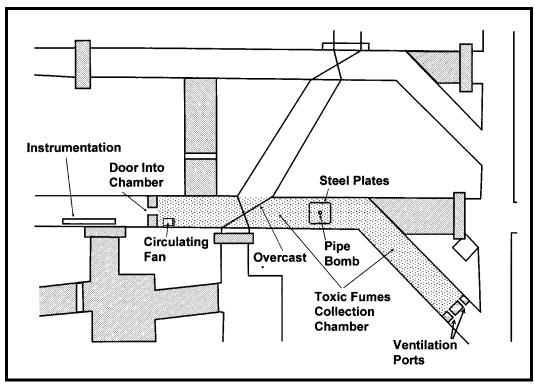
DISCUSSION

Several factors that may effect the fumes production of ANFO have been investigated. Probably the easiest to control is the fuel oil content. To minimize toxic fumes production, the ANFO should be mixed at 6 pct fuel oil. Deviating from the 6 pct will lead to excessive fumes. Water contamination may not have an affect on carbon monoxide production, but it increases the production of nitrogen oxides and nitrogen dioxide. At the present time in our research it is not clear how the production of ammonia is affected. The confinement of ANFO doesn't appear to make a difference in the production of carbon monoxide, but it makes a difference in the production of nitrogen oxides, and ammonia.

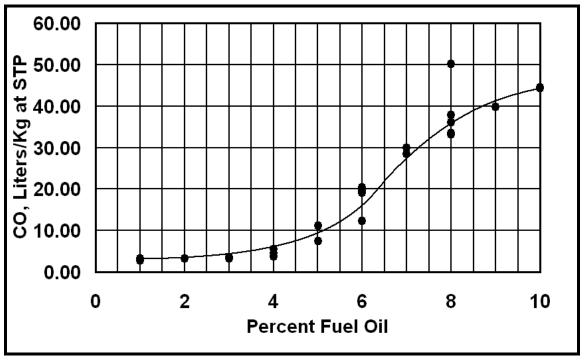
In the case of nitrogen oxides and nitrogen dioxide the fumes production will increase, while the ammonia fumes production will decrease.

Adding aluminum or rock dust to ANFO does not affect the fumes production of carbon monoxide. The addition of aluminum does not have a significant affect on nitrogen oxides and nitrogen dioxide production, but the addition of rock dust leads to an increased production of nitrogen oxides. Additionally, the rock dust appears to have an effect on the ratio of nitric oxide to nitrogen dioxide. The addition of aluminum and rock dust increased the production of ammonia. The effect of rock dust on fume production was based on limited data and requires further study to look at the effect of particle size and dust type.

Its important to understand that the data reported here applies only to the test conditions under which the data was collected. For example, the schedule 80 steel pipe may provide more confinement than many field blasts. The research reported here shows that the confinement will affect the quantity of toxic fumes produced. In the field the toxic fumes released from a blast will differ significantly from the data reported here. There is a need to collect data from the field to develop an understanding of how data from the PRL fumes chamber compare to fumes production in the field. This, in return, will help in developing improved tests for evaluating fumes production.


1. Santis, L. D. and R. A. Cortese, A Method of Measuring Continuous Detonation Rates Using Off-the-Shelf Items, Proceedings of the Twenty-Second Annual Conference on Explosives and Blasting Technique, Orlando, FL, February 4-8, 1996.

2. Santis, L. D., J. H. Rowland, III, D. J. Viscusi, and M. H. Weslowski, The Large Chamber Test for Toxic Fumes Analysis for Permissible Explosives, Proceedings of the Twenty-First Annual Conference on Explosives and Blasting Technique, Nashville, TN, February 5-9, 1995.


3. Mainiero, R.J., A Technique for Measuring Toxic Gases Produced by Blasting Agents, Proceedings of the Twenty Third Annual Conference on Explosives and Blasting Technique, Las Vegas, NV, February 2-5, 1997.

4. <u>Blaster's Handbook</u>, Sixteenth Edition, E.I. du Pont de Nemours and Company, 1977, p. 59.

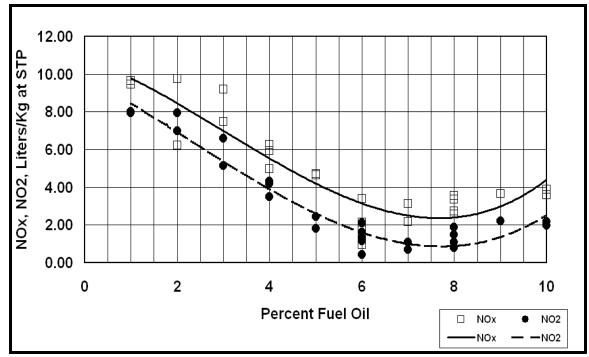

5. Explosives and Rock Blasting, Atlas Powder Company, 1987, p. 25-27.

Figure 1. Research was conducted in a chamber created in the underground mine at the Pittsburgh Research Lab.

Figure 2. Effect of ANFO fuel oil content on carbon monoxide production. In all figures, the line is a polynomial fit to the data; it is included for illustrative purposes and does not represent a fit of theoretical results.

Figure 3. Effect of ANFO fuel oil content on nitrogen oxides and nitrogen dioxide production.

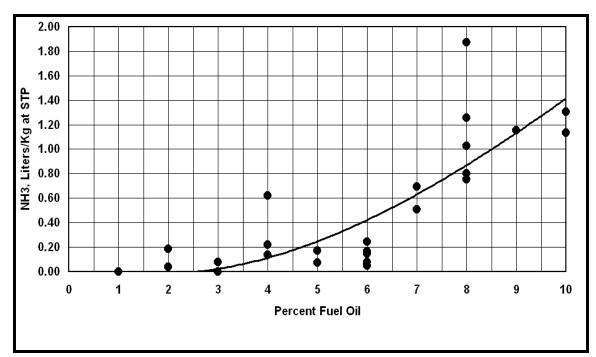
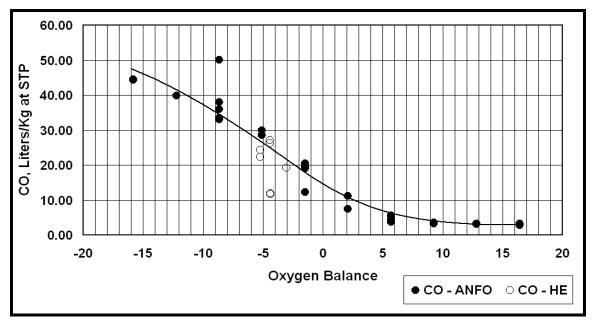
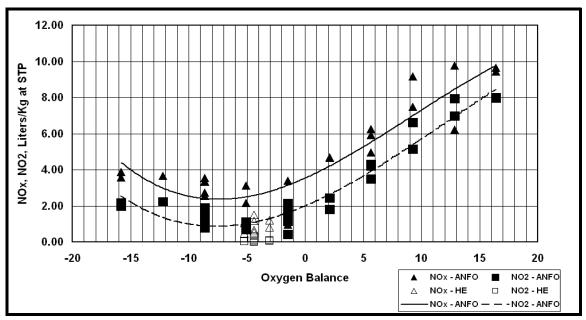
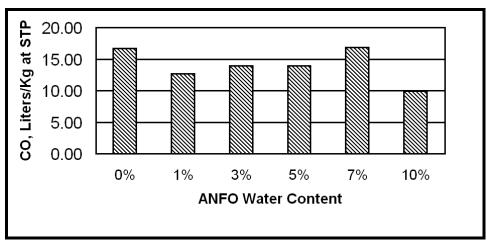
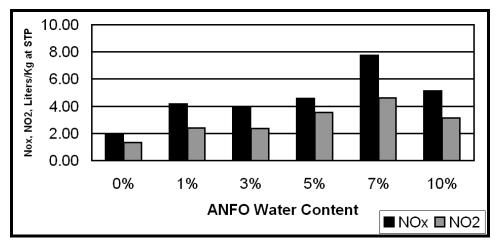




Figure 4. Effect of ANFO fuel oil content on ammonia production.


Figure 5. Effect of Oxygen Balance on carbon monoxide production for 94/6 ANFO and high explosives (cap-sensitive explosives).


Figure 6. Effect of Oxygen Balance on nitrogen oxides and nitrogen dioxide production for 94/6 ANFO and high explosives (cap-sensitive explosives).

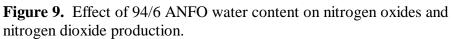


Figure 7. Effect of Oxygen Balance on ammonia production for 94/6 ANFO and high explosives (cap-sensitive explosives).

Figure 8. Effect of ANFO water content on carbon monoxide production for a 94/6 mix.

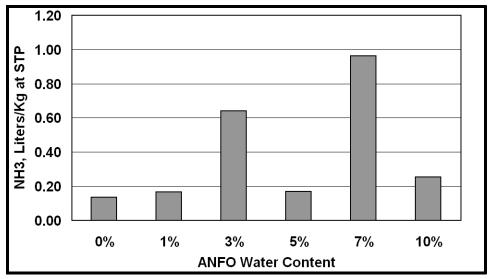
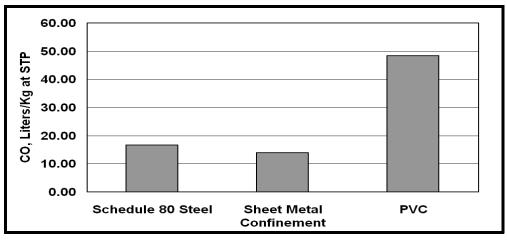
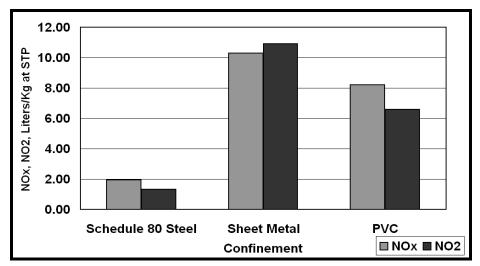
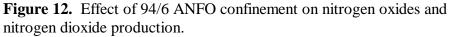
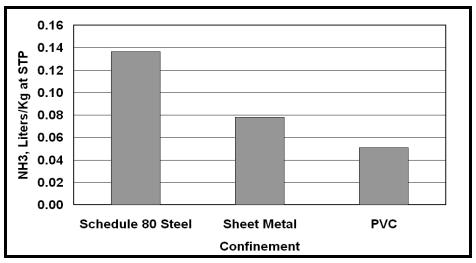
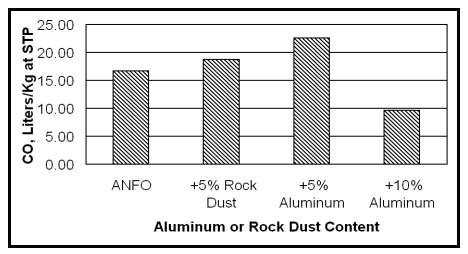
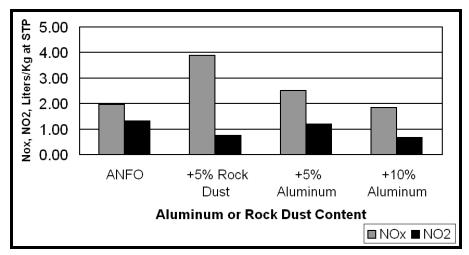





Figure 10. Effect of 94/6 ANFO water content on ammonia production.

Figure 11. Effect of 94/6 ANFO confinement on carbon monoxide production.

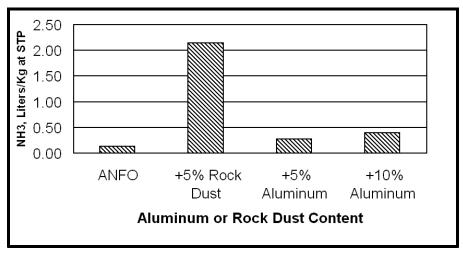

Figure 13. Effect of 94/6 ANFO confinement on ammonia production.

Figure 14. Effect of aluminum and rock dust content on carbon monoxide production.

Figure 15. Effect of aluminum and rock dust content on nitrogen oxides and nitrogen dioxide production.

Figure 16. Effect of aluminum or rock dust content on ammonia production.

		Emissions By F	Emissions By Particle Size Range (Aerodynamic Diameter) ^{b,c}					
		Emission Factor Equations		Scaling Factors			EMISSION FACTOR	
Operation	Material	$TSP \leq 30 \ \mu m$	≤15 μm	$\leq\!10\;\mu m^d$	$\leq 2.5 \ \mu m/TSP^{e}$	Units	RATING	
Blasting ^f	Coal or overburden	0.000014(A) ^{1.5}	ND	0.52 ^e	0.03	lb/blast	C_DD	
Truck loading	Coal	$\frac{1.16}{(M)^{1.2}}$	$\frac{0.119}{(M)^{0.9}}$	0.75	0.019	lb/ton	BBCC	
Bulldozing	Coal	$\frac{78.4 \text{ (s)}^{1.2}}{\text{(M)}^{1.3}}$	$\frac{18.6 \text{ (s)}^{1.5}}{\text{(M)}^{1.4}}$	0.75	0.022	lb/hr	CCDD	
	Overburden	$\frac{5.7 \text{ (s)}^{1.2}}{\text{(M)}^{1.3}}$	$\frac{1.0 \text{ (s)}^{1.5}}{(\text{M})^{1.4}}$	0.75	0.105	lb/hr	BCDD	
Dragline	Overburden	$\frac{0.0021 \text{ (d)}^{1.1}}{\text{(M)}^{0.3}}$	$\frac{0.0021 \text{ (d)}^{0.7}}{\text{(M)}^{0.3}}$	0.75	0.017	lb/yd ³	BCDD	
Vehicle traffic ^g								
Grading		0.040 (S) ^{2.5}	0.051 (S) ^{2.0}	0.60	0.031	lb/VMT	CCDD	
Active storage pile ^h (wind erosion and maintenance)	Coal	0.72 u	ND	ND	ND	lb (acre)(hr)	C ⁱ	

Table 11.9-1 (English Units). EMISSION FACTOR EQUATIONS FOR UNCONTROLLED OPEN DUST SOURCES AT WESTERN SURFACE COAL MINES^a

Reference 1, except as noted. VMT = vehicle miles traveled. ND = no data. Quality ratings coded where "Q, X, Y, Z" are ratings for \leq 30 µm, \leq 15 µm, \leq 10 µm, and \leq 2.5 µm, respectively. See also note below.

^b Particulate matter less than or equal to 30 μm in aerodynamic diameter is sometimes termed "suspendable particulate" and is often used as a surrogate for TSP (total suspended particulate). TSP denotes what is measured by a standard high volume sampler (see Section 13.2).
^cSymbols for equations:

A = horizontal area (ft²), with blasting depth \leq 70 ft. Not for vertical face of a bench.

M = material moisture content (%)

s = material silt content (%)

u = wind speed (mph)

d = drop height (ft)

- W = mean vehicle weight (tons)
- S = mean vehicle speed (mph)
- w = mean number of wheels

а

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of September 14, 2020

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart A \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart A—General Provision

TABLE A-1 TO SUBPART A OF PART 98—GLOBAL WARMING POTENTIALS

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Chem	ical-Specific GWPs		
Carbon dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH ₄	^a 25
Nitrous oxide	10024-97- 2	N ₂ O	^a 298
Fully	Fluorinated GHGs		
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF ₄	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	2 0	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C ₃ F ₈	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C ₄ F ₁₀	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	C ₅ F ₁₂	^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	C ₆ F ₁₄	^a 9,300
PFC-6-1-12	335-57-9	C ₇ F ₁₆ ; CF ₃ (CF ₂) ₅ CF ₃	^b 7,820
PFC-7-1-18	307-34-6	C ₈ F ₁₈ ; CF ₃ (CF ₂) ₆ CF ₃	^b 7,620
PFC-9-1-18	306-94-5	C ₁₀ F ₁₈	7,500
PFPMIE (HT-70)	NA	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300
Perfluorodecalin (cis)	60433-11-	10 10	^b 7,236
Perfluorodecalin (trans)	60433-12- 7	E-C ₁₀ F ₁₈	^b 6,288
Saturated Hydrofluorocarbons (HF			
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH ₂ F ₂	^a 675
HFC-125	354-33-6	C_2HF_5	^a 3.500

https://www.ecfr.gov/cgi-bin/text-idx?SID=080f3d67c02c680059b93b8d284cc00f&mc=true&node=ap40.23.98_19.1&rgn=div9

15/2020 Electronic Code of Fec	deral Regulation		
HFC-134	359-35-3	$C_2H_2F_4$	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-227ca	2252-84-8	CF ₃ CF ₂ CHF ₂	^b 2640
HFC-227ea	431-89-0	C ₃ HF ₇	^a 3,220
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1,340
HFC-236ea		CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	C ₃ H ₂ F ₆	^a 9,810
HFC-329p	375-17-7	CHF ₂ CF ₂ CF ₂ CF ₃	^b 2360
HFC-43-10mee	138495-	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Saturated Hydrofluorocarbons (HFCs) With Three	42-8 ee or More C		
HFC-41	593-53-3		^a 92
HFC-143	430-66-0	C ₂ H ₃ F ₃	^a 353
HFC-143a	420-46-2	C ₂ H ₃ F ₃	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a		CH ₃ CHF ₂	^a 124
HFC-161	353-36-6	CH ₃ CH ₂ F	12
HFC-245ca	679-86-7	* -	^a 693
HFC-245cb		CF ₃ CF ₂ CH ₃	^b 4620
HFC-245ea		CHF ₂ CHFCHF ₂	^b 235
	424.24.2		baaa
HFC-245eb			^b 290
HFC-245fa		CHF ₂ CH ₂ CF ₃	1,030
HFC-263fb		CH ₃ CH ₂ CF ₃	^b 76
HFC-272ca		CH ₃ CF ₂ CH ₃	^b 144
HFC-365mfc		$CH_3CF_2CH_2CF_3$	794
Saturated Hydrofluoroethers (HFEs) and Hydrochlorofluoroe HFE-125		CHF ₂ OCF ₃	14,900
HFE-227ea		CF ₃ CHFOCF ₃	14,900
HFE-329mcc2	134769-	$CF_3CF_2OCF_2CHF_2$	919
HFE-329me3		CF ₃ CFHCF ₂ OCF ₃	^b 4,550
1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane	68-6	CF ₃ CF ₂ CF ₂ OCHFCF ₃	bo 100
Saturated HFEs and HCFEs With Two		0 2 2 0	^b 6,490
HFE-134 (HG-00)		CHF ₂ OCHF ₂	6,320
HFE-236ca		CHF ₂ OCF ₂ CHF ₂	^b 4,240
HFE-236ca12 (HG-10)	78522-47-	CHF ₂ OCF ₂ OCHF ₂	2,800
HFE-236ea2 (Desflurane)	57041-67-	CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-	CF ₃ CH ₂ OCF ₃	487
HFE-338mcf2	156053- 88-2	CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338mmz1		CHF ₂ OCH(CF ₃) ₂	380
	2		
HFE-338pcc13 (HG-01)	2 188690-	CHF ₂ OCF ₂ CF ₂ OCHF ₂	1,500
	2 188690- 78-0		1,500

	ederal Regulation		
	9		0.50
HCFE-235da2 (Isoflurane)	26675-46-	CHF ₂ OCHCICF ₃	350
HG-02	205367- 61-9	$HF_2C-(OCF_2CF_2)_2-OCF_2H$	^b 3,825
HG-03	173350- 37-3	$HF_2C-(OCF_2CF_2)_3-OCF_2H$	^b 3,670
HG-20	249932- 25-0	$HF_2C-(OCF_2)_2-OCF_2H$	^b 5,300
HG-21		HF ₂ C-OCF ₂ CF ₂ OCF ₂ OCF ₂ O- CF ₂ H	^b 3,890
HG-30	188690- 77-9	$HF_2C-(OCF_2)_3-OCF_2H$	^b 7,330
1,1,3,3,4,4,6,6,7,7,9,9,10,10,12,12,13,13,15,15-eicosafluoro- 2,5,8,11,14-Pentaoxapentadecane	173350- 38-4	HCF ₂ O(CF ₂ CF ₂ O) ₄ CF ₂ H	^b 3,630
1,1,2-Trifluoro-2-(trifluoromethoxy)-ethane	84011-06- 3	CHF ₂ CHFOCF ₃	^b 1,240
Trifluoro(fluoromethoxy)methane		CH ₂ FOCF ₃	^b 751
Saturated HFEs and HCFEs With Three or			
HFE-143a		CH ₃ OCF ₃	756
HFE-245cb2	2	CH ₃ OCF ₂ CF ₃	708
HFE-245fa1	4	CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2		CHF ₂ OCH ₂ CF ₃	659
HFE-254cb2		$CH_3OCF_2CHF_2$	359
HFE-263fb2		CF ₃ CH ₂ OCH ₃	11
HFE-263m1; R-E-143a	690-22-2	CF ₃ OCH ₂ CH ₃	^b 29
HFE-347mcc3 (HFE-7000)	375-03-1	CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182- 95-9	CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347mmy1	22052-84- 2	CH ₃ OCF(CF ₃) ₂	343
HFE-347mmz1 (Sevoflurane)	28523-86- 6	(CF ₃) ₂ CHOCH ₂ F	^c 216
HFE-347pcf2	406-78-0	CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3	CH ₃ OCF ₂ CHFCF ₃	101
HFE-356mff2	333-36-8	CF ₃ CH ₂ OCH ₂ CF ₃	^b 17
HFE-356mmz1	13171-18-	(CF ₃) ₂ CHOCH ₃	27
HFE-356pcc3	160620- 20-2	CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	7	CHF ₂ CH ₂ OCF ₂ CHF ₂	265
HFE-356pcf3	35042-99- 0	CHF ₂ OCH ₂ CF ₂ CHF ₂	502
HFE-365mcf2	9	CF ₃ CF ₂ OCH ₂ CH ₃	^b 58
HFE-365mcf3		CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6	CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100) Chemical blend	07-6		297
	08-7	(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200) Chemical blend	163702- 05-4	$C_4F_9OC_2H_5$	59

	, U	,	
	163702- 06-5	(CF ₃) ₂ CFCF ₂ OC ₂ H ₅	
HG'-01		CH ₃ OCF ₂ CF ₂ OCH ₃	^b 222
HG'-02	485399- 46-0	CH ₃ O(CF ₂ CF ₂ O) ₂ CH ₃	^b 236
HG'-03	485399- 48-2	CH ₃ O(CF ₂ CF ₂ O) ₃ CH ₃	^b 221
Difluoro(methoxy)methane	359-15-9	CH ₃ OCHF ₂	^b 144
2-Chloro-1,1,2-trifluoro-1-methoxyethane	425-87-6	CH ₃ OCF ₂ CHFCI	^b 122
1-Ethoxy-1,1,2,2,3,3,3-heptafluoropropane	22052-86- 4	CF ₃ CF ₂ CF ₂ OCH ₂ CH ₃	^b 61
2-Ethoxy-3,3,4,4,5-pentafluorotetrahydro-2,5-bis[1,2,2,2-tetrafluoro- 1-(trifluoromethyl)ethyl]-furan	28-8		^b 56
1-Ethoxy-1,1,2,3,3,3-hexafluoropropane		CF ₃ CHFCF ₂ OCH ₂ CH ₃	^b 23
Fluoro(methoxy)methane		CH ₃ OCH ₂ F	^b 13
1,1,2,2-Tetrafluoro-3-methoxy-propane; Methyl 2,2,3,3- tetrafluoropropyl ether	6		^b 0.5
1,1,2,2-Tetrafluoro-1-(fluoromethoxy)ethane	5	CH ₂ FOCF ₂ CF ₂ H	^b 871
Difluoro(fluoromethoxy)methane		CH ₂ FOCHF ₂	^b 617
Fluoro(fluoromethoxy)methane		CH ₂ FOCH ₂ F	^b 130
Fluorinated Forma		400005	
Trifluoromethyl formate	2		^b 588
Perfluoroethyl formate	40-3		^b 580
1,2,2,2-Tetrafluoroethyl formate	19-0		^b 470
Perfluorobutyl formate	56-7		^b 392
Perfluoropropyl formate	42-2		^b 376
1,1,1,3,3,3-Hexafluoropropan-2-yl formate	70-6		^b 333
2,2,2-Trifluoroethyl formate	9	HCOOCH ₂ CF ₃	^b 33
3,3,3-Trifluoropropyl formate	09-7	HCOOCH ₂ CH ₂ CF ₃	^b 17
Fluorinated Aceta			
Methyl 2,2,2-trifluoroacetate		CF ₃ COOCH ₃	^b 52
1,1-Difluoroethyl 2,2,2-trifluoroacetate	13-3		^b 31
Difluoromethyl 2,2,2-trifluoroacetate		CF ₃ COOCHF ₂	^b 27
2,2,2-Trifluoroethyl 2,2,2-trifluoroacetate		CF ₃ COOCH ₂ CF ₃	^b 7
Methyl 2,2-difluoroacetate		HCF ₂ COOCH ₃	^b 3
Perfluoroethyl acetate	97-6		^b 2.1
Trifluoromethyl acetate	9	CH ₃ COOCF ₃	^b 2.0
Perfluoropropyl acetate	10-0		^b 1.8
Perfluorobutyl acetate	28-4		^b 1.6
Ethyl 2,2,2-trifluoroacetate	000 00 4	CF ₃ COOCH ₂ CH ₃	^b 1.3

Carbonofluoridates

	de of Federal Regulation	S (UCR)	
Methyl carbonofluoridate	1538-06-3	FCOOCH ₃	^b 95
1,1-Difluoroethyl carbonofluoridate		FCOOCF ₂ CH ₃	^b 27
Fluorinated Alcohols Other	11-1		
Bis(trifluoromethyl)-methanol		(CF ₃) ₂ CHOH	195
(Octafluorotetramethy-lene) hydroxymethyl group		X-(CF ₂) ₄ CH(OH)-X	73
2,2,3,3,3-Pentafluoropropanol		$CF_3CF_2CH_2OH$	42
2,2,3,3,4,4,4-Heptafluorobutan-1-ol		C ₃ F ₇ CH2OH	^b 25
2,2,2-Trifluoroethanol		CF ₃ CH ₂ OH	^b 20
2,2,3,4,4,4-Hexafluoro-1-butanol		CF ₃ CHFCF ₂ CH ₂ OH	^b 17
2,2,3,3-Tetrafluoro-1-propanol		CHF ₂ CF ₂ CH ₂ OH	^b 13
2,2-Difluoroethanol		CHF ₂ CH2OH	b3
2-Fluoroethanol			^b 1.1
4,4,4-Trifluorobutan-1-ol		CF ₃ (CH ₂) ₂ CH ₂ OH	^b 0.05
Unsaturated Perflu			0.00
PFC-1114; TFE	· · · ·	$CF_2 = CF_2; C_2F_4$	^b 0.004
PFC-1216; Dyneon HFP		C_3F_6 ; $CF_3CF = CF_2$	^b 0.05
PFC C-1418	559-40-0	° ° ° _	^b 1.97
Perfluorobut-2-ene		$CF_3CF = CFCF_3$	^b 1.82
Perfluorobut-1-ene		$CF_3CF_2CF = CF_2$	^b 0.10
Perfluorobuta-1,3-diene		$CF_2 = CFCF = CF_2$	^b 0.003
Unsaturated Hydrofluorocarbons (HFCs		=	0.000
HFC-1132a; VF2		$C_2H_2F_2$, $CF_2 = CH_2$	^b 0.04
HFC-1141; VF	75-02-5	C_2H_3F , $CH_2 = CHF$	^b 0.02
(E)-HFC-1225ye	5595-10-8	$CF_3CF = CHF(E)$	^b 0.06
(Z)-HFC-1225ye		$CF_3CF = CHF(Z)$	^b 0.22
Solstice 1233zd(E)		$C_3H_2CIF_3$; CHCI = CHCF ₃	^b 1.34
HFC-1234yf; HFO-1234yf	65-0 754-12-1	$C_3H_2F_4$; $CF_3CF = CH_2$	^b 0.31
HFC-1234ze(E)	1645-83-6	C ₃ H ₂ F ₄ ; trans-CF ₃ CH = CHF	^b 0.97
HFC-1234ze(Z)		$C_{3}H_{2}F_{4}$; cis-CF ₃ CH = CHF; CF ₃ CH = CHF	^b 0.29
HFC-1243zf; TFP	677-21-4	$C_3H_3F_3$, $CF_3CH = CH_2$	^b 0.12
(Z)-HFC-1336	692-49-9	$CF_3CH = CHCF_3(Z)$	^b 1.58
HFC-1345zfc	374-27-6	$C_2F_5CH = CH_2$	^b 0.09
Capstone 42-U	19430-93- 4	$C_6H_3F_9, CF_3(CF_2)_3CH = CH_2$	^b 0.16
Capstone 62-U	25291-17-	$C_8H_3F_{13}$, $CF_3(CF_2)_5CH = CH_2$ $C_{10}H_3F_{17}$, $CF_3(CF_2)_7CH = CH_2$	^b 0.11
Capstone 82-U	21652-58- 4	$C_{10}H_3F_{17}$, $CF_3(CF_2)_7CH = CH_2$	^b 0.09
	logenated Ethers	г. I	
PMVE; HFE-216		$CF_3OCF = CF_2$	^b 0.17
Fluoroxene	406-90-6	$CF_3CH_2OCH = CH_2$	^b 0.05
	d Aldehydes	[[_]	
3,3,3-Trifluoro-propanal		CF ₃ CH ₂ CHO	^b 0.01
Fluorinato Novec 1230 (perfluoro (2-methyl-3-pentanone))	ed Ketones 756-13-8	CF ₃ CF ₂ C(O)CF (CF3) ₂	^b 0.1
	ner Alcohols		0.1
3,3,4,4,5,5,6,6,7,7,7-Undecafluoroheptan-1-ol		CF ₃ (CF ₂) ₄ CH ₂ CH ₂ OH	^b 0.43
3,3,4,4,5,5,5,6,6,7,7,7-Undecafiuoroneptan-1-0 hs://www.ecfr.gov/cgi-bip/text-idx?SID=080f3d67c02c680059b93b8d284cc0	I		⁵ 0.4

https://www.ecfr.gov/cgi-bin/text-idx?SID=080f3d67c02c680059b93b8d284cc00f&mc=true&node=ap40.23.98_19.1&rgn=div9

	57-0		
3,3,3-Trifluoropropan-1-ol	2240-88-2	CF ₃ CH ₂ CH ₂ OH	^b 0.35
3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Pentadecafluorononan-1-ol	755-02-2	CF ₃ (CF ₂) ₆ CH ₂ CH ₂ OH	^b 0.33
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Nonadecafluoroundecan 1-ol	· 87017-97- 8	CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH	^b 0.19
Fluorinated GHGs With Carbo	n-lodine Bo	ond(s)	
Trifluoroiodomethane	2314-97-8	CF ₃ I	^b 0.4
Other Fluorinated Co	npounds		
Dibromodifluoromethane (Halon 1202)	75-61-6	CBR ₂ F ₂	^b 231
2-Bromo-2-chloro-1,1,1-trifluoroethane (Halon-2311/Halothane)	151-67-7	CHBrCICF ₃	^b 41
Fluorinated GHG Group ^d Default GWPs for Compounds for Which Chemica	-Specific G	WPs Are Not Listed Above	Global warming potential (100 yr.)
Fully fluorinated GHGs			10,000
,			
Saturated hydrofluorocarbons (HFCs) with 2 or fewer carbon-hydro	gen bonds		
Saturated hydrofluorocarbons (HFCs) with 2 or fewer carbon-hydro Saturated HFCs with 3 or more carbon-hydrogen bonds	gen bonds		3,700
	•	1 carbon-hydrogen bond	3,700 930
Saturated HFCs with 3 or more carbon-hydrogen bonds	•	1 carbon-hydrogen bond	3,700 930 5,700
Saturated HFCs with 3 or more carbon-hydrogen bonds Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (H	ICFEs) with	1 carbon-hydrogen bond	3,700 930 5,700 2,600 270
Saturated HFCs with 3 or more carbon-hydrogen bonds Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (H Saturated HFEs and HCFEs with 2 carbon-hydrogen bonds	ICFEs) with	1 carbon-hydrogen bond	3,700 930 5,700 2,600 270
Saturated HFCs with 3 or more carbon-hydrogen bonds Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (H Saturated HFEs and HCFEs with 2 carbon-hydrogen bonds Saturated HFEs and HCFEs with 3 or more carbon-hydrogen bond Fluorinated formates Fluorinated acetates, carbonofluoridates, and fluorinated alcohols of	ICFEs) with s other than flu	orotelomer alcohols	3,700 930 5,700 2,600 270 350
Saturated HFCs with 3 or more carbon-hydrogen bonds Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (H Saturated HFEs and HCFEs with 2 carbon-hydrogen bonds Saturated HFEs and HCFEs with 3 or more carbon-hydrogen bond Fluorinated formates	ICFEs) with s other than flu ated hydroch	iorotelomer alcohols lorofluorocarbons (HCFCs),	3,700 930 5,700 2,600 270 350
Saturated HFCs with 3 or more carbon-hydrogen bonds Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (H Saturated HFEs and HCFEs with 2 carbon-hydrogen bonds Saturated HFEs and HCFEs with 3 or more carbon-hydrogen bond Fluorinated formates Fluorinated acetates, carbonofluoridates, and fluorinated alcohols of Unsaturated perfluorocarbons (PFCs), unsaturated HFCs, unsaturated unsaturated halogenated ethers, unsaturated halogenated esters, f	ICFEs) with s other than flu ated hydroch	iorotelomer alcohols lorofluorocarbons (HCFCs),	3,700 930 5,700 2,600 270 350
Saturated HFCs with 3 or more carbon-hydrogen bonds Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (H Saturated HFEs and HCFEs with 2 carbon-hydrogen bonds Saturated HFEs and HCFEs with 3 or more carbon-hydrogen bond Fluorinated formates Fluorinated acetates, carbonofluoridates, and fluorinated alcohols of Unsaturated perfluorocarbons (PFCs), unsaturated HFCs, unsaturated unsaturated halogenated ethers, unsaturated halogenated esters, t ketones	ICFEs) with s other than flu ated hydroch	iorotelomer alcohols lorofluorocarbons (HCFCs),	3,700 930 5,700 2,600

^aThe GWP for this compound was updated in the final rule published on November 29, 2013 [78 FR 71904] and effective on January 1, 2014.

^bThis compound was added to Table A-1 in the final rule published on December 11, 2014, and effective on January 1, 2015.

^cThe GWP for this compound was updated in the final rule published on December 11, 2014, and effective on January 1, 2015.

^dFor electronics manufacturing (as defined in §98.90), the term "fluorinated GHGs" in the definition of each fluorinated GHG group in §98.6 shall include fluorinated heat transfer fluids (as defined in §98.98), whether or not they are also fluorinated GHGs.

[79 FR 73779, Dec. 11, 2014]

Need assistance?

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of September 14, 2020

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart C \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart C—General Stationary Fuel Combustion Sources

TABLE C-1 TO SUBPART C OF PART 98—DEFAULT CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026 × 10 ⁻³	53.06
Petroleum products—liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94

Electronic Code of Federal Regulations (eCFR)

Isobutylene ¹	0.100	00.00
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.125	71.02
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Petroleum products—solid	mmBtu/short ton	kg CO ₂ /mmBtu.
Petroleum Coke	30.00	102.41.
Petroleum products—gaseous	mmBtu/scf	kg CO ₂ /mmBtu.
Propane Gas	2.516 × 10 ⁻³	61.46.
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 × 10 ⁻³	274.32
Coke Oven Gas	0.599 × 10 ⁻³	46.85
Fuel Gas ⁴	1.388×10^{-3}	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485×10^{-3}	52.07
Other Biomass Gases	0.655×10^{-3}	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.084	73.84
Rendered Animal Fat	0.125	73.84
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

²Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent

of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴Reporters subject to subpart X of this part that are complying with §98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in §98.243(d)(2)(i) and (d)(2)(ii) and §98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_w = ((100 - M)/100)^*HHV_d$ where $HHV_w =$ wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016]

Need assistance?

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of September 14, 2020

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart C \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart C—General Stationary Fuel Combustion Sources

Table C-2 to Subpart C of Part 98—Default CH_4 and N_2O Emission Factors for Various Types of Fuel

Fuel time	Default CH ₄ emission factor (kg CH ₄ /mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Fuel type		
Coal and Coke (All fuel types in Table C-1)	1.1 × 10 ⁻⁰²	1.6 × 10 ⁻⁰³
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum Products (All fuel types in Table C-1)	3.0 × 10 ⁻⁰³	6.0 × 10 ⁻⁰⁴
Fuel Gas	3.0 × 10 ⁻⁰³	6.0 × 10 ⁻⁰⁴
Other Fuels—Solid	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Blast Furnace Gas	2.2 × 10 ⁻⁰⁵	1.0 × 10 ⁻⁰⁴
Coke Oven Gas	4.8×10^{-04}	1.0 × 10 ⁻⁰⁴
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Wood and wood residuals	7.2 × 10 ⁻⁰³	3.6 × 10 ⁻⁰³
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2 × 10 ⁻⁰³	6.3 × 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1 × 10 ⁻⁰⁴

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH_4 /mmBtu.

[78 FR 71952, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016]

Need assistance?

Section 7

Information Used to Determine Emissions

Mine, Reclamation, and Crushing & Screening Plant (SP-7A) Handling (Fugitive)

- AP-42 Chapter 11.19.2
- AP-42 Chapter 13.2.4

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-02)						
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Tertiary Crushing	0.0054 ^d	Е	0.0024°	С	ND ⁿ	
(SCC 3-050030-03)	0.0001	2	0.0021	e	T(D)	
Tertiary Crushing (controlled)	0.0012 ^d	Е	0.00054 ^p	С	0.00010 ^q	Е
(SCC 3-05-020-03)				-		
Fines Crushing	0.0390 ^e	Е	0.0150 ^e	Е	ND	
(SCC 3-05-020-05)						
Fines Crushing (controlled)	$0.0030^{\rm f}$	Е	$0.0012^{\rm f}$	Е	0.000070^{q}	Е
(SCC 3-05-020-05)						
Screening	0.025 ^c	Е	0.0087^{l}	С	ND	
(SCC 3-05-020-02, 03)						
Screening (controlled)	0.0022 ^d	Е	$0.00074^{\rm m}$	С	0.000050 ^q	Е
(SCC 3-05-020-02, 03)						
Fines Screening	0.30 ^g	E	0.072 ^g	E	ND	
(SCC 3-05-020-21)						
Fines Screening (controlled)	0.0036 ^g	Е	0.0022 ^g	E	ND	
(SCC 3-05-020-21)						
Conveyor Transfer Point	0.0030 ^h	Е	0.00110 ^h	D	ND	
(SCC 3-05-020-06)			-		5	
Conveyor Transfer Point (controlled)	0.00014 ⁱ	Е	4.6 x 10 ⁻⁵ⁱ	D	1.3 x 10 ⁻⁵	E
(SCC 3-05-020-06)			e:			
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone	ND		1.6 x 10 ^{-5j}	Е	ND	
(SCC 3-05-020-31)						
Truck Loading - Conveyor, crushed	ND		0.00010 ^k	Е	ND	
stone (SCC 3-05-020-32)						

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

13.2.4 Aggregate Handling And Storage Piles

13.2.4.1 General

Inherent in operations that use minerals in aggregate form is the maintenance of outdoor storage piles. Storage piles are usually left uncovered, partially because of the need for frequent material transfer into or out of storage.

Dust emissions occur at several points in the storage cycle, such as material loading onto the pile, disturbances by strong wind currents, and loadout from the pile. The movement of trucks and loading equipment in the storage pile area is also a substantial source of dust.

13.2.4.2 Emissions And Correction Parameters

The quantity of dust emissions from aggregate storage operations varies with the volume of aggregate passing through the storage cycle. Emissions also depend on 3 parameters of the condition of a particular storage pile: age of the pile, moisture content, and proportion of aggregate fines.

When freshly processed aggregate is loaded onto a storage pile, the potential for dust emissions is at a maximum. Fines are easily disaggregated and released to the atmosphere upon exposure to air currents, either from aggregate transfer itself or from high winds. As the aggregate pile weathers, however, potential for dust emissions is greatly reduced. Moisture causes aggregation and cementation of fines to the surfaces of larger particles. Any significant rainfall soaks the interior of the pile, and then the drying process is very slow.

Silt (particles equal to or less than 75 micrometers $[\mu m]$ in diameter) content is determined by measuring the portion of dry aggregate material that passes through a 200-mesh screen, using ASTM-C-136 method.¹ Table 13.2.4-1 summarizes measured silt and moisture values for industrial aggregate materials.

Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES^a

			Silt Content (%)		Moist	ure Content	(%)	
	No. Of		No. Of			No. Of		
Industry	Facilities	Material	Samples	Range	Mean	Samples	Range	Mean
Iron and steel production	9	Pellet ore	13	1.3 - 13	4.3	11	0.64 - 4.0	2.2
		Lump ore	9	2.8 - 19	9.5	6	1.6 - 8.0	5.4
		Coal	12	2.0 - 7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0 - 7.3	5.3	3	0.25 - 2.0	0.92
		Flue dust	3	2.7 - 23	13	1		7
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1		15	1		6.6
		Sinter	1		0.7	0		
		Limestone	3	0.4 - 2.3	1.0	2	ND	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	2	0.3 - 1.1	0.7
		Various limestone products	8	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	1	Pellets	9	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	ND	11	1		0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0		
		Exposed ground	3	5.1 - 21	15	3	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1		2.6	1		7.4
		Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	9.0	5	8.9 - 16	12
		Clay/dirt mix	1		9.2	1	—	14
		Clay	2	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26 - 29	27
		Misc. fill materials	1		12	1		11

^a References 1-10. ND = no data.

13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities within the storage cycle:

- 1. Loading of aggregate onto storage piles (batch or continuous drop operations).

- Equipment traffic in storage area.
 Wind erosion of pile surfaces and ground areas around piles.
 Loadout of aggregate for shipment or for return to the process stream (batch or continuous drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck with a front-end loader are examples of batch drop operations. Adding material to the pile by a conveyor stacker is an example of a continuous drop operation.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1							
$< 30 \ \mu m$	$< 15 \ \mu m$	$< 10 \ \mu m$	$< 5 \ \mu m$	$< 2.5 \ \mu m$			
0.74	0.48	0.35	0.20	0.053ª			

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

Ranges Of Source Conditions For Equation 1						
	Moisture Content (%)	Wind Speed				
Silt Content (%)		m/s	mph			
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15			

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

correction parameters cannot be obtained, the appropriate mean from Table 13.2.4-1 may be used, but the quality rating of the equation is reduced by 1 letter.

For emissions from equipment traffic (trucks, front-end loaders, dozers, etc.) traveling between or on piles, it is recommended that the equations for vehicle traffic on unpaved surfaces be used (see Section 13.2.2). For vehicle travel between storage piles, the silt value(s) for the areas among the piles (which may differ from the silt values for the stored materials) should be used.

Worst-case emissions from storage pile areas occur under dry, windy conditions. Worst-case emissions from materials-handling operations may be calculated by substituting into the equation appropriate values for aggregate material moisture content and for anticipated wind speeds during the worst case averaging period, usually 24 hours. The treatment of dry conditions for Section 13.2.2, vehicle traffic, "Unpaved Roads", follows the methodology described in that section centering on parameter p. A separate set of nonclimatic correction parameters and source extent values corresponding to higher than normal storage pile activity also may be justified for the worst-case averaging period.

13.2.4.4 Controls¹²⁻¹³

Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent.¹²

References For Section 13.2.4

- 1. C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. Bohn, et al., Fugitive Emissions From Integrated Iron And Steel Plants, EPA-600/2-78-050, U. S. Environmental Protection Agency, Cincinnati, OH, March 1978.
- 3. C. Cowherd, Jr., *et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation*, EPA-600/2-79-103, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 4. *Evaluation Of Open Dust Sources In The Vicinity Of Buffalo, New York*, EPA Contract No. 68-02-2545, Midwest Research Institute, Kansas City, MO, March 1979.
- 5. C. Cowherd, Jr., and T. Cuscino, Jr., *Fugitive Emissions Evaluation*, MRI-4343-L, Midwest Research Institute, Kansas City, MO, February 1977.
- 6. T. Cuscino, Jr., *et al.*, *Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 7. *Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, PEDCo Environmental, Kansas City, MO, and Midwest Research Institute, Kansas City, MO, July 1981.
- 8. Determination Of Fugitive Coal Dust Emissions From Rotary Railcar Dumping, TRC, Hartford, CT, May 1984.
- 9. *PM-10 Emission Inventory Of Landfills In the Lake Calumet Area*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, September 1987.

- 10. *Chicago Area Particulate Matter Emission Inventory Sampling And Analysis*, EPA Contract No. 68-02-4395, Midwest Research Institute, Kansas City, MO, May 1988.
- 11. *Update Of Fugitive Dust Emission Factors In AP-42 Section 11.2*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, July 1987.
- 12. G. A. Jutze, *et al.*, *Investigation Of Fugitive Dust Sources Emissions And Control*, EPA-450/3-74-036a, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 13. C. Cowherd, Jr., *et al., Control Of Open Fugitive Dust Sources*, EPA-450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.
- 14. C. Cowherd, *Background Document for Revisions to Fine Fraction Ratios &sed for AP-42 Fugitive Dust Emission Factors.* Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

Section 7

Information Used to Determine Emissions

Mine, Reclamation, and Crushing & Screening Plant (SP-7A) Hauling (Fugitive)

- AP-42 Chapter 13.2.2
- NMED Memo: "Department Accepted Values for: Aggregate Handling, Storage Pile, and Haul Road Emissions"
- Western Regional Air Partnership (WRAP) Fugitive Dust Handbook, September 7, 2006.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

Industry Copper smelting	Road Use Or Surface Material Plant road	Plant Sites			
Copper smelting	Plant road		No. Of Samples	Range	Mean
e opper smerning	1 10110 10000	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
а	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		Mean Vehicle Weight		Mean Vehicle Speed		Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4- 17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b lb/VMT
PM _{2.5}	0.00036
PM_{10}	0.00047
PM_{30}^{c}	0.00047

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEETEXHAUST, BRAKE WEAR AND TIRE WEAR

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- ^b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road;

2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and

3. <u>Surface treatment</u>, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

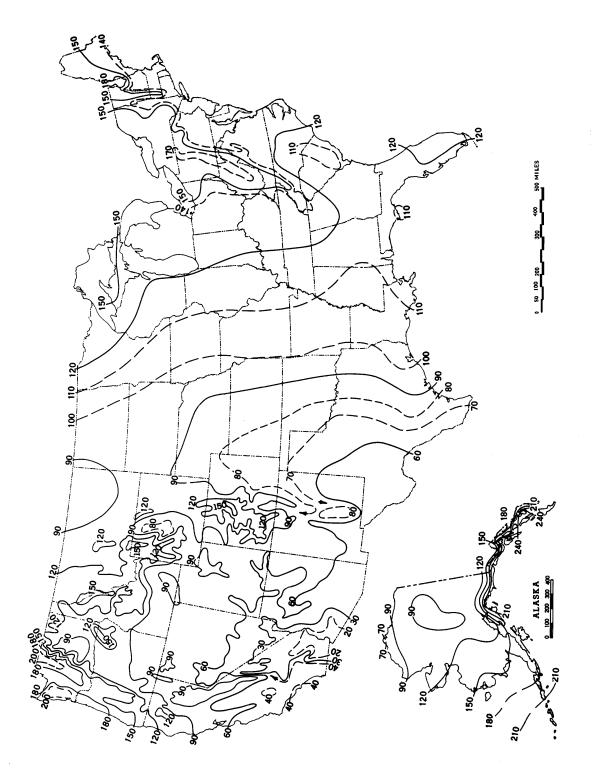


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

SUSANA MARTINEZ GOVERNOR

JOHN A. SANCHEZ LIEUTENANT GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

505 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

BUTCH TONGATE CABINET SECRETARY-DESIGATE

JC BORREGO DEPUTY SECRETARY

DEPARTMENT ACCEPTED VALUES FOR: AGGREGATE HANDLING, STORAGE PILE, and HAUL ROAD EMISSIONS

TO: Applicants and Air Quality Bureau Permitting Staff

SUBJECT: Department accepted default values for percent silt, wind speed, moisture content, and control efficiencies for haul road control measures

This guidance document provides the Department accepted default values for correction parameters in the emission calculation equations for aggregate handling and storage piles emissions in construction permit applications and notices of intent submitted under 20.2.72 and 20.2.73 NMAC; and the Department accepted control efficiencies for haul road control measures for applications submitted under 20.2.72 NMAC.

Aggregate Handling and Storage Pile Emission Calculations

Applicants should calculate the particulate matter emissions from aggregate handling and storage piles using the EPA's AP-42 Chapter 13.2.4.

http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0204.pdf

Equation 1 from Chapter 13.2.4 requires users to input values for two correction parameters, U and M, where U = mean wind speed and M = material moisture content. Below are the accepted values for U and M:

Default Values for Chapter 13.2.4, Equation 1:

Parameter	Default Value
U = Mean wind speed (miles per hour)	11 mph
M = Material moisture content (% water)	2%

Applicants must receive preapproval from the Department if they wish to assume a higher moisture content and/or a lower wind speed in these calculations. Higher moisture contents may require site specific testing either as a permit condition or submitted with the application. Applicants may assume higher wind speeds and lower percent moisture content in their calculations without prior approval from the Department.

Haul Road Emissions and Control Measure Efficiencies

Accepted Default Values for Aggregate Handling, Storage Piles, and Haul Roads Page 2 of 2

Applicants should calculate the particulate matter emissions from unpaved haul roads using the EPA's AP-42 Chapter 13.2.2. <u>http://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf</u>

Equation 1(a) from Chapter 13.2.2 requires users to input values for two correction parameters, s and W, where s = surface material silt content (%) and W = mean vehicle weight (tons). The applicant should calculate the mean vehicle weight in accordance with the chapter's instructions. Below is the accepted value for the parameter s:

Default Values for Chapter 13.2.2, Equation 1(a):

Parameter	Default Value
s = surface material silt content (%)	4.8%

Applicants may use a higher silt content without prior approval from the Department. Use of a lower silt content requires prior approval from the Department and may require site specific testing in support of the request.

Equation 2 from Chapter 13.2.2 allows users to take credit for the number of days that receive precipitation in excess of 0.01 inches, in the annual emissions calculation, where P = number of days in a year with at least 0.01 inches of precipitation.

Default Values for Chapter 13.2.2, Equation 2:

Parameter	Default Value
P = number of days in a year with at least 0.01 inches of precipitation	70 days

Applications submitted under Part 72 <u>may</u> request to apply control measures to reduce the particulate matter emissions from facility haul roads. Applications submitted under Part 73 <u>may not</u> consider any emission reduction from control measures in the potential emission rate calculation, as registrations issued under Part 73 are not federally enforceable under the Clean Air Act or the New Mexico Air Quality Control Act. In order for those control measures to be federally enforceable, the controls must be a requirement in an air quality permit.

Below are the Department accepted control efficiencies for various haul road control measures:

Haul Road Control Measures and Control Efficiency:

Control Measure	Control Efficiency
None	0%
Base course or watering	60%
Base course and watering	80%
Base course and surfactant	90%
Paved and Swept	95%

WRAP Fugitive Dust Handbook

Prepared for:

Western Governors' Association 1515 Cleveland Place, Suite 200 Denver, Colorado 80202

Prepared by:

Countess Environmental 4001 Whitesail Circle Westlake Village, CA 91361 (WGA Contract No. 30204-111)

September 7, 2006

Source Category	Control Measure	Published PM10 Control Efficiency
Agricultural Tilling	Reduce tilling during high winds	1 – 5%
	Roughen surface	15 - 64%
	Modify equipment	50%
	Employ sequential cropping	50%
	Increase soil moisture	90%
	Use other conservation management practices	25 - 100%
Agricultural Harvesting	Limited activity during high winds	5 - 70%
	Modify equipment	50%
	Night farming	10%
	New techniques for drying fruit	25-60%
Construction/Demolition	Water unpaved surfaces	10-74%
	Limit on-site vehicle speed to 15 mph	57%
	Apply dust suppressant to unpaved areas	84%
	Prohibit activities during high winds	98%
Materials Handling	Implement wet suppression	50 - 90%
	Erect 3-sided enclosure around storage piles	75%
	Cover storage pile with a tarp during high winds	90%
Paved Roads	Sweep streets	4-26%
	Minimize trackout	40-80%
	Remove deposits on road ASAP	> 90%
Unpaved Roads	Limit vehicle speed to 25 mph	44%
enpuved Rouds	Apply water	10-74%
	Apply dust suppressant	84%
	Pave the surface	>90%
Mineral Products Industry	Cyclone or muliclone	68 - 79%
	Wet scrubber	78 – 98%
	Fabric filter	99 - 99.8%
	Electrostatic precipitator	90-99.5%
Abrasive Blasting	Water spray	50-93%
e	Fabric filter	> 95%
Livestock Husbandry	Daily watering of corrals and pens	> 10%
2	Add wood chips or mulch to working pens	> 10%
Wind Erosion	Plant trees or shrubs as a windbreak	25%
(agricultural, open area, and	Create cross-wind ridges	24-93%
storage piles)	Erect artificial wind barriers	4 - 88%
	Apply dust suppressant or gravel	84%
	Revegetate; apply cover crop	90%
	Water exposed area before high winds	90%

Fugitive Dust Control Measures Applicable for the WRAP Region

Section 7

Information Used to Determine Emissions

Gasoline Dispensing Facilities (GDF1 and GDF2)

- AP-42 Chapter 7, Sections 7.1.1, 7.1.2, and 7.1.3.1
- EPA's SPECIATE 5.0 database profiles for HAP data source

Table of Contents

7.1 Organic Liquid Storage Tanks
7.1.1 General
7.1.1.1 Scope
7.1.1.2 Process Description
7.1.2 Emission Mechanisms And Control
7.1.2.1 Fixed Roof Tanks
7.1.2.2 Floating Roof Tanks
7.1.3 Emission Estimation Procedures14
7.1.3.1 Routine Losses From Fixed Roof Tanks16
7.1.3.2 Routine Losses From Floating Roof Tanks
7.1.3.3 Floating Roof Landing Losses
7.1.3.4 Tank Cleaning Emissions
7.1.3.5 Flashing Loss
7.1.3.6 Variable Vapor Space Tanks
7.1.3.7 Pressure Tanks
7.1.3.8 Variations Of Emission Estimation Procedures
7.1.4 Speciation Methodology
Figure 7.1-1. Typical fixed-roof tank
Figure 7.1-2. External floating roof tank (pontoon type)
Figure 7.1-3. External floating roof tank (double deck)
Figure 7.1-4. Internal floating roof tank70
Figure 7.1-5. Domed external floating roof tank71
Figure 7.1-6. Vapor-mounted primary seals72
Figure 7.1-7. Liquid-mounted and mechanical shoe primary seals
Figure 7.1-8. Secondary rim seals
Figure 7.1-9. Deck fittings for floating roof tanks
Figure 7.1-10. Deck fittings for floating roof tanks
Figure 7.1-11. Slotted and unslotted guidepoles77
Figure 7.1-12. Ladder well
Figure 7.1-13a. True vapor pressure of crude oils with a Reid vapor pressure
of 2 to 15 pounds per square inch
Figure 7.1-13a. True vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square
inch
Figure 7.1-14a. True vapor pressure of refined petroleum stocks with a Reid vapor pressure of 1 to 20
pounds per square inch
Figure 7.1-13b. Equation for true vapor pressure of crude oils with a Reid vapor pressure of 2 to 15
pounds per square inch
Figure 7.1-14b. Equation for true vapor pressure of refined petroleum stocks with a Reid vapor pressure
of 1 to 20 pounds per square inch
Figure 7.1-15. Equations to determine vapor pressure constants A and B for refined
Figure 7.1-16. Equations to determine vapor pressure Constants A and B for crude oil stocks
Figure 7.1-17. Equations for the average daily maximum and minimum liquid surface temperatures83
Figure 7.1-18. Reserved
Figure 7.1-19. Vapor pressure function
Figure 7.1-20. Bottom conditions for landing loss
Figure 7.1-21. Ladder-slotted guidepole combination with ladder sleeve
Figure 7.1-22. Slotted-guidepole with flexible enclosure

Table 7.1-1. LIST OF ABBREVIATIONS USED IN THE TANK EQUATIONS	90
Table 7.1-2. PROPERTIES (Mv, ML, PvA, WL) OF SELECTED PETROLEUM LIQUIDS	92
Table 7.1-3. PHYSICAL PROPERTIES OF SELECTED PETROCHEMICALS	
Table 7.1-4. Height of the Liquid Heel and vapor space under a landed floating roof1	00
Table 7.1-5. LEL VALUES FOR SELECTED COMPOUNDS	
Table 7.1-6. PAINT SOLAR ABSORPTANCE 1	02
Table 7.1-7. METEOROLOGICAL DATA (TAX, TAN, V, I, PA) FOR SELECTED U.S. LOCATIONS	S
	.03
Table 7.1-8. RIM-SEAL LOSS FACTORS, K _{Ra} , K _{Rb} , and n, FOR FLOATING ROOF TANKS 1	
Table 7.1-9. RESERVED1	
Table 7.1-10. AVERAGE CLINGAGE FACTORS, Cs1	
Table 7.1-11. TYPICAL NUMBER OF COLUMNS AS A FUNCTION OF TANK DIAMETER FOR	R
INTERNAL FLOATING ROOF TANKS WITH COLUMN- SUPPORTED FIXED ROOFS 1	42
Table 7.1-12. DECK-FITTING LOSS FACTORS, KFa, KFb, AND m, AND TYPICAL NUMBER OF	F
DECK FITTINGS, N _F 1	43
Table 7.1-13. EXTERNAL FLOATING ROOF TANKS: TYPICAL NUMBER OF VACUUM	
BREAKERS, Nvb, AND DECK DRAINS, Nd1	
Table 7.1-14. EXTERNAL FLOATING ROOF TANKS: TYPICAL NUMBER OF ROOF LEGS, N	1
	47
Table 7.1-15. INTERNAL FLOATING ROOF TANKS: TYPICAL NUMBER OF DECK LEGS, N	1,
AND STUB DRAINS, Nd1	48
Table 7.1-16. DECK SEAM LENGTH FACTORS (SD) FOR TYPICAL DECK CONSTRUCTIONS	5
FOR INTERNAL FLOATING ROOF TANKS1	48
Table 7.1-17. ROOF LANDING LOSSES FOR INTERNAL OR DOMED EXTERNAL FLOATING	ĩ
ROOF TANK WITH A LIQUID HEEL1	49
Table 7.1-18. ROOF LANDING LOSSES FOR EXTERNAL FLOATING ROOF TANK WITH A	
LIQUID HEEL1	
Table 7.1-19. ROOF LANDING LOSSES FOR ALL DRAIN-DRY TANKS 1	51
Table 7.1-20. TANK CLEANING EQUATIONS - VAPOR SPACE PURGE EMISSIONS 1	52
Table 7.1-21. TANK CLEANING EQUATIONS – CONTINUED FORCED VENTILATION	
EMISSIONS1	53
7.1.5 Sample Calculations1	54
7.1.6 Historical Equations	
7.1.6.1 Average Daily Vapor Pressure Range	
7.1.6.2 Fixed Roof Tank Working Loss	200

7.1 Organic Liquid Storage Tanks

7.1.1 General

7.1.1.1 Scope

Section 7.1 presents emissions estimating methodologies for storage tanks of various types and operating conditions. The methodologies are intended for storage tanks that are properly maintained and in normal working condition. The methodologies do not address conditions of deteriorated or otherwise damaged materials of construction, nor do they address operating conditions that differ significantly from the scenarios described herein. To estimate losses that occur from underground gasoline storage tanks at service stations, please see AP-42 Section 5.2, "Transportation and Marketing of Petroleum Liquids."

Sections 7.1.3.1 and 7.1.3.2 present emissions estimating methodologies for routine emissions from fixed roof tanks and floating roof tanks. Use of the terminology "routine emissions" to refer to standing and working losses applies only for the purposes of this document, and not for any other air quality purposes such as New Source Review (NSR) permitting. The equations for routine emissions were developed to estimate average annual losses for storage tanks, but provisions for applying the equations to shorter periods of time are addressed in Section 7.1.3.8.1. The equations for routine emissions are a function of temperatures that are derived from a theoretical energy transfer model. In order to simplify the calculations, default values were assigned to certain parameters in the energy transfer equations. The accuracy of the resultant equations for an individual tank depends upon how closely that tank fits the assumptions inherent to these default values. The associated uncertainty may be mitigated by using measured values for the liquid bulk temperature. The equations for routine emissions are not intended to include emissions from the following events (these are addressed separately):

- a) To estimate losses that result from the landing of a floating roof. A separate methodology is presented for floating roof landing losses in Section 7.1.3.3.
- b) To estimate losses that result from cleaning a tank. A separate methodology is presented for tank cleaning losses in Section 7.1.3.4.
- c) To estimate losses from variable vapor space tanks. Variable vapor space tanks are discussed in Section 7.1.3.6.
- d) To estimate losses from equipment leaks associated with pressure tanks designed as closed systems without emissions to the atmosphere. Pressure tanks are discussed in Section 7.1.3.7.

Section 7.1.3.8 addresses the following additional scenarios that are outside the scope of the methodologies for routine emissions presented in Sections 7.1.3.1 and 7.1.3.2.

- e) Time periods shorter than one year. Certain assumptions in the equations for routine emissions are based on annual averages, and thus the equations have greater uncertainty for a period of time less than a year. Section 7.1.3.8.1 addresses application of the equations to time periods shorter than one year, with the caveat that a one-month time frame is recommended as the shortest time period for which routine emissions should be estimated using these methodologies.
- f) Internal floating roof tanks with closed vent systems. The equations for routine emissions from internal floating roof tanks assume that the tank has open vents in the fixed roof.

Section 7.1.3.8.2 addresses estimation of emissions when an internal floating roof tank has closed pressure/vacuum vents.

- g) Case-specific liquid surface temperature determination. Several parameters pertaining to liquid surface temperature are assigned default values for incorporation into the equations for routine emissions. Section 7.1.3.8.3 presents methodology to account for these parameters as variables in the estimation of emissions from a particular storage tank at a particular location.
- h) Heating cycles in fixed roof tanks. The equations for standing loss from fixed roof tanks are based on a daily cycle of warming and cooling of the vapor space due to heat exchange between the vapor space and ambient air through the shell and roof of the tank. This heat exchange results in daytime expansion and nighttime contraction of vapors in the vapor space, with each expansion causing some portion of the vapors to be expelled from the vapor space. A similar cycle of expansion and contraction of the vapors may be driven by cyclic heating of the bulk liquid. Section 7.1.3.8.4 provides guidance for adapting the equations for fixed roof tank standing loss to the case of cyclic heating of the bulk liquid.

Section 7.1.4 presents calculations for applying Raoult's Law to calculate the contribution of individual chemical species to the total emissions.

Section 7.1.5 presents worked examples, with estimated emissions shown to two significant figures. This level of precision is chosen arbitrarily and may overstate the accuracy of the loss estimates given the uncertainty associated with the multiple parameters affecting emissions from storage tanks.

Section 7.1.6 contains equations that have been used historically to obtain approximate values, but which have been replaced with more accurate equations.

7.1.1.2 Process Description¹⁻³

Storage tanks containing organic liquids can be found in many industries, including (1) petroleum producing and refining, (2) petrochemical and chemical manufacturing, (3) bulk storage and transfer operations, and (4) other industries consuming or producing organic liquids.

Six basic types of designs are used for organic liquid storage tanks: fixed roof (vertical and horizontal), external floating roof, domed external (or covered) floating roof, internal floating roof, variable vapor space, and pressure (low and high). A brief description of each tank is provided below. Loss mechanisms associated with each type of tank are described in Section 7.1.2.

The emission estimating equations presented in Section 7.1 were developed by the American Petroleum Institute (API). API retains the copyright to these equations. API has granted permission for the nonexclusive; noncommercial distribution of this material to governmental and regulatory agencies. However, API reserves its rights regarding all commercial duplication and distribution of its material. Therefore, the material presented in Section 7.1 is available for public use, but the material cannot be sold without written permission from the American Petroleum Institute and the U. S. Environmental Protection Agency.

7.1.1.2.1 Fixed Roof Tanks

A typical vertical fixed roof tank is shown in Figure 7.1-1. This type of tank consists of a cylindrical steel shell with a permanently affixed roof, which may vary in design from cone- or dome-shaped to flat. Losses from fixed roof tanks are caused by changes in temperature, pressure, and liquid level.

Fixed roof tanks are either freely vented or equipped with a pressure/vacuum vent. The latter allows the tanks to operate at a slight internal pressure or vacuum to prevent the release of vapors during small changes in temperature, pressure, or liquid level. Fixed roof tanks may have additional vents or hatches, referred to as emergency vents, to provide increased vent flow capacity in the event of excessive pressure in the tank. Of current tank designs, the fixed roof tank is the least expensive to construct and is generally considered the minimum acceptable equipment for storing organic liquids.

Horizontal fixed roof tanks are constructed for both above-ground and underground service and are usually constructed of steel, steel with a fiberglass overlay, or fiberglass-reinforced polyester. Horizontal tanks are generally small storage tanks with capacities of less than 40,000 gallons. Horizontal tanks are constructed such that the length of the tank is not greater than six times the diameter to ensure structural integrity. Horizontal tanks are usually equipped with pressure-vacuum vents, gauge hatches and sample wells, and manholes to provide access.

The potential emission sources for above-ground horizontal tanks are the same as those for vertical fixed roof tanks. Emissions from underground storage tanks are associated mainly with changes in the liquid level in the tank. Losses due to changes in temperature or barometric pressure are minimal for underground tanks because the surrounding earth limits the diurnal temperature change, and changes in the barometric pressure result in only small losses. However, standing losses from underground gasoline tanks, which can experience relatively fast vapor growth after the ingestion of air and dilution of the headspace, are addressed in Section 5.2 of AP-42.

7.1.1.2.2 External Floating Roof Tanks

A typical external floating roof tank (EFRT) consists of an open-top cylindrical steel shell equipped with a roof that floats on the surface of the stored liquid. The floating roof consists of a deck, deck fittings, and a rim seal system. Floating decks that are currently in use are constructed of welded steel plate and are most commonly of two general types: pontoon or double-deck. Pontoon-type and double-deck-type external floating roof tanks are shown in Figures 7.1-2 and 7.1-3, respectively. With all types of external floating roof tanks, the roof rises and falls with the liquid level in the tank. External floating decks are equipped with a rim seal system, which is attached to the deck perimeter and contacts the tank wall. The purpose of the floating roof and rim seal system is to reduce evaporative loss of the stored liquid. Some annular space remains between the seal system and the tank wall. The seal system slides against the tank wall as the roof is raised and lowered. The floating deck is also equipped with deck fittings that penetrate the deck and serve operational functions. The external floating roof design is such that routine evaporative losses from the stored liquid are limited to losses from the rim seal system and deck fittings (standing loss) and any liquid on the tank walls that is exposed by the lowering of the liquid level associated with the withdrawal of liquid (working loss). Because of the open-top configuration of this tank, wind effects have a significant impact on evaporative losses from this type of tank.

7.1.1.2.3 Internal Floating Roof Tanks

An internal floating roof tank (IFRT) has both a permanent fixed roof and a floating roof inside. There are two basic types of internal floating roof tanks: tanks in which the fixed roof is supported by vertical columns within the tank, and tanks with a self-supporting fixed roof and no internal support columns. Fixed roof tanks that have been retrofitted to use a floating roof are typically of the first type. External floating roof tanks that have been converted to internal floating roof tanks typically have a selfsupporting roof. Newly constructed internal floating roof tanks may be of either type. The deck in internal floating roof tanks rises and falls with the liquid level and either floats directly on the liquid surface (contact deck) or rests on pontoons several inches above the liquid surface (noncontact deck). The majority of aluminum internal floating roofs currently in service have noncontact decks. A typical internal floating roof tank is shown in Figure 7.1-4.

Contact decks include (1) aluminum sandwich panels that are bolted together, with a honeycomb aluminum core floating in contact with the liquid; (2) pan steel decks floating in contact with the liquid, with or without pontoons; and (3) resin-coated, fiberglass reinforced polyester (FRP), buoyant panels floating in contact with the liquid. Variations on these designs are also available. The majority of internal contact floating decks currently in service are aluminum sandwich panel-type or pan steel-type. The FRP decks are less common. The panels of pan steel decks are usually welded together.

Noncontact decks are the most common type currently in use. Typical noncontact decks are constructed of an aluminum deck and an aluminum grid framework supported above the liquid surface by tubular aluminum pontoons or some other buoyant structure. The noncontact decks usually have bolted deck seams.

Installing a floating roof minimizes evaporative losses of the stored liquid. Both contact and noncontact decks incorporate rim seals and deck fittings for the same purposes previously described for external floating roof tanks. Evaporative losses from floating roofs may come from deck fittings, nonwelded deck seams, and the annular space between the deck and tank wall. In addition, these tanks are freely vented by circulation vents at the top of the fixed roof. The vents minimize the possibility of organic vapor accumulation in the tank vapor space in concentrations approaching the flammable range. An internal floating roof tank not freely vented is considered an internal floating roof tank with a closed vent system. Emission estimation methods for such tanks are addressed in Section 7.1.3.8.2.

7.1.1.2.4 Domed External Floating Roof Tanks

Domed external (or covered) floating roof tanks have the heavier type of deck used in external floating roof tanks as well as a fixed roof at the top of the shell like internal floating roof tanks. Domed external floating roof tanks usually result from retrofitting an external floating roof tank with a fixed roof. This type of tank is very similar to an internal floating roof tank with a welded deck and a self-supporting fixed roof. A typical domed external floating roof tank is shown in Figure 7.1-5.

As with the internal floating roof tanks, the function of the fixed roof with respect to emissions is not to act as a vapor barrier, but to block the wind. The estimations of rim seal losses and deck fitting losses include a loss component that is dependent on wind speed and a loss component that is independent of wind speed. When a tank is equipped with a fixed roof, the wind-dependent component is zero due to the blocking of the wind by the fixed roof, leaving only the wind-independent loss component. The type of fixed roof most commonly used is a self-supporting aluminum dome roof, which is of bolted construction. Like the internal floating roof tanks, these tanks are freely vented by circulation vents at the top and around the perimeter of the fixed roof. The deck fittings and rim seals, however, are identical to those on external floating roof tanks. In the event that the floating deck is replaced with the lighter IFRT-type deck, the tank would then be considered an internal floating roof tank.

The distinction between a domed external floating roof tank and an internal floating roof tank is primarily for purposes of recognizing differences in the deck fittings when estimating emissions. In particular, the domed external floating roof deck typically has significantly taller leg sleeves than are typical of an internal floating roof deck. The longer leg sleeves of the domed external floating roof deck have lower associated emissions than the shorter leg sleeves of the internal floating roof deck. While a domed external floating roof tank is distinct from an internal floating roof tank for purposes of estimating emissions, the domed external floating roof tank would be deemed a type of internal floating roof tank under air regulations that do not separately specify requirements for a domed external floating roof tank.

7.1.1.2.5 Variable Vapor Space Tanks

Variable vapor space tanks are equipped with expandable vapor reservoirs to accommodate vapor volume fluctuations attributable to temperature and barometric pressure changes. Although variable vapor space tanks are sometimes used independently, they are normally connected to the vapor spaces of one or more fixed roof tanks. The two most common types of variable vapor space tanks are lifter roof tanks and flexible diaphragm tanks.

Lifter roof tanks have a telescoping roof that fits loosely around the outside of the main tank wall. The space between the roof and the wall is closed by either a wet seal, which is a trough filled with liquid, or a dry seal, which uses a flexible coated fabric.

Flexible diaphragm tanks use flexible membranes to provide expandable volume. They may be either separate gasholder units or integral units mounted atop fixed roof tanks. A variable vapor space tank that utilizes a flexible diaphragm will emit standing losses to the extent that the flexible diaphragm is permeable or there is leakage through the seam where the flexible diaphragm is attached to the tank wall.

A variable vapor space tank will emit vapors during tank filling when vapor is displaced by liquid, if the tank's vapor storage capacity is exceeded.

7.1.1.2.6 Pressure Tanks

Two classes of pressure tanks are in general use: low pressure (2.5 to 15 psig) and high pressure (higher than 15 psig). Pressure tanks generally are used for storing organic liquids and gases with high vapor pressures and are found in many sizes and shapes, depending on the operating pressure of the tank. Low-pressure tanks are equipped with a pressure/vacuum vent that is set to prevent venting loss from boiling and breathing loss from daily temperature or barometric pressure changes. High-pressure storage tanks can be operated so that virtually no evaporative or working losses occur. In low-pressure tanks, working losses can occur with atmospheric venting of the tank during filling operations. Vapor losses from low-pressure tanks storing non-boiling liquids are estimated in the same manner as for fixed roof tanks, with the vent set pressure accounted for in both the standing and working loss equations.

7.1.2 Emission Mechanisms And Control²⁻⁸

Emissions from the storage of organic liquids occur because of evaporative loss of the liquid during its storage and as a result of changes in the liquid level. The emission mechanisms vary with tank design, as does the relative contribution of each type of emission mechanism. Emissions from fixed roof tanks are a result of evaporative losses during storage (known as breathing losses or standing losses) and evaporative losses during filling operations (known as working losses). External and internal floating roof tanks are emission sources because of evaporative losses that occur during standing storage and withdrawal of liquid from the tank. Standing losses are a result of evaporative losses through rim seals, deck fittings, and/or deck seams. The loss mechanisms for routine emissions from fixed roof and external and internal floating roof tanks are described in more detail in this section.

7.1.2.1 Fixed Roof Tanks

The two significant types of routine emissions from fixed roof tanks are standing and working losses. The standing loss mechanism for a fixed roof tank is known as breathing, which is the expulsion of vapor from a tank through vapor expansion and contraction that results from changes in temperature and barometric pressure. This loss occurs without any liquid level change in the tank. The emissions estimating methodology presented in Section 7.1 assumes the barometric pressure to be constant, and standing losses from fixed roof tanks are attributed only to changes in temperature. As vapors expand in the vapor space due to warming, the pressure of the vapor space increases and expels vapors from the tank through the vent(s) on the fixed roof. If the venting is of a type that is closed in the absence of pressure, such as a weighted-pallet pressure-vacuum vent, then vapors are assumed to not be expelled until the pressure in the vapor space exceeds the set pressure of the vent.

The evaporative loss from filling is called working loss. Emissions due to filling operations are the result of an increase in the liquid level in the tank. As the liquid level increases, the pressure inside the vapor space increases and vapors are expelled from the tank through the vent(s) on the fixed roof as described above for standing loss. No emissions are attributed to emptying, in that the increasing size of the vapor space during emptying is assumed to exceed the rate at which evaporation increases the volume of vapors. That is, it would be expected that flow through the vents during emptying would be into the tank, and thus there are no emissions actually occurring during emptying of a fixed roof tank.

A third type of emissions from fixed roof tanks is commonly referred to as flashing losses. This emission type is not an evaporative loss, but rather involves entrained gases bubbling out of solution when a liquid stream experiences a pressure drop upon introduction into a storage tank. As such, it occurs only in storage tanks that receive pressurized liquid streams containing entrained gases. This scenario is typical of storage tanks receiving liquids from a separator in oil and gas production operations, but does not typically occur at downstream facilities. Flashing losses are discussed in Section 7.1.3.5, but guidance for estimating flashing losses is beyond the scope of this section.

Fixed roof tank emissions from standing and working vary as a function of tank capacity, vapor pressure of the stored liquid, utilization rate of the tank, and atmospheric conditions at the tank location.

Several methods are used to control emissions from fixed roof tanks. Emissions from fixed roof tanks can be controlled by installing an internal floating roof and seals to minimize evaporation of the

product being stored. The control efficiency of this method ranges from 60 to 99 percent, depending on the type of roof and seals installed and on the type of organic liquid stored.

Fixed roof tank emissions may also be reduced by increasing the vent set pressure, and routine emissions may be eliminated if the vent set pressure is higher than the pressure that develops in the vapor space during normal operations. See Section 7.1.3.7 for a discussion of estimating emissions from pressure tanks. However, the structural design of most storage tanks would not normally accommodate internal pressures of the magnitude required to significantly reduce emissions, and thus vent set pressures should not be altered without consideration of the tank design including all appropriate safety factors. Subjecting a storage tank to greater pressure or vacuum than that for which the tank was designed could potentially result in failure of the tank.

Vapor balancing is another means of emission control. Vapor balancing is probably most common in the filling of tanks at gasoline service stations. As the storage tank is filled, the vapors expelled from the storage tank are directed to the emptying gasoline tanker truck. The truck then transports the vapors to a centralized station where a vapor recovery or control system may be used to control emissions. Vapor balancing can have control efficiencies as high as 90 to 98 percent if the vapors are subjected to vapor recovery or control. If the truck vents the vapor to the atmosphere instead of to a recovery or control system, no control is achieved.

Vapor recovery systems collect emissions from storage tanks and convert them to liquid product. Several vapor recovery procedures may be used, including vapor/liquid absorption, vapor compression, vapor cooling, vapor/solid adsorption, or a combination of these.

Vapors from fixed roof tanks may also be collected and combusted. There are several types of units at facilities used to accomplish this, including various types of flares and thermal oxidation units.

7.1.2.2 Floating Roof Tanks

Routine emissions from floating roof tanks are the sum of working losses and standing losses. The working loss mechanism for a floating roof tank is also known as withdrawal loss, in that it occurs as the liquid level, and thus the floating roof, is lowered rather than raised. Some liquid remains on the inner tank wall surface and evaporates. For an internal floating roof tank that has a column supported fixed roof, some liquid also clings to the columns and evaporates. Evaporative loss occurs until the tank is filled and the exposed surfaces are again covered. Standing losses from floating roof tanks include rim seal and deck fitting losses for floating roof tanks with welded decks and include deck seam losses for constructions other than welded decks. Both the working and standing loss mechanisms for floating roof tanks pertain to the accumulation of vapors in the headspace above the floating roof. It is assumed that vapors in the headspace will eventually be expelled from the tank, but this emission estimating methodology does not address the rate or time at which the vapors actually leave the tank.

Rim seal losses can occur through many complex mechanisms, but for external floating roof tanks, the majority of rim seal vapor losses have been found to be wind induced. No dominant wind loss mechanism has been identified for internal floating roof or domed external floating roof tank rim seal losses. Losses can also occur due to permeation of the rim seal material by the vapor or via a wicking effect of the liquid, but permeation of the rim seal material generally does not occur if the correct seal fabric is used. Testing has indicated that breathing, solubility, and wicking loss mechanisms are small in

comparison to the wind-induced loss. The rim seal factors presented in this section incorporate all types of losses.

The rim seal system is used to allow the floating roof to rise and fall within the tank as the liquid level changes. The rim seal system also helps to fill the annular space between the rim and the tank shell and therefore minimize evaporative losses from this area. A rim seal system may consist of just a primary seal or a primary and a secondary seal, which is mounted above the primary seal. Examples of primary and secondary seal configurations are shown in Figures 7.1-6, 7.1-7, and 7.1-8.

The primary seal serves as a vapor conservation device by closing the annular space between the edge of the floating deck and the tank wall. Three basic types of primary seals are used on floating roofs: mechanical (metallic) shoe, resilient filled (nonmetallic), and flexible wiper seals. Some primary seals on external floating roof tanks are protected by a weather shield. Weather shields may be of metallic, elastomeric, or composite construction and provide the primary seal with longer life by protecting the primary seal fabric from deterioration due to exposure to weather, debris, and sunlight. Mechanical shoe seals, resilient filled seals, and wiper seals are discussed below.

A mechanical shoe seal uses a light-gauge metallic band as the sliding contact with the shell of the tank, as shown in Figure 7.1-7. The band is formed as a series of sheets (shoes) which are joined together to form a ring and are held against the tank shell by a mechanical device. The shoes are normally 3 to 5 feet deep when used on an external floating roof and are often shorter when used on an internal floating roof. Expansion and contraction of the ring can be provided for as the ring passes over shell irregularities or rivets by jointing narrow pieces of fabric into the ring or by crimping the shoes at intervals. The bottoms of the shoes extend below the liquid surface to confine the rim vapor space between the shoe and the floating deck.

The rim vapor space, which is bounded by the shoe, the rim of the floating deck, and the liquid surface, is sealed from the atmosphere by bolting or clamping a coated fabric, called the primary seal fabric, which extends from the shoe to the rim to form an "envelope". Two locations are used for attaching the primary seal fabric. The fabric is most commonly attached to the top of the shoe and the rim of the floating deck. To reduce the rim vapor space, the fabric can be attached to the shoe and the floating deck rim near the liquid surface. Rim vents can be used to relieve any excess pressure or vacuum in the vapor space.

A resilient filled seal can be mounted to eliminate the vapor space between the rim seal and liquid surface (liquid mounted) or to allow a vapor space between the rim seal and the liquid surface (vapor mounted). Both configurations are shown in Figures 7.1-6 and 7.1-7. Resilient filled seals work because of the expansion and contraction of a resilient material to maintain contact with the tank shell while accommodating varying annular rim space widths. These rim seals allow the roof to move up and down freely, without binding.

Resilient filled seals typically consist of a core of open-cell foam encapsulated in a coated fabric. The seals are attached to a mounting on the deck perimeter and extend around the deck circumference. Polyurethane-coated nylon fabric and polyurethane foam are commonly used materials. For emission control, it is important that the attachment of the seal to the deck and the radial seal joints be vapor-tight and that the seal be in substantial contact with the tank shell.

Wiper seals generally consist of a continuous annular blade of flexible material fastened to a mounting bracket on the deck perimeter that spans the annular rim space and contacts the tank shell. This type of seal is depicted in Figure 7.1-6. New tanks with wiper seals may have dual wipers, one mounted above the other. The mounting is such that the blade is flexed, and its elasticity provides a sealing pressure against the tank shell.

Wiper seals are vapor mounted; a vapor space exists between the liquid stock and the bottom of the seal. For emission control, it is important that the mounting be vapor-tight, that the seal extend around the circumference of the deck and that the blade be in substantial contact with the tank shell. Two types of materials are commonly used to make the wipers. One type consists of a cellular, elastomeric material tapered in cross section with the thicker portion at the mounting. Rubber is a commonly used material; urethane and cellular plastic are also available. All radial joints in the blade are joined. The second type of material that can be used is a foam core wrapped with a coated fabric. Polyurethane on nylon fabric and polyurethane foam are common materials. The core provides the flexibility and support, while the fabric provides the vapor barrier and wear surface.

A secondary seal may be used to provide some additional evaporative loss control over that achieved by the primary seal. Secondary seals can be either flexible wiper seals or resilient filled seals. For mechanical shoe primary seals, two configurations of secondary seals are available: shoe mounted and rim mounted, as shown in Figure 7.1-8. Rim mounted secondary seals are more effective in reducing losses than shoe mounted secondary seals because they cover the entire rim vapor space. For internal floating roof tanks, the secondary seal is mounted to an extended vertical rim plate, above the primary seal, as shown in Figure 7.1-8. However, for some floating roof tanks, using a secondary seal further limits the tank's operating capacity due to the need to keep the seal from interfering with fixed roof rafters or to keep the secondary seal in contact with the tank shell when the tank is filled.

The deck fitting losses from floating roof tanks can be explained by the same mechanisms as the rim seal losses. While the relative contribution of each mechanism to the total emissions from a given deck fitting is not known, emission factors were developed for individual deck fittings by testing, thereby accounting for the combined effect of all of the mechanisms.

Numerous fittings pass through or are attached to floating roof decks to accommodate structural support components or allow for operational functions. Internal floating roof deck fittings are typically of different configuration than those for external floating roof decks. Rather than having tall housings to avoid rainwater entry, internal floating roof deck fittings tend to have lower profile housings to minimize the potential for the fitting to contact the fixed roof when the tank is filled. Deck fittings can be a source of evaporative loss when they require openings in the deck. The most common components that require openings in the deck are described below.

1. <u>Access hatches</u>. An access hatch is an opening in the deck with a peripheral vertical well that is large enough to provide passage for workers and materials through the deck for construction or servicing. Attached to the opening is a removable cover that may be bolted and/or gasketed to reduce evaporative loss. On internal floating roof tanks with noncontact decks, the well should extend down into the liquid to seal off the vapor space below the noncontact deck. A typical access hatch is shown in Figure 7.1-9.

2. <u>Gauge-floats</u>. A gauge-float is used to indicate the level of liquid within the tank. The float rests on the liquid surface and is housed inside a well that is closed by a cover. The cover may be bolted

and/or gasketed to reduce evaporation loss. As with other similar deck penetrations, the well extends down into the liquid on noncontact decks in internal floating roof tanks. A typical gauge-float and well are shown in Figure 7.1-9.

3. <u>Gauge-hatch/sample ports</u>. A gauge-hatch/sample port consists of a pipe sleeve through the deck for hand-gauging or sampling of the stored liquid. The gauge-hatch/sample port is usually located beneath the gauger's platform, which is mounted on top of the tank shell. A cover may be attached to the top of the opening, and the cover may be equipped with a gasket to reduce evaporative losses. A cord may be attached to the cover so that the cover can be opened from the platform. Alternatively, the opening may be covered with a slit-fabric seal. A funnel may be mounted above the opening to guide a sampling device or gauge stick through the opening. A typical gauge-hatch/sample port is shown in Figure 7.1-9.

4. <u>Rim vents</u>. Rim vents are used on tanks equipped with a seal design that creates a vapor pocket in the seal and rim area, such as a mechanical shoe seal. A typical rim vent is shown in Figure 7.1-10. The vent is used to release any excess pressure that is present in the vapor space bounded by the primary-seal shoe and the floating roof rim and the primary seal fabric and the liquid level. Rim vents usually consist of weighted pallets that rest over the vent opening.

5. <u>Deck drains</u>. Currently two types of deck drains are in use (closed and open deck drains) to remove rainwater from the floating deck. Open deck drains can be either flush or overflow drains. Both types of open deck drains consist of a pipe that extends below the deck to allow the rainwater to drain into the stored liquid. Only open deck drains are subject to evaporative loss. Flush drains are flush with the deck surface. Overflow drains are elevated above the deck surface. Typical overflow and flush deck drains are shown in Figure 7.1-10. Overflow drains are used to limit the maximum amount of rainwater that can accumulate on the floating deck, providing emergency drainage of rainwater if necessary. Closed deck drains carry rainwater from the surface of the deck though a flexible hose or some other type of piping system that runs through the stored liquid prior to exiting the tank. The rainwater does not come in contact with the liquid, so no evaporative losses result. Overflow drains are usually used in conjunction with a closed drain system to carry rainwater outside the tank.

6. <u>Deck legs</u>. Deck legs are used to prevent damage to fittings underneath the deck and to allow for tank cleaning or repair, by holding the deck at a predetermined distance off the tank bottom. These supports consist of adjustable or fixed legs attached to the floating deck or hangers suspended from the fixed roof. For adjustable legs or hangers, the load-carrying element may pass through a well or sleeve into the deck. With noncontact decks, the well should extend into the liquid. Evaporative losses may occur in the annulus between the deck leg and its sleeve. A typical deck leg is shown in Figure 7.1-10.

7. <u>Unslotted guidepoles and wells</u>. A guidepole is an antirotational device that is fixed to the top and bottom of the tank, passing through a well in the floating roof. The guidepole is used to prevent adverse movement of the roof and thus damage to deck fittings and the rim seal system. In some cases, an unslotted guidepole is used for gauging purposes, but there is a potential for differences in the pressure, level, and composition of the liquid inside and outside of the guidepole. A typical guidepole and well are shown in Figure 7.1-11.

8. <u>Slotted (perforated) guidepoles and wells</u>. The function of the slotted guidepole is similar to the unslotted guidepole but also has additional features. Perforated guidepoles can be either slotted or drilled hole guidepoles. A typical slotted guidepole and well are shown in Figure 7.1-11. As shown in this figure,

the guide pole is slotted to allow stored liquid to enter. The same can be accomplished with drilled holes. The liquid entering the guidepole has the same composition as the remainder of the stored liquid, and is at the same liquid level as the liquid in the tank. Representative samples can therefore be collected from the slotted or drilled hole guidepole. Evaporative loss from the guidepole can be reduced by some combination of modifying the guidepole or well with the addition of gaskets, sleeves, or enclosures or placing a float inside the guidepole, as shown in Figures 7.1-11 and 7.1-22. Guidepoles are also referred to as gauge poles, gauge pipes, or stilling wells.

9. <u>Vacuum breakers</u>. A vacuum breaker equalizes the pressure of the vapor space across the deck as the deck is either being landed on or floated off its legs. A typical vacuum breaker is shown in Figure 7.1-10. As depicted in this figure, the vacuum breaker consists of a well with a cover. Attached to the underside of the cover is a guided leg long enough to contact the tank bottom as the floating deck approaches. When in contact with the tank bottom, the guided leg mechanically opens the breaker by lifting the cover off the well; otherwise, the cover closes the well. The closure may be gasketed or ungasketed. Because the purpose of the vacuum breaker is to allow the free exchange of air and/or vapor, the well does not extend appreciably below the deck. While vacuum breakers have historically tended to be of the leg-actuated design described above, they may also be vacuum actuated similar to the pressure/vacuum vent on a fixed roof tank such that they do not begin to open until the floating roof has actually landed. In some cases, this is achieved by replacing the rim vent described above with a pressure/vacuum vent.

Fittings typically used only on internal floating roof tanks include column wells, ladder wells, and stub drains.

1. <u>Columns and wells</u>. Some fixed-roof designs are normally supported from inside the tank by means of vertical columns, which necessarily penetrate an internal floating deck. (Some fixed roofs are entirely self-supporting from the perimeter of the roof and, therefore, have no interior support columns.) Column wells are similar to unslotted guide pole wells on external floating roofs. Columns are made of pipe with circular cross sections or of structural shapes with irregular cross sections (built-up). The number of columns varies with tank diameter, from a minimum of 1 to over 50 for very large diameter tanks. A typical fixed roof support column and well are shown in Figure 7.1-9.

The columns pass through deck openings via peripheral vertical wells. With noncontact decks, the well should extend down into the liquid stock. Generally, a closure device exists between the top of the well and the column. Several proprietary designs exist for this closure, including sliding covers and fabric sleeves, which must accommodate the movements of the deck relative to the column as the liquid level changes. A sliding cover rests on the upper rim of the column well (which is normally fixed to the deck) and bridges the gap or space between the column well and the column. The cover, which has a cutout, or opening, around the column slides vertically relative to the column as the deck raises and lowers. At the same time, the cover may slide horizontally relative to the rim of the well to accommodate out-of-plumbness of the column. A gasket around the rim of the well reduces emissions from this fitting. A flexible fabric sleeve seal between the rim of the well and the column (with a cutout or opening, to allow vertical motion of the seal relative to the columns) similarly accommodates limited horizontal motion of the deck relative to the column.

2. <u>Ladders and wells</u>. Some tanks are equipped with internal ladders that extend from a manhole in the fixed roof to the tank bottom. The deck opening through which the ladder passes is constructed

with similar design details and considerations to deck openings for column wells, as previously discussed. A typical ladder well is shown in Figure 7.1-12.

Tanks are sometimes equipped with a ladder-slotted guidepole combination, in which one or both legs of the ladder is a slotted pipe that serves as a guidepole for purposes such as level gauging and sampling. A ladder-slotted guidepole combination is shown in Figure 7.1-21 with a ladder sleeve to reduce emissions.

3. <u>Stub drains</u>. Bolted internal floating roof decks are typically equipped with stub drains to allow any stored product that may be on the deck surface to drain back to the underside of the deck. The drains are attached so that they are flush with the upper deck. Stub drains are approximately 1 inch in diameter and extend down into the product on noncontact decks. A typical flush stub drain is shown in Figure 7.1-10. Stub drains may be equipped with floating balls to reduce emissions. The floating ball acts as a check valve, in that it remains covering the stub drain unless liquid is present to lift it.

Deck seams in internal floating roof tanks are a source of emissions to the extent that these seams may not be completely vapor tight if the deck is not welded. A weld sealing a deck seam does not have to be structural (i.e., may be a seal weld) to constitute a welded deck seam for purposes of estimating emissions, but a deck seam that is bolted or otherwise mechanically fastened and sealed with elastomeric materials or chemical adhesives is not a welded seam. Generally, the same loss mechanisms for deck fittings apply to deck seams. The predominant mechanism depends on whether or not the deck is in contact with the stored liquid. The deck seam loss equation accounts for the effects of all contributing loss mechanisms.

7.1.3 Emission Estimation Procedures

The following section presents the emission estimation procedures for fixed roof, external floating roof, domed external floating roof, and internal floating roof tanks. These procedures are valid for all volatile organic liquids and chemical mixtures. It is important to note that in all the emission estimation procedures the physical properties of the vapor do not include the noncondensibles in the atmosphere but only refer to the volatile components of the stored liquid. For example, the vapor-phase molecular weight is determined from the weighted average of the evaporated components of the stored liquid and does not include the contribution of atmospheric gases such as nitrogen and oxygen. To aid in the emission estimation procedures, a list of variables with their corresponding definitions was developed and is presented in Table 7.1-1.

The factors presented in AP-42 are those that are currently available and have been reviewed and approved by the U. S. Environmental Protection Agency. As storage tank equipment vendors design new floating decks and equipment, new emission factors may be developed based on that equipment. If the new emission factors are reviewed and approved, the emission factors will be added to AP-42 during the next update.

The emission estimation procedures outlined in this chapter have been used as the basis for the development of a software program to estimate emissions from storage tanks. The software program entitled "TANKS" is available through the U. S. Environmental Protection Agency website. While this software does not address all of the scenarios described in this chapter, is known to have errors, and is no longer supported, it is still made available for historical purposes.

There are also commercially available storage tank emissions estimation software programs. Users of these programs are advised to understand the extent of agreement with AP-42 Chapter 7 calculation methodology and assume responsibility of the accuracy of the output as they have not been reviewed or approved by the EPA.

7.1.3.1 Routine Losses From Fixed Roof Tanks^{8-14,22}

The following equations, provided to estimate standing and working loss emissions, apply to tanks with vertical cylindrical shells and fixed roofs and to tanks with horizontal cylindrical shells. These tanks must be substantially liquid- and vapor-tight. The equations are not intended to be used in estimating losses from tanks which have air or other gases injected into the liquid, or which store unstable or boiling stocks or mixtures of hydrocarbons or petrochemicals for which the vapor pressure is not known or cannot be readily predicted. Tanks containing aqueous mixtures in which phase separation has occurred, resulting in a free layer of oil or other volatile materials floating on top of the water, should have emissions estimated on the basis of the properties of the free top layer.

Total routine losses from fixed roof tanks are equal to the sum of the standing loss and working loss:

$$L_{\rm T} = L_{\rm S} + L_{\rm W} \tag{1-1}$$

where:

7.1.3.1.1 Standing Loss

The standing loss, L_s , for a fixed roof tank refers to the loss of stock vapors as a result of tank vapor space breathing. Fixed roof tank standing losses can be estimated from Equation 1-2.

$$L_{s} = 365 V_{V} W_{V} K_{E} K_{s}$$
 (1-2)

where:

 $L_s = standing loss, lb/yr$

 V_V = vapor space volume, ft³, see Equation 1-3

 W_V = stock vapor density, lb/ft³

 K_E = vapor space expansion factor, per day

 K_S = vented vapor saturation factor, dimensionless

365 = constant, the number of daily events in a year, (days/year)

<u>Tank Vapor Space Volume, V_V </u> - The tank vapor space volume is calculated using the following equation:

$$V_{F} = \left(\frac{\pi}{4}D^{2}\right)H_{FO}$$
(1-3)

where:

 V_V = vapor space volume, ft³

D = tank diameter, ft, see Equation 1-14 for horizontal tanks

 H_{VO} = vapor space outage, ft, see Equation 1-16

The standing loss equation can be simplified by combining Equation 1-2 with Equation 1-3. The result is Equation 1-4.

$$L_{\rm S} = 365 K_E \left(\frac{\pi}{4} D^2\right) H_{\rm VO} K_{\rm S} W_{\rm F} \tag{1-4}$$

where:

 $L_S = standing loss, lb/yr$

- K_E = vapor space expansion factor, per day, see Equation 1-5, 1-12, or 1-13
- D = diameter, ft, see Equation 1-14 for horizontal tanks
- H_{VO} = vapor space outage, ft, see Equation 1-16; use $H_E/2$ from Equation 1-15 for horizontal tanks
- K_S = vented vapor saturation factor, dimensionless, see Equation 1-21
- W_V = stock vapor density, lb/ft³, see Equation 1-22
- 365 = constant, the number of daily events in a year, (days/year)

Vapor Space Expansion Factor, KE

The calculation of the vapor space expansion factor, K_E , depends upon the properties of the liquid in the tank and the breather vent settings, as shown in Equation 1-5. As shown in the equation, K_E is greater than zero. If K_E is less than zero, standing losses will not occur. In that K_E represents the fraction of vapors in the vapor space that are expelled by a given increase in temperature, a value of 1 would indicate that the entire vapor space has been expelled. Thus the value of K_E must be less than 1, in that it is not physically possible to expel more than 100% of what is present to begin with.

$$0 < K_E \le 1$$

$$K_E = \frac{\Delta T_V}{T_{LA}} + \frac{\Delta P_V - \Delta P_B}{P_A - P_{VA}}$$
(1-5)

where:

 ΔT_V = average daily vapor temperature range, °R; see Note 1

 ΔP_V = average daily vapor pressure range, psi; see Note 2

 ΔP_B = breather vent pressure setting range, psi; see Note 3

 $P_A =$ atmospheric pressure, psia

P_{VA} = vapor pressure at average daily liquid surface temperature, psia; see Notes 1 and 2 for Equation 1-22

 T_{LA} = average daily liquid surface temperature, °R; see Note 3 for Equation 1-22

Notes:

1. The average daily vapor temperature range, ΔT_V , refers to the daily temperature range of the tank vapor space averaged over all of the days in the given period of time, such as one year, and should

not be construed as being applicable to an individual day. The average daily vapor temperature range is calculated for an uninsulated tank using Equation 1-6.

$$\Delta T_V = \left(1 - \frac{0.8}{2.2 (H_S/D) + 1.9}\right) \Delta T_A + \frac{0.042 \propto_R I + 0.026 (H_S/D) \propto_S I}{2.2 (H_S/D) + 1.9}$$
(1-6)

where:

 ΔT_V = average daily vapor temperature range, °R

 $H_S =$ tank shell height, ft

D = tank diameter, ft,

 ΔT_A = average daily ambient temperature range, °R; see Note 4

 α_R = tank roof surface solar absorptance, dimensionless; see Table 7.1-6

 α_S = tank shell surface solar absorptance, dimensionless; see Table 7.1-6

I = average daily total insolation factor, $Btu/ft^2 d$; see Table 7.1-7.

API assigns a default value of $H_s/D=0.5$ and an assumption of $\alpha_R=\alpha_S$, resulting in the simplified equation shown below for an uninsulated tank:²²

$$\Delta T_{\rm V} = 0.7 \, \Delta T_{\rm A} + 0.02 \, \alpha \, \mathrm{I} \tag{1-7}$$

where:

 α = average tank surface solar absorptance, dimensionless

For purposes of estimating emissions, a storage tank should be deemed insulated only if the roof and shell are both sufficiently insulated so as to minimize heat exchange with ambient air. If only the shell is insulated, and not the roof, the temperature equations are independent of H_s/D . Also, there likely will be sufficient heat exchange through the roof such that Equation 1-7 would be applicable.

A more accurate method of accounting for the average daily vapor temperature range, ΔT_V , in partially insulated scenarios is given below. When the tank shell is insulated but the tank roof is not, heat gain to the tank from insolation is almost entirely through the tank roof and thus the liquid surface temperature is not sensitive to H_s/D.

$$\Delta T_{\rm V} = 0.6 \,\Delta T_{\rm A} + 0.02 \,\alpha_{\rm R} \,\mathrm{I} \tag{1-8}$$

In the case of a fully insulated tank maintained at constant temperature, the average daily vapor temperature range, ΔT_V , should be taken as zero. This assumption that ΔT_V is equal to zero addresses only temperature differentials resulting from the diurnal ambient temperature cycle. In the case of cyclic heating of the bulk liquid, see Section 7.1.3.8.4.

2. The average daily vapor pressure range, ΔP_V , refers to the daily vapor pressure range at the liquid surface temperature averaged over all of the days in the given period of time, such as one year, and should not be construed as being applicable to an individual day. The average daily vapor pressure range can be calculated using the following equation:

$$\Delta \mathbf{P}_{\mathrm{V}} = \mathbf{P}_{\mathrm{VX}} - \mathbf{P}_{\mathrm{VN}} \tag{1-9}$$

where:

 ΔP_V = average daily vapor pressure range, psia

 P_{VX} = vapor pressure at the average daily maximum liquid surface temperature, psia; see Note 5 P_{VN} = vapor pressure at the average daily minimum liquid surface temperature, psia; see Note 5

See Section 7.1.6.1 for a more approximate equation for ΔP_V that was used historically, but which is no longer recommended.

In the case of a fully insulated tank maintained at constant temperature, the average daily vapor pressure range, ΔP_V , should be taken as zero, as discussed for the vapor temperature range in Note 1.

3. The breather vent pressure setting range, ΔP_B , is calculated using the following equation:

$$\Delta \mathbf{P}_{\mathrm{B}} = \mathbf{P}_{\mathrm{BP}} - \mathbf{P}_{\mathrm{BV}} \tag{1-10}$$

where:

 ΔP_{B} = breather vent pressure setting range, psig

 P_{BP} = breather vent pressure setting, psig

 $P_{\rm BV}$ = breather vent vacuum setting, psig

If specific information on the breather vent pressure setting and vacuum setting is not available, assume 0.03 psig for P_{BP} and -0.03 psig for P_{BV} as typical values. If the fixed roof tank is of bolted or riveted construction in which the roof or shell plates are not vapor tight, assume that $\Delta P_B = 0$, even if a breather vent is used.

4. The average daily ambient temperature range, ΔT_A , refers to the daily ambient temperature range averaged over all of the days in the given period of time, such as one year, and should not be construed as being applicable to an individual day. The average daily ambient temperature range is calculated using the following equation:

$$\Delta T_A = T_{AX} - T_{AN} \tag{1-11}$$

where:

 ΔT_A = average daily ambient temperature range, °R

 T_{AX} = average daily maximum ambient temperature, °R

 T_{AN} = average daily minimum ambient temperature, °R

Table 7.1-7 gives historical values of T_{AX} and T_{AN} in degrees Fahrenheit for selected cities in the United States. These values are converted to degrees Rankine by adding 459.7.

5. The vapor pressures associated with the average daily maximum and minimum liquid surface temperatures, P_{VX} and P_{VN} , respectively, are calculated by substituting the corresponding temperatures, T_{LX} and T_{LN} , into Equation 1-25 or 1-26 after converting the temperatures to the units indicated for the respective equation. If T_{LX} and T_{LN} are unknown, Figure 7.1-17 can be used to calculate their values. In

the case of a fully insulated tank maintained at constant temperature, the average daily vapor pressure range, ΔP_V , should be taken as zero.

If the liquid stored in the fixed roof tank has a true vapor pressure less than 0.1 psia and the tank breather vent settings are not greater than ± 0.03 psig, Equation 1-12 or Equation 1-13 may be used with an acceptable loss in accuracy.

If the tank location and tank color and condition are known, K_E may be calculated using the following equation in lieu of Equation 1-5:

$$K_{\rm E} = 0.0018 \,\Delta \,\underline{\mathrm{T}_{\rm V}} = 0.0018 \left[0.7 \left(\mathrm{T}_{\rm AX} - \mathrm{T}_{\rm AN} \right) + 0.02 \,\alpha \,\mathrm{I} \right]$$
(1-12)

where:

 K_E = vapor space expansion factor, per day

 ΔT_V = average daily vapor temperature range, °R

 T_{AX} = average daily maximum ambient temperature, °R

 T_{AN} = average daily minimum ambient temperature, °R

 α = tank surface solar absorptance, dimensionless

I = average daily total insolation on a horizontal surface, $Btu/(ft^2 day)$

 $0.0018 = \text{ constant, } (^{\circ}R)^{-1}$

0.7 = constant, dimensionless

 $0.02 = \text{ constant}, (^{\circ}R \text{ ft}^2 \text{ day})/\text{Btu}$

Average daily maximum and minimum ambient temperatures and average daily total insolation can be determined from historical meteorological data for the location or may be obtained from historical meteorological data for a nearby location. Historical meteorological data for selected locations are given in Table 7.1-7, where values of T_{AX} and T_{AN} are given in degrees Fahrenheit. These values are converted to degrees Rankine by adding 459.7.

If the tank location is unknown, a value of K_E can be calculated using typical meteorological conditions for the lower 48 states. The typical value for daily insolation is 1,370 Btu/(ft² day), the average daily range of ambient temperature is 21°R, and the tank surface solar absorptance is 0.25 for white paint in average condition. Substituting these values into Equation 1-12 results in a value of 0.04, as shown in Equation 1-13.

$$K_{\rm E} = 0.04$$
 (1-13)

Diameter

For vertical tanks, the diameter is straightforward. If a user needs to estimate emissions from a horizontal fixed roof tank, some of the tank parameters can be modified before using the vertical tank emission estimating equations. First, by assuming that the tank is one-half filled, the surface area of the liquid in the tank is approximately equal to the length of the tank times the diameter of the tank. Next, assume that this area represents a circle, i.e., that the liquid is an upright cylinder. Therefore, the effective diameter, D_E , is then equal to:

$$D_E = \sqrt{\frac{LD}{\frac{\pi}{4}}}$$
(1-14)

.....

where:

 D_E = effective tank diameter, ft

L = length of the horizontal tank, ft (for tanks with rounded ends, use the overall length)

D = diameter of a vertical cross-section of the horizontal tank, ft

By assuming the volume of the horizontal tank to be approximately equal to the cross-sectional area of the tank times the length of the tank, an effective height, H_E , of an equivalent upright cylinder may be calculated as:

$$H_E = -\frac{\pi}{4}D \tag{1-15}$$

 D_E should be used in place of D in Equation 1-4 for calculating the standing loss (or in Equation 1-3, if calculating the tank vapor space volume). One-half of the effective height, H_E , should be used as the vapor space outage, H_{VO} , in these equations. This method yields only a very approximate value for emissions from horizontal storage tanks. For underground horizontal tanks, assume that no breathing or standing losses occur ($L_S = 0$) because the insulating nature of the earth limits the diurnal temperature change. No modifications to the working loss equation are necessary for either aboveground or underground horizontal tanks. However, standing losses from underground gasoline tanks, which can experience relatively fast vapor growth after the ingestion of air and dilution of the headspace, are addressed in Section 5.2 of AP-42.

Vapor Space Outage

The vapor space outage, H_{VO} is the height of a cylinder of tank diameter, D, whose volume is equivalent to the vapor space volume of a fixed roof tank, including the volume under the cone or dome roof. The vapor space outage, H_{VO} , is estimated from:

$$H_{VO} = H_S - H_L + H_{RO}$$

$$(1-16)$$

where:

 H_{VO} = vapor space outage, ft; use $H_E/2$ from Equation 1-15 for horizontal tanks

 $H_S =$ tank shell height, ft

- H_L = liquid height, ft; typically assumed to be at the half-full level, unless known to be maintained at some other level
- H_{RO} = roof outage, ft; see Note 1 for a cone roof or Note 2 for a dome roof

Notes:

1. For a cone roof, the roof outage, H_{RO} , is calculated as follows:

$$H_{RO} = (1/3) H_R$$
 (1-17)

where:

 H_{RO} = roof outage (or shell height equivalent to the volume contained under the roof), ft

 $H_R = tank roof height, ft$

$$H_{\mathbb{R}} = S_{\mathbb{R}} R_{S} \tag{1-18}$$

where: $S_R = tank$ cone roof slope, ft/ft; if unknown, a standard value of 0.0625 is used $R_S = tank$ shell radius, ft

2. For a dome roof, the roof outage, H_{RO} , is calculated as follows:

$$H_{RO} = H_R \left[\frac{1}{2} + \frac{1}{6} \left[\frac{H_R}{R_s} \right]^2 \right]$$
(1-19)

where:

$$H_{R} = R_{R} - \left(R_{R}^{2} - R_{S}^{2}\right)^{0.5}$$
(1-20)

 H_R = tank roof height, ft R_R = tank dome roof radius, ft R_S = tank shell radius, ft

The value of R_R usually ranges from 0.8D - 1.2D, where $D = 2 R_S$. If R_R is unknown, the tank diameter is used in its place. If the tank diameter is used as the value for R_R , Equations 1-19 and 1-20 reduce to $H_{RO} = 0.137 R_S$ and $H_R = 0.268 R_S$.

Vented Vapor Saturation Factor, Ks

The vented vapor saturation factor, K_s, is calculated using the following equation:

$$K_{S} = \frac{1}{1 + 0.053P_{VA}H_{VO}} \tag{1-21}$$

where:

- K_{S} = vented vapor saturation factor, dimensionless
- P_{VA} = vapor pressure at average daily liquid surface temperature, psia; see Notes 1 and 2 to Equation 1-22
- H_{VO} = vapor space outage, ft, see Equation 1-16

 $0.053 = \text{constant}, (\text{psia-ft})^{-1}$

<u>Stock Vapor Density, W_V </u> - The density of the vapor is calculated using the following equation:

$$W_V = \frac{M_V P_{VA}}{R T_V} \tag{1-22}$$

where:

 $W_V = vapor density, lb/ft^3$ $M_V = vapor molecular weight, lb/lb-mole; see Note 1$

R = the ideal gas constant, 10.731 psia ft³/lb-mole °R

 $P_{VA} =$ vapor pressure at average daily liquid surface temperature, psia; see Notes 1 and 2

 T_V = average vapor temperature, °R; see Note 6

Notes:

1. The molecular weight of the vapor, M_V , can be determined from Table 7.1-2 and 7.1-3 for selected petroleum liquids and selected petrochemicals, respectively, or by analyzing vapor samples. Where mixtures of organic liquids are stored in a tank, M_V can be calculated from the liquid composition. The molecular weight of the <u>vapor</u>, M_V , is equal to the sum of the molecular weight, M_i , multiplied by the <u>vapor</u> mole fraction, y_i , for each component. The <u>vapor</u> mole fraction is equal to the partial pressure of component i divided by the total vapor pressure. The partial pressure of component i is equal to the true vapor pressure of component i (P) multiplied by the <u>liquid</u> mole fraction, (x_i) . Therefore,

$$M_{V} = \sum M_{i} y_{i} = \sum M_{i} \left(\frac{Px_{i}}{P_{VA}}\right)$$
(1-23)

where:

P_{VA}, total vapor pressure of the stored liquid, by Raoult's Law³⁰, is:

$$P_{VA} = \sum P x_i \tag{1-24}$$

For more detailed information on Raoult's Law, please refer to Section 7.1.4. Frequently, however, the vapor pressure is not known for each component in a mixture. For more guidance on determining the total vapor pressure at a given temperature (*i.e.*, the true vapor pressure), see Note 2 below.

2. True vapor pressure is defined in various ways for different purposes within the industry, such as "bubble point" for transportation specifications, but for purposes of these emissions estimating methodologies it is the sum of the equilibrium partial pressures exerted by the components of a volatile organic liquid, as shown in Equation 1-24. True vapor pressure may be determined by ASTM D 2879 (or ASTM D 6377 for crude oils with a true vapor pressure greater than 3.6 psia) or obtained from standard reference texts. For certain petroleum liquids, true vapor pressure may be predicted from Reid vapor pressure, which is the absolute vapor pressure of volatile crude oil and volatile non-viscous petroleum

(1) 1)

liquids, as determined by ASTM D 323. ASTM D 5191 may be used as an alternative method for determining Reid vapor pressure for petroleum products, however, it should not be used for crude oils.

Caution should be exercised when considering ASTM D 2879 for determining the true vapor pressure of certain types of mixtures. Vapor pressure is sensitive to the lightest components in a mixture, and the de-gassing step in ASTM D 2879 can remove lighter fractions from mixtures such as No. 6 fuel oil if it is not done with care (*i.e.* at an appropriately low pressure and temperature). In addition, any dewatering of a sample prior to measuring its vapor pressure must be done using a technique that has been demonstrated to not remove the lightest organic compounds in the mixture. Alternatives to the method may be developed after publication of this chapter.

True vapor pressure can be determined for crude oils from Reid vapor pressure using Figures 7.1-13a and 7.1-13b. However, the nomograph in Figure 7.1-13a and the correlation equation in Figure 7.1-13b for crude oil are known to have an upward bias, and thus use of ASTM D 6377 is more accurate for crude oils with a true vapor pressure greater than 3.6 psia. ASTM D 6377 may be used to directly measure true vapor pressure at a given temperature. In order to utilize ASTM D 6377 to predict true vapor pressure values over a range of temperatures, the method should be applied at multiple temperatures. A regression of the log-transformed temperature versus vapor pressure data thus obtained may be performed to obtain A and B constants for use in Equation 1-25. In order to determine true vapor pressure for purposes of estimating emissions of volatile organic compounds, ASTM D 6377 should be performed using a vapor-to-liquid ratio of 4:1, which is expressed in the method as VPCR₄.

For light refined stocks (gasolines and naphthas) for which the Reid vapor pressure and distillation slope are known, Figures 7.1-14a and 7.1-14b can be used. For refined stocks with Reid vapor pressure below the 1 psi applicability limit of Figures 7.1-14a and 7.1-14b, true vapor pressure can be determined using ASTM D 2879. In order to use Figures 7.1-13a, 7.1-13b, 7.1-14a, or 7.1-14b, the stored liquid surface temperature, T_{LA} , must be determined in degrees Fahrenheit. See Note 3 to determine T_{LA} .

Alternatively, true vapor pressure for selected petroleum liquid stocks, at the stored liquid surface temperature, can be determined using the following equation:

$$P_{VA} = \exp\left[A - \left(\frac{B}{T_{LA}}\right)\right] \tag{1-25}$$

where:

exp = exponential function

A = constant in the vapor pressure equation, dimensionless

B = constant in the vapor pressure equation, °R

 T_{LA} = average daily liquid surface temperature, °R; see Note 3

 $P_{VA} =$ true vapor pressure, psia

For selected petroleum liquid stocks, physical property data including vapor pressure constants A and B for use in Equation 1-25 are presented in Table 7.1-2. For refined petroleum stocks with Reid vapor pressure within the limits specified in the scope of ASTM D 323, the constants A and B can be calculated from the equations presented in Figure 7.1-15 and the distillation slopes presented in Table 7.1-2. For

crude oil stocks, the constants A and B can be calculated from Reid vapor pressure using the equations presented in Figure 7.1-16. However, the equations in Figure 7.1-16 are known to have an upward bias²⁹, and thus use of ASTM D 6377 is more accurate. Note that in Equation 1-25, T_{LA} is determined in degrees Rankine instead of degrees Fahrenheit.

The true vapor pressure of organic liquids at the stored liquid temperature can also be estimated by Antoine's equation:

$$\log P_{VA} = A - \left(\frac{B}{T_{LA} + C}\right) \tag{1-26}$$

where:

 $\log = \log 10$

A = constant in vapor pressure equation, dimensionless

B = constant in vapor pressure equation, °C

C = constant in vapor pressure equation, °C

 T_{LA} = average daily liquid surface temperature, °C

 P_{VA} = vapor pressure at average liquid surface temperature, mm Hg

For selected pure chemicals, the values for the constants A, B, and C are listed in Table 7.1-3. Note that in Equation 1-26, T_{LA} is determined in degrees Celsius instead of degrees Rankine. Also, in Equation 1-26, P_{VA} is determined in mm of Hg rather than psia (760 mm Hg = 14.7 psia).

More rigorous thermodynamic equations of state are available in process simulation software packages. The use of such programs may be preferable in determining the true vapor pressure of mixtures that are not adequately characterized by Raoult's Law.

3. The average daily liquid surface temperature, T_{LA} , refers to the liquid surface temperature averaged over all of the days in the given period of time, such as one year, and should not be construed as being applicable to an individual day. While the accepted methodology is to use the average temperature, this approach introduces a bias in that the true vapor pressure, P_{VA} , is a non-linear function of temperature. However, the greater accuracy that would be achieved by accounting for this logarithmic function is not warranted, given the associated computational burden. The average daily liquid surface temperature is calculated for an uninsulated fixed roof tank using Equation 1-27.

$$\begin{split} T_{LA} = & \left(0.5 - \frac{0.8}{4.4(H_S/D) + 3.8}\right) T_{AA} + \left(0.5 + \frac{0.8}{4.4(H_S/D) + 3.8}\right) T_B \\ & + \frac{0.021 \propto_R I + 0.013(H_S/D) \propto_S I}{4.4(H_S/D) + 3.8} \end{split}$$

(1-27)

where:

 T_{LA} = average daily liquid surface temperature, °R

 $H_{S} = tank shell height, ft$

D = tank diameter, ft,

 T_{AA} = average daily ambient temperature, °R; see Note 4

 $T_B =$ liquid bulk temperature, °R; see Note 5

- α_R = tank roof surface solar absorptance, dimensionless; see Table 7.1-6
- $\alpha_{\rm S}$ = tank shell surface solar absorptance, dimensionless; see Table 7.1-6
- I = average daily total insolation factor, $Btu/(ft^2 day)$; see Table 7.1-7

API assigns a default value of $H_s/D = 0.5$ and an assumption of $\alpha_R = \alpha_S$, resulting in the simplified equation shown below for an uninsulated fixed roof tank:²²

$$T_{LA} = 0.4T_{AA} + 0.6T_{B} + 0.005 \alpha I$$
(1-28)

where:

 α = average tank surface solar absorptance, dimensionless

Equation 1-27 and Equation 1-28 should not be used to estimate liquid surface temperature for insulated tanks. In the case of fully insulated tanks, the average liquid surface temperature should be assumed to equal the average liquid bulk temperature (see Note 5). For purposes of estimating emissions, a storage tank should be deemed insulated only if the roof and shell are both fully insulated so as to minimize heat exchange with ambient air. If only the shell is insulated, and not the roof, there likely will be sufficient heat exchange through the roof such that Equation 1-28 would be applicable.

A more accurate method of estimating the average liquid surface temperature, T_{LA} , in partially insulated fixed roof tanks is given below. When the tank shell is insulated but the tank roof is not, heat gain to the tank from insolation is almost entirely through the tank roof and thus the liquid surface temperature is not sensitive to H_s/D .

$$T_{LA} = 0.3 T_{AA} + 0.7 T_{B} + 0.005 \alpha_{R} I$$
(1-29)

If T_{LA} is used to calculate P_{VA} from Figures 7.1-13a, 7.1-13b, 7.1-14a, or 7.1-14b, T_{LA} must be converted from degrees Rankine to degrees Fahrenheit (°F = °R – 459.7). If T_{LA} is used to calculate P_{VA} from Equation 1-26, T_{LA} must be converted from degrees Rankine to degrees Celsius (°C = [°R – 491.7]/1.8).

4. The average daily ambient temperature, T_{AA} , is calculated using the following equation:

$$T_{AA} = \left(\frac{T_{AX} + T_{AN}}{2}\right) \tag{1-30}$$

where:

 T_{AA} = average daily ambient temperature, °R

 T_{AX} = average daily maximum ambient temperature, °R

 T_{AN} = average daily minimum ambient temperature, °R

Table 7.1-7 gives historical values of T_{AX} and T_{AN} in degrees Fahrenheit for selected U.S. cities. These values are converted to degrees Rankine by adding 459.7.

5. The liquid bulk temperature, T_B , should preferably be based on measurements or estimated from process knowledge. For uninsulated fixed roof tanks known to be in approximate equilibrium with

ambient air, heat gain to the bulk liquid from insolation is almost entirely through the tank shell; thus the liquid bulk temperature is not sensitive to H_s/D and may be calculated using the following equation:

$$T_{\rm B} = T_{\rm AA} + 0.003 \ \alpha_{\rm S} \, \mathrm{I} \tag{1-31}$$

where:

 $T_B =$ liquid bulk temperature, °R

 T_{AA} = average daily ambient temperature, °R, as calculated in Note 4

 $\alpha_{\rm S}$ = tank shell surface solar absorptance, dimensionless; see Table 7.1-6

I = average daily total insolation factor, Btu/(ft² day); see Table 7.1-7.

6. The average vapor temperature, T_V , for an uninsulated tank may be calculated using the following equation:

$$T_{V} = \frac{[2.2 (H_{S}/D)+1.1] T_{AA} + 0.8 T_{B} + 0.021 \alpha_{R}I + 0.013 (H_{S}/D) \alpha_{S}I}{2.2 (H_{S}/D) + 1.9}$$
(1-32)

where:

 $H_s = tank shell height, ft$

D = tank diameter, ft,

 T_{AA} = average daily ambient temperature, °R

 $T_B =$ liquid bulk temperature, °R

 α_R = tank roof surface solar absorptance, dimensionless

 α_{s} = tank shell surface solar absorptance, dimensionless

I = average daily total insolation factor, Btu/(ft² day).

API assigns a default value of $H_s/D = 0.5$ and an assumption of $\alpha_R = \alpha_S$, resulting in the simplified equation shown below for an uninsulated tank:²²

$$T_{\rm V} = 0.7T_{\rm AA} + 0.3T_{\rm B} + 0.009 \,\alpha \, I \tag{1-33}$$

where:

 α = average tank surface solar absorptance, dimensionless

When the shell is insulated, but not the roof, the temperature equations are independent of H_s/D.

$$T_{\rm V} = 0.6T_{\rm AA} + 0.4T_{\rm B} + 0.01 \ \alpha_{\rm R} \, \mathrm{I} \tag{1-34}$$

When the tank shell and roof are fully insulated, the temperatures of the vapor space and the liquid surface are taken as equal to the temperature of the bulk liquid.

7.1.3.1.2 Working Loss

The fixed roof tank working loss, L_W, refers to the loss of stock vapors as a result of tank filling operations. Fixed roof tank working losses can be estimated from:

$$L_{W} = V_Q K_N K_P W_V K_B$$
(1-35)

where:

 $L_W =$ working loss, lb/yr

 V_Q = net working loss throughput, ft³/yr, see Note 1

 K_N = working loss turnover (saturation) factor, dimensionless

for turnovers > 36, $K_N = (180 + N)/6N$

for turnovers \leq 36, K_N = 1

for tanks that are vapor balanced and tanks in which flashing occurs, $K_N = 1$ regardless of the number of turnovers; further adjustment of K_N may be appropriate in the case of splash loading into a tank.

N = number of turnovers per year, dimensionless:

$$N = \Sigma H_{QI} / (H_{LX} - H_{LN})$$
(1-50)

 ΣH_{QI} = the annual sum of the increases in liquid level, ft/yr

If ΣH_{QI} is unknown, it can be estimated from pump utilization records. Over the course of a year, the sum of increases in liquid level, ΣH_{QI} , and the sum of decreases in liquid level, ΣH_{QD} , will be approximately the same. Alternatively, ΣH_{QI} may be approximated as follows:

$$\Sigma H_{QI} = (5.614 \text{ Q}) / ((\pi/4) \text{ D}^2)$$
(1-37)

5.614 = the conversion of barrels to cubic feet, ft^3/bbl

Q = annual net throughput, bbl/yr

For horizontal tanks, use D_E (Equation 1-14) in place of D in Equation 1-37

 H_{LX} = maximum liquid height, ft

If the maximum liquid height is unknown, for vertical tanks use one foot less than the shell height and for horizontal tanks use $(\pi/4)$ D where D is the diameter of a vertical cross-section of the horizontal tank

- H_{LN} = minimum liquid height, ft
 If the minimum liquid height is unknown, for vertical tanks use 1 and for horizontal tanks use 0
 K_P = working loss product factor, dimensionless
 - for crude oils, $K_P = 0.75$; adjustment of K_P may be appropriate in the case of splash loading into a tank for all other organic liquids, $K_P = 1$
- $W_V =$ vapor density, lb/ft^3 , see Equation 1-22
- K_B = vent setting correction factor, dimensionless, see Note 2 for open vents and for a vent setting range up to ± 0.03 psig, $K_B = 1$

1. Net Working Loss Throughput.

The net working loss throughput, V_Q , is the volume associated with increases in the liquid level, and is calculated as follows:

(1 26)

$$V_Q = (\Sigma H_{QI})(\pi/4) D^2$$

(1-38)

where:

 ΣH_{QI} = the annual sum of the increases in liquid level, ft/yr

 D_E should be used for horizontal tanks in place of D in Equation 1-38.

If ΣH_{QI} is unknown, ΣH_{QI} can be estimated from pump utilization records. Over the course of a year, the sum of increases in liquid level, ΣH_{QI} , and the sum of decreases in liquid level, ΣH_{QD} , will be approximately the same. Alternatively, V_Q may be approximated as follows:

$$V_Q = 5.614 Q$$
 (1-39)

where:

5.614 = the conversion of barrels to cubic feet, ft³/bbl

Q = annual net throughput, bbl/yr

Use of gross throughput to approximate the sum of increases in liquid level will significantly overstate emissions if pumping in and pumping out take place at the same time. However, use of gross throughput is still allowed, since it is clearly a conservative estimate of emissions.

2. Vent Setting Correction Factor

When the breather vent settings are greater than the typical values of \pm 0.03 psig, and the condition expressed in Equation 1-40 is met, a vent setting correction factor, K_B, must be determined using Equation 1-41. This value of K_B will be used in Equation 1-35 to calculate working losses.

When:

$$K_N \left[\frac{P_{BP} + P_A}{P_I + P_A} \right] > 1.0$$

Then:

$$K_{B} = \begin{bmatrix} \frac{P_{I} + P_{A}}{K_{N}} - P_{VA} \\ \hline P_{BP} + P_{A} - P_{VA} \end{bmatrix}$$

where:

 K_B = vent setting correction factor, dimensionless

- P_I = pressure of the vapor space at normal operating conditions, psig P_I is an actual pressure reading (the gauge pressure). If the tank is held at atmospheric pressure (not held under a vacuum or at a steady pressure) P_I would be 0.
- $P_A =$ atmospheric pressure, psia

(1-40)

(1-41)

- K_N = working loss turnover (saturation) factor (dimensionless), see Equation 1-35 P_{VA} = vapor pressure at the average daily liquid surface temperature, psia; see Notes 1 and 2 to Equation 1-22
- P_{BP} = breather vent pressure setting, psig.

See Section 7.1.6.2 for a more approximate equation for fixed roof tank working loss that was used historically, but which is no longer recommended.

SPECIATE 5.0 DATABASE

PROFILE NAME: Gasoline Headspace Vapor using 0% Ethanol - Composite Profile provided by EPA OTAQ

TEST METHOD: Canisters containing headspace vapor samples of gasoline were analyzed.

PROFILE CODE	PROFILE TYPE	NAME	CAS	HAP?	WEIGHT PERCENT	ANALYTICAL METHOD	SPEC MW	MOLECULAR FORMULA	QUALITY	CONTROLS	PROFILE DATE	TEST YEAR	CATEGORY LEVEL 1 Generation Mechanism	CATEGORY LEVEL 2 Sector Equipment	CATEGORY LEVEL 3 Fuel Product
8762	GAS	Benzene	71-43-2	Yes	0.35	GC-FID	78.11184	C6H6	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8762	GAS	N-hexane	110-54-3	Yes	1.07	GC-FID	86.17536	C6H14	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8762	GAS	Toluene	108-88-3	Yes	3.31	GC-FID	92.13842	C7H8	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8762	GAS	Xylene (o, m, & p)	95-47-6; 108 38-3; 106-42 3	Yes	0.58	GC-FID	106.165	C8H10	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8762	GAS	Ethylbenzene	100-41-4	Yes	0.15	GC-FID	106.165	C8H10	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8762	GAS	2,2,4-trimethylpentane	540-84-1	Yes	5.21	GC-FID	114.22852	C8H18	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline

SPECIATE 5.0 DATABASE

PROFILE NAME: Gasoline Headspace Vapor using 10% Ethanol - Composite Profile provided by EPA OTAQ

TEST METHOD: Canisters containing headspace vapor samples of gasoline were analyzed.

PROFILE CODE	PROFILE TYPE	NAME	CAS	HAP?	WEIGHT PERCENT	ANALYTICAL METHOD	SPEC MW	MOLECULAR FORMULA	QUALITY	CONTROLS	PROFILE DATE		CATEGORY LEVEL 1 Generation Mechanism	CATEGORY LEVEL 2 Sector Equipment	CATEGORY LEVEL 3 Fuel Product
8763	GAS	Benzene	71-43-2	Yes	0.30	GC-FID	78.11184	C6H6	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8763	GAS	N-hexane	110-54-3	Yes	0.98	GC-FID	86.17536	C6H14	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8763	GAS	Toluene	108-88-3	Yes	3.59	GC-FID	92.13842	C7H8	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8763	GAS	Xylene (o, m, & p)	95-47-6; 108-38-3; 106-42-3	Yes	0.69	GC-FID	106.165	C8H10	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8763	GAS	Ethylbenzene	100-41-4	Yes	0.18	GC-FID	106.165	C8H10	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline
8763	GAS	2,2,4-trimethylpentane	540-84-1	Yes	5.40	GC-FID	114.22852	C8H18	А	Uncontrolled	10/2/2009	2009	Volatilization	Mobile	Gasoline

Section 7

Information Used to Determine Emissions

Boilers

- AP-42 Table 1.5-1
- Propane sulfur content references
- AP-42 Tables 1.4-3 and 1.4-4
- 40 CFR 98, Subpart A, Table A-1 (not repeated)
- 40 CFR 98, Subpart C, Tables C-1 and C-2 (not repeated)

Table 1.5-1. EMISSION FACTORS FOR LPG COMBUSTION^a

		ssion Factor) ³ gal)	Propane Emission Factor (lb/10 ³ gal)		
Pollutant	Industrial Boilers ^b (SCC 1-02-010-01)	Commercial Boilers ^c (SCC 1-03-010-01)	Industrial Boilers ^b (SCC 1-02-010-02)	Commercial Boilers ^e (SCC 1-03-010-02)	
PM, Filterable ^d	0.2	0.2	0.2	0.2	
PM, Condensable	0.6	0.6	0.5	0.5	
PM, Total	0.8	0.8	0.7	0.7	
SO ₂ ^e	0.098	0.09S	0.10S	0.10S	
NO_x^{f}	15	15	13	13	
N_2O^g	0.9	0.9	0.9	0.9	
$\mathrm{CO}_2^{\mathrm{h,j}}$	14,300	14,300	12,500	12,500	
СО	8.4	8.4	7.5	7.5	
TOC	1.1	1.1	1.0	1.0	
CH_4^{k}	0.2	0.2	0.2	0.2	

EMISSION FACTOR RATING: E

^a Assumes PM, CO, and TOC emissions are the same, on a heat input basis, as for natural gas combustion. Use heat contents of 91.5 x 10⁶ Btu/10³ gallon for propane, 102 x 10⁶ Btu/10³ gallon for butane, 1020 x 10⁶ Btu/10⁶ scf for methane when calculating an equivalent heat input basis. For example, the equation for converting from methane's emissions factors to propane's emissions factors is as follows: lb pollutant/10³ gallons of propane = (lb pollutant /10⁶ ft³ methane) * (91.5 x 10⁶ Btu/10³ gallons of propane) / (1020 x 10⁶ Btu/10⁶ scf of methane). The NO_x emission factors have been multiplied by a correction factor of 1.5, which is the approximate ratio of propane/butane NO_x emissions to natural gas NO_x emissions. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12. SCC = Source Classification Code.

- ^b Heat input capacities generally between 10 and 100 million Btu/hour.
- ^c Heat input capacities generally between 0.3 and 10 million Btu/hour.

^d Filterable particulate matter (PM) is that PM collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train. For natural gas, a fuel with similar combustion characteristics, all PM is less than 10 μm in aerodynamic equivalent diameter (PM-10).

- ^e S equals the sulfur content expressed in gr/100 ft³ gas vapor. For example, if the butane sulfur content is 0.18 gr/100 ft³, the emission factor would be (0.09 x 0.18) = 0.016 lb of SO₂/10³ gal butane burned.
- ^f Expressed as NO₂.
- ^g Reference 12.
- ^h Assuming 99.5% conversion of fuel carbon to CO₂.
- ^j EMISSION FACTOR RATING = C.
- ^k Reference 13.

V

Frequently Asked Questions

DOING BUSINESS

Public Records Request

Fuel Heat Content: How many Btu's are there in a therm?

Fuel Heating Value Conversion: How do I convert from Lower Heating Value (LHV) to Higher Heating Value (HHV) based emission factors?

Sulfur Specs - Natural Gas: What are the sulfur specifications for PUC Quality natural gas?

Sulfur Specs - Propane: What are the sulfur specifications for propane?

Boiler Rating Conversion: How do I convert a boiler rating from units of boiler horsepower (bhp) to heat input (lb/MMBtu)?

Fuel Heat Content:

Q: How many Btus are there in a therm?

A: There are 100,000 British Thermal Units ("Btus") per therm. A therm is a unit of gross heating value.

A TOP

Fuel Heating Value Conversion

Frequently Asked Questions | Santa Barbara County Air Pollution Control District

Q: How do I convert from Lower Heating Value (LHV) to Higher Heating Value (HHV) based emission factors?

A: For gaseous fuels multiply the LHV value by 1.10 and for liquid fuels multiply the LHV value by 1.06.

A TOP

Sulfur Specs - Natural Gas

Q: What are the sulfur specifications for PUC Quality natural gas?

A: The Public Utilities Commission of the State of California has issued General Order 58-A titled "Standards For Gas Service In The State of California" (last revised April 12, 1989). Title 7 (Purity of Gas) of the General Order specifies hydrogen sulfide and total sulfur standards for any gas supplied by a utility. Section (a) limits hydrogen sulfide to 0.25 grain per 100 standard cubic feet. Section (b) limits total sulfur to 5 grains per 100 standard cubic feet (which is equivalent to 85 ppmv as S or 80 ppmv as H₂S.

▲ ТОР

Sulfur Specs - Propane

Q: What are the sulfur specifications for propane?

A: The Gas Processors Association ("GPA") provides product specifications for liquefied petroleum gases. These specifications may be found in Figure 2-1 (GPA Liquefied Petroleum Gas Speficications – GPA Standard 2140-92) of the Engineering Data Book (10th Edition, 1994) published by the Gas Processors Suppliers Association. Total sulfur standards are provided in units of ppmw. For commercial propane, the standard is 185 ppmw as S (254 ppmv as S, 239 ppmv as H2S).

A TOP

Boiler Rating Conversion

Q: How do I convert a boiler rating from units of boiler horsepower (bhp) to heat input (lb/MMBtu)?

Frequently Asked Questions | Santa Barbara County Air Pollution Control District

A: This conversion requires two steps. First the boiler horsepower value is converted to an energy basis by muliplying by 33,446 Btu/hr per Bhp. Since Bhp ratings are based on the amount on useful work a boiler performs, the efficiency losses in converting the heat input to this useful work must be accounted for. In general, a boiler is about 80 percent efficient in converting the fuel's energy into useful work. Thus, the "Btu/hr" value must be corrected to account for the 20 percent loss. Example: 500 Bhp = 20.904 MMBtu/hr (500 bhp * 33,446 Btu/hr/Bhp * 1/0.80).

АТОР

For more information or assistance, call the Engineering Division at (805) 961-8800, or e-mail us at engr@sbcapcd.org.

Air Quality

Today's Air Quality Air Monitoring Meeting Air Quality Standards Planning for Clean Air Air Pollution Complaints Subscribe to Alerts, News and Notices

Community

Pollution and Health Smoke and Health What Can We Do? News and Notices Community Advisory Council Land Use/CEQA Climate Change Marine Shipping Initiatives Students and Teachers Publications and Videos Clean Air Funding Requests for Public Records Community Air Protection

Doing Business

View Our Rules Comply with Our Rules Apply for Permits Engineering Programs Air Toxics Federal Permits Funding Programs Permitted Facilities Map Public Records Request

About Us

Who We Are District Board Community Advisory Council Financial Reports Hearing Board Employment News and Notices Contact Us Frequently Asked Questions | Santa Barbara County Air Pollution Control District

Contact Us	Stay Informed
Santa Barbara County Air Pollution Control District 260 N San Antonio Rd	Subscribe to email lists for air quality alerts, news, public notices, and more.
Ste A Santa Barbara, CA 93110 805-961-8800	SUBSCRIBE
apcd@sbcapcd.org	Follow us on social media
	News Videos Nextdoor

© 2020 Santa Barbara County Air Pollution Control District. | See Disclaimer Web Design by: AAexpressive · Web Development by NDIC

Report problems or suggestions to HoffmanL@sbcapcd.org

PAGES 2	PAGE	1
APPL NO.	DATE	-
n/a		1/31/97
PROCESSED BY		

SBCAPCD ENGINEERING DIVISION

APPLICATION PROCESSING AND CALCULATIONS

Gaseous Fuel SO_x Emission Factor:

- Applicability: External Combustion units such as boilers and process heaters for gaseous fuels (e.g., natural gas, oil field produced gas and propane).
- *Equations:* Two equations are presented. The first is the fundamental equation showing how the emission factor is generated. The second is a reduced form of the basic equation for streamlined use. Finally, a check on the units is shown.

$$EF = \left[ppmvd \ \mathbf{S}\right] \times \left[\frac{1}{HHV}\right] \times \left[\frac{1}{mol \ vol}\right] \times \left[mol \ ratio\right] \times \left[MW_{SO_2}\right]$$

$$EF = [0.169] \times \left[\frac{ppmvd S}{HHV}\right]$$

$$\frac{lb}{MMBtu} = \left[\frac{ft^3 \text{ S}}{MMft^3 \text{ Fuel}}\right] \times \left[\frac{ft^3 \text{ Fuel}}{Btu}\right] \times \left[\frac{lb - mole \text{ S}}{379 ft^3 \text{ S}}\right] \times \left[\frac{lb - mole \text{ SO}_2}{lb - mole \text{ S}}\right] \times \left[\frac{64 \ lb \text{ SO}_2}{lb - mole \text{ SO}_2}\right]$$

where:

EF	=	SO _x emission factor in units of lb/MMBtu (HHV based, as SO ₂)
ppmvd S	=	total sulfur concentration in fuel (as S)
HHV	=	higher heating value of the fuel (Btu/scf)
mol vol	=	molar volume of the fuel at standard conditions (1 atm & 60 °F, equals 379 std ft ³ /lb-mole)
mol ratio		stoichiometric molar ratio for the combustion of sulfur (1 S + 1 O $_2 \Rightarrow$ 1 SO ₂)
MM	=	million

Defaults Default emission factors can be arrived at by using standard default values for the heating value and sulfur concentrations for each fuel.

Fuel	ppmvd (as S)	ppmvd (as H₂S)	HHV (Btu/scf)	SO _x Emission Factor (Ib/MMBtu)
PUC Natural Gas	85	80	1,050	0.0137
GPA Commercial Propane	254	239	2,522	0.0170
GPA HD-5 Propane	169	159	2,522	0.0113
Produced Gas - South Zone	254	239	1,050	0.0409
Produced Gas - North Zone	846	796	1,050	0.1362

PAGES	PAGE	
2		2
APPL NO.	DATE	
n/a		1/31/97
PROCESSED BY		

APPLICATION PROCESSING AND CALCULATIONS

Mike Goldman

where:

- (a) <u>PUC Natural Gas</u>: Sulfur concentration based on maximum allowed total sulfur content of 5 gr/100 scf (as S) per General Order 58-A. The calculations below show how the equivalent concentrations are derived (depending on the "basis"):
 - {ppmvd as S = $(5 \text{ gr S}/100 \text{ scf})^*(10^6 \text{ scf fuel}/\text{MM scf fuel})^*(\text{lb S}/7000 \text{ gr S})^*(379 \text{ scf S}/\text{lb-mole S})/(32 \text{ lb S}/\text{lb-mole S}) = 85 \text{ ppmvd as S}$
 - {ppmvd as $H_2S = (5 \text{ gr } H_2S/100 \text{ scf})^*(10^6 \text{ scf fuel}/MM \text{ scf fuel})^*(\text{lb } H_2S/7000 \text{ gr } H_2S)^*(379 \text{ scf } H_2S/\text{lb-mole } H_2S) = 80 \text{ ppmvd as } H_2S$.

Heating value based on USEPA AP-42, Appendix A (Thermal Equivalents of Various Fue)s

- (b) <u>Propane</u>: Sulfur concentration based on Gas Processors Association Engineering Data Book (Ninth Edition, 1972), Figure 15-50 (GPA Liquefied Petroleum Gas Specifications, rev. 1979), Commercial Propane = 15 gr/100 scf, HD-5 Propane = 10 gr/100 scf (both as S). Same equation as listed in (a) above for the ppmvd "as S" calculation. Heating value based on Perry's Chemical Engineers Handbook, Chapter 9, 5th Edition, Table 9-16.
- (c) <u>Produced Gas</u>: Sulfur concentration based on APCD Rule 311 Southern Zone limit of 15 gr/100 scf (as H₂S) and Northern Zone limit of 50 gr/100 scf (as H₂S). To use in the calculations (which are based on an "as S" basis), these limits are adjusted to an as sulfur (as S) basis by use of the equation in note (a) above. This has the same affect as taking the ratio of the molecular weights (MW _S/MW_{H2S}) such that the respective Zone limits are 14.12 gr/100 scf and 47.06 gr/100 scf (as S). Heating value based on USEPA AP-42, Appendix A (*Thermal Equivalents of Various Fuels*)
- (d) <u>Reporting References</u>: Reporting "as H₂S" means the total sulfur values are converted to an H₂S basis by taking the ratio of the molecular weights (MW_S/MW_{H2S}). This is needed to determine compliance with Rule 311 and permit conditions that require reporting "as H₂S". For PUC and GPA standards and the emission calculations, sulfur content "as S" is used. "S" in this case is mono-atomic sulfur (MW = 32 lb/lb-mole). When reviewing fuel analyses with di-atomic sulfur species, such as CS₂, the amount of sulfur from the compound in question must be doubled to account for the extra mole of sulfur.
- (e) <u>Permit Condition Limits and Reporting</u>: Since permits require sulfur content of fuels to be reported "as H₂S", the associated limits for non-Rule 311 sulfur concentrations need to be also stated in an "as H₂S" basis so as to minimize the confusion of reporting in two ways. As such, for PUC natural gas the standard of 85 ppmvd "as S" is listed in the permit condition as 80 ppmv "as H₂S". For GPA propane/LPG, the standard of 254 ppmvd "as S" is listed in the permit condition as 239 ppmvd "as H₂S".

h:\library\protocol\sulfur01.doc

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylcholanthrene ^{b, c}	<1.8E-06	Е
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22- 6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^e HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	С
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	С
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	Е

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.

^b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

Section 7

Information Used to Determine Emissions

Engines

- AP-42 Tables 3.3-1 and 3.3-2
- EPA Tier 1, 2, and 3 Emission Standards
- Engine spec sheets

No changes were made to the emergency engines (Generac GEN1-GEN4, IPG, GO Generator Backup EI-128, SX/EW Fire Water Pump, and SX Tankhouse Emergency Generator), which are exempt from construction permitting, so no calculations are provided for these engines in this permit application. However, for completeness purposes, the spec sheets associated with these engines are enclosed.

- 40 CFR 98 Subpart A, Table A-1 (not repeated)
- 40 CFR 98 Subpart C, Tables C-1 and C-2 (not repeated)
- CARB Policy dated June 28, 2004: Emission Factors for CI Diesel Engines Percent HC in Relation to NMHC + NOx

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)		
Benzene ^b	9.33 E-04		
Toluene ^b	4.09 E-04		
Xylenes ^b	2.85 E-04		
Propylene 💬	2.58 E-03		
1,3-Butadiene ^{b,c}	<3.91 E-05		
Formaldehyde ^b	1.18 E-03		
Acetaldehyde ^b	7.67 E-04		
Acrolein ^b	<9.25 E-05		
Polycyclic aromatic hydrocarbons (PAH)			
Naphthalene ^b	8.48 E-05		
Acenaphthylene	<5.06 E-06		
Acenaphthene	<1.42 E-06		
Fluorene	2.92 E-05		
Phenanthrene	2.94 E-05		
Anthracene	1.87 E-06		
Fluoranthene	7.61 E-06		
Pyrene	4.78 E-06		
Benzo(a)anthracene	1.68 E-06		
Chrysene	3.53 E-07		
Benzo(b)fluoranthene	<9.91 E-08		
Benzo(k)fluoranthene	<1.55 E-07		
Benzo(a)pyrene	<1.88 E-07		
Indeno(1,2,3-cd)pyrene	<3.75 E-07		
Dibenz(a,h)anthracene	<5.83 E-07		
Benzo(g,h,l)perylene	<4.89 E-07		
TOTAL PAH	1.68 E-04		

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.