STATE OF NEW MEXICO

SURFACE WATER QUALITY 10-YEAR MONITORING AND ASSESSMENT STRATEGY

Prepared by

New Mexico Environment Department Surface Water Quality Bureau

June 2016

This page left intentionally blank.

TABLE OF CONTENTS

1.0	MONITORING AND ASSESSMENT STRATEGY	5
1.1	Program Background	5
1.2	Program Goals	5
1.3	Program Coordination	7
1.4	Overall Program Future Direction	7
2.0	MONITORING OBJECTIVES	8
2.1	Determination of Designated Use Attainment	8
2.2	Total Maximum Daily Load Development	
2.3	Water Quality Standards Development and Refinement	. 10
2.4	Effectiveness Monitoring	
2.5	NPDES Compliance Monitoring	. 10
2.6	Wetlands Monitoring and Assessment	
2.7	Future Direction for Monitoring Objectives	. 13
3.0	MONITORING DESIGN	14
3.1	Targeted Approach	. 14
3.2	Wetlands Monitoring	
3.3	Future Direction for Monitoring Design	. 19
4.0	CORE AND SUPPLEMENTAL WATER QUALITY INDICATORS	20
4.1	Core Water Quality Indicators	. 20
4.2	Core Biological Indicators	
4.3	Supplemental Indicators	. 21
4.4	NPDES Effluent Monitoring and Compliance Sampling Inspections	. 21
4.5	Wetland Indicators	. 21
4.6	Future Direction for Water Quality Indicators	. 22
5.0	QUALITY ASSURANCE	23
5.1	Quality Assurance Project Plan	. 23
5.2	Future Direction for Quality Assurance	. 23
6.0	DATA MANAGEMENT	24
6.1	Ambient Water Chemistry Data	. 24
6.2	Biological and Habitat Data	. 24
6.3	Designated Use Impairment Summary Information	
6.4	Future Direction for Data Management	. 25
7.0	DATA ANALYSIS/ASSESSMENT	27
7.1	Ambient Surface Water Quality Data	. 27
7.2	Narrative Standards Impairment Determinations	
7.3	NPDES Effluent Data	
7.4	Future Direction for Data Analysis and Assessment	. 28
8.0	Reporting	29
8.1	Water Quality Reports and Lists	. 29

8.2	Additional Reports Based On Monitoring Activities	
8.3	Future Direction for Reporting	
9.0	PROGRAMMATIC EVALUATION	
9.1	Future Direction	
10.0	GENERAL SUPPORT AND INFRASTRUCTURE PLANNING	
	Current and Future Monitoring and Assessment Resources	
10.1		

Disclaimer: As stated in the USEPA guidance document for this effort entitled *Elements of a State Water Monitoring and Assessment Program* (USEPA 2003), the intention of this document is to describe how the state's monitoring and assessment program will serve all water quality management needs and address all state surface waters over time. Although states are required to prepare a strategic program in a 10-year time frame (2016-2026), this document should be considered a "living document" to be periodically updated as New Mexico's monitoring and assessment program, associated funding and staff levels, and state priorities change or evolve over time. Please also note that several of the state references noted in this document are prepared annually or biannually, so it is important to check the website for the most recent version:

https://www.env.nm.gov/swqb/

1.0 MONITORING AND ASSESSMENT STRATEGY

1.1 Program Background

The New Mexico Water Quality Act (WQA) was developed to protect water quality in New Mexico in 1967. In 1978, the New Mexico Legislature revised the WQA, which became the basic authority for water quality management in New Mexico (Sections 74-6-1 *et seq.*, NMSA 1978). This law expanded the duties and powers of the New Mexico Water Quality Control Commission (WQCC). These duties include adoption of water quality standards and the adoption of regulations "to prevent or abate water pollution in the State or in any specific geographic area or watershed of the state...or for any class of waters." Under this WQA, water is defined as "all water including water situated wholly or partly within, or bordering upon, the state, whether surface or subsurface, public or private, except private waters that do not combine with other surface or subsurface water." The WQCC is the State water pollution control agency for all purposes of the federal Clean Water Act (CWA) and may take all necessary actions to secure the benefits of the WQA.

Under the authority of the WQA, the WQCC has adopted a basic framework for water quality management in New Mexico. Major components of this framework include the State Water Quality Management Plan and Continuing Planning Process, the Nonpoint Source (NPS) Management Program, the State, surface water quality standards (WQS) (20.6.4 NMAC), regulations for discharge to surface waters, the regulation of disposal of refuse in watercourses, a spill-cleanup regulation and utility operators regulations. Since the WQCC has no technical staff, responsibilities for water quality management activities are delegated to constituent agencies, primarily the New Mexico Environment Department (NMED). Responsibilities for water quality management activities are delegated to NMED's Surface Water Quality Bureau (SWQB).

1.2 Program Goals

SWQB is responsible for the management of programs to protect and improve the quality of New Mexico's surface waters. Specifically, SWQB's mission is:

To preserve, protect and improve New Mexico's surface water quality for present and future generations through implementation of the New Mexico Water Quality Act, the federal Clean Water Act and their attendant rules and regulations (NMED/SWQB 2016a).

The intent of SWQB's monitoring and assessment activities is to answer the following five questions, in order to meet federal (USEPA 2003) and state requirements:

- 1. What is the overall quality of waters in the state?
- 2. To what extent is water quality changing over time?
- 3. What are the problem areas, and which areas need protection?
- 4. What level of protection is needed? and,
- 5. How effective are CWA projects and programs?

The purpose of SWQB's monitoring and assessment program is to meet all surface water quality management needs to the extent possible given available resources, NMED priorities, and strategic goals. The primary waterbody types currently monitored by SWQB's ambient water quality monitoring program include streams, rivers, lakes, reservoirs, and wetlands. The NMED Ground Water Quality Bureau (GWQB) is charged with protecting ground water quality in New Mexico. The GWQB does not currently have an ambient monitoring program, but monitors groundwater in response to citizen complaints and during periodic sampling inspections at permitted facilities. To further meet the goals of the Clean Water Act, the SWQB is in the process of developing its monitoring and assessment program for wetlands through funding received from the USEPA. The SWQB recognizes that an essential task of a successful wetlands program is the development of an effective monitoring strategy.

SWQB's statewide monitoring and assessment efforts provide for the evaluation of all watersheds in New Mexico on a rotational basis and attempt to prioritize data collection needs based on addressing the five questions noted above using available resources. This monitoring and assessment program is partially based on the USEPA/NMED Memorandum of Understanding that was developed to implement the consent decree between USEPA and Forest Guardians/Southwest Environmental Center (US District Court 1997). The consent decree sets forth a ten-year schedule for developing Total Maximum Daily Load (TMDL) planning documents for assessment units noted as Category 5A on the *State of New Mexico Integrated CWA* \$303(d)/305(b) List of Impaired Waters (Integrated List). The most recent approved version of the list at the time of this revision (WQCC-approved June 2016) is the 2016-2018 Integrated List (NMED/SWQB 2016b). Surface water quality data collected during these rotational water quality surveys are primarily used to implement the general framework for identifying and restoring impaired surface waters (**Figure 1.1**).

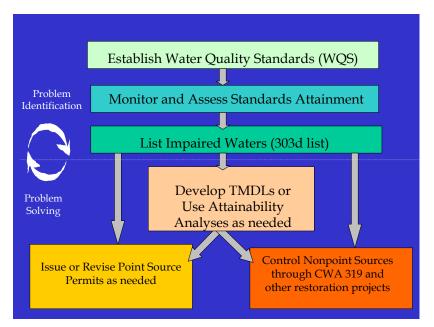


Figure 1.1 General framework for identifying and restoring polluted waters

1.3 Program Coordination

SWQB coordinates with several entities during development and implementation of water quality monitoring activities. During survey development, SWQB holds a pre-survey monitoring meeting in the watershed to solicit comment and concerns from public as well as local, state, or federal agency stakeholders working in the watershed. This information is used to finalize draft sampling plans that are developed in accordance with the SWQB quality assurance project plans that are prepared in accordance with U.S. Environmental Protection Agency (USEPA) guidelines prior to every field season. Standard operating procedures (SOPs) are followed during the survey to ensure consistent, quality collection and handling of samples (NMED/SWQB 2011). SWQB also coordinates with tribal environmental professionals throughout the state, and has provided technical assistance workshops related to monitoring when requested to assist tribes in the development of monitoring programs.

SWQB coordinates with the public at large via solicitations for comment on a variety of documents related to monitoring and assessment, including assessment protocols used to determine designated use impairment status for the Integrated List (NMED/SWQB 2015a). SWQB also solicits comments on general sampling procedures and specific assessment protocols related to narrative standards through groups such as the Regional Technical Assistance Group (RTAG) and counterparts at USEPA Region 6 in Dallas, TX. SWQB holds a yearly coordination meeting with the U.S. Forest Service (USFS) to discuss monitoring, restoration strategies, and TMDLs that cover USFS land management areas. SWQB is also an active participant in a number of multiagency working groups including the Middle Rio Grande Water Quality Workgroup, the Middle Rio Grande Endangered Species Act Collaborative Program, and the Rio Grande Salinity Coalition.

1.4 Overall Program Future Direction

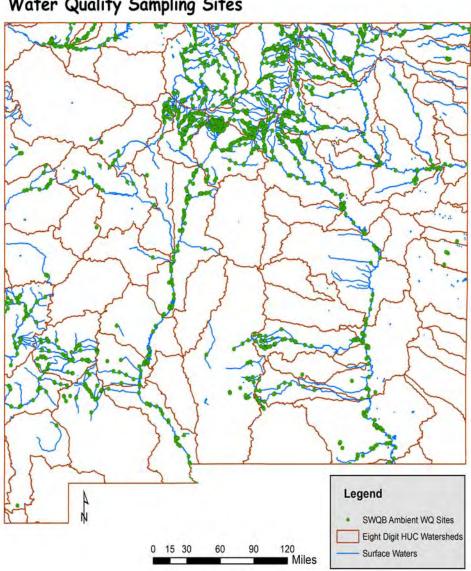
The future direction for each element of the entire program is discussed in the appropriate "Future Direction" section. To summarize, SWQB's overall strategic future directions are:

- Continue to refine the current monitoring methods and assessment protocols for perennial, wadeable streams,
- Adapt national monitoring methods and assessment protocols for non-wadeable rivers to New Mexico river systems,
- Continue to refine monitoring and assessment protocols for lakes and reservoirs, Develop monitoring methods and assessment protocols for wetlands.

2.0 MONITORING OBJECTIVES

Clear goals and objectives are required to implement an effective monitoring and assessment program. Therefore, the first step in developing this strategy is defining a clear set of water quality management needs. These goals and needs, which must be met to address the five questions identified in section 1.2, can be placed into the following broad monitoring categories:

- 1. Determination of designated use attainment,
- 2. Monitoring for TMDL development,
- 3. Monitoring for standards refinement,
- 4. Effectiveness monitoring,
- 5. NPDES permit compliance evaluation and WQS compliance monitoring, and
- 6. Wetlands monitoring and assessment.


2.1 Determination of Designated Use Attainment

The primary monitoring function of the Monitoring, Assessment and Standards Section (MASS) is to identify impaired waters that do not support the designated uses identified in NM's surface water quality standards (*Standards for Interstate and Intrastate Surface Waters* -- 20.6.4 NMAC¹). Several SWQB-developed documents provide additional detail on this aspect of the monitoring program. Pursuant to CWA §106(e)(1), the SWQB has established appropriate monitoring methods (NMED/SWQB 2011), quality assurance/quality control (QA/QC) procedures (NMED/SWQB 2016a&c), and assessment methodologies (NMED/SWQB 2015a) in order to compile and assess the quality of the surface waters of New Mexico.

Similar to many other states, SWQB uses a rotating basin approach to target water quality monitoring. Using this approach, a select number of watersheds are monitored each year with an established return frequency of approximately every eight years. The proposed rotational schedule (described in section 3.1) was developed based on the date of the last survey, number of assessment units in each watershed, as well as the number of perennial stream miles, NPDES permits, and active 319 projects that are in each watershed. Revisions to the schedule may be occasionally necessary based on staff and monetary resources that fluctuate on an annual basis.

Data from this targeted sampling effort are assessed in accordance to SWQB's assessment protocols (NMED/SWQB 2015a). All summary assessment data, including probable causes and sources of impairment, are housed in the Bureau's Oracle-based database known as SQUID (Surface water QUality Information Database). Use attainment decisions are then summarized in Appendix A of the *State of New Mexico Integrated CWA §303(d)/305(b) Report* (Integrated Report) (NMED/SWQB 2016b). Starting with the 2004 submittal, SWQB switched from two separate submittals to one integrated report and list in accordance with USEPA guidance (USEPA 2002 and 2009). This report is prepared every even numbered calendar year as required by the CWA. Category 5 assessment units on this Integrated List constitute the *CWA §303(d) List of Impaired Waters* (NMED/SWQB 2016b).

¹ The water quality standards in effect for CWA purposes are identified on EPA's website: <u>http://www.epa.gov/waterscience/standards/wqslibrary/nm/index.html</u>.

Water Quality Sampling Sites

Figure 2.1 Water quality sampling sites in New Mexico

2.2 **Total Maximum Daily Load Development**

Water quality data requirements have increased due to the need to develop TMDL planning documents in compliance with schedules set forth in the TMDL consent decree and settlement agreement (U.S. District Court 1997). Unlike some other states, New Mexico does not develop and implement separate TMDL studies except in special circumstances when funding and staff resources allow. Instead, the data that are collected during a watershed survey form the basis of designated use attainment status as well as any subsequent TMDL development. Accordingly, this dataset is used to develop TMDL planning documents for impaired assessment units identified in the Integrated Report. Since TMDLs are written on an assessment unit (AU) basis, TMDL effectiveness monitoring occurs as SWQB rotates back to a particular watershed and

assesses AUs within the watershed. As such, SWQB will still perform targeted monitoring of AUs with existing TMDLs.

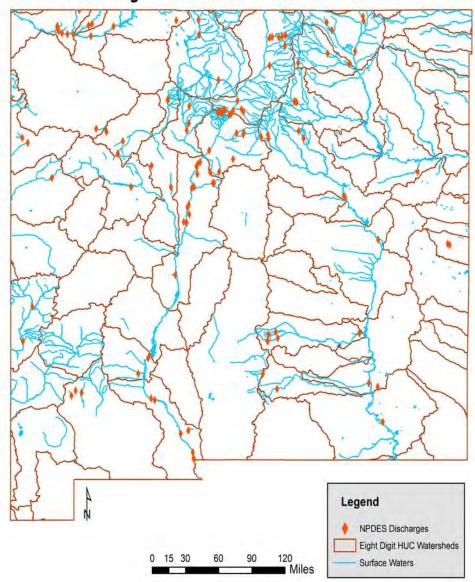
2.3 Water Quality Standards Development and Refinement

SWQB provides technical support to the WQCC for the development and refinement of appropriate water quality standards designed to protect surface waters in New Mexico. Data collected during watershed surveys, as well as data from USGS gages and other reliable sources, are used to prepare triennial reviews of state water quality standards, conduct use attainability analyses (UAAs), and develop and adopt revised designated uses and associated water quality criteria. When funding is available, SWQB has applied for research oriented grants to further water quality standards development. For example, SWQB has used grant funding to develop and refine narrative nutrient criteria and associated numeric translators and assessment protocols.

2.4 Effectiveness Monitoring

SWQB established an Effectiveness Monitoring Program in 2008 with the goal of documenting water quality changes resulting from projects implemented with incremental CWA §319 funds. An Effectiveness Monitoring coordinator was hired within the SWQB Watershed Protection Section (WPS) to implement the program.

The Effectiveness Monitoring Program is being conducted in accordance with each Project-Specific Quality Assurance Project Plan (PQAPP). Each project area is typically monitored for changes in water quality both upstream and downstream, and before and after implementation.


Effectiveness monitoring will be carried out within selected project areas every year for at least five years. In many cases a series of projects will result in a longer-term monitoring effort. When the Monitoring, Assessment, and Standards Section (MASS) conducts a water quality survey in the area the survey will be tailored to supplement the effectiveness monitoring dataset, in compliance with the Quality Management Plan (NMED/SWQB 2016c).

2.5 NPDES Compliance Monitoring

A variety of mechanisms including state, federal and/or local components to protect New Mexico surface waters from point-source discharges from municipal and non-municipal (i.e., industrial, state, and federal) sources. The principal mechanism is the federal NPDES permit program. Under this program a permit specifies the total amounts and concentrations of contaminants that a permittee may discharge to a watercourse. While NPDES permits for discharges in New Mexico are currently issued and enforced by the USEPA Region 6 office in Dallas, Texas, New Mexico plays a role in this permit program. NMED is statutorily charged with responsibility for certification of NPDES permits and receives grant money from USEPA to assist with the administration of the NPDES permit program. As of June 2016, 118 individual NPDES permits are currently issued to dischargers in New Mexico (**Figure 2.2**). In addition, USEPA has issued five general NPDES permits in New Mexico.

The Point-Source Regulation Section (PSRS) of SWQB assists USEPA in administering the NPDES permit program by reviewing self-monitoring data submitted by many NPDES

permittees, providing program information and training to the public and permittees, and conducting inspections of regulated facilities. According to USEPA policy, all active permitted facilities classified as major, whether municipal, non-municipal, or federal, should be inspected annually by either USEPA or the PSRS. Since neither USEPA nor the PSRS has resources to inspect every minor discharger each year, the PSRS uses a priority list to allocate inspection efforts among minor facilities. The priority list is based mainly on the date of last inspection — those facilities that have gone the longest without inspection receive a higher priority. Inspections at minor facilities are also prioritized based on a number of other factors. These include: citizen complaints, specific requests from USEPA, and proximity to the above major and traditional minor facility inspection locations.

NPDES Dischargers

Figure 2.2 Active NPDES Permit Locations in New Mexico (June 2016)

2.6 Wetlands Monitoring and Assessment

The primary mission of the SWQB Wetlands Program is to protect existing wetlands, restore degraded wetlands, and expand wetland acreage in New Mexico. The goal of the monitoring and assessment program for wetlands is to provide the information necessary to: create a baseline inventory and condition of existing wetlands, facilitate wetland protection, develop water quality standards for wetlands, assess wetland mitigation activities and monitor wetland restoration activities for efficacy. To achieve these goals the SWQB has developed the following objectives:

- Develop a Rapid Assessment Methodology for New Mexico (NMRAM) for a range of environments and wetland types.
- Establish a baseline inventory map of wetland resources until all mapping in New Mexico is complete.
- Develop a ranking of the condition of existing wetlands.
- As resources permit, initiate wetlands monitoring to coincide with the current statewide water quality monitoring schedule.
- Coordinate with non-NMED agencies such as the NMDOT and the USACE on the implementation of the NMRAM as a standard monitoring tool to assess mitigation activities.
- Utilize NMRAM as part of a monitoring tool to assess wetland restoration activities.
- Utilize the information gathered from the monitoring effort to propose wetland specific state water quality standards to the NM WQCC.

Critical to achieving these objectives is the development of the NMRAM. The NMRAM emphasizes Level 1 and Level 2 rapid assessment methods as outlined by the USEPA in the guidance document Elements of a State Water Monitoring and Assessment Program for Wetlands (USEPA 2006). The NMRAM is focused on riverine wetlands, possibly the most abundant type of wetland in New Mexico and the most impacted. The NMRAM Manual² is organized to provide the user with a brief overview of rapid assessment and purpose for the NMRAM and definitions and descriptions of the wetland class, subclass, and geographic domain for which the NMRAM is intended. The NMRAM then presents detailed assessment metrics: 1) Landscape Context, 2) Size, 3) Biotic metrics, and 4) Abiotic metrics followed by a brief overview of stressor checklists. Finally, the NMRAM addresses guidelines for rating metrics and provides a scoring rollup worksheet. A Field Guide, prepared as a standalone document, provides detailed field protocols, worksheets, and a scoring rollup worksheet. This version of the manual is being tested with the intention of modifying those metrics and protocols as needed, and modifying and applying the same approaches and protocols to address other wetland classes and subclasses throughout New Mexico. In addition, the SWQB Wetlands Program continues to coordinate with the USFWS to complete baseline inventory mapping of all wetlands throughout New Mexico and is participating in the National Wetlands Assessment coordinated by USEPA.

² https://www.env.nm.gov/swqb/Wetlands/NMRAM/index.html

#	Future Objectives
1	Refine current monitoring and assessment methods for more reliable determination of use attainment in New Mexico's surface waters.
2	Establish a stormwater program to include sampling methodologies and assessment protocols specific to stormwater and/or intermittent and ephemeral streams.
3	Restore long-term USGS, fixed water quality stations to examine long-term trend data across the state.
4	Implement special studies to investigate aluminum, radionuclides, bacteria, and/or PCB (as well as other priority pollutants) levels across the state to develop or refine appropriate water quality standards designed to protect surface waters in New Mexico.
5	Identify, monitor and assess wetlands throughout the state.

2.7 Future Direction for Monitoring Objectives

3.0 MONITORING DESIGN

New Mexico's monitoring program primarily utilizes targeted sampling designs to address the monitoring goals, objectives and questions identified in sections 1.2 and 2.0. However, with the shift to multi-year water quality surveys, SWQB's monitoring program is considering other prioritization methods including probabilistic sample design, or "modified" random sampling, for certain waterbody types (if deemed appropriate) to help select practical and feasible sampling locations to meet our data requirements for the Bureau and State. SWQB believes that this is the most efficient combination of monitoring designs, given current funding, to meet these objectives.

3.1 Targeted Approach

Similar to most states, SWQB utilizes a targeted, rotational watershed approach to ambient water quality monitoring. This approach best serves New Mexico's monitoring objectives given the current level of financial and staff resources. This integrative watershed approach enhances program efficiency by providing:

- A systematic review of water quality data and allows for more efficient use of human and budget resources;
- Information at a spatial scale where implementation of corrective actions is feasible; and
- An established order of rotation and predicted sampling year for each watershed, which allows easier coordination efforts with other programs and other entities interested in water quality.

Watershed surveys are developed through establishment of targeted sampling sites throughout a watershed of interest. The Monitoring Team strives to collect all necessary chemical, biological, and physical data during the survey. Pre- and post-survey meetings are held with other SWQB personnel working in the watershed, including PSRS, WPS, and TMDL staff. In general, SWQB establishes at least one sampling station in an assessment unit (median reach length is 8.9 miles) and one station for each lake/reservoir and its inlet and outlet. Exact sample site location, sampling frequency, and type of data collected are determined to allow determination of compliance with or variance from New Mexico surface water quality standards. This information is detailed in the QAPP (NMED/SWQB 2016a) and the *Final Draft Prioritization Framework and Long Term Vision for Water Quality in New Mexico* (NMED/SWQB 2015b). This is an adaptive, on-going management approach, meaning a watershed will not be ignored between survey years. The proposed 8-year rotational monitoring schedule is shown in **Figure 3.1** (see **Figure 2.1** for SWQB station locations).

Given the current level of financial and staff resources, SWQB considers the targeted approach the best approach to meet New Mexico's monitoring objectives primarily because New Mexico is a large state with relatively little perennial water. SWQB has fundamentally censused the perennial waters of the state during its targeted, rotational watershed surveys (**Tables 3.1 and 3.2**). Approximately 92% of perennial stream miles have been assessed and 95% of public lake acres have been assessed to date, including 100% of New Mexico's large, mainstem reservoirs.

The targeted approach has proven effective at making broad statements regarding the status of the State's waters and fulfills the monitoring objectives discussed in Section 2.

For these reasons, SWQB will continue to use the targeted approach when designing water quality surveys. At this time, SWQB plans to use probabilistic sampling on a limited basis for evaluating WQS, researching statewide conditions to assist with the development of new WQS, and evaluating proposed regional biocriteria, as needed. SWQB is committed to continuing to evaluate ways to incorporate probabilistic monitoring into the overall monitoring strategy given the adequate resources to do so.

	Perennial Stream Miles	Perennial Lake Acres ²
Total	6,704	71,369
Assessed	6,185	68,116
% Assessed	$92\%^{1}$	95% ³

Table 3.1Percentage of perennial, public waters assessed in New Mexico

1 For assessment, streams are divided into AUs which have a median length of 8.7 miles. Typically there is only one monitoring station per AU and each station is sampled 4 to 12 times during a watershed survey depending on the location and parameter. The majority of the remaining 8% of unassessed streams may not be perennial and/or have difficult or limited access.

2 "Perennial Lakes" include reservoirs, high mountain cirque lakes, sink holes, and some playa lakes.

3 98% of reservoirs have been assessed; 100% of large (> 100 acres) main-stem reservoirs have been assessed. For assessment each lake/reservoir typically has one sampling station, including one station at its inlet and outlet, which are sampled four times during a survey.

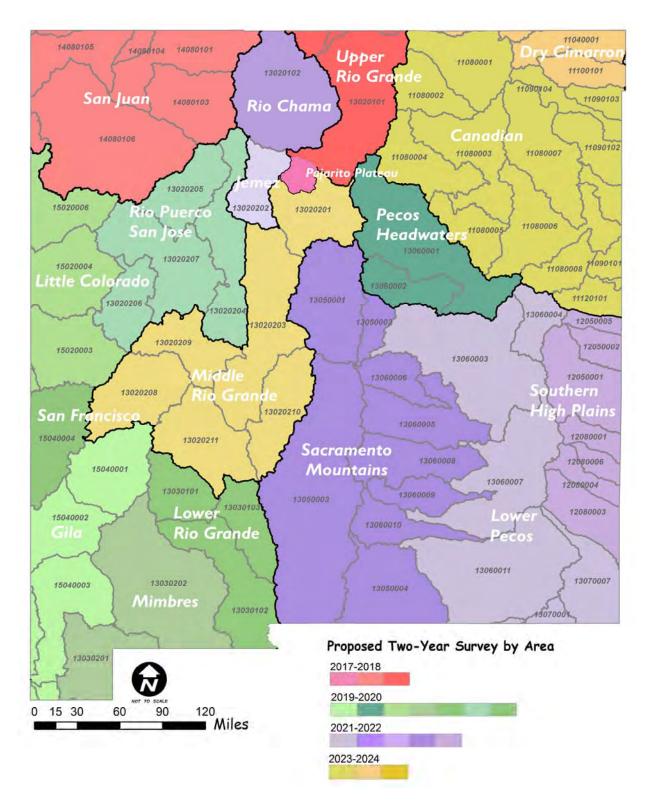


Figure 3.1 Proposed 8-year rotational schedule

SWQB provided an evaluation of statistical surveys in New Mexico in its 2014-2016 CWA §303(d)/§305(b) Integrated Report (See Section C.5 of the 2014-2016 IR). A site by site comparison between National Aquatic Resource Surveys (NARS) sites and SWQB water quality monitoring sites was conducted. A total of 31 sites were sampled in New Mexico as part of the 2008-2009 National Rivers and Streams Assessment. SWQB staff compared these locations to those where SWQB has collected water quality data in the past ten years and found that all but 13 sites were within two miles of an existing SWQB station. Furthermore, only three sites, all in wilderness or very remote locations, were more than five miles from an existing station, suggesting that SWQB is able to reach conclusions about surface water quality on a state-wide scale without full implementation of a probabilistic approach.

SWQB does recognize that intermittent and ephemeral water bodies (including playa lakes) are critical water resources as well. While sampling of these waters has occurred, SWQB has only limited information about the quality of these waters due to a lack of practical sample collection methods (at current resource levels) and appropriate assessment methodologies. At present, funds are not available to support the undertaking of appropriate monitoring or the development of assessment methodologies specifically for intermittent and ephemeral waters. If such methodologies are developed and funds become available the use of a probabilistic sampling design would be considered for these waterbody types.

In addition, the SWQB Wetlands Program participated in the 2011 National Wetlands Condition Assessment and is participating in the current National Wetlands Assessment for New Mexico. SWQB is conducting field work, sample collection, and plant taxonomic identification services for the statewide survey during 2016-2017. It is possible given the sheer number and variety of wetlands in New Mexico that a probabilistic approach will be considered for monitoring and assessing wetlands; however SWQB is currently working on mapping and categorizing wetlands in our state. Furthermore, with the shift to multi-year water quality surveys, SWQB's monitoring program is surveying about one-quarter of the state every two years. This is a huge task and we are considering other prioritization methods including random sampling, or "modified" random sampling, for certain waterbody types to help select and rank sampling locations to meet our data requirements for the Bureau and State. If deemed appropriate and manageable, SWQB will work with USEPA Region 6 and the Office of Research and Development (ORD) to evaluate and assign sampling locations to be used in a probabilistic monitoring design for the identified waterbody types (e.g., lakes, intermittent waters, wetlands, perennial headwaters, etc.).

As stated previously, successful sampling of random stations in the semiarid west is challenging due to a high percentage of intermittent and ephemeral waters, lack of hydrologic maps that accurately indicate perennial versus non-perennial waters, and difficult access logistics for many perennial waters located in remote mountainous headwaters. Although probabilistic-based monitoring can allow states to reach conclusions about surface water quality status as a whole, this type of monitoring cannot tell a state or tribal jurisdiction which specific waterbodies are impaired or where to target CWA Section 319 watershed restoration funds, and do not provide the targeted data necessary for TMDL development. Therefore, New Mexico will continue to rely primarily on targeted sampling to answer these specific questions and will incorporate limited probabilistic sampling when appropriate (e.g., single land use/ownership, many perennial waters) and necessary to gather water quality data from larger regions.

3.2 Wetlands Monitoring

Wetlands monitoring is directed toward inventorying, classifying and assessing the condition of New Mexico wetlands with the objective of developing narrative wetlands water quality The SWQB Wetlands Program uses U.S. Fish and Wildlife Service (USFWS) standards. National Wetlands Inventory (NWI) maps as its overall inventory of wetlands in New Mexico. The Wetlands Program has partnered with NWI to complete mapping in targeted areas of New For example, NWI completed mapping of playas in three Mexico for special projects. southeastern New Mexico counties to complement the Wetlands Action Plans in the region. A Wetlands Action Plan (WAP) is a planning document designed specifically to address wetlands and riparian resources within the boundaries of a specific watershed. SWQB facilitates watershed groups throughout the State to develop "Wetlands Action Plans" as an additional component of their Watershed-Based Plan. Wetland Action Plans have been developed for the Upper Gallinas Watershed, Cebolla Canyon Closed Basin Watershed, Playa Lakes in Curry County, Santa Fe County Wetlands, and the Galisteo Watershed. NWI also completed mapping of wetlands in USFS Wilderness Areas for potential designation as Outstanding National Resource Waters (ONRW). In addition, the SWQB Wetlands Program has inventoried and mapped wetlands in the Canadian River Watershed in the northeastern quadrant of the state, the Upper Rio Grande Watershed in the north-central part of the state, the Gila River Watershed in the southwestern part of the state, the Southern High Plains in the eastern part of the state. This effort utilized the landscape position, landform, waterflow path, and waterbody type mapping descriptors developed by Tiner (2003).

The SWQB Wetlands Program classifies wetlands into regional wetland subclasses based on hydrogeomorphic (HGM) classification developed by Brinson (1993). The objective of classification is to identify groups of wetlands that are relatively homogeneous in terms of structure, process, and function. New Mexico wetland rapid assessment methods (NMRAM) have evolved to combine aspects of both bioassessments and HGM assessments. Rapid assessments are based upon three basic principals: 1) assessments are relative to existing conditions only, 2) the method is rapid such that two people can complete the field assessment and data analysis for the assessment in one day, and 3) the assessment is based primarily on observed field conditions.

To achieve the goals and objectives outlined in Sections 1.2 and 2.6, wetlands monitoring, at the present time, will primarily utilize a targeted sampling design in conjunction with the NMRAM in order to assess a range of conditions and properly map and categorize wetlands in New Mexico. It is possible given the sheer number and variety of wetlands in New Mexico that a probabilistic approach will be considered for monitoring and assessing wetlands. SWQB Wetlands Program staff will continue to participate in pre- and post-survey meetings to integrate wetlands sampling sites with other water quality surveys so that resources, data and results can be shared. As funds become available, wetlands condition assessment (NMRAM) will follow the rotational watershed approach developed by SWQB.

#	Future Initiatives
1	Strive to incorporate probabilistic sampling design into yearly monitoring efforts.
2	Enhance lake and reservoir monitoring in order to prepare for subsequent TMDL development.
3	Pursue grant funding for special studies to research harmful algal blooms, pharmaceuticals, radionuclides, fish tissue contaminants, salinity, bacteria, and/or PCB levels on ecoregion and statewide levels.
4	Increase number of samples for the stream, river, and lake programs to improve confidence in data evaluation.
5	Implement special monitoring for unique resources such as Outstanding National Resource Waters (ONRWs) and intermittent/ephemeral waters.

3.3 Future Direction for Monitoring Design

4.0 CORE AND SUPPLEMENTAL WATER QUALITY INDICATORS

4.1 Core Water Quality Indicators

SWQB's ambient monitoring program utilizes a core set of essential water quality indicators (**Table 4.1**). This core set of indicators covers as many parameters with specific criteria as possible given available resources. Generally, MASS strives to collect samples for all parameters for which there are applicable standards while taking into consideration budgetary and laboratory constraints.

SWQB considers existing and designated uses assigned to each assessment unit, and current land use practices, when determining additional indicators for a particular study. SWQB has chosen the following core indicators for surface water. Each core indicator must be sampled at least two times per year, and are typically sampled 4 to 12 times, during a watershed survey to make a determination of use attainment. Generally, sampling efforts are scheduled once a month for eight months between March and October to capture seasonal variation. In addition, starting in 2015, each basin is sampled over a two-year period to better capture inter-annual variability due to hydrographic conditions during sampling events and to ensure an adequate number of sampling events for assessment purposes.

Designated Use	Parameters
Aquatic Life ¹	- Dissolved oxygen, pH, specific conductance and
	turbidity (5-8 day sonde deployment, generally in late
	summer and fall)
	- Temperature (minimum 30-day thermograph
	summer deployment)
	- Total nutrients ² , total metals ³ , dissolved metals ⁴ ,
	hardness
	-Flow (if a stream) and depth (if a lake)
Primary or Secondary Contact	Escherichia coli and pH
Domestic Water Supply	Total nutrients ² , total metals ³ , dissolved metals ⁴ ,
	radionuclides ⁵ , and organics ⁶
Irrigation	pH, dissolved metals ⁴ , TDS/TSS, hardness, chloride,
	and sulfate
Livestock Watering	Total nutrients ² , total metals ³ , dissolved metals ⁴ , and
	radionuclides ⁵
Wildlife Habitat	Total metals and cyanide
Human Health	Dissolved metals ⁴ and organics ⁶

Table 4.1 Core indicators for surface waters

1 Parameters collected for aquatic life use are also used to assess narrative standards such as biological integrity, bottom deposits, plant nutrients, and turbidity.

² Total Nutrients include nitrate + nitrite, ammonia, total Kjeldahl nitrogen, and total phosphorus.

³ Total metals include mercury, selenium, and aluminum at a minimum.

⁴ Dissolved metals include aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, uranium, vanadium, and zinc.

⁵ Radionuclides generally include gross alpha/beta and Ra-226 + Ra-228.

⁶ Organics include base/neutral acid extractables (Method 8270) and volatile organic compounds (Method 8260).

4.2 Core Biological Indicators

SWQB measures biological indicators of water quality at selected sites when core indicators indicate reasonable probability of impairment or to support special studies. Core biological indicators may include:

- Benthic macroinvertebrate collection (during index period August through November), identification, and enumeration
- Fish community survey (during index period), identification, and enumeration
- Periphyton collection (during index period), identification and enumeration
- Habitat survey to include physical habitat data such as substrate composition, geomorphology, and riparian health assessments
- Fish tissue samples for updates to fish consumption advisories

4.3 Supplemental Indicators

SWQB identifies additional supplemental indicators on a case-by-case basis when there is a reasonable probability that a specific pollutant may be present in a watershed. Supplemental indicators may include emerging contaminants and issues of public concern including pesticides, pharmaceuticals and surfactants.

4.4 NPDES Effluent Monitoring and Compliance Sampling Inspections

Either USEPA Region 6 or NMED SWQB PSRS may collect samples to determine compliance for enforcement purposes, particularly any of the priority pollutants that may have been detected or suspected in effluent discharges. If priority pollutants are detected by SWQB or shown in §308 priority pollutant scans provided by USEPA Region 6, the presence of these parameters can be specifically targeted in downstream ambient waters. During facility compliance sampling inspections, effluent samples are collected for selected parameters specified in the facility NPDES permit and related parameters or parameters of future concern. Table 2.2 in the SWQB QAPP provides a general summary of the parameters commonly sampled for compliance monitoring purposes. Sampling frequency is once per compliance sampling inspection event and the number of samples taken is one for all parameters except bacteria and polychlorinated biphenyls (PCBs), which have a 2 sample and 3 sample protocol, respectively. Any deviations from the generalized sampling plan set forth in Table 2.2 are documented during the NPDES permit compliance sampling inspection (NMED/SWQB 2016a).

4.5 Wetland Indicators

The NMRAM employs a variety of core indicators (metrics) to assess New Mexico's wetlands (**Table 4.2**). These metrics are applicable across a wide range of wetland types, and can be measured using a combination of remote sensing/spatial analysis approaches (Level 1) and/or direct on-the-ground semi-quantitative measurements (Level 2). The NMRAM contains an assessment protocol for each of the metrics associated with the four core indicators (landscape context, abiotic characteristics, biotic characteristics, and wetland size).

In addition, the NMRAM uses stressor checklist metrics to identify stressors that could affect wetland condition. A stressor is defined as an anthropogenic perturbation within a wetland or its environmental setting that is likely to negatively impact the condition and function of a wetland. The checklists identify the likely anthropogenic causes for poor wetland conditions (Faber-Langendoen 2008). The lists of potential stressors correspond to the main attributes of wetland condition. It is therefore possible to gain an understanding of why a wetland may deviate from the reference condition.

Core Indicator	Main Attribute	Metrics
Landscape Context	Landscape Structure	Landscape Connectivity
		Buffer Integrity Index
	Landscape Composition	Surrounding Land Use
Abiotic Attributes	Hydrology	Channel Stability
		Hydrologic Connectivity
		Macrotopographic Complexity
		Water Source
	Physical Structure	Topographic Cross Section
		Stream Bank Stability / Cover
		Soil Surface Condition
Biotic Attributes	Vegetation Structure	Vegetation Horizontal Patch Structure
		Vegetation Vertical Structure
	Community Composition	Relative Native Canopy Cover
		Native / Exotic Plant Richness
		Invasive-Exotic Plant Cover
		Tree Species Regeneration
Wetland size	Wetland Size	Absolute Patch Size

 Table 4.2 Core indicators for wetlands

NOTE: As NMRAM is developed and tested for various subclasses of wetlands throughout the state, supplemental indicators and metrics will be developed when class-specific indicators are warranted.

4.6 Future Direction for Water Quality Indicators

#	Future Initiatives
1	Update and enhance sample collection and analysis methods for core water quality and biological indicators (e.g. continuous data loggers, field probes, new bacteriological analysis methods etc.)
2	Develop a set of core indicators for stormwater sampling of ephemeral and intermittent systems.
3	Monitor for emerging contaminants.
4	Add a second biological assemblage (e.g. periphyton or fish) for perennial, wadeable stream assessments.
5	Refine and expand numeric translators for nutrients, bottom deposits, turbidity, and biological integrity narrative standards.

5.0 QUALITY ASSURANCE

5.1 Quality Assurance Project Plan

The Quality Management Plan (QMP) and Quality Assurance Project Plan (QAPP) are developed, maintained, and annually reviewed and approved by the USEPA Region 6 office (NMED/SWQB 2016a&c). In 2004, SWQB separated out standard operating procedures into a companion Standard Operating Procedures (SOP) document and currently reviews and updates the procedures, as needed, at least once every other year (NMED/SWQB 2011). Once reviewed and approved by USEPA, all documents are maintained on the SWQB website for access by staff as well as the general public. All monitoring activities are covered annually in the USEPAapproved QAPP. Generally, all chemical analyses of water and wastewater samples are performed by the State of New Mexico Department of Health - Scientific Laboratory Division (SLD). SWQB occasionally establishes contracts with outside laboratories if SLD cannot perform the needed analyses. All SWQB personnel involved with sampling are responsible for reading, understanding, and implementing procedures detailed in the QAPP and SOP. Survey leads and monitoring staff for stream and lake surveys are responsible for verifying that all data collected comply with the provisions of the QAPP prior to assessment and upload to EPA's national database.

In 2006, wetlands monitoring was incorporated into the Quality Management Plan and the Quality Assurance Project Plan for SWQB. For each wetlands restoration project undertaken as part of the SWQB Wetlands Program, a project-specific QAPP is produced and approved by USEPA Region 6 Wetlands technical staff to ensure scientific validity of monitoring activities. The SWQB Wetlands Program employs hydrogeomorphic (HGM) assessment methods. New protocols may be developed or adapted, as needed, for certain classes of wetlands to verify wetland degradation, impacts and recovery; documenting wetland gains and losses; documenting results of wetlands creation, restoration and enhancement projects; and developing an inventory of wetlands resources and prioritization of wetlands projects and protection within specific watersheds. Protocols for conducting data gathering will be selected based on their suitability for providing the information needed. As data gathering protocols are selected, they will undergo peer review and be incorporated into the SWQB SOP document.

5.2 Future Direction for Quality Assurance

SWQB strives to continue to design a QA process that provides confidence in the accuracy of the data without overburdening staff required to perform QA tasks. Some of the steps of the current QA process have been automated within the in-house WQ database (SQUID).

#	Future Initiatives
1	Build additional automated QA tools into the in-house water quality database (SQUID).
2	Continue open coordination and communication with SLD to address data problems.
3	Attempt to increase support for SLD in conjunction with the New Mexico Department of Health.

6.0 DATA MANAGEMENT

6.1 Ambient Water Chemistry Data

Beginning in 2000, SLD and SWQB began the electronic transfer of data. Samples are delivered to SLD along with a Request ID (RID). SLD sends results via email, along with appropriate metadata, to survey staff and the database manager. From 2000 through 2009, MASS staff used an in-house developed, MS Access-based WQ database to store chemical/physical data. In 2010, MASS switched to an Oracle-based database (Surface water QUality Information Database – SQUID) based on the EDAS2 database developed by TetraTech. This database greatly expands upon the functionality of the old database, and also houses biological, habitat, and long-term datasets as well as chemical datasets. Analytical data from SLD are uploaded to the current database using the RID to match data to the appropriate sample events. This database is specifically designed to receive SLD data, and includes photo links, QA tools, and mechanisms to track missing data (i.e., samples that were submitted to SLD but are pending results) to determine study completeness. This database also contains station and assessment unit rationales, is used to plan water quality surveys, estimates and tracks WTU usage at SLD, and generates Data Quality Objective reports for inclusion in the QAPP.

Once all data for the survey are received and all QA issues resolved, data are directly uploaded to USEPA's national databases (WQX/STORET) (**Figure 6.1**). SWQB began uploading data to new STORET in 2003. Ambient toxicity monitoring data are housed by USEPA at: http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/toxnet/nm.pdf.

6.2 Biological and Habitat Data

Biological and habitat data are housed in the SQUID. This has allowed for exploration of multiple years of primarily benthic macroinvertebrate data during development of numeric translators for the assessment of narrative nutrient, sediment, and biological criteria. , Biological data housed in SQUID include fish, periphyton, and macroinvertebrate data, enabling direct uploads to WQX/STORET. Flow, geomorphic measurements, and densitometer stream shade measurements are also housed in SQUID, and used to determine relative bed stability for sedimentation assessments and provide model input parameters for TMDL development.

6.3 Designated Use Impairment Summary Information

All summary assessment data are housed in SQUID. Use attainment decisions by assessment unit are generated directly from SQUID through a series of ad hoc reports, and summarized in Appendix A of the Integrated Report (NMED/SWQB 2016b). This report is prepared every even numbered calendar year as required by the CWA. Category 5 assessment units on the Integrated List (see Section 4.0) constitute the *CWA* §303(d) List of Impaired Waters. The Integrated Report is opened for a minimum 30-day public comment period. A formal Response to Comments is prepared by SWQB as Appendix C of the Integrated Report. The final draft Integrated Report and appendices are submitted to the WQCC and USEPA Region 6 for review and approval. SWQB also submits the Record of Decision (ROD) document. The ROD is an additional, non-required document that SWQB provides to USEPA and the public. It explains why and when a particular assessment unit was noted as impaired and, if applicable, why and when it was de-listed (i.e. removed from Category 5 of the Integrated List).

6.4 Future Direction for Data Management

SWQB has many initiatives regarding data management and development of additional database tools. NMED's Department of Information Technology (IT) with assistance from SWQB applied for and has received an Exchange Network grant to be one of a handful of states selected to implement the ATTAINs re-design. Both SWQB and NMED IT staff are also active participants on the ATTAINs Design and Exchange Network users group, guiding the final ATTAINs user interface and associated schema.

#	Future Initiatives
1	Build additional automated QA tools to expedite QA of provisional data prior to STORET upload and prior to impairment determinations.
2	Add the ability to batch upload multiple sampling events to expedite manual data entry.
3	Automate field data entry using electronic field forms to reduce potential for data entry error.
4	Create a Field Sampling Plan (FSP) report for planning and tracking purposes.
5	Add a mapping tool for project level and site level display.
6	Incorporate the SWQB NPDES database into SQUID.
7	Provide web-based tools to access the database such that satellite offices in Albuquerque, Las Vegas, Las Cruces, and Silver City as well as the general public can have real-time access to SWQB's data.

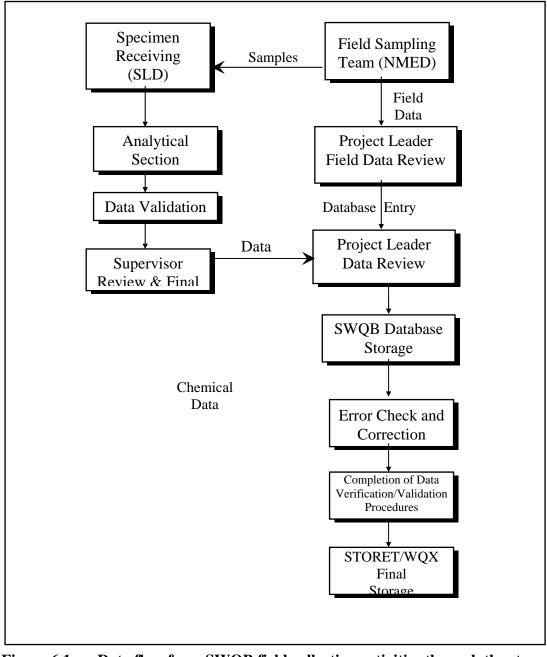


Figure 6.1 Data flow from SWQB field collection activities through the storage of validated data on the STORET/WQX system.

7.0 DATA ANALYSIS/ASSESSMENT

7.1 Ambient Surface Water Quality Data

All data collected during watershed surveys that meet SWQB QA/QC criteria are assessed to determine designated use attainment status by utilizing various assessment protocols detailed in the most current version of the State of New Mexico Procedures for Assessing Standards Attainment for the Integrated §303(d)/§305(b) Water Quality Monitoring and Assessment Report (NMED/SWQB 2015a). The Assessment Protocol (AP) is modified every listing cycle to continually improve upon SWQB's assessment processes. The AP is internally reviewed every two years prior to development of the draft Integrated List. The AP is developed and revised with input from the public, technical workgroups, and USEPA Region 6. Some of the major changes over the years include adding the following: protocols to assess large data sets (temperature, pH, and dissolved oxygen) derived from in situ data loggers (2006); protocols for nutrient impairment in wadeable, perennial streams based on ecoregion nutrient criteria calculated based on reference site summary statistics (2006); protocols for the determination of sedimentation/siltation impairment in wadeable, perennial streams using stressor-response relationships and identified impairment thresholds (2012); protocols for determining turbidity impairment in coldwater perennial streams using the severity of ill effects (SEV) index, magnitude of turbidity values, and duration of exposure (2012); protocols for determining nutrient impairment in lakes/reservoirs (2014); and guidance for third party and IR Category 4B proposals.

SWQB incorporates elements of the most current USEPA guidance documents during development and biennial refinement of assessment protocols, which build and improve off of the original Consolidated Assessment and Listing Methodology (CALM) guidance documents (USEPA 2002). Assessment metadata are housed in SQUID. Assessment conclusions are reported to the public and USEPA every even numbered year in the Integrated Report and List (NMED/SWQB 2016b). All current and previous assessment protocols and Integrated Reports and associated 303(d)/305(b) lists are available on SWQB's web site.

7.2 Narrative Standards Impairment Determinations

Similar to other states, New Mexico has several narrative water quality standards. Impairment determinations for these standards require development of specific assessment protocols. SWQB has developed specific protocols for plant nutrients and sedimentation (stream bottom deposits) in perennial, wadeable streams, and protocols for turbidity in coldwater perennial streams (NMED/SWQB 2015a). SWQB strives to review and update these protocols on a regular basis, with input from USEPA and various workgroups.

7.3 NPDES Effluent Data

Analytical results from water quality samples collected from effluent discharges are compared to NPDES permit limits and waste load allocations, if applicable. Analytical results from water quality samples collected from ambient stream stations upstream and downstream from the effluent

discharges are used to determine water quality standards attainment and the effects of the discharges on receiving waters.

#	Future Initiatives
1	Refine nutrient AP for wadeable, perennial streams.
2	Continue developing automated assessment methods using SQUID and RStudio.
3	Refine Stream Condition Index (SCI) for wadeable, perennial streams.
4	Develop draft nutrient APs for nonwadeable rivers.
5	Develop appropriate ways to incorporate stormwater data into impairment determinations.

7.4 Future Direction for Data Analysis and Assessment

8.0 **REPORTING**

8.1 Water Quality Reports and Lists

SWQB regularly produces timely and complete water quality reports and lists. Since the 2004 reporting cycle, New Mexico has produced an Integrated CWA §303(d)/305(b) Report that includes the list of impaired waters (Appendix A) per USEPA listing guidance. SWQB submits this information electronically for inclusion in the national ATTAINs database.

Semiannual grant reports summarizing the status of all outstanding projects are prepared by SWQB program managers and MASS supervisors and staff, as appropriate. These reports are provided to USEPA Region 6. Project summaries of water quality surveys conducted during the year are compiled and sent to USEPA.

8.2 Additional Reports Based On Monitoring Activities

Other reports and products resulting in part from water quality monitoring activities include use attainability analyses (UAAs), total maximum daily loads (TMDLs) planning documents, TMDL alternatives, watershed-based plans (WBPs), Nonpoint Source Annual Reports, new or revised assessment protocols, water quality standards development documentation, and testimony for the triennial standards review. Monthly reports of the number of NPDES inspections are reported to USEPA Region 6. NPDES Compliance Inspection Reports and analytical results from samples collected during Compliance Sampling Inspections are provided to USEPA and to the permittee. Specific permittees are discussed during USEPA-SWQB enforcement meetings held in Santa Fe.

8.3 Future Direction for Reporting

#	Future Initiatives
1	Develop improved automated assessment reports and summaries in SQUID.
2	Improve and update the website to reflect current projects and milestones.
3	Allow or improve public access to data through the internet.

9.0 **PROGRAMMATIC EVALUATION**

New Mexico, in consultation with USEPA Region 6, conducts occasional reviews (dates to be determined by New Mexico and USEPA Region 6) of each aspect of its monitoring and assessment program and determines how well the program serves New Mexico's water quality decision needs for all of its waters. This involves evaluating the monitoring and assessment program to determine how well each of the elements is addressed and determining how needed changes and additions are incorporated into future monitoring and USEPA funding cycles.

9.1 Future Direction

SWQB's goal is to build the bureau's capacity to conduct periodic internal and external reviews of its water quality monitoring and assessment programs to determine if each element is meeting its stated goals. Specific tasks scheduled to enhance this element of the Monitoring Strategy are detailed in the timeline in **Appendix A**.

10.0 GENERAL SUPPORT AND INFRASTRUCTURE PLANNING

SWQB's current resources allow for an 8-year, single phase, targeted watershed survey rotation, as described in the previous sections. Additional resources would allow SWQB to:

- Incorporate probabilistic sampling designs, when appropriate and practical, into our monitoring program to statistically answer CWA §305(b) questions especially related to the quality of specific waterbody types (e.g. intermittent and ephemeral waters),
- Collect more data to update and maintain the fish consumption advisory program in New Mexico,
- Increase NPDES compliance evaluation activities in New Mexico,
- Increase the number of samples for the stream, river, and lake monitoring efforts to improve confidence in data evaluation,
- Refine and expand numeric translators for nutrients, stream bottom deposits, and/or benthic macroinvertebrates, and
- Refine monitoring methods and develop assessment protocols for nonwadeable rivers.

10.1 Current and Future Monitoring and Assessment Resources

The successful implementation of a comprehensive monitoring and assessment strategy for the State of New Mexico is dependent upon adequate funding and personnel. SWQB's current staffing and funding sources are discussed below. An implementation timeline to reach the future directives outlined in Chapters 3 thru 10 is included in Appendix A. This appendix provides goals, target dates for completion, and a strategy for implementation along with resources needed.

The Monitoring, Assessment and Standards Section currently consists of 3 teams:

- Monitoring Team (5.9 full time employees)
- TMDL and Assessment Team (3.75 FTEs)
- Standards, Planning and Reporting Team (3 FTEs)

SWQB's current budget for fiscal year 2016 was approximately \$4,500,000, the majority being funded by federal money (CWA §106 and §319(h) grant monies) with the remainder being funded through state funds (New Mexico General Funds and Corrective Action Fund). The Scientific Laboratory Division (SLD) provides the majority of SWQB's water quality analysis needs through the New Mexico General Fund appropriation. In FY16 SWQB received 175,500 WTU (work time units - roughly equivalent to \$1-2 each). Table 10.1 identifies current resources used to implement this strategy.

10.2 Training Needs

Training requests are determined on an as needed basis. Approximately \$9,350 in funds are allocated in the 106 supplemental monitoring funds for training. In addition to required health and safety training, topics that employees have asked for additional training on include (but are not limited to):

- Current approaches to TMDL development
- Water Quality Standards Academy
- Development and incorporation of waste load allocations from stormwater permitted activities
- Sampling and analysis protocols
- Habitat survey techniques
- Lake/reservoir TMDL development
- Statistical approaches to monitoring design and assessments
- USEPA inspection workshops

Table 10.1 Monitoring, Assessment and Standards resource assessment

Funding (Grant)	SWQB Funding Level/yr	Staff Resources	Operations Resources	Laboratory Resources
CWA 106	\$1,244,928 Fed \$220,084 State LOE	9.95 MAS + 1.35 Finance & Administration	 \$8,400 for training and travel; \$9,500 for supplies; \$14,000 for data loggers & equipment 	\$0
CWA 106 Supplemental Monitoring	\$159,000	0.9 MAS	\$9,350 for training; \$3,500 for supplies; \$20,000 for data loggers & equipment	\$26,000 in contract funds for periphyton, macroinvertebrate, chlorophyll, and low-level nutrient analysis
CWA 604(b)	\$101,000	1 MAS (TMDL)	\$0	\$0
CWA 319(h)	\$2,100,000	1 Effectiveness Monitoring; 10.03 Watershed Protection & Improve Water Quality		
New Mexico General Funds	\$406,600	1 MAS Program Manager	\$0	175,500 WTUs (work time units) through SLD*
New Mexico - Corrective Action Fund (CAF)	\$283,400	0.5 MAS (Fish consumption advisories)	\$0	\$15,000 fish tissue analysis
TOTALS	\$4,515,012	13.35 Monitoring, Assessment & Standards; 1 Effectiveness Monitoring	\$45,000 equipment/supplies + additional general fund	\$41,000 + general funds for sample analysis

NOTES:

*SLD provides the majority of our laboratory analysis through New Mexico General Fund Appropriation. Future cuts are possible. These state funds are used as match on our grants.

†104(b)(3) funding has been eliminated and no new funds under this program are anticipated

^{**} State budgets have been cut in previous years; additional cuts are anticipated. in FY11

^{***} as part of state budget cuts funds for USGS sampling were reduced from 124,000 to 80,000; additional cuts possible

11.0 REFERENCES

- Brinson, M.M. 1993. A Hydrogeomorphic Classification for Wetlands; prepared for U.S. Army Corps of Engineers. 101 p.: ill.; 28 cm. (Technical report; WRP-DE-4).
- Faber-Langendoen, D., G. Kudray, C. Nordman, L. Sneddon, L. Vance, E. Byers, J. Rocchio, S. Gawler, G. Kittel, S. Menard, P. Comer, E. Muldavin, M. Schafale, T. Foti, C. Josse, and J. Christy. 2008. *Ecological Performance Standards for Wetland Mitigation: An Approach Based on Ecological Integrity Assessments*. NatureServe, Arlington, VA. + Appendices.
- New Mexico Environment Department/ Surface Water Quality Bureau (NMED/SWQB). 2011. State of New Mexico Standard Operating Procedures (SOPs). Available online at: https://www.env.nm.gov/swqb/SOP/.
 - _____. 2015a. Procedures for Assessing Water Quality Standards Attainment for the State of New Mexico CWA §303(d)/§305(b) Integrated Report. June. Santa Fe, NM.
 - _____. 2015b. Final Draft Prioritization Framework and Long Term Vision for Water Quality in New Mexico. July. Santa Fe, NM.
 - _____. 2016a. Quality Assurance Project Plan for Water Quality Management Programs. January. Santa Fe, NM.
 - _____. 2016b. WQCC-Approved 2016-2018 State of New Mexico Clean Water Act \$303(d)/\$305(b) Integrated Report. June. Santa Fe, NM.
 - _____. 2016c. Quality Management Plan for NMED/SWQB Environmental Data Operations. June. Santa Fe, NM.
- New Mexico Water Quality Act. 74-6-1 NMSA 1978.
- New Mexico Water Quality Control Commission. State of New Mexico Standards for Interstate and Intrastate Streams. 20.6.4 NMAC.
- Research Triangle Institute (RTI). 2002. Assessment Database (ADB) Version 2.1.4 for Microsoft Access User's Guide. DRAFT. Funded by USEPA Office of Water. Research Triangle Park, NC.
- Tiner, R. W. 2003. Dichotomous keys and mapping codes for wetland landscape position, landform, water flow path, and waterbody type descriptors. U.S. Fish and Wildlife Service, National Wetlands Inventory Program, Northeast Region, Hadley, MA, USA.
- U.S. District Court for the District of New Mexico. 1997. Forest Guardians and Southwest Environmental Center (Plaintiffs) v. Carol Browner, in her official capacity as Administrator, EPA (Defendant): Joint Motion for Entry of Consent Decree. April 29.
- U.S. Environmental Protection Agency (USEPA). 2002. Consolidated Assessment and Listing

Methodology (CALM): Towards a compendium of best practices. Office of Wetlands, Oceans, and Watersheds. Washington, D.C.

2003. Elements of a state water monitoring and assessment program. Assessment and Watershed Protection Division, Office of Wetlands, Oceans, and Watersheds. March. EPA 841-B-03-003. Washington, D.C.

_____. 2006. Elements of a state water monitoring and assessment program for wetlands. Assessment and Watershed Protection Division, Office of Wetlands, Oceans, and Watersheds. April.

. 2009. Information concerning 2010 Clean Water Act sections 303(d), 305(b), and 314 integrated reporting and listing decisions. Memorandum from the Office of Wetlands, Oceans, and Watersheds. May 5, 2009. Washington, D.C.

APPENDIX A – IMPLEMENTATION SCHEDULE

The following table summarizes and prioritizes the future directions for improvement as outlined in Chapters 2-10 of the monitoring strategy. The time frame assumes that the identified resource needs have been met. Resources are categorized into three major groups: people, time and money. Timeframe for low priority items are not stated because resources are not available at this time and are not likely to be available in the next five years.

#	Goal	Implementation Plan	Priority	Resources Needed	Time Frame		
Μ	Monitoring Objectives – Chapter 2						
1	Refine current monitoring and assessment methods for more reliable determination of use attainment in New Mexico's surface waters.	Develop sedimentation and nutrient assessment protocols for non-wadeable rivers (see 7-5 below)	Medium	Time and money	2021		
2	Establish a stormwater program to include sampling methodologies and assessment protocols specific to stormwater and/or intermittent and ephemeral streams.	See 4-2 and 7-6 below for details	Low	Time and money			
3	Restore long-term USGS, fixed water quality stations to examine long-term trend data across the state.	Lobby the state senate for increased funding to support long-term monitoring efforts across the state.	Low	Time and money			
4	Implement special studies to investigate aluminum, radionuclides, bacteria, and/or PCB (as well as other priority pollutants) levels across the state to develop or refine appropriate water quality standards designed to protect surface waters in New Mexico.	Determine and prioritize special study needs and objectives. (see 3-4 and 4-3 below)	Medium	People, time and money	As opportunities become available		
5	Identify, monitor and assess wetlands throughout the state.	Continue to identify wetlands and monitor and assess wetland condition. Develop Geographic Information System wetlands map for NM. Coordinate with other state and federal agencies.	High	People, time and money	2019		

#	Goal	Implementation Plan	Priority	Resources Needed	Time Frame		
M	Monitoring Design – Chapter 3						
1	Strive to incorporate probabilistic sampling design into yearly monitoring efforts.	Incorporate a statewide probability-based design for specific waterbody types that fulfills both 305(b) and 303(d) objectives.	Low	People, time and money			
2	Enhance lake and reservoir monitoring in order to prepare for subsequent TMDL development.	Increase number of dedicated lake monitoring staff.	Low	People and money			
3	Pursue grant funding for special studies to research harmful algal blooms, pharmaceuticals, radionuclides, fish tissue contaminants, salinity, bacteria, and/or PCB levels on ecoregion and statewide levels.	Determine and prioritize special study needs and objectives.	Medium	People, time and money	As opportunities become available		
4	Increase number of samples for the stream, river, and lake programs to improve confidence in data evaluation.	Determine number of samples to optimize statistical confidence of assessment results with resources available.	Low	People, time and money			
5	Implement special monitoring for unique resources such as Outstanding National Resource Waters (ONRWs) and intermittent/ephemeral waters.	Determine and prioritize special study needs and objectives. Add limited ONRW sampling to existing surveys as needed. Develop ephemeral sampling SOPs.	Medium to Low	Time and money	2021 for ONRWs		
Co	re and Supplemental Indicators – Chapte	er 4	J	L			
1	Update and enhance sample collection and analysis methods for core water quality and biological indicators (e.g. continuous data loggers, field probes, bacteria, etc.)	Evaluate current sampling equipment, investigate new/alternative methods and select/modify/adapt to meet New Mexico's monitoring needs	High	Money	On-going / as needed		
2	Develop a set of core indicators for stormwater sampling of ephemeral and intermittent systems.	Establish a stormwater program to include water quality standards development, sampling protocols, and assessment methodologies specific to stormwater. Coordinate with state and federal agencies.	Low	People and money			

#	Goal	Implementation Plan	Priority	Resources Needed	Time Frame	
3	Monitor for emerging contaminants.	Hire a specialist in emerging contaminants preferably with a background in toxicology.	Low	People and money		
4	Add a second biological assemblage (e.g. fish) for perennial, wadeable stream assessments.	Develop index of biological integrity based on reference conditions.	High	Time and money	2019	
5	Refine and expand numeric translators for nutrients, bottom deposits, turbidity, and biological integrity narrative standards.	Evaluate and revise standards and/or numeric translators based on new information. (see $7-1 - 7-3$ below)	Medium	Time	2021	
Qu	ality Assurance – Chapter 5					
1	Build additional automated QA tools into the in-house water quality database (SQUID).	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	High	Time	2019	
2	Continue open coordination and communication with SLD to address data problems.	Work with SLD to update and enhance data reporting requirements.	High	Time	On-going/ as needed	
3	Attempt to increase support for SLD in conjunction with the New Mexico Department of Health.	Work with SLD and state legislature to request funding for this goal.	Low	Time		
Data Management – Chapter 6						
1	Build additional automated QA tools to expedite QA of provisional data prior to STORET upload and prior to impairment determinations.	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	Medium	People, time and money	2021	
2	Add the ability to batch upload multiple sampling events to expedite manual data entry.	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	High	People, time and money	2019	

#	Goal	Implementation Plan	Priority	Resources Needed	Time Frame
3	Automate field data entry using electronic field forms to reduce potential for data entry error.	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	High	People, time and money	2019
4	Create a Field Sampling Plan (FSP) report for planning and tracking purposes.	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	High	People, time and money	2019
5	Add a mapping tool for project level and site level display.	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	Low	People, time and money	
6	Incorporate the SWQB NPDES database into SQUID.	Coordinate with Department of Information Technology (DoIT) to update and enhance the SWQB's database (SQUID).	Medium	People, time and money	2021
7	Provide web-based tools to create real- time access to SWQB's data.	Coordinate with DoIT to complete task.	Low	People, time and money	
Da	ta Analysis and Assessments – Chapter 7		•		
1	Refine nutrient AP for wadeable, perennial streams.	Incorporate thresholds developed from stressor-response relationships. Use indicators that demonstrate clear relationship with nutrient enrichment.	High	Time	2019
2	Continue developing automated assessment methods using SQUID and RStudio.	Coordinate with other professionals to develop and refine automated assessment tools in RStudio.	Medium	Time	2021
3	Refine Stream Condition Index (SCI) for wadeable, perennial streams.	Revisit existing numeric translators for mountain ecoregions and develop numeric translators for non-mountain ecoregions for narrative biological integrity standard.	Medium	People, time and money	2021
4	Develop draft nutrient APs for nonwadeable rivers.	Propose numeric translators for New Mexico's narrative standard. Use weight- of-evidence approach to determine impairment. Incorporate biological component into assessments.	Medium	People, time and money	2021

#	Goal	Implementation Plan	Priority	Resources Needed	Time Frame		
5	Develop appropriate ways to incorporate stormwater data into impairment determinations.	Evaluate effects of stormwater on water quality exceedences.	Low	People, time and money			
Re	porting – Chapter 8						
1	Develop improved automated assessment reports and summaries in SQUID.	Coordinate with the national ATTAINS Re- design workgroup and NMED's Department of Information Technology (DoIT) to complete task.	High	Time	2019		
2	Improve and update the website to reflect current projects and milestones.	Coordinate with webmaster to keep website current.	High	Time	On-going		
3	Allow or improve public access to data through the internet.	Allocate funds for electronic viewing of data over the internet. Coordinate with webmaster, GIS specialist, and DoIT to develop website and data mine quality data from our existing oracle database.	Low	People, time and money			
Pr	ogram Evaluation – Chapter 9		•				
1	Conduct periodic internal and external reviews of NMED's water quality monitoring programs to determine if each program is meeting its stated goals.	Conduct periodic reviews of the finalized strategy every 3-5 years. Communicate directly with USEPA regarding SWQB's strategy. Investigate evaluation criteria from other states to determine if they are appropriate for New Mexico.	Medium	Time	2021		
Ge	General Support and Infrastructure – Chapter 10						
1	Provide training/professional growth opportunities and a supportive work environment to retain qualified staff.	Salary increases limited by state legislature. However, SWQB can strive to provide training/professional growth opportunities and a supportive work environment for program staff to support retention.	High	Time and money	2019		