NATURAL RESOURCES CONSERVATION SERVICE #### **CONSERVATION PRACTICE STANDARD** #### **NUTRIENT MANAGEMENT** (Ac.) #### **CODE 590** #### **DEFINITION** Managing the amount (rate), source, placement (method of application), and timing of plant nutrients and soil amendments. #### **PURPOSE** - To budget, supply, and conserve nutrients for plant production, - To minimize agricultural nonpoint source pollution of surface and groundwater resources. - To properly utilize manure or organic by-products as a plant nutrient source. - To protect air quality by reducing odors, nitrogen emissions (ammonia, oxides of nitrogen), and the formation of atmospheric particulates. - To maintain or improve the physical, chemical, and biological condition of soll. #### **CONDITIONS WHERE PRACTICE APPLIES** This practice applies to all lands where plant nutrients and soil amendments are applied. This standard does not apply to one-time nutrient applications to establish perennial crops. #### **CRITERIA** General Criteria Applicable to All Purposes A nutrient budget for nitrogen, phosphorus, and potassium must be developed that considers all potential sources of nutrients including, but not limited to, green manures, legumes, crop residues, compost, animal manure, organic by-products, biosolids, waste water, organic matter, soil biological activity, commercial fertilizer, and irrigation water. Organic and inorganic fertilizer recommendation budgets will be developed using New Mexico State University's (NMSU) Soil Test Interpretation Software (Excel Spreadsheet), or other NRCS approved software. Enhanced efficiency fertilizers, used in the State must be defined by the Association of American Plant Food Control Officials (AAPFCO) and be accepted for use by the State fertilizer control official, or similar authority, with responsibility for verification of product guarantees, ingredients (by AAPFCO definition) and label claims. For nutrient risk assessment policy and procedures see Title 190, General Manual (GM), Part 402, Nutrient Management and Title 190, National Instruction (NI), Part 302, Nutrient Management Policy Implementation. http://directives.sc.egov.usda.gov/Default.aspx To avoid salt damage, the rate and placement of applied nitrogen and potassium in starter fertilizer must be consistent with New Mexico State University guidelines, or industry practice recognized by NMSU. The NRCS-approved nutrient risk assessment for nitrogen must be completed on all sites unless the State NRCS, with the concurrence of New Mexico Environment Department (NMED), has determined specific conditions where nitrogen leaching is not a risk to water quality, including drinking water. The NRCS-approved nutrient risk assessment for phosphorus must be completed when: - phosphorus application rate exceeds NMSU fertility rate guidelines for the planned crop(s), or - the planned area is within a phosphorus-impaired watershed (contributes to 303d-listed water bodies), or - the NRCS and NMED have not determined specific conditions where the risk of phosphorus loss is low. Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact the Natural Resources conservation Service State Office or visit the Field Office Technical Guide. A phosphorus risk assessment will not be required when the State NRCS, with concurrence of the NMED, has determined specific conditions where the risk of phosphorus loss is low. These fields must have a documented agronomic need for phosphorus; based on Soil Test Phosphorus (STP) and NMSU nutrient recommendations. On organic operations, the nutrient sources and management must be consistent with the USDA's National Organic Program. Areas contained within minimum application setbacks (e.g., sinkholes, wellheads, gullies, ditches, or surface inlets) must receive nutrients consistent with the setback restrictions. Applications of irrigation water must minimize the risk of nutrient loss to surface and groundwater. Soil pH must be maintained in a range that enhances an adequate level for crop nutrient availability and utilization. Refer to NMSU documentation for guidance. ### Soil, Manure, and Tissue Sampling and Laboratory Analysis (Testing) Nutrient planning must be based on current soil, manure, and (where used as supplemental information) tissue test results developed in accordance NMSU guidance, or industry practice, if recognized by NMSU. Current soil tests are those that are no older than 3 years, but may be taken on an interval recommended by NMSU. The area represented by a soil test must be that acreage recommended by NMSU. Request analysis specified in NMSU Extension Guide A-122 http://aces.nmsu.edu/pubs/ a/a-122.html . Where a Conservation Management Unit (CMU) is used as the basis for a sampling unit, all acreage in the CMU must have similar soil type, cropping history, and management practice treatment. The soil and tissue tests must include analysis pertinent to monitoring or amending the annual nutrient budget, e.g., pH, Electrical Conductivity (EC) and sodicity where salts are a concern, soil organic matter, phosphorus, potassium, or other nutrients and test for nitrogen where applicable. Follow NMSU guidelines regarding recommended analysis. Many soils and crops in New Mexico also show a need for sulfur, zinc, manganese and other micronutrients. NRCS NM September, 2012 If the saturated paste pH_e is greater than 7 an Olsen, (Sodium Bicarbonate) P-test will be done. If the pH is < 7 the Bray P- test will be used. The K-test shall be done using the water extraction method or the ammonium acetate extraction method. Soil pH and Electrical Conductivity (EC) will be determined by saturation extract (salinity assessment). Exchangeable calcium, magnesium and sodium shall also be determined during salinity assessment to assess the sodium adsorption ratio and exchangeable sodium percentage. Tissue sampling and testing, if used, shall be done in accordance with NMSU standards or recommendations. See NMSU Extension Guide A-123. http://aces.nmsu.edu/pubs/a/a-123.html Additional nutrients above the budget amount may be added if interpretation of the tissue test indicates a need. Soil test analysis must be performed by laboratories successfully meeting the requirements and performance standards of the North American Proficiency Testing Program-Performance Assessment Program (NAPT-PAP) under the auspices of the Soil Science Society of America (SSSA) and NRCS, or other NRCS-approved program that considers laboratory performance and proficiency to assure accuracy of soil test results. Alternate proficiency testing programs must have solid stakeholder (e.g., water quality control entity, NRCS State staff, growers, and others) support and be regional in scope. Nutrient values of manure, organic by-products and bio-solids must be determined prior to land application. Manure analysis must include, at minimum, total nitrogen (N), ammonium N, total phosphorus (P) or P2O5, total potassium (K) or K2O, and percent solids, or follow NMSU guidance regarding required analysis. Manure, organic by-products, and bio-solids samples must be collected and analyzed at least annually, or more frequently if needed to account for operational changes (feed management, animal type, manure handling strategy, etc.) impacting manure nutrient concentrations. If no operational changes occur, less frequent manure testing is allowable where operations can document a stable level of nutrient concentrations for the preceding three consecutive years, unless Federal, State, or Local regulations require more frequent testing. Samples shall be collected, prepared, stored, and shipped, following NMSU Extension Guide A-114. http://aces.nmsu.edu/pubs/ a/a-114.html . Fields must have 10-15 sub-samples taken to make up the composite samples to be analyzed. When planning for new or modified livestock operations, acceptable "book values" recognized by the NRCS (e.g., NRCS Agricultural Waste Management Field Handbook http://directives.sc.egov.usda.gov/Default.aspx) and NMSU, or analysis from similar operations in the geographical area, may be used if they accurately estimate nutrient output from the proposed operation. Manure testing analysis must be performed by laboratories successfully meeting the requirements and performance standards of the Manure Testing Laboratory Certification Program (MTLCP) under the auspices of the Minnesota Department of Agriculture, or other NRCS- approved program that considers laboratory performance and proficiency to assure accurate manure test results. #### **Nutrient Application Rates** Planned nutrient application rates for nitrogen, phosphorus, and potassium must not exceed NMSU guidelines or industry practice when recognized by the university. At a minimum, determination of rate must be based on crop/cropping sequence, current soil test results, realistic yield goals, and NRCS- approved nutrient risk assessments. Recommended nutrient application rates shall be based on NMSU recommendations, see NMSU Fertilizer Guide Extension A-128 http://140.254.84.215/cached.jsp?idx=0&id=150797 and/ or industry practice when recognized by NMSU that consider current test results realistic yield goals and management capabilities. NMSU Fertilizer Interpretation software, (Excel Spreadsheet), or other NRCS approved software may be used to generate a nutrient budget for a given crop. Realistic yield goals must be established based on historical yield data, soil productivity information, climatic conditions, nutrient test results, level of management, and local research results considering comparable production conditions. Estimates of yield response must consider factors such as poor soil quality, drainage, pH, salinity, etc., prior to assuming that nitrogen and/or phosphorus are deficient. For new crops or varieties, industry- demonstrated yield, and nutrient utilization information may be used until land-grant university information is available. The NRCS State Agronomist and NMSU shall establish yield goals and nutrient requirements for new crops as soon as possible. Lower-than-recommended nutrient application rates are permissible if the grower's objectives are met. Applications of bio-solids, starter fertilizers, or pop-up fertilizers must be accounted for in the nutrient budget. The application rate (in/hr) for material applied through irrigation should not exceed the soil intake/infiltration rate and must consider the water holding capacity of the soil root zone and the leaching fraction. See the Irrigation Guide in the NM Field Office Technical Guide (FOTG, Sec I) http://www.nm.nrcs.usda.gov/technical/fotg/section-1/irrigationguide.html for local soil water holding capacities and soil intake rates. Application rates must be adjusted to match the soil intake rate. #### **Nitrogen Application** Normal N test – When the application rate is based on N (P Index <27) and the preplant/preapplication soil nitrate reading is less than 30 ppm, the normal agronomic rates of application will be used (as explained under Nutrient Application Rates). HIgh N test – When the soil N test is between 30-200 ppm nitrate, additional testing will be done to determine when more manure can be added. Additional testing will be done 25% of the way into the growth period of the crop (120 day corn would be tested 30 days after planting). If the pre-application (crop growing) soil test is less than 80 ppm, a maximum rate of 30 lbs/ac of N can be applied. Excessive N test – When the soil N test is greater than 200 ppm nitrate, no additional organic nutrient sources containing N can be applied until the level drops below 80 ppm. Additional testing will be done 25% of the way into the growth period of the crop (120 day corn would be tested 30 days after planting). If the pre-application (crop growing) soil test is less than 80 ppm, a maximum rate of 30 lbs/ac of N can be applied. #### **Nutrient Sources** Nutrient sources utilized must be compatible with the application timing, tillage and planting system, soil properties, crop, crop rotation, soil organic content, and local climate to minimize risk to the environment. #### **Nutrient Application Timing and Placement** Timing and placement of all nutrients must correspond as closely as practical with plant nutrient uptake (utilization by crops), and consider nutrient source, cropping system limitations, soil properties, weather conditions, drainage system, soil biology, and nutrient risk assessment results. Nutrients must not be surface-applied if nutrient losses offsite are likely. This precludes spreading on: - frozen and/or snow-covered soils, and - when the top 2 inches of soil are saturated from rainfall or snow melt. Exceptions for the above criteria can be made for surface-applied manure when specified conditions are met and adequate conservation measures are installed to prevent the offsite delivery of nutrients. The adequate treatment level and specified conditions for winter applications of manure must be defined by NRCS in concurrence with the water quality control authority in the State. At a minimum, the following site and management factors must be considered: - slope - · organic residue and living covers, - amount and form of nutrients to be applied, and - adequate setback distances to protect local water quality. ### Additional Criteria to Minimize Agricultural Nonpoint Source Pollution of Surface and Groundwater Planners must use the current NRCS-approved nitrogen, phosphorus, and soil erosion risk assessment tools to assess the risk of nutrient and soil loss. Identified resource concerns must be addressed to meet current planning criteria (quality criteria). Technical criteria for risk assessments can be found in National Instruction, NI-190-302. http://directives.sc.egov.usda.gov/Default.aspx When there is a high risk of transport of nutrients, conservation practices must be coordinated to avoid, control, or trap manure and nutrients before they can leave the field by surface or subsurface drainage (e.g., tile). NRCS NM September, 2012 The number of applications and the application rates must also be considered to limit the transport of nutrients to tile. Nutrients must be applied with the right placement, in the right amount, at the right time, and from the right source to minimize nutrient losses to surface and groundwater. The following nutrient use efficiency strategies or technologies must be considered: - slow and controlled release fertilizers - nitrification and urease inhibitors - enhanced efficiency fertilizers - · incorporation or injection - timing and number of applications - soil nitrate and organic N testing - coordinate nutrient applications with optimum crop nutrient uptake - Corn Stalk Nitrate Test (CSNT), Pre-Sidedress Nitrate Test (PSNT), and Pre-Plant Soil Nitrate Test (PPSN) - tissue testing, chlorophyli meters, and spectral analysis technologies - other land-grant university recommended technologies that improve nutrient use efficiency and minimize surface or groundwater resource concerns. ### Additional Criteria Applicable to Properly Utilize Manure or Organic By-Products as a Plant Nutrient Source When manures are applied, and soil salinity is a concern, salt concentrations must be monitored to prevent potential crop damage and/or reduced soil quality. The total single application of liquid manure: - must not exceed the soil's infiltration or water holding capacity - be based on crop rooting depth - must be adjusted to avoid runoff or loss to subsurface tile drains. Crop production activities and nutrient use efficiency technologies must be coordinated to take advantage of mineralized plant-available nitrogen to minimize the potential for nitrogen losses due to de-nitrification or ammonia volatilization. Nitrogen, and phosphorus application rates must be planned based on risk assessment results as determined by NRCS-approved nitrogen, (http://www.nm.nrcs.usda.gov/technical/tech-notes/agro/ag61.doc) and phosphorus, (Phosphorus Assessment Tool) risk assessment tools For fields receiving manure, where phosphorus risk assessment results equate to: - LOW risk, additional phosphorus and potassium can be applied at rates greater than crop removal not to exceed the nitrogen requirement for the succeeding crop. - MODERATE risk, additional phosphorus and potassium may be applied at a phosphorus crop removal rate for the planned crops in the rotation. - HIGH risk, additional phosphorus and potassium may be applied at phosphorus crop removal rates if the following requirements are met: - a soil phosphorus drawdown strategy has been implemented, and - a site assessment for nutrients and soil loss has been conducted to determine if mitigation practices are required to protect water quality, - any deviation from these high risk requirements must have the approval of the Chief of the NRCS. The Phosphorous Index, (PI) for NM is described Agronomy Technical Note 57. Download "Worksheet" under Agronomy Tech note 57. http://www.nm.nrcs.usda.gov/technical/tech-notes/agro.html Manure or organic by-products may be applied on legumes at rates equal to the estimated removal of nitrogen in harvested plant biomass, not to exceed NMSU recommendations. Manure may be applied at a rate equal to the recommended phosphorus application, or estimated phosphorus removal in harvested plant biomass for the crop rotation, or multiple years in the crop sequence at one time. When such applications are made, the application rate must not exceed the acceptable phosphorus risk assessment criteria, must not exceed the recommended nitrogen application rate during the year of application or harvest cycle, and no additional phosphorus must be applied in the current year and any additional years for which the single application of phosphorus is supplying nutrients. Setbacks are required for application of manure, litter, and lagoon or pond waste water. No application can be made closer than 100-feet to any down gradient surface open tile line intake structure, sink holes, well heads, or other conduits to surface or ground water. A vegetated buffer (grass, no shrubs) 35- feet wide or more will allow organic application adjacent to the buffer. #### **Nutrient Values** Nutrient values of manure and other organic by-products shall be determined prior to land application based on laboratory analysis, acceptable "book values" recognized by the NRCS and/or NMSU, or historic records for the operation (two or three years of no operational change), if they accurately estimate the nutrient content of the materials. At a minimum, manure analysis shall identify nutrient and specific ion concentrations, percent moisture, and percent organic matter. Salt concentration shall be monitored so that manure applications do not cause plant damage or negatively impact soil quality. Book values recognized by NRCS may be found in the Agricultural Waste Management Field Handbook (AWMFH), Chapter 4 – Agricultural Waste Characteristics. http://directives.sc.egov.usda.gov/Default.aspx Acceptable values for NM can be found in the NM Nutrient Management specification. Heavy metals in bio-solids have additional criteria. ## Additional Criteria to Minimize Agricultural Nonpoint Source Pollution of Surface and Ground Water Resources An assessment shall be completed of the potential for nitrogen and/or phosphorus transport from the field if any waters of concern may be affected. Waters of concern include but are not limited to waters of the US, 303d listed steams, wells, other streams, high ground water, ponds, arroyos that flow part of the year, and lakes. The **Leaching** Index (LI) and/or Phosphorus Index (PI), or other recognized assessment tools, may be used to make these assessments. The results of these assessments and recommendations shall be discussed with the client and included in the practice planning. Nutrient Management practices developed to minimize agricultural non-point source pollution of surface or ground water resources shall include practices and/or management activities that can reduce the risk of nitrogen or phosphorus movement from the field. ### Additional Criteria to Protect Air Quality by Reducing Odors, Nitrogen Emissions and the Formation of Atmospheric Particulates To address air quality concerns caused by odor, nitrogen, sulfur, and/or particulate emissions; the source, timing, amount, and placement of nutrients must be adjusted to minimize the negative impact of these emissions on the environment and human health. One or more of the following may be used: - slow or controlled release fertilizers - nitrification inhibitors - urease inhibitors - nutrient enhancement technologies - incorporation - injection - stabilized nitrogen fertilizers - residue and tillage management - no-till or strip-till - other technologies that minimize the impact of these emissions Do not apply poultry litter, manure, or organic by-products of similar dryness/density when there is a high probability that wind will blow the material offsite. # Additional Criteria to Improve or Maintain the Physical, Chemical, and Biological Condition of the Soil to Enhance Soil Quality for Crop Production and Environmental Protection Time the application of nutrients to avoid periods when field activities will result in soil compaction. In areas where salinity is a concern, select nutrient sources that minimize the buildup of soil salts. Nutrients shall be applied and managed in a manner that maintains or improves the physical, chemical and biological condition of the soil. Use of nutrient sources with high salt content relative to the nutrient value will be minimized to prevent damage to plants. Salt levels will be monitored by soils testing to see that they do not exceed the permissible EC rate for the crop to be grown. See Table 4 in the NM NRCS NM September, 2012 Irrigation Guide in Sec. 1 of the FOTG for the maximum allowable salt levels by crop. Nutrients shall not be applied to flooded or saturated soils by ground equipment when the potential for soil compaction and creation of ruts is high. #### Additional Criteria for Subsurface Drip Irrigation If nutrients are added to Subsurface Drip Irrigation (SDI) systems, a jar test must be done to determine if any of the material being added to the system will cause solids to precipitate out causing the system to plug and fail. The jar test is simply a mixture of the fertilizers (at the field concentration) applied to the water and left to stand to see if any of material settles out. See Agronomy Tech Note 71. http://www.nm.nrcs.usda.gov/technical/tech-notes/agro.html #### CONSIDERATIONS Consider induced deficiencies of nutrients due to excessive levels of other nutrients. Elevated soil test phosphorus levels are detrimental to soil biota. Soil test phosphorus levels should not exceed State-approved soil test thresholds established to protect the environment. Consider the potential for nitrogen leaching into shallow ground water and potential health impacts. Volatilization losses can become significant, if manure is not immediately incorporated into the soil after application. Soil test information no older than one year, particularly if organic nutrients are used. Conduct annual reviews to determine if changes in the nutrient budget are needed especially if livestock numbers or land acreage changes up or down 20%. To prevent leaf burn for some crops, apply liquids according to local climatic conditions or the NRCS irrigation guide. Application rate should vary according to the salt content (electrical conductivity for the liquid and the salt tolerance of the crop). See Table 4 in the Irrigation Water Quality section of the Irrigation Guide in Section I of the FOTG. Use no-till/strip-till in combination with cover crops to sequester nutrients, increase soil organic matter, increase aggregate stability, reduce compaction, improve infiltration, and enhance soil biological activity to improve nutrient use efficiency. Use nutrient management strategies such as cover crops, crop rotations, and crop rotations with perennials to improve nutrient cycling and reduce energy inputs. Use variable-rate nitrogen application based on expected crop yields, soil variability, soil nitrate or organic N supply levels, or chlorophyll concentration. Use variable-rate nitrogen, phosphorus, and potassium application rates based on site-specific variability in crop yield, soil characteristics, soil test values, and other soil productivity factors. Develop site-specific yield maps using a yield monitoring system. Use the data to further diagnose low- and high- yield areas, or zones, and make the necessary management changes. See Title 190, Agronomy Technical Note (TN) 190.AGR.3, Precision Nutrient Management Planning. Use manure management conservation practices to manage manure nutrients to limit losses prior to nutrient utilization. Apply manure at a rate that will result in an "improving" Soil Conditioning Index (SCI) without exceeding acceptable risk of nitrogen or phosphorus loss. Avoid applying manure and organic byproducts upwind of occupied structures. When applying manure with irrigation equipment, modify equipment to reduce the potential for volatilization of nitrogen from the time the manure leaves the application equipment until it reaches the surface of the soil (e.g. reduced pressure, drop down tubes for center pivots). N volatilization from manure in a surface irrigation system will be reduced when applied under a crop canopy. Use legume crops and cover crops to provide nitrogen through biological fixation and nutrient recycling. Modify animal feed diets to reduce the nutrient content of manure following guidance contained in Conservation Practice Standard (CPS) Code 592, Feed Management. Soil test information should be no older than 1 year when developing new plans. Excessive levels of some nutrients can cause induced deficiencies of other nutrients, e.g., high soil test phosphorus levels can result in zinc deficiency in corn. Use soil tests, plant tissue analysis, and field observations to check for secondary plant nutrient deficiencies or toxicity that may impact plant growth or availability of the primary nutrients. Use the adaptive nutrient management learning process to improve nutrient use efficiency on farms as outlined in the NRCS' National Nutrient Policy in GM 190, Part 402 Nutrient Management. Potassium should not be applied in situations where an excess (greater than soil test potassium recommendation) causes nutrient imbalances in crops or forages. Workers should be protected from and avoid unnecessary contact with plant nutrient sources. Extra caution must be taken when handling anhydrous ammonia or when dealing with organic wastes stored in unventilated enclosures. Material generated from cleaning nutrient application equipment should be utilized in an environmentally safe manner. Excess material should be collected and stored or field applied in an appropriate manner. Nutrient containers should be recycled in compliance with State and local guidelines or regulations. #### Considerations to Minimize Agricultural Nonpoint Source Pollution of Surface and Groundwater Use conservation practices that slow runoff, reduce erosion, and increase infiltration, e.g., filter strip, contour farming, or contour buffer strips. These practices can also reduce the loss of nitrates or soluble phosphorus. Use application methods and timing strategies that reduce the risk of nutrient transport by ground and surface waters, such as: - split applications of nitrogen to deliver nutrients during periods of maximum crop utilization. - banded applications of nitrogen and/or phosphorus to improve nutrient availability, - drainage water management to reduce nutrient discharge through drainage systems, and - incorporation of surface-applied manures or organic by-products if precipitation capable of producing runoff or erosion is forecast within the time of planned application, - avoid winter nutrient application for spring seeded crops, - avoid winter plow out of alfalfa to release nitrate when plants can use it in the spring. - use precision agricultural techniques to apply nutrient materials uniformly, - incorporation of applied manure or organic by-products immediately, - delay field application of animal manures or other organic by-products if precipitation capable of producing runoff and erosion is forecast within 24 hours of the time of the planned application, - ammonia based N fertilizers should be incorporated the same day applied. Use the agricultural chemical storage facility conservation practice to protect air, soil, and water quality. Use bioreactors and multistage drainage strategies when approved by the land-grant university. ### Considerations to Protect Air Quality by Reducing Nitrogen and/or Particulate Emissions to the Atmosphere Avoid applying manure and other by-products upwind of inhabited areas. Use high-efficiency irrigation technologies (e.g., reduced-pressure drop nozzles for center pivots) to reduce the potential for nutrient losses. #### PLANS AND SPECIFICATIONS The following components must be included in the nutrient management plan, (See NM Nutrient Management Specification 590): - aerial site photograph(s)/imagery or site map(s), and a soil survey map of the site. - soil information including: soil type surface texture, pH, drainage class, permeability, available water capacity, depth to water table, restrictive features, and flooding and/or ponding frequency, - location of designated sensitive areas and the associated nutrient application restrictions and setbacks, - for manure applications, location of nearby residences, or other locations where humans may be present on a regular basis, and any identified meteorological (e.g., prevailing winds at different times of the year), or topographical influences that may affect the NRCS NM September, 2012 - transport of odors to those locations, - results of approved risk assessment tools for nitrogen, phosphorus, and erosion losses, - documentation establishing that the application site presents low risk for phosphorus transport to local water when phosphorus is applied in excess of crop removal. - current and/or planned plant production sequence or crop rotation, - soil, water, compost, manure, organic by-product, and plant tissue sample analyses applicable to the plan, - soil test phosphorus and/or risk assessment levels at which the plan would require that no phosphorus in any form be applied, - when soil phosphorus levels are increasing, include a discussion of the risk associated with phosphorus accumulation and a proposed phosphorus draw-down strategy, - realistic yield goals for the crops, - complete nutrient budget for nitrogen, phosphorus, and potassium for the plant production sequence or crop rotation, - listing and quantification of all nutrient sources and form. - all enhanced efficiency fertilizer products that are planned for use, - in accordance with the nitrogen and phosphorus risk assessment tool(s), specify the recommended nutrient application source, timing, amount (except for precision/variable rate applications specify method used to determine rate), and placement of plant nutrients for each field or management unit, and - guidance for implementation, operation and maintenance, and recordkeeping. In addition, the following components must be included in a precision/variable rate nutrient management plan: - Document the geo-referenced field boundary and data collected that was processed and analyzed as a GIS layer or layers to generate nutrient or soil amendment recommendations. - Document the nutrient recommendation guidance and recommendation equations used to convert the GIS base data layer or layers to a nutrient source material recommendation GIS layer or layers. - Document if a variable rate nutrient or soil amendment application was made. - Provide application records per management zone or as applied map within individual field boundaries (or electronic records) documenting source, timing, method, and rate of all applications that resulted from use of the precision agriculture process for nutrient or soil amendment applications. - Maintain the electronic records of the GIS data layers and nutrient applications for at least 5 years. If increases in soil phosphorus levels are expected (i.e., when N-based rates are used), the nutrient management plan must document: - the soil phosphorus levels at which it is desirable to convert to phosphorus based planning and/or no further phosphorus application, - the potential plan for soil test phosphorus drawdown from the production and harvesting of crops, and - management activities or techniques used to reduce the potential for phosphorus transport and loss, - for AFOs, a quantification of manure produced in excess of crop nutrient requirements, and - a long-term strategy and proposed implementation timeline for reducing soil P to levels that protect water quality and allow for application of P at crop-removal rates, - a rationale for P applications in excess of crop removal when the phosphorus risk assessment equates to a low risk for P transport to surface or groundwater. #### **OPERATION AND MAINTENANCE** Conduct periodic plan reviews to determine if adjustments or modifications to the plan are needed. At a minimum, plans must be reviewed and revised, as needed with each soil test cycle, changes in manure volume or analysis, crops, or crop management. Fields receiving animal manures and/or bio-solids must be monitored for the accumulation of heavy metals and phosphorus in accordance with land-grant university guidance and State law. Significant changes in animal numbers, management, and feed management will necessitate additional manure analyses to establish a revised average nutrient content. Calibrate application equipment to ensure accurate distribution of material at planned rates. Document the nutrient application rate. When the applied rate differs from the planned rate, provide appropriate documentation for the change. Records must be maintained for at least 5 years to document plan implementation and maintenance. As applicable, records include: - soil, plant tissue, water, manure, and organic by-product analyses resulting in recommendations for nutrient application, - quantities, analysis and sources of nutrients applied, - dates, and method(s) of nutrient applications, source of nutrients, and rates of application, - weather conditions and soil moisture at the time of application; lapsed time to manure incorporation; rainfall or irrigation event, - crops planted, planting and harvest dates, yields, nutrient analyses of harvested biomass, and crop residues removed, - dates of plan review, name of reviewer, and recommended changes resulting from the review, and - all enhanced efficiency fertilizer products used. Additional records for precision/variable rate sites must include: - maps identifying the variable application source, timing, amount, and placement of all plant nutrients applied, and - GPS-based yield maps for crops where yields can be digitally collected. #### **REFERENCES** Association of American Plant Food Control Officials (AAPFCO). 2011. AAPFCO Official Publication no. 64. AAPFCO Inc., Little Rock, AR. Follett, R.F. 2001. Nitrogen transformation and transport processes. *In* Nitrogen in the environment; sources, problems, and solutions, (eds.) R.F. Follett and J. Hatfield, pp. 17-44. Elsevier Science Publishers. The Netherlands. 520 pp. Schepers, J.S., and W.R. Ruan, (eds.) 2008. Nitrogen in agricultural systems. Agron. Monogr. no. 49, American Society of Agronomy (ASA), Crop Science Society of America (CSSA). Soil Science Society of America (SSSA). Madison, WI. Sims, J.T. (ed.) 2005. Phosphorus: Agriculture and the environment. Agron. Monogr. no. 46. ASA, CSSA, and SSSA, Madison, WI. Stevenson, F.J. (ed.) 1982. Nitrogen in agricultural soils. Agron. Series 22. ASA, CSSA, and SSSA, Madison, WI. U.S. Department of Agriculture, Natural Resources Conservation Service. 2010. Agronomy Technical Note, (TN) 190-AGR-3, Precision Nutrient Management Planning. Washington, DC. U.S. Department of Agriculture, Natural Resources Conservation Service. 2011. Title 190, General Manual, (GM), Part 402, Nutrient Management. Washington, DC. U.S. Department of Agriculture, Natural Resources Conservation Service. 2011, Title 190, National Instruction (NI), Part 302, Nutrient Management Policy Implementation. Washington, DC.