STATE OF NEW MEXICO BEFORE THE WATER QUALITY CONTROL COMMISSION

In the Matter of:

PROPOSED AMENDMENT TO 20.6.2 NMAC (Copper Rule) No. WQCC 12-01(R)

EXHIBIT SCOTT – B-1

CLOSURE DISCUSSION TAILING DAMS AND MINE ROCK STOCKPILES

Technical Committee Presentation Copper Rules June 5, 2012

Jim Scott

- Principal Geotechnical Engineer with URS for 35 years
- BS (Arizona State University) and MSCE (Purdue University)
- \succ P.E. in NM, AZ, CO, and B.C.
- Mining industry experience includes engineering analyses and design for development, operation, reclamation, and closure projects
- URS Principal-In-Charge for work at the Bagdad Mine in AZ (Mammoth, Upper Mammoth, and Mulholland tailing impoundments)
- New Mexico experience includes work at Chino Mines Company, Cobre Mine, Tyrone Mine, Hidalgo Smelter, Questa Mine, and Four Corners Generating Facility

Closure Issues

Tailing Dams

- NMOSE criteria
- Design storm events (surface water conveyance)
- Top surface grading
- Mine Rock Stockpiles
 - Non-water impounding
 - Investigations
 - Stability
 - Acceptable Factors of Safety

New Mexico Office of the State Engineer Dam Safety Closure Criteria for Tailing Dams

- Jurisdictional tailing dams
- Closure or Reclamation Plan is prepared
- Plan addresses
 - Long-term stability (static and dynamic conditions)
 - Control of surface runoff to minimize erosion
 - Plan for long-term monitoring
 - Engineer to supervise construction of plan
- Construction completion
 - Completion report
 - Materials test data and photographs
 - As-built drawings
 - Certificate of completion

Design Storm Events (Surface Water Conveyance)

- Spillways/diversion channels for TSF
 - 1/2 PMF PMF
- State-of-the-Practice for TSF and Rock Piles (surface channels/ditches)
 - NM Chino 100-yr return period
 - Tyrone 100-yr return period
 - Cobre 100-yr return period
 - Mining Act 100-yr return period (stream diversions)
 - AZ BADCT 100-yr return period
 - MSHA/OSM 100-yr return period
- Consider stability of channels/ditches
- Good maintenance program just as necessary as good design and construction

Factors Influencing Closure Stability and Safe Performance of Tailing Dams

Shear Strength of Slope Materials/Foundation
Pore Pressure/Phreatic Surface Location
Slope Angle
Unit Weight of Materials in the Slope
Loading Condition (steady-state, seismic)
Factor of Safety (FS) (NMOSE)

 1.5 (steady-state)
 1.1 (seismic)

NMOSE criteria includes liquefaction potential evaluation

NOTES:

- STABILITY ANALYSES WERE PERFORMED WITH A COMPUTER USING THE SLOPE STABILITY PROGRAM "UTEXAS3" USING SPENCER'S METHOD.
- 2. PORE WATER PRESSURES IN TAILING DEFINED BY PIEZOMETRIC LINE ASSUMING HYDROSTATIC CONDITIONS.
- SEE FIGURE 3.1 FOR LOCATION OF STABILITY STUDY SECTION P2-P2'.

ASSUMED MATERIAL PROPERTIES				
SOIL TYPE NO.	MATERIAL DESCRIPTION	UNIT WEIGHT (pcf)	EFFECTIVE STRESS SHEAR STRENGTH	
			FRICTION ANGLE (degrees)	COHESION (psf)
1	NATURAL FOUNDATION SOILS	135	40	0
2	TAILING SLIMES	134	35	0
3	INTERLAYERED SANDS/SLIMES	132	35	0
4	UNDERFLOW SANDS	120	36	0
5	STARTER DAM AND SLIMES/SEPARATION DIKE	132	35	0

URS

TSF Top Surfaces

Develop post-settlement contours

- Grading plan
- Drainage system
- Settlement due to
 - Drain down
 - Weight of top surface cover (2-3')

State-of-the-Practice top surface grades of 0.5 % for TSFs (largely driven by scale)

Mine Rock Stockpiles

- Non-Water Impounding (different than tailing dams)
 - Does not impound process water
- Historical Background
 - First International Conference on Stability in Open Pit Mining, Vancouver, BC (1970)
 - Second International Conference on Stability in Open Pit Mining, Vancouver, BC (1971)
 - Third International Conference on Stability in Open Pit Mining, Vancouver, BC (1981)
 - Fourth International Conference on Stability in Open Pit Mining, Denver, CO (2001)
 - Canada Centre for Mineral and Energy Technology (CANMET) Pit Slope Manual – Waste Embankments (1977)
 - USDA Forest Service Guide Stability of Non-Water Impounding Mine Waste Embankments (1980)
 - SME, AIME Workshop Non-Impounding Waste Rock Dumps (1985)

Mine Rock Stockpiles (cont'd.)

- British Columbia Mine Waste Rock Pile Research Committee (1991-1994)
 - Investigation and Design Manual (1991)
 - Dump Stability Rating Scheme
 - Dump Stability Class (I IV)
 - Failure Hazard (Negligible High)
 - Operating and Monitoring Manual (1991)
 - Methods of Monitoring (1992)
- Tailings and Mine Waste Conferences (yearly)
- First International Seminar on the Management of Rock Dumps, Stockpiles, and Heap Leach Pads, Perth, Australia (2008)

Mine Rock Stockpile Investigations

- Investigations (field and laboratory)
 - Site characterization
 - Hydrology
 - Geology
 - Seismicity
 - Foundation Soils/Bedrock engineering properties
 - Mine Rock engineering properties
- Numerous investigation guides
 - BC Guidelines Mined Rock and Overburden Piles Investigation and Design Manual (1991)
 - SME Design of Non-Impounding Mine Waste Dumps (1985)
 - AZ BADCT Guidance Manual (2004)
 - MSHA Engineering and Design Manual, Coal Refuse Disposal Facilities (2009)
 - California DMG Special Publication 117 (2002)
 - TRB Landslide Analysis and Control, Special Report 176 (1978)

Mine Rock Stockpile Stability

- Factors Affecting Stability
 - Configuration (height, volume, slope angle)
 - Foundation Slope/Confinement
 - Foundation Conditions
 - Mine Rock Properties (durable igneous/metamorphic rocks, low susceptibility to weathering, low fines, free draining, high strength)
 - Construction Method
 - Piezometric/Climatic Conditions
 - Seismicity
- Material Strengths
 - Empirical Correlations (Leps (1970), Barton and Kjaernsli (1981), Barton (2008), Hoek (1990), Hoek and Brown (1997))
 - Large Scale Direct Shear Tests
 - Triaxial Shear Tests
 - In situ (BPTs, PMTs, NALPTs, SPTs)
- Phreatic/Piezometric Conditions
 - Test Holes
 - Monitoring Wells
 - Piezometers
 - Observations

Mine Rock Stockpiles Acceptable Factors of Safety

- NM Mining Act (1999)
 - Piles shall be constructed and maintained to minimize mass movement
- > NMDOT
 - Use AASHTO design criteria
 - 1.3 for static loads
 - 1.1 for seismic loads
- AZ BADCT Guidance Manual (2004)
 - Establish whether or not discharge can occur
 - Static stability
 - 1.5 w/o testing
 - 1.3 w/testing (material shear strengths)
 - Dynamic stability
 - ≥1.1 w/o testing
 - □ ≥ 1.0 w/testing (material shear strengths)

Mine Rock Stockpiles Acceptable Factors of Safety (cont'd).

- British Columbia Mine Waste Rock Pile Research Committee
 - Consider the following factors
 - Shear strength
 - Material composition
 - Foundation conditions and geometry
 - Short-term (during construction) vs. long-term (reclamation) slopes
 - Consequence of failure
 - Field control
 - Engineering judgment
 - Factor of Safety
 - Long-term static 1.3 1.5
 - Pseudo-static (earthquake) 1.0 1.3
 - Ranges reflect understanding of site-specific conditions

State-of the-Practice Factors of Safety Mine Rock Stockpiles

Western U.S. hard rock copper mines
FS=1.3 (static) and 1.0 (seismic)
Site-specific investigations (field and lab)

- Mine rock properties
- Foundation conditions

QUESTIONS / COMMENTS?

