

September 24, 2020

UPS Tracking No. 1ZT49YJ40234571864

Kirby Olson New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

RE: Application for NSR Modification

Jayhawk Compressor Station NSR Permit No. 8152

XTO Energy Inc.

Dear Ms. Olson:

XTO Energy Inc. is submitting the attached New Source Review permit application for the referenced facility. A detailed list of proposed changes are included in Section 3 of the application. Also included is a check for the filing fee. The electronic files will be provided email via or secure transfer Please contact me at 832-624-2768 benjamin schneider@xtoenergy.com should have questions. you any

Sincerely,

Benjamin Schneider, P.E.

Environmental Engineer

JAYHAWK COMPRESSOR STATION Lea County, NM NSR Permit Modification Application

PREPARED BY:
BEN SCHNEIDER
ENVIRONMENTAL ENGINEER
XTO ENERGY INC.
9/9/2020

JAYHAWK COMPRESSOR STATION

NSR Permit Modification Application

Table of Contents

Tab 1	UA1 Form - Company and Facility Information
Tab 2	UA2 Form - Application Tables
Tab 3	Section 3 - Application Summary
Tab 4	Section 4 - Process Flow Sheet
Tab 5	Section 5 - Plot Plan Drawn To Scale
Tab 6	Section 6 - All Calculations
Tab 7	Section 7 - Information Used To Determine Emissions
Tab 8	Section 8 - Map(s)
Tab 9	Section 9 - Proof of Public Notice
Tab 10	Section 10 - Written Description of the Routine Operations of the Facility
Tab 11	Section 11 -Source Determination
Tab 12	Section 12 - PSD Applicability Determination for All Sources
Tab 13	Section 13 - Determination of State & Federal Air Quality Regulations
Tab 14	Section 14 - Operational Plan to Mitigate Emissions
Tab 15	Section 15 - Alternative Operating Scenarios
Tab 16	Section 16 - Air Dispersion Modeling
Tab 17	Section 17 - Compliance Test History
Tab 18	Section 18 - Addendum for Streamline Applications (Not Applicable)
Tab 19	Section 19 - Requirements for Title V Program
Tab 20	Section 20 - Other Relevant Information
Tab 21	Section 21 - Addendum for Landfill Applications (Not Applicable)
Tab 22	Section 22 - Certification
Tab 23	Section 23 - UA4

Tab 1 UA1 Form - Company and Facility Information

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee)
□ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
Construction Status: ☐ Not Constructed
Minor Source: ☐ a NOI 20.2.73 NMAC
Title V Source: □ Title V (new) □ Title V renewal □ TV minor mod. □ TV significant mod. TV Acid Rain: □ New □ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification
Acknowledgements:
☑ I acknowledge that a pre-application meeting is available to me upon request. ☐ Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
☑ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamling)
applications).
☑ Check No.: 2500132871 in the amount of \$500
I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched
(except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
☐ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for
50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with
the Small Business Certification Form for your company.
☐ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not
qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business
certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).
Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.B.1.d NMAC

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.B.1.d NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	3 to 5 #s of permit IDEA ID No.): 38799	Updating Permit/NOI #: 8152			
1	Facility Name: Jayhawk Compressor Station	Plant primary SIC Code (4 digits): 1311				
1		Plant NAIC code (6 digits): 211120				
a	a Facility Street Address (If no facility street address, provide directions from a prominent landmark): See 1-D.4.					
2	Plant Operator Company Name: XTO Energy Inc. Phone/Fax: (832) 624-4426					
a	Plant Operator Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389					
b	Plant Operator's New Mexico Corporate ID or Tax ID: 1522747					

3	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (832) 624-4426				
a	Plant Owner(s) Mailing Address(s): 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389					
4	Bill To (Company): XTO Energy Inc.	Phone/Fax: (832) 624-4426				
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389	E-mail: Benjamin_Schneider@xtoenergy.com				
5	☑□ Preparer: Benjamin_Schneider@ xtoenergy.com □ Consultant:	Phone/Fax: (832) 624-2768				
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389	E-mail: Benjamin_Schneider@xtoenergy.com				
6	Plant Operator Contact: Benjamin Schneider Phone/Fax: (832) 624-2768					
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389	E-mail: Benjamin_Schneider@xtoenergy.com				
7	Air Permit Contact: Benjamin Schneider	Title: Environmental Engineer				
a	E-mail: Benjamin_Schneider@xtoenergy.com	Phone/Fax: (832) 624-2768				
b	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389					
С	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.					

Section 1-B: Current Facility Status

Sec	uon 1-B: Current Facility Status					
1.a	Has this facility already been constructed? ☑ Yes ☐ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☑ No				
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No				
3	Is the facility currently shut down? ☐ Yes ☑ No	If yes, give month and year of shut down (MM/YY):				
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☐ Yes ☑ No					
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA \Box Yes \Box No \Box N/A	C) or the capacity increased since 8/31/1972?				
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☐ Yes ☑ No	If yes, the permit No. is: P-				
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No	If yes, the NPR No. is:				
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑ No	If yes, the NOI No. is:				
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑Yes □ No	If yes, the permit No. is: 8152				
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑ No	If yes, the register No. is:				

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)							
a	a Current Hourly: 22.5 barrels; 8.8 MMscf Daily: 539.0 barrels; 210.1 MMscf Annually: 196,750 barrels; 76.7 B							
b	b Proposed Hourly: 33.9 barrels; 10 MMscf Daily: 814 barrels; 240 MMscf Annually: 297,184 barrels; 87.0							
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)							
a Current Hourly: 22.5 barrels; 8.8 MMscf Daily: 539.0 barrels; 210.1 MMscf Annually: 196,750 barrels				Annually: 196,750 barrels; 76.7 Bscf				
b	Proposed	Hourly: 33.9 barrels; 10 MMscf	Daily: 814 barrels; 240 MMscf	Annually: 297,184 barrels; 87.6 Bscf				

Section 1-D: Facility Location Information

1	200		aciirty Bota	tion in or mattion				
a UTM E (in meters, to nearest 10 meters); 614061 b AND Latitude (deg., min., sec.): 32° 34′ 37.07° Longitude (deg., min., sec.): -103° 47′ 5.30° Name and zip code of nearest New Mexico town: Carlsbad - 88220 Detailed Driving Instructions from nearest NM town (attach a road map if necessary): Drive E on NM 62 for 24.7 mi. to L on lease road. Drive 1.8 mi. to L turn to site. The facility is 22 (distance) miles NE (direction) of Carlsbad (nearest town). Status of land at facility (check one): □ Private □ Indian/Pueblo ☑ Federal BLM □ Federal Forest Service □ Other (specify) List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.m.gov/ac/pmodeling/cluss Jareas.html)? □ Yes ☑ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Name nearest Class I area: Carlsbad Caverns Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (see the nearest 10 meters): 69.93 Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None *Restricted Area** is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Publi	1	Section: 17	Range: 32E	Township: 20S	County: Lea		Elevation (ft): 3489	
b AND Latitude (deg., min., sec.): 32° 34' 37.07" Longitude (deg., min., sec.): -103° 47' 5.30" Name and zip code of nearest New Mexico town: Carlsbad - 88220 Detailed Driving Instructions from nearest NM town (attach a road map if necessary): Drive E on NM 62 for 24.7 mi. to L on lease road. Drive 1.8 mi. to L turn to site. The facility is 22 (distance) miles NE (direction) of Carlsbad (nearest town). Status of land at facility (check one): □ Private □ Indian/Pueblo ☑ Federal BLM □ Federal Forest Service □ Other (specify) List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.em.m.mov/auph/modeling/class lareas.hml)? □ Yes ☑ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Name nearest Class I area: Carlsbad Caverns Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 69.93 Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the	2	UTM Zone: □ 12 or ☑ 13			Datum: NAD	27 □ NAD	83 W WGS 84	
Name and zip code of nearest New Mexico town: Carlsbad - 88220 Detailed Driving Instructions from nearest NM town (attach a road map if necessary): Drive E on NM 62 for 24.7 mi. to L on lease road. Drive 1.8 mi. to L turn to site. The facility is 22 (distance) miles NE (direction) of Carlsbad (nearest town). Status of land at facility (check one): □ Private □ Indian/Pueblo ☑ Federal BLM □ Federal Forest Service □ Other (specify) List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class.lareas.html)? □ Yes ☑ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Name nearest Class I area: Carlsbad Caverns Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 69.93 Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2	a	UTM E (in mete	ers, to nearest 10 meter	s): 614061	UTM N (in meters, to r	earest 10 meters):	3605041	
Detailed Driving Instructions from nearest NM town (attach a road map if necessary): Drive E on NM 62 for 24.7 mi. to L on lease road. Drive 1.8 mi. to L turn to site. The facility is 22 (distance) miles NE (direction) of Carlsbad (nearest town). Status of land at facility (check one): □ Private □ Indian/Pueblo ☑ Federal BLM □ Federal Forest Service □ Other (specify) List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County 20.2.72 MMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/agb/modeling/class larea.html)? □ Yes ☑ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Name nearest Class I area: Carlsbad Caverns Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 69.93 Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No □ Yes Will this facility operate in con	b	AND Latitude	(deg., min., sec.):	32° 34' 37.07"	Longitude (deg., mir	., sec.): -103°	47' 5.30"	
lease road. Drive 1.8 mi. to L turn to site. The facility is 22 (distance) miles NE (direction) of Carlsbad (nearest town). Status of land at facility (check one): □ Private □ Indian/Pueblo ☑ Federal BLM □ Federal Forest Service □ Other (specify) List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.ma.gov/aph/modeling/class lareas.html)? □ Yes ☑ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Name nearest Class I area: Carlsbad Caverns Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 69.93 Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-instal	3	Name and zip code of nearest New Mexico town: Carlsbad - 88220						
Status of land at facility (check one):	4				a road map if necess	ary): Drive E o	on NM 62 for 24.7 mi. to L on	
Specify List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class I areas.html)?	5	The facility is	22 (distance) mile	s NE (direction) of Carlsba	d (nearest town).			
on which the facility is proposed to be constructed or operated: Eddy County, Lea County 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)? Yes No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: 9 Name nearest Class I area: Carlsbad Caverns 10 Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 69.93 11 Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes	6							
closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)?	7							
Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites. Will this facility operate in conjunction with other air regulated parties on the same property? No Yes	8	closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)?						
Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites. Will this facility operate in conjunction with other air regulated parties on the same property? No Yes	9	Name nearest (Class I area: Carls	bad Caverns				
lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites. Will this facility operate in conjunction with other air regulated parties on the same property? ☑ No ☐ Yes	10	Shortest distan	ce (in km) from fa	acility boundary to the bour	ndary of the nearest Cl	ass I area (to the	e nearest 10 meters): 69.93	
"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites. Will this facility operate in conjunction with other air regulated parties on the same property? No Yes	11	lands, includin	g mining overbure	den removal areas) to neare				
13 ☐ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites. Will this facility operate in conjunction with other air regulated parties on the same property? ☑ No ☐ Yes	12	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area						
14	13	☐ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.						
	14			9	•	ne property?	⊠ No □ Yes	

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours/day): 24	$(\frac{\text{days}}{\text{week}})$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 8760		
2	Facility's maximum daily operating schedule (if less	than $24 \frac{\text{hours}}{\text{day}}$)? Start:	□AM □PM	End:	□AM □PM	
3	Month and year of anticipated start of construction: Already started					
4	Month and year of anticipated construction completion: Train 1 completed by September 2020					
5	Month and year of anticipated startup of new or modified facility: Train 1 start-up is 3/1/2023					
6	Will this facility operate at this site for more than on	e year? ☑ Yes ☐ No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify:		
a	If yes, NOV date or description of issue:	NOV Tracking No:	

b	Is this application in response to any issue listed in 1-F, 1 of	or 1a above? Yes	☐ No If Yes, provide the 1c & 1d info below:				
c	Document Title:	Date:	Requirement # (or page # and paragraph #):				
d	Provide the required text to be inserted in this permit:						
2	Is air quality dispersion modeling or modeling waiver being	g submitted with this	application? ☑ Yes □ No				
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 2	0.2.72.502, Tables A and/or B? ☐ Yes ☑ No				
4	Will this facility be a source of federal Hazardous Air Pollu						
a	If Yes, what type of source? \square Major \square Major \square 10 tpy of a \square Minor \square 410 tpy of any		№				
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes	s 🗹 No					
	If yes, include the name of company providing commercial	electric power to the	facility:				
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically does not include power generated on				
(Title	☐ I have filled out Section 18, "Addendum for Streamling tion 1-H: Current Title V Information - V-source required information for all applications submitted pt 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2. Responsible Official (R.O.)	Required for all a					
a	(20.2.70.300.D.2 NMAC): R.O. Title:	R.O. e-mail					
b	R. O. Address:	K.O. C-III					
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:				
a	A. R.O. Title:	A. R.O. e-m	ail:				
b	A. R. O. Address:						
3	Company's Corporate or Partnership Relationship to any ot have operating (20.2.70 NMAC) permits and with whom the relationship):						
4	Name of Parent Company ("Parent Company" means the permitted wholly or in part.):	rimary name of the or	ganization that owns the company to be				
a	Address of Parent Company:						
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.):						
6	Telephone numbers & names of the owners' agents and site						
7	Affected Programs to include Other States, local air polluti Will the property on which the facility is proposed to be co states, local pollution control programs, and Indian tribes a ones and provide the distances in kilometers:	nstructed or operated	be closer than 80 km (50 miles) from other				

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and **must be double sided**. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

□ CD/DVD	attached	to:	naner	anı	oli	cation
----------	----------	-----	-------	-----	-----	--------

✓ secure electronic transfer. Air Permit Contact Name Benjamin Schneider

Email benjamin_schneider@xtoenergy.com

Phone number (832) 624-2768

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide

Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Tab 2 UA2 Form - Application Tables

Cross reference table of all units in both permits
Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits

Previous Unit Number	Previous Source Description	New Unit Number	New Source Description	Notes
ENG1	Natural Gas Engine	ENG1	Natural Gas Compressor Engine	
ENG2	Natural Gas Engine	ENG2	Natural Gas Compressor Engine	Updated Caterpillar Gas Engine Rating Pro
ENG3	Natural Gas Engine	ENG3	Natural Gas Compressor Engine	(GERP) analysis with new fuel gas
ENG4	Natural Gas Engine	ENG4	Natural Gas Compressor Engine	analysis, which resulted in changes to
ENG5	Natural Gas Engine	ENG5	Natural Gas Compressor Engine	VOC/CO/formaldehyde emission factors.
ENG6	Natural Gas Engine	ENG6	Natural Gas Compressor Engine	Updated catalyst control efficiencies with
ENG7	Natural Gas Engine	ENG7	Natural Gas Compressor Engine	updated fuel gas specifications.
ENG8	Natural Gas Engine	ENG8	Natural Gas Compressor Engine	1
ENG9	Natural Gas Engine	ENG9	Natural Gas Compressor Engine	1
ENG10	Natural Gas Engine		-	Removed
ENG11	Natural Gas Engine	ENG11	Natural Gas Compressor Engine	Same as ENG1-9.
ENG12	Natural Gas Engine	ENG12	Natural Gas Compressor Engine	Same as ENG1-9.
ENG13	Natural Gas Engine		-	Removed
HTR1	Hot Oil Heater 1	HTR1	Fuel Line Heater	
HTR2	Hot Oil Heater 2			Removed
HTR3	Hot Oil Heater 3			Removed
RB1	Glycol Regenerator Reboiler	RB1	Glycol Regenerator Reboiler	
RB2	Glycol Regenerator Reboiler	RB2	Glycol Regenerator Reboiler	
RB3	Glycol Regenerator Reboiler	RB3	Glycol Regenerator Reboiler	
FL1	Flare 1	FL1	Flare 1	Changed combustion sources
FL2	Flare 2	FL2	Flare 2	Changed combustion sources
FL3	Flare 3			Removed
VC1	Combustor	VC1	Combustor	Changed combustion sources
GB1a	Gun Barrel Separator (Primary)	SKT1	Skim Tank	Renamed
GB1b	Gun Barrel Separator (Backup)	SKT2	Skim Tank (Backup)	Renamed
OT1	Condensate Tank	OT1	Condensate Tank	
OT2	Condensate Tank	OT2	Condensate Tank	
OT3	Condensate Tank	OT3	Condensate Tank	
OT4	Condensate Tank	OT4	Condensate Tank	
WT1	Produced Water Tank	WT1	Produced Water Tank	
WT2	Produced Water Tank	WT2	Produced Water Tank	
		VRU1	Low Pressure Separator VRU #1	Added control efficiency
		VRU2	Low Pressure Separator VRU Backup	Added control efficiency
DEHY1	TEG Dehydrator with Condenser	DEHY1	TEG Dehydrator with Condenser	
DEHY2	TEG Dehydrator with Condenser	DEHY2	TEG Dehydrator with Condenser	
DEHY3	TEG Dehydrator with Condenser	DEHY3	TEG Dehydrator with Condenser	
LPS	Low Pressure Separator	LPS	Low Pressure Separator	
LOAD	Truck Loading	LOAD	Condensate Truck Loading	
FUG	Fugitives	FUG	Fugitive Emissions	
SSM	SSM Activities	SSM	SSM Activities	
ROAD	HAUL ROAD EMISSIONS	ROAD	HAUL ROAD EMISSIONS	

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. Equipment exemptions under 2.72.202 NMAC do not apply to 20.2.73 NMAC. Identify process equipment that is used to reroute emissions back into the process or sales pipeline in Table 2-A. such as a VRU. VRT. ULPS. Flashing Vessel, or Blowcase.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact-urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of	Controlled by Unit # Emissions	Source Classi- fication Code	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB,	Replacing Unit No.
					Cints)		Construction/ Reconstruction ²	vented to Stack #	(SCC)		2SLB) ⁴	
ENG1	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG1 CAT1	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG2	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG2 CAT2	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG3	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG3 CAT3	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG4	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG4 CAT4	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG5	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG5 CAT5	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG6	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG6 CAT6	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG7	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG7 CAT7	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG8	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG8 CAT8	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG9	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG9 CAT9	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG11	Natural Gas Compressor Engine	Caterpillar	3516J TA	TBD	1380	1380	TBD TBD	ENG11 CAT11	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG12	Natural Gas Compressor Engine	Caterpillar	3516J TA	TBD	1380	1380	TBD TBD	ENG12 CAT12	20200254	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	4SLB	N/A
ENG10	Natural Gas Compressor Engine	Caterpillar	G3606TA	TBD	1775	1775	TBD TBD	ENG10 CAT10	20200254	□ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Replacement Unit □ To be Replaced	4SLB	N/A
ENG13	Natural Gas Compressor Engine	Caterpillar	G3306TA	TBD	203	203	TBD TBD	ENG13 CAT13	20200254	□ Existing (unchanged) □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SRB	N/A
HTR1	Fuel Line Heater	Wenco Energy Corp	TBD	TBD	0.75 MMBtu/hr	0.75 MMBtu/hr	2019 2019	TBD HTR1	31000228	■ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
RB1	Glycol Regenerator Reboiler	Flameco	TBD	TBD	2.0 MMBtu/hr	2.0 MMBtu/hr	2019 2019	N/A RB1	31000404	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
RB2	Glycol Regenerator Reboiler	TBD	TBD	TBD	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD TBD	N/A RB2	31000404	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
RB3	Glycol Regenerator Reboiler	TBD	TBD	TBD	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD TBD	N/A RB3	31000404	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
HTR2	Fuel Line Heater	N/A	N/A	N/A	0.75 MMBtu/hr	0.75 MMBtu/hr	TBD N/A	N/A HTR2	31000228	□ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Replacement Unit □ To be Replaced	N/A	N/A
HTR3	Fuel Line Heater	N/A	N/A	N/A	1.5 MMBtu/hr	1.5 MMBtu/hr	TBD N/A	N/A HTR3	31000228	□ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Replacement Unit □ To be Replaced	N/A	N/A

					Manufact-urer's Rated	_	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial#	Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FL1	Flare 1	Tornado	TBD	TBD	70 MMscf/d	70 MMscf/d	2020	N/A	31000205	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
	7 1110 1	Tomado		155	70 1111130174	70 1111150174	2020	FL1		■ To Be Modified □ To be Replaced	1,712	1,111
FL2	Flare 2	Tornado	TBD	TBD	70 MMscf/d	70 MMscf/d	TBD TBD	N/A FL2	31000205	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
VC1	Still Vent Emissions	CIMARRON ENERGY	N/A	TBD	N/A	N/A	2020	N/A	31000205	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
							2020	VC1		■ To Be Modified □ To be Replaced □ Existing (unchanged) ■ To be Removed	1	
FL3	Flare 3	Tornado	TBD	TBD	70 MMscf/d	70 MMscf/d	TBD	N/A FL3	31000205	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
GIZTI1	gri m r	CERT I MARION	TDD	TDD	1000111	1000111	2020	FL1-FL2	10100011	□ Existing (unchanged) □ To be Removed	27/4	27/4
SKT1	Skim Tank	STELLMATION	TBD	TBD	1000 bbl	1000 bbl	2020	FL1-FL2	40400311	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
arrma	gi: m 1 m 1	mp.p	mp.p.	mnn	4000111	4000111	TBD	FL1-FL2		☐ Existing (unchanged) ☐ To be Removed	27/1	27/1
SKT2	Skim Tank (Backup)	TBD	TBD	TBD	1000 bbl	1000 bbl	TBD	FL1-FL2	40400311	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
							2020	FL1-FL2		□ Existing (unchanged) □ To be Removed		
OT1	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020	FL1-FL2	40400311	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
							2020	FL1-FL2		☐ Existing (unchanged) ☐ To be Removed		
OT2	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020	FL1-FL2	40400311	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
							2020	FL1-FL2		☐ Existing (unchanged) ☐ To be Removed	1	
OT3	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020	FL1-FL2	40400311	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
							2020	FL1-FL2		□ Existing (unchanged) □ To be Removed		
OT4	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020	FL1-FL2	40400311	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
							2020	FL1-FL2		□ Existing (unchanged) □ To be Removed		
WT1	Produced Water Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020	FL1-FL2	40400315	□ New/Additional	N/A	N/A
							2020	FL1-FL2		□ Existing (unchanged) □ To be Removed		
WT2	Produced Water Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020	FL1-FL2	40400315	□ New/Additional	N/A	N/A
	Low Pressure Separator VRU						2020	FL1-FL2		□ Existing (unchanged) □ To be Removed		
VRU1	#1	TBD	TBD	N/A	125 HP	125 HP	2020	FL1-FL2	N/A	□ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
							2020	FL1-FL2		□ Existing (unchanged) □ To be Removed		
VRU2	Low Pressure Separator VRU Backup	TBD	TBD	N/A	125 HP	125 HP			N/A	□ New/Additional □ Replacement Unit	N/A	N/A
	Баскир						2020	FL1-FL2		■ To Be Modified □ To be Replaced		
DEHY1	TEG Dehydrator with	N/A	N/A	N/A	80 MMscfd	80 MMscfd	2019	COND1	31000227	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
	Condenser						2019	RB1		■ To Be Modified □ To be Replaced		
DEHY2	TEG Dehydrator with	N/A	N/A	N/A	80 MMscfd	80 MMscfd	TBD	COND2	31000227	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
	Condenser						TBD	RB2		■ To Be Modified □ To be Replaced		
DEHY3	TEG Dehydrator with	N/A	N/A	N/A	80 MMscfd	80 MMscfd	TBD	COND3	31000227	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
-	Condenser						TBD	RB3		■ To Be Modified □ To be Replaced		
LPS	Low Pressure Separator	N/A	N/A	N/A	N/A	N/A	2019	FL1-FL2	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
	I I I I I I I I I I I I I I I I I	*		/	- //**		2019	FL1-FL2		■ To Be Modified □ To be Replaced	- "	- "
LOAD	Condensate Truck Loading	N/A	N/A	N/A	223 bbl/d	223 bbl/d	N/A	N/A	40400250	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A
		*		/			N/A	N/A		■ To Be Modified □ To be Replaced	- "	- "
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
	1 05.11.0 211110510115	1,111	1.711	1.//1		1,/11	N/A	N/A		■ To Be Modified □ To be Replaced	11/11	1,771
SSM	SSM Activities	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	■ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A
DOM	DOM ACTIVITIES	13/73	11///1	11/71	11/71	11/71	N/A	N/A	51000011	□ To Be Modified □ To be Replaced	11/71	14/74
Malfunction	Malfunction Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	□ Existing (unchanged) □ To be Removed ■ New/Additional □ Replacement Unit	N/A	N/A
Manufiction	Manufiction Ellissions	1 V/P1	11/71	11//1	14/71	11/71	N/A	N/A	31000011	□ To Be Modified □ To be Replaced	19/21	14/74

Unit numbers must correspond to unit numbers in the previous NOI unless a complete cross reference table of all units in both NOIs is provided.

² Specify dates required to determine regulatory applicability.

To properly account for power conversions efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

4"4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "Cl" means compression ignition, and "Sl" means spark ignition

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR Exempted Equipment** (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Omt Number	Source Description	wanimacum er	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	 ,
ROAD	Haul Road Emissions	N/A	N/A	N/A	20.2.72.202.B.5	N/A	✓ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
KOAD	Haui Koau Ellissiolis	IV/A	N/A	N/A	20.2.72.202.B.5	N/A	☐ To Be Modified ☐ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed
							 □ New/Additional □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed
							 □ New/Additional □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed
							 □ New/Additional □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed
							 □ New/Additional □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed
							 □ New/Additional □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed
							□ New/Additional □ Replacement Unit
							☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed
							□ New/Additional □ Replacement Unit
							☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed
							□ New/Additional □ Replacement Unit
							 □ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed
							☐ New/Additional ☐ Replacement Unit
							☐ To Be Modified ☐ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ Replacement Unit
							\square To Be Modified \square To be Replaced
							 □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
							☐ To Be Modified ☐ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ Replacement Unit
							☐ To Be Modified ☐ To be Replaced

Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

Form Revision: 7/8/2011 Table 2-B: Page 1 Printed 9/9/2020 4:16 PM

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. The permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. Flares, Enclosed Combustion Devices, Catalytic Converters and Air Fuel Ratio (AFR) Controllers shall be reported on Table 2-C. For each AFR, note whether the AFR are aftermarket or integral to the engine.

Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
Flare 1	2019	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
Flare 2	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
Still Vent Emissions	2019	VOC, HAP	DEHY1-3 BTEX Condenser Vapors	98	Engineering Est.
Low Pressure Separator VRU #1	2020	VOC, HAPs	LPS	98	Engineering Est.
Low Pressure Separator VRU Backup	2020	VOC, HAPs	LPS	98	Engineering Est.
BTEX Condenser	2020	VOC, HAP	DEHY1-DEHY3	98	Engineering Est.
Engine Catalysts	2020	CO, VOC, HAP	ENG1-9, ENG11-12	CO-87, VOC-65, HAP-74	Engineering Est.
	Flare 1 Flare 2 Still Vent Emissions Low Pressure Separator VRU #1 Low Pressure Separator VRU Backup BTEX Condenser Engine Catalysts	Flare 1 2019 Flare 2 TBD Still Vent Emissions 2019 Low Pressure Separator VRU #1 2020 Low Pressure Separator VRU Backup 2020 BTEX Condenser 2020 Engine Catalysts 2020	Flare 1 2019 VOC, HAP Flare 2 TBD VOC, HAP Still Vent Emissions 2019 VOC, HAP Low Pressure Separator VRU #1 2020 VOC, HAPs Low Pressure Separator VRU Backup 2020 VOC, HAPs BTEX Condenser 2020 VOC, HAP	Flare 1 2019 VOC, HAP Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS Flare 2 TBD VOC, HAP Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS Still Vent Emissions 2019 VOC, HAP DEHY1-3 BTEX Condenser Vapors Low Pressure Separator VRU #1 2020 VOC, HAPs LPS Low Pressure Separator VRU Backup 2020 VOC, HAPs LPS BTEX Condenser 2020 VOC, HAP DEHY1-DEHY3 Engine Catalysts 2020 CO, VOC, HAP ENG1-9, ENG11-12	Controlled Pollutant(s) Flare 1 2019 VOC, HAP Facility Inlet, OTI-OT4, WTI-WT2, SKTKI/SKTK2, LPS Flare 2 TBD VOC, HAP Facility Inlet, OTI-OT4, WTI-WT2, SKTKI/SKTK2, LPS Pacility Inlet, OTI-OTI-WT2, WTI-WT2, SKTKI/SKTK2, LPS Pacility Inlet, OTI-OTI-WT2, WTI-WT2, SKTKI/SKTK2, LPS Pacility Inlet, OTI-OTI-WT2, WTI-WT2, SK

Form Revision: 1/25/2017 Table 2-C: Page 1 Printed 11/11/2020 10:05 AM

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "." symbol. A ".-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI24 NI	N	Ox	C	0	V	OC	S	Ox	PI	\mathbf{M}^1	PM	[10 ¹	PM	[2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG2	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG3	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG4	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG5	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG6	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG7	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG8	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG9	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG11	1.90	8.33	7.76	33.98	3.96	17.33	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
ENG12	1.90	8.33	7.76	33.98	3.96	17.33	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL2 Pilot	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.03	0.13	0.03	0.13	-	-	-	-
FL1-FL2 Norm		Emissions are not routed to flare in uncontrolled scenario.																
FL1-FL2 SSM		Emissions are not routed to flare in uncontrolled scenario. Emissions are not routed to flare in uncontrolled scenario.																
VC1	0.41	1.80	0.82	3.59	2.61	11.43	0.29	1.26	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
SKT1	-	-	-	-	4.87	21.32	-	-	-	-	-	-	-	-	-	-	-	-
SKT2	-	-	-	-	4.87	21.32	-	-	-	-	-	-	-	-	-	-	-	-
OT1	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
OT2	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
OT3	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
OT4	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
WT1	-	-	-	-	0.11	0.47	-	-	-	-	-	-	-	-	-	-	-	-
WT2	-	-	-	-	0.11	0.47	-	-	-	-	-	-	-	-	-	-	-	-
DEHY1	-	-	-	-	43.51	190.56	-	-	-	-	-	-	-	-	-	-	-	-
DEHY2	-	-	-	-	43.51	190.56	-	-	-	-	-	-	-	-	-	-	-	-
DEHY3	-	-	-	-	43.51	190.56	-	-	-	-	-	-	-	-	-	-	-	-
LPS	-	-	-	-	698.88	354.13	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	65.70	11.14	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	4.89	21.43	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
MALFUNCTION	-	-	-		-	10.00	-	-	-	-	-	-		-	-	-	-	-
Totals	43.11	188.84	322.11	1410.82	1563.54	2625.34	4.42	19.37	-	-	3.73	16.32	3.73	16.32	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 9/9/2020 4:16 PM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	NO	Ox	C	Ю	V	OC	S	Ox	P	M^1	PN	110 ¹	PM2	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG2	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG3	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG4	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG5	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG6	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG7	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG8	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG9	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG11	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
ENG12	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL2 Pilot	0.67																	
FL1-FL2 Norm	1.85	1.85 7.72 3.69 15.41 11.53 25.60 0.01 0.04 0.03 0.15 0.03 0.15 0.03 0.15																
VC1	0.41																	
SKT1								Emiss	ions Repr	esented at	FL1-FL2							
SKT2								Emiss	ions Repr	esented at	FL1-FL2							
OT1								Emiss	ions Repr	esented at	FL1-FL2							
OT2								Emiss	ions Repr	esented at	FL1-FL2							
OT3								Emiss	ions Repr	esented at	FL1-FL2							
OT4								Emiss	ions Repr	esented at	FL1-FL2							
WT1								Emiss	ions Repr	esented at	FL1-FL2							
WT2								Emiss	ions Repr	esented at	FL1-FL2							
DEHY1								Emi	ssions Re	presented	at VC1							
DEHY2								Emi	ssions Re	presented	at VC1							
DEHY3								Emi	ssions Re	presented	at VC1							
LPS								Emiss	ions Repr	esented at	FL1-FL2							
LOAD	-	-	-	-	65.70	11.14	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	4.89	21.43		-		-	-	-	-	-	-	-		-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
MALFUNCTION	-	-	-	-		10.00	-	-	-	-	-	-	-	-	-	-	1	-
Totals	44.96	196.56	48.19	210.32	119.50	221.88	4.43	19.41	3.91	16.49	3.91	16.49	3.91	16.49	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI24 NI-	NO		C		V			Ox		\mathbf{M}^2		10^2		2.5 ²	Н		Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr		ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM	-	-	-	-	-	10.00												
FL1-FL2 SSM	541.65	8.10	1081.35	16.17	992.97	18.36	4.91	0.08	22.25	0.31	22.25	0.31	22.25	0.31	-	-	-	-
Totals	541.65	8.10	1081.35	16.17	992.97	28.36	4.91	0.08	22.25	0.31	22.25	0.31	22.25	0.31				

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 1 Printed 9/9/2020 4:16 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☐ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	OC	SO	Ox	P	M	PM	I 10	PM	12.5	□ H ₂ S o	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
	Totals:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

Form Revision: 5/29/2019 Table 2-G: Page 1 Printed 9/9/2020 4:16 PM

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG1	ENG1	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG2	ENG2	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG3	ENG3	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG4	ENG4	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG5	ENG5	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG6	ENG6	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG7	ENG7	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG8	ENG8	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG9	ENG9	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG11	ENG11	V	No	20	997	135.13	Unknown	Unknown	172.06	1.00
ENG12	ENG12	V	No	20	997	135.13	Unknown	Unknown	172.06	1.00
HTR1	HTR1	V	N	20	1000	5.07	Unknown	Unknown	6.45	1.00
RB1	RB1	V	N	20	1000	13.52	Unknown	Unknown	7.65	1.50
RB2	RB2	V	N	20	1000	13.52	Unknown	Unknown	7.65	1.50
RB3	RB3	V	N	20	1000	13.52	Unknown	Unknown	7.65	1.50
FL1	FL1	V	No	145	1832	4123.47	Unknown	Unknown	65.60	0.83
FL2	FL2	V	No	145	1832	2873.47	Unknown	Unknown	65.60	0.83
VC1	VC1	V	No	20	1000	1331.91	Unknown	Unknown	65.60	1.00
					_	_			_	_

Form Revision: 1/25/2017 Table 2-H: Page 1 Printed 12/2/2020 12:47 PM

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formal HA	P or 🗆	n-He ☑ HA TA		Ben ☑ HA TÆ	zene .P or 🗆 AP	Acetal ☑ HAP o	dehyde or 🗆 TAP		Pollutant Here Or TAP	Provide Name	**	Provide Name	**		Pollutant Here Or TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	ENG1	0.54	2.36	0.4	1.9	-	1	-	-	0.1	0.5								
ENG2	ENG2	0.54	2.36	0.4	1.9	-	1	-	-	0.1	0.5								
ENG3	ENG3	0.54	2.36	0.4	1.9	-	1	-	-	0.1	0.5								
ENG4	ENG4	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG5	ENG5	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG6	ENG6	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG7	ENG7	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG8	ENG8	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG9	ENG9	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG11	ENG11	0.32	1.39	0.3	1.2	-	-	-	-	0.0	0.1								
ENG12	ENG12	0.32	1.39	0.3	1.2	-	-	-	-	0.0	0.1								
HTR1	HTR1	2.2E-03	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB1	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB2	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB3	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
FL1-FL2 Pilot	FL1-FL2 Pilot	0.01	0.04	-	-	0.0	0.0	4.9E-04	2.2E-03	-	-								
FL1-FL2 Norm	FL1-FL2 Norm	0.5	1.1	ı	-	0.4	0.9	0.0	0.1	1	1								
FL1-FL2 SSM	FL1-FL2 SSM	27.5	0.5	-	-	24.3	0.5	1.3	0.0	-	-								
VC1	DEHY1	0.1	0.5	-	-	0.0	0.1	0.1	0.2	-	-								
VC1	DEHY2	0.1	0.5	-	-	0.0	0.1	0.1	0.2	-	-								
VC1	DEHY3	0.1	0.5	-	-	0.0	0.1	0.1	0.2	-	-								

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Specif	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (btu/scf)	Hourly Usage (scf)	Annual Usage (mmscf)	% Sulfur	% Ash
ENG1	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG2	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG3	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG4	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG5	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG6	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG7	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG8	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG9	Natural Gas	Field Gas	1269	29449.3	257.98	Negligible	0
ENG11	Natural Gas	Field Gas	1269	8801.0	77.10	Negligible	0
ENG12	Natural Gas	Field Gas	1269	8801.0	77.10	Negligible	0
HTR1	Natural Gas	Field Gas	1269	590.9	5.18	Negligible	0
RB1	Natural Gas	Field Gas	1269	1575.7	13.80	Negligible	0
RB2	Natural Gas	Field Gas	1269	1575.7	13.80	Negligible	0
RB3	Natural Gas	Field Gas	1269	1575.7	13.80	Negligible	0
FL1	Natural Gas	Field Gas	1269	1906.3	16.70	Negligible	0
FL2	Natural Gas	Field Gas	1269	1906.3	16.70	Negligible	0
VC1	Natural Gas	Field Gas	1269	3812.5	33.40	Negligible	0

Stack No.	Unit No.(s)		HAPs	☑ HA	ldehyde .P or □ AP	☑ HA	exane AP or 🗆 AP	☑ HA	zene AP or 🗆 AP		dehyde or 🗆 TAP	Name	Pollutant Here Or 🗆 TAP		Pollutant Here Or TAP	Nam	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL1-FL2	SKT1				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	SKT2				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	OT1		Emissions Represented at FL1-FL2 Emissions Represented at FL1-FL2																
FL1-FL2	OT2																		
FL1-FL2	OT3		Emissions Represented at FL1-FL2																
FL1-FL2	OT4		Emissions Represented at FL1-FL2 Emissions Represented at FL1-FL2																
FL1-FL2	WT1				Emissio	ons Repres	sented at F	L1-FL2											
FL1-FL2	WT2				Emissio	ons Repres	sented at F	L1-FL2											
FL1-FL2	LPS				Emissi	ons Repres	sented at F	L1-FL2											
LOAD	LOAD	0.0	0.0	-	-	-	-	-	-	-	-								
FUG	FUG	0.4	1.6	-	-	0.09	0.39	0.04	0.17	-	-								
SSM	SSM	-	-	-	_	-	-	-	-	-	_								
ROAD	ROAD	-	-	-	-	-	-	-	-	-	-		·						
Tot	als:	34.2	28.8	4.4	19.4	24.9	2.2	1.6	1.0	1.0	4.6								

Form Revision: 1/25/2017 Table 2-I: Page 2 Printed 9/9/2020 4:16 PM

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storage Conditions	
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
SKT1	40400311	Produced Water	Produced Water	8.2	50	72.74	11.14	82.04	12.88
SKT2	40400311	Produced Water	Produced Water	8.2	50	72.74	11.14	82.04	12.88
OT1	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
OT2	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
ОТ3	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
OT4	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
WT1	40400315	Produced Water	Produced Water	8.2	0	73.51	12.87	82.69	14.43
WT2	40400315	Produced Water	Produced Water	8.2	0	73.51	12.87	82.69	14.43
_							_		_

Form Revision: 1/25/2017 Table 2-K: Page 1 Printed 9/9/2020 4:16 PM

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Cap	Capacity		Vapor Space	Co (from Ta		Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LK below)	LK below)	(bbl)	(M^3)		(M)	Roof	Shell	C)	(gal/yr)	(per year)
SKT1	Jul-05	Produced Water	N/A	FX	1000 bbl	159	4.75	9.1	Tan	Tan	Good	2,660,433	63
SKT2	TBD	Produced Water	N/A	FX	1000 bbl	159	4.75	9.1	Tan	Tan	Good	2,660,433	63
OT1	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
OT2	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
OT3	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
OT4	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
WT1	Jul-05	Produced Water	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	2,614,573	125
WT2	Jul-05	Produced Water	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	2,614,573	125

Form Revision: 1/25/2017 Table 2-L: Page 1 Printed 9/9/2020 4:16 PM

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal Vapor-mounted resilient seal Seal Type		Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 M	$1^3 = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed	Material Produced						
Description	Chemical Composition	nposition Phase (Gas, Liquid, or Solid) Quantity (specify units)		Description	Chemical Composition	Phase	Quantity (specify units)		
Mixed Hydrocarbons	Oil (BOPD)	Liquid	814	Mixed Hydrocarbons	Oil (BOPD)	Liquid	814		
	Produced Water (BWPD)	Liquid	341		Produced Water (BWPD)	Liquid	341		
	Natural Gas (MMSCFD)	Gas	240		Natural Gas (MMSCFD)	Gas	240		

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
ENG1		21967.59	0.04	0.36							21968.0	
Littor		21967.593		9.0253076								21987.4
ENG2		21967.59	0.04	0.36							21968.0	
	CO ₂ e	21967.59	10.76	9.03								21987.4
ENG3		21967.59	0.04	0.36							21968.0	
			10.758167	9.0253076							210500	21987.4
ENG4		21967.59	0.04	0.36							21968.0	21007.4
	CO ₂ e	21967.59 21967.59	10.76 0.04	9.03 0.36							21968.0	21987.4
ENG5			10.758167	9.0253076							21968.0	21987.4
	_	21967.59	0.04	0.36							21968.0	21907.4
ENG6	CO ₂ e	21967.59	10.76	9.03							21700.0	21987.4
		21967.59	0.04	0.36							21968.0	21707.4
ENG7			10.758167	9.0253076							21700.0	21987.4
		21967.59	0.04	0.36							21968.0	2170711
ENG8	CO ₂ e	21967.59	10.76	9.03							21,0000	21987.4
******	mass GHG	21967.59	0.04	0.36							21968.0	
ENG9	CO ₂ e	21967.593	10.758167	9.0253076								21987.4
ENIGH	mass GHG	6689.35	0.01	0.11							6689.5	
ENG11	CO ₂ e	6689.35	3.22	2.70								6695.3
ENC12	mass GHG	6689.35	0.01	0.11							6689.5	
ENG12	CO ₂ e	6689.3492	3.2151031	2.6972342								6695.3
HTR1	mass GHG	519.34	0.00	0.32							519.7	
IIIKI	CO ₂ e	519.34	0.22	7.95								527.5
RB1	mass GHG	1384.91	0.00	0.85							1385.8	
KDI	_			21.209347								1406.7
RB2	mass GHG	1384.91	0.00	0.85							1385.8	
	CO ₂ e	1384.91	0.58	21.21								1406.7
RB3	mass GHG	1384.91	0.00	0.85							1385.8	1.46 5.7
	CO ₂ e		0.5755123	21.209347							10450.1	1406.7
FL1	mass GHG	10445.31	0.01	12.77							10458.1	10760.1
	CO ₂ e	10445.31	4.46 0.01	319.35 12.77							10450 1	10769.1
FL2	mass GHG CO ₂ e	10445.31 10445.308	4.4619051	319.35375							10458.1	10769.1
	mass GHG	20890.62	0.03	25.55							20916.2	10/69.1
VC1	CO ₂ e	20890.62	8.92	638.71							20910.2	21538.2
	mass GHG	257,542	0	57							257,600	21336.2
Total	CO ₂ e	257,542	123	1,436							237,000	250 101
	_	257,542	125			dia Tabla A 1 af /			a als 40 CED 00 a			259,101

TGWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

Form Revision: 1/25/2017 Table 2-A: Page 1 Printed 9/9/2020 4:16 PM

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

⁶ For Heaters/Boilers, CO₂ CH4, N2O emissions calculated according to §98.233(z)(1) and (2).

Tab 3 Section 3 - Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

XTO Energy Inc. is planning modification of the Jayhawk Compressor Station in Lea County, NM. The facility is a typical compressor station with natural gas engines, dehydration, storage tanks, and flares. Site construction is planned under NSR Permit 8152. This is a New Source Review permit application being submitted in accordance with 20.2.72 NMAC.

Routine SSM combustion emissions are included with the regular emissions of the facility. SSM emissions from equipment maintenance are routed to either the low pressure or high pressure flare header (FL1/FL2). SSM-related VOC emissions (tank landings/cleanings) are included at a rate of 10 tons per year per NMAQB guidance. Detailed calculations are included in the application.

The facility is proposing the following modifications:

- 1) Remove HTR2 and HTR3;
- 2) Remove ENG10 and ENG13;
- 3) Increase glycol circulation rate for DEHY1-3;
- 4) Decrease glycol regenerator reboiler (RB1-RB3) unit heat input from 3 MMBtu/hr to 2.0 MMBtu/hr;
- 5) Increase flare purge gas rates;
- 6) Remove FL3;
- 7) Update FL1-FL2 heights to 145';
- 8) Update tank throughputs;
- 9) Decrease condensate truck loading;
- 10) Add inlet gas flaring;
- 11) Increasing steady state flaring associated with increased tank throughput and glycol circulation rate; update sources that vent to flare.
- 12) Change sources that vent to VC1, only combusts vapors from DEHY1-3 still vent and pilot gas.
- 13) Update ENG1-9 and ENG11-12 VOC/formaldehyde/CO control efficiencies and update emissions factors from Caterpillar Gas Engine Rating Pro (GERP) analysis.

Saved Date: 9/9/2020

- 14) Update nomenclature of Gb1a and GB2a to SKT1 and SKT2.
- 15) Update facility location coordinates
- 16) Update low pressure separator pressure from 2 psig to 15 psig.
- 17) Added VOC malfunction emissions.

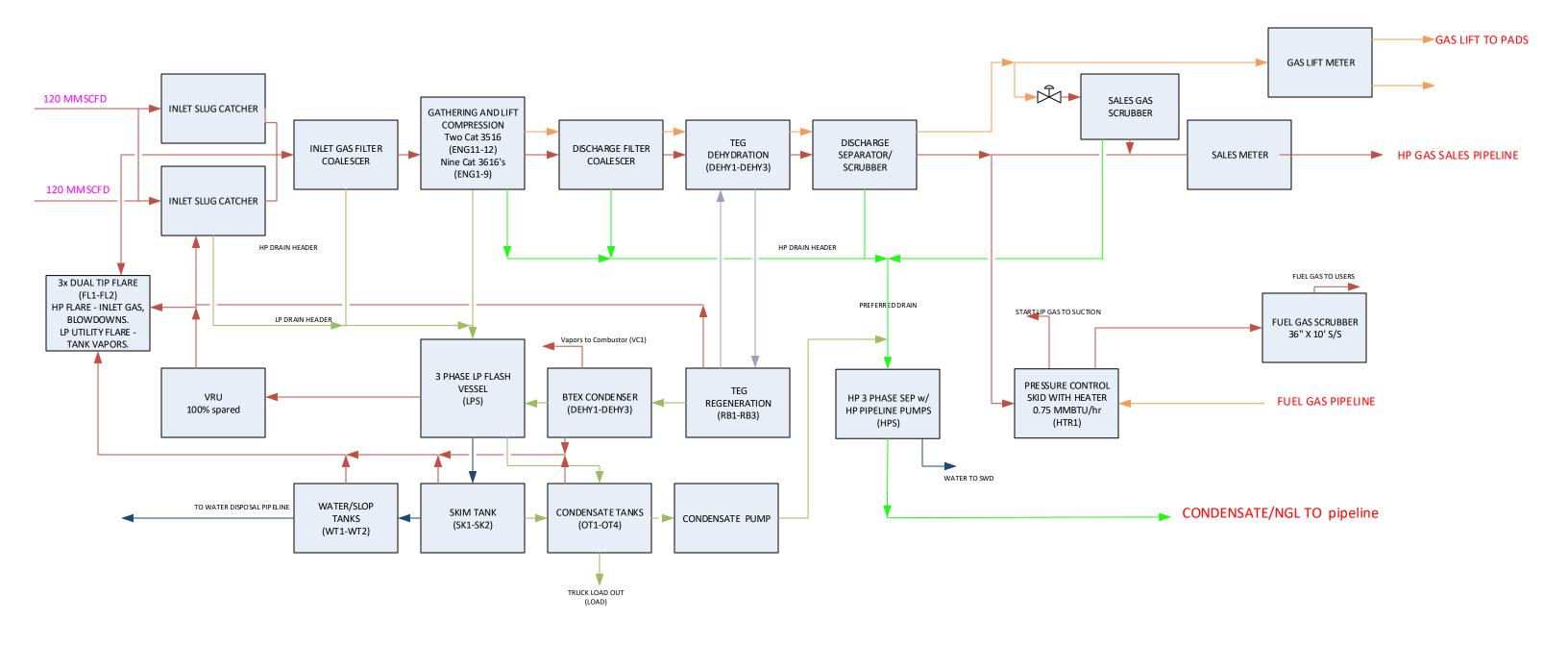
Tab 4 Section 4 - Process Flow Sheet

Saved Date: 9/9/2020

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.



A process flow diagram is presented on the following page.

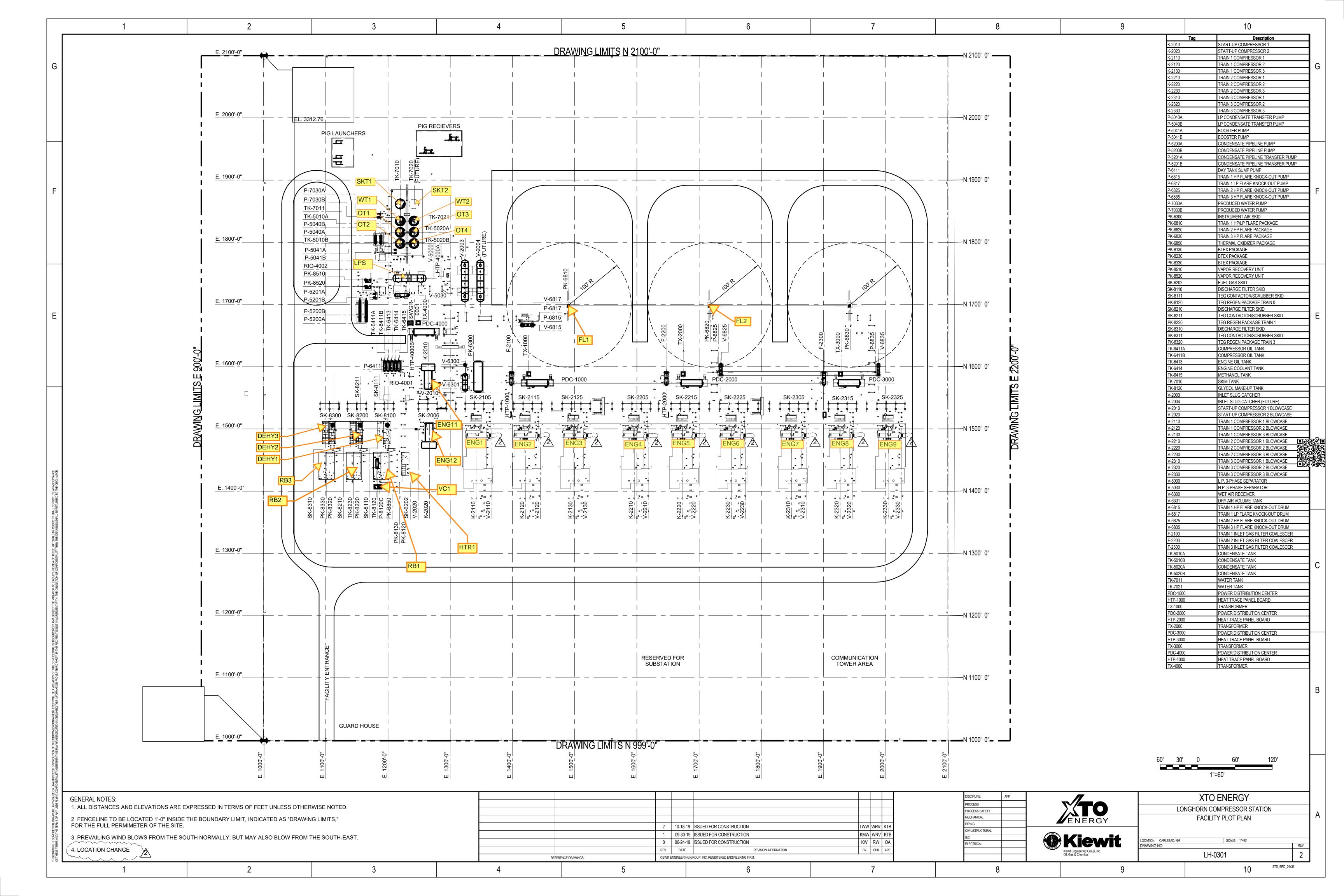
Form-Section 10 last revised: 8/15/2011

Section 10, Page 2

XTO DELAWARE BASIN GEN 2 COMPRESSOR STATION

Tab 5 Section 5 - Plot Plan Drawn To Scale

Section 5


Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A proposed plot plan is presented on the following page.

Form-Section 10 last revised: 8/15/2011 Section 10, Page 3 Saved Date: 9/9/2020

Tab 6 Section 6 - All Calculations

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Form-Section 10 last revised: 8/15/2011 Section 10, Page 4 Saved Date: 9/9/2020

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Caterpillar 3616TA (ENG-1 to ENG-9) and 3516TA (ENG-11 to ENG-12)

Emission factors for nitrogen oxides (NOx), carbon monoxide (CO), formaldehyde, and volatile organic compounds (VOC) are based on manufacturer's data. Emissions of particulate matter (PM/PM $_{10}$ and PM $_{2.5}$) were calculated using AP-42 Table 3.2-3 factors. PM $_{10}$ and PM $_{2.5}$ emissions are set equal to PM emissions. SO $_{2}$ emissions are based on the units' fuel consumption and a sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf). Hazardous Air Pollutants (HAPs) except for formaldehyde were calculated using AP-42 factors.

Line Heater (HTR1) and Glycol Regenerator Heaters (RB1 to RB3)

Emission of NOx, CO, VOC, HAP, and PM/PM₁₀/PM_{2.5} are based on AP-42 Table 3.2-3 emission factors. PM₁₀ and PM_{2.5} emissions are set equal to PM emissions. SO₂ emissions were based on the unit's fuel consumption and a maximum sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf).

SSM/Emergency Flares (FL1 – FL2)

The facility will use two (2) dual-tip flares. NOx and CO emissions are based on factors from the Texas Commission on Environmental Quality (TCEQ) publication RG-360A/09. VOC emissions were calculated using a material balance and the manufacturer's guaranteed destruction efficiency (98%). Since gas can be routed to any or all of the flares, they are illustrated as one combine emission point. The flares have a control efficiency of 98%, with manufacturer documentation provided in Section 7 of the application. SSM activities routed to the flares could include process vessel purging and maintenance blowdowns for process equipment, high pressure gas flaring, and low pressure separator gas during VRU downtime. Tank vapors and 2% of the low pressure separator gas not collected by the VRU are continuously routed to the low pressure side of the flare.

Triethylene Glycol Dehydrators (DEHY1-DEHY3)

Emissions from the dehydrators are calculated using BR&E ProMax simulation software. Flash tank vapors are routed back to mixing with the inlet gas. Each dehydrator is equipped with a condenser. Condensed liquids are routed to the skim tank and any remaining gas is burned at the vapor combustor (VC1). The emissions being released at VC1 from the dehydration process are represented as a separate emission point (DEHY1-DEHY3).

Storage Tanks (SKT1-SKT2, OT1-OT4, WT1-WT2)

Flashing, working and breathing emissions from the skim tank, oil tanks, and water tanks were calculated using BR&E ProMax simulation software. Emissions from the tanks are controlled using FL1-FL2. The simulation reports are included in Section 7.

Truck Loading (LOAD)

Uncontrolled emissions from oil loading of trucks were calculated using Equation 1 of AP-42 Section 5.2. Maximum slop oil loading rates are calculated using 814 BOPD for 100 days of the year. Relevant portions of AP-42 Section 5.2 are included in Section 7. Oil truck loading will be uncontrolled.

Piping Component Fugitive Emissions (FUG)

Facility fugitive emissions were calculated using TCEQ's "Air Permit Technical Guidance for Chemical Sources – Fugitive Guidance" document, and conservatively assumed component counts. Reduction efficiencies were obtained from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017). Relevant portions of the TCEQ document are included in Section 7.

Startup, Shutdown, and Maintenance (SSM)

SSM emissions not routed to the flare system were assumed equal to the flat 10 tpy of VOC per State guidance. Specific SSM emissions include small equipment blowdowns, tank emptying and refilling, tank roof landing, and miscellaneous activities. Other SSM emissions are routed to the flare and calculated in accordance with the flare methodology above.

Haul Road Fugitive Emissions

Fugitive haul road emissions were calculated using Equations 1a and 2 of AP-42 Section 13.2.2. Relevant portions of AP-42 Section 13.2.2 are included in Section 7.

Saved Date: 9/9/2020

Malfunction Emissions (MALFCUNTION)

Malfunction emissions not routed to the flare system were assumed equal to the flat 10 tpy of VOC per State guidance. Specific malfunction emissions include any sudden and unavoidable failure of air pollution control equipment or process equipment beyond the control of the owner or operator.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- **2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009
 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

JAYHAWK COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

EMISSIONS SUMMARY TABLE

EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	C	О	VC (INCLUDI		s	6O ₂	PM ₁	10 & 2.5	H	APs	CO2e
	NUMBER		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY
Caterpillar G3616 Natural Gas Compressor Engine	ENG1	ENG1	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG2	ENG2	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG3	ENG3	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG4	ENG4	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG5	ENG5	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG6	ENG6	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG7	ENG7	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG8	ENG8	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG9	ENG9	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG11	ENG11	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.32	1.39	6695
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG12	ENG12	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.32	1.39	6695
Fuel Line Heater (0.75 MMBtu/hr)	HTR1	HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.002	0.01	528
Glycol Regenerator Reboiler (2.0 MMBtu/hr)	RB1	RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1407
Glycol Regenerator Reboiler (2.0 MMBtu/hr)	RB2	RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1407
Glycol Regenerator Reboiler (2.0 MMBtu/hr)	RB3	RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1407
Total Flare Pilot/Purge Emissions	FL1-FL2 Pilot	FL1-FL2 Pilot	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.01	0.04	3489
Total Flare Normal Operations	FL1-FL2 Norm	FL1-FL2 Norm	1.85	7.72	3.69	15.41	11.53	25.60	0.01	0.04	0.03	0.15	0.48	1.10	8057
Total Flare SSM	FL1-FL2 SSM	FL1-FL2 SSM	541.65	8.10	1081.35	16.17	992.97	18.36	4.91	0.08	22.25	0.31	27.52	0.55	9993
BTEX Vapor Combustor	VC1	VC1	0.41	1.80	0.82	3.59	2.61	11.43	0.29	1.26	0.010	0.04	0.32	1.38	2461
TEG Dehydrator with Condenser	DEHY1	VC1						Emis	sions Repres	ented at VC1					
TEG Dehydrator with Condenser	DEHY2	VC1						Emis	sions Repres	ented at VC1					
TEG Dehydrator with Condenser	DEHY3	VC1						Emis	sions Repres	ented at VC1					
Skim Tank	SKT1	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Skim Tank (Backup)	SKT2	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Condensate Tank	OT1	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Condensate Tank	OT2	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				

JAYHAWK COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

				F	MISSIONS SU	MMARY TABI	.E								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	C	О	VC (INCLUDI		s	6O ₂	PM	10 & 2.5	H.	APs	CO2e
	NUMBER		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY
Condensate Tank	ОТ3	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Condensate Tank	OT4	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Produced Water Tank	WT1	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Produced Water Tank	WT2	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Low Pressure Separator	LPS	FL1-FL2						Emissi	ons Represen	ited at FL1-FL	2				
Condensate Truck Loading	LOAD	N/A	-	-	-	-	65.70	11.14	-	-	-	-	0.03	0.01	-
Fugitive Emissions	FUG	N/A	=	-	-	-	4.89	21.43	-	-	-	-	0.38	1.64	-
SSM Activities	SSM	N/A	=	-	-	-	-	10.00	-	-	-	-	-	-	-
ROAD EMISSIONS	ROAD	ROAD	-	-	-	-	-	-	-	-	0.15	0.02	-	-	-
Malfunction Emissions	MALFUNCTION	MALFUNCTION	-	-	-	-	-	10.00	-	-	-	-	-	-	-
					ı				ı				ı	Ī	
			N	Ox	C	О	VC (INCLUDI		s	O_2	PM	10 & 2.5	HA	APs	CO2e
TOTAL FACILITY WIL	DE EMISSIONS		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY
			586.62	204.66	1129.54	226.49	1112.48	260.24	9.34	19.49	26.16	16.80	34.24	28.84	240,024

JAYHAWK COMPRESSOR STATION

Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

 $Emission\ Rate_{X}\ (lb/hr) = Burner\ Rating\ (MMBTU/hr) * EF_{X}\ (lb/MMSCF) / 1020\ (Btu/scf) * Heating\ Value\ of\ Fuel\ Gas\ (BTU/SCF) / 1020\ (Btu/scf) * 25\% / 1020\ (Btu/scf) * 1020\ ($

Annual Emission Rate_X (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

 $\rm H_2S$ Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW $_{GAS}$ * $\rm H_2S_{WEIGHT~\%}$ * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = $P * V / 10.73 / T * MW_{GAS} * H_2S_{WEIGHT \%}$

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) *SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 $MW_{GAS} = Molecular \ Weight \ of the \ Gas, \ H_2S_{WEIGHT\%} = Weight \ Percent \ of \ the \ H_2S \ in \ the \ Fuel \ Gas, \ DRE = Burner \ Combustion \ Efficiency \ of \ H_2S \ DRE = Bur$

Calculations: Page 3

WILDCAT COMPRESSOR STATION

Methodology for Engine Calculations

Engine Emission Calculations

Manufacturer's Data or NSPS Subpart JJJJ Limit Calculations

Emission Rate_X (lb/hr) = Emission Factor_X (g/hp-hr) * Rated hp / 453.6 (g/lb)

Annual Emission Rate $_{\rm X}$ (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

AP 42 Emission Factors

 $Emission \ Rate_{\chi} \ (lb/hr) = Fuel \ Consumption \ (MMBTU/hp-hr) * EF_{\chi} \ (lb/MMBTU) * Rated \ hp$

Annual Emission Rate_X (TPY) = Emission Rate_X (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

WILDCAT COMPRESSOR STATION

Methodology for Flare Calculations

Flare Calculations

VOC Flare Calculations - Uses the Ideal Gas Law for Mixtures

The mass flow rate of VOCs to the flare were modeled using Promax. The mass rate was then reduced by the destruction efficiency of the flare (98%).

NOx & CO Calculations - TCEQ Emission Factors Used

NOx (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^6 (BTU/MMBTU)

CO (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^6 (BTU/MMBTU)

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

SO₂ & H₂S Calculations - Mass Balance

 $\rm H_2S$ Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H_2S_{WEIGHT \,\%} * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = $P * V / 10.73 / T * MW_{GAS} * H_2S_{WEIGHT \%}$

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) * SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 $MW_{GAS} = Molecular \ Weight \ of the \ Gas, \ H_2S_{WEIGHT\%} = Weight \ Percent \ of \ the \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE \ in \ Gas \ in \ Ga$

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION

COMPRESSOR ENGINES

Uncontrolled Emissions Calculations

					Ma	anufact	urer's D	ata		AP-42 Facto	ors														
						g/hj	o-hr²			lb/MMBtu	3,4				lb/hı	. ⁵						tpy ⁵			
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	0.50	2.55	0.91	0.36	0.01125	0.01006	0.00836	1.90	7.76	3.96	1.10	0.13	0.11	0.09	8.33	33.98	17.33	4.80	0.55	0.49	0.41
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	0.50	2.55	0.91	0.36	0.01125	0.01006	0.00836	1.90	7.76	3.96	1.10	0.13	0.11	0.09	8.33	33.98	17.33	4.80	0.55	0.49	0.41

¹HHV is based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report

²The VOC emission factor (g/hp-hr) includes HCHO. Emission factors based on Gas Engine Rating Pro Report @ 100% Load.

 $^3\mathrm{SO}_2$ Emissions were calculated using the emission factor from Table 3.2-2

⁴PM Emission Factor = 7.71E-05 lb/MMBTU + 7.71E-05 lb/MMBTU + 9.91E-03 lb/MMBTU = 0.01006 lb/MMBTU

525% safety factor was added to NOx on all engines. 25% safety factor was added to VOC on 3516. VOC lb/hr rates include acetaldehyde emissions.

Total Emissions Per Pollutant (TPY)	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde
Total Emissions Fer Foliatant (TFF)	179.60	1397.60	425.02	74.77	17.69	15.81	13.14

JAYHAWK COMPRESSOR STATION COMPRESSOR ENGINES

Controlled Emissions Calculations

								М	anufactu (w/ co	ntrol)	ata		AP-42 Facto															
					Cont	rol Effici	ency (%)		g/hp	-hr²			lb/MMBtt	1 ³				1b/I	ur ⁴						tpy	7		
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	со	voc	нсон	NOx	СО	VOC²	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	87.0	65.0	74.0	0.50	0.33	0.32	0.09	0.0113	0.01006	0.00836	1.90	1.01	1.29	0.28	0.13	0.11	0.03	8.33	4.42	5.63	1.25	0.55	0.49	0.14
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	87.0	65.0	74.0	0.50	0.33	0.32	0.09	0.0113	0.01006	0.00836	1.90	1.01	1.29	0.28	0.13	0.11	0.03	8.33	4.42	5.63	1.25	0.55	0.49	0.14

¹HHV is conservatively based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report ²The VOC emission factor (g/hp-hr) includes HCHO. Emission factors based on Gas Engine Rating Pro Report.

 $^3\mathrm{SO}_2$ Emissions were calculated using the emission factor from Table 3.2-2

⁴PM Emission Factor = 7.71E-05 lb/MMBTU + 7.71E-05 lb/MMBTU + 9.91E-03 lb/MMBTU = 0.01006 lb/MMBTU

525% safety factor was added to NOx on all engines. 25% safety factor was added to VOC on 3516. VOC lb/hr rates include acetaldehyde emissions.

Total Emissions Per Pollutant (TPY)	NOx	СО	VOC	нсно	SO ₂	PM _{10 & 2.5}	Acet- aldehyde
Total Emissions Fer Fondant (11-1)	179.60	181.69	147.89	19.44	17.69	15.81	4.60

JAYHAWK COMPRESSOR STATION COMPRESSOR ENGINES

Greenhouse Gas Emissions Calculations

					Engine Data		FR 98 tors ²											
					g/hp-hr	lb/M	MBtu			lb/hr					t	у		
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	CO2	CH ₄	N ₂ O	CO2	CH ₄	N ₂ O	CH ₄ as CO2e	N ₂ O as CO2e	CO2	CH ₄	N ₂ O	CH ₄ as CO2e	N ₂ O as CO2e	Total CO2e
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	502	0.00221	0.00022	1527.25	0.0246	0.0025	0.62	0.73	6689.35	0.11	0.01	2.70	3.22	6695.26
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	502	0.00221	0.00022	1527.25	0.0246	0.0025	0.62	0.73	6689.35	0.11	0.01	2.70	3.22	6695.26

¹HHV is based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report ²Warming potential for CH4 is 25. N2O is 298.

Total Emissions (TPY)	Total CO2e
	211276.91

JAYHAWK COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

CRITERIA & REGULATED POLLUTANTS EMISSIONS

							P-42 Factors¹ lb/MMBtu					lb/hr²					tpy ²		
Source ID	Promax Fuel Gas Stream	Fuel Gas HHV (BTU/SCF)		Burner Rating (MMBTU/Hr)		СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}
HTR1	3. Fuel Gas	1,269	8,760	0.75	0.10	0.08	0.01	0.01	0.01	0.11	0.10	0.01	0.01	0.01	0.50	0.42	0.03	0.04	0.04
RB1	3. Fuel Gas	1,269	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.12	0.07	0.12	0.10
RB2	3. Fuel Gas	1,269	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.12	0.07	0.12	0.10
RB3	3. Fuel Gas	1,269	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.12	0.07	0.12	0.10

¹Source: Emission factors from AP-42, Chapter 1, Tables 1.4-1, 1.4-2 and 1.4-3, converted from lb/MMscf to lb/MMbtu by dividing by 1,020 Btu/scf (per AP-42, Chapter 1 guidance). SO2 - 5 gr/100 scf

²Burners - 25% Safety Factor

Total (tpy)	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}
Total (tpy)	4.51	3.79	0.25	0.39	0.34

JAYHAWK COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

HAZARDOUS AIR POLLUTANTS (HAP) EMISSIONS

							P-42 Factors ¹ lb/MMBtu					lb/hr²					tpy ²		
Source ID	Promax Stream	Fuel Gas (BTU/SCF)		Burner Rating (MMBTU/Hr)	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene
HTR1	3. Fuel Gas	1,269	8760	0.75	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.00	<0.001	<0.001	<0.001	<0.001	0.01	<0.001	<0.001
RB1	3. Fuel Gas	1,269	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001
RB2	3. Fuel Gas	1,269	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001
RB3	3. Fuel Gas	1,269	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001

¹Source: Emission factors from AP-42, Chapter 1, Tables 1.4-1, 1.4-2 and 1.4-3, converted from lb/MMscf to lb/MMbtu by dividing by 1,020 Btu/scf (per AP-42, Chapter 1 guidance). SO2 - 5 gr/100 scf

²Burners - 25% Safety Factor

Total Individual	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene
HAPS (tpy)	0.00	0.00	0.08	0.00	0.00

Total Combined HAPS (tpy) 0.08

JAYHAWK COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Exhaust Stack and Fuel Consumption Data

Source	HTR1	RB1	RB2	RB3	
Burner Rating (btu/hr)	750000	2000000	2000000	2000000	
Gross Heating Value (btu/scf)	1269.3	1269.3	1269.3	1269.3	
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1	5/1	5/1	5/1	
Stack Temperature (°F)	1000	1000	1000	1000	
Stack Diameter (ft)	1	1.5	1.5	1.5	
Stack Height (ft)	20	20	20	20	
Fuel Consumption (scf/hr)	591	1576	1576	1576	
Fuel Consumption (scf/day)	14181	37816	37816	37816	
Fuel Consumption (mmscf/year)	5	14	14	14	
Air Injection Rate (scf/hr)	5909	15757	15757	15757	
Total exhaust flow rate @ STP (scf/hr)	6500	17332	17332	17332	
Total exhaust flow rate @ STP (scf/sec)	2	5	5	5	
Total exhaust flow rate @ 1000 °F (acf/hr)	18249	48664	48664	48664	
Total exhaust flow rate @ 1000 °F (acf/sec)	5.07	14	14	14	
Exhaust Stack Exit Velocity @ STP (ft/sec)	2.30	3	3	3	
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	6.45	8	8	8	
Total CH4 (ton/yr) ²	0.32	0.85	0.85	0.85	
Total N2O (ton/yr) ²	0.001	0.002	0.002	0.002	
Total CO2 (ton/yr) ²	519	1385	1385	1385	
Total CO2e (ton/yr) ²	527.51	1407	1407	1407	

Promax Stream Name	3. Fuel Gas
Component	Mass Frac
Triethylene Glycol	0.00
Water	0.00
Hydrogen Sulfide	0.00
Carbon Dioxide	0.00
Nitrogen	0.01
Methane	0.58
Ethane	0.18
Propane	0.13
Isobutane	0.02
n-Butane	0.05
Isopentane	0.01
n-Pentane	0.01
i-C6	0.01
i-C7	0.00
Octane	0.00
Nonane	0.00
Benzene	0.00
Toluene	0.00
Ethylbenzene	0.00
o-Xylene	0.00
n-Hexane	0.00
2,2,4-Trimethylpentane	0.00
Decanes Plus	0.00
Decanes Plus Sat	0.00

¹ Air/Gas Ratio is based on the Manufacturer's Data of XTO's typical burner installations

² GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions,

JAYHAWK COMPRESSOR STATION STORAGE TANK EMISSIONS SUMMARY

VOC EMISSIONS SUMMARY

								Uncontrolled Working & Breathing Losses				Uncontrolled Flash Losses				Uncontrolled Total Emissions		Controlled Total Emission	
Unit Number	Source Description	Material Type (Oil/Produced Water)	Number of Tanks in Category	Controlled by Unit #	Control Efficiency (%)	Promax Stream Liquid Material	Material Throughput (bbls/day)	Promax Stream (Hrly)		Lb/hr	TPY	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Lb/hr	TPY	Lb/hr	TPY
SKT1	Skim Tank	Produced Water	2	FL1-FL2	98	14. Skim Tank Inlet	173.54	8. Skim Tank W&B	8. Skim Tank W&B	3.62	15.85	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	1.25	5.47	4.87	21.32	0.10	0.43
SKT2	Skim Tank (Backup)	Produced Water	2	FL1-FL2	98	14. Skim Tank Inlet	173.54	8. Skim Tank W&B	8. Skim Tank W&B	3.62	15.85	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	1.25	5.47	4.87	21.32	0.10	0.43
OT1	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
OT2	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
ОТЗ	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
OT4	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
WT1	Produced Water Tank	Produced Water	2	FL1-FL2	98	12. Produced Water Liquid	170.55	9. Water Tank W&B	9. Water Tank W&B	0.11	0.47	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.11	0.47	0.00	0.01
WT2	Produced Water Tank	Produced Water	2	FL1-FL2	98	12. Produced Water Liquid	170.55	9. Water Tank W&B	9. Water Tank W&B	0.11	0.47	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.11	0.47	0.00	0.01
			Storage Tank E	missions	_		_	_	_	25.64	112.28	_	_	537.26	1113.85	562.90	1226.13	11.26	24.52

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

	Truck Loading Loss	es Calculations									
	Promax Stream Production	11. Condensate Sa	-								
	Promax Stream Emissions	10. Condensate T									
	Controlled/Uncontrolled	UNCONTRO	LLED								
	Operating Schedule ^c	100	Day/Year								
	Condensate Production	814	bbls / Day								
	Promax Repor	rt Results									
	LL= 12.46 * SPM/T	* (1-EFF/100)									
	S	aturation Factor (S) =	0.	6							
	Average True Vapor Pressure	of liquid loaded (P) ^a =	9.	14							
	Max True Vapor Pressure	of liquid loaded (P) ^a =	10.	63							
Avera	ge Temperature of bulk liquid lo	oaded in Rankin (T) ^a =	529	.10							
Max Temperature of bulk liquid loaded in Rankin $(T)^a = 538.27$											
Molecular Weight (M) ^a = 54.80											
	Control Efficiency * Collect	tion Efficiency (EFF)=	()							
	Hydrocar	bon Content (%wt) ^a =	1.0	00							
	7	OC Content (wt%) ^a =	0.9								
		HAP Conent (wt%) ^a =	0.0	04							
U	e Uncontrolled LL (lb Total HC	. 01,	0.29								
	erage Uncontrolled LL (lb VOC	. 01 /	0.2	736							
Ma	Cuncontrolled LL (lb Total HC		0.33								
	Max Uncontrolled LL (lb VOC		0.3								
		ughput (bbls/Year) =	814	120							
	Truck Loadii	ng Rate (bbls/hour) =	21								
Estimated # of Loads (Approximately 1 hr/Load) = 388											
lb/hr											
Т	otal Hydrocarbon Emissions		71.36	12.10							
	T . IVOCE		lb/hr	TPY							
	Total VOC Emissions		65.70	11.14							
	Total HAP Emissions		lb/hr 0.03	TPY 0.01							

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Component		Total Speciated Emitted During l	-
	Mass Fraction ^d	lb/hr ^d	ton/yr
Triethylene Glycol	0.00	0.00	0.00
Water	0.00	0.00	0.00
Hydrogen Sulfide	0.00	0.00	0.00
Carbon Dioxide	0.00	0.00	0.00
Nitrogen	0.00	0.00	0.00
Methane	0.00	0.17	0.03
Ethane	0.08	5.49	0.93
Propane	0.24	17.42	2.95
Isobutane	0.08	5.87	1.00
n-Butane	0.24	17.45	2.96
Isopentane	0.08	5.99	1.02
n-Pentane	0.10	6.98	1.18
i-C6	0.08	5.93	1.01
i-C7	0.03	2.39	0.40
Octane	0.01	0.62	0.10
Nonane	0.00	0.09	0.01
Benzene	0.00	0.19	0.03
Toluene	0.00	0.16	0.03
Ethylbenzene	0.00	0.00	0.00
o-Xylene	0.00	0.03	0.01
n-Hexane	0.04	2.58	0.44
2,2,4-Trimethylpentane	0.00	0.00	0.00
Decanes Plus	0.00	0.00	0.00
Decanes Plus Sat	0.00	0.00	0.00
Total HC	1.00	71.36	12.10
Total VOC	0.92	65.70	11.14
Total HAP	0.04	2.97	0.50
Heating Value (Btu/scf)	3080.19	3080.19	3080.19
Molecular Weight (lb/lbmol)	54.80	54.80	54.80
SO2 Emissions (lb/hr)	N/A	N/A	N/A
Operating Hours (hr/yr)	N/A	N/A	2400
Mass Flow	N/A	71.36 lb/hr	12.10 ton/yr
Volumetric Flow (scf/hr)	N/A	494.13	83.78
Heat Release (MMBtu/hr)	N/A	1.52	0.26

Footnotes:

e Loading emissions are uncontrolled.

^a Values were obtained from Promax.

Loading emissions include total hydrocarbons as calculated using AP-42, Section 5.2.

^c Condensate tanks are only trucked out when transfer to pipeline is unavailable.

d The component speciation was obtained from Promax Stream " and multiplied by the total hydrocarbon emissions. (VOC = $0.00 \, lb/hr * 0.00 \, wt\% \, VOC = 0.00 \, lb/hr$)

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION FLARE 1-3 EMISSION SUMMARY

Flare Emissions Summary Table

Stream Source	Stream Source	N	Ox	C	0		VOC Total HAPs)	S	O ₂	PM ₁	0 & 2.5	Total	HAPs	CO2e	n-He	exane	Ben	zene
Stream Source	Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY	lb/hr	TPY	lb/hr	TPY
FL1-FL2 Pilot	FL1 Pilot/Purge	0.33	1.46	0.67	2.92	0.47	2.07	0.00	0.01	0.01	0.06	0.00	0.02	1744.35	0.00	0.02	0.00	0.00
FLI-FL2 FIIOt	FL2 Pilot / Purge	0.33	1.46	0.67	2.92	0.47	2.07	0.00	0.01	0.01	0.06	0.00	0.02	1744.35	0.00	0.02	0.00	0.00
	PW Tank Vapors (WT1-2)	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	5.77	0.00	0.00	0.00	0.00
FL1-FL2 Norm	Skim Tank Vapors (SKT1-2)	0.03	0.13	0.06	0.26	0.19	0.85	0.00	0.00	0.00	0.00	0.01	0.05	133.28	0.01	0.04	0.00	0.00
FL1-FL2 NOTH	Oil Tank Vapors (OT1-4)	1.76	7.35	3.52	14.68	11.06	23.65	0.01	0.03	0.03	0.14	0.46	1.00	7641.37	0.36	0.81	0.04	0.09
	Low Presure Separator Vapors Normal Operation	0.06	0.23	0.12	0.46	0.27	1.08	0.00	0.00	0.00	0.01	0.01	0.04	276.51	0.01	0.03	0.00	0.00
	Low Presure Separator Vapors VRU Downtime	2.94	1.29	5.86	2.57	13.70	6.00	0.04	0.02	0.08	0.03	0.47	0.21	1536.18	0.38	0.17	0.05	0.02
FL1-FL2 SSM	HP Flare Blowdowns	0.17	0.08	0.33	0.17	0.24	0.12	0.00	0.00	0.01	0.00	0.00	0.00	99.40	0.00	0.00	0.00	0.00
	HP Flare Inlet Gas Flaring	538.55	6.73	1075.15	13.44	979.03	12.24	4.87	0.06	22.17	0.28	27.05	0.34	8357.04	23.90	0.30	1.28	0.02
Total	Total Emissions	544.17	18.74	1086.37	37.42	1005.45	48.09	4.93	0.15	22.31	0.59	28.01	1.68	21538.25	24.66	1.38	1.37	0.14
FL1-FL2 Pilot	Total Flare Pilot/Purge Emissions	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.01	0.04	3488.70	0.01	0.04	0.00	0.00
FL1-FL2 Norm	Total Flare Normal Operations	1.85	7.72	3.69	15.41	11.53	25.60	0.01	0.04	0.03	0.15	0.48	1.10	8056.93	0.38	0.88	0.04	0.11
FL1-FL2 SSM	Total Flare SSM	541.65	8.10	1081.35	16.17	992.97	18.36	4.91	0.08	22.25	0.31	27.52	0.55	9992.62	24.28	0.47	1.33	0.04
Total	Total Emissions	544.17	18.74	1086.37	37.42	1005.45	48.09	4.93	0.15	22.31	0.59	28.01	1.68	21538.25	24.66	1.38	1.37	0.14
FL1-FL2 HP	High Pressure Gas Flaring (No Pilot)	538.72	6.82	1075.48	13.61	979.27	12.36	4.87	0.06	22.17	0.28	27.05	0.34	8456.44	23.90	0.30	1.28	0.02
FL1-FL2 LP	Low Pressure Gas Flaring (No Pilot)	4.79	9.00	9.56	17.98	25.23	31.61	0.05	0.06	0.11	0.18	0.95	1.30	9593.11	0.76	1.05	0.09	0.13

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION FLARE 1-3 HOURLY EMISSIONS WINTER SEASON - NORMAL OPERATIONS

FLARE 1-3 HOURLY - NORMAL OPERATIONS

Criteria Pollutant Emissions from Flare e

Factor

10.00%

98% 34.08

64.06

379.484

Factor Units

0.138 lb/MMBtu

0.2755 lb/MMBtu

7.60 lb/MMscf

7.60 lb/MMscf

0.00022 lb/MMBtu

(876 hrs)

Emission Rate

(lb/hr)

544.17

1086.37

22.31

22.31 0.87

LPS Vapor Controls / Flare DRE LPS VRU Collection Efficienc (Normal Operations) LPS VRU Downtime

(MSS Operations) Flare Destruction Efficiency Flare Destruction Efficiency

H2S molecular weight

SO2 molecular weight

174654.97 2935746.45

0.38 4.53

Molar Volume (scf/lbmol) Flare Operating Hours

 NO_X

CO

PM_{2.5}

H₂S

					Uncap	tured Maximum H	ourly Emission Rat								
		SSM		HP Flare	LP Flare	Oil Tank V	apors (OT1-4)	Skim Tank V	apors (SKT1-2)	PW Tank Va	pors (WT1-2)	Low Pres Sep ^d			
Stream	HP Flare Blowdowns ^f	Low Pres Sep ^d Flash (VRU Off)	Inlet Gas Flaring ⁸	Pilot/Purge ^c	Pilot/Purge ^c	Flash	W&B	Flash	W&B	Flash	W&B	Flash (VRU On) 98% Col Eff	Total Vapors to Flare	Destruction	Total Flare Exhaust
Promax Stream Name	17. HPF Blowdowns	1. LP Separator Gas	19. Inlet Flaring	15. HPF Pilot/ Purge Gas	16. LPF Pilot/ Purge Gas	22. Condensate Flash Losses Hrly	10. Condensate Tank W&B	6. Skim Tank Flash Gas	8. Skim Tank W&B	5. Water Tank Flash Gas	9. Water Tank W&B	1. LP Separator Gas	(Uncontrolled Max Hourly)	Efficiency	(controlled)
Component	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)
Triethylene Glycol	0.00	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.98	98%	0.02
Water	0.00	7.45	5.62	0.00	0.00	0.00	0.00	0.03	0.13	0.00	0.13	0.15	13.52	0%	13.52
Hydrogen Sulfide	0.00	0.02	2.59	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	2.62	98%	0.05
Carbon Dioxide	0.14	1.27	411.01	0.36	0.19	0.11	0.00	0.00	0.01	0.00	0.01	0.03	413.13	0%	413.13
Nitrogen	0.64	0.93	1874.31	1.68	0.88	0.00	0.00	0.00	0.00	0.00	0.00	0.02	1878.46	0%	1878.46
Methane	30.88	126.60	91413.17	81.13	42.59	1.27	0.05	0.08	0.01	0.00	0.01	2.53	91698.33	98%	1833.97
Ethane	9.74	163.71	30115.57	25.59	13.43	42.37	1.52	0.25	0.09	0.00	0.03	3.27	30375.57	98%	607.51
Propane	6.70	252.44	22642.86	17.60	9.24	144.70	4.82	0.68	0.67	0.00	0.05	5.05	23084.80	98%	461.70
Isobutane	1.08	63.24	4178.60	2.85	1.49	48.41	1.63	0.23	0.57	0.00	0.01	1.26	4299.39	98%	85.99
n-Butane	2.39	165.60	10051.87	6.29	3.30	152.63	4.83	0.65	2.39	0.00	0.04	3.31	10393.31	98%	207.87
Isopentane	0.54	50.92	2947.97	1.43	0.75	50.52	1.66	0.23	0.86	0.00	0.01	1.02	3055.91	98%	61.12
n-Pentane	0.56	58.45	3381.48	1.48	0.78	60.13	1.93	0.26	1.01	0.00	0.01	1.17	3507.27	98%	70.15
i-C6	0.29	45.76	2735.89	0.77	0.40	24.30	1.64	0.22	0.83	0.00	0.01	0.92	2811.04	98%	56.22
i-C7	0.07	18.66	1239.87	0.18	0.10	26.60	0.66	0.09	0.34	0.00	0.00	0.37	1286.95	98%	25.74
Octane	0.01	5.44	373.94	0.02	0.01	4.92	0.17	0.03	0.10	0.00	0.00	0.11	384.73	98%	7.69
Nonane	0.00	0.87	46.16	0.00	0.00	0.54	0.02	0.00	0.02	0.00	0.00	0.02	47.64	98%	0.95
Benzene	0.01	2.30	63.97	0.02	0.01	1.84	0.05	0.01	0.04	0.00	0.04	0.05	68.33	98%	1.37
Toluene	0.00	1.87	71.14	0.01	0.00	1.52	0.04	0.01	0.03	0.00	0.03	0.04	74.71	98%	1.49
Ethylbenzene	0.00	0.05	2.48	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	2.58	98%	0.05
o-Xylene	0.00	0.46	19.96	0.00	0.00	0.30	0.01	0.00	0.01	0.00	0.01	0.01	20.76	98%	0.42
n-Hexane	0.10	19.07	1194.79	0.27	0.14	17.26	0.71	0.09	0.35	0.00	0.00	0.38	1233.17	98%	24.66
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	1.06	0.00	0.00	0.00	0.00	0.00	0.00	1.06	98%	0.02
Decanes Plus	0.00	0.04	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.72	98%	0.01
Decanes Plus Sat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00
Total	53.17	985.17	172774.91	139.69	73.34	578.52	19.75	2.87	7.47	0.00	0.38	19.70	174654.97	-	5752.10
Total VOC	11.77	685.17	48951.66	30.92	16.23	534.77	18.18	2.50	7.24	0.00	0.21	13.70	50258.65	-	1005.17
Total HAP	0.11	23.75	1352.34	0.30	0.16	22.03	0.82	0.11	0.43	0.00	0.09	0.47	1400.61	-	28.01
Heating Value (Btu/scf)	1,269.30	2,154.40	1,338.01	1269.30	1269.30	3064.41	3080.19	2769.57	3346.32	0.00	1149.83	2154.40	1343.20		
Molecular Weight (lb/lbmol)	21.20	37.83	22.48	21.20	21.20	54.51	54.80	49.73	61.12	0.00	32.03	37.83	-		
Operating Hours (hr/yr)	1,000	876	20	8760	8760	8760	8760	8760	8760	8760	8760	7884	-		
Mass Flow (lb/hr)	53.17	985.17	172,774.91	139.69	73.34	578.52	19.75	2.87	7.47	0.00	0.38	19.70	174654.97		
17.1 ((7.1)	0.70				1 212	1007	107.77	21.00			4.50				

21.88

46.41

				60000.00	31500.00								
					Con	nbustion Emission	s from Flare						
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Total NO _x	0.17	2.94	538.55	0.44	0.23	1.70	0.06	0.01	0.02	0.00	0.00	0.06	544.17
Total CO	0.33	5.86	1075.15	0.87	0.46	3.40	0.12	0.02	0.04	0.00	0.00	0.12	1086.37
Total SO ₂	0.00	0.04	4.87	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	4.93
Total PM ₁₀	0.01	0.08	22.17	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	22.31
Total PM _{2.5}	0.01	0.08	22.17	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	22.31
Total VOC after comb.	0.24	13.70	979.03	0.62	0.32	10.70	0.36	0.05	0.14	0.00	0.00	0.27	1005.45
Total HAP after comb.	0.00	0.47	27.05	0.01	0.00	0.44	0.02	0.00	0.01	0.00	0.00	0.01	28.01
Total n-Hexane after comb.	0.00	0.38	23.90	0.01	0.00	0.35	0.01	0.00	0.01	0.00	0.00	0.01	24.66
Total Benzene after comb.	0.00	0.05	1.28	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	1.37
Total CH ₄	0.47	1.08	1306.41	1.23	0.65	0.01	0.00	0.00	0.00	0.00	0.00	0.02	1309.86
Total N ₂ O	0.000	0.01	1.90	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	1.92
Total CO ₂	188.08	3587.65	647106.92	494.12	259.41	1795.42	61.31	9.39	22.63		1.32	71.75	653,598.01
Total CO ₂ e	199.85	3617.61	680332.48	525.31	275.79	1797.39	61.38	9.42	22.66	0.00	1.32	72.35	686,915.56

4.027

Footnotes:

Volumetric Flow (scf/hr)

Heat Release (MMBtu/hr)

Uncontrolled stream properties determined via ProMax.

Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature.

53.17 952

9,881

Pilot fuel gas emissions are conservatively calculated based on observed flowrate

Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Blowdowns are estimated to be @ 952 SCF per blowdown. XTO conservatively estimates 1000 blowdowns per year and 1 blowdown per hour

XTO conservatively estimates 58 MMscf of inlet gas flaring per year @ 2.92 MMscf/hr max rate

GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions.

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION FLARE 1-3 ANNUAL EMISSIONS WINTER SEASON - NORMAL OPERATIONS

FLARE ANNUAL - NORMAL OPERATIONS

1360.44

					Uncap	tured Maximum H	ourly Emission Rat	es and Compositio	n to Flare ^{a,b}							Criter	ria Pollutant Emis	sions from	Flare ^e
		SSM		HP Flare	LP Flare	Oil Tank V	apors (OT1-4)	Skim Tank V	apors (SKT1-2)	PW Tank Va	pors (PWT1-2)	Low Pres Sep ^d							
Stream	HP Flare Blowdowns ^f	Low Pres Sep ^d Flash (VRU Off)	Inlet Gas Flaring ⁸		Pilot/Purge ^c	Flash	W&B	Flash	W&B	Flash	W&B	Flash (VRU On) 98% Col Eff	Total Vapors to Flare	Destruction Efficiency	Total Flare Exhaust	Component	Emission Rate	Emission	Emission
Promax Stream Name	17. HPF Blowdowns	1. LP Separator Gas	19. Inlet Flaring	15. HPF Pilot/ Purge Gas	16. LPF Pilot/ Purge Gas	7. Condensate Tank Flash Gas	10. Condensate Tank W&B	6. Skim Tank Flash Gas	8. Skim Tank W&B	5. Water Tank Flash Gas	9. Water Tank W&B	1. LP Separator Gas	(uncontrolled)	zanciency	(controlled)	Component		Factor	Factor Uni
Component	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		
Triethylene Glycol	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	98%	0.00	NO _X	18.74	0.138	lb/MMBt
Water	0.00	3.26	0.07	0.02	0.01	3.00	0.00	0.15	0.56	0.00	0.56	0.59	8.24	0%	8.24	co	37.42	0.2755	lb/MMBt
Hydrogen Sulfide	0.00	0.01	0.03	0.01	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.08	98%	0.00	SO ₂	0.15		
Carbon Dioxide	0.07	0.56	5.14	1.57	0.83	0.44	0.02	0.02	0.04	0.00	0.03	0.10	8.81	0%	8.81	PM_{10}	0.59	7.60	lb/MMse
Nitrogen	0.32	0.41	23.43	7.35	3.86	0.04	0.00	0.00	0.00	0.00	0.00	0.07	35.48	0%	35.48	PM _{2.5}	0.59	7.60	lb/MMse
Methane	15.44	55.45	1142.66	355.36	186.56	17.62	0.20	0.35	0.04	0.00	0.02	9.98	1783.70	98%	35.67	N ₂ O	0.03	0.00022	lb/MMBt
Ethane	4.87	71.71	376.44	112.07	58.84	106.47	6.65	1.10	0.39	0.00	0.12	12.91	751.58	98%	15.03	H ₂ S	0.00	1	-
Propane	3.35	110.57	283.04	77.10	40.48	320.02	21.11	2.97	2.95	0.00	0.22	19.90	881.70	98%	17.63				
Isobutane	0.54	27.70	52.23	12.47	6.55	103.04	7.12	1.00	2.51	0.00	0.05	4.99	218.20	98%	4.36	LPS Vaj	por Controls / Fla	re DRE	
n-Butane	1.20	72.53	125.65	27.55	14.46	287.44	21.15	2.87	10.49	0.00	0.19	13.06	576.57	98%	11.53	LPS VRU Col	lection Efficiency	98.0%	
Isopentane	0.27	22.30	36.85	6.27	3.29	95.82	7.26	0.99	3.76	0.00	0.05	4.01	180.88	98%	3.62	(Normal	Operations)	90.070	
n-Pentane	0.28	25.60	42.27	6.49	3.41	111.46	8.46	1.16	4.43	0.00	0.02	4.61	208.19	98%	4.16	LPS VRU Downtime		Downtime 10.0%	
i-C6	0.15	20.04	34.20	3.38	1.77	89.49	7.19	0.94	3.65	0.00	0.02	3.61	164.45	98%	3.29	(MSS C	Operations)	10.0 /6	
i-C7	0.03	8.17	15.50	0.80	0.42	36.67	2.89	0.39	1.50	0.00	0.01	1.47	67.85	98%	1.36	Flare Destru	iction Efficiency	98%	
Octane	0.00	2.38	4.67	0.09	0.05	10.61	0.75	0.11	0.43	0.00	0.00	0.43	19.52	98%	0.39		C4+	90/0	
Nonane	0.00	0.38	0.58	0.00	0.00	1.71	0.11	0.02	0.07	0.00	0.00	0.07	2.94	98%	0.06	Flare Destru	iction Efficiency	98%	
Benzene	0.00	1.01	0.80	0.07	0.04	4.49	0.23	0.05	0.18	0.00	0.18	0.18	7.22	98%	0.14		C3	90/0	
Toluene	0.00	0.82	0.89	0.04	0.02	3.66	0.20	0.04	0.15	0.00	0.15	0.15	6.11	98%	0.12				_
Ethylbenzene	0.00	0.02	0.03	0.00	0.00	0.10	0.01	0.00	0.00	0.00	0.00	0.00	0.17	98%	0.00	H2S molecula	r weight	34.08	
o-Xylene	0.00	0.20	0.25	0.00	0.00	0.90	0.04	0.01	0.04	0.00	0.04	0.04	1.52	98%	0.03	SO2 molecula	r weight	64.06	
n-Hexane	0.05	8.35	14.93	1.19	0.62	37.44	3.13	0.40	1.53	0.00	0.01	1.50	69.15	98%	1.38	Molar Volum	e (scf/lbmol)	379.484	
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	Flare Operation	ng Hours	8760	
Decanes Plus	0.00	0.02	0.01	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.10	98%	0.00				-
Decanes Plus Sat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
Total	26.58	431.51	2159.69	611.83	321.21	1230.50	86.51	12.56	32.74	0.00	1.67	77.67	4992.46	-	151.32				
Total VOC	5.88	300.11	611.90	135.44	71.10	1102.91	79.64	10.94	31.70	0.00	0.94	54.02	2404.57	-	48.09				
Total HAP	0.06	10.40	16.90	1.30	0.68	46.58	3.60	0.49	1.90	0.00	0.37	1.87	84.17	-	1.68				
ating Value (Btu/scf)	1269.30	2154.40	1338.01	1269.30	1269.30	2915.86	3080.19	2769.57	3346.32	0.00	1149.83	2154.40	1757.26						
lecular Weight (lb/lbmol)	21.20	37.83	22.48	21.20	21.20	51.88	54.80	49.73	61.12	0.00	32.03	37.83	-						
erating Hours (hr/yr)	1000	876	25	8760	8760	8760	8760	8760	8760	8760	8760	7884	-						
ss Flow (ton/yr)	26.58	431.51	2159.69	611.83	321.21	1230.50	86.51	12.56	32.74	0.00	1.67	77.67	4992.46						
lumetric Flow (MMscf/yr)	0.95	8.66	72.92	21.90	11.50	35.28	1.20	0.19	0.41	0.00	0.04	1.56	154.59						
I D. L	1207.92	10749 47	075 (2.42	277077.6	1.4502.77	102077.22	2400.47	520.00	1000.44	0.00	AE EQ	2256 72	271662 57						

530.88

					Con	bustion Emissions	from Flare						
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)
Total NO _x	0.08	1.29	6.73	1.92	1.01	7.10	0.25	0.04	0.09	0.00	0.00	0.23	18.74
Total CO	0.17	2.57	13.44	3.83	2.01	14.17	0.51	0.07	0.19	0.00	0.01	0.46	37.42
Total SO ₂	0.00	0.02	0.06	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.15
Total PM ₁₀	0.00	0.03	0.28	0.08	0.04	0.13	0.00	0.00	0.00	0.00	0.00	0.01	0.59
Total PM _{2.5}	0.00	0.03	0.28	0.08	0.04	0.13	0.00	0.00	0.00	0.00	0.00	0.01	0.59
Total VOC after comb.	0.12	6.00	12.24	2.71	1.42	22.06	1.59	0.22	0.63	0.00	0.02	1.08	48.09
Total HAP after comb.	0.00	0.21	0.34	0.03	0.01	0.93	0.07	0.01	0.04	0.00	0.01	0.04	1.68
Total n-Hexane after comb.	0.00	0.17	0.30	0.02	0.01	0.75	0.06	0.01	0.03	0.00	0.00	0.03	1.38
Total Benzene after comb.	0.00	0.02	0.02	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.14
Total CH ₄	0.23	0.47	16.33	5.38	2.83	0.21	0.00	0.00	0.00	0.00	0.00	0.08	25.55
Total N ₂ O	0.000	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.03
Total CO ₂	93.51	1523.80	7945.58	2152.15	1129.88	7376.27	256.22	39.44	93.72	0.00	5.76	274.28	20890.62
Total CO2e	99.40	1536.18	8357.04	2287.67	1201.03	7385.00	256.37	39.51	93.77	0.00	5.77	276.51	21,538.25

3690.47

27797.66 14593.77

Footnotes:

Heat Release (MMBtu/yr)

Uncontrolled stream properties determined via ProMax.

Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature.

1207.83

Pilot fuel gas emissions are conservatively calculated based on observed flowrates

Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

f Blowdowns are estimated to be @ 952 SCF per blowdown. XTO conservatively estimates 1000 blowdowns per year and 1 blowdown per hour

18648.47

97563.43

g XTO conservatively estimates 73 MMscf of inlet gas flaring per year @ 2.92 MMscf/hr max rate

h GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions

JAYHAWK COMPRESSOR STATION

HPF FLARE BLOWDOWN GAS ROUTED TO FLARE (EXAMPLE CALCULATION)

Greenhouse Gas Emissions Sample Calculation

1) =s,CH4	X _{CH4} * [(1- η)*	$Z_L + Z_U$	=	11,053.82	SCF/Yr		Source	Annual Volume
Va =	951,570.00						17. HPF Blowdowns	951,570.00
X _{CH4} =	0.580820292							
N =	0.98							
$Z_L =$	1.00					<u></u>	Total	951,570.00
$Z_U =$	0.00							
2) E _{s,CO2} (uncon	$nbusted) = V_a$	* X _{CO2}	=	2,447.09	SCF/Yr			
Va =	951,570.00							
$X_{CO2} =$	0.0026							
3) E _{s,CO2} (combi	ısted) = Σ (η *	* Va * Yj * Rj *	$Z_{\rm L}$)					
N =	0.98	, ,						
$\mathbf{V}_{a} =$	951,570.00		Rj =		$E_{a, CO2} =$			
$Y_J =$	Methane	0.5808	1		541,637.34			
	Ethane	0.1832	2		341,643.21			
	Propane	0.1260	3		352,523.10			
	Butane	0.0654	4		243,978.51			
7 -	Pentane +	0.0280	5		130,567.61	CCEN		
$Z_L =$	1.00				1,610,349.77	SCF/Yr		
4) Mass _{s,i} = E _{s,i}								
$E_{s,i}$ (CH4) =								
$E_{s,i}$ (CO2) =	1,612,796.8							
$p_i(CH4) =$	0.0192	kg/ft3	=	0.21	metric tons			
	0.0526	kg/ft3	=	84.83	metric tons			
$p_i(CO2) =$	+ (CH ₄ X GW	P)	short tons	CO ₂ e				
$p_i (CO2) =$ 5) $CO_2 e = CO_2$		=	93.51	93.51				
p_i (CO2) = 5) $CO_2e = CO_2$ CO2 =	84.83		0.23	5.85				
$p_i (CO2) =$ 5) $CO_2 e = CO_2$	84.83 0.21 25	=	0.23					

Footnotes:

Source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions,

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION DEHYDRATORS 1-3 VAPORS ROUTED TO VAPOR COMBUSTOR (VC1)

VOC/HAP Emissions for Dehydration Units (DEHY1 - DEHY3) - Routed to Vapor Combustor (VC1)

		Uncontrolled	Maximum Hourly Emission Rate	es and Composition to Combustion	Device(s) ^a				
Stream	Pilot	Emissions	DEHY1-3 Still	Column Emissions		ombustion Device(s) ntrolled)	Destruction Efficiency	Combustion E	otal Device(s) Exhaust
Promax Stream Name	24. VC1 Pilot Fuel	24. VC1 Pilot Fuel	13. BTEX Cond Vapors to Combustion	13. BTEX Cond Vapors to Combustion	(Cite)	anionea)	zmeency	(cont	rolled)
Component	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(%)	(lb/hr)	(ton/yr)
Triethylene Glycol	0.00	9.67E-05	0.00	1.74E-07	0.00	0.00	98%	0.00	0.00
Water	0.00	2.16E-03	1.87	8.20	1.87	8.20	0%	1.87	8.20
Hydrogen Sulfide	0.00	9.57E-04	0.15	0.67	0.15	0.67	98%	0.00	0.01
Carbon Dioxide	0.04	0.16	2.39	10.47	2.43	10.63	0%	2.43	10.63
Nitrogen	0.17	0.74	0.02	0.07	0.18	0.81	0%	0.18	0.81
Methane	8.11	35.54	9.50	41.62	17.61	77.15	98%	0.35	1.54
Ethane	2.56	11.21	22.15	97.03	24.71	108.24	98%	0.49	2.16
Propane	1.76	7.71	38.47	168.51	40.23	176.22	98%	0.80	3.52
Isobutane	0.28	1.25	6.77	29.63	7.05	30.88	98%	0.14	0.62
n-Butane	0.63	2.75	27.45	120.23	28.08	122.98	98%	0.56	2.46
Isopentane	0.14	0.63	10.71	46.93	10.86	47.56	98%	0.22	0.95
n-Pentane	0.15	0.65	14.75	64.59	14.90	65.24	98%	0.30	1.30
i-C6	0.08	0.34	10.17	44.56	10.25	44.90	98%	0.21	0.90
i-C7	0.02	0.08	2.99	13.08	3.01	13.16	98%	0.06	0.26
Octane	0.00	0.01	0.31	1.36	0.31	1.36	98%	0.01	0.03
Nonane	0.00	3.84E-04	0.02	0.07	0.02	0.07	98%	0.00	0.00
Benzene	0.00	0.01	7.52	32.95	7.52	32.96	98%	0.15	0.66
Toluene	0.00	3.38E-03	3.74	16.36	3.74	16.36	98%	0.07	0.33
Ethylbenzene	0.00	5.06E-05	0.03	0.15	0.03	0.15	98%	0.00	0.00
o-Xylene	0.00	3.32E-04	0.36	1.58	0.36	1.58	98%	0.01	0.03
n-Hexane	0.03	0.12	4.14	18.14	4.17	18.26	98%	0.08	0.37
2,2,4-Trimethylpentane	0.00		0.00	-	0.00	0.00	98%	0.00	0.00
Decanes Plus	0.00	1.66E-06	0.00	8.82E-04	0.00	0.00	98%	0.00	0.00
Decanes Plus Sat	0.00		0.00	-	0.00	0.00	98%	0.00	0.00
Total	13.97	61.18	163.52	716.20	177.48	777.38	-	7.94	34.79
Total VOC	3.09	13.54	127.43	558.14	130.52	571.69	-	2.61	11.43
Total HAP	0.03	0.13	15.80	69.18	15.83	69.31	-	0.32	1.39
Heating Value (Btu/scf)	1,269.31	1,269.31	2,460.05	2,460.05	2460.05	2460.05			
Molecular Weight (lb/lbmol)	21.20	21.20	44.85	44.85	-	-			
Operating Hours (hr/yr)	8,760	8,760	8,760	8,760	-	-			
Mass Flow	13.97 lb/hr	61.18 ton/yr	127.87 lb/hr	560.09 ton/yr	127.87 lb/hr	560.09 ton/yr			

9 MMscf/yr

23,315.17 MMBtu/yr

1,332 scf/hr

3.28 MMBtu/hr

560.09 ton/yr 12 MMscf/yr

23,315.17 MMBtu/yr

Combustion Emissions from Combustion Device(s)						
	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)
Total NO _x	0.04	0.19	0.37	1.61	0.41	1.80
Total CO	0.09	0.38	0.73	3.21	0.82	3.59
Total SO ₂	0.00	1.80E-03	0.29	1.26	0.29	1.26
Total PM ₁₀	0.002	0.01	0.008	0.04	0.01	0.04
Total PM _{2.5}	0.00	0.01	0.01	0.04	0.01	0.04
Total VOC (slip)	0.06	0.27	2.55	11.16	2.61	11.43
Total HAP (slip)	0.00	2.59E-03	0.32	1.38	0.32	1.39
Total n-Hexane (slip)	0.00	0.00	0.08	0.36	0.08	0.37
Total Benzene (slip)	0.00	0.00	0.15	0.66	0.15	0.66
Total CH ₄	0.12	0.54	0.07	0.30	0.19	0.84
Total N ₂ O	0.000	6.76E-04	0.001	0.01	0.00	0.01
Total CO ₂	49.41	216.43	559.83	2,452.05	609.24	2,668.48
Total CO ₂ e	52.53	230.09	561.92	2,461.19	614.45	2,691.28

1,082 scf/hr

2.66 MMBtu/hr

2 MMscf/yr

2,779.79 MMBtu/vr

250 scf/hr

0.32 MMBtu/hr

Large GI	ycol Unit - M	ACT HH Check
# of Units	3	Limit
Flow per Dehy	10,655	85,000 SCF/Day
Renzene Emissions	0.22	1 ton/vr

Criteria Pollutant Emissions Combustion Device(s) b Emission Rate

(lb/hr)

0.90

0.01

0.01

0.00

0.00

Component

 NO_X

CO

SO₂ PM_{10}

PM_{2.5}

N₂O

H₂S

H2S molecular weight SO2 molecular weight

Molar Volume (scf/lbmol) Combustor Operating Hours

Efficiency C4+ Combustion Device Efficiency C3 Emission

Factor

7.60

98%

98% 34.08

64.06 379.484

8760

Emission

Factor Units

lb/MMBtu

lb/MMscf

0.2755 lb/MMBtu

7.60 lb/MMscf

0.00022 lb/MMBtu

Volumetric Flow

Heat Release (MMBtu/hr)

Uncontrolled stream properties determined via ProMax.

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM25 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H25 to SO2.

Flash tank emissions are routed back to inlet slug catcher.

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION ROAD EMISSIONS

Total Suspended Particle Emissions				
$E = k(sL/2)^a(W/3)^b$				
a	0.7			
b	0.45			
k	4.9			
Silt %	4.8			
Vehicle Weight (tons)	28			
E (lbs/VMT)	7.05			
Rain Days	70			
E-Annual (lbs/VMT)	5.70			
Truckloads per year	210			
Driving Distance Per Load (ft)	1000			
Annual Distance (miles)	40			
Control Efficiency - 15 MPH Limit	0.44			
Emissions (lbs/hr)	0.60			
Emissions (tpy)	0.06			

PM ₁₀ Emissions				
$E = k(sL/2)^a(W/3)^b$				
a	0.9			
b	0.45			
k	1.5			
Silt %	4.8			
Vehicle Weight (tons)	28			
E (lbs/VMT)	1.80			
Rain Days	70			
E-Annual (lbs/VMT)	1.45			
Truckloads per day	210			
Driving Distance Per Load (ft)	1000			
Annual Distance (miles)	40			
Control Efficiency - 15 MPH Limit	0.44			
Emissions (lbs/hr)	0.15			
Emissions (tpy)	0.02			

PM _{2.5} Emissions					
$E = k(sL/2)^a(W/3)^b$					
a	0.9				
b	0.45				
k	0.15				
Silt %	4.8				
Vehicle Weight (tons)	28				
E (lbs/VMT)	0.18				
Rain Days	70				
E-Annual (lbs/VMT)	0.15				
Truckloads per day	210				
Driving Distance Per Load (ft)	1000				
Annual Distance (miles)	40				
Control Efficiency - 15 MPH Limit	0.44				
Emissions (lbs/hr)	0.02				
Emissions (tpy)	0.00				

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2 AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

JAYHAWK COMPRESSOR STATION FUGITIVE EMISSIONS

FUGITIVE EMISSIONS CALCULATIONS

Operating Hours:	8760 hours/year
Emission Factor Source	Standard EFs - EPA-453/R-95-017 Table 2-4
Control Efficiency Source:	None
Emission Buffer (%):	0

Service	Component Type	Count	Emission Factor ount (lb/hr-source) ^a Control (9)	Control (%)b	Pollutant	Mass	Uncontrolled Emissions	Uncontrolled Emissions	Controlled Emissions	Controlled Emissions	
	component Type	Count	Table 2-4	Table 2-8	Control (70)		Fraction ^c	(lb/hr)	(tpy)	(lb/hr)	(tpy)
	Valves	720	9.92E-03	5.51E-05	0.0%	VOC	0.300	2.6726	11.7061	2.6726	11.7061
	Pump Seals	0	5.29E-03	7.72E-04	0.0%	H2S	0.000	0.0001	0.0004	0.0001	0.0004
	Connectors	1440	4.41E-04	2.20E-05	0.0%	Benzene	0.001	0.0045	0.0199	0.0045	0.0199
Gas	Flanges	720	8.60E-04	1.26E-05	0.0%	Toluene	0.001	0.0072	0.0316	0.0072	0.0316
GdS	Open-Ended Lines	72	4.41E-03	3.31E-05	0.0%	E-Benzene	0.000	0.0004	0.0020	0.0004	0.0020
	Other	10	1.94E-02	2.65E-04	0.0%	Xylenes	0.000	0.0041	0.0179	0.0041	0.0179
	Relief Valves	0	1.94E-02	2.65E-04	0.0%	n-Hexane	0.008	0.0742	0.3250	0.0742	0.3250
						2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	0	1.85E-05	1.85E-05	0.0%	VOC	0.978	0.0000	0.0000	0.0000	0.0000
	Pump Seals	0	0.00E+00	0.00E+00	0.0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	0	1.65E-05	1.65E-05	0.0%	Benzene	0.015	0.0000	0.0000	0.0000	0.0000
Heavy Oil	Flanges	0	8.60E-06	8.60E-07	0.0%	Toluene	0.005	0.0000	0.0000	0.0000	0.0000
rieavy Oii	Open-Ended Lines	0	3.09E-04	1.59E-05	0.0%	E-Benzene	0.012	0.0000	0.0000	0.0000	0.0000
	Other	0	3.09E-04	7.05E-05	0.0%	Xylenes	0.001	0.0000	0.0000	0.0000	0.0000
	Relief Valves	0	3.09E-04	7.05E-05	0.0%	n-Hexane	0.007	0.0000	0.0000	0.0000	0.0000
						2,2,4 Trimethylpentane	0.085	0.0000	0.0000	0.0000	0.0000
	Valves	236	5.51E-03	4.19E-05	0.0%	VOC	0.978	1.9625	8.5958	1.9625	8.5958
	Pump Seals	15	2.87E-02	1.12E-03	0.0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	472	4.63E-04	2.14E-05	0.0%	Benzene	0.015	0.0303	0.1327	0.0303	0.1327
11.14.01	Flanges	236	2.43E-04	5.29E-06	0.0%	Toluene	0.005	0.0100	0.0438	0.0100	0.0438
Light Oil	Open-Ended Lines	0	2.87E-03	3.09E-05	0.0%	E-Benzene	0.012	0.0242	0.1058	0.0242	0.1058
	Other	0	1.65E-02	2.43E-04	0.0%	Xylenes	0.001	0.0026	0.0112	0.0026	0.0112
	Relief Valves	0	1.65E-02	2.43E-04	0.0%	n-Hexane	0.007	0.0135	0.0593	0.0135	0.0593
						2,2,4 Trimethylpentane	0.085	0.1713	0.7502	0.1713	0.7502
	Valves	153	2.16E-04	2.14E-05	0.0%	VOC	0.978	0.2573	1.1272	0.2573	1.1272
	Pump Seals	10	5.29E-05	5.29E-05	0.0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	306	2.43E-04	2.20E-05	0.0%	Benzene	0.015	0.0040	0.0174	0.0040	0.0174
M /O:1	Flanges	153	6.39E-06	6.39E-06	0.0%	Toluene	0.005	0.0013	0.0057	0.0013	0.0057
Water/Oil	Open-Ended Lines	0	5.51E-04	7.72E-06	0.0%	E-Benzene	0.012	0.0032	0.0139	0.0032	0.0139
	Other	5	3.09E-02	1.30E-04	0.0%	Xylenes	0.001	0.0003	0.0015	0.0003	0.0015
	Relief Valves	0	3.09E-02	1.30E-04	0.0%	n-Hexane	0.007	0.0018	0.0078	0.0018	0.0078
						2,2,4 Trimethylpentane	0.085	0.0225	0.0984	0.0225	0.0984

Fugitive Emission Summary

Pollutant	Uncontroll	led Emissions	Controlled Emissions		
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
VOC	4.89	21.43	4.89	21.43	
HAPs	0.38	1.64	0.38	1.64	
H2S	0.00	0.00	0.00	0.00	
Benzene	0.04	0.17	0.04	0.17	
Toluene	0.02	0.08	0.02	0.08	
E-Benzene	0.03	0.12	0.03	0.12	
Xylenes	0.01	0.03	0.01	0.03	
n-Hexane	0.09	0.39	0.09	0.39	
2,2,4 Trimethylpentane	0.19	0.85	0.19	0.85	

Footnotes:

^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4

^bControl efficiencies are taken from EPA Document EPA-453/R-095-017, November 1995, Table 5-2

Gas/Vapor based inlet gas. Heavy Oil, Light Oil, and Water/Oil fugitives were based on liquid analysis of inlet separator hydrocarbon liquid.

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION FACILITY INLET GAS ANALYSIS - PROMAX

Gas Composition

Component	Mole %	Weight %
TEG	0.000	0.0000
Water	0.000	0.0000
Hydrogen Sulfide	0.001	0.0010
Carbon Dioxide	0.121	0.2330
Nitrogen	0.864	1.0580
Methane	73.632	51.6360
Ethane	12.988	17.0720
Propane	6.704	12.9230
Isobutane	0.949	2.4110
n-Butane	2.303	5.8510
Isopentane	0.551	1.7380
n-Pentane	0.664	2.0950
Other C-6's	0.482	1.8000
Heptanes	0.327	1.4200
Octanes	0.111	0.5390
Nonanes	0.032	0.1770
Benzene	0.015	0.0510
Toluene	0.020	0.0810
E-Benzene	0.001	0.0050
Xylenes	0.010	0.0460
n-Hexane	0.221	0.8330
2,2,4 Trimethylpentane	0.000	0.0000
Decanes Plus	0.005	0.0310
Decanes Plus Satellite	0.000	0.0000
Total	100.001	100.0010

MOLECULAR WEIGHT	22.88
SATURATED BTU	1371
NMHC (WT%)	47.073
VOCs (WT%)	30.00
HAPs (WT%)	1.02
H2S (MOL%)	0.00

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION FACILITY INLET FLUID ANALYSIS - PROMAX

Fluid Composition

Component	Mole %	Weight %
TEG	0.0000	0.0000
Water	0.0000	0.0000
Hydrogen Sulfide	0.0000	0.0000
Carbon Dioxide	0.0129	0.0075
Nitrogen	0.0167	0.0062
Methane	2.8473	0.6026
Ethane	3.9579	1.5701
Propane	8.4770	4.9315
Isobutane	3.2673	2.5054
n-Butane	12.1250	9.3186
Isopentane	8.1300	7.7386
n-Pentane	12.6670	12.0571
Other C-6's	7.9339	9.0203
Heptanes	17.1885	20.9987
Octanes	10.5388	14.6036
Nonanes	1.6426	2.7426
Benzene	0.7463	1.5099
Toluene	0.4833	0.4981
E-Benzene	0.9907	1.2043
Xylenes	0.0912	0.1277
n-Hexane	0.4815	0.6744
2,2,4 Trimethylpentane	7.5090	8.5370
Decanes Plus	0.8930	1.3457
Decanes Plus Satellite	0.0000	0.0000
Total	100.000	100.0000

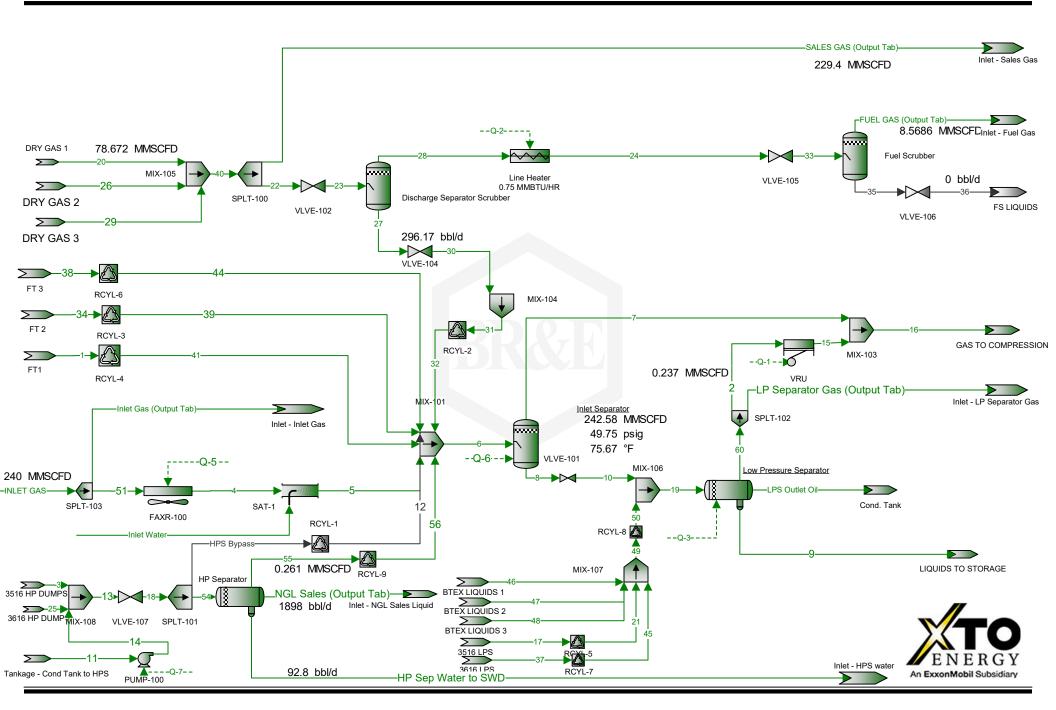
MOLECULAR WEIGHT	75.80
SATURATED BTU	
NMHC (WT%)	99.38
VOCs (WT%)	97.81
HAPs (WT%)	12.55
H2S (MOL%)	0.000

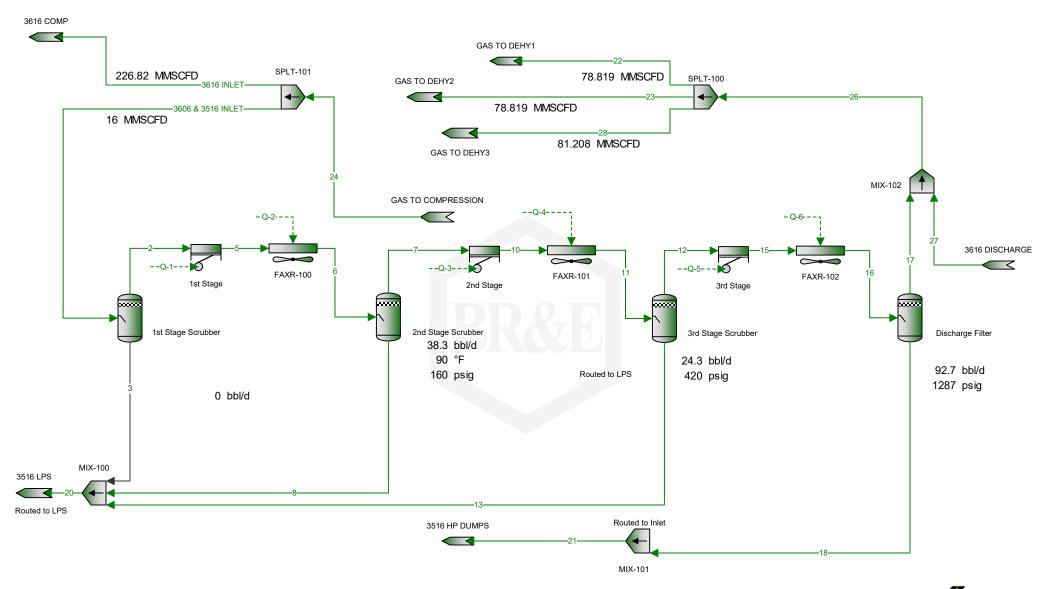
Tab 7 Section 7 - Information Used To Determine Emissions

Saved Date: 9/9/2020

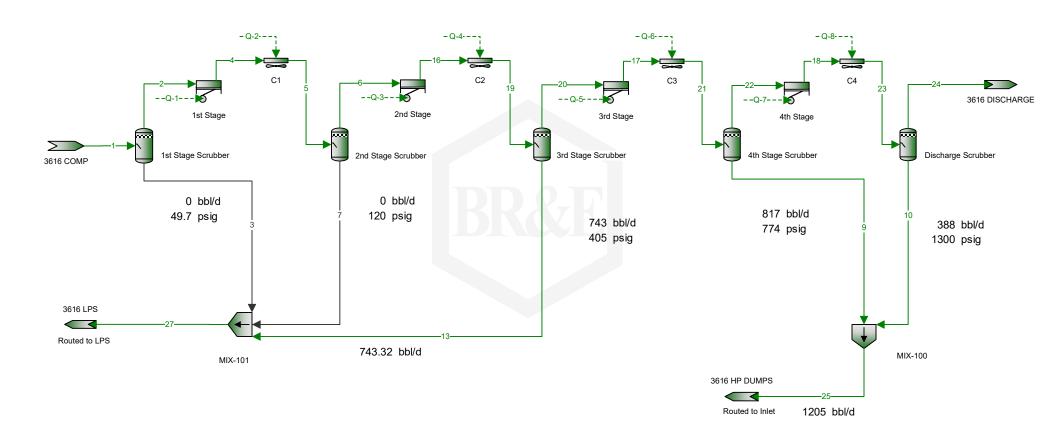
Section 7

Information Used To Determine Emissions

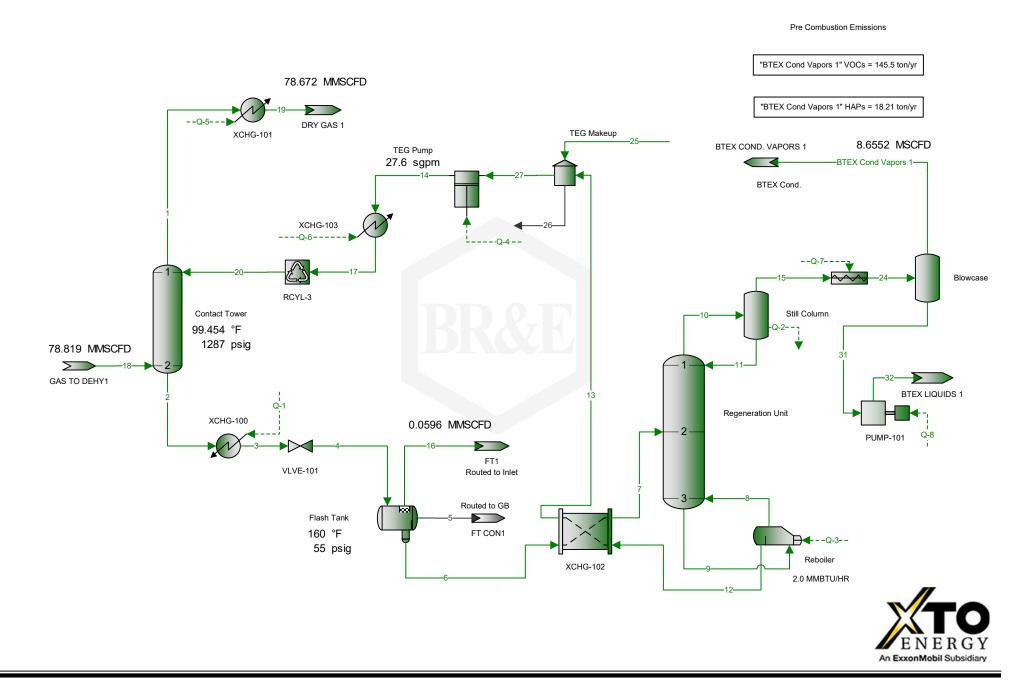

<u>Information Used to Determine Emissions</u> shall include the following:

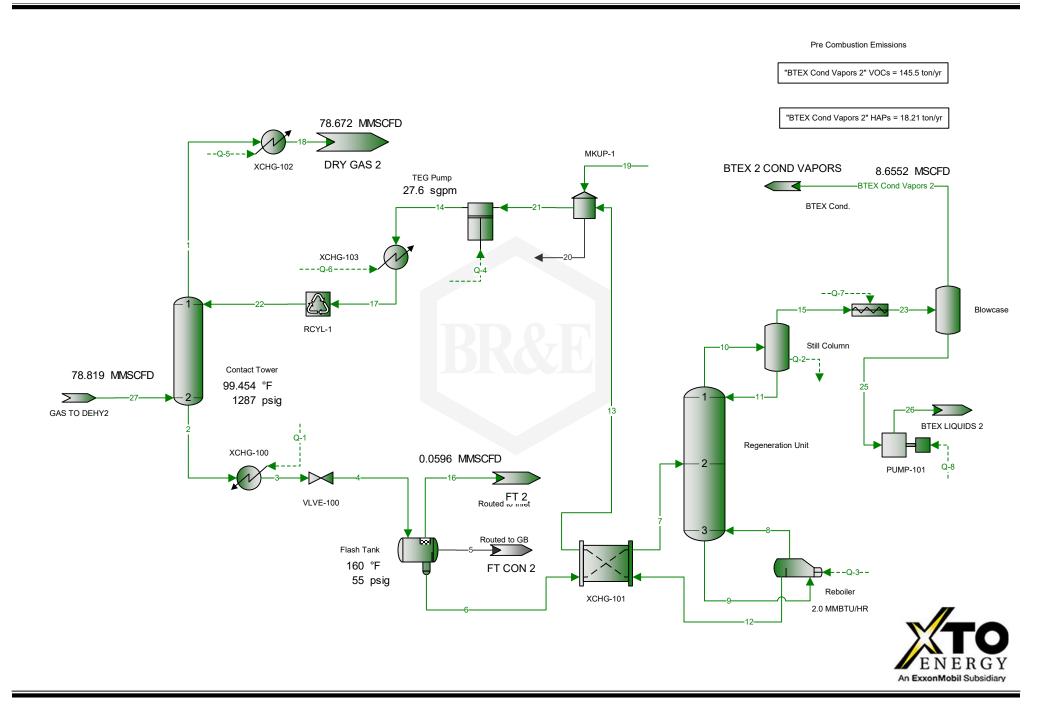

☑	If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
	If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
☑	If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
	If an older version of AP-42 is used, include a complete copy of the section. If an EPA document or other material is referenced, include a complete copy.
_	Fuel specifications sheet. If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)) accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

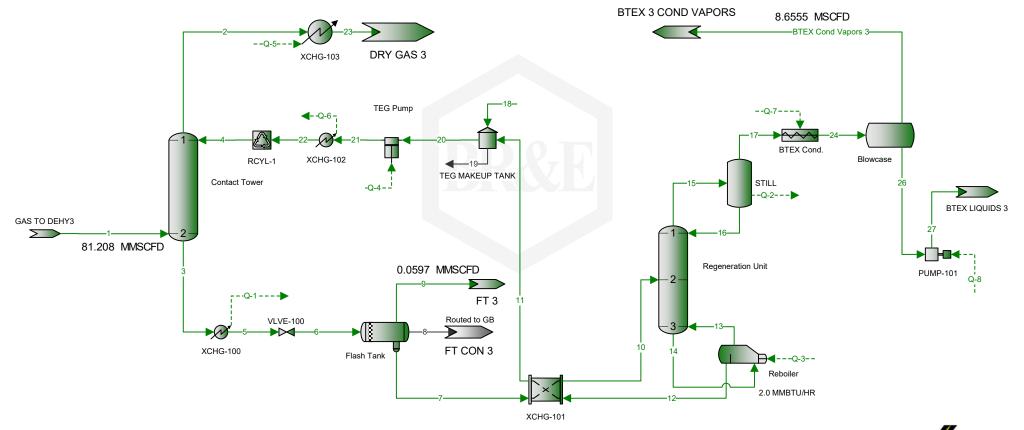
The Jayhawk Compressor Station gas inlet composition was obtained from the Muy Wano 18 Tank Battery Inlet Separator hydrocarbon gas sample. The Muy Wano 18 Tank Battery gas analysis is representative of the hydrocarbons from the surrounding wells and batteries. The sales gas composition from this battery was used as the inlet gas composition for the station in the ProMax process simulation.

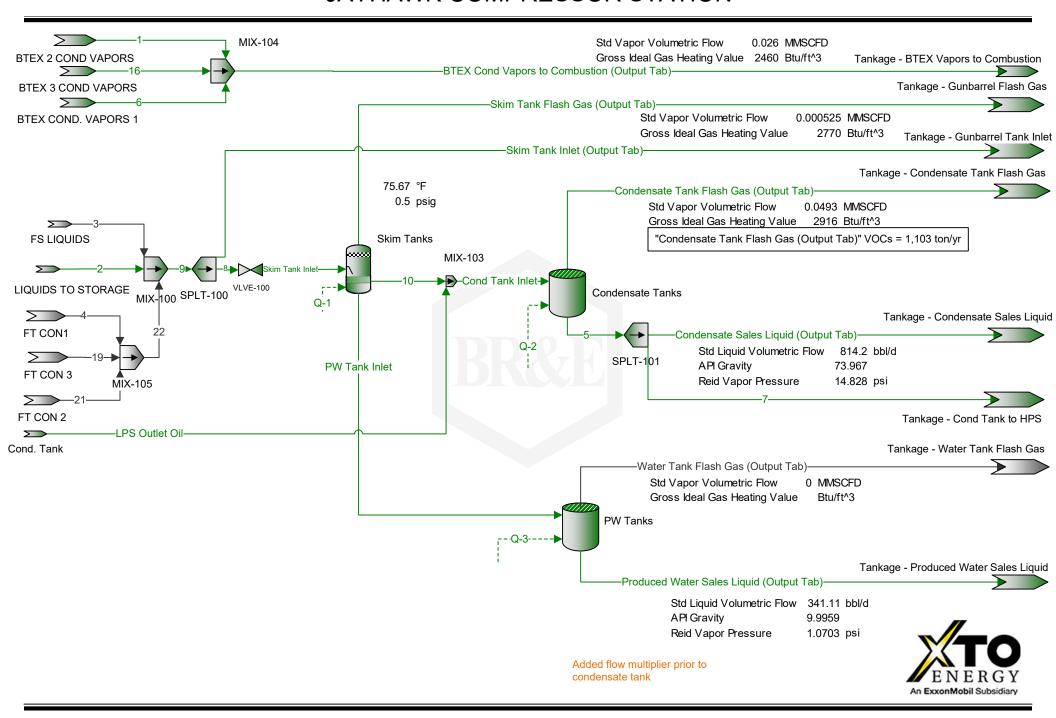

A liquid sample was taken from the Wolverine Compressor station Inlet Separator Hydrocarbon liquid sample was used for the decanes plus speciation in the ProMax process simulation.

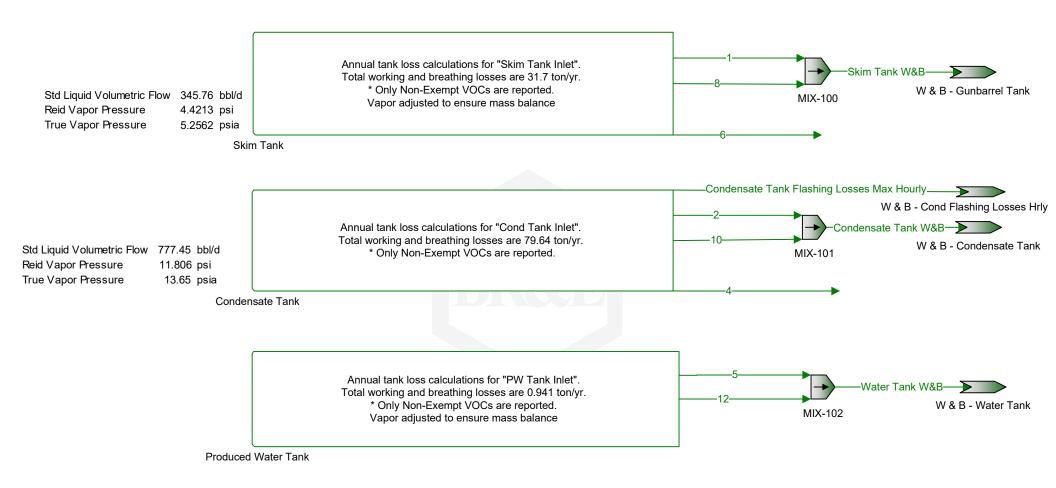
All supporting documentation is provided in this section.



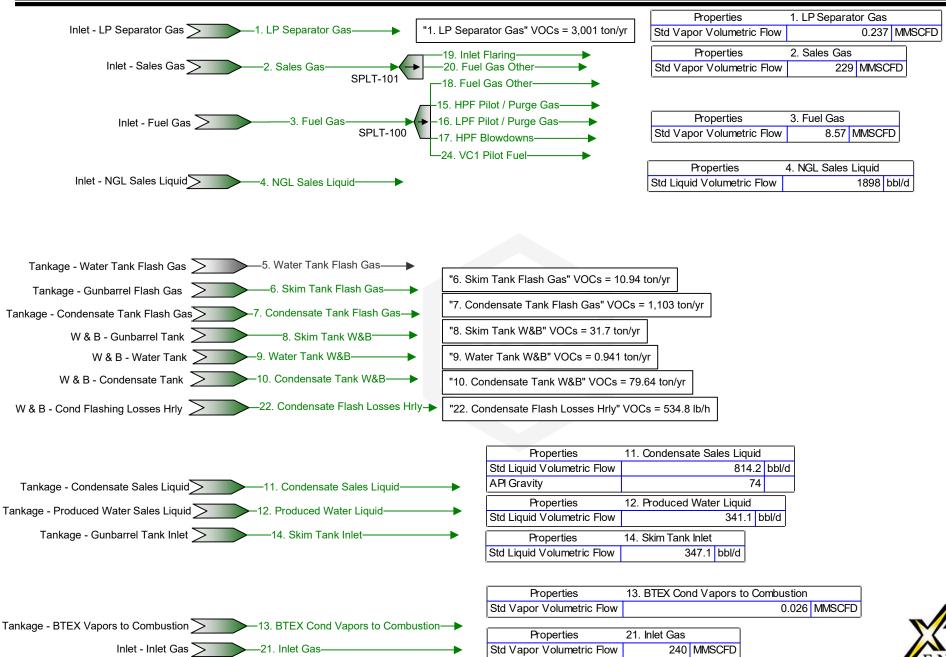





Pre Combustion Emissions


"BTEX Cond Vapors 3" VOCs = 145.4 ton/yr

"BTEX Cond Vapors 3" HAPs = 18.21 ton/yr



ENERGY An ExxonMobil Subsidiary

July 13, 2020 Page 9

Inlet - HPS water

—23. HPS Water to SWD——

DELAWARE DIVISION Client Name: Job: Jayhawk Compressor Station
Output Location: Flowsheet:

Connections

	1. LP	2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank		
	Separator Gas			Liquid	Flash Gas		
From Block	Inlet - LP	Inlet - Sales	Inlet - Fuel Gas	Inlet - NGL	Tankage -		
	Separator Gas	Gas		Sales Liquid	Water Tank		
					Flash Gas		
To Block		SPLT-101	SPLT-100				

Stream Composition

	1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas	
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	
Triethylene Glycol	2.37625E-08	3.22561	0.00440314	4.28295E-08		
Water	7.45215	18.4076	0.703934	3.21159		
Hydrogen Sulfide	0.0215286	8.48825	0.312073	0.0660887		
Carbon Dioxide	1.27446	1346.94	51.3005	4.37797		
Nitrogen	0.93287	6142.43	239.69	2.01282		
Methane	126.605	299577	11586.5	399.866		
Ethane	163.713	98694	3654.16	632.061		
Propane	252.436	74204.6	2513.69	1211.24		
Isobutane	63.245	13694	406.627	456.031		
n-Butane	165.6	32941.7	898.152	1521.54		
Isopentane	50.9199	9661.03	204.434	887.67		
n-Pentane	58.4506	11081.7	211.527	1279.22		
i-C6	45.7636	8966	110.123	2169.81		
i-C7	18.6612	4063.28	25.9636	2386.48		
Octane	5.43716	1225.46	2.82376	2667.63		
Nonane	0.874389	151.26	0.125044	1224.52		
Benzene	2.30013	209.647	2.30186	112.905		
Toluene	1.87123	233.133	1.17281	311.96		
Ethylbenzene	0.0512527	8.12908	0.0183593	25.2738		
o-Xylene	0.460731	65.4087	0.123331	274.284		
n-Hexane	19.0656	3915.53	38.7864	1249.82		
2,2,4-Trimethylpentane	0	0	0	0		
Decanes Plus	0.0363429	2.21742	0.000503746	279.402		
Decanes Plus Sat	0	0	0	0		

	1. LP	2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank
Mole Fraction	Separator Gas	%	%	Liquid %	Flash Gas %
					70
Triethylene Glycol	6.0769E-10	8.52759E-05	3.11649E-06	1.17031E-10	
Water	1.58862	0.00405662	0.00415324	0.0731522	
Hydrogen Sulfide	0.00242597	0.000988813	0.000973289	0.000795728	
Carbon Dioxide	0.111214	0.121509	0.1239	0.0408202	
Nitrogen	0.12789	0.870525	0.909452	0.029484	
Methane	30.3082	74.1386	76.7678	10.228	
Ethane	20.9095	13.031	12.9171	8.62557	
Propane	21.9855	6.68101	6.05916	11.2715	
Isobutane	4.17893	0.935396	0.743618	3.21959	
n-Butane	10.9421	2.25015	1.64249	10.7421	
Isopentane	2.71044	0.53162	0.301176	5.0486	
n-Pentane	3.11129	0.609797	0.311625	7.27551	
i-C6	2.03947	0.413069	0.135828	10.3321	
i-C7	0.715228	0.160993	0.0275413	9.77305	
Octane	0.182801	0.0425924	0.00262754	9.58295	
Nonane	0.0261825	0.00468226	0.00010363	3.91776	
Benzene	0.113088	0.0106556	0.00313226	0.593121	
Toluene	0.077995	0.0100455	0.00135296	1.38933	
Ethylbenzene	0.00185403	0.000303995	1.83811E-05	0.097687	
o-Xylene	0.0166666	0.00244603	0.000123477	1.06015	
n-Hexane	0.849663	0.180391	0.0478401	5.95129	
2,2,4-Trimethylpentane	0	0	0	0	

Job:

DELAWARE DIVISION Client Name: Jayhawk Compressor Station Location:

Flowsheet: Output

	1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Mole Fraction	%	%	%	%	%
Decanes Plus	0.000909861	5.73892E-05	3.49045E-07	0.747399	
Decanes Plus Sat	0	0	0	0	

	1. LP	2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank
	Separator Gas			Liquid	Flash Gas
Mass Fraction	. %	%	%	%	%
Triethylene Glycol	2.41202E-09	0.00056968	2.20724E-05	2.50474E-10	
Water	0.75643	0.003251	0.00352874	0.0187819	
Hydrogen Sulfide	0.00218526	0.00149912	0.00156439	0.000386498	
Carbon Dioxide	0.129364	0.237886	0.257163	0.0256031	
Nitrogen	0.094691	1.08483	1.20154	0.0117713	
Methane	12.851	52.9088	58.082	2.33849	
Ethane	16.6177	17.4305	18.3179	3.6964	
Propane	25.6236	13.1054	12.6008	7.08351	
Isobutane	6.41968	2.41852	2.03837	2.66695	
n-Butane	16.8092	5.8179	4.50233	8.89825	
Isopentane	5.16863	1.70625	1.0248	5.19124	
n-Pentane	5.93303	1.95716	1.06036	7.48107	
i-C6	4.64524	1.5835	0.552033	12.6894	
i-C7	1.89421	0.717624	0.130152	13.9565	
Octane	0.551899	0.216431	0.0141552	15.6007	
Nonane	0.0887549	0.0267142	0.000626833	7.16117	
Benzene	0.233475	0.0370262	0.011539	0.660285	
Toluene	0.189939	0.041174	0.00587918	1.8244	
Ethylbenzene	0.00520241	0.00143569	9.2033E-05	0.147805	
o-Xylene	0.0467665	0.011552	0.000618245	1.60406	
n-Hexane	1.93525	0.691528	0.194432	7.30913	
2,2,4-Trimethylpentane	0	0	0	0	
Decanes Plus	0.00368899	0.000391623	2.52522E-06	1.63399	
Decanes Plus Sat	0	0	0	0	

Stream Properties									
Property	Units	1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas			
Temperature	°F	75.7	93.2634	76.5751	94.2513				
Pressure	psig	15	1272	120	400	0.25			
Molecular Weight	lb/lbmo1	37.8349	22.4795	21.2035	70.1663				
Mass Flow	lb/h	985.173	566214	19948.6	17099.4	0			
Std Vapor Volumetric Flow	MMSCFD	0.237151	229.402	8.56858	2.21951	0			
Std Liquid Volumetric Flow	sgpm	4.19696	3145.36	114.762	55.3492	0			
API Gravity					90.3641				
Gross Ideal Gas Heating Value	Btu/ft^3	2154.4	1338.01	1269.3	3872.94				

Remarks

Process Streams Report All Streams

Tabulated by Total Phase

Job:

DELAWARE DIVISION Client Name: Jayhawk Compressor Station Location:

Flowsheet: Output

Connections

	6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
From Block	Tankage - Gunbarrel Flash Gas	Tankage - Condensate Tank Flash Gas	W & B - Gunbarrel Tank	W & B - Water Tank	W & B - Condensate Tank
To Block					

Stream Composition

	6. Skim Tank	7. Condensate	8. Skim Tank	9. Water Tank	10.		
	Flash Gas	Tank Flash	W&B	W&B	Condensate		
		Gas			Tank W&B		
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h		
Triethylene Glycol	1.05113E-10	9.89993E-09	3.35172E-10	3.50942E-10	5.18578E-13		
Water	0.0344037	0.685708	0.128969	0.128727	1.48305E-05		
Hydrogen Sulfide	8.67221E-05	0.00376113	0.000328176	0.00033994	0.000156105		
Carbon Dioxide	0.004085	0.101373	0.00808979	0.00583444	0.00415695		
Nitrogen	0.000266502	0.00858354	1.25307E-05	9.23318E-06	2.02214E-05		
Methane	0.0797425	4.02196	0.00905685	0.00566605	0.045702		
Ethane	0.251762	24.3092	0.0896923	0.0265713	1.51883		
Propane	0.678089	73.0639	0.673562	0.0503116	4.81968		
Isobutane	0.22913	23.5242	0.572777	0.0118203	1.62503		
n-Butane	0.654127	65.6254	2.39439	0.0442942	4.82784		
Isopentane	0.225636	21.8774	0.858766	0.0107872	1.65793		
n-Pentane	0.264221	25.4475	1.0121	0.00503188	1.93243		
i-C6	0.215024	20.4322	0.834406	0.00561285	1.64047		
i-C7	0.0886189	8.37174	0.34338	0.00158052	0.660169		
Octane	0.0256788	2.42189	0.0981846	0.000103378	0.170885		
Nonane	0.00414491	0.39021	0.0156978	1.70199E-05	0.0241421		
Benzene	0.0106819	1.02405	0.041327	0.0409704	0.0530051		
Toluene	0.00881074	0.835936	0.0339768	0.0338291	0.0446708		
Ethylbenzene	0.000241112	0.0228023	0.000920905	0.000917679	0.00124543		
o-Xylene	0.00216757	0.204988	0.00827137	0.00826299	0.00960647		
n-Hexane	0.0902174	8.54749	0.349857	0.00116802	0.714413		
2,2,4-Trimethylpentane	0	0	0	0	0		
Decanes Plus	0.000168879	0.0159356	0.00062722	0.000139556	0.000862324		
Decanes Plus Sat	0	0	0	0	0		

	6. Skim Tank	7. Condensate	8. Skim Tank	9. Water Tank	10.
	Flash Gas	Tank Flash	W&B	W&B	Condensate
		Gas			Tank W&B
Mole Fraction	%	%	%	%	%
Triethylene Glycol	1.21388E-09	1.21739E-09	1.825E-09	1.95962E-08	9.5811E-13
Water	3.3119	0.70289	5.8537	59.9177	0.000228406
Hydrogen Sulfide	0.00441298	0.00203796	0.00787378	0.083641	0.00127086
Carbon Dioxide	0.160975	0.0425368	0.150306	1.11168	0.0262073
Nitrogen	0.0164986	0.00565835	0.000365759	0.00276384	0.000200281
Methane	8.62049	4.62974	0.461629	2.96167	0.79042
Ethane	14.5206	14.9293	2.43906	7.41005	14.0147
Propane	26.6688	30.5982	12.4902	9.56755	30.3261
Isobutane	6.83681	7.47414	8.05807	1.70535	7.75734
n-Butane	19.5179	20.8506	33.6853	6.39047	23.0465
Isopentane	5.42366	5.59959	9.73269	1.25374	6.37576
n-Pentane	6.35113	6.51335	11.4705	0.584829	7.43136
i-C6	4.32729	4.37845	7.91737	0.54617	5.28175
i-C7	1.53378	1.54287	2.80211	0.132267	1.82798
Octane	0.389864	0.391533	0.702839	0.00758893	0.41507
Nonane	0.0560471	0.056184	0.100081	0.00111278	0.052227
Benzene	0.237161	0.2421	0.432618	4.39827	0.188276
Toluene	0.165838	0.167541	0.301528	3.07877	0.134517

Client Name: DELAWARE DIVISION Job: Jayhawk Compressor Station Location:

Flowsheet: Output

Mole Fraction	6. Skim Tank Flash Gas %	7. Condensate Tank Flash Gas %	8. Skim Tank W&B %	9. Water Tank W&B %	10. Condensate Tank W&B %
Ethylbenzene	0.00393867	0.0039663	0.00709285	0.0724832	0.00325484
o-Xylene	0.0354082	0.0356564	0.0637064	0.652655	0.0251059
n-Hexane	1.8156	1.83166	3.31967	0.113657	2.30017
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	0.00190925	0.00191837	0.00334335	0.00762869	0.00155969
Decanes Plus Sat	0	0	0	0	0

	6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mass Fraction	%	%	%	%	" ank was
Triethylene Glycol	3.66591E-09	3.52391E-09	4.48427E-09	9.1871E-08	2.62554E-12
Water	1.19986	0.24408	1.72547	33.6986	7.50861E-05
Hydrogen Sulfide	0.00302452	0.00133878	0.00439067	0.0889909	0.000790354
Carbon Dioxide	0.142468	0.036084	0.108233	1.52736	0.0210465
Nitrogen	0.00929453	0.00305533	0.000167648	0.0024171	0.00010238
Methane	2.7811	1.43163	0.121172	1.48328	0.231388
Ethane	8.78044	8.65291	1.19999	6.95594	7.68981
Propane	23.649	26.0073	9.01159	13.1708	24.4019
Isobutane	7.99114	8.37349	7.6632	3.09437	8.22747
n-Butane	22.8133	23.3595	32.0346	11.5955	24.4432
Isopentane	7.86928	7.78734	11.4894	2.82392	8.39407
n-Pentane	9.21497	9.05809	13.5409	1.31727	9.78383
i-C6	7.49916	7.27289	11.1635	1.46935	8.30562
i-C7	3.09067	2.97994	4.59408	0.413756	3.34241
Octane	0.895573	0.862078	1.31361	0.0270627	0.865182
Nonane	0.144558	0.138896	0.210021	0.00445554	0.122231
Benzene	0.37254	0.364514	0.552915	10.7254	0.268363
Toluene	0.307283	0.297554	0.454575	8.85591	0.226167
Ethylbenzene	0.00840901	0.00811653	0.0123208	0.240234	0.00630555
o-Xylene	0.0755961	0.0729662	0.110663	2.16312	0.0486372
n-Hexane	3.14642	3.0425	4.68074	0.305769	3.61705
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	0.00588982	0.00567233	0.00839158	0.0365334	0.00436592
Decanes Plus Sat	0	0	0	0	0

Stream Properties										
Property	Units	6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B				
Temperature	°F	75.67	75.67	82.0362	82.6855	78.6044				
Pressure	psig	0.5	0.25	-3.9673	-11.8056	0.0439129				
Molecular Weight	lb/lbmo1	49.7263	51.8796	61.1171	32.032	54.801				
Mass Flow	lb/h	2.8673	280.936	7.4744	0.381994	19.7513				
Std Vapor Volumetric Flow	MMSCFD	0.00052516	0.0493191	0.00111383	0.000108612	0.00328255				
Std Liquid Volumetric Flow	sgpm	0.0106263	1.0366	0.024787	0.00111847	0.0714192				
API Gravity										
Gross Ideal Gas Heating Value	Btu/ft^3	2769.57	2915.86	3346.32	1149.83	3080.19				

Remarks

DELAWARE DIVISION Client Name: Job: Jayhawk Compressor Station Location:

Flowsheet: Output

Connections

	Comicononia								
	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas				
From Block	Tankage - Condensate Sales Liquid	Tankage - Produced Water Sales Liquid	Tankage - BTEX Vapors to Combustion	Tankage - Gunbarrel Tank Inlet	SPLT-100				
To Block									

Stream Composition

	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
Mass Flow	lb/h	lb/h	Combustion lb/h	lb/h	lb/h
Triethylene Glycol	6.33307E-05	1.07682	3.11343E-08	1.07682	3.08322E-05
Water	0.170596	4975	1.46396	4975.04	0.00492918
Hydrogen Sulfide	0.00226551	0.000559356	0.119759	0.000680464	0.00218524
Carbon Dioxide	0.0208007	0.00862534	1.86983	0.0132616	0.359223
Nitrogen	0.00017029	1.36499E-05	0.01261	0.000283619	1.67839
Methane	0.29209	0.00837641	7.43021	0.0919205	81.1328
Ethane	11.4203	0.0392817	17.3237	0.36877	25.5877
Propane	122.333	0.0743783	30.0862	1.49888	17.6017
Isobutane	98.6614	0.0174746	5.29049	0.87855	2.84734
n-Butane	407.601	0.0654824	21.4663	3.3908	6.28916
Isopentane	335.495	0.0159473	8.37887	2.51756	1.43152
n-Pentane	518.971	0.00743889	11.5326	3.81717	1.48118
i-C6	1039	0.00829776	7.95601	7.41869	0.771116
i-C7	1347.49	0.00233657	2.33582	9.48463	0.181805
Octane	1840.94	0.000152829	0.242183	12.8911	0.0197729
Nonane	976.464	2.51614E-05	0.0121609	6.83122	0.000875601
Benzene	75.3806	0.149919	5.88284	0.679596	0.0161184
Toluene	214.168	0.0925825	2.92114	1.59148	0.00821242
Ethylbenzene	18.3062	0.00225858	0.0270334	0.130307	0.000128558
o-Xylene	203.647	0.0301824	0.282454	1.454	0.000863606
n-Hexane	632.092	0.00172674	3.23896	4.48253	0.271595
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	263.639	0.000206312	0.000157435	1.84393	3.52739E-06
Decanes Plus Sat	0	0	0	0	0

	11. Condensate Sales Liguid	12. Produced Water Liquid	13. BTEX Cond Vapors	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas		
	Sales Liquid		to Combustion				
Mole Fraction	%	%	%	%	%		
Triethylene Glycol	4.82495E-07	0.00259642	7.27194E-09	0.00259024	3.11649E-06		
Water	0.0108342	99.9942	2.8503	99.7571	0.00415324		
Hydrogen Sulfide	7.60547E-05	5.94292E-06	0.123254	7.21244E-06	0.000973289		
Carbon Dioxide	0.000540756	7.09664E-05	1.49025	0.000108853	0.1239		
Nitrogen	6.95492E-06	1.76435E-07	0.0157889	3.65727E-06	0.909452		
Methane	0.0208313	0.000189064	16.2455	0.0020698	76.7678		
Ethane	0.434539	0.000473035	20.2081	0.00443021	12.9171		
Propane	3.17407	0.000610764	23.9318	0.0122789	6.05916		
Isobutane	1.94212	0.000108865	3.19269	0.00546025	0.743618		
n-Butane	8.02349	0.000407948	12.9544	0.021074	1.64249		
Isopentane	5.32019	8.0035E-05	4.07342	0.0126049	0.301176		
n-Pentane	8.2297	3.73337E-05	5.60661	0.0191118	0.311625		
i-C6	13.7944	3.48659E-05	3.23829	0.031098	0.135828		
i-C7	15.3858	8.44354E-06	0.817649	0.0341926	0.0275413		
Octane	18.4389	4.84455E-07	0.0743657	0.0407663	0.00262754		

Client Name: DELAWARE DIVISION Job: Jayhawk Compressor Station Location:

Flowsheet: Output

Mala Francisco	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
Mole Fraction	%	, ,	%		%
Nonane	8.71067	7.10367E-08	0.00332577	0.0192403	0.00010363
Benzene	1.10411	0.000694964	2.64164	0.00314284	0.00313226
Toluene	2.6594	0.00036384	1.11203	0.00623948	0.00135296
Ethylbenzene	0.197281	7.70328E-06	0.00893145	0.000443378	1.83811E-05
o-Xylene	2.19465	0.000102942	0.093319	0.00494735	0.000123477
n-Hexane	8.39203	7.25549E-06	1.31833	0.0187901	0.0478401
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	1.96632	4.86992E-07	3.5998E-05	0.00434218	3.49045E-07
Decanes Plus Sat	0	0	0	0	0

	11.	12. Produced	13. BTEX	14. Skim Tank	15. HPF Pilot /
	Condensate	Water Liquid	Cond Vapors	Inlet	Purge Gas
	Sales Liquid		to		
			Combustion		
Mass Fraction	%	%	%	%	%
Triethylene Glycol	7.81272E-07	0.0216377	2.43478E-08	0.0213846	2.20724E-05
Water	0.00210454	99.9678	1.14485	98.7993	0.00352874
Hydrogen Sulfide	2.79483E-05	1.12397E-05	0.0936543	1.35133E-05	0.00156439
Carbon Dioxide	0.000256606	0.000173318	1.46225	0.000263363	0.257163
Nitrogen	2.10076E-06	2.74281E-07	0.00986132	5.63239E-06	1.20154
Methane	0.00360334	0.000168316	5.8106	0.00182545	58.082
Ethane	0.140886	0.000789328	13.5476	0.0073234	18.3179
Propane	1.50914	0.00149456	23.5281	0.0297662	12.6008
Isobutane	1.21713	0.000351134	4.13729	0.0174471	2.03837
n-Butane	5.02833	0.00131581	16.7872	0.0673378	4.50233
Isopentane	4.1388	0.000320445	6.55248	0.0499962	1.0248
n-Pentane	6.40223	0.000149477	9.01875	0.0758052	1.06036
i-C6	12.8175	0.000166736	6.2218	0.147328	0.552033
i-C7	16.6232	4.6951E-05	1.82667	0.188355	0.130152
Octane	22.7106	3.07095E-06	0.189393	0.256003	0.0141552
Nonane	12.046	5.05594E-07	0.00951008	0.135661	0.000626833
Benzene	0.929925	0.00301248	4.60052	0.0134961	0.011539
Toluene	2.64206	0.00186036	2.2844	0.0316052	0.00587918
Ethylbenzene	0.225832	4.53839E-05	0.0211408	0.00258776	9.2033E-05
o-Xylene	2.51226	0.000606485	0.220886	0.0288751	0.000618245
n-Hexane	7.79773	3.46972E-05	2.53294	0.0890185	0.194432
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	3.25235	4.14564E-06	0.000123118	0.0366186	2.52522E-06
Decanes Plus Sat	0	0	0	0	0

Stream Properties										
Property	Units	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas				
Temperature	°F	75.67	75.8095	70	75.7	76.5751				
Pressure	psig	0.25	0.25	0	15	120				
Molecular Weight	lb/lbmo1	92.7432	18.02	44.8521	18.1899	21.2035				
Mass Flow	lb/h	8106.1	4976.6	127.873	5035.5	139.687				
Std Vapor Volumetric Flow	MMSCFD	0.79604	2.51525	0.0259658	2.52125	0.06 *				
Std Liquid Volumetric Flow	sgpm	23.7476	9.94891	0.49092	10.1234	0.8036				
API Gravity		73.9665	9.99586		10.7657					
Gross Ideal Gas Heating Value	Btu/ft^3	5054.3	50.5119	2460.05	61.9959	1269.3				

Remarks

		Process Streams Re All Streams Tabulated by Total Phase		
Client Name:	DELAWARE DIVISION		Job:	
Location:	Jayhawk Compressor Station			
Flowsheet:	Output			

Job:

DELAWARE DIVISION Client Name: Jayhawk Compressor Station Location:

Flowsheet: Output

Connections

	16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other
From Block	SPLT-100	SPLT-100	SPLT-100	SPLT-101	SPLT-101
To Block					

Stream Composition

	16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other					
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h					
Triethylene Glycol	1.61869E-05	1.17356E-05	0.00653115	0.984264	2.24134					
Water	0.00258782	0.00187618	1.04414	5.61692	12.7907					
Hydrogen Sulfide	0.00114725	0.000831763	0.462897	2.59011	5.89814					
Carbon Dioxide	0.188592	0.13673	76.0938	411.007	935.936					
Nitrogen	0.881154	0.638841	355.531	1874.31	4268.12					
Methane	42.5947	30.8814	17186.3	91413.2	208164					
Ethane	13.4335	9.73938	5420.2	30115.6	68578.4					
Propane	9.24089	6.6997	3728.54	22642.9	51561.8					
Isobutane	1.49485	1.08378	603.147	4178.6	9515.41					
n-Butane	3.30181	2.39383	1332.22	10051.9	22889.9					
Isopentane	0.751546	0.544875	303.236	2947.97	6713.05					
n-Pentane	0.777619	0.563778	313.756	3381.48	7700.23					
i-C6	0.404836	0.293508	163.345	2735.89	6230.11					
i-C7	0.0954478	0.0692002	38.5116	1239.87	2823.41					
Octane	0.0103808	0.00752611	4.18846	373.938	851.523					
Nonane	0.000459691	0.000333278	0.185478	46.1555	105.104					
Benzene	0.00846215	0.00613511	3.41434	63.972	145.675					
Toluene	0.00431152	0.00312588	1.73963	71.1383	161.994					
Ethylbenzene	6.74929E-05	4.89327E-05	0.0272322	2.48051	5.64856					
o-Xylene	0.000453393	0.000328713	0.182937	19.9589	45.4499					
n-Hexane	0.142587	0.103377	57.5316	1194.79	2720.74					
2,2,4-Trimethylpentane	0	0	0	0	0					
Decanes Plus	1.85188E-06	1.34262E-06	0.000747203	0.676627	1.5408					
Decanes Plus Sat	0	0	0	0	0					

	16. LPF Pilot /	17. HPF	18. Fuel Gas	19. Inlet	20. Fuel Gas
Mole Fraction	Purge Gas %	Blowdowns %	Other %	Flaring %	Other %
Triethylene Glycol	3.11649E-06	3.11649E-06	3.11649E-06	8.52759E-05	8.52759E-05
Water	0.00415324	0.00415324	0.00415324	0.00405662	0.00405662
Hydrogen Sulfide	0.000973289	0.000973289	0.000413324	0.000403002	0.000403002
Carbon Dioxide	0.1239	0.1239	0.1239	0.121509	0.121509
Nitrogen	0.909452	0.909452	0.909452	0.870525	0.870525
Methane	76.7678	76.7678	76.7678	74.1386	74.1386
Ethane	12.9171	12.9171	12.9171	13.031	13.031
Propane	6.05916	6.05916	6.05916	6.68101	6.68101
Isobutane	0.743618	0.743618	0.743618	0.935396	0.935396
n-Butane	1.64249	1.64249	1.64249	2.25015	2.25015
Isopentane	0.301176	0.301176	0.301176	0.53162	0.53162
n-Pentane	0.311625	0.311625	0.311625	0.609797	0.609797
i-C6	0.135828	0.135828	0.135828	0.413069	0.413069
i-C7	0.0275413	0.0275413	0.0275413	0.160993	0.160993
Octane	0.00262754	0.00262754	0.00262754	0.0425924	0.0425924
Nonane	0.00010363	0.00010363	0.00010363	0.00468226	0.00468226
Benzene	0.00313226	0.00313226	0.00313226	0.0106556	0.0106556
Toluene	0.00135296	0.00135296	0.00135296	0.0100455	0.0100455
Ethylbenzene	1.83811E-05	1.83811E-05	1.83811E-05	0.000303995	0.000303995
o-Xylene	0.000123477	0.000123477	0.000123477	0.00244603	0.00244603
n-Hexane	0.0478401	0.0478401	0.0478401	0.180391	0.180391
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	3.49045E-07	3.49045E-07	3.49045E-07	5.73892E-05	5.73892E-05
Decanes Plus Sat	0	0	0	0	0

DELAWARE DIVISION Client Name: Job: Jayhawk Compressor Station Location:

Flowsheet: Output

	16. LPF Pilot /	17. HPF	18. Fuel Gas	19. Inlet	20. Fuel Gas
Mana Frantisu	Purge Gas	Blowdowns	Other %	Flaring	Other %
Mass Fraction	%	%		%	
Triethylene Glycol	2.20724E-05	2.20724E-05	2.20724E-05	0.00056968	0.00056968
Water	0.00352874	0.00352874	0.00352874	0.003251	0.003251
Hydrogen Sulfide	0.00156439	0.00156439	0.00156439	0.00149912	0.00149912
Carbon Dioxide	0.257163	0.257163	0.257163	0.237886	0.237886
Nitrogen	1.20154	1.20154	1.20154	1.08483	1.08483
Methane	58.082	58.082	58.082	52.9088	52.9088
Ethane	18.3179	18.3179	18.3179	17.4305	17.4305
Propane	12.6008	12.6008	12.6008	13.1054	13.1054
Isobutane	2.03837	2.03837	2.03837	2.41852	2.41852
n-Butane	4.50233	4.50233	4.50233	5.8179	5.8179
Isopentane	1.0248	1.0248	1.0248	1.70625	1.70625
n-Pentane	1.06036	1.06036	1.06036	1.95716	1.95716
i-C6	0.552033	0.552033	0.552033	1.5835	1.5835
i-C7	0.130152	0.130152	0.130152	0.717624	0.717624
Octane	0.0141552	0.0141552	0.0141552	0.216431	0.216431
Nonane	0.000626833	0.000626833	0.000626833	0.0267142	0.0267142
Benzene	0.011539	0.011539	0.011539	0.0370262	0.0370262
Toluene	0.00587918	0.00587918	0.00587918	0.041174	0.041174
Ethylbenzene	9.2033E-05	9.2033E-05	9.2033E-05	0.00143569	0.00143569
o-Xylene	0.000618245	0.000618245	0.000618245	0.011552	0.011552
n-Hexane	0.194432	0.194432	0.194432	0.691528	0.691528
2,2,4-Trimethylpentane	0	0	0	0	0
Decanes Plus	2.52522E-06	2.52522E-06	2.52522E-06	0.000391623	0.000391623
Decanes Plus Sat	0	0	0	0	0

Stream Properties										
Property	Units	16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other				
Temperature	°F	76.5751	76.5751	76.5751	93.2634	93.2634				
Pressure	psig	120	120	120	1272	1272				
Molecular Weight	lb/lbmo1	21.2035	21.2035	21.2035	22.4795	22.4795				
Mass Flow	lb/h	73.3355	53.1686	29589.6	172775	393439				
Std Vapor Volumetric Flow	MMSCFD	0.0315 *	0.0228377 *	12.7097	70 *	159.402				
Std Liquid Volumetric Flow	sgpm	0.42189	0.305873	170.226	959.779	2185.59				
API Gravity										
Gross Ideal Gas Heating Value	Btu/ft^3	1269.3	1269.3	1269.3	1338.01	1338.01				

Remarks

Simulation Initiated on 7/29/2020 4:06:32 PM Promax TV Stations - 3 Train NSR Jayhawk CS.pmx Page 10 of 11 **Process Streams Report** All Streams **Tabulated by Total Phase DELAWARE DIVISION** Client Name: Job: Location: Jayhawk Compressor Station Flowsheet: Output Connections 23. HPS 21. Inlet Gas 22. 24. VC1 Pilot Condensate Water to SWD Fuel Flash Losses Hrly W & B - Cond SPLT-100 From Block Inlet - Inlet Gas Inlet - HPS Flashing water Losses Hrly To Block Stream Composition 23. HPS 24. VC1 Pilot 21. Inlet Gas Condensate Water to SWD Fuel Flash Losses Hrly Mass Flow lb/h lb/h lb/h lb/h Triethylene Glycol 0 1.05542E-11 6.32885E-05 1.47995E-05 0.000371915 0.00236601 1350.9 Water 0 Hydrogen Sulfide 8.98948 0.00504789 0.000733058 0.00104892 Carbon Dioxide 1404.61 0.114158 0.0419495 0.172427 Nitrogen 6384.15 0.000752227 0.00410197 0.805626 Methane 311574 1.26894 0.513033 38.9438 103011 42.3671 0.199228 12.2821 Ethane Propane 77974.6 144.696 0.0815392 8.44881 Isobutane 14549 48.413 0.00802087 1.36672 35306.9 152.628 0.0276614 3.0188 n-Butane Isopentane 10676.2 50.5162 0.00443203 0.687127 60.1251 0.00235678 n-Pentane 12446 0.710966 i-C6 10956 24.3019 0.00211499 0.370136 i-C7 6078.94 26.5986 0.000458523 0.0872666 Octane 3344.42 4.91654 3.44751E-05 0.00949098 Nonane 1082.55 0.543479 3.89191E-06 0.000420289 Benzene 309.052 1.83996 0.027322 0.00773682 Toluene 486.065 1.52189 0.0178629 0.00394196 Ethylbenzene 28.003 0.044416 0.00040446 6.17077E-05 o-Xylene 280.03 0.300355 0.00538719 0.000414531 17.2603 0.000445207 5023.42 0.130366 n-Hexane 2,2,4-Trimethylpentane 0 1.06002 0 202.311 0.000358566 3.05808E-05 1.69315E-06 Decanes Plus Decanes Plus Sat 0 0 0 0

	21. Inlet Gas	22.	23. HPS	24. VC1 Pilot	•
Mole Fraction	%	Condensate Flash Losses Hrly %	Water to SWD	Fuel %	
Triethylene Glycol	76	6.62247E-13	5.61696E-07	3.11649E-06	
Water	0	0.002247E-13	99.9428	0.00415324	
Hydrogen Sulfide	0.00100096	0.00139568	2.86679E-05	0.000973289	
Carbon Dioxide	0.121116	0.0244426	0.00127042	0.1239	
Nitrogen	0.86483	0.000253029	0.000195162	0.909452	
Methane	73.7028	0.745348	0.0426229	76.7678	
Ethane	13.0005	13.2769	0.00883077	12.9171	
Propane	6.71044	30.9207	0.00246456	6.05916	
Isobutane	0.949912	7.84887	0.000183928	0.743618	
n-Butane	2.30521	24.7445	0.000634307	1.64249	
Isopentane	0.561539	6.59765	8.18732E-05	0.301176	
n-Pentane	0.654628	7.85262	4.3537E-05	0.311625	
i-C6	0.482463	2.65732	3.27109E-05	0.135828	
i-C7	0.230221	2.50133	6.09893E-06	0.0275413	
Octane	0.111107	0.405576	4.02253E-07	0.00262754	
Nonane	0.0320307	0.0399297	4.04442E-08	0.00010363	

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: DELAWARE DIVISION Job: Jayhawk Compressor Station Location: Flowsheet: Output

Mole Fraction	21. Inlet Gas	22. Condensate Flash Losses Hrly %	23. HPS Water to SWD	24. VC1 Pilot Fuel %	
Benzene	0.0150144	0.221963	0.000466191	0.00313226	
Toluene	0.0200192	0.155643	0.000258392	0.00135296	
Ethylbenzene	0.00100096	0.00394226	5.07764E-06	1.83811E-05	
o-Xylene	0.0100096	0.0266588	6.76316E-05	0.000123477	
n-Hexane	0.221212	1.88736	6.88568E-06	0.0478401	
2,2,4-Trimethylpentane	0	0.0874435	0	0	
Decanes Plus	0.0050048	2.20258E-05	2.657E-07	3.49045E-07	
Decanes Plus Sat	0	0	0	0	

	21. Inlet Gas	22.	23. HPS	24. VC1 Pilot	
		Condensate	Water to SWD	Fuel	
		Flash Losses			
		Hrly			
Mass Fraction	%	%	%	%	
Triethylene Glycol	0	1.82433E-12	4.68165E-06	2.20724E-05	
Water	0	6.42871E-05	99.9307	0.00352874	
Hydrogen Sulfide	0.00149544	0.00087255	5.42267E-05	0.00156439	
Carbon Dioxide	0.233663	0.0197327	0.00310314	0.257163	
Nitrogen	1.06203	0.000130026	0.000303436	1.20154	
Methane	51.8317	0.219342	0.0379507	58.082	
Ethane	17.1364	7.32333	0.0147375	18.3179	
Propane	12.9714	25.0113	0.00603172	12.6008	
Isobutane	2.42028	8.36839	0.00059333	2.03837	
n-Butane	5.87345	26.3823	0.0020462	4.50233	
Isopentane	1.77603	8.73194	0.000327851	1.0248	
n-Pentane	2.07045	10.3929	0.000174339	1.06036	
i-C6	1.82259	4.20068	0.000156452	0.552033	
i-C7	1.01126	4.59769	3.39184E-05	0.130152	
Octane	0.556359	0.849845	2.55023E-06	0.0141552	
Nonane	0.180087	0.0939427	2.87897E-07	0.000626833	
Benzene	0.0514122	0.318045	0.0020211	0.011539	
Toluene	0.080859	0.263065	0.00132138	0.00587918	
Ethylbenzene	0.00465842	0.00767749	2.99192E-05	9.2033E-05	
o-Xylene	0.0465842	0.0519176	0.000398508	0.000618245	
n-Hexane	0.835667	2.98352	3.29334E-05	0.194432	
2,2,4-Trimethylpentane	0	0.183229	0	0	
Decanes Plus	0.0336553	6.19796E-05	2.26216E-06	2.52522E-06	
Decanes Plus Sat	0	0	0	0	

Stream Properties						
Property	Units	21. Inlet Gas	22. Condensate Flash Losses Hrly	23. HPS Water to SWD	24. VC1 Pilot Fuel	
Temperature	°F	110	92.65	94.2513	76.5751	
Pressure	psig	124	6.06136	400	120	
Molecular Weight	lb/lbmo1	22.8118	54.5139	18.0175	21.2035	
Mass Flow	lb/h	601127	578.522	1351.84	67.0496	
Std Vapor Volumetric Flow	MMSCFD	240	0.0966534	0.683339	0.0288 *	
Std Liquid Volumetric Flow	sgpm	3309.52	2.09364	2.7058	0.385728	
API Gravity				10.0439		
Gross Ideal Gas Heating Value	Btu/ft^3	1355.71	3064.41	50.997	1269.3	

Remarks

	User Value Sets Report	
Client Name:	DELAWARE DIVISION Job:	
Location:	Jayhawk Compressor Station	
	Skim Tank	
	User Value [BlockReady]	
* Parameter	1 * Enforce Bounds	False
	User Value [ShellLength]	
* Parameter	30 ft * Enforce Bounds	False
	Hear Value [ChallDiam]	
* Parameter	User Value [ShellDiam] 15.5 ft * Enforce Bounds	False
1 diameter	10.0 It Enforce Bounds	1 830
	User Value [BreatherVP]	
* Parameter	0.03 psig * Enforce Bounds	False
	User Value [BreatherVacP]	
* Parameter	-0.03 psig * Enforce Bounds	False
* = C = .	User Value [DomeRadius]	
* Enforce Bounds	False	
	Hoor Volue [OnDress]	
* Parameter	User Value [OpPress] 0.25 psig * Enforce Bounds	False
i alametei	0.23 psig Elliote Boulds	i aise
	User Value [AvgPercentLiq]	
* Parameter	80 % * Enforce Bounds	False
	User Value [MaxPercentLiq]	
* Parameter	90 % * Enforce Bounds	False
* 5	User Value [MinPercentLiq]	
* Parameter	10 % * Enforce Bounds	False
	Hear Value [AnnNotTD]	
* Parameter	User Value [AnnNetTP] 347.202 bbl/day * Enforce Bounds	False
i didiliotoi	OTILEDE DOUING	1 4100
	User Value [OREff]	
* Enforce Bounds	False	
	User Value [MaxAvgT]	
* Parameter	75.8 °F * Enforce Bounds	False
	11 V-1 PAY A 773	
* Doromotor	User Value [MinAvgT] 47.6 °F * Enforce Bounds	Falsa
* Parameter	47.6 °F	False
	User Value [BulkLiqT]	
* Parameter	75.6428 °F	False
	User Value [AvgP]	
* Parameter	12.88 psia * Enforce Bounds	False
	User Value [Thermi]	
* Parameter	1722 Btu/ft^2/day * Enforce Bounds	False

	Harri Vallar Orda Barrad	
	User Value Sets Report	
Client Name:	DELAWARE DIVISION	Job:
Location:	Jayhawk Compressor Station	
	Hoon Value [AveW/indCneed]	
* Parameter	User Value [AvgWindSpeed] 8.7 mi/h	False
	User Value [MaxHourlyLoadingRate]	
* Enforce Bounds	False	
	User Value [SumLiqLevelInc]	
* Enforce Bounds	False	
	User Value [FlashingT]	
* Parameter	82.0362 °F * Enforce Bounds	False
	User Value [EntrainedOilFrac]	
* Parameter	1 % * Enforce Bounds	False
	User Value [TurnoverRate]	
* Parameter	78.5512 * Enforce Bounds	False
	User Value [LLossSatFactor]	
* Enforce Bounds	False	
	User Value [AtmPressure]	
* Parameter	12.88 psia * Enforce Bounds	False
	User Value [TVP]	
* Parameter	11.1351 psia * Enforce Bounds	False
	User Value [MaxVP]	
* Parameter	12.88 psia * Enforce Bounds	False
* D	User Value [MinVP]	5.1
* Parameter	9.59201 psia * Enforce Bounds	False
* Darameter	User Value [AvgLiqSurfaceT] 72.7396 °F	Foloo
* Parameter		False
* Parameter	User Value [MaxLiqSurfaceT] 82.0362 °F	False
raidilletel		Гаіъс
* Parameter	User Value [TotalLosses] 31.7035 ton/yr * Enforce Bounds	False
1 didiliotoi		i aisu
* Parameter	User Value [WorkingLosses] 12.6077 ton/yr	False
- Gramotol		raio
* Parameter	User Value [StandingLosses] 3.24402 ton/yr * Enforce Bounds	False
. S. Sillotoi		, and
* Parameter	User Value [RimSealLosses] 0 ton/yr * Enforce Bounds	False
	, in the second	. 5.00
* Parameter	User Value [WithdrawalLoss] 0 ton/yr * Enforce Bounds	False
	5 total.	

		User	Value Sets Report	
Client Name:	DELAWARE DIV			Job:
Location:	Jayhawk Compr	essor Station		
			, , , , , , , , , , , , , , , , , , ,	
* Parameter		User V 0 ton/yr	/alue [LoadingLosses]	False
Faiametei		O torryr	Efficice Boulius	r disc
		User Value	[MaxHourlyLoadingLoss]	
* Parameter		0 lb/hr	* Enforce Bounds	False
			oor Volue [DStor]	
* Enforce Bounds		False	ser Value [PStar]	
Emerco Beariae		T GIOG		
			alue [AllCTotalLosses]	
* Parameter		32.7379 ton/yr	* Enforce Bounds	False
		User Val	ue [AllCLoadingLosses]	
* Parameter		0 ton/yr	* Enforce Bounds	False
			e [AllCMaxHLoadingLoss]	
* Parameter		0 lb/hr	* Enforce Bounds	False
		User Valu	ue [AllCFlashingLosses]	
* Parameter		17.0612 ton/yr	* Enforce Bounds	False
			lue [DeckFittingLosses]	
* Parameter		0 ton/yr	* Enforce Bounds	False
		User Va	lue [DeckSeamLosses]	
* Parameter		0 ton/yr	* Enforce Bounds	False
* Parameter		15.2029 ton/yr	alue [FlashingLosses] * Enforce Bounds	False
1 arameter		13.2029 (01)/y1	Efficice Boulius	i disc
		User \	Value [TotalResidual]	
* Parameter		22005.7 ton/yr	* Enforce Bounds	False
		Hoor V	alua [CaaMalaWaight]	
* Parameter		0.0510921 kg/mol	alue [GasMoleWeight] * Enforce Bounds	False
			ue [VapReportableFrac]	
* Parameter		96.8406 %	* Enforce Bounds	False
		llser Va	lue [LiqReportableFrac]	
* Parameter		1.12322 %	* Enforce Bounds	False
			ue [FlashReportableFrac]	
* Parameter		89.108 %	* Enforce Bounds	False
Remarks This User Value Set	was programmat	ically generated. GUID={60	0FADE6C-8D03-40FF-A704-07DD6	E91075D}
			andanasta Tarila	
			Condensate Tank	
* Parameter		User 1	Value [BlockReady] * Enforce Bounds	False

			User Value	Sets Report		
Client Name: Location:	DELAWARE DIV Jayhawk Compre				Job:	
* Parameter		16		[ShellLength] * Enforce Bounds		False
Taramotor		10				Tuioc
* Parameter		15.5		* Enforce Bounds		False
Tarameter		10.0				T disc
* Parameter		0.03		[BreatherVP] * Enforce Bounds		False
Farameter						raise
* Doromotor				BreatherVacP] * Enforce Bounds		Folio
* Parameter		-0.03	psig	Eniorce Bounds		False
* [5.65]			User Value	[DomeRadius]		
* Enforce Bounds		False				
				e [OpPress]		
* Parameter		0.25	psig	* Enforce Bounds		False
			User Value [/	AvgPercentLiq]		
* Parameter		50	%	* Enforce Bounds		False
			User Value [l	MaxPercentLiq]		
* Parameter		90	%	* Enforce Bounds		False
			User Value [l	MinPercentLiq]		
* Parameter		10		* Enforce Bounds		False
			User Value	e [AnnNetTP]		
* Parameter		778.81	bbl/day	* Enforce Bounds		False
			User Val	ue [OREff]		
* Parameter		0	%	* Enforce Bounds		False
			llsar Valu	e [MaxAvgT]		
* Parameter		75.8	°F	* Enforce Bounds		False
			Hear Value	o [MinAvaT]		
* Parameter		47.6	°F	e [MinAvgT] * Enforce Bounds		False
			Hear Val	o [Dulk!:eT]		
* Parameter		68.8214		e [BulkLiqT] * Enforce Bounds		False
				L		
* Parameter		12.88	psia User Va	lue [AvgP] * Enforce Bounds		False
* Parameter		1722	User Value Btu/ft^2/day	we [Therml] * Enforce Bounds		False
						. 2022
* Parameter			<mark>User Value [<i>A</i> mi/h</mark>	vgWindSpeed] * Enforce Bounds		False
- Gramotol		0.1	,	Emoroc Bounds		7 4100

Client Name:	User Value Sets Report	Job:
Location:	Jayhawk Compressor Station	
* Parameter	User Value [MaxHourlyLoadingRate] 210 bbl/hr * Enforce Bounds	False
Parameter	210 bbl/fil Efficice Bourids	raise
	User Value [SumLiqLevelInc]	
* Enforce Bounds	False	
	User Value [FlashingT]	
* Parameter	92.65 °F * Enforce Bounds	False
	User Value [EntrainedOilFrac]	
* Parameter	1 % * Enforce Bounds	False
	Heavy Value (Town one Parts)	
* Parameter	User Value [TurnoverRate] 165.186	False
- Grameter		, 6,00
* 0	User Value [LLossSatFactor]	-
* Parameter	0.6 * Enforce Bounds	False
* Parameter	User Value [AtmPressure] 12.88 psia * Enforce Bounds	False
	User Value [TVP]	
* Parameter	9.13802 psia * Enforce Bounds	False
	User Value [MaxVP]	
* Parameter	10.6294 psia * Enforce Bounds	False
* Parameter	User Value [MinVP] 7.82126 psia * Enforce Bounds	False
1 didifficies	7.02 120 pala Enforce Bounds	1 4130
	User Value [AvgLiqSurfaceT]	
* Parameter	69.4251 °F * Enforce Bounds	False
	User Value [MaxLiqSurfaceT]	
* Parameter	78.6044 °F	False
	User Value [TotalLosses]	
* Parameter	79.6388 ton/yr * Enforce Bounds	False
* Parameter	User Value [WorkingLosses] 16.2044 ton/yr * Enforce Bounds	False
i didiliotol	10.20TT tolly! Lillolde Boullus	i dioc
	User Value [StandingLosses]	
* Parameter	3.7053 ton/yr * Enforce Bounds	False
	User Value [RimSealLosses]	
* Parameter	0 ton/yr * Enforce Bounds	False
	Hoor Value Mith drawell and	
* Parameter	User Value [WithdrawalLoss] 0 ton/yr * Enforce Bounds	False
		1 4100
	User Value [LoadingLosses]	
* Parameter	38.8844 ton/yr * Enforce Bounds	False

	User V	/alue Sets Report	
Client Name:	DELAWARE DIVISION		Job:
Location:	Jayhawk Compressor Station		
	User Value	[MaxHourlyLoadingLoss]	
* Parameter	57.4514 lb/hr	* Enforce Bounds	False
	Us	er Value [PStar]	
* Enforce Bounds	False		
		lue [AllCTotalLosses]	
* Parameter	86.5106 ton/yr	* Enforce Bounds	False
	Hear Valu	o [AllCl andingl acces]	
* Parameter	42.2396 ton/yr	e [AllCLoadingLosses] * Enforce Bounds	False
Farameter	42.2390 tollyyl	Efficice Bounds	raise
	User Value	[AllCMaxHLoadingLoss]	
* Parameter	62.4086 lb/hr	* Enforce Bounds	False
	User Valu	e [AllCFlashingLosses]	
* Parameter	2533.93 ton/yr	* Enforce Bounds	False
		ue [DeckFittingLosses]	
* Parameter	0 ton/yr	* Enforce Bounds	False
* D		ue [DeckSeamLosses]	File
* Parameter	0 ton/yr	* Enforce Bounds	False
	Hear Va	lue [FlashingLosses]	
* Parameter	2381.84 ton/yr	* Enforce Bounds	False
1 drameter	2001.04 1011/91	Ellioree Bouries	i disc
	User V	alue [TotalResidual]	
* Parameter	34114.8 ton/yr	* Enforce Bounds	False
	·		
	User Va	lue [GasMoleWeight]	
* Parameter	0.054801 kg/mol	* Enforce Bounds	False
* 5	User Valu	e [VapReportableFrac]	
* Parameter	92.0568 %	* Enforce Bounds	False
	Hoor Val-	io [LigPoportobleFree]	
* Parameter	99.9191 %	ue [LiqReportableFrac] * Enforce Bounds	False
i arameter	33.3131 70	Linoide Bounds	i aisc
	User Value	[FlashReportableFrac]	
* Parameter	93.998 %	* Enforce Bounds	False
Remarks This User Value Set	vas programmatically generated. GUID={AE	1B16B2-2B8A-47A4-8AEF-7E4BC	D819B7B}
		luced Water Tank	
	User \	/alue [BlockReady]	
* Parameter	1	* Enforce Bounds	False
		/alue [ShellLength]	
* Parameter	16 ft	* Enforce Bounds	False

	User Value Sets Report	
Client Name: Location:	DELAWARE DIVISION Jayhawk Compressor Station	lob:
	User Value [ShellDiam]	
* Parameter	15.5 ft * Enforce Bounds	False
	User Value [BreatherVP]	
* Parameter	0.03 psig * Enforce Bounds	False
	i g	
	User Value [BreatherVacP]	
* Parameter	-0.03 psig * Enforce Bounds	False
	User Value [DomeRadius]	
* Enforce Bounds	False	
* Parameter	User Value [OpPress] 0.25 psig * Enforce Bounds	False
Faiailietei	0.25 psig * Enforce Bounds	raise
	User Value [AvgPercentLiq]	
* Parameter	50 % * Enforce Bounds	False
	Hoor Volue [May Daysonthia]	
* Parameter	User Value [MaxPercentLiq] 90 % * Enforce Bounds	False
T dramotor	oc // Enrored Bearing	r dioo
	User Value [MinPercentLiq]	
* Parameter	10 % * Enforce Bounds	False
	User Value [AnnNetTP]	
* Parameter	341.738 bbl/day * Enforce Bounds	False
	User Value [OREff]	
* Parameter	0 % * Enforce Bounds	False
	User Value [MaxAvgT]	
* Parameter	75.8 °F * Enforce Bounds	False
* Parameter	User Value [MinAvgT] 47.6 °F * Enforce Bounds	False
гаганнецен	47.0 F Elliote bounds	raise
	User Value [BulkLiqT]	
* Parameter	75.67 °F * Enforce Bounds	False
	Hoor Volue [AvaD]	
* Parameter	User Value [AvgP] 12.88 psia * Enforce Bounds	False
	. 2.00 para Emoras Barrido	. 4155
	User Value [Therml]	
* Parameter	1722 Btu/ft^2/day * Enforce Bounds	False
	User Value [AvgWindSpeed]	
* Parameter	8.7 mi/h * Enforce Bounds	False
	User Value [MaxHourlyLoadingRate]	
* Parameter	210 bbl/hr * Enforce Bounds	False

	User Value Sets Report	
Client Name:	DELAWARE DIVISION Job:	
Location:	Jayhawk Compressor Station	
	User Value [SumLiqLevelInc]	
* Enforce Bounds	False	
	U V I ISI U T	
* Parameter	User Value [FlashingT] 82.6855 °F * Enforce Bounds	False
Falameter	02.0033 F Efficice Boulius	raise
	User Value [EntrainedOilFrac]	
* Parameter	1 % * Enforce Bounds	False
* Parameter	User Value [TurnoverRate] 144.966	Ealas
Parameter	144.900 Efficice Bourids	False
	User Value [LLossSatFactor]	
* Parameter	0.6 * Enforce Bounds	False
* 5	User Value [AtmPressure]	
* Parameter	12.88 psia * Enforce Bounds	False
	User Value [TVP]	
* Parameter	12.8672 psia * Enforce Bounds	False
	User Value [MaxVP]	
* Parameter	14.4348 psia * Enforce Bounds	False
	User Value [MinVP]	
* Parameter	11.3779 psia * Enforce Bounds	False
	User Value [AvgLiqSurfaceT]	
* Parameter	73.5062 °F * Enforce Bounds	False
	Lloss Volus [Movl in CurfoseT]	
* Parameter	User Value [MaxLiqSurfaceT] 82.6855 °F	False
	2210000 1 21110110 20111110	. 5.150
	User Value [TotalLosses]	
* Parameter	0.941029 ton/yr * Enforce Bounds	False
	How Value (Marking) access	
* Parameter	User Value [WorkingLosses] 0.378072 ton/yr	False
1 didiliotoi	0.070072 tony)1	1 disc
	User Value [StandingLosses]	
* Parameter	0.0924424 ton/yr * Enforce Bounds	False
	Heavy Value ID's Coull account	
* Parameter	User Value [RimSealLosses] 0 ton/yr	False
i aiaiiiciei	o torryr Efficice bounds	i aisc
	User Value [WithdrawalLoss]	
* Parameter	0 ton/yr * Enforce Bounds	False
* Doromot-	User Value [LoadingLosses] 0.450142 ton/yr	Falsa
* Parameter	0.450142 ton/yr * Enforce Bounds	False
	User Value [MaxHourlyLoadingLoss]	
* Parameter	1.5157 lb/hr	False
	· · · · · · · · · · · · · · · · · · ·	

			lue Sets Report		
Client Name:	DELAWARE DIV			Job:	
Location:	Jayhawk Compr	essor Station			
		User	Value [PStar]		
* Enforce Bounds		False			
			e [AllCTotalLosses]		
* Parameter		1.67313 ton/yr	* Enforce Bounds		False
		Heer Value	[AllCl andingl access		
* Parameter		0.800346 ton/yr	[AllCLoadingLosses] * Enforce Bounds		False
Faiametei		0.800340 tollyl	Enlorce Bounds		raise
		User Value [A	IICMaxHLoadingLoss]		
* Parameter		2.69489 lb/hr	* Enforce Bounds		False
		User Value [[AllCFlashingLosses]		
* Parameter		0 ton/yr	* Enforce Bounds		False
			[DeckFittingLosses]		
* Parameter		0 ton/yr	* Enforce Bounds		False
		Hear Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	* Enforce Bounds		False
1 didilictor		o tornyi	Emore Bounds		T dioc
		User Value	e [FlashingLosses]		
* Parameter		0 ton/yr	* Enforce Bounds		False
			ue [TotalResidual]		
* Parameter		21795.8 ton/yr	* Enforce Bounds		False
* Danamatan			e [GasMoleWeight] * Enforce Bounds		Falsa
* Parameter		0.0497059 kg/mol	Enforce Bounds		False
		Hear Value	[VapReportableFrac]		
* Parameter		56.2435 %	* Enforce Bounds		False
		5012 100			7 505 5
		User Value	[LiqReportableFrac]		
* Parameter		0.0310499 %	* Enforce Bounds		False
			FlashReportableFrac]		
* Parameter		0 %	* Enforce Bounds		False
Domorko					
Remarks This User Value Set	This User Value Set was programmatically generated. GUID={A8E03E5F-3B81-409B-BA33-BC864AC8215C}				

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc.

22777 Springswoods Village Pkwy., W4.6B.345

Spring, Texas 77389

Sample: Muy Wano 18 Tank Battery

Inlet Separator

Spot Gas Sample @ 124 psig & 110 °F

Date Sampled: 12/17/2019 Job Number: 193997.011

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.864	
Carbon Dioxide	0.121	
Methane	73.632	
Ethane	12.988	3.558
Propane	6.704	1.892
Isobutane	0.949	0.318
n-Butane	2.303	0.744
2-2 Dimethylpropane	0.010	0.004
Isopentane	0.551	0.206
n-Pentane	0.654	0.243
Hexanes	0.513	0.216
Heptanes Plus	<u>0.711</u>	0.302
Totals	100.000	7.484

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.402	(Air=1)
Molecular Weight	98.09	
Gross Heating Value	5217	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.793	(Air=1)
Compressibility (Z)	0.9955	
Molecular Weight	22.88	
Gross Heating Value		
Dry Basis	1394	BTU/CF
Saturated Basis	1371	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377)

Results: 0.038 Gr/100 CF, 0.6 PPMV or <0.0001 Mol%

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (24) DF Certified: FESCO, Ltd. - Alice, Texas

Analyst: LPJ Processor: RG Cylinder ID: T-5881

David Dannhaus 361-661-7015

FESCO, Ltd. Job Number: 193997.011

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001	O		< 0.001
Nitrogen	0.864			1.058
Carbon Dioxide	0.121			0.233
Methane	73.632			51.636
Ethane	12.988	3.558		17.072
Propane	6.704	1.892		12.923
Isobutane	0.949	0.318		2.411
n-Butane	2.303	0.744		5.851
2,2 Dimethylpropane	0.010	0.004		0.032
Isopentane	0.551	0.206		1.738
n-Pentane	0.654	0.243		2.063
2,2 Dimethylbutane	0.004	0.003		0.030
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.045	0.000		0.170
2 Methylpentane	0.156	0.066		0.588
3 Methylpentane	0.083	0.035		0.313
n-Hexane	0.221	0.093		0.833
Methylcyclopentane	0.088	0.033		0.324
Benzene	0.015	0.004		0.051
Cyclohexane	0.102	0.004		0.375
2-Methylhexane	0.032	0.030		0.140
3-Methylhexane	0.032	0.013		0.140
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.088	0.000		0.382
n-Heptane	0.076	0.036		0.333
Methylcyclohexane	0.070	0.030		0.333
Toluene	0.020	0.040		0.410
Other C8's	0.020	0.007		0.419
n-Octane	0.024	0.041		0.413
Ethylbenzene	0.001	0.000		0.005
M & P Xylenes	0.001	0.000		0.003
O-Xylene	0.000	0.003		0.007
Other C9's	0.027	0.001		0.149
n-Nonane	0.005	0.003		0.028
Other C10's	0.004	0.003		0.025
n-Decane	0.004	0.002		0.023
Undecanes (11)	0.000	0.000		0.000
Totals	100.000	7.484		100.000
Totals	100.000	7.404		100.000
Computed Real Charact	eristics of Total Sample	e		
			(Air=1)	
			(/ 11 1)	
Gross Heating Value		22.00		
Dry Basis		- 1394	BTU/CF	
Saturated Basis		- 1371	BTU/CF	
Galurated Dasis		10/1	510/01	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Muy Wano 18 Tank Battery Inlet Separator

Spot Gas Sample @ 124 psig & 110 °F

Date Sampled: 12/17/2019 Job Number: 193997.011

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.121		0.233
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.864		1.058
Methane	73.632		51.636
Ethane	12.988	3.558	17.072
Propane	6.704	1.892	12.923
Isobutane	0.949	0.318	2.411
n-Butane	2.313	0.748	5.883
Isopentane	0.551	0.206	1.738
n-Pentane	0.654	0.243	2.063
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.221	0.093	0.833
Cyclohexane	0.102	0.036	0.375
Other C6's	0.292	0.123	1.101
Heptanes	0.318	0.137	1.328
Methylcyclohexane	0.097	0.040	0.416
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.015	0.004	0.051
Toluene	0.020	0.007	0.081
Ethylbenzene	0.001	0.000	0.005
Xylenes	0.010	0.004	0.046
Octanes Plus	<u>0.148</u>	0.074	0.747
Totals	100.000	7.484	100.000

Real Characteristics O	f Octanes Plus:
------------------------	-----------------

Specific Gravity	4.004	(Air=1)
Molecular Weight	115.46	
Gross Heating Value	6049	BTU/CF

Real Characteristics Of Total Sample: Specific Gravity -----

tour oriaruotoriotico or rotar ourispici		
Specific Gravity	0.793	(Air=1)
Compressibility (Z)	0.9955	
Molecular Weight	22.88	
Gross Heating Value		
Dry Basis	1394	BTU/CF
Saturated Basis	1371	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345

Spring, Texas 77389

Sample: Wolverine Compressor Station Inlet Separator Hydrocarbon Liquid Sampled @ 100 psig & 61 °F

Date Sampled: 12/17/19 Job Number: 193998.012

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.017	0.005	0.006
Carbon Dioxide	0.013	0.006	0.008
Methane	2.847	1.310	0.603
Ethane	3.958	2.874	1.570
Propane	8.477	6.341	4.931
Isobutane	3.267	2.903	2.505
n-Butane	12.011	10.281	9.210
2,2 Dimethylpropane	0.114	0.119	0.109
Isopentane	8.130	8.073	7.739
n-Pentane	12.667	12.467	12.057
2,2 Dimethylbutane	0.157	0.178	0.179
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.947	1.054	1.077
2 Methylpentane	4.348	4.900	4.943
3 Methylpentane	2.482	2.751	2.821
n-Hexane	7.509	8.384	8.537
Heptanes Plus	<u>33.056</u>	<u>38.355</u>	43.705
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.7431	(Water=1
°API Gravity	58.92	@ 60°F
Molecular Weight	100.2	
Vapor Volume	22.95	CF/Gal
Weight	6.19	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6521	(Water=1)
°API Gravity	85.48	@ 60°F
Molecular Weight	75.8	
Vapor Volume	26.62	CF/Gal
Weight	5.43	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (24) DF Analyst: RR Processor: RLdjv Cylinder ID: W-1544

David Dannhaus 361-661-7015

FESCO, Ltd. Job Number: 193998.012

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.013	0.006	0.008
Nitrogen	0.017	0.005	0.006
Methane	2.847	1.310	0.603
Ethane	3.958	2.874	1.570
Propane	8.477	6.341	4.931
Isobutane	3.267	2.903	2.505
n-Butane	12.125	10.400	9.319
Isopentane	8.130	8.073	7.739
n-Pentane	12.667	12.467	12.057
Other C-6's	7.934	8.883	9.020
Heptanes	17.188	18.903	20.999
Octanes	10.539	12.691	14.604
Nonanes	1.643	2.375	2.743
Decanes Plus	0.746	1.256	1.510
Benzene	0.483	0.367	0.498
Toluene	0.991	0.901	1.204
E-Benzene	0.091	0.096	0.128
Xylenes	0.481	0.505	0.674
n-Hexane	7.509	8.384	8.537
2,2,4 Trimethylpentane	0.893	<u>1.260</u>	<u>1.346</u>
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.6521	(Water=1)
°API Gravity	85.48	@ 60°F
Molecular Weight	75.8	
Vapor Volume	26.62	CF/Gal
Weight	5.43	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7837	(Water=1)
Molecular Weight	153.4	

Characteristics of Atmospheric Sample:

°API Gravity		@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	15.83	psi

QUALITY CONTROL CHECK			
	Sampling		
	Conditions	Test S	Samples
Cylinder Number		W-1544*	
Pressure, PSIG	100	110	
Temperature, °F	61	61	

^{*} Sample used for analysis

TOTAL EXTENDED REPORT - GPA 2186-M

FESCO, Ltd.

COMPONENT	Mol %	LiqVol %	Wt %
		•	
Nitrogen	0.017	0.005	0.006
Carbon Dioxide	0.013	0.006	0.008
Methane	2.847	1.310	0.603
Ethane	3.958	2.874	1.570
Propane	8.477	6.341	4.931
Isobutane	3.267	2.903	2.505
n-Butane	12.011	10.281	9.210
2,2 Dimethylpropane	0.114	0.119	0.109
Isopentane	8.130	8.073	7.739
n-Pentane	12.667	12.467	12.057
2,2 Dimethylbutane	0.157	0.178	0.179
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.947	1.054	1.077
2 Methylpentane	4.348	4.900	4.943
3 Methylpentane	2.482	2.751	2.821
n-Hexane	7.509	8.384	8.537
Methylcyclopentane	3.546	3.407	3.937
Benzene	0.483	0.367	0.498
Cyclohexane	4.466	4.128	4.958
2-Methylhexane	1.797	2.268	2.375
3-Methylhexane	1.575	1.964	2.083
2,2,4 Trimethylpentane	0.893	1.260	1.346
Other C-7's	2.140	2.545	2.800
n-Heptane	3.665	4.591	4.845
Methylcyclohexane	4.915	5.364	6.366
Toluene	0.991	0.901	1.204
Other C-8's	4.505	5.771	6.551
n-Octane	1.119	1.556	1.686
E-Benzene	0.091	0.096	0.128
M & P Xylenes	0.393	0.413	0.550
O-Xylene	0.089	0.092	0.125
Other C-9's	1.383	1.979	2.304
n-Nonane	0.259	0.396	0.438
Other C-10's	0.442	0.696	0.825
n-decane	0.058	0.096	0.108
Undecanes(11)	0.142	0.229	0.275
Dodecanes(12)	0.044	0.077	0.094
Tridecanes(13)	0.020	0.037	0.045
Tetradecanes(14)	0.006	0.013	0.016
Pentadecanes(15)	0.004	0.008	0.010
Hexadecanes(16)	0.002	0.005	0.006
Heptadecanes(17)	0.002	0.005	0.006
Octadecanes(18)	0.000	0.000	0.000
Nonadecanes(19)	0.000	0.001	0.002
Eicosanes(20)	0.001	0.004	0.005
Heneicosanes(21)	0.001	0.002	0.003
Docosanes(22)	0.002	0.002	0.002
Tricosanes(23)	0.002	0.007	0.009
• •			
Tetracosanes(24) Pentacosanes(25)	0.003	0.009	0.013
` ,	0.001	0.004 0.015	0.006
Hexacosanes(26)	0.004		0.020
Heptacosanes(27)	0.003	0.012	0.016
Octacosanes(28)	0.007	0.025	0.034
Nonacosanes(29)	0.003	0.011	0.015
Triacontanes (30)	0.000	0.000	0.000
Hentriacontanes Plus(31+)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Total	100.000	100.000	100.000

Tab 8 Section 8 - Map(s)

ITEM 2 - ECD - 60" Combustor 57.6 MCF/D Max - skid package with blowcase

Combustor details

Combustor:

p/n ECD60STD

• Dimensions 60"D x 13'

• Atmospheric MAWP

Atmospheric MAWP6.1 MMBTU/HR

Plumbing: • Stainless Steel Jets

per ARC config • Flamecell

• 34"L x 41"W Burner

Concrete pad:

p/n n/a

• 3" Wenco Flame Arrestor
• 3" NPT Inlet Connection

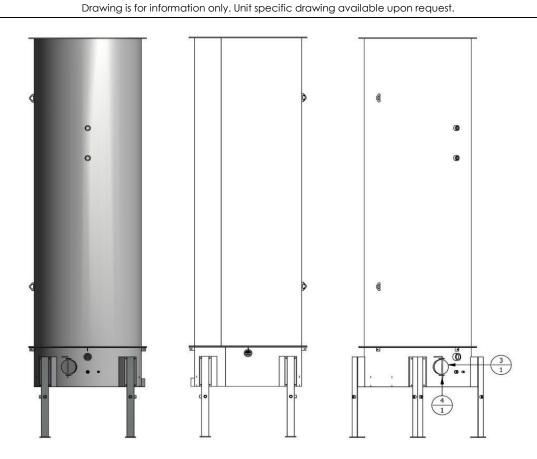
• 1/4" Fisher 67CR-206 Pilot Regulator

BMS p/n: • Installed on a 6' x 10' skid, with (1) 24"x48" knockout drum, (1) 10.75"x36" blowcase, (1) 1" Kimray Direct acting, (1) 1"

p/n 148392 Kimray Reverse acting, (1)Kimray CUA Level Control, fully assembled and plumbed

• Paint color: Black

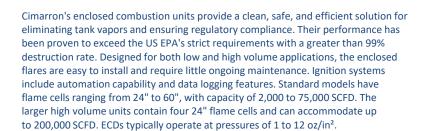
• ARCTM PREMIER BMS Package includes: smart auto-ignition, CLS I, DIV II (pending), Modbus RTU over RS-485, Advanced Datalogging, Premier combustion Kit: Includes (2) 1/4" 0.55W ASCO Solenoid Valves, 1/4" 0-5 PSI Transducer, (1) Dual Process Type K Thermocouple w/ Thermowell, no solar package, shipped loose


Item 2 Description		Price Each
ECD - 60" Combustor 57.6 MCF/D Max w/ skid package with blowcase		\$27,760
		\$25,817
ARC™ PREMIER BMS Package	1+	\$4,112

Terms/Delivery

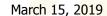
Subject to Prior Sale / 7-8 weeks ARO, Ex Works Mfg Facility: Evans, CO, based on availability at time of quote.

Availability will be confirmed after receipt of Purchase Order.


Expediting 1-3 business days - 15% upcharge; 4-10 business days - 5% upcharge

EPA CERTIFIED

ENCLOSED COMBUSTORS



DESIGN FEATURES AND OPTIONS

- Five Models Manufacturer Performance Tested as per NSPS OOOO §60.5413(d)
- Demonstrated VOC Destruction Efficiency >99%
- Eliminates the requirement for in-field testing to demonstrate continous compliance.
- Solar powered BMS and data logging functions
- Cimarron actuator package for low flow and flameout shutdown
- Drip tank for free liquid removal
- Blowcase skids and modular package options available
- User friendly and easy to install

XTO Energy 3104 E Greene St. Carlsbad, NM 88220

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation

The Tornado Combustion Technologies Inc. (TCTI) designed two (2) separate dual air assisted flare systems for XTO Energy Midstream Operations Compressor Facilities designed with a maximum buildout design flowrate of 100 to 180 MMSCFD, as per XTO Energy/Select Engineering Flare Specification 1332-SP-P-013 (XTO Energy/Select Engineering Project No.: 1332) on February 20, 2018 (TCTI Design Reference No.: TOR0218 Rev. 0).

The first flare has a 30-inch outer diameter air tip, 22-inch outer diameter annular low pressure air assisted waste gas tip for continuous flaring operations, and 20-inch outer diameter high pressure waste gas tip for facility emergency relieving cases. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 140-feet tall. To date TCTI has provided One (1) flare of this design to XTO Energy Midstream Operations Compressor Facilities, under the following job number:

14170 (16495).

This flare design is intended to operate such that:

- i) The maximum high pressure emergency flow rate does not exceed a maximum flow rate of 59,767,069 SCFD, and a maximum net heat release of 6,069,175,258.85 BTU/h; and,
- ii) The maximum low pressure intermittent flow rate does not exceed a maximum flow rate of 952,833 SCFD, a maximum continuous flowrate of 124,363 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of 104,435,128.72 BTU/h. For more detailed information please refer to the enclosed design datasheets.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

• TCTI has been designed the flare so each riser of the dual flare system will operate independently. Thus the calculated 40 CFR 60.18 maximum exit velocity for the high pressure non-assisted flare is 391.39 ft/s, 377.63 ft/s and 400 ft/s, for the winter and summer heavy, and winter and summer rich and lean cases respectfully, and low pressure air assisted flare is 170.85 ft/s, 258.33 ft/s, 220.10 ft/s, 146.38 ft/s, 248.24 ft/s and 219.78 ft/s, for the winter and summer heavy, rich and lean cases respectfully, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the flare as determined by paragraph (f)(4) in 40 CFR 60.18, are 364.15 ft/s, 348.57 ft/s, 356.60 ft/s, 367.91 ft/s, 366.37 ft/s, and 372.10 ft/s, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare is 11.05 ft/s, 41.31 ft/s, 7.79 ft/s, 18.71 ft/s, 27.39 ft/s and 17.56 ft/s, for the winter and summer heavy, rich and lean cases respectfully. As can be seen the actual exit velocity of each low pressure air assisted flare is within the requirements of 40 CFR 60.18. The high pressure air assisted flare's exit velocity although greater than the requirements of 40 CFR

60.18, is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as all cases presented to TCTI for the high pressure air assisted flare have been presented as emergency cases, that are not representative of the flare's performance;

- The calculated lower heating value of the waste gas for the high pressure non-assisted flare are 992.73 BTU/SCF, 1,233.19 BTU/SCF, 1,262.23 BTU/SCF, 979.52 BTU/SCF, 1,222.20 BTU/SCF, and 1,287.62 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare are 1,641.36 BTU/SCF, 2,650.44 BTU/SCF, 742.52 BTU/SCF, 1,926.09 BTU/SCF, 2,965.73 BTU/SCF, and 1,658.18 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for both a non-assisted and an air assisted flare, as the heating value of the waste gas is greater than 200 BTU/SCF and 300 BTU/SCF, respectfully;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;
- Tornado has designed the flare to modulate the air flow based upon the waste gas flow rate to the flare
 for the cases presented which are not considered startup, shutdown, or malfunction as per 40 CFR
 60.8(c). By doing this in conjunction with proper flare tuning, the flare's air blower cannot introduce too
 much air into the jet exit stream thus lowering the destruction efficiency of the flare by quenching
 mechanisms.

The second flare has a 30-inch outer diameter air tip, 22.5-inch outer diameter annular low pressure air assisted waste gas tip for continuous flaring operations, and 21-inch outer diameter high pressure waste gas tip for facility emergency relieving cases. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 145-feet tall. To date TCTI has provided eleven (11) flares of this design to XTO Energy Midstream Operations Compressor Facilities, under the following job numbers:

- 14274;
- 14275;
- 14276;
- 14277A;
- 14277B;
- 14278A;
- 14278B;
- 14287;
- 14318;
- 14319A;
- 14319B.

This flare design is intended to operate such that:

- i) The maximum high pressure emergency flow rate does not exceed a maximum flow rate of 70,000,000 SCFD, and a maximum net heat release of 7,108,300,193 BTU/h; and,
- ii) The maximum low pressure intermittent flow rate does not exceed a maximum flow rate of 952,833 SCFD, a maximum continuous flowrate of 124,363 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of 104,435,128.72 BTU/h. For more detailed information please refer to the enclosed design datasheets.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

• XTO0218R0-145FT.

Thus either the above provided TCTI job numbers or above model number can be used to relate back to this design and the intended operating parameters of the flare system design.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

- TCTI has been designed the flare so each riser of the dual flare system will operate independently. Thus the calculated 40 CFR 60.18 maximum exit velocity for the high pressure non-assisted flare is 391.39 ft/s, 377.63 ft/s and 400 ft/s, for the winter and summer heavy, and winter and summer rich and lean cases respectfully, and low pressure air assisted flare is 170.85 ft/s, 258.33 ft/s, 220.10 ft/s, 146.38 ft/s, 248.24 ft/s and 219.78 ft/s, for the winter and summer heavy, rich and lean cases respectfully, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the flare as determined by paragraph (f)(4) in 40 CFR 60.18, are 415.42 ft/s, 400.47 ft/s, 409.91 ft/s, 420.94 ft/s, 420.19 ft/s, and 426.12 ft/s, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare is 11.05 ft/s, 41.31 ft/s, 7.79 ft/s, 18.71 ft/s, 27.39 ft/s and 17.56 ft/s, for the winter and summer heavy, rich and lean cases respectfully. As can be seen the actual exit velocity of each low pressure air assisted flare is within the requirements of 40 CFR 60.18. The high pressure air assisted flare's exit velocity although greater than the requirements of 40 CFR 60.18, is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as all cases presented to TCTI for the high pressure air assisted flare have been presented as emergency cases, that are not representative of the flare's performance;
- The calculated lower heating value of the waste gas for the high pressure non-assisted flare are 992.73 BTU/SCF, 1,233.19 BTU/SCF, 1,262.23 BTU/SCF, 979.52 BTU/SCF, 1,222.20 BTU/SCF, and 1,287.62 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare are 1,641.36 BTU/SCF, 2,650.44 BTU/SCF, 742.52 BTU/SCF, 1,926.09 BTU/SCF, 2,965.73 BTU/SCF, and 1,658.18 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for both a non-assisted and an air assisted flare, as the heating value of the waste gas is greater than 200 BTU/SCF and 300 BTU/SCF, respectfully;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;
- Tornado has designed the flare to modulate the air flow based upon the waste gas flow rate to the flare
 for the cases presented which are not considered startup, shutdown, or malfunction as per 40 CFR
 60.8(c). By doing this in conjunction with proper flare tuning, the flare's air blower cannot introduce too
 much air into the jet exit stream thus lowering the destruction efficiency of the flare by quenching
 mechanisms.

With both flares being designed to operate as described above the Tornado Combustion Technologies Inc. flare system has been designed to operate in compliance with 40 CFR 60.18. As per EPA studies EPA-600/2-83-052, EPA-600/2-86-080, and EPA-600/2-85-106 meeting the criteria of 40 CFR 60.18 will attain a minimum Destruction Removal Efficiency (DRE) of 98% for hydrocarbon compounds.

XTO Energy has advised that the site under consideration does not need to meet the requirements of 40 CFR 60 Subpart OOOO and only the general requirements must be adhered.

Regards,

Brian Herrler, P.Eng Combustion Engineering

Tornado Combustion Technologies Inc.

200 – 261200 Wagon Wheel Way Municipal District of Rocky View, Alberta T4A 0E3

Phone: (403) 244-3333 Direct: (403) 567-2223 Mobile: (403) 669-3400

Email: bherrler@tornadotech.com

Cc:(4) Gene Kazmir, General Manager USA, Tornado Combustion Technologies Inc;

Cliff Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Bryce Thomas, Flare Manager, Tornado Combustion Technologies Inc; Ian Burge, Combustion Engineering, Tornado Combustion Technologies Inc.

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

CATERPILLAR®

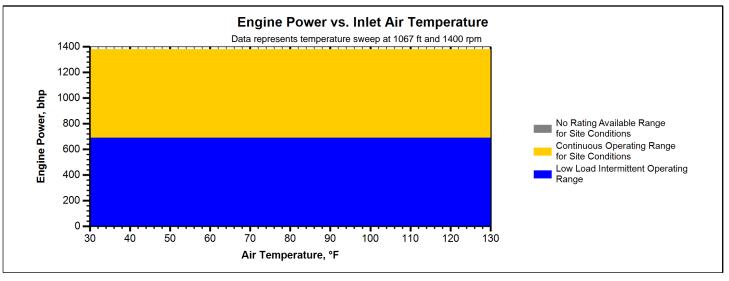
GAS COMPRESSION APPLICATION

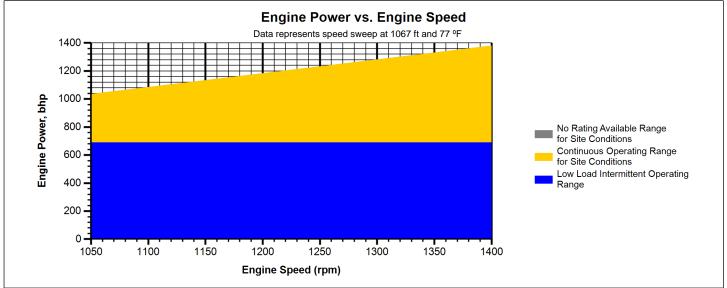
NOx EMISSION LEVEL (g/bhp-hr NOx):

SET POINT TIMING:

0.5

ENGINE SPEED (rpm): 1400 RATING STRATEGY: **STANDARD** COMPRESSION RATIO: FUEL SYSTEM: CAT WIDE RANGE 8 AFTERCOOLER TYPE: WITH AIR FUEL RATIO CONTROL SCAC SITE CONDITIONS: AFTERCOOLER - STAGE 2 INLET (°F): 130 FUEL: AFTERCOOLER - STAGE 1 INLET (°F): 201 7.0-40.0 FUEL PRESSURE RANGE(psig): (See note 1) JACKET WATER OUTLET (°F): 210 FUEL METHANE NUMBER: 48.1 ASPIRATION: TA 1126 FUEL LHV (Btu/scf): COOLING SYSTEM: JW+OC+1AC, 2AC 1067 ALTITUDE(ft): CONTROL SYSTEM: ADEM3 77 INLET AIR TEMPERATURE(°F): **EXHAUST MANIFOLD:** ASWC 1380 bhp@1400rpm STANDARD RATED POWER: COMBUSTION: LOW EMISSION


				MAXIMUM RATING		TING AT M IR TEMPER	
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE			°F	77	77	77	77
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	7344	7344	7709	8286
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	8095	8095	8497	9133
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	3130	3130	2392	1642
AIR FLOW	(WET)	(4)(5)	lb/hr	13879	13879	10606	7283
FUEL FLOW (60°F, 14.7 psia)			scfm	150	150	118	85
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	87.9	87.9	69.9	48.1
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	837	837	835	892
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(8)(5)	ft3/min	8108	8108	6197	4453
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	14383	14383	11002	7567
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
CO		(9)(10)	g/bhp-hr	2.55	2.55	2.56	2.47
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	3.77	3.77	3.68	3.47
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	1.52	1.52	1.49	1.41
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.91	0.91	0.89	0.84
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.36	0.36	0.34	0.33
CO2		(9)(10)	g/bhp-hr	502	502	525	568
EXHAUST OXYGEN		(9)(12)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	36153	36153	31130	25945
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	4370	4370	3763	3136
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	7839	7839	5810	1168
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	5064	5064	4393	2761
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)		(14)(15)	Btu/min	53243			
TOTAL AFTERCOOLER CIRCUIT (2AC)		(14)(15)	Btu/min	5317			
A cooling system safety factor of 0% has been added to the cooling sys	stem sizing criteria						


CONDITIONS AND DEFINITIONS


Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

Note:

At site conditions of 1067 ft and 77°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

GAS COMPRESSION APPLICATION

NOTES:

- 1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.
- 2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.
- 3. Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site ambient temperature.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.
- 10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 11. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.
- 13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

GAS COMPRESSION APPLICATION

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	
Methane	CH4	78.0190	78.0190	Unit of Measure:	English
Ethane	C2H6	10.6670	10.6670		
Propane	C3H8	4.8170	4.8170	Calculated Fuel Properties	
Isobutane	iso-C4H10	0.5560	0.5560	Caterpillar Methane Number:	48.1
Norbutane	nor-C4H10	1.4030	1.4030		
Isopentane	iso-C5H12	0.3190	0.3190	Lower Heating Value (Btu/scf):	1126
Norpentane	nor-C5H12	0.3610	0.3610	Higher Heating Value (Btu/scf):	1241
Hexane	C6H14	0.3720	0.3720	WOBBE Index (Btu/scf):	1313
Heptane	C7H16	0.5440	0.5440		
Nitrogen	N2	2.0010	2.0010	THC: Free Inert Ratio:	32.99
Carbon Dioxide	CO2	0.9410	0.9410	Total % Inerts (% N2, CO2, He):	2.942%
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Monoxide	CO	0.0000	0.0000	,	
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	0.996
Oxygen	O2	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.68
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.87
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	0.736
Octane	C8H18	0.0000	0.0000	, , , , , , , , , , , , , , , , , , , ,	
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.285
Ethylene	C2H4	0.0000	0.0000	r del eposito riodi ridite (i.i).	55
Propylene	C3H6 _	0.0000	0.0000		
TOTAL (Volume %)	_	100.0000	100.0000		

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

G3616

SET POINT TIMING:

GAS ENGINE SITE SPECIFIC TECHNICAL DATA **Jayhawk Compressor Station 3616**

CATERPILLAR®

58.0-70.3

48.1

1126

3502

77

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): 1000 RATING STRATEGY: **STANDARD** COMPRESSION RATIO: 7.6 FUEL SYSTEM: GAV AFTERCOOLER TYPE: SCAC WITH AIR FUEL RATIO CONTROL SITE CONDITIONS: AFTERCOOLER - STAGE 2 INLET (°F): 130 BEU DI 4 Bat Inlet Sep Gas

FUEL: AFTERCOOLER - STAGE 1 INLET (°F): 174 FUEL PRESSURE RANGE(psig): (See note 1) JACKET WATER OUTLET (°F): 190 FUEL METHANE NUMBER: ASPIRATION: TA FUEL LHV (Btu/scf): JW+1AC, OC+2AC COOLING SYSTEM: ALTITUDE(ft): CONTROL SYSTEM: ADEM4 INLET AIR TEMPERATURE(°F):

EXHAUST MANIFOLD: DRY STANDARD RATED POWER: 5000 bhp@1000rpm COMBUSTION: LOW EMISSION NOx EMISSION LEVEL (g/bhp-hr NOx): 0.3

MAXIMUM SITE RATING AT MAXIMUM **RATING INLET AIR TEMPERATURE RATING NOTES** LOAD 100% 100% 75% 50% **ENGINE POWER** (WITHOUT FAN) 5000 5000 3750 2500 (2)INLET AIR TEMPERATURE 77 77 77 77 **ENGINE DATA** FUEL CONSUMPTION (LHV) Btu/bhp-hr 6783 6783 6951 7415 (3)FUEL CONSUMPTION (HHV) (3) Btu/bhp-hr 7476 7476 7661 8173 (WET) AIR FLOW (@inlet air temp, 14.7 psia) (4)(5)ft3/min 12542 12542 9468 6445 AIR FLOW (WET) lb/hr 55614 55614 41981 28579 (4)(5)FUEL FLOW (60°F, 14.7 psia) 502 502 386 274 scfm INLET MANIFOLD PRESSURE in Hg(abs) (6) 108.6 108.6 81.1 56.6 **EXHAUST TEMPERATURE - ENGINE OUTLET** 805 (7) ٥F 805 851 916 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(5)ft3/min 31404 31404 24582 17603 **EXHAUST GAS MASS FLOW** (WET) lb/hr 57302 57302 43278 29502 (8)(5)**EMISSIONS DATA - ENGINE OUT** NOx (as NO2) 0.30 0.30 (9)(10)g/bhp-hr 0.30 0.30 CO (9)(10)g/bhp-hr 3.06 3.06 3.06 3.07 (9)(10) g/bhp-hr THC (mol. wt. of 15.84) 3.59 3.59 3.93 4.17 NMHC (mol. wt. of 15.84) 1.45 (9)(10)g/bhp-hr 1.45 1.59 1.69 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10)(11)g/bhp-hr 0.87 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10)g/bhp-hr 0.15 0.15 0.16 0.20 CO₂ (9)(10)g/bhp-hr 455 455 473 500 % DRY **EXHAUST OXYGEN** (9)(12)11.2 11.2 10.9 10.6 **HEAT REJECTION** 53193 43314 36619 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 HEAT REJ. TO ATMOSPHERE 17058 18158 18158 15595 (13)Btu/min HEAT REJ. TO LUBE OIL (OC) (13)Btu/min 30493 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14)Btu/min 54824 54824 28621 8232

CONDITIONS AND DEFINITIONS

HEAT REJ. TO A/C - STAGE 2 (2AC)

COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC)

TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

(13)(14)

(14)(15)

(14)(15)

Btu/min

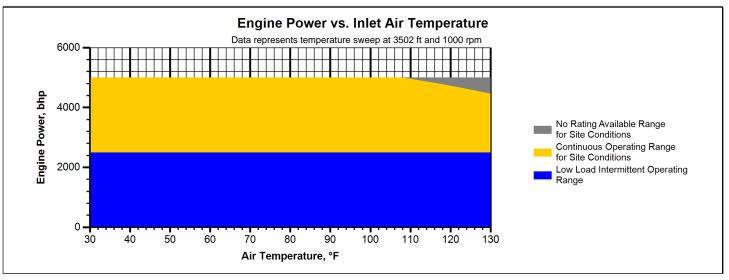
Btu/min

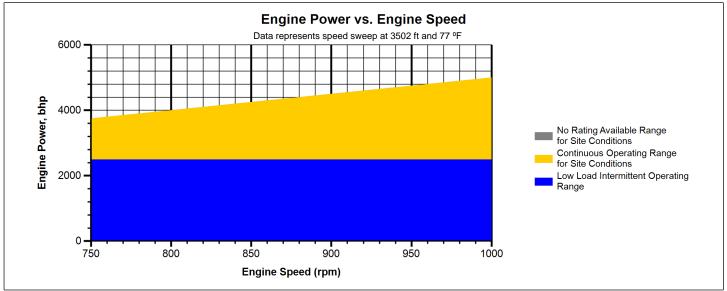
Btu/min

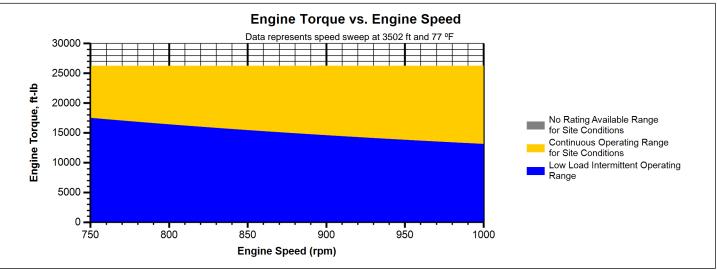
11970

116078

49160


11970


8316


5067

For notes information consult page three.

GAS COMPRESSION APPLICATION

Note:

At site conditions of 3502 ft and 77°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3616

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3616

GAS COMPRESSION APPLICATION

NOTES:

- 1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.
- 2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.
- 3. Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site ambient temperature.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.
- 10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 11. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.
- 13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3616

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3616

GAS COMPRESSION APPLICATION

Constituent	Abbrev	Mole %	Norm		551151454146
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	BEU DI 4 Bat Inlet Sep Gas
Methane	CH4	78.0190	78.0190	Unit of Measure:	English
Ethane	C2H6	10.6670	10.6670		
Propane	C3H8	4.8170	4.8170	Calculated Fuel Properties	
Isobutane	iso-C4H10	0.5560	0.5560	Caterpillar Methane Number:	48.1
Norbutane	nor-C4H10	1.4030	1.4030		
Isopentane	iso-C5H12	0.3190	0.3190	Lower Heating Value (Btu/scf):	1126
Norpentane	nor-C5H12	0.3610	0.3610	Higher Heating Value (Btu/scf):	1241
Hexane	C6H14	0.3720	0.3720	WOBBE Index (Btu/scf):	1313
Heptane	C7H16	0.5440	0.5440		
Nitrogen	N2	2.0010	2.0010	THC: Free Inert Ratio:	32.99
Carbon Dioxide	CO2	0.9410	0.9410	Total % Inerts (% N2, CO2, He):	2.942%
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Monoxide	CO	0.0000	0.0000	,	
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	0.996
Oxygen	O2	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.68
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.87
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	0.736
Octane	C8H18	0.0000	0.0000	, , , , , , , , , , , , , , , , , , , ,	
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.285
Ethylene	C2H4	0.0000	0.0000	. do. oposito riodi ridito (ity.	1.200
Propylene	C3H6 _	0.0000	0.0000		
TOTAL (Volume %)	_	100.0000	100.0000		

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Power Emission Group 311 Riggs Street, Bloomer, WI 54724 Tel: (715) 568-2882 • Fax: (715)568-2884

Email bweninger@catalyticcombustion.com

EMISSION TECHNOLOGIES

To XTO
Attn Ben
Via E-mail

Our Ref. 001-00-268588.00 Date: 09 July, 2020 Page: 1 of 2

Catalyst Performance

For:		Project/Location : Jayhawk			
e Parameters					
Engine Manufacturer	Caterpillar				Raw Exhaust
Engine Model	G3616		NOx	0.30	g/bhp-hr
Horsepower	5000	bhp	со	3.06	g/bhp-hr
Speed	1000	rpm	NMHC	1.45	g/bhp-hr
Exhaust Flowrate	31404	acfm	NMNEHC (VOC)	0.87	g/bhp-hr
Exhaust Temperature	805	° F	НСНО	0.15	g/bhp-hr
Fuel	Natural Gas		Oxygen	11.20	%

Catalyst ModelRGTB-2516F-D-20HF-HFX4Overall Dimensions24.75 x 15.44 x 3.7Cell Pattern, Substrate20HFCatalyst Qty Required12 per UnitFormulationHFX4Pressure Drop3.9 inches of H2OWarranty Period [hrs]8000

	Performance		
NOx			
СО	88	% Conversion	
NMHC			
NMNEHC (VOC)	65	% Conversion	
НСНО	74	% Conversion	

General Terms and Conditions of Sale and Manufacturers Warranty documents are available upon request.

Please contact us if you have any questions or to let us know how we can be of further help.

Best regards,

Brian Weninger

Product and Application Engineer, Power Emission Group

Power Emission Group 311 Riggs Street, Bloomer, WI 54724 Tel: (715) 568-2882 • Fax: (715)568-2884

Email bweninger@catalyticcombustion.com

EMISSION TECHNOLOGIES

To XTO Attn Ben Via E-mail Our Ref. 001-00-268588.00 Date: 09 July, 2020 Page: 2 of 2

Catalyst Performance

For:	Project/Location : Jayhawk				
e Parameters					
Engine Manufacturer	Caterpillar				Raw Exhaust
Engine Model	G3516J		NOx	0.50	g/bhp-hr
Horsepower	1380	bhp	со	2.55	g/bhp-hr
Speed	1400	rpm	NMHC	1.52	g/bhp-hr
Exhaust Flowrate	8108	acfm	NMNEHC (VOC)	0.91	g/bhp-hr
Exhaust Temperature	837	° F	НСНО	0.36	g/bhp-hr
Fuel	Natural Gas		Oxygen	9.10	%
			2/82		

Catalyst Description and Performance Expectations	Catalyst Desc	ription and	Performance I	Expectations
---	---------------	-------------	---------------	--------------

Catalyst ModelRGTB-2516F-D-20HF-HFX4Overall Dimensions24.75 x 15.44 x 3.7Cell Pattern, Substrate20HFCatalyst Qty Required3 per UnitFormulationHFX4Pressure Drop4.1 inches of H2OWarranty Period [hrs]16000

	Performance		
NOx			
CO	88	% Conversion	
NMHC			
NMNEHC (VOC)	65	% Conversion	
HCHO	74	% Conversion	

General Terms and Conditions of Sale and Manufacturers Warranty documents are available upon request.

Please contact us if you have any questions or to let us know how we can be of further help.

Best regards,

Brian Weninger

Product and Application Engineer, Power Emission Group

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

	N	O _x ^b		СО
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_X emission factor. For target and small wall fired boilers with SNCR control, apply a 12 percent reduction to the appropriate NO_X emission factor.

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6)	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO ₂ ^d	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	E
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	E
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	E
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	E
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	E
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	E
25321-22-6	Dichlorobenzene ^b	1.2E-03	E
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	E
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	E
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
74-98-6	Propane	1.6E+00	Е
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES^a (SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse	e Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	C
CO ^c <90% Load	5.57 E-01	В
CO_2^d	1.10 E+02	A
SO ₂ ^e	5.88 E-04	A
TOC^{f}	1.47 E+00	A
Methane ^g	1.25 E+00	C
VOCh	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	E
1,1,2-Trichloroethane ^k	<3.18 E-05	E
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	C
1,2-Dichloroethane	<2.36 E-05	E
1,2-Dichloropropane	<2.69 E-05	E
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	C
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthenek	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylenek	5.53 E-06	С
Acetaldehyde ^{k,l}	8.36 E-03	A
Acrolein ^{k,l}	5.14 E-03	A
Benzene ^k	4.40 E-04	A
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylene ^k	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	E
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	Е
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthenek	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,l}	5.28 E-02	A
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Saved Date: 9/9/2020

Section 8

Map(s)

A map such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the

following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A site location map and aerial image illustrating the property boundary and surrounding access roads is provided.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. ☑ A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2.

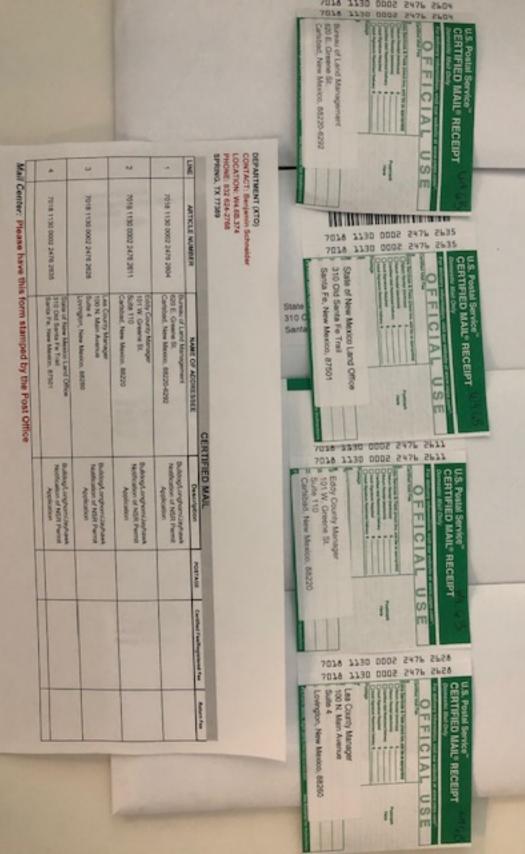
 A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. A sample of the letters sent to the owners of record.
- 5. A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. A sample of the public notice posted and a verification of the local postings.
- 7. A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11.

 A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

The public notice documents are included.

Tab 9 Section 9 - Proof of Public Notice

Item 1.


Certified Mail Receipts with Postmarks

DEPARTMENT (XTO)
CONTACT: Benjamin Schneider
LOCATION: W4.6B.374
PHONE: 832 624-2768
SPRING, TX 77389

		CER	CERTIFIED MAIL			
LINE	ARTICLE NUMBER	NAME OF ADDRESSEE	Description	POSTAGE	Certified Fee/Registered Fee	Return Fee
_	7018 1130 0002 2476 2604	Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico, 88220-6292	Bulldog/Longhom/Jayhawk Notification of NSR Permit Application	6.65	3.55	285
2	7018 1130 0002 2476 2611	Eddy County Manager 101 W. Greene St. Suite 110 Carlsbad, New Mexico, 88220	Bulldog/Longhorn/Jayhawk Notification of NSR Permit Application			
ω	7018 1130 0002 2476 2628	Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico, 88260	Bulldog/Longhorn/Jayhawk Notification of NSR Permit Application			
4	7018 1130 0002 2476 2635	State of New Mexico Land Office 310 Old Santa Fe Trail Santa Fe, New Mexico, 87501	Bulldog/Longhom/Jayhawk Notification of NSR Permit Application		is	
				ER CHEF	EF	

Mail Center: Please have this form stamped by the Post Office

SASH

DEPARTMENT (XTO)
CONTACT: Benjamin Schneider
LOCATION: W4.6B.374
PHONE: 832 624-2768
SPRING, TX 77389

_		 		_	
				LINE	
			7018 1130 0002 2476 2642	ARTICLE NUMBER	
			Intrepid Potash New Mexico LLC 1001 17th st. Suite 1050 Denver, CO 80202	NAME OF ADDRESSEE	CER:
			Jayhawk Notification of NSR Permit Application	Description	CERTIFIED MAIL
		h	J,	POSTAGE	
			3.55	Certified Fee/Registered Fee	
T.	0.00		28.6	Return Fee	1000

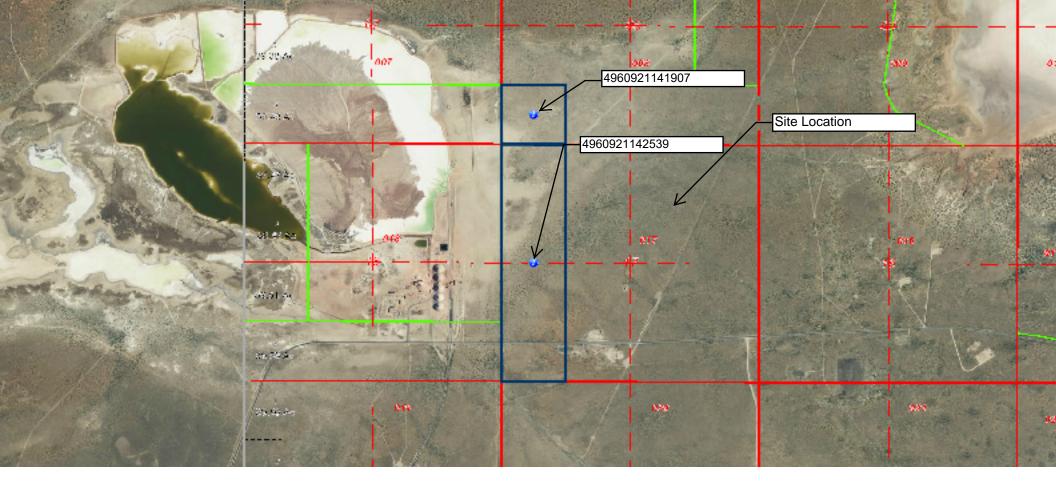
Mail Center: Please have this form stamped by the Post Office

Ö

Item 2.

List of Places Posted

Site Location


Carlsbad Post Office

 ${\sf Carlsbad\,Public\,Library}$

Hobbs Post Office

Item 3.

Property Tax Records

^{*} The remaining properties are not detailed in the Lea County GIS system since they are owned by the State of NM or the Bureau of Land Management, which are not private entities.

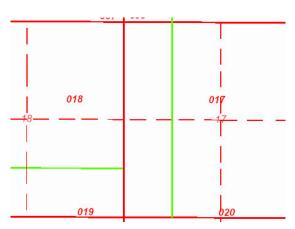
Lea County

GIS INTERNET REPORT

Page 1 of 3

Assessment Information

OWNER NUMBER: 90109


PARCEL NUMBER: 4960921142539

Own	er Information
Owner:	INTREPID POTASH NEW MEXICO LLC
Mailing Address:	1001 17TH STREET SUITE 1050 DENVER CO 80202
Property Address:	

Subdiv	ision Information
Name:	
Unit:	
Block	
Lot:	

Legal Information
160 AC BEING THE W2NW4 & W2SW4

UPC CODE: 4960921142539

Lea County

GIS INTERNET REPORT

Page 2 of 3

Other Information			
Taxable Value:	\$4,367,636.00	Deed Book:	1900
Exempt Value:	\$0.00	Deed Page:	234
Net Value	\$4,367,636.00	District:	160
Livestock Value:	\$0.00	Section:	17
Manufactured Home Value:	\$0.00	Township:	20
Personal Property:	\$0.00	Range:	32
Land Value:	\$0.00	Date Filed:	
Improvement Value:	\$0.00	Most Current Tax:	\$120,123.08
Full Value:	\$13,102,908.00	Year Recorded:	

Square Foot and Year Built listed only to be used for comparative purposes, NOT to be used for commerce.

Lea County GIS INTERNET REPORT

Page 3 of 3

Lea County

GIS INTERNET REPORT

Page 1 of 3

Assessment Information

OWNER NUMBER: 90109 **UPC CODE:** 4960921141907

PARCEL NUMBER: 4960921141907

Own	er Information
Owner:	INTREPID POTASH NEW MEXICO LLC
Mailing Address:	1001 17TH STREET SUITE 1050 DENVER CO 80202
Property Address:	

Subdiv	ision Information
Name:	
Unit:	
Block	
Lot:	

Legal Information
40 AC BEING SW4SW4

	No.		

Lea County

GIS INTERNET REPORT

Page 2 of 3

Other Information						
Taxable Value:	\$4,367,636.00	Deed Book:	1900			
Exempt Value:	\$0.00	Deed Page:	234			
Net Value	\$4,367,636.00	District:	160			
Livestock Value:	\$0.00	Section:	8			
Manufactured Home Value:	\$0.00	Township:	20			
Personal Property:	\$0.00	Range:	32			
Land Value:	\$0.00	Date Filed:				
Improvement Value:	\$0.00	Most Current Tax:	\$120,123.08			
Full Value:	\$13,102,908.00	Year Recorded:				

Square Foot and Year Built listed only to be used for comparative purposes, NOT to be used for commerce.

Lea County GIS INTERNET REPORT

Page 3 of 3

Items 4 & 5.

Letters to Owners of Record and Applicable Counties, Municipalities, and Tribes

Certified Mail No. 7018 1130 0002 2476 2604

Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico, 88220-6292

RE: NSR Permit Application
Jayhawk Compressor Station
XTO Energy Inc.

Dear Federal Official,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station on your property in Lea County, NM. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Benjamin Schneider Environmental Engineer

Ben Schneider

Certified Mail No. 7018 1130 0002 2476 2611

Eddy County Manager 101 W. Greene St. Suite 110 Carlsbad, New Mexico, 88220

RE: NSR Permit Application

Jayhawk Compressor Station XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station in Lea County, NM. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Benjamin Schneider Environmental Engineer

Ben Schneider

Certified Mail No. 7018 1130 0002 2476 2628

Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico, 88260

RE: NSR Permit Application

Jayhawk Compressor Station XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station in Lea County, NM. The proposed site is within 10 miles of Lea County. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Benjamin Schneider Environmental Engineer

Ben Schneider

Certified Mail No. 7018 1130 0002 2476 2635

State of New Mexico Land Office 310 Old Santa Fe Trail Santa Fe, New Mexico, 87501

RE: NSR Permit Application
Jayhawk Compressor Station
XTO Energy Inc.

Dear Commissioner,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station near your property in Lea County, NM. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Benjamin Schneider Environmental Engineer

Ben Schneider

Certified Mail No. 7018 1130 0002 2476 2642

Intrepid Potash New Mexico LLC 1001 17th St. Suite 1050 Denver, CO 80202

RE: NSR Permit Application

Jayhawk Compressor Station XTO Energy Inc.

Dear Commissioner,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station within one-half (½) mile your property in Lea County, NM.. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Benjamin Schneider Environmental Engineer

Ben Schneider

Item 6.

Sample of Notice posted and Verification of Postings

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea County.

The proposed modification consists removing two engines, updating engine emission rates, updating glycol recirculation rate, removing two heaters, and updating oil/water production rates.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	27 pph	17 tpy
PM ₁₀	27 pph	17 tpy
PM _{2.5}	27 pph	17 tpy
Sulfur Dioxide (SO ₂)	10 pph	20 tpy
Nitrogen Oxides (NO _x)	587 pph	206 tpy
Carbon Monoxide (CO)	1130 pph	228 tpy
Volatile Organic Compounds (VOC)	1113 pph	260 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	35 pph	29 tpy
Toxic Air Pollutant (TAP)	35 pph	29 tpy
Green House Gas Emissions as Total CO ₂ e	n/a	240,024 tpy

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.347; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices - Certification

Bulldog Compressor Station Longhorn Compressor Station Jayhawk Compressor Station

1. Good some the undersigned, certify that on {DATE}, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the Carlsbad of Eddy County, State of New Mexico on the following dates: 1. Facility entrance {DATE} Corpbad Post Office 8-27-20 2. {Location 2} {DATE} Corpbad Public Library 8-27-20 3. {Location 3} {DATE} Hobbs Past Office 8-28-20
4. {Location 4} {DATE}
Signed this 27 day of August 2010. Signatury 8-27-20 Date
Printed Name
Environmental & Waste Coordinator Title (APPLICANT OR RELATIONSHIP TO APPLICANT)

General Posting of Notices - Certification

Bulldog Compressor Station Longhorn Compressor Station Jayhawk Compressor Station

sted a

I, Gary C true and correct co conspicuous place dates:	opy of the attached Public Notice in the followes in the Carlsbad of Eddy County, State of N	certify that on {DATE}, posted a ving publicly accessible and New Mexico on the following
1. Facility	ventrance (DATE) Bulldog CS	off of 62/180 8-27-20
2. {Locati	ion 2) {DATE} Jaylow & CS of	F.F 243 8-27-20
3. {Locati	tion 2) {DATE} Daylowk CS of sion 3) {DATE} Longhorn CS off	of 128 8-27-20
4. {Locati	tion 4) {DATE}	
Signature Sary G	Lay of August , 2020, Lowdyame Coodyame TOR RELATIONSHIP TO APPLICANT;	8-27-20 Date

Item 7.

A table of the noticed citizens, counties, munipalities and tribes and to whom the notices were sent in each group.

Noticed Citizens, Counties, Municipalities, and Tribes

Eddy County: Eddy County Manager

Lea County: Lea County Manager

Bureau Of Land Management: Carlsbad Field Office (David Evans)

State of NM: Commissioner

Item 8.
A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.

Activity Report

Date/Time Local ID 1

08-31-2020

8326252631

02:53:47 p.m.

Transmit Header Text

Local Name 1

Completed Jobs: 1

No.	Job	Remote Station	Start Time	Duration	Pages	Line	Mode	Job Type	Results
001	450	VFD212M6N22	02:51:05 p.m. 08-31-2020	00:02:04	6/6	1	G3	HS	CP14400

Abbreviations:

HS: Host send

PL: Polled local PR: Polled remote MP: Mallbox print

CP: Completed

TS: Terminated by system

HR: Host receive W5: Waiting send

MS: Mailbox save

RP: Report FF: Fax Forward FA: Fall

G3: Group 3

EC: Error Correct TU: Terminated by user

Transmission Report

Date/Time Local ID 1 08-31-2020 8326252631 02:53:47 p.m.

Transmit Header Text Local Name 1

This document: Confirmed (reduced sample and details below)

Document size: 8.5"x11"

August 31, 2020

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the sir quality permitting process in New Mexico, applicants for certain sir permits must attempt to provide notice to the public of the proposed permit section via public service announcement (PSA). The announcement is attached. Will you air the PSA?

Thank you.

Benjamin Schneider XTO Energy Inc. (832) 624-2768

Total Pages Scanned: 6

Total Pages Confirmed: 6

No.	Jop	Remote Station	Start Time	Duration	Pages	Line	Mode	Job Type	Results
001	450	VFD212M6N22	02:51:05 p.m. 08-31-2020	00:02:04	6/6	1	G3	HS	CP14400

Abbreviations:

HS: Host send HR: Host receive WS: Waiting send PL: Polled local PR: Polled remote MS: Mailbox save MP: Mailbox print RP: Report

CP: Completed

TS: Terminated by system

RP: Report FA: Fall
FF: Fax Forward TU: Terminated by user

G3: Group 3
EC: Error Correct

August 31, 2020

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the air quality permitting process in New Mexico, applicants for certain air permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA?

Thank you.

Benjamin Schneider XTO Energy Inc. (832) 624-2768

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020. XTO Energy Inc. is planning to remove engines, updating engine emission rates, removing heaters, and update oil/water production rate.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea County.

The notice was posted at the facility and three other public locations: The Carlsbad post office, the Carlsbad public library, and the Hobbs post office. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300

Item 9.
A copy of the classified or legal ad including the page header (date and newspaper title)
or its affidavit of publication stating the ad date, and a copy of the ad.

LEGAL

For assistance call Kayla at 575-391-5417

LEGAL

LEGAL

LEGAL

LEGAL NOTICE August 18, 25 September 1 and 8, 2020

STATE OF NEW MEXICO COUNTY OF LEA FIFTH JUDICIAL DISTRICT COURT

No. D-506-CV-2018-00259

U.S. BANK, N.A. AS TRUSTEE FOR MANUFACTURED HOUSING CONTRACT SENIOR/SUBORDINATE PASS-THROUGH CERTIFICATE 2001-3, AS SERVICER WITH DELEGATED AUTHORITY UNDER THE TRANSACTION

Plaintiff.

BARRY K. STEPHENS SR., REENE STEPHENS, AND GARTA L. JIMENEZ,

Defendants.

NOTICE OF SALE

NOTICE IS HEREBY GIVEN that on September 25, 2020, at the hour of 10:00 AM, the undersigned Special Master, or his designee, will, at the front entrance of the Lea County Courthouse, at 100 North Main, Lovington, NM 88260, sell all of the rights, title, and interests of the above-named Defendant(s), in and to the hereinafter described real property to the highest bidder for cash. The property to be sold is located at 1714 Katy Ln., Hobbs, New Mexico 88242, and is more particularly described as follows:

Lot Ten (10), Second Unit of the Douglas Acres Subdivision to Lea County. New

including a 2001 Town & Country, Vehicle Identification No. TC01TX015842AB, (hereinafter the "Property"). If there is a conflict between the legal description

and the street address, the legal description shall control.

The foregoing sale will be made to satisfy a foreclosure judgment rendered by this Court in the above-entitled and numbered cause on July 27, 2020, being an action to foreclose a mortgage on the Property. Plaintiff's judgment is in the amount of \$83,071.67, and the same bears interest at the rate of 10.5000% per amount of \$83,071.67, and the same bears interest at the rate of 10.5000% per annum, accruing at the rate of \$23.90 per diem. The Court reserves entry of final judgment against Defendant(s), Barry K. Stephens Sr. and Reene Stephens, for the amount due after foreclosure sale, including interest, costs, and fees as may be assessed by the Court. Plaintiff has the right to bid at the foregoing sale in an amount equal to its judgment, and to submit its bid either verbally or in writing. Plaintiff may apply all or any part of its judgment to the purchase price in lieu of

In accordance with the Court's decree, the proceeds of sale are to be applied first to the costs of sale, including the Special Master's fees, and then to satisfy the above-described judgment, including interest, with any remaining balance to be paid unto the registry of the Court in order to satisfy any future adjudication of priority lienholders.

NOTICE IS FURTHER GIVEN that in the event that the Property is not sooner redeemed, the undersigned Special Master will, as set forth above, offer for sale and sell the Property to the highest bidder for cash or equivalent, for the purpose of satisfying, in the adjudged order of priorities, the judgment and decree of foreclosure described herein, together with any additional costs and attorney's fees, including the costs of advertisement and publication for the foregoing sale, and, reasonable receiver and Special Master's fees in an amount to be fixed by the Court. The amount of the judgment due is \$83,071.67, plus interest to and including date of sale in the amount of \$5,042.90, for a total judgment of \$88,114.57.

The foregoing sale may be postponed and rescheduled at the discretion of the Special Master, and is subject to all taxes, utility liens and other restrictions and easements of record, and subject to a one (1) month right of redemption held by the Defendant(s) upon entry of an order approving **sale**, and subject to the entry of an order of the Court approving the terms and conditions of sale.

Witness my hand this 13th day of August, 2020.

/s/ David Washburn DAVID WASHBURN, Special Master 8100 Wyoming Blvd NE Suite M-4, Box 272 Albuquerque, NM 87113 Telephone: (505) 318-0300 E-mail: sales@nsi.legal

#35742

LEGAL NOTICE September 8, 2020

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea

The proposed modification consists removing two engines, updating engine emission rates, updating glycol recirculation rate, removing two heaters, and updating oil/water production rates.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pounds per hour Tons per year Particulate Matter (PM) 17 tpy 27 pph 27 pph 17 tpy 27 pph Sulfur Dioxide (SO2) 10 pph 20 tpv Nitrogen Oxides (NÓx) 587 pph 206 tpy 228 tpy 1130 pph Carbon Monoxide (CO) Volatile Organic Compounds (VOC) Total sum of all Hazardous 1113 pph 260 tpy Air Pollutants (HAPs) Toxic Air Pollutant (TAP) 35 pph 29 tbv 35 pph 240.024 tpv Green House Gas Èmissions asTotal CO2e

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.347; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 4 7 6 - 4 3 0 0 ; 1 8 0 0 2 2 4 - 7 0 0 9 ; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's nondiscrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

LEGAL LEGAL LEGAL

LEGAL NOTICE September 1 and 8, 2020

NOTICE IS HERBY GIVEN PURSUANT TO THE NEW MEXICO SELF STORAGE LIEN ACT THAT THE FOLLOWING UNITS WILL BE AUCTIONED OR OTHERWISE DISPOSED OF IN ORDER TO SATISFY LIENS CLAIMED FOR DELINQUENT RENT AND OTHER RELATED CHARGES. BIDING AND VIEWING OF AUCTIONED OR DISPOSITION ITEMS WILL BE ONLINE AT WWW.STORAGETREASURES.COM UNTIL 9 A.M., September 18th, 2020. ALL WINNING BIDS MUST BE PAID BY 5 P.M., September 21st, 2020 AT EAGLE SELF STORAGE 620 E. Navajo Dr., Hobbs, NM 88240. EAGLE SELF STORAGE RESERVES THE RIGHT TO REFUSE ANY BID FOR ANY

Matthew Brown 2204 N Thomas Hobbs, NM 88240 Unit #C27 Size 10 X 15 Boxes, bags, mattress, rugs, foot board, chairs

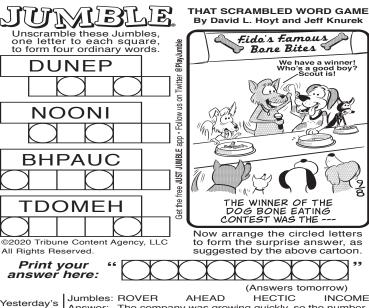
1122 E Broadway Ave Hobbs, NM 88240

Melissa Ochoa

Unit #D1 Size 10 X 20 Bed sets, boxes, dressers, strollers, microwave, night stands Terrance Petties

PO Box 452 Eunice, NM 88231 unit #G5 Size 10 X 10 golf clubs, mattress, fake tree, totes, boxes, suitcase Julie Spencer

Twin mattresses, bags, totes, table, heater Chancey Heavington


1101 W Christopher Lane # 57 Hobbs, NM 88240 Unit #E7 Size 10 X 10 Couch, table, speaker Marvlin Warrick

4512 W Illinois Hobbs NM, 88242 Unit: #AA94 Size: 10 X 15 Speaker, boxes, bags with clothes, rugs, dresser, lamp, walker, chairs,

PO Box 246 Jal, NM 88252 Unit #D26 Size 10 X 10

1637 N. Penasco Hobbs, NM 88240 Unit: #AA38 Size: 10 X 20

Tires, boxes, bags with clothes, rugs, dresser, lamp, walker, chairs Tim Williams 1637 N. Penasco Hobbs, NM 88240 Unit: #AA62 Size: 5 X 10 Tools, boxes, totes, clothes, lamp

Yesterday's Jumbles: ROVER Answer: The com

The company was growing quickly, so the number of employees needed to go — "HIRE" AND "HIRE"

Now arrange the circled letters to form the surprise answer, as suggested by the above cartoon.

INCOME

LEGAL NOTICE September 1, 8 and 15, 2020

LEGAL

STATE OF NEW MEXICO COUNTY OF LEA FIFTH STATE OF NEW MEXICO COUNTY OF LEA FIFTH JUDICIAL DISTRICT COURT No. D-506-CV-2019-01778 HIGH ROLLER LOGISTICS, LLC, Plaintiff, v. FRANCISCO HERNANDEZ a/k/a FRANKIE HERNANDEZ d/b/a F&F BLADE SERVICES, Defendant. NOTICE OF SUIT STATE OF NEW MEXICO to the above-named Defendant: GREETINGS: You are hereby notified that the above-named Plaintiff has filed a civil action against above-named Plaintiff has filed a civil action against you in the above-entitled Court and cause, the general object thereof being a Complaint On A Contract And For Debt And Money Due. That unless you enter your appearance in said cause on or before thirty (30) days after the last date of publication, judgment by default will be entered against you. Name and address of Plaintiff's attorney: George H. Pigg, Attorney for Plaintiff 2626 Cole Ave., Ste. 650, Dallas, Texas 75204, (936) 590-7350 WITNESS the Hon. Lee A. Kirksey, District Judge of the Fifth Judicial District Court of the State of New Maxics, and the Seal of the District Court of of New Mexico, and the Seal of the District Court of Lea County, this 10/18/2019. Fifth Judicial District Court Clerk of the Court (COURT SEAL) By: /s/ C Hagerdoorn Deputy Clerk #35788

LEGAL NOTICE September 1 and 8, 2020

Publication of Notice of Lien Sale

In accordance with the New Mexico Self Storage Lien Act (48-11-1), Zia Stor-All, 4128 N. Grimes Street, Hobbs, NM 88240, will sell the contents of the following storage units, to satisfy a storage lien and related charges, the auction will be held online on www.lockerfox.com on September 17, 2020 at 1:30 p.m. The contents of the units will be sold to the highest offer in cash. Zia Stor-All may withdraw any unit from the sale prior to the time of the sale.

Lillian Gonzales Unit # 10137 1122 S. Jefferson Hobbs, NM 88240 Bags, duffel bag, totes, skateboard, Chuckie doll, misc. household goods

Ernest C Hodge, Jr. Unit # 10337 800 W. Cochiti Hobbs, NM 88240 Boxes, pew cushions, misc. household goods

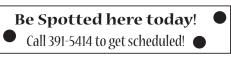
baby stroller, misc. household goods

Krisilda Martinez Unit # 10349 402 E. Palace Hobbs, NM 88240

Yvonne Tyree Unit # 10404 815 N. Selman Hobbs, NM 88240 Bags, crib mattresses, boxes, shelf, lockbox, crates, skateboard, toys, totes, misc. household goods

Bags, boxes, clothing, chair cushion, foam, Christmas decorations, totes, pillows, toys, RC car,

Shilo C Howell Unit # 10440 500 A. Chance Dr. Hobbs, NM 88240 Baskets, clothing, dresser, mirror, pictures, dishes, totes, clothes rack, purses, misc. household goods


Luis Duenas Unit # 10525 566 Cindy Ann Rd Frnt Grand Junction CO 81501 Bags, clothing, small refrigerator, luggage, weights, Keurig machine, dishes, hangers, papers, misc. household goods

Brianna Renee Howard Unit # 20840 1601 San Andres Hobbs, NM 88240 Baskets, boxes, chairs, dresser, trash can, toys, baby swing, carrier/car seat, baby bouncer, misc. household goods

Melissa Mata Unit # 10670 100 W. Skelly Hobbs, NM 88240 Baby crib, baby car seat, baby carrier, toy, stand, misc. household goods

Richard Johnson Unit # 20947 5008 W. Big Red Road Hobbs, NM 88240 Bags, baskets, bed box spring, bed mattress, boxes, clothing, dresser, lamp, self, duffel bag, wall art, chest w/o drawers, suitcases, totes, tubs, misc. household goods

Douglas Charles Raymond Unit # 38025 1110 W. Dogwood Denver City, TX 79323 Baby swing, scuba tanks, exercise equipment, weights, misc. household goods #35768

H LV E J 6 P.M. 6:30 7 P.M. 7:30 8 P.M. 8:30 9 P.M. 9:30 10 P.M. 10:30 11 P.M. 3 3 - 3 PBS NewsHour (N) (S) (CC) American Experience Women fight reative Living/ Harbor From the Holocaust (N Frontline Child poverty amid a pan You Should Amanpour and KENW Shervl Borden (S) (cc M*A*S*H (CC) The Andy Grif-fith Show (cc) The Andy Grif-fith Show (cc) M*A*S*H (cc) Gomer Pyle, U.S.M.C. (CC) Hogan's Heroes Carol Burnett and Friends plane crash. (cc) NCIS "Schooled" A Navy technician is Love Island The islanders must couple (9:35) The Late Show With Ste-FBI: Most Wanted (S) (cc) CBS 7 News at (10:37) The Late Late Show With KOSA phen Colbert (S) (cc) found in a lake, (S) up. (N) (S) (cc) 10 (N) James Corden (S) (cc) Titulares v más Exatión Estados Unidos (N) (S) (cc) Todo por mi hiia (N) (S) (cc) Enemigo íntimo El Cóndor y Pelos Noticias New Noticias Tele-KASA an a Ferrer. (N) (cc) Mexico Action 7 News Entertainment mixed-ish "You (11:06) Nightline Modern Family Modern Family black-ish "Hair What Would You Do? (N) (S) (cc) Action 7 News (10:35) Jimmy KOAT Tonight (N) (S) (cc) (DVS) "Spuds" (S) Got It All" (S) Live at 10 (N) Live at 6 (N) Day" (S) (9:01) Transplant Bash joins the staff Eyewitne (10:34) The Tonight Show Star News 4 at 6 (N) News 4 at 6:30 News 4 at 10 day Tape) (S) (cc) at York Memorial. (N) (S) ring Jimmy Fallon (S) (cc) (8:01) Transplant Bash joins the staff Newswest 9 at (9:34) The Tonight Show Starring (10:36) Late Night With Seth Mey America's Got Talent "Semi-Finals 1" Eleven semifinalists perform. (N) (S 9 - 9 9 **KWES** Jimmy Fallon (S) (cc) Live) (cc) at York Memorial. (N) (S) 10P (N) INCIS "Schooled" A Navy technician is Love Island The islanders must couple FBI: Most Wanted (S) (cc) KROE News 13 (10:35) The Late Show With Ste-Jeopardy! (S) Wheel of For-KBIM 10 10 phen Colbert (S) (cc) at 10 (N) (cc) News 13 on Chicago P.D. A woman is held captive Chicago P.D. A nighttime photogra-(11:05) Pawn News 13 on KASY KASY at 9pm Should Ask (S) KASY in the woods. (S) Stars (cc) Star Trek The world will end if twins Star Trek: Deep Space Nine Star Trek: Enterprise Pirates board Star Trek: The Next Generation Star Trek: Voyager Janeway emb 14 KUPT lmeet. (S) (cc) ecy warns against venture. the Enterprise. (S) (cc) "Peak Performance" (S) (cc) on a secret miss Takes a Village TBS Big Bang - 20 16 Big Bang Seinfeld Big Band Big Bang Big Bang Big Bang Conan (N) Seinfeld Conan (cc) Imp. Jokers The Big Bang Mom (S) (cc) Two and a Half The Big Bang Dead Pixels "Big Dead Pixels "Be- Tell Me a Story Tim grows closer to Two and a Half Seinfeld "The Mom (S) (cc) KWBQ 21 52 Men (S) (cc) Theory (cc) Theory (cc) colleague Katrina (N) Nose" (N) trothal" (S) Men (S) (cc) Cadillac" (cc) More Than a God Answers Prayer Life Today With CBN Newswatch Issues & An-Coffee & Conversation with Frank First Baptist Jim Cantelon Wretched With 23 **KCHF** and Larry Diamondbacks | MLB Baseball Los Angeles Dodgers at Arizona Diamondbacks. From Chase Field in Phoenix. (N) (Live) (cc) Diamondhacke Diamondhacks Brad Cesmat's Baseball Out Football AZ (N) | West (N) Live! Pre-Game 29 24 29 22 WWE NXT (N) (S Live) (cc) American Sniper ★★★ (2014, War) Bradley Cooper, Sienna Miller, Jake McDorman. Navy SEAL Chris Kyle logs an Cannonball "Ca USA incredible number of kills, 'R' (cc) (DVS) nonballed" 30 45 30 151 (5) America's Book of Secrets: Special Edition (S) (CC) America's Book of Secrets: Special Edition "Crimes and Punishments" (9:05) America's Book of Secrets: Special Edition "The Power of Mon America's Bool HIST Uncovering the world of organized crime. (N) (S) (cc) " The underground of America's wealthiest. (S) (cc) of Secrets TLC 31 - 31 11 Counting On (N) (S) Counting On (N) (S) **Doubling Down With Derricos** Outdaughtered "OutValentined" Counting On (S Counting On (S 33 23 33 26 Grown Ups 2 * (2013, Comedy) Adam Sandler, Kevin James, Chris Rock. Lenny Feder and his fam Grown Ups 2 * (2013, Comedy) Adam Sandler, Kevin James, Chris Rock. Lenny Feder and his fam illy relocate back to his hometown. (S) 'PG-13' (cc) Dumb & Dumbe PARMT ily relocate back to his hometown. (S) 'PG-13' (cc) SportsCenter SportsCenter (N) (Live) (cc) 34 4 34 21 (5) 2020 U.S. Open Tennis Men's and Women's Quarterfinals. (N) (Live) SportsCenter (N) (Live) (cc 35 5 35 22 WNBA Basketball Minnesota Lynx vs Washington Mystics. From IMG Academy in Bradenton, Fla. (N) (Live) DC & Helwani NFL Live (cc) CNN 37 14 37 23 Anderson Cooper 360 (N) (cc) CNN Tonight with Don Lemor CNN Tonight with Don Lemon Anderson Cooper 360 (cc) 39 40 (5) Biography: The Nine Lives of Ozzy Osbourne (S) (cc)

Biography: I Want My MTV Charting the rise of a cultural phenomenon that came to define a generation: MTV. (N) (S) (cc)

(9:04) Biography: The Nine Lives of Ozzy Osbourne The singer reflects on his life. (S) (cc) Biography: I Want My MTV worked family strug- (8:03) Wife Swap Strict mom swaps (9:03) Wife Swap Couple dress as (10:01) Supernanny "Bailey Famil (11:01) Superis resentful of Katie. (N) gles to connect. (N) (cc) with a fun-loving mom. (S) superheroes. (S) (cc) Christina is resentful of Katie - 43 29 Deadliest Catch Josh and Casey race to a doctor. (S) (cc) Deadliest Catch The rush to get Keith Deadliest Catch: On Deck Harley to a doctor. (S) (cc) to a doctor. (S) (cc) Alaskan Bush Deadliest Catch Sad news rattles the | Quit The work to expand their busi DISC People (cc) to a doctor. (S) (cc) loses an engine. (N) (S) (cc) Cornelia Marie. (N) (cc) nesses. (N) (S) (cc) 47 166 47 53 (5) Fantastic Four * (2015) Miles Teller. (S) 'PG-13' (cc) Peter Rabbit ** (2018, Children's) Voices of James Corden, Fayssal Bazzi, Hotel Transylva Hotel Transylvania 3: Summer Vacation ** (2018, Children's) Voices of Adam Sandler, Andy Samberg. (S) 'PG' (cc) I, Robot ** (2004, Science Fiction) Will Smith, Bridget Moynahan, Bruce Greenwood. A homicide True Lies ★★★ (1994, Action) Arnold Schwarzenegger, Jamie Lee Curtis, Tom Arnold. A man lives the double life of a detective tracks a dangerous robot in 2035. 'PG-13' (cc) spy and a family man. 'R' (cc) 50 22 50 - All In With Chris Hayes (N) (Live) The Rachel Maddow Show (N) The 11th Hour 54 | 54 | 32 | Love-Raymond | King of Queens | King of 56 48 56 147 (5) Angels & Demons ** (2009, Suspense) Tom Hanks. Robert Langdon confronts an ancient brotherhood. 'PG-13' (cc) Inferno ** (2016, Suspense) Tom Hanks, Felicity Jones, Omar Sy. Premiere. Robert Langdon must stop a madman from unleashing a virus. 'PG-13' (cc) (cc) (11:15) Futurama (S) (cc) 57 43 57 149 Good Bones A small cottage presents (7:01) Good Bones (N) (cc) serious issues. (N) (cc) House Hunters (9:02) House House Hunters (11:01) House HGTV Hunters (N) International (N) Hunters (cc) International FOXN 58 46 58 43 Tucker Carlson Tonight (N) (Live) Hannity (N) (Live) (cc) The Ingraham Angle (N) (cc) Fox News at Night Tucker Carlson Tonight (cc) Hannity (cc) 60 50 The Office "Murder" (cc) The Office (S) Tosh.0 "Blind Film Tosh.0 "Blix the Tosh.0 "Bear Tosh.0 "Misha" The Daily Show (9:45) South (10:15) South (10:45) South The Daily Show 61 181 68 27 (5) MLB Baseball Boston Red Sox at Philadelphia Phillies. MLB on FS1 From Citizens Bank Park in Philadelphia. Postgame (N Magnify Presents Tua (N) (cc) WWE Friday Night SmackDown (S) (cc) TMZ Sports (N) FS1 ОХҮ 69 - 69 - Chicago P.D. (S) (cc) (DVS) Chicago P.D. (S) (cc) (DVS Chicago P.D. (S) (cc) (DVS) Chicago P.D. (S) (cc) (DVS Chicago P.D. (S) (cc) (DVS Chicago P.D. Chopped "Basket Buzz" Chewy cand Chopped Basket includes a sauce a 70 125 70 45 Chopped Chefs make breakfast, lunch a sandwich. (N) (cc) Chopped Basket includes a sauce and a sandwich. (N) (cc) Chopped Sweets Four chefs craft Chopped and sweet cheese entrees. architectural desserts a sandwich. (cc) Sweets (cc) 71 173 71 30 Love, Romance & Chocolate (2019, Romance) Lacey Chabert. An American Chinocolaties gatering control in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering acceptable in Policy (2019, Romance) Lacey Chabert. An American Chinocolaties gatering The Golden HALL chocolatier enters a contest in Belgium. 'NR' (cc) Girls (S) (cc) Frasiers" (cc) NGEO 72 109 72 44 Life Below Zero "Life & Death" Alaskans prepare for winter. (N Life Below Zero (8:03) Life Below Zero (N) (cc) (9:03) Life Below Zero (cc) Life Below Zero 75 49 75 - (4) Barbershop: The Next Cut Just Wright ** (2010) Queen Latifah. A physical therapist falls in love with her patient. 'PG' (cc) Cleveland Show Cleveland Show Martin (S) (cc) 76 21 76 36 Shark Tank (S) (cc) Shark Tank (S) (cc) (DVS) Shark Tank (S) (cc) The Profit "Standard Burger' The Profi 77 26 77 20 (4:30) NBA Basketball Conference Semifinal: Teams TBA. NBA Basketball Los Angeles Lakers vs TBA. Conference Semifinal action, Game 3. (N Subject to Inside the NBA (N) (S Live) (cc) NBA Basketball Conference Semifi Blackout) (Live) (cc) nal: Teams TBA. (cc) 98 - 98 - Mother Angelica Live Classics Holy Rosary Scripture and Tradition Into the Breach Women of

Excelling In Your Insurance Needs For 75 Years.

300 N. Linam **Hobbs, New Mexico** 575-393-5191

Item 10. A copy of the display ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad.

FOR THE RECORD

Better Call Chris!

CHRISTOPHER

ATTORNEY AT LAW

• FREE CONSULTATION

PAYMENT PLANS

Serving the Community

Since 2007

575.397.7550

Police reports

Hobbs Police Department

One accident: no injury

2800 block N. Dal Paso St.

37 criminal incidents: sub-

ject on bike 200 block N.

Marland Blvd., close patrol

200 block W. Marland

Blvd., auto burglary 2200

block N. Adobe Dr., crim-

inal trespass 2000 block

E. Clinton St., auto bur-

glary 200 block W. Silver

Ave., unwanted subject

700 block N. Linam St.,

auto burglary 2700 block

N. Gold Ct., auto burglary

400 block W. Coal Ave.,

auto burglary 2800 block

N. Vista Dr., auto burglary

2800 block N. Vista Dr.,

auto burglary 700 block

W. Coal Ave., 700 block W.

Coal Ave., auto burglary

2700 block N. Jade Ave.,

auto burglary 600 block

W. Iron Ave., auto burglary

600 block W. Iron Ave.,

auto burglary 500 block W.

St. Anne Pl., auto burglary

2500 block N. Cielo Dr.,

auto burglary 2600 block

N. Jade Ave., auto bur-

glary 500 block W. Cielo

Dr., 600 block W. Cielo Dr.,

auto burglary 400 block W.

Cielo Dr., auto burglary 300

block W. Gold Ave., auto

burglary 2100 block N.

Kingsley Dr., auto burglary

2200 block N. Acoma Dr.,

auto burglary 2200 block

N. Cielo Dr., auto burglary

2200 block N. Acoma Dr.,

auto burglary 500 block

E. Jemez Rd., warrant ser-

vice N. Marland Blvd. and

N. Clinton St., warrant ser-

vice 600 block S. Eighth

St., 911 1200 block E. Main

St., attempt to locate 100

block S. Eastern Ave., gas

skip 600 block W. Marland

Blvd., investigative S. East-

ern Ave. and E. Dunnam

St., auto burglary 2000

block N. Dal Paso St., crim-

inal trespass 2000 block E.

Clinton St., walk through

2000 block E. Clinton St.,

warrant service 2000 block

E. Clinton St.

activity for 09-05-20

221 calls for service.

Sheriff's reports

Lea County Sheriff's Office activity for 09-05-20

80 calls for service.

One accident: with injury W. Hwy. 128 and Battle Axe Rd., Jal.

Four criminal incidents: custody zero block Mohawk St., Hobbs; attempt to locate S. Commercial St. and E. Ave. D, Lovington; trouble with subject 7900 block S. Stone Rd., Monument; suspicious 100 block W. Broom Dr., Hobbs.

County Sheriff's Office activity for 09-06-20

56 calls for service.

One accident: no injury Hwy. 18 and Teague Switch Rd., Eunice.

Two criminal incidents: reckless 800 block W. Ponderosa Dr., Hobbs; unattend death 300 block W. Frey Ave., Hobbs.

Fire reports

Hobbs Fire Department activity for 09-05-20

28 calls for service.

Three fire incidents: smell of smoke 300 block W. Castle Ave., structure fire 1400 block S. Grimes St., fire 200 block N. Elm St.

Two non-emergency transports.

23 ambulance runs.

Hobbs Fire Department activity for 08-06-20

21 calls for service. No fire incidents.

Two non-emergency transports.

19 ambulance runs.

Lovington Fire activity for 09-05-20

Six calls for service.

Two fire incidents: grass fire E. Washington Ave. and N. English St., structure fire 800 block Tatum Hwy. Four ambulance runs.

Lovington Fire activity for 09-06-20

One call for service. One ambulance run.

Lea County Environmental activity for 09-05-20

One call for service.

One animal controls call.

Hobbs Police Department activity for 09-06-

187 calls for service.

Three accidents: no injury 300 block N. Bond St., no injury 400 block E. Dunnam St., with injury E. Byers St. and S. Jefferson

criminal incidents: unknown 3400 block N. Dal Paso St., criminal trespass 100 E. Marland Blvd., criminal damage 1200 block E. Scharbauer St., fight 200 block W. Scharbauer St., threats 2900 block N. Mckinley Dr., shots fired E. Glorietta Dr. and N. Mckinley Dr., warrant service S. Cochran St. and W. Castle Ave., warrant service 300 block N. Dalmont St., warrant service E. Marland Blvd. and S. Dalmont St., battery 900 block S. Leech St., breaking and entering 1400 block E. Navajo Dr., warrant service 500 block E. Albertson Cir., unwanted subject 100 block N. Turner St., warrant service 300 block N. Turner St., domestic 100 block E. Corbett St., stolen vehicle 300 block N. Turner St., battery 1600 block E. Main St.

Lovington Police Department activity for 09-04-20 through 09-07-20 157 calls for service.

Two accidents: no injury 800 block W. Jefferson, no injury 9th St. and Ave. D.

11 criminal incidents: interference with child custody 200 block S. Love St., throwing or shooting stones arrows missles zero block W. Mesquite Ave., criminal damage to property zero block W. Ave. E, ambulance 500 block N. Chavez St., unwanted subject 1100 block W. Polk Ave., resisting evading obstructing an officer 500 block E. Gum St., lost or stolen 200 block S. Love St., suspicious 1600 block S. Main St., tampering 500 block N. East St., larceny 800 block W. Birch Ave., trouble with subject 200 block S. Love St.

Correction policy

The News-Sun is committed to accuracy in its news reports. Although numerous safeguards are in place to ensure accurate reporting, mistakes may occur. Confirmed factual errors will be corrected in this space daily. If you find a mistake, call 391-5435.

Court

from PAGE 1

possibly be delayed but looks forward to when the building is completed.

"I know it would be nice for Lea County to have one of the nicer courts in the state," Finger said. "I think some of the discussions indicate we are going to end up with a really great facility. That's going to be great for the community.

He added with COVID-19 social distancing is difficult because of the large caseload in the Magistrate Court and a new court building could help accommodate that.

"Quite frankly we have

outgrown this facility and

it is an older building so it

is going to make things a lot easier for the community and the people coming to court as well," Finger said. Mayor David Trujillo said it is disappointing the project has had a set back with the architect because construction gives encourage-

ment to the community and

shows Lovington is moving

forward. "In the current situation, that we're in, I would like to see construction going on," Trujillo said. "I wish that would have happened because right now it would

be nice be driving down Main seeing the Avenue D construction of the sidewalks, plus all the new businesses that are moved in, and then seeing the Magistrate Court being done. A lot of positive atmosphere."

The State currently leases the current Magistrate Court Building on Central and 1st Street. The new complex will be located on Main Street and Avenue A, across the street from the Lovington Public Library.

Trujillo said the building will bring more activity to the downtown area. Although there are vacant buildings downtown, there have been people starting to move in. He hopes the magistrate building will bring even more businesses to the downtown area.

The city has financed it through a New Mexico Finance Authority approved loan, and the rehiring of an architect will not cost the city anymore due to the state's termination of the contract.

"Based on the needs of the AOC, it was determined that they would like to construct a new, up to date facility that would meet their needs now

and in the future," Williams said.

The state will sign a 30-year lease agreement to the city for the updated facility and that will cover the cost of financing the facility, according to Williams. The lease agreement is also going to provide the funding for equipment, building repair, utilities, and janitorial services.

"Debt service payments will not begin until construction is complete and the facility is occupied," Williams said. "The payments for the debt service will be paid for by ...the State to the City as the monthly rent." Trujillo said three build-

ings will be torn down to accommodate the magistrate building. He thinks the new building will add to the "vibe" of Main Street and downtown.

"It's going to bring a lot of beauty to the downtown area," Trujillo said. "Long term I think it is going to help rejuvenate the downtown area, to bring more business to the downtown area."

Christina Rankin may be reached at courts@ hobbsnews.com.

The Southwest Symphony is delaying its season until next year due to COVID-19 restrictions.

Symphony

Lea County.

"Southwest Symphony is phony.org. revamping their website and finding new ways to engage founded in 1983. From its the community and cultivate new arts enthusiasts," Anderson said.

Inquiries may be directed to Southwest Symphony

two heaters, and updating oil/water production rates.

email at director@swsym-Southwest Symphony was

inception the Symphony has strived to bring a variety of music and dance programs to the citizens of Southeastern New Mexico. Each

cial now than ever to contin- executive eirector Deb Walk- season Southwest Symphoue musical performances in er at (575) 738-1041 or via ny traditionally presents seven concerts that includes classical, semi-classical, and non music performed by the Southwest Symphony Orchestra. Additionally, the Symphony acts as a presenter to bring performers that includes a variety of music and dance genres.

Shooting

Davis told her "this is your fault," before running out of the room.

The victim was shot in the right ear and right shoulder, according to the report. After being transported to Lea Regional Hospital, Seward was airlifted to Covenant Medical Center in Lubbock.

As officers taped off the u-shaped parking lot and questioned witnesses. The Chrysler was spotted in the parking lot of a hardware store on the 1800 block of N. Turner St.

"The vehicle began moving as officers approached the area with lights and sirens,' the report states.

Davis allegedly refused to stop and hit the police car, damaging the rear fender and pushing the vehicle out of the way, while an officer tried to block off a portion of Turner Street, the report said.

Davis then led officers on the high-speed chase.

Officers began chasing Davis south on Turner where he made his way to Sanger Street and turned west.

"The vehicle (Davis) continued west on Sanger at a high rate of speed passing other vehicles using the center turn lane and failing to stop at red lights," the report

states. "The Chrysler lost control at Sanger and Denson and crashed into a school zone flashing light pole."

Officers reported Davis exited the vehicle with his hands up and was arrested and taken to Hobbs City Jail. Officers found a black and silver Ruger SR40 on the passenger floorboard of the Chrysler.

The report stated Davis has two prior felony convictions.

In 2018, Davis took a plea for charges of unlawful taking of a motor vehicle and aggravated fleeing. Later the same year he took a plea on charges for possession of a controlled substance, according to court documents.

Davis was issued no bond by Judge Willie Henry in Magistrate Court on Friday. That same day the Fifth Judicial District Attorney's Office filed for pretrial detention to keep Davis behind bars while he is tried for

the crime. "The defendant poses a significant danger to the community. ... The defendant is a flight risk." the motion for pretrial detention states.

Christina Rankin may be reached at courts@hobbsnews.com.

Encore SUV, all courtesy of the Permian has raised as much as \$100,000 annually, in Auto Group.

Clampitt said planning for this year's raffle didn't start out with the idea of holding a virtual raffle. In the past, the event was held at the Lea County Event Center with a banquet.

"We knew we couldn't do at the Event Center, even in the parking lot," Clampitt said about discussions he and the club board had. "We talked about moving it to October, but that didn't seem like it would work so well. We would have to make people stay in their cars and how would we get them the

One activity that is sticking around is the silent auction, which Clampitt said also will be performed online and starts Sept. 24.

Going into its 37th year, the club's raffle is one of two major annual fundraisers that recent vears.

"We have a generous community," Clampitt said. "That's about the best way to put it. There are so many people in this community who care about these kids and care about the work we are doing. I will always be thankful."

The second fundraiser has been a trap shoot partnered with ConocoPhillips, but that is not taking place. Clampitt said there are plans to have a smaller event later in the year.

He added there is a need for additional funding since the club has lost out on potential revenue from flag football, no after-school programs, reimbursements on snacks during school time.

"Finances are pretty tough right now," Clampitt said. "The raffle means more than ever right now."

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea County

The proposed modification consists removing two engines, updating engine emission rates, updating glycol recirculation rate, removing

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

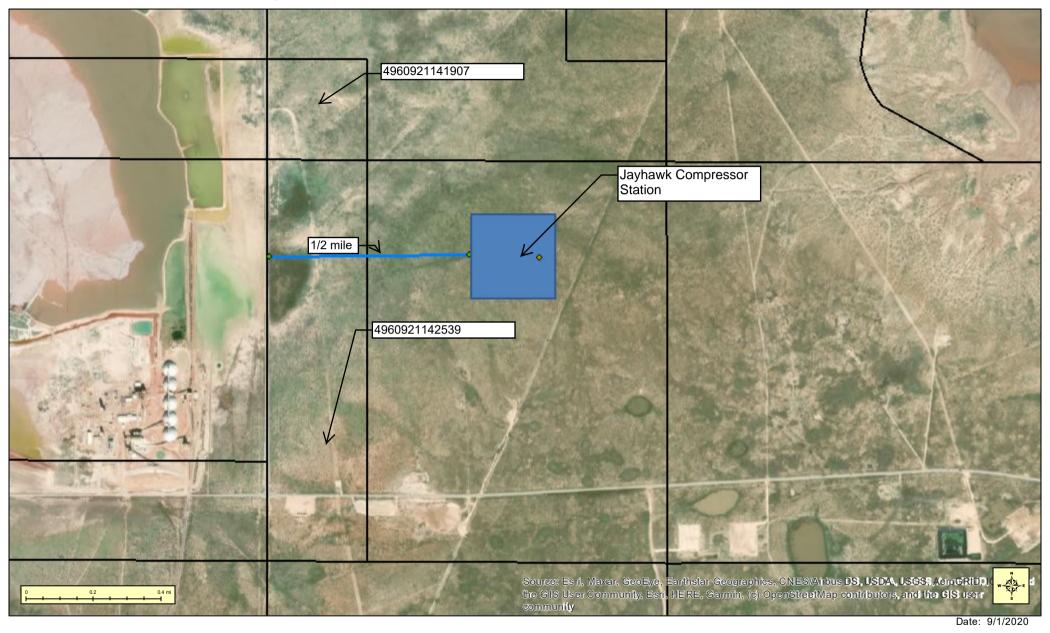
Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	27 pph	17 tpy
PM ₁₀	27 pph	17 tpy
PM _{2.5}	27 pph	17 tpy
Sulfur Dioxide (SO ₂)	10 pph	20 tpy
Nitrogen Oxides (NO _x)	587 pph	206 tpy
Carbon Monoxide (CO)	1130 pph	228 tpy
Volatile Organic Compounds (VOC)	1113 pph	260 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	35 pph	29 tpy
Toxic Air Pollutant (TAP)	35 pph	29 tpy
Green House Gas Emissions as Total CO2e	n/a	240,024 tpy

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.347; Spring, Texas

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.


Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557 Notice of Non-Discrimination

Attención

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination

Item 11.
A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail.

JayHawk Compressor Station with 1/2 Mile Radius

New Mexico Parcels

XTO - Jayhawk Compressor Station

Tab 10 Section 10 - Written Description of the Routine Operations of the Facility

Section 10

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Field gas flows into two inlet slug catchers. The site uses natural gas engines to compress the field gas to 1200-1300 psig, including nine (9) Caterpillar 3616TA engines (ENG1-ENG9) and two (2) Caterpillar 3516J engines (ENG11-ENG12). The Caterpillar engines are equipped with oxidation catalysts to reduce CO, VOC, and formaldehyde emissions.

The high-pressure gas is then dehydrated using triethylene glycol dehydration units (DEHY1-DEHY3), each handling up to 80 MMscfd each. The systems are equipped with flash tanks and condensers. Flash tank vapors are recycled in the dehydration system. The glycol still vent vapors are routed to condensers. Uncondensed vapors are controlled by the vapor combustor (VC1). Dehydrated gas is then transferred to a sales pipeline.

Low pressure liquids generated anywhere in the system are routed to a low pressure three phase separator (LPS). Vapors from the LPS are controlled by a VRU and routed to compression. When the LPS VRU is not operational, vapors from the LPS are routed to the flare system (FL1/FL2). From the LPS, oil at approximately 15 psig is dumped to four (4) oil storage tanks (OT1-OT4), which are controlled by the flare system (FL1/FL2). Water from the LPS flows to redundant skim tanks (SKT1/SKT2). The skim tanks are arranged as a redundant system in which one unit can be used if another is down for unforeseen circumstances. Water is then dumped to two (2) water tanks (WT1-WT2).

Any residual oil flows from the skim tanks into the oil storage tanks. The oil from the oil storage tanks are then pumped back into the high pressure three phase separator (HPS), to be transferred offsite via pipeline. Vapors from the water storage tanks and skim tanks are also controlled by the flare system (FL1/FL2). Oil can be trucked offsite or pumped offsite via pipeline, water is transferred offsite via pipeline to saltwater disposal (SWD).

High pressure liquids generated anywhere in the system are routed to high pressure three phase separator (HPS). Vapors from the high pressure separator are routed back to the inlet slug catchers. From the HPS, liquid hydrocarbons at approximately 400 psig are transferred offsite via pipeline pipeline. Water from the HPS is transferred offsite via pipeline to SWD.

The flare system (FL1/FL2) is also used to flare gas in the event of an emergency.

Tab 11 Section 11 -Source Determination

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under these factors in support of the responses below is optional, unless requested by NMED. **A. Identify the emission sources evaluated in this section** (list and describe): See Table 2A B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source. **☑** Yes \sqcap No Common Ownership or Control: Surrounding or associated sources are under common ownership or control as this source. **✓** Yes \square No Contiguous or Adjacent: Surrounding or associated sources are contiguous or adjacent with this source. **☑** Yes \square No C. Make a determination: or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the

- The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Tab 12 Section 12 - PSD Applicability Determination for All Sources

Section 12

September 2020: Revision 1

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

	- T-	c • •	٠.	•
Α.	This	tac1	1117	10.
/ 1.	11113	raci	LILY	10.

$ \overline{\mathbf{A}} $	a minor PSD source before and after this modification (if so, delete C and D below).
	a major PSD source before this modification. This modification will make this a PSD minor source.
	an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
	an existing PSD Major Source that has had a major modification requiring a BACT analysis $$
	a new PSD Major Source after this modification.

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 9/9/2020

Tab 13 Section 13 - Determination of State & Federal Air Quality Regulations

Section 13

September 2020: Revision 1

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are

stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column provide any information needed to determine if the regulation does or does not apply. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 2 Saved Date: 9/9/2020

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 1 MMBtu/hr.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility is not a gas processing plant.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	OT1- OT4	The site uses a flare to comply with 20.2.38 NMAC.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	FL1-3, RB1-3, ENG1- 9, ENG11 -12, HTR1	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility is a major source and will apply for a Title V Operating Permit.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	The facility is a major source and will apply for a Title V Operating Permit.
20.2.72 NMAC	Construction Permits	Yes	Facility	This application requests a NSR in accordance with 20.2.72.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	No	N/A	The site is subject to 20.2.72 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	A permit fee is included with this application.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.77 NMAC	New Source Performance	Yes	Facility	See regulatory discussion in Federal Regulations Citation section.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility does not fit into any of the source categories.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	There are no stacks to which this regulation would apply.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	DEHY1- 3, ENG1-9, ENG11- 12	See regulatory discussion in Federal Regulations Citation section.
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Compliance with the requirements of the GCP indicates compliance with NAAQS.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Facility	See regulatory discussion below.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart Ka	Storage Vessels for Petroleum Liquids Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	There are no turbines.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This is not a gas plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO2 Emissions	No	N/A	The facility does not operate a sweetening unit.
NSPS 40 CFR Part 60 Subpart OOOO	Crude Oil and Natural Gas Production, Transmission, and Distribution after August 23, 2011 and before September 18, 2015	No	N/A	The site will be constructed after 9/18/15. See NSPS OOOOa discussion below.
NSPS 40 CFR Part 60 Subpart OOOOa	Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	FUG	The storage tanks were constructed after the applicability date of the rule; however, XTO is requesting emissions be limited by permit to less than 6 tpy. The regulation is applicable to the storage tanks but the tanks are not affected sources. The site uses low-bleed pneumatic controllers. The site is subject to leak monitoring from fugitive components.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	TBD	ENG1-9, ENG11- 12	ENG1-ENG3 are subject to the engines are subject to the limitations in Table 1 per 40 CFR 60.4233(e). A determination of applicability will be made for each engine to be used at the site.

FEDERAL				
REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60 Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60 Subpart UUUU	Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	See Below	See Below	See regulatory discussion below.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	No	N/A	See regulatory discussion below.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1-	As a major source of HAP, sources subject to HH include storage vessels with flash emissions, fugitive components, and compressors in VHAP service ((see §63.760(b)(1)(ii), (iii), and (iv)). Fugitives and compressors are exempt per §63.769(b) since they are subject to NSPS OOOO. Storage vessels use a closed vent system connected to a combustor to comply with §63.766(b). The dehydrators process more than 3 mmscfd; however, since benzene emissions are less than 1 tpy, there are no applicable requirements. (See §63.764(E)(1))
MACT 40 CFR 63 Subpart HHH	Natural Gas Transmission and Storage Facilities	No	N/A	This regulation does not apply as the plant is not a natural gas transmission and storage facility as defined by the subpart (§63.1270(a)).
MACT 40 CFR 63 Subpart DDDDD	Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility is not a major source of HAP as defined in §63.7575 "Major source for oil and natural gas production facilities". Therefore, MACT 40 CFR 63 Subpart DDDDD does not apply.
MACT 40 CFR 63 Subpart JJJJJJ	Boilers and Process Heaters	No	N/A	The units are exempt per §63.1195(e) since they burn natural gas.
MACT 40 CFR 63 Subpart UUUUU	NESHAP Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	TBD	ENG1-9, ENG11- 12	ENG1-ENG3 comply with NSPS JJJJ to comply with NESHAP ZZZZ per 60.6590(c)(1). A determination of applicability will be made for each engine to be used at the site.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not subject to CAM.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Tab 14 Section 14 - Operational Plan to Mitigate Emissions

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- ▼ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Emissions during startups, shutdowns, maintenance and emergencies (ESDs) will be minimized through the application of industry standards and /or manufacturer recommended operating practices as described below. Trained technicians are responsible for the timely and effective implementation of these actions.

Startup procedures for the engines are normally completed in less than 15 minutes and shutdown procedures are normally completed in less than 5 minutes. During a cold startup, the units may emit at a higher rate than normal as the units warm to operating temperature; however, if the unit has been shut down for long enough that a warm up is required, the small excess emissions occurring during warmup will be more than offset by the lack of emissions during the shutdown period. Similarly, if the unit is restarted while warm, there should be no excess emissions as the unit is already at operating temperature.

Tab 15 Section 15 - Alternative Operating Scenarios

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

XTO is not proposing any alternative operating scenarios.

Tab 16 Section 16 - Air Dispersion Modeling

Section 16

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	X
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

Ш	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
\checkmark	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
	No modeling is required.

Tab 17 Section 17 - Compliance Test History

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.	

No tests have been performed.

Form-Section 19 last revised: 8/15/2011 Section 19, Page 2 Saved Date: 9/9/2020

Tab 18 Section 18 - Addendum for Streamline Applications (Not Applicable)

Section 18

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This section is not applicable since this is not a Streamline Permit Application.

Form-Section 19 last revised: 8/15/2011 Section 19, Page 3 Saved Date: 9/9/2020

Tab 19 Section 19 - Requirements for Title V Program

Section 19

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V application.

Tab 20 Section 20 - Other Relevant Information

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Form-Section 22 last revised: 3/7/2016 Saved Date: 9/9/2020

Tab 21 Section 21 - Addendum for Landfill Applications (Not Applicable)

Section 21

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

This is not a landfill.

Form-Section 22 last revised: 3/7/2016 Saved Date: 9/9/2020

Tab 22 Section 22 - Certification

Section 22: Certification

Company Name: XTO Energy Inc.	
I, <u>Benjamin Schneider</u> , hereby certify that the information and data sub possible, to the best of my knowledge and professional expertise and exper	
Signed this 24 day of Sephales, 2020, upon my oath or affirmation, b	pefore a notary of the State of <u>Illinois</u> .
*Signature	9/24/2020 Date
Benjamin Schneider Printed Name	Environmental Engineer Title
Scribed and sworn before me on this Haday of July 2020.	
My authorization as a notary of the State of the expires on the day	of Mad, 2002
Notary's Signature	Sept be 24 2020
Meres Ley Chath. Notary's Printed Name	THERESA LAY CHATHAM Notary Public, State of Texas Comm. Expires 03-24-2022 Notary ID 1026023-7

Tab 23 Section 23 - UA4

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-A: Identification Name of facility: Jayhawk Compressor Station 2 Name of company: XTO Energy Inc. 3 Current Permit number: 8152 4 Name of applicant's modeler: Bruce Ferguson 5 (601) 824-1860 Phone number of modeler: 6 E-mail of modeler: bferguson@fce-engineering.com

16	-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes□	No⊠				
2	Why is the modeling being done? Other (describe below)						
3	Describe the permit changes relevant to the modeling.						
	Change in facility equipment models, addition of flaring SSM emissions, facility location adjusted.						
4	What geodetic datum was used in the modeling?						
5	How long will the facility be at this location? Indefinite						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠				
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	155					

16	6-B: Brief							
	List the PSD baseline dates for this region (minor or major, as appropriate).							
8	NO2	3/16/1988						
8	SO2	7/28/1978						
	PM10	2/20/1979						
PM2.5 11/13/2013								
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).							
9	None							
10	Is the facility located in a non-attainment area? If so describe	pelow	Yes□	No⊠				
11	Describe any special modeling requirements, such as streamline permit requirements.							
	None							

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

	waivers).		•	
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments
	CO	8152	5/7/2019	
	NO_2	8152	5/7/2019	
1	SO ₂	8152	5/7/2019	
	H_2S			
	PM2.5	8152	5/7/2019	
	PM10	8152	5/7/2019	
	TSP			
	Lead			
	Ozone (PSD only)			
	NM Toxic Air			
	Pollutants			
	(20.2.72.402 NMAC)			

16-	16-D: Modeling performed for this application									
	For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.									
	Pollutant	ROI		Cumulative analysis	Culpability analysis		Waiver app	oroved		itant not ed or not ged.
	CO	\boxtimes								
	NO ₂	\boxtimes		\boxtimes						
	SO_2	\boxtimes		\boxtimes						
1	H ₂ S								\boxtimes	
	PM2.5	\boxtimes		\boxtimes						
	PM10	\boxtimes		\boxtimes						
	TSP*									
	Lead								\boxtimes	
	Ozone*									
	State air to: (20.2.72.40 NMAC)	` ′							\boxtimes	
		g was not perfort tting action is a r		P because the sta	andard was remo	ved. Oz	one was not	evalua	ated beca	ause
16-	E: New	Mexico to	xic air	pollutants	modeling					
1	application	None	•	,						
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.									
2	Pollutant	Emission Rate (pounds/hour)		Rate Screening unds/hour)	Stack Height (meters)	Correction Factor			Emission Correction	
16-	F: Mod	eling optio	ns							
1	Was the lat below.	est version of AEI	RMOD used	with regulatory of	lefault options? If	not exp	lain	Yes⊠		No□

16	-G: Surrour	nding source modeling			
1			March 11, 2020, MergeMaster File		
1	Date of surroundi	ng source retrieval	Spoke with Eric Peters by phone 8/19/20, and Eric relayed that the		
			3/11/20 was the best available data and could be used.		
	_	• • • • • • • • • • • • • • • • • • • •	r Quality Bureau was believed to be inaccurate, describe how the		
	sources modeled	differ from the inventory provided. If	changes to the surrounding source inventory were made, use the table		
	below to describe	them. Add rows as needed.			
2	AQB Source ID	Description of Corrections			
		All neighboring sources within 10 l	km were retained for cumulative modeling.		
	Various	Neighboring sources between 10 an	nd 25 km with source IDs less than 10,000 were removed from the		
	various	inventory.			
	Various	Various None of the neighboring sources were found to have emissions of 1000 lb/hr or greater and neighboring sources greater than 25 km were removed from the inventory.			
	7 4110415				
	39046E4		13.2 meters based on the effective diameter of flares for similar		
	3704024	facilities at the same PM _{2.5} emission	n rate.		

16-	16-H: Building and structure downwash							
How many buildings are present at the facility? None, only eight above ground storage tanks								
2	2 How many above ground storage tanks are present at the facility? There are 8 above ground storage tanks, no buildings							
3	Was building downwash modeled for all buildings and tanks? If not explain why below. Yes⊠ No□							
4	Building comments	No buildings onsite						

16-	I: Recept	ors and	modeled	property bou	ındary				
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.								
	A fence is to be	e placed 1 ft	inside the draw	ing line indicated on th	e plot plan.				
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area? Yes□ No⊠								
3	Are restricted a	area boundar	y coordinates in	ncluded in the modeling	; files?		Yes⊠	No⊠	
	Describe the re	ceptor grids	and their spacin	ng. The table below ma	y be used, adding row	s as need	led.		
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comme	ents		
	Cartesian	Circle	50 m	0 m	1 km				
4	Cartesian	Circle	100 m	1 km	3 km				
	Cartesian	Circle	250 m	3 km	6 km				
	Cartesian	Circle	500 m	6 km	10 km				
	Cartesian	Circle	1 km	10 km	50 km				
5	Describe recep	tor spacing a	along the fence	line.					
				along the fence line. R	eceptors within the fe	nce line	were removed	l .	
6	Describe the Pa	SD Class I a	rea receptors.						
	None								

16-	-J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠
		Т	T
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠

16	-K: Mo	deling	Scena	rios								
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).											
	Three scenarios were included for flaring: flaring under normal operations, flaring for SSM events and all flare emissions distributed evenly between the two facility flares.											
	Which scenario produces the highest concentrations? Why? There were assentially no differences in the scenarios, indicating that the flares are not the controlling factor for the											
2	There were essentially no differences in the scenarios, indicating that the flares are not the controlling factor for the maximum ground level impacts. Evenly distributing the emissions between the flares produces a larger SIA because this results in a lower plume rise for the same emission rate.											
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) No⊠											
4	If so, descr (Modify or Sources:											
	Hour of Day	Factor	Hour of Day	Factor								
5	Not Applied											
	If hourly, v	ariable em	nission rate	s were use	d that were	e not desci	ribed above	e, describe	them belov	V.		
6	Were differ	rent emissi	ion rates us	sed for sho	rt-term and	d annual m	odeling? I	f so descri	be below.	Yes□		No⊠
16-	L: NO ₂	Mode	eling									
	Which type Check all t		modeling v	were used?	•							
		ARM2										
1	\square 100% NO _X to NO ₂ conversion											
		PVMR	M									
		OLM										
		Other:	1 1'									
2	Describe the The model			deled usir	ng source o	rouns for	NOx consi	dering full	conversion	to NO ₂	The scen	nario for
	evenly dist									1 to 1102.	THE SEC	nario ioi
3	Were defau describe ar					ximum or	equilibriu	m) used? If	f not	Yes⊠		No□
	Describe th	ne design v	value used	for each as	veraging ne	eriod mode	eled					
4	1-hour: Hi			ioi cucii a	. Jingilig pi	-1104 111040						
		Annual: One Year Annual Average										

16-	M: Parti	culate Ma	tter Modelii	ng								
	Select the pollutants for which plume depletion modeling was used.											
1		PM2.5										
		PM10										
	⊠ None											
2	Describe the particle size distributions used. Include the source of information.											
3	Does the facility emit at least 40 tons per year of NO_X or at least 40 tons per year of SO_2 ? Sources that emit at least 40 tons per year of SO_2 are considered to emit significant amounts of precursors and must account for secondary formation of SO_2 are SO_2 a											
4	Was seconda	ry PM modeled for	or PM2.5?						Yes□		No⊠	
	If MERPs we below.	re used to accour	nt for secondary PM2	2.5 fill out tl	ne in	formation belov	w. If anot	her	method	was use	d describe	
	NO _X (ton/yr)		SO ₂ (ton/yr) [F			PM2.5] _{annual}			[PM2.5] _{24-hour}			
	204.66 (inclu	ding SSM)	19.49 (including SSM) 0.004 ug			004 ug/m^3)4 ug/m³			0.076 ug/m^3		
	Southwest Climate Zone Lowest MERPs											
	State County		Metric	Precurso	r	Emissions	Stack	М	ERP			
	Colorado	Weld Co	Annual PM _{2.5}	NO _x		1000	10	1	.0530			
5	Colorado	Weld Co	Annual PM _{2.5}	SO ₂		1000	10		7359			
	Colorado	Weld Co	Daily PM _{2.5}	NO_x		1000	10		5215			
	Colorado	Weld Co	Daily PM _{2.5}	SO ₂		1000	10		814			
	2 2 2	$PM2.5]_{annual} = SIL \times [NO_x \text{ Annual Emissions/}10530 + SO_2 \text{ Annual Emissions/}7359]$ $= (0.2 \text{ ug/m}^3)[(204.66/10530) + (19.49/7359)]$ $= 0.004 \text{ ug/m}^3$ $PM2.5]_{24\text{-hour}} = SIL \times [NO_x \text{ Annual Emissions/}5215 + SO2 \text{ Annual Emissions/}814]$ $= (1.2 \text{ ug/m}^3)[(204.66/5215) + (19.49/814)]$										
		= 0.076 ug/r	n ³									

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	None
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.

16-	O: PSD Increm	nent and Source	IDs							
		Tables 2-A, 2-B, 2-C, 2-E, match? If not, provide a crow.			Yes⊠	No□				
	Unit Number in UA-2			Unit Number in Modeling Files						
1				FL1_Norma	al (Normal Operation	g Emissions sc	enario)			
	FL1			FL1_SSM ((SSM scenario)					
				FL1_Even (All flare emissions	distributed eve	nly)			
				FL2_Norma	al (Normal Operation	g Emissions sc	enario)			
	FL2			FL2_SSM ((SSM scenario)					
				FL2_Even (All flare emissions	distributed eve	nly)			
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below. Yes □ No□									
	Normal operations match 2-E. SSM matches 2-F. Flare emissions from 2-E and 2-F were also evenly distributed across the two flares, this should produce the maximum flaring emissions as it would result in the maximum emissions at the lowest plume rise.									
3	Have the minor NSR exc been modeled?	empt sources or Title V Ins	significant A	ctivities" (Ta	ble 2-B) sources	Yes⊠	No□			
	Which units consume in	crement for which pollutar	nts?							
4	Unit ID	NO_2		O_2	PM10		PM2.5			
	All Facility Units	X	2	X	X		X			
5	PSD increment descripti (for unusual cases, i.e., bafter baseline date).	on for sources. paseline unit expanded emi	ssions							
6	This is necessary to veri	ation dates included in Tab fy the accuracy of PSD inc tion status is determined for	rement mod	eling. If not p	olease explain	Yes⊠	No□			
	Facility has not begun co	onstruction								

16-P: Flare Modeling For each flare or flaring scenario, complete the following Effective Flare Diameter (m) Flare ID (and scenario) Average Molecular Weight Gross Heat Release (cal/s) 1,107,992 FL1_Normal 43.98 0.869 FL1_SSM 21.20 169,394 0.363 138,014,571 10.322 FL1_Even 22.58 FL2_Normal 21.20 169,394 0.363 FL2_SSM 22.53 274,921,149 14.570 FL2_Even 22.58 138,014,571 10.322

XTO ENERGY INC.

16-	Q: Volume and Related Sources								
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes□	No⊠						
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.								
	Values for large trucks in the NMED Guideline								
3	Describe how the volume sources are related to unit numbers. Or say they are the same.								
	Unit No. ROAD represented by L0000001 through L0000024								
4	Describe any open pits.								
	None								
5	Describe emission units included in each open pit.								
	None								
16-	R: Background Concentrations								
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□						
	CO: Del Norte High School (350010023)								
	NO ₂ : Hobbs-Jefferson (350250008) PM2 5: Hobbs Jefferson (350450019)								
PM2.5: Hobbs-Jefferson (350450019)									
	PM10: Hobbs-Jefferson (350250008)								
	SO ₂ : Amarillo (483751025)								
	Other:								
	Comments:								
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠						
16.	S: Meteorological Data								
10	Was NMED provided meteorological data used? If so select the station used.								
1	was twild provided increasing and asea: it so select the station used.	_	_						
1	Artesia Year 2015	Yes⊠	No□						
	If NMED provided meteorological data was not used describe the data set(s) used below. Discu	ss how missing	data were						
2	handled, how stability class was determined, and how the data were processed.								
16-	T: Terrain								
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□						
2	What was the source of the terrain data?								
-	NED data through http://www.webgis.com/, downloaded through the Lakes Environmental GU	I							

Describe the modeling files:					
File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative culpability analysis, other)			
SIA\NOx.zip	NO2	ROI			
SIA\CO.zip	CO	ROI			
SIA\SO2.zip	SO2	ROI & Cumulative			
SIA\PM10.zip	PM10	ROI			
SIA\PM25.zip	PM2.5	ROI			
CIA\NO2.zip	NO2	Cumulative			
CIA\PM10.zip	PM10	Cumulative			
CIA\PM25.zip	PM2.5	Cumulative			
Generic zip file contents are summariza					
Artesia-Midland_2015.PFL & .SFC	Met Data as downloaded from NMED				
jayhawk.jgw, .jpg, .wdt	Georeferenced facility layout				
Surrounding Sources\	Surrounding source files generated by MergeMaster				
MERPs table_export.xlsx	MERPs downloaded from EPA for Southwest Climate Zone				
File structure within zip file					
[Pollutant].ADI	AERMOD input file				
[Pollutant].ADO	AERMOD output file				
[Pollutant].sum	AERMOD output summary file				
[Pollutant].bpi	BPIP input file				
[Pollutant].pro	BPIP output file				
\[Pollutant].AD\	Plot File Directory				
[Avg Period][Rank]G[xxx].PLT	Plot file naming convention. Where facility source groups were used G001 denotes normal operation, G002 denotes SSM operations and G003 denote flaring evenly distributed between flares. For PM10 & PM2.5 cumulative denotes NAAQS modeling and G002 denotes PSD increment modeling.				

16-	V: PSD New or Major Modification Applications (Not A	Applicable	e)
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□
3	Describe how preconstruction monitoring has been addressed or attach the approved preconst monitoring exemption.	ruction monitorin	ng or
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.		
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□

16-W: Mod	eling	g Result	S									
1	If am require signif	nbient standar red for the so	rds are exceeded urce to show the for the specific	hat the co	ontribution	from this sou	arce is less th	an the	s is Yes□	No⊠		
2		ify the maxin	num concentra	tions froi	n the mode	ling analysis	. Rows may	be modifi	ed, added and re	moved from the	able below	
				PM	d on	/e ion	ıdard	ndard		Location	ion	
Pollutant, Time Period and Standard		Modeled Facility Concentration (µg/m3)	Modeled Concentration with Surrounding Sources (µg/m3)	Secondary PM (µg/m3)	Background Concentration (µg/m3)	Cumulative Concentration (µg/m3)	Value of Standard (μg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)	
CO 1hr NMAAQS		190.41094	N/A	N/A	2,203	2,393.41	9,960.1	24%	614150	3605050	3,481	
CO 8hr NMAAQS		91.30822	N/A	N/A	1,524	1,615.31	14,997.5	11%	614150	3605050	3,481	
NO ₂ 1hr NAAQS		109.90173	N/A	N/A	64.2	174.10	188.03	93%	614150	3605100	3,481	
NO ₂ Annual NMA	AQS	7.85998	N/A	N/A	8.1	15.96	94.02	17%	613756.38	3605221.00	3,472	
NO ₂ Annual PSD		7.85998	N/A	N/A	8.1	15.96	25	64%	613756.38	3605221.00	3,472	
SO ₂ 1hr NAAQS		18.88118	N/A	N/A	47.0	65.88	196.4	34%	614150	3605050	3,481	
SO ₂ Annual NMAA	AQS	0.96430	N/A	N/A	0.670	1.63	52.4	3%	613707.55	3605172.93	3,472	
SO2 3-hr PSD		Compliance with 1-hr NAAQS standard indicates compliance with increment										
SO2 24-hr PSD*		5.35741	N/A	N/A	<47.0	52.36	91	58%	614000	3604850	3,483	
SO ₂ Annual PSD		0.96430	N/A	N/A	0.670	1.63	20	8%	613707.55	3605172.93	3,472	
PM ₁₀ 24hr NAAQS	;		13.37085	N/A	37.3	50.67	150	34%	613707.55	3605172.93	3,472	
PM ₁₀ 24hr PSD			10.75343	N/A	N/A	10.75	30	36%	613756.38	3605221.00	3,472	
PM ₁₀ Annual PSD			3.86279	N/A	N/A	3.86	17	23%	613756.38	3605221.00	3,472	
PM _{2.5} 24hr NAAQS	3		2.91080	0.076	13.4	16.39	35	47%	613756.38	3605221.00	3,472	
PM _{2.5} Annual NAAQS			1.36168	0.004	5.9	7.27	12	61%	613756.38	3605221.00	3,472	
PM _{2.5} 24hr PSD			3.29279	0.076	N/A	3.37	9	37%	613707.55	3605172.93	3,472	
PM _{2.5} Annual PSD			1.25929	0.004	N/A	1.26	4	32%	613756.38	3605221.00	3,472	

1

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

A significant impact analysis was performed for pollutants identified in Section 16-D. CO impacts were found to be below the modeling significance level. Impacts for the remaining pollutants were found to be above the modeling significance level and a cumulative impact was required for these pollutants.

PM₁₀ and PM_{2.5} impacts from surrounding sources were accounted for by explicitly modeling all sources within 10 km of the project and all increment consuming sources within 25 km of the project. Existing air quality modeling values were added to the modeled PM₁₀ and PM_{2.5} impacts to account for distant surrounding sources. EPA MERPs guidance was used to estimate the PM2.5 secondary formation and the estimated impacts were added to the modeled and monitored impacts. Receptors for the cumulative modeling consisted of those receptors found to be above the modeling significant impact level in the significant impact analysis. Estimates of PM2.5 secondary formation were added to the significant impact analysis to determine receptors to retain for the cumulative analysis. Nearby and distant surrounding sources impacts for SO₂, NO_x and CO were accounted for in the analysis by using existing air quality monitoring in the area.

The modeled impacts combined with the existing air quality in the area were found to be compliant with the ambient air quality standards, i.e., NAAQS, NMAAQS and PSD increment. The proposed project will not cause or contribute to an exceedance of the ambient air quality standards, the NMED modeling requirements have been satisfied and the permit can be issued.

Form Revision: 12/11/2019 UA4, Page **12** of **12** Printed: 9/21/2020