NEW MEXICO ENVIRONMENT DEPARTMENT DOE OVERSIGHT BUREAU WASTE ISOLATION PILOT PLANT ENVIRONMENTAL SURVEILLANCE REPORT 1995

GROUND WATER SURFACE WATER SOIL SEDIMENT BIOTA

NMED/DOE/AIP-96/2

STATE OF NEW MEXICO
ENVIRONMENT DEPARTMENT
DOE OVERSIGHT BUREAU
WASTE ISOLATION PILOT PLANT
P. O. BOX 3090
CARLSBAD, NEW MEXICO 88221

JULY 1996

NMED/DOE OVERSIGHT BUREAU WASTE ISOLATION PILOT PLANT ENVIRONMENTAL SURVEILLANCE REPORT 1995

GROUNDWATER
SURFACE WATER
SOIL
SEDIMENT
BIOTA

NMED/DOE/AIP-96/2

Preparer

Pat W. McCasland Water Resource Specialist III

STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT DOE OVERSIGHT BUREAU WASTE ISOLATION PILOT PLANT P. O. BOX 3090 CARLSBAD, NEW MEXICO 88221

JULY 1996

			i
			1
			,
		A D	
			Č.

CONTENTS

FORE'	ARD	Ι
CONT	NTS	ii
ACRO	TYMS	'n
1.0	EXECUTIVE SUMMARY	1
2.0	NTRODUCTION	4
3.0	FACILITY DESCRIPTION	6
4.0	1995 DATA EVALUATION	
	DATA QUALITY and COMPARABILITY DATA COMPARISON MINIMUM DETECTABLE ACTIVITY FIELD PROJECT REPORTS ACTION LEVELS 1.5.1 Radiological Upper and Lower Action Levels 2.4.5.2 Non-radiological Upper and Lower Action Level 2.4.5.3 Non-radiological Health Based Limits 2.5.5 ACTION Level 2.6.6.7 Non-radiological Health Based Limits 2.6.7 Non-radiological Health Based Limits 3.7 Non-radiological Health Based Limits 3.8 Non-radiological Health Based Limits 3.8 Non-radiological Health Based Limits 4.7 Non-radiological Health Based Limits 4.8 Non-radiological Health Based Limits 4.9 Non-radiological Health Based Limits	8 8 4 7 0
5.0	RADIOLOGICAL SURVEILLANCE	1
	5.2 SEDIMENT	2 3 3
	5.3 SURFACE WATER	4 4 4
	5.4.1 Mean - Near Field Locations (WIPP South South and WIPP East East) 5.4.2 Far Field Control location (Southeast Control)	5

NMED/DOE/AIP-96/2

	5.5	GROUNDWATER	
		5.5.1 Mean - Culebra member of the Rustler Formation: (Wells; H-03b3, H-1	
		H-18, WIPP-19, WQSP-1, WQSP-2, WQSP-3, WQSP-4, and WQSP-6)
			25
		5.5.2 Dewey Lake Formation (Well WQSP-6a)	. 26
	5.6	RADIOLOGICAL EXCEEDANCE MATRIX	. 27
6.0	NON	I-RADIOLOGICAL SURVEILLANCE	. 28
	6.1	GROUND WATER	. 28
		6.1.1 Volatile Organics	. 28
		6.1.2 Major Cations (Ca, Na, K, & Mg) and Trace Metals (Fe, Li, & B)	. 29
	6.2	SURFACE WATER	. 29
		6.2.1 Facility West	. 29
	6.3	SOIL	. 30
		6.3.1 Solid Waste Management Unit - 001g	. 30
	6.4	BIOTIC TISSUE	. 30
		6.4.1 Catfish (Pecos River)	. 30
	6.5	NON-RADIOLOGICAL EXCEEDANCE MATRIX	. 31
7.0	CON	ICLUSIONS and RECOMMENDATIONS	. 32
8.0	REF	ERENCES	. 36
APP:	ENDIX	I	. 38
	1995	Biotic Tissue Radiochemistry	. 39
		Summary of 1995 Biotic Tissue Radiochemistry Results	. 40
	1995	Sediment Radiochemistry	. 41
		Summary of 1995 Sediment Radiochemistry Results (1 of 2 pages)	. 42
		Summary of 1995 Sediment Radiochemistry Results (2 of 2 pages)	
	1995	Surface Water Radiochemistry	. 44
		Summary of 1995 Surface Water Radiochemistry Results (1 of 3 pages)	. 45
		Summary of 1995 Surface Water Radiochemistry Results (2 of 3 pages)	. 46
		Summary of 1995 Surface Water Radiochemistry Results (3 of 3 pages)	. 47
	1995	5 Soil Radiochemistry	. 48
		Summary of 1995 Soil Radiochemistry Results	. 49
	1995	5 Ground Water Radiochemistry	. 50
		Summary of 1995 Ground Water Radiochemistry Results (1 of 3 pages)	. 53
		Summary of 1995 Ground Water Radiochemistry Results (2 of 3 pages)	. 52
		Summary of 1995 Ground Water Radiochemistry Results (3 of 3 pages)	53
	1995	5 General Chemistry and Metals	ું. 54
		Summary of 1995 General Chemistry and Metals Analytical Results (1 of 2 page	ges)
		•	- 20

NMED/DOE/AIP-96/2

	Summa	ary of 1995 General Chemistry and Metals Analytical Results (2 of 2 pages)
		56
1995		Organics
		ary of 1995 Volatile Organic Analytical Results
1995		emivolatile Organics and TCLP Metals
	SWMU	J 001-g Investigation 10/04/96 - TCLP Semivolatile Organics and TCLP
100		Metals Results
1995 1	Biotic Ti	ssue Total Metals 61
	Biotic '	Tissue 1995 - Total Metals Results
		63
Graph	BT-1	NMED/WIPP Biotic Tissue Radiochemistry, 1995 Pecos River Catfish
Graph	BT-2	NMED/WIPP Biotic Tissue Radiochemistry, NW1 Monitoring Plot -
_		Vegetation 1995
Graph	SED-1	NMED/WIPP 1995 Sediment Radiochemistry, Mean Activity Pecos River
-		Locations
Graph	SED-2	NMED/WIPP 1995 Sediment Radiochemistry, Mean Activity Pecos River
-		Locations
Graph	SED-3	NMED/WIPP 1995 Sediment Radiochemistry, Mean Activity Pecos River
•		Locations
Graph	SW-1	NMED/WIPP 1995 Surface Water Radiochemistry, Mean Activity Pecos
•		River Locations
Graph	SW-2	NMED/WIPP 1995 Surface Water Radiochemistry, Mean Activity Pecos
		River Locations
Graph	SW-3	NMED/WIPP 1995 Surface Water Radiochemistry, Mean Activity Pecos
,		River Locations
Graph	SOI-1	NMED/WIPP 1995 Soil Radiochemistry, Mean Activity of Selected
		Isotopes
Graph	GW-1	NMED/WIPP 1995 Culebra Ground Water, Mean Activity of Selected
<u> </u>		Isotopes
Graph	GW-2	NMED/WIPP 1995 Culebra Ground Water, Mean Activity of Selected
<u></u>		Isotopes
Granh	GW-3	NMED/WIPP 1995 Culebra Ground Water, Mean Activity of Selected
Grup.	. •	Isotopes
Granh	GW-4	NMED/WIPP 1995, Well H-03b3 Major Cations
		NMED/WIPP 1995, Well H-14 Major Cations
		NMED/WIPP 1995, Well H-18 Major Cations
		NMED/WIPP 1995, Well WIPP-19 Major Cations
Grapi	. 3 11-/	21412201 11222 1775, 11011 11222-27 11111JUL VILLOID
APPENDIX I	П	
		Proposed WIPP Radionuclide Disposal Inventory 8

NMED/DOE/AIP-96/2

APPENDIX IV .	
Figure 1	WIPP Site Location in Southeastern New Mexico
Figure 2	Biotic Tissue sample locations: Catfish
Figure 3	Biotic Tissue sample locations: Vegetation
Figure 4	Sediment and Surface water Sample locations
Figure 5	Soil Sample locations
Figure 6	Ground water sample locations

ACRONYMS

AIP Environmental Oversight and Monitoring Agreement Between the U.S.

Department of Energy and the State of New Mexico, October 22, 1990

ASME The American Society of Mechanical Engineers

ANSI American National Standards Institute
CAO Carlsbad Area Office of the DOE
CH Contact Handled TRU-waste

DOE/OB New Mexico Environment Department DOE Oversight Bureau

DOE U.S. Department of Energy

EMOP 1995 NMED/WIPP Environmental Monitoring and Oversight Plan

EMP WIPP Environmental Monitoring Plan, DOE/WIPP 94-024

EPA U.S. Environmental Protection Agency

FW Facility West sample location
HBRL Health Based Regulatory Limit
INT Indian Tank sample location

ITRI Inhalation Toxicology Research Institute

LAL Lower Action Level

LANL Los Alamos National Laboratory
MDA Minimum Detectable Activity
MCL Maximum Contaminant Level

MDL Minimum Detection Limit or Minimum Detectable Level

NMED State of New Mexico Environment Department

NQA Nuclear Quality Assurance

NW-1 Northwest-1 Ecological monitoring plot WIPP site sample location

QAMS Quality Assurance Management Staff of the EPA Office of Research and

Development, Office of Monitoring Systems and Quality Assurance

RBC Risk-Based Concentration

RCRA Resource Conservation and Recovery Act

RH Remote Handled TRU-waste

SECS Southeast Control Surface sample location
SNLA Sandia National Laboratory Albuquerque
TCLP Toxicity Characteristic Leaching Procedure

TRU-waste Radioactive waste with greater than 100 nano-curies/gram of transuranic

radionuclides, sometimes referred to as TRU - mixed waste if containing

hazardous wastes.

UAL Upper Action Level

WEED WIPP East East Deep sample location

WIN WIPP site raw water influent sample location

WIPP Waste Isolation Pilot Plant

WSSI WIPP South South Intermediate sample location

		×		

1.0 EXECUTIVE SUMMARY

The New Mexico Environment Department (NMED), under authority granted by the "Environmental Oversight and Monitoring Agreement Between the U.S. Department of Energy (DOE) and the State of New Mexico, 1995", conducts an independent environmental monitoring and oversight program at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The program is managed by the NMED DOE Oversight Bureau.

This report summarizes NMED data from the 1995 sample year (January - December 1995) and compares the NMED data set with the WIPP radiological and non-radiological environmental baseline concentration ranges published by DOE/WIPP for Biotic Tissue, Ground Water, Surface Water, Soil, and Sediment. Sufficient WIPP baseline sample size (n) exists for Surface Water, Ground Water, Sediment, and Soil. For Biotic Tissue, i.e., rabbit, quail, fish, and beef, however, there are only 1 or 2 analyses, which does not provide for calculation of statistical parameters and distributions.

In summary, data collected in 1995 by NMED are consistent with the WIPP radiological baseline and the background ground water characterization ranges. The report notes a few instances where the calculated Upper Action Level (UAL) is exceeded. By employing control charts (Appendix II) to graphically depict variations/exceedances at the 95% confidence interval, this report concludes that the WIPP baseline summaries appropriately define the environmental mean concentrations of the major radionuclides and ground water concentrations of major cations and trace metals, with only a few minor exceptions. The report also concludes that the nominal environmental concentrations of nuclides and typical non-radiological ground water chemistries present in the vicinity of the WIPP have not changed to any great extent since when the WIPP baseline information was generated in 1985 through 1988.

As would be expected with a facility which has not yet received any wastes, the report notes that here were no observed exceedances of reference regulatory standards in either the NMED or DOE/WIPP data sets.

The report recommends that, prior to waste emplacement, DOE/WIPP take advantage of the additional and more contemporary pre-operational information, supported by lower radiological detection capabilities (refer to Section 4.3), to revise and enhance the existing radiological baseline or develop a companion baseline for the most recent monitoring/surveillance years. The following are additional specific recommendations contained within the report:

- 1.) Include ²⁴¹Am in the radiological baseline summary for Ground Water, Surface Water, Sediment, and Biotic Tissue.
- 2.) Develop and establish investigatory thresholds such as the Upper Action Level and the Health Base Regulatory Limit by media for each nuclide. These should be in place before the commencement of operations.
- 3.) Investigate the baseline UAL exceedances of ^{233/234}U (Surface Water and Soil), ²³⁵U and ²³⁸U(Vegetation, Sediment, Surface Water, and Soil), and ⁹⁰Sr (Ground Water). Refer to 5.6 Radiological Exceedance Matrix.
- 4.) Expand the analytical suite for WQSP wells 1-6a to verify that the wells were not inadvertently contaminated during drilling and completion and for future reference if they are intended for use as RCRA ground water compliance sample locations. Appendix IX constituents should be completed for each well.
- 5.) Develop and implement a comprehensive data analysis program in accordance with the WIPP Environmental Monitoring Plan (DOE/WIPP 94-024).

- 6.) Include the West Retention Basin (NMED 1995 Facility West sample location) as a radiological baseline sample location for surface water and sediment.
- 7.) Establish the specific activity baseline range for ^{233/234}U to accommodate contemporary analytical reporting protocols, as opposed to reporting separate baseline ranges for ²³³U and ²³⁴U.

2.0 INTRODUCTION

Through the 1995 "Environmental Oversight and Monitoring Agreement Between the U.S. Department of Energy (DOE) and the State of New Mexico, 1995", the State of New Mexico has been authorized to implement site specific independent environmental monitoring and oversight programs at the DOE facilities located in New Mexico, i.e., Sandia National Laboratory, the Inhalation Toxicology Research Institute, Los Alamos National Laboratory, and the Waste Isolation Pilot Plant (WIPP). The purpose of the agreement is: "...to help assure that activities at DOE facilities are protective of the public health, safety and the environment. Such assurance will be accomplished through assessment of DOE's compliance with applicable laws, including rules, regulations, and standards; prioritization of cleanup and compliance activities; and a vigorous program of independent monitoring and oversight by the State of New Mexico." The agreement is administered by the State through the New Mexico Environment Department (NMED) DOE Oversight Bureau and provides support to personnel located at each facility. The agreement is one of a series of such agreements with states collectively known as "Agreements in Principle", the result of the 1988 DOE "cooperation and openness" initiative providing for independent environmental oversight at DOEs' nuclear defense, production, and research facilities while maintaining national security.

Oversight personnel have been at the WIPP site since July 1991, actively participating in environmental monitoring activities as observers, as well as, collecting split and co-located environmental samples and conducting independent monitoring activities and assessments. The independent environmental monitoring activities conducted by NMED/WIPP personnel are governed by the Site Specific Protocol for Implementation of the Environmental Oversight and Monitoring Agreement for the Waste Isolation Pilot Plant, April, 1996; the New Mexico Environment Department Site Specific Work Plan for the Waste Isolation Pilot Plant, 1996; and the New Mexico Environment Department Waste Isolation Pilot Plant Site Specific Health and Safety Plan, November 1992. Each of these plans were developed by NMED/WIPP to facilitate

the oversight role of NMED under the Agreement. The Site Protocol describes general roles and interface responsibilities of both agencies, the Work Plan defines general work scope, and the Health and Safety Plan provides for safe work consistent with the WIPP site safety program, as well as, the higher tiered NMED Health and Safety program. The draft 1995 NMED/WIPP Environmental Monitoring and Oversight Plan, NMED/WIPP 95-001(EMOP), references the Site Protocol, the Health and Safety Plan, and adds detail to the general work scope introduced in the Work Plan, i.e., sample locations, sample dates, specific quality assurance protocols, sample collection and handling procedures, data management, reporting, and prescribes analytical suites. Revisions are made annually to accommodate changes in the annual WIPP site environmental sampling schedule and proposed analytical suites.

This report summarizes results of NMED independent monitoring activities during the 1995 sampling year (January - December 1995) and provides specific observations regarding significant changes relative to the established WIPP environmental background concentrations for biotic tissue, ground water, surface water, soil, and sediment. NMED evaluation of the DOE/WIPP airborne particulate and effluent monitoring programs and the meteorological monitoring program will be provided in a subsequent report. Recommendations are offered to improve the current WIPP environmental monitoring program. All data generated by NMED/WIPP for the respective environmental media in 1995 are provided as tables in Appendix I and graphs are provided as Appendix II to illustrate the relationship of the NMED 1995 sample year data to the WIPP background concentration ranges, as well as, the health based thresholds. The DOE/WIPP radiological background information for all environmental media is published in the Statistical Summary of the Radiological Baseline for the Waste Isolation Pilot Plant, DOE/WIPP 92-037, March 1992 and for non-radiological ground water background characterization, the Background Water Quality Characterization Report for the Waste Isolation Pilot Plant, DOE/WIPP 92-013, June 1992. Both documents are as Appendices 1 and 4, respectively, in the Waste Isolation Pilot Plant Site Environmental Report for Calendar Year 1991, **DOE/WIPP 92-007.**

3.0 FACILITY DESCRIPTION

The Waste Isolation Pilot Plant is an Energy Department facility located approximately 42 km (26 miles) east of Carlsbad, New Mexico (Appendix IV-Figure 1) and is the proposed disposal site for TRU-mixed waste (hazardous waste contaminated with transuranic radionuclides) generated by the nation's defense industry. Waste will be transported to the WIPP via truck and emplaced in the mined repository 655 meters (2150 feet) below the surface within a roughly 600 meter (2,000 feet) thick evaporite (salt) sequence, known as the Salado Formation. The total volume of TRUmixed waste may not exceed 6.2 million cubic feet and the estimated specific activity of the total repository inventory is 5.7 million Curies (WIPP Transuranic Waste Baseline Inventory Report, Revision 1, CAO-94-1005). Surface facilities are situated on flat to gently rolling hills known as the Los Medanos in Southeastern New Mexico and is characteristic of the Upper Chihuahuan desert biome. Currently, the facility is seeking a certification of compliance with 40 CFR 191, "Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes" from the U.S. Environmental Protection Agency (EPA) and a Resource Conservation and Recovery Act, 40 CFR 264, (RCRA) disposal permit from the State of New Mexico. DOE WIPP has also petitioned the EPA to grant a No-Migration Determination in accordance with 40 CFR 268.6. No TRU-mixed waste has been emplaced in the WIPP.

4.0 1995 DATA EVALUATION

This evaluation focuses primarily on determining whether the 1995 NMED data differ significantly from the environmental background concentration ranges published for the WIPP site environs. NMED data is supported with quality assurance protocols set forth in the draft DOE-OB Standard Operating Procedures, which addresses sampling and analytical protocols, and is referenced in the NMED/WIPP Site Specific Work Plan and the draft NMED/WIPP Environmental Monitoring and Oversight Plan.

4.1 DATA QUALITY and COMPARABILITY

NMED 1995 data is derived from analysis of split DOE/WIPP samples or as co-located samples (collected alongside DOE/WIPP). This provides the necessary initial relationship (temporal and spatial) between data generated by the two agencies. Comparability is also subject to data quality, therefore NMED/WIPP has implemented similar quality assurance protocols and guidance employed by DOE/WIPP that govern sample handling and analytical quality controls. The contracting radioanalytical laboratories used by the NMED in 1995 participated in the DOE Environmental Measurements Laboratory (EML) Interlaboratory comparison program. The EML report, EML-569 July 1995, reports acceptable analysis of the nuclides in the various environmental matrixes and indicates a well controlled laboratory analytical system or process during the period in which the 1995 NMED data was produced.

DOE/WIPP complies with guidance provided by "Quality Assurance Program Requirements for Nuclear Facilities", ASME NQA-1, and is in the process of developing Quality Assurance Project Plans consistent with "Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans", EPA QAMS-005/80.

4.2 DATA COMPARISON

When appropriate, control charts or graphs are used to visually compare NMED 1995 data to the established DOE/WIPP baseline/background concentration ranges and the Upper Action Levels. Where sufficient NMED data exists and similar locations can be statistically summarized, a mean and standard deviation is calculated. Statistical comparison of the DOE and NMED data sets will be performed in the future when more data become available.

4.3 MINIMUM DETECTABLE ACTIVITY

The American National Standards Institute (ANSI) has proposed, ANSI N42.23, "Measurement and Associated Instrumentation Quality Assurance for Radioassay Laboratories," September 10, 1995, which states; "The Minimum Detectable Concentration (Minimum Detectable Activity [MDA] expressed in concentration units), by definition, is a concept that addresses the capabilities of a measurement process under a given set of nominal experimental conditions" and describes the proper uses of the *a priori* MDC (before the individual measurement) as;

- a. Comparing different measurement techniques or alternative implementations of a given technique (under the stated nominal conditions);
- b. Determining whether a proposed measurement method is appropriate for a given set of sample characteristics (including estimates of the nominal levels of interferences anticipated in the batch) and client expectations; and
- c. Judging whether certain regulatory limits are satisfied by the proposed measurement process as applied to a batch of sample measurements.

The standard also cautions against using the a priori MDC to:

a. Compare the results of an individual sample measurement to the MDC (MDA expressed in

concentration units) in order to assess the "worth" or "accuracy" of the measured value;

- b. Determine a "sample specific MDC"; and
- c. Censor the results of an individual measurement due to its being "less than MDC."

According to the standard, the best interpretation of individual measurements lies in the estimate of total propagated uncertainty bounds for each result and that the estimated confidence interval is the best information available for that measurement. The Statistical Summary of the Radiological Baseline for the Waste Isolation Pilot Plant, DOE/WIPP 92-037, March 1992, summarizes the baseline environmental information gathered during the period from 1985 to 1988 and reports for each nuclide: the mean concentration value, associated standard deviation, and standard error (estimated as the standard deviation divided by the square root of the sample size, and is by definition, the maximum likelihood estimator of the standard deviation of the mean), as well as, the process MDA. Concentrations of the naturally occurring nuclides or those deposited as a result of worldwide fallout are expected to be nominal in the WIPP environs and on occasion negative measurements do occur. While not a physical reality, this can be expected if the environmental concentration of the nuclide approaches zero, e.g., an analyte with a mean concentration of zero would have a normal distribution consisting of 50% negative values and 50% positive values. For example ³H and ²³⁷Np are consistently reported as negative in the WIPP baseline and along with ²⁴⁴Cm, were not analyzed in 1995. It should also be understood, that the standard deviation is a measure of precision and is a function of the concentration of analyte; i.e., as the absolute concentration approaches the limit of detection, precision deteriorates, therefore, the lower the process MDA the more credible the results. The graphs presented in Appendix II illustrate the respective 1995 NMED and WIPP Baseline mean values, the associated upper and lower 95% confidence intervals, i.e., plus and minus two standard deviations, respectively, and the specific process MDA.

The following exercise compares the reported radioanalytical process capabilities (MDA/MDL) of the respective agencies and is not intended to qualify data based on whether or not it was reported above the process MDA/MDL. Table 4.3a lists the nuclides reported above the process

MDA by the NMED in 1995 but reported below the MDL by the WIPP Baseline.

Table 4.3a
Radionuclides reported above the MDA by NMED in 1995

OF TIDE A OF 111 A TIPE

BIOTIC TISSUE		SURFACE WATER			
Vegetation-NW1	Pecos River Catfish	Pecos River Locations	Tanks Locations		
Am-241*	Th-228	Am-241(UPP only)*	Am-241(INT only)*		
U-233/34	U-233/34	Pu-241	Sr-90		
U-238	U-238	Ra-226(UPP&CBD only)	Th-228		
		Th-228	Th-230		
		Th-230(UPP only)	Th-232		
		Th-232(UPP only)	U-235		
			U-238		
SEI	DIMENT	GROUNDWATER	SOIL		
Pecos River Locations	Tanks	All Locations	All locations		
Am-241(CBD&PCN only)*	Pu-241(ENT)	Sr-90	U-235		
Cs-137(CBD&UPP only)	Th-230				
Pu-241(CBD&PCN)	Th-232				
Th-230					
Th-232					

The WIPP Baseline Summary document does not report the environmental concentration of Am-241 in Biotic Tissue, Surface Water, Sediment, or Groundwater.

UPP - Upriver Pecos Control Location CBD - Carlsbad Pecos River Location INT - Indian Tank Location PCN - Pierce Canyon Location

While it appears that the analytical technologies have improved considerably since compilation of the baseline, an objective conclusion would necessitate review and comparison of all process variables and algorithms employed by the laboratories in determining the respective MDAs/MDLs. Nonetheless, data derived from an analytical process or system with a lower MDA/MDL can be considered more reliable (higher degree of confidence) than that from a process or system with a higher MDA/MDL. Graphs 4.3b-4.3g illustrate the MDLs/MDAs reported by the WIPP Baseline (1985-1988) and the NMED in 1995, in most cases, those achieved by NMED are lower than the WIPP Baseline. Interestingly, when comparing the individual concentration range values of the two sets of environmental data, as illustrated in Appendix II, we see only minor variations and is generally confirmatory of the WIPP Baseline range concentrations. A preliminary review of the 1995 WIPP environmental data indicates MDAs similar to those achieved by NMED in 1995.

Am-241 was detected above the Minimum Detectable Activity in this environmental medium by NMED in 1995.

Graph 4.3b

-BOMDA

Graph 4.3c

Graph 4.3d

SEDIMENT
WIPP BASELINE vs. NMED 1995
Minimum Detectable Activity (MDA)/Minimum Detection Limit (MDL)

1995 1995 (Bad) 1995 1996

Graph 4.3e

Graph 4.3f

Graph 4.3g

4.4 FIELD PROJECT REPORTS

Event specific Field Project Reports (FPRs) are initiated prior to any planned surveillance and prescribes necessary pre-event preparations, i.e., identifies analytical suites and required minimum detection limits, notification of contract laboratory, sample kit needs, identifies hazards, and describes overall objectives. Following the event, the FPR is updated with a narrative based on field notes of sampling conditions and unusual occurrences. After the data is received from the contracting laboratory and reviewed, a final evaluation is performed which completes the report. These reports are archived with other FPRs for the respective sample year for future reference. To provide the necessary administrative, as well as, technical control of sampling event activities, the Project Leader and Field Team Leader sign a sign-off sheet to ensure adequate control of resources and to ensure that objectives are satisfied. Following is a copy of the FPR sign-off sheet and a list of attachments.

FIELD PROJECT REPORT

NME	D DOE Oversight (AIP) Bureau - WIPP TRACKING SHEET: January - December 1996
PROJE	ECT TITLE (Sample Location) / NUMBER:
MEDL	O WIPP FIELD TEAM LEADER: PROJECT START DATE: A (**): Ground Water Surface Water Air_ Soil Sediment Other_ GORY (**): Environmental Monitoring Environmental Restoration Waste Management/Characterization
TYPE	OF ACTIVITY (*): Observational Environmental Sampling Other ever possible, prior to initiation of the field activities, parts 1. & 2. will be completed and filed.
1.	Project Work Guide: Prior to field sampling/observation initial trip, the Field Team Leader (FTL) or designee prepares a Project Work Guide which shall include three main sections; Introduction, Site History with location map, and Sampling Objectives and Goals.
2.	Health and Safety Protocols: Prior to field sampling/observation, the FTL will provide all necessary NMED and DOE/WIPP health and safety sign-off documentation to the individual serving as the zone or activity safety manager. Access to any sampling or observational locations will be governed by the NMED Site Specific Health and Safety Plan which acknowledges protocols and procedures set forth in WIPP Procedure WP12-1, the WIPP Safety Manual. NMED-AIP Program Manager and DOE/WIPP must pre-approve access/entry into any exclusionary zone requiring PPE above modified Level D, e.g., Level C.
	NMED-WIPP Project Leader (signature) :
	Date parts I. & 2. completed and filed:
3.	Field Observations, Copy of initial Chain-of-Custody
	NMED-WIPP Project Leader (signature) :
	Date part 3. completed and filed:
4.	Signed-off copy of the Chain-of-Custody from Laboratory
	NMED-WIPP Project Leader (signature) :
	Date part 4. completed and filed:
5.	Copy of Laboratory Invoice (Original to NMED-AIP Financial Specialist)
	NMED-WIPP Project Leader (signature):
	Date part 5. completed and filed:
6.	Information Data Request Form submitted to DOE
e	NMED-WIPP Project Leader (signature):
	Date part 6. completed and filed:
7.	NMED Data Received
	NMED-WIPP Project Leader (signature):
	Date part 7. completed and filed:
8.	DOE Data Received
	NMED-WIPP Project Leader (signature) :
	Date part 8. completed and filed:
9.	Data Analysis and Recommendations
	NMED-WIPP Project Leader (signature):
	Date part 9, completed and filed:

LIST OF ATTACHMENTS

The following list of attachments must accompany the Field Project Report before it will be considered final.

1.	Proje	ct Work Guide				
	la.	Summaries of historical DOE, EEG, NMED, etc., data, if applicable				
		☐ Radionuclides ☐ General Chemistry ☐ Metals ☐ Volatile Organics				
		☐ Base/Neutral Extractibles ☐ PCBs ☐ Historical Water Level				
		Measurements				
	1b.	Location Map				
	1c.	Hazard Evaluation Plan				
	1d.	Job Hazard Analysis				
2.	Field	observation notes				
3.	Field	Sampling log				
4.	Сору	Copy of Chain-of-Custody form showing NMED receipt of split sample(s) from DOE . \Box				
5.	Сору	of Request for Analysis and Chain-of-Custody form submitted by NMED to				
	labor	atory				
6.	Сору	of signed-off copy of the Chain-of-Custody from the laboratory				
7.	Сору	of Invoice from the laboratory				
8.	Copy	Copy of Information Data Request Form submitted to DOE				
9.	Copy	Copy of NMED analytical results				
10,	Copy	of DOE analytical results				
11	Orio	inal Data Evaluation Report stating quality of DOE data				

4.5 ACTION LEVELS

At a meeting between the NMED/DOE-Oversight Bureau/WIPP, Environmental Evaluation Group (EEG), Carlsbad Environmental Monitoring and Research Center (CEMRC), Westinghouse Waste Isolation Division (WIPP Managing and Operating Contractor) and the DOE/Carlsbad Area Office (CAO) a consensus was reached that reports on environmental surveillance at the WIPP site should illustrate the relationship between current year data and historical background /baseline ranges, as well as comparison of DOE OB surveillance measurements to nuclide specific derived concentration guides. Measurements taken before waste is deposited into WIPP is used for baseline measurements and will not be useful for surveillance of DOE activity impacts (if any) until waste begins to be managed at the site.

Federal and state agencies provide regulatory standards for public dose limits from radioactive constituents in air and water but no such standards exist for soil, sediments, and foodstuff. Guidelines limiting radiation exposure to the public from DOE operations are provided by directives from DOE and include limits for air, water, soil, sediment and foodstuff. These directives are contained in DOE Orders 5400.1 "General Environmental Program", 5400.5 "Radiation Protection of the Public and the Environment", 5480.1 "Environmental Protection, Safety and Health Protection Standards", 5484.1 "Environmental Radiation Protection, Safety, and Health Protection Information Reporting Requirements," Chap III "Effluent and Environment Monitoring Program Requirements"

The U.S. Environmental Protection Agency and New Mexico Environment Department limit the radiation dose from facility activities to the public through air pathways to an Estimated Dose Equivalent (EDE) of 10 mrem/yr and from drinking water to an EDE of 4 mrem/yr. Doses from all other pathways are limited by DOE's EDE limit of 100 mrem/yr. An Estimated Dose Equivalent is the hypothetical whole-body dose or sum of the individual body organ doses, weighted to account for the sensitivity of each organ to radiation-induced damage. These factors also account for intake pathways, length of time in the body and physical properties of each radionuclide. Maximum concentrations of individual radionuclides including internal and external radiation are derived from these Public Dose Limits (PDLs) and weighting factors based on recommendations from the International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements. These Derived Concentration Guides (DCGs) for Water and Derived Air Concentrations (DACs) for a few selected radionuclides are found on Table A. DOE's Derived Concentration Guides for Water and Derived Air Concentrations.

Table A. DOE's Derived Concentration Guides for Water and Derived Air Concentrations^a

	DCGs for Water	DCGs for	DACs (µCi/mL)	
	In Uncontrolled	DrinkingWater	Uncontrolled	Controlled
Nuclide	Areas (μCi/mL)	Systems(μCi/mL)	Areas	Areas
³H	2×10^{-3}	8 x 10 ⁻⁵	1×10^{-7}	2×10^{-5}
⁷ Be	1×10^{-3}	4×10^{-5}	4×10^{-8}	8×10^{-6}
⁸⁹ Sr	2×10^{-5}	8×10^{-7}	3×10^{-10}	6×10^{-8}
⁹⁰ Sr⁵	1 x 10 ⁻⁶	4×10^{-8}	9×10^{-12}	2 x 10 ⁻⁹
¹³⁷ Cs	3×10^{-6}	1.2×10^{-7}	4×10^{-10}	7 x 10 ⁻⁸
²³⁴ U	5×10^{-7}	2×10^{-8}	9×10^{-14}	2×10^{-11}
²³⁵ U	6×10^{-7}	2.4×10^{-8}	1×10^{-13}	2×10^{-11}
²³⁸ U	6×10^{-7}	2.4×10^{-8}	1×10^{-13}	1×10^{-13}
²³⁸ Pu	4×10^{-8}	1.6×10^{-9}	3×10^{-14}	3×10^{-12}
²³⁹ Pu ^b	3×10^{-8}	1.2×10^{-9}	2×10^{-14}	2×10^{-12}
²⁴⁰ Pu	3x 10 ⁻⁸	1.2×10^{-9}	2×10^{-14}	2×10^{-12}
²⁴¹ Am	3×10^{-8}	1.2×10^{-9}	2×10^{-14}	2×10^{-12}
	(μg/L)	(μg/L)	(pg/m^3)	(pg/m^3)
Nat Ur	800	30	1 x 10 ⁵	3×10^7

"Guides for uncontrolled areas are based on DOE's PDL for the general public; those for controlled areas are based on occupational RPSs for DOE Order 5480.11. Guides apply to concentrations in excess of those occurring naturally or that are due to worldwide fallout.

When waste management operations of WIPP begin, periodic measurements will be made for specific radionuclides for the different matrices, (i.e. air, water, soil, foodstuff). Doses can then be calculated from the measured concentrations and compared to the applicable public dose standards. Computer modeling programs such as RESRAD are available and applicable to calculating appropriate doses from concentrations measured by the surveillance activities at WIPP. Doses from DOE facility operations can then be graphically compared to standards or reported as percentages of the standards.

^B Guides for ²³⁸Pu and ⁵⁰Sr are the most appropriate to use for gross alpha and gross beta, respectively.

4.5.1 Radiological Upper and Lower Action Levels

For the purpose of this report, the radiological "Upper Action Level" (UAL) is the established DOE/WIPP baseline mean concentration plus two standard deviations (upper 95% confidence interval) and the "Lower Action Level" (LAL) is the established DOE/WIPP baseline mean concentration minus two standard deviations (lower 95% confidence interval). Values reported above the UAL or below the LAL could indicate a significant trend or more likely, given the nominal environmental concentrations, that the result was biased by sampling or analytical variables. With near zero mean concentrations, often times, the lower 95% confidence interval falls below zero (negative number) and can be expected. These baseline ranges characterize the unperturbed radiological environment within the WIPP site boundary (16 sections) as the WIPP has yet to receive waste. Nevertheless, DOE would be required to report, investigate and explain any UAL/LAL accedence.

4.5.2 Non-radiological Upper and Lower Action Level

For the purpose of this report, the non-radiological UAL and LAL are two standard deviations above and below the established WIPP background mean concentration, respectively, for a specific parameter.

4.5.3 Non-radiological Health Based Limits

The non-radiological Risk-Based Concentration (RBC) are taken from values listed in the EPA Region III Risk-Based Concentration Table, October 4, 1995. This table contains reference doses and carcinogenic potency slopes, as compiled by EPA Region III, from the most recent updates of IRIS, HEAST, the EPA-NCEA Superfund Health Risk Technical Support Center, and other EPA sources and is distributed semi-annually to all interested parties.

5.0 RADIOLOGICAL SURVEILLANCE

The various media were sampled as splits or co-located samples with WIPP. Comparisons of the 1995 NMED values or mean ranges were made utilizing the published WIPP baseline mean ranges at the 95% Confidence Interval. The Baseline reports ²³³U and ²³⁴U separately and because the ²³³U values are small compared to ²³⁴U values, NMED chose to compare it's ^{233/234}U values to the ²³⁴U baseline concentration range values. A radiological UAL exceedance matrix is provided in subsection 5.6. In 1995, NMED contracted with two certified radioanalytical laboratories to provide sample analyses consistent with NMED/WIPP protocols. Each participate in the DOE/EML and EPA Interlaboratory Comparison Programs and have approved Quality Assurance and Quality Control Programs.

5.1 BIOTIC TISSUE

NMED observed collection of catfish, deer, rabbit, and vegetation at various times during 1995 and accepted split samples from WIPP environmental monitoring personnel. Only samples from the Pecos River Dixon Crossing catfish and NW1 vegetation were analyzed, all others have been archived and will be analyzed if DOE results indicate baseline divergence.

5.1.1 Biotic Tissue: Catfish (Pecos River Dixon's Crossing)

NMED participated with WIPP environmental monitoring staff during August 1995, to obtain samples of catfish samples from the Pecos River north of Carlsbad, New Mexico at Brantley Lake, considered a control location (deemed to be far enough away from the WIPP site as to be unaffected by WIPP activities) approximately 45 miles (72.4 km) northwest of WIPP, and south of Carlsbad at a location known as Dixon's Crossing approximately 18 miles (28.9 km) due west of the WIPP site. NMED analyzed only the Dixon's Crossing sample and archived the Brantley sample for future analysis if warranted, i.e., if DOE results are elevated. The catfish were obtained using trotlines and it should be noted that the largest specimen was just under three pounds with most being less than a pound. Each catfish was disemboweled and the head and tail

removed and discarded. This is typical when preparing catfish for human consumption and fairly estimates the exposure pathway to man. To provide split samples, each specimen was cut in half with each agency being provided an alternating but equal number of posterior and anterior sections. This seemed to be the best method of achieving a true split sample. Decontamination of the equipment occurred routinely with deionized water prior to splitting each specimen. Nominal concentrations are evident with ⁶⁰ Co below the LAL. Refer to: Appendix I, table-Summary of 1995 Biotic Tissue Radiochemical Analytical Results; Appendix II, Graph BT-1; and Appendix IV, Figure 2.

5.1.2 Biotic Tissue: Vegetation (NW-1)

On August 9, 1995 NMED participated in collection of vegetation samples at the NW-1 ecological monitoring plot located 800 feet (244 meters) northwest of the Salt Handling Shaft. The starting point marker (center of plot) was used as the reference for random selection of collection locations within the plot. A rectangular, ½ inch PVC pipe quadrat, approximately 2' X 4', was lain on the ground to define the collection zone. Vegetation was clipped, split into two equal parcels, and placed in each agency's plastic bag. Bags were provided to the NMED by WIPP. Only current years growth was collected according to WIPP Procedure 02-310, however the species of plants sampled were not identified and recorded. Nominal concentrations are evident with ⁶⁰Co reported below the LAL and ²³⁵U and ²³⁸U detected above the UAL. Refer to: Appendix I, table-Summary of 1995 Biotic Tissue Radiochemical Analytical Results; Appendix II, Graph BT-2; and Appendix IV, Figure 3.

5.2 SEDIMENT

On June 27, 29, & 30, 1995 NMED accompanied WIPP personnel to the various sediment sample baseline locations to observe collection and receive split samples of the media. Sampling activities at each location were similar, i.e., events documented, equipment decontaminated with deionized water, and proper Personal Protective Equipment (PPE) was used (safety glasses and rubber

gloves). The samples were obtained using a Teflon shovel and each agency's container filled alternatingly with a large stainless steel spoon. Refer to: Appendix I, table -Summary of 1995 Sediment Radiochemistry Results (2 pages); Appendix III, graphs SED-1, SED-2, & SED-3; and Appendix IV, Figure 4.

5.2.1 Mean Concentrations of Pecos River Sample Locations (Brantley Lake, Carlsbad, Pierce Canyon, Upriver Pecos)

Nominal mean concentrations are evident with most isotopes and all are below the UAL.

5.2.2 Indian Tank

This basin is located 1 mile northwest of Project Gnome in section 28-T23S-R30E. On December 10, 1961 a 3.1 kiloton nuclear device was detonated 1,184ft (361m) below the surface at Project Gnome resulting in an unplanned release of radioactivity which inundated the land surface in the area of Indian Tank, nonetheless, nominal activities are reported for most nuclides. ²³⁵U was reported at .0022 Bq/g which is less than the UAL of .00291 Bq/g and ²³⁸U was reported at .0385 Bq/g, which is greater than the UAL of .0370 Bq/g.

5.3 SURFACE WATER

NMED observed collection of the NMED and WIPP surface water split samples on June 27, 28, 29, & 30, 1995 at the baseline locations where water was available. These samples were obtained coincidently with the sediment samples and similar sampling and handling protocols were followed by the WIPP. The Facility West location was sampled independently by the NMED and occurred following a storm event sufficient to fill the retention basin. Refer to: Appendix I, Summary of 1995 Surface Water Radiochemistry Results (3 pages); Appendix II, Graphs SW-1, SW-2, and SW-3; and Appendix IV, Figure 4.

5.3.1 Mean Concentration of the Pecos River Sample Locations (Brantley Lake, Carlsbad, Pierce Canyon, Upriver Pecos)

Nominal mean concentrations are evident. The ²³⁵U concentration was above the UAL and the ²³⁸U concentration was very near the UAL.

5.3.2 Indian Tank

Nominal concentrations are evident. The ²³⁵U and ²³⁸U concentrations both exceeded the UAL.

5.3.3 Site Influent as Surface Water

The WIPP site receives untreated water from Double Eagle Water System pipeline for domestic and fire suppression uses. The influent originates at a well field east of Maljamar, New Mexico which is approximately 42 miles (68 km) northeast of the WIPP site and is considered a Surface Water in the baseline summary. Nominal concentrations are evident. The ²³⁸U concentration was detected above the UAL.

5.3.4 Facility West Surface Water

Nominal concentrations are evident with most isotopes reported below the reported MDA except ²³⁴U and ²³⁵U. The ²³⁵U concentration exceeded the UAL. WIPP collected co-located samples but did not perform specific radionuclide analyses.

5.4 **SOIL**

NMED analyzed soil samples split with WIPP from three locations in 1995. Random locations were selected and samples collected using a stainless steel 15 X 15 X 10 centimeter square template that was pressed into the soil. Samples were taken from depth ranges of 0-2, 2-5, and 5-10 centimeters. The samples were split using a Humboldt model H3975 soil splitter. Refer to: Appendix I, Summary of 1995 Soil Radiochemistry Results; Appendix II, graph SOIL-1; and Appendix IV, Figure 5.

5.4.1 Mean - Near Field Locations (WIPP South South and WIPP East East)

Nominal mean concentrations are evident and are consistent with the control location, Southeast Control, however, concentrations for ^{233/234}U and ²³⁵U at all locations exceed the UAL.

Concentrations of ¹³⁷Cs and ²³⁸U were detected above the MDA with ²³⁸U approaching the UAL.

5.4.2 Far Field Control location (Southeast Control)

Nominal concentrations are evident with only ^{233/234}U exceeding the UAL and ²³⁵U approaching the UAL. Concentrations of ¹³⁷Cs and ²³⁸U were detected above the MDA with ²³⁸U approaching the UAL.

5.5 GROUNDWATER

During the 1995 WIPP sampling year NMED obtained co-located samples from ten wells being sampled by the WIPP. Serial samples are analyzed by the WIPP in the mobile chemistry laboratory before and after taking the environmental samples to ensure stability of the chemical characteristics and comparability of co-located samples. Being sampled for the first time in 1995 were wells; WQSP-1, WQSP-2, WQSP-3, WQSP-4, WQSP-5, WQSP-6 (completed in Culebra Dolomite) and WQSP-6a (completed in the Dewey Lake). These monitoring wells have been completed according to RCRA standards using approved fiberglass casing and dedicated stainless steel pipe and pumps. It is contemplated that these wells will supplant sampling of the older iron cased observation wells used during baseline characterization. Refer to: Appendix I, Summary of 1995 Ground Water Radiochemistry Results (3 pages); Appendix II, graphs GW-1, GW-2, and GW-3; and Appendix IV, Figure 6.

5.5.1 Mean - Culebra member of the Rustler Formation: (Wells; H-03b3, H-14, H-18, WIPP-19, WQSP-1, WQSP-2, WQSP-3, WQSP-4, and WQSP-6)

The mean activity values for these Culebra wells are all below the UAL except for ⁹⁰Sr. The following were detected above the MDA: ²⁴¹Am, ^{239/240}Pu, ²³⁵U, ²³⁸U, ²³⁸Pu, and ^{233/234}U.

5.5.2 Dewey Lake Formation (Well WQSP-6a)

Nominal activities are evident with ^{233/234}U, ²³⁵U, and ²³⁸U detected above the MDA.

5.6 RADIOLOGICAL EXCEEDANCE MATRIX

	EXCEEDANCE OF RADIOLOGICAL UAL	
MEDIA	SAMPLE LOCATION & TYPE	>UAL
BIOTIC	Pecos River Catfish	
TISSUE	NW-1 WIPP vegetation	335U & 338U
SEDIMENT	Mean-Pecos River Sample Locations (Brantley Lake, Carlsbad, Pierce Canyon, Upriver Pecos)	
	Indian Tank	238U
SURFACE WATER	Mean-Pecos River Locations (Brantley Lake, Carlsbad, Pierce Canyon, Upriver Pecos)	²³⁵ U & ²³⁶ U
WAIER	Brantley Lake	235U
	Carlsbad	235U & 238U
	Pierce Canyon	& 235U, 238U, & 2307334U
	Upriver Pecos (Control Location)	235U & 238U
	Indian Tank	235U & 238U
	Site Influent	23 2 U
	Facility West	235U
SOIL	Mean-Near Field Locations (WIPP South South and WIPP East East) (238 U approaching UAL)	ணைடு & ஆபி
	WIPP South South	233/234U, ²³⁵ U, & ²³⁸ U
	WIPP East East	233/234U, ²³³ U, & ²³⁸ U
	Southeast Control (235 U approaching UAL)	23/234U
GROUND WATER	Mean of wells completed in the Culebra member of the Rustler Formation (Wells H-03b3, H-14, H-18, WIPP-19, WQSP- 1, WQSP-2, WQSP-3, WQSP-4, and WQSP-6)	**Sr
	H-03b3	
	H-14	
	H-18	
	WIPP-19	
	WQSP-1	⁹⁰ Sτ
	WQSP-2	⁹⁰ Sr
	WQSP-3	90Sr
	WQSP-4	**Sr
	WQSP-6	90Sr
	Dewey Lake (Well WQSP-6a)	

6.0 NON-RADIOLOGICAL SURVEILLANCE

Non-radiological surveillance was conducted on samples from the ground water wells to determine anomalous changes in the Culebra geochemistry. The Facility West surface water location was sampled independently by NMED to determine the basic chemistry of the west retention basin. Splits of soil samples taken during the WIPP Voluntary Corrective Action Program at Solid Waste Management Unit 001-g were analyzed by the NMED contracting laboratory using the Toxicity Characteristic Leaching Procedure (TCLP) for metals and semi-volatiles. These NMED/WIPP TCLP data were used as supporting documentation by the WIPP in the report to EPA entitled, "Data Summary Report No. 2 for Solid Waste Management Units 001n, 001x, 001g, and 001k", Supplement to DOE/WIPP Draft - 2115. NMED also independently analyzed the tissue of Pecos River Catfish for total metals. A Non-radiological exceedance matrix is provided in section 6.5.

6.1 GROUND WATER

Samples for non-radiological parameter analyses were obtained on the same dates and under the same stabilized conditions as the radiological samples. Refer to: Appendix I tables, 1995 General Chemistry and Metals and table 1995 Volatile Organics; Appendix II, graphs GW-1 through GW-7; and Appendix IV, Figure 6.

6.1.1 Volatile Organics

WQSP-1: Volatile organics were not detected.

WQSP-2: Volatile organics were not detected.

WQSP-3: Volatile organics were not detected.

WQSP-4: The Toluene concentration was reported as .9 micrograms per liter (ug/L) with a detection limit of .5 ug/L.

WQSP-6: The Toluene concentration was reported as 1.0 ug/L with a detection limit of .5 ug/L.

6.1.2 Major Cations (Ca, Na, K, & Mg) and Trace Metals (Fe, Li, & B)

H-03b3: Major Cations are within the Upper 95% Confidence Interval of the background range. Boron was slightly below the Lower 95% Confidence Interval.

H-14: Major Cations are within the Upper 95% Confidence Interval of the background range except for Lithium which was slightly below the Lower 95% Confidence Interval.

H-18: Major Cations are within the Upper 95% Confidence Interval of the background range except for Boron and Lithium which were slightly below the Lower 95% Confidence Interval..

WIPP-19: Major Cations appear to be trending downward with most below the Upper 95% Confidence Interval of the background range. Boron, Potassium, and Magnesium are below the Lower 95% Confidence Interval.

6.2 SURFACE WATER

Non-radiological analyses were performed on independently obtained samples from the non-baseline Facility West location. Refer to Appendix I table, 1995 General Chemistry and Metals.

6.2.1 Facility West

Total metals and General Chemistry results are well below the EPA Risk-Based Concentration guidelines.

6.3 SOIL

NMED participated in an oversight role during the Voluntary Corrective Action Program for Solid Waste Management Units (SWMU) 001n, 001x, 001g, and 001k. Split samples from SWMU 001-g were analyzed the same as WIPP but with higher detection limits. Refer to table, 1995 TCLP Semivolatile Organics and TCLP Metals, in Appendix I.

6.3.1 Solid Waste Management Unit - 001g

TCLP semi-volatiles and metals results were all below the Practical Quantitation Limit. DOE split samples were consistent with NMED results.

6.4 BIOTIC TISSUE

Refer to Appendix I table, 1995 Biotic Tissue Metals Results.

6.4.1 Catfish (Pecos River)

This was an independent effort by NMED. Total metals analysis indicates that with this specimen of tissue, the EPA Risk-Based Concentrations were not exceeded.

6.5 NON-RADIOLOGICAL EXCEEDANCE MATRIX

30	EXCEEDANCE OF UAL A	ND RBC	
	NON-RADIOLOGICA	AL	
ENVIRONMENTAL	SAMPLE	>UAL	>RBC
MEDIA	LOCATION	VOLATILE	TOTAL
		ORGANICS	METALS
GROUND WATER	WQSP-1		
	WQSP-2		
	WQSP-3		
	WQSP-4	II × ==	- 7
	Toluene9 ug/L detected	=	
	WQSP-6	11	
	Toluene - 1.0 ug/L detected		
	H-03b3		_
	H-14		
	H-18		· · · · · · · · · · · · · · · · · · ·
	WIPP-19 (trending downward)		
SURFACE WATER	Facility West		: 2661 X III
SOIL	Solid Waste Management	=	1 -
	Unit - 001g	P (2)	
BIOTIC TISSUE	Catfish (Pecos River)	EPA Risk-Based Co	ncentrations were not
		exceeded.	

UAL - Upper Action Level

RBC - Risk-Based Concentration

7.0 CONCLUSIONS and RECOMMENDATIONS

NMED/WIPP oversight personnel have been afforded opportunities to participate in annual WIPP environmental surveillance sampling activities and non routine sampling activities through diligent notification and support by the WIPP. Participation with WIPP personnel during the sampling events indicate that WIPP environmental monitoring and surveillance procedures (WP02-3) are being implemented properly, i.e., sample collection, handling, and documentation.

1995 NMED data are generally consistent with the radiological baseline and the background ground water characterization ranges with few discrepancies or exceedances. This similarity indicates a relatively stable environment, considering that the baseline/background information was collected almost ten years ago, from 1985 through 1988. To provide for continued data comparability both agencies should continue to implement similar sampling techniques, analytical protocols, and analytical suites.

A major component of WIPP waste will be Americium-241 but is reported only for Soil and Airborne Particulates in the baseline summary. Refer to: Appendix III, Table - 3, Proposed WIPP Radionuclide Disposal Inventory (from the WIPP Transuranic Waste Baseline Inventory Report, CAO-94-1005, Rev. 1, February 1995).

DOE should include Am-241 in the radiological baseline summary for Ground
 Water, Surface Water, Sediment, and Biotic Tissue.

DOE Order 5400.1, General Environmental Protection Program, chapter IV section 3, states; "The preoperational study should begin not less than 1 year, and preferably 2 years before start up to evaluate seasonal changes." A technically sound pre-operational environmental baseline is essential to developing credible dose assessments during operation. The data collected by NMED indicate that the radiological baseline summary document should be revised with more contemporary data, especially in regard to established mean ranges for ^{233/234}U, ²³⁵U, ²³⁶U, and ⁹⁰Sr

in the respective environmental media where the UALs were exceeded.

- DOE should utilize radiological and non-radiological data collected since the
 issuance of the baseline concentration range summary documents to enhance the
 quality of the summaries and identify environmental trends or in addition, develop
 a contemporary or current year baseline comprised of the three previous years
 environmental data.
- DOE should develop and establish investigatory threshold values
- DOE should investigate the baseline UAL exceedances of ^{233/234}U(Surface Water and Soil), ²³⁵U and ²³⁸U(Vegetation, Sediment, Surface Water, and Soil), and ⁹⁰Sr (Ground Water). Refer to 5.6 Radiological Exceedance Matrix.

The detection of Toluene in WQSP wells 4 and 6 is probably due to laboratory contamination or to solvents used in construction of the wells and not an indication of actual gound water chemistry at this location. However, DOE did not analyze for this compound thereby precluding further comparison.

 DOE should expand the suite of volatile organic compounds analyzed for in the WQSP wells to verify that the wells were not inadvertently contaminated during drilling and completion and for future reference if they are intended for use as RCRA compliance sample locations.

The WIPP Environmental Monitoring Plan (EMP), DOE/WIPP 94-024 in Chapter 7.0, Introduction, paragraph 2, states; "For the data results of the sample media, each data point will be correlated to the "Statistical Summary of the Radiological Baseline for the WIPP," (DOE/WIPP 92-037) and in Section 7.5, Comparisons and Reporting, states; "Comparisons between data sets are performed using standard statistical tests.... In addition to tests comparing data from distinct locations and times, trend analyses are performed on time series where sufficient data exist." Previously issued WIPP site environmental reports have not statistically

compared or attempted to correlate current year DOE/WIPP data with baseline/background ranges to identify long term trends or baseline location anomalies.

NMED/WIPP recommends that DOE develop and implement a data analyses
program in accordance with the WIPP Environmental Monitoring Plan
(DOE/WIPP 94-024).

Recent construction of the West and South retention basins, which are designed to retain 100% of the facility run-off, will naturally concentrate constituents deposited resulting from a release or normal facility operations, thus providing an excellent baseline surveillance sample location for sediment and surface water.

DOE should include the West Retention Basin (NMED 1995 - Facility West sample location) as a radiological baseline sample location for surface water and sediment. (DOE/CAO has verbally agreed to this recommendation.)

²³³U and ²³⁴U are reported in the baseline summary documents separately while the 1994 WIPP Annual Site Environmental Report reports the activities as the composite value, ^{233/234}U. The specific activities of these nuclides may or may not be additive thus making a viable comparison of the baseline ranges to contemporary data questionable.

DOE should establish the specific activity baseline range for ^{233/234}U to
accommodate contemporary analytical reporting protocols, as opposed to
reporting the baseline ranges for ²³³U and ²³⁴U separately.

This page intentionally left blank

8.0 REFERENCES

ANL/EAIS-8, Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil, April 1993

ANSI N42.23, Measurement and Associated Instrumentation Quality Assurance for Radioassay Laboratories, September 10, 1995 (proposed)

ASME NQA-1, "Quality Assurance Program Requirements for Nuclear Facilities"

DOE/WIPP 92-037, Statistical Summary of the Radiological Baseline for the Waste Isolation Pilot Plant, March 1992

DOE/WIPP 92-007, Waste Isolation Pilot Plant Site Environmental Report for Calendar Year 1991

DOE/CAO-94-1005 WIPP Transuranic Waste Baseline Inventory Report, Rev. 1, February 1995

DOE/WIPP 94-024, WIPP Environmental Monitoring Plan (EMP)

DOE/WIPP 92-013, Background Water Quality Characterization Report for the Waste Isolation Pilot Plant, June 1992

DOE Order 5400.1, General Environmental Protection Program

DOE Order 5400.5/P, Radiation Protection of the Public & Environment

EML-569, DOE Environmental Measurements Laboratory Semi-Annual Report of the DOE, OEM, Quality Assessment Program, July 1995

Environmental Oversight and Monitoring Agreement Between the U.S. Department of Energy and the State of New Mexico, 1995

EPA QAMS-005/80, "Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans"

EPA Region III Risk-Based Concentration Table, October 4, 1995

EPA, Title 40 CFR Part 141, "National Interim Primary Drinking Water Regulations (Safe Drinking Water Act)."

EPA, Title 40 CFR Part 191, "Environmental Radiation Protection Standards for Management

and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes"

EPA, Title 40 CFR Part 264, "Resource Conservation and Recovery Act"

EPA, Title 40 CFR Part 268, "Land Disposal Restrictions and No Migration Variances"

ICRP Publication 23, Reference Man: Anatomical, Physiological and Metabolic Characteristics

NMED, Drinking Water Program, Water Supply Regulations, 1991

NMED Waste Isolation Pilot Plant Site Specific Health and Safety Plan, November 1992

Site Specific Protocol for Implementation of the Environmental Oversight and Monitoring Agreement for the Waste Isolation Pilot Plant, April, 1996

New Mexico Environment Department Site Specific Work Plan for the Waste Isolation Pilot Plant, 1996

NMED/WIPP 193-1, NMED Site Specific Work Plan for the Waste Isolation Pilot Plant, August 1993

NMED/DOE-OB Standard Operating Procedures (Draft)

NMED/WIPP 95-001, NMED/WIPP Environmental Monitoring and Oversight Plan (Draft)

APPENDIX I

1995 Biotic Tissue Radiochemistry

		NEW MES	NEW MEXICO ENVIRONMENT D	BPARTMENT, DOE O	NMENT DEPARTMENT, DOR OVERSIGHT BURBAU, WIPP	22		
			Summary of 1995 Bioti	1995 Biotic Tissue Radiochemical Analytical Results	nalytical Results			
					BIOTIC TISSUES			
	TISSUE		VEC	VEGETATION			CATFISH	
	LOCATION			NWI			PECOS RIVER	
	SAMPLE DATE			08/09/95			08/23/95	
MDIONUCLIDE	UNITS	a	ACTIVITY	ERROR	MDA 0	ACTIVITY	ERROR	MDA
CTINIUM-228	Bo/g		-0.0060	0.0044	0.0140	0,0034		0.0085
MERICIUM-241	Bo/g		0.0011	0.0008	0.0004	0.0003	0.0006	0.0008
31SMUTH-212	Bo/g		0.0160	0,0160	0.0170	-0.0045		0.0150
318MUTH-214	Bq/g		0.0029	0.0048	0.0064	-0,0023		0.0042
SSIUM-137	Bo/g		-0.0004	0.0016	0,0027	-0.0003		0.0018
OBALT-60	Bo/g		0.0012	0.0017	0.0038	-0,0001	0.0012	0.0022
LAI PHA	Bo/g		0,0040	0.0110	0.0210	-0.0019	0.0032	0.0082
1.RETA	Bo/g		0.6540	0.0430	0.0150	0.1070	70 0,0110	0.0086
EAT-210/781	Bole		0.0640	0.0430	0.0580	0.0110	0.0490	0,0730
RAD-212	Bole		0.0010	0.0033	0,0046	0.0012	0,0020	0,0026
RADOIA	Bole		0.0002	0.0040	0,0062	0.0011	11 0.0024	0.0037
THOUSE THE SAME	Bole		-0.0002	0.0003	0.0016			0.0009
I TTOMED COSONO	Bo/e		0,0003	0.0007	0.0013	0.0001	0.0007	0.0015
1 I TONITIM-241	Bo/g		0.0450	0.0720	09800	0.5900		
OI CONTINUE 10	Bo/g		0,0380	0.0170	0.0079	0.0029		
OTASSTIMAO	Bo/e		0.5530	0.0880	0.0370	0,1060	0.0300	0,0250
ADIIIA 233	Bole		-0.0113	0.0100	0.0490			
ADITM-226	Bo/g		0.0011	00000	0.0012	0.0008		
ADTIBL 226(GAMMA)	Bo/g		0,0160	0.0400	0.0570	-0.0020	20 0,0250	
OS-WILLIAM-90	Bo/g		0.0100	0.2500	0.0160	0.0100		
CHALLYUM-20\$	Bq/g		0.0018	0.0025	0.0033	0.0002		
THORITM-228	Bo/g		0.0127	0.0037	0.0035	0.0044		
CHORTIM-230	Bo/g		0.0007	0.0009	0.0013	-0.0003		
CHORITM-232	Bo/g		100001	0,0004	0.0010	0.0004		
CHORITM-234	Bo/g		09000	0.0230	0.0340	-0.0050		
TO ANTIMACTACA	Bo/g		0.0024	0.0012	0.0009	0.0025	25 0.0012	
ID ANTIMASS	Bo/g		0.0004	0.0005	0.0007	0.0004		
RANTM-235 (GAMMA)	Bo/g		0.0025	0.0088	0.0120	-0,0028		E.
DANIEL 226	Bole		0,0018	01000	0.0008	0.0010	0,0009	0,0009
JKALTUM-650								

1995 Sediment Radiochemistry

	NEW	뿔	XICO ENVI SUMMAR	RONMEN 7 OF 1995	TT DEI 5 SED	PARTA	NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP SUMMARY OF 1995 SEDIMENT RADIOCHEMISTRY RESULTS	OVERS	IGHT Y REG	BUREA	U, Wil	d.		
	Location code		BRAN	BRANTLEY LAKE LBL				CARLSBAD CBD				IQNI	INDIAN TANK INT	
RADIONUCLIDE	UNITS	G	ACTIVITY C	Q ERROR I	٥	MDA	ACTIVITY	G ERROR	ō	MDA	Q ACT	ACTIVITY Q	LERROR Q	MDA
ACTINIUM-228	Bq/g		0		Н	22	0.0187	0.0041	\mathbf{L}	22		_	_	0.0052
AMERICIUM-241	Bo/g		0.0004	0.0006	Ö	0.0008	0.0009	0.0008	8	0.0008		0,0001	0.0004	0.0009
BISMUTH-212	Bq/g		0.0195	0.0094	O	0.0100	0.0177	0.0070	0	0.0070			-	
BISMUTH-214	Ba/g		0.0237	0.0040	O	0.0031	0.0191	0.0032	2	0.0029		0.0289	0.0044	0,0031
CESIUM-134	Bq/g											0.0002	0,0006	0.0011
CESIUM-137	Bq/g		20000	0.0013	0	0.0017	0.0038	0,0012	2	0.0012		0.0135	0.0023	0.0016
COBALT-57	Bq/g										7	-0.0002	0.0006	0,0011
COBALT-80	Bq/g		-0.0002	0.0002	0	0.0020	-0.0002	0,0004	4	0.0012		0.0005	0.0007	0,0014
G-ALPHA	Bq/g	ပ	0,3300	0.2100	0	0,2700 C	0.3100	0.1900	0	0.2500	0	0.5771	0.2220	0.2146
G-BETA .	Bq/g		0.5300	0.1500	0	0.2100	0.4600	0.1500		0.2100		0,9804	0,1739	0.1961
LEAD-210	Ba/g						0.0470	0,1000		0.1400				
LEAD-210(GS)	Bq/g		0.0240	0.0240	0	0.0360								
LEAD-212	Bq/g	П	0.0252	0.0038	Ö	0.0028	0.0195	0.0029	6	0.0022		0.0429	0.0052	0.0026
LEAD-214	Bq/g		0.0258	0.0035	Ô	0,0031	0.0254	0.0031		0.0024		0,0374	0.0041	0,0029
PLUTONIUM-238	Bq/g	П	0.0001	0.0004	0.	0.0008	-0.0001	0.0002	2	0.000		0.0006	0.0017	0.0025
PLUTONIUM-239/40	84/9		-0.0001	0.0001	0	0.0008	0.0008	0.000		0.0011	Ĭ	0.0005	0.0008	0.0012
PLUTONIUM-241	Ba/g		0.0600	0.1100	o	0.1200	0.1400	0.1200		0.1300	Ĭ	0.0718		
POLONIUM-210	Ba/g		20000	0.0011	0	0.0015	0,0000	0.0000		0.0022	٨	0.6770	0.0148	0.0037
POTASSIUM-40	Bq/g	П	0.3760	0.0530	0	0.0180	0,3180	0.0410		0.0170			77770	0,0174
RADIUM-223	Bq/g		-0.0055	0.0077	o	0.0290	-0.0040	0.0069		0.0230	_			
RADIUM-228(GAMMA)	Ba/g		0.0030	0.0210	0	0.0290	0.0220	0.0190		0.0240				
STRONTIUM-90	Bo/g	\neg	0.0000	0,2300	o	0,0150	0.0000	0,2200		0.0150		0.0026	0.0085	0.0148
THALLIUM-208	Bq/g	\neg	0.0076	0.0018	o	0.0015	0,0063	0.0015		0.0015	_	0.0122	0.0021	0.0016
THORIUM-228	Bq/g		0.0230	0.0045	o	0.0032	0.0278	0.0048		0.0032	_	0.0474	0.0055	0.0023
THORIUM-230	Ba/g		0.0214	0.0037	o	0.0012	0.0204	0.0035		0.0010		0.0385	0.0048	0.0010
THORIUM-232	Bq/g		0.0198	0.0035	Ö	0.0012	0.0171	0,0032		0.0010	_	0.0414	0.0048	0.0010
THORIUM-234	Bq/g		0.0250	0.0120	O	0.0280	0.0320	0.0150		0.0450		0.0403	0,0185	0.0555
URANIUM-233/34	Ba/g		0.0226	0.0038	Ó	0,0013	0.0347	0.0045	-	0.0011	_	0.0322	0.0048	0,0010
URANIUM-235	Bo/g	П	0.0028	0.0012	0	0.0004	0,0013	0.0009		0.008	_	0.0022	0.0012	0,0007
URANIUM-235 (GAMMA)	Bo/g	\neg	0.0043	0.0048	ő	0,0071	0.0019	0.0048		0.0071	_	0.0037	0.0055	0.0085
URANIUM-238	Bq/g		0.0211	0.0036	Ö	0.0009	0.0233	0.0036		0.009	_	0.0385	0.0052	0.000
QUALIFIERS:	C - Presence of Y - Chemical yfe	2 B	TDS in sample ceeded accepts	required redu	letion of	sample ei	C - Presence of high TDS in sample required reduction of sample size which increased the MDA. Y - Chemical yield exceeded acceptance limits.	sed the MDA				PAG	PAGE#1	

Comparison		VEW MEX	ပြည	S ENVIRO	NMENT I	SEDIME	MENT, D	OE C	OVERSICATE BY B	SHT BI	NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	
Company Comp		Location		PIERC	E CANYON			UPRIVE	R PECOS			1
VAZZB BAGY ACTIVITY Q EFROR Q MDA Q ACTIVITY		Location code			PCN			چ د	JPP 30%5			
W-228 Bugg 0.0256 0.0064 0.0067 0.0069 0.0066 0.0076 0.0069 0.0066 0.0076 0.0069 0.0076 0.0069 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 0.0066 0.0076 <th>RADIONUCLIDE</th> <th>UNITS</th> <th></th> <th>Н</th> <th></th> <th>Ц</th> <th>-</th> <th>Ц</th> <th></th> <th>Н</th> <th></th> <th>1</th>	RADIONUCLIDE	UNITS		Н		Ц	-	Ц		Н		1
UM-241 Balga 0,0006 0,0007 0,0004 0,0000 0,0000 4212 Balga 0,00160 0,0119 0,0119 0,0119 0,0119 4214 Balga 0,00160 0,0119 0,0005 0,0005 0,0004 134 Balga 0,0007 0,0007 0,0019 0,0005 0,0004 0,0005 137 Balga 0,0007 0,0007 0,0019 0,0009 0,0009 0,0009 40 Balga 0,0007 0,0007 0,0009 0,0009 0,0009 0,0009 50 Balga 0,0007 0,0007 0,0009	ACTINIUM-228	Bq/g		0.0235	0.0059	0.0081	0.03	12	0.0068	0.007	9	-
1-212 Balga 0,0180 0,0110 0,0130 0,0220 0,0110 0,0130 1-214 Balga 0,0222 0,0035 0,0036 0,0036 0,0036 0,0036 1-214 Balga 0,0022 0,0007 <td< td=""><td>AMERICIUM-241</td><td>Bq/g</td><td></td><td>0.0008</td><td>0.0007</td><td>0.0004</td><td>0.000</td><td>2</td><td>0.0008</td><td>0.00</td><td>0</td><td>-</td></td<>	AMERICIUM-241	Bq/g		0.0008	0.0007	0.0004	0.000	2	0.0008	0.00	0	-
1434 Begig 0.00242 0.00077 0.0019 0.00000 0.00010 0.0	BISMUTH-212	Bq/g		0.0180	0.0110	0.0130	20.0	8	0.0110	0.013	0	
154 8495 0.0007 0.0007 0.0002 0.00012 0.00	BISMUTH-214	Bq/g		0.0242	0.0043	0.0035	0.02	8	0.0048	0.003	8	_
157 Belga -0,0007 0,0018 0,0020 0,0012 0,0016 57 Belga -0,0002 0,0007 0,0007 0,0007 0,0004 0,0002 0,0002 40 Belga -0,0002 0,1400 0,2400 0,2400 0,2200 0,2200 20 Belga -0,0002 0,1400 0,2400 0,2400 0,2400 0,2100 20 Belga 0,0002 0,1400 0,2400 0,2400 0,2100 0,2100 30 Belga 0,0002 0,0002 0,0003 0,0004 0,0003 0,0004 0,0004 10 Belga 0,0002 0,0003 0,0003 0,0004 0,0003 0,0004 0,0004 10 Belga 0,0002 0,0004 0,0003 0,0003 0,0004 0,0004 10 Belga 0,0004 0,0004 0,0003 0,0004 0,0003 0,0004 20 Belga 0,0004 0,0004 0,0004 <th< td=""><td>CESIUM-134</td><td>Bq/g</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ī</td></th<>	CESIUM-134	Bq/g										ī
£7 Be/g -0.00022 0.0007 0.0002 0.0002 0.0002 £0 Be/g C 0.0000 0.1400 0.2200 0.1400 0.2200 £0 Be/g C 0.0600 0.1400 0.2200 0.1400 0.2200 £0 Be/g C 0.0600 0.1400 0.2200 0.1400 0.2200 £0 Be/g 0.0220 0.0250 0.0250 0.0400 0.0200 £0 Be/g 0.0224 0.0202 0.0202 0.0204 0.0204 £0 Be/g 0.0224 0.0202 0.0203 0.0003 0.0004 £0 Be/g 0.0202 0.0004 0.0003 0.0004 0.0004 LUM-236 Be/g 0.0202 0.0004 0.0003 0.0004 0.0004 0.0004 LUM-236 Be/g 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 LUM-200 Be/g 0.0013 0.0004	CESIUM-137	Bq/g		-0.0007	0.0007	0.0019	0.00	Į.	0.0012	0.001	9	Т
60 Belga - 0,00002 0,00002 - 0,00004 0,00009 0,00009 0,00000 0.5 Belga C 0,00000 0,1400 0,2600 0,1400 0,2600 0,1400 0,2200 0,1400 0,2200 0,1400 0,2200 0,1400	COBALT-57	Bq/g						\neg				7
Bajg C 0.0800 0.1400 0.2800 0.1900 0.1900 0.1900 0.2000	COBALT-60	Bq/g		-0.0002	0.0007	0.0022	-0.00	7	0.009	0.002	2	7
Bayla 0.3800 0.1400 0.2100 0.3800 0.1400 0.2100 Bayla 0.0222 0.0239 0.0370 0.0310 0.0340 0.0340 Bayla 0.0222 0.0039 0.0035 0.0031 0.0041 0.0034 Bayla 0.0224 0.0039 0.0035 0.0031 0.0031 0.0031 Bayla 0.0224 0.0039 0.0035 0.0031 0.0031 0.0034 UM-238 Bayla 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 UM-241 Bayla 0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 UM-240 Bayla 0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 UM-240 Bayla 0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 UM-240 Bayla 0.0074 0.0000 0.	G-ALPHA	Bq/g	ပ	0.0800	0.1400	0.2800		2	0.1900	0.220	0	- 1
0 Sigg Bolgs 0.0250 0.0250 0.0370 0.0460 0.0310 0.0440 2 Sigg 0.0225 0.0325 0.0324 0.0025 0.0324 0.0022 2 Bolgs 0.0226 0.0030 0.0305 0.0041 0.0025 0.0041 0.0025 2 Bolgs 0.0024 0.0005 0.0005 0.0005 0.0003 0.0001 0.0004 UM-238 Bolgs 0.0000 0.0005 0.0005 0.0003 0.0001 0.0001 UM-240 Bolgs 0.1400 0.1200 0.1200 0.1200 0.0001 0.0001 UM-240 Bolg 0.0074 0.0001 0.0100 0.0100 0.0100 0.0001 UM-20 Bolg 0.0214 0.0214 0.0100 0.0100 0.0100 0.0100 UM-40 Bolg 0.0100 0.0200 0.0100 0.0100 0.0100 0.0100 UM-40 Bolg 0.0100 0.0200 0.0100 0.0100 0.0100	G-BETA	Bq/g		0.3800	0.1400	0.2100	0.390	8	0.1400	0.210	0	
Belgin 0.0220 0.0250 0.0350 0.0354 0.0347 0.0028 Belgin 0.0257 0.0039 0.0026 0.0354 0.0047 0.0028 Belgin 0.0027 0.0040 0.0035 0.0035 0.0047 0.0028 Belgin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Belgin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Belgin 0.0450 0.0024 0.0055 0.0000 0.0000 0.0000 Belgin 0.0450 0.0051 0.0050 0.0000 0.0000 0.0000 Belgin 0.0450 0.0051 0.0050 0.0000 0.0000 0.0000 Belgin 0.0450 0.0051 0.0050 0.0000 0.0000 0.0000 Belgin 0.0450 0.0051 0.0340 0.0350 0.0010 0.0000 Belgin 0.0105 0.0051 0.0340 0.0024 0.0010 0.0000 Belgin 0.0105 0.0016 0.0016 0.0000 0.0000 0.0010 Belgin 0.0105 0.0016 0.0016 0.0000 0.0000 0.0010 Belgin 0.0016 0.0016 0.0016 0.0024 0.0016 0.0016 Belgin 0.0017 0.0004 0.0016 0.0005 0.0016 0.0001 Belgin 0.0011 0.0004 0.0016 0.0005 0.0016 0.0001 Belgin 0.0011 0.0004 0.0001 0.0001 0.0001 Belgin 0.0011 0.0004 0.0001 0.0005 0.0001 0.0001 Belgin 0.0011 0.0004 0.0005 0.0005 0.0001 0.0001 Belgin 0.0011 0.0004 0.0001 0.0005 0.0001 0.0001 Belgin 0.0011 0.0004 0.0001 0.0005 0.0001 0.0001 Belgin 0.0011 0.0004 0.0001 0.0005 0.0001 0.0001	LEAD-210	Bq/g										Т
Beig 0.00257 0.0036 0.00354 0.0041 0.0026 0.0034 0	(EAD-210(GS)	Bq/g		0.0220	0.0250	0.0370	0.046	8	0.0310	0.04	0	- 1
Berjg 0,00294 0,0040 0,0005 0,0003 0,00034 0,00034 0,00034 0,0003 0,00034 0,0003 0,0004 0,0005 0,00003 0,00004 0,0005 0,00003 0,00004 0,00005 0,00	LEAD-212	Bq/g		0.0257	0.0039	0.0029	0.03	<u> </u>	0.0047	0.002	8	
440 Be/g 0.0002 0.0004 0.0005 -0.0003 0.0014 0.0014 440 Be/g 0.0000 0.0000 0.0005 0.0000 0.0000 0.0006 <	LEAD-214	Bq/g		0.0294	0.0040	0.0037	0.030	33	0.0041	0.003	4	
440 Bolg 0,0000 0,0005 0,0005 0,0000 0,0006 0,0000 0,0006 0,0006 0,0006 0,0006 0,0006 0,0006 0,0006 0,0000 0,0006	PLUTONIUM-238	89/9		0.0002	0.0004	0.0005	-0.00	33	0.0003	0.001	4	7
Bulg 0.1400 0.1200 0.1200 0.1300 0.1600 0.1600 Bulg 0.0074 0.0034 0.0011 -0.0000 0.0001 0.0008 Bulg 0.0074 0.0051 0.0011 -0.0000 0.0001 0.0008 Bulg 0.04500 0.0051 0.0050 0.0010 0.0020 0.0010 Bulg 0.0108 0.0051 0.0340 0.0340 0.0350 0.0110 Bulg 0.0075 0.0018 0.0316 0.0052 0.0023 0.0170 Bulg 0.0076 0.0048 0.0016 0.0052 0.0043 0.0018 Bulg 0.0160 0.0018 0.0016 0.0023 0.0043 0.0018 Bulg 0.0160 0.0034 0.0034 0.0034 0.0043 0.0043 0.0043 Bulg 0.0280 0.0034 0.0034 0.0034 0.0043 0.0043 0.0044 Bulg 0.0281 0.0049 0.0034 0.0049 0.00	PLUTONIUM-239/40	Bq/g		0.0000	0.0000	0.0005	0.000	2	0.000	0.000		
Bajg 0.0074 0.0034 0.0011 0.0000 0.0001 0.0008 0.0008 0.0008 0.0008 0.0008 0.00110 0.0008 0.00110 0.00110 0.00310 0.00110 0.00310 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110 0.00320 0.00110	PLUTONIUM-241	Bq/g		0.1400	0.1200	0.1200	0.120	8	0.1300	0.160	0	-
MMA) Bayga 0.4500 0.0610 0.0180 0.04840 0.0650 0.0210 MMA) Bayga -0.0135 0.0091 0.0340 -0.0090 0.0110 0.0350 MA) Bayga 0.0680 0.0250 0.0310 0.0560 0.0110 0.0320 Bayga 0.0075 0.0018 0.0018 0.0018 0.0012 0.0023 0.0017 Bayga 0.0180 0.0034 0.0014 0.0034 0.0032 0.0043 0.0043 Bayga 0.0180 0.0034 0.0014 0.0221 0.0043 0.0014 Bayga 0.0187 0.0034 0.0019 0.0034 0.0041 0.0041 0.0041 Bayga 0.0262 0.0040 0.0010 0.0020 0.0040 0.0014 Bayga 0.0046 0.0048 0.0076 0.0024 0.0049 0.0040 Bayga 0.0046 0.0046 0.0076 0.0020 0.0040 0.0044 Bayga	POLONIUM-210	Bq/g		0.0074	0.0034	0.0011	0.00	8	0.0001	0.000	60	-
MMA) Bayg -0.0135 0.0081 0.0340 -0.0130 0.0350 0.0350 MMA) Bayg 0.0680 0.0280 0.0310 0.0580 0.0240 0.0320 Bayg 0.0100 0.2800 0.0160 0.0012 0.0250 0.0170 Bayg 0.0075 0.0018 0.0016 0.0012 0.0024 0.0018 Bayg 0.0187 0.0034 0.0011 0.0043 0.0014 0.0014 Bayg 0.0187 0.0034 0.0011 0.0037 0.0014 0.0014 Bayg 0.0187 0.0034 0.0019 0.0034 0.0041 0.0047 0.0014 AMMA) Bayg 0.0011 0.0034 0.0013 0.0049 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0026 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066	POTASSIUM-40	Bq/g		0.4500	0.0810	0.0160	0.48	8	0.0650	0.021	0	-7
MMA) Bg/g 0.0880 0.0250 0.0310 0.0580 0.0250 0.0170 Bg/g 0.0100 0.2800 0.0160 0.0006 0.0250 0.0170 Bg/g 0.0075 0.0018 0.0018 0.0014 0.0023 0.0018 0.0018 Bg/g 0.0180 0.0034 0.0014 0.0023 0.0043 0.0014 Bg/g 0.0180 0.0034 0.0014 0.0023 0.0043 0.0014 Bg/g 0.0187 0.0034 0.0014 0.0274 0.0043 0.0014 Bg/g 0.0282 0.0034 0.0019 0.0274 0.0047 0.0014 AMMA) Bg/g 0.0011 0.0046 0.0013 0.0040 0.0040 0.0040 Bg/g 0.00247 0.0046 0.0006 0.0056 0.0065 0.0067 0.0067 C- Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0005 0.0005 0.0005 0.0005	RADIUM-223	Bq/g		-0.0135	0,0091	0.0340	-0.00	8	0.0110	0.035	0	_
Bayg 0.0100 0.2800 0.0180 0.0016 0.0122 0.0550 0.0170 Bayg 0.0075 0.0018 0.0016 0.0122 0.0024 0.0018 Bayg 0.0263 0.0049 0.0034 0.0031 0.0042 0.0014 Bayg 0.0160 0.0034 0.0014 0.0047 0.0047 0.0014 Bayg 0.0210 0.0130 0.0130 0.0130 0.0013 0.0014 Bayg 0.0210 0.0130 0.0013 0.0013 0.0013 0.0014 AMMA Bayg 0.0011 0.0040 0.0013 0.0040 0.0013 AMMA Bayg 0.0011 0.0004 0.0013 0.0046 0.0020 0.0040 Bayg 0.0247 0.0004 0.0005 0.0005 0.0005 0.0004 Bayg 0.0247 0.0004 0.0005 0.0005 0.0006 C- Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0003 0.0009 <td>RADIUM-228(GAMMA)</td> <td>Bq/g</td> <td></td> <td>0.0880</td> <td>0.0250</td> <td>0.0310</td> <td>0.050</td> <td>8</td> <td>0.0240</td> <td>0.032</td> <td>0</td> <td>_</td>	RADIUM-228(GAMMA)	Bq/g		0.0880	0.0250	0.0310	0.050	8	0.0240	0.032	0	_
Belg 0.0076 0.0018 0.0016 0.0152 0.0054 0.0018 Belg 0.0263 0.0049 0.0034 0.0034 0.0042 0.0042 Belg 0.0180 0.0034 0.0011 0.0031 0.0047 0.0014 Belg 0.0187 0.0034 0.0010 0.0274 0.0047 0.0014 Belg 0.0210 0.0130 0.0130 0.0030 0.0040 0.0040 AMMA Belg 0.0011 0.0040 0.0013 0.0040 0.0010 0.0040 AMMA Belg 0.0011 0.0046 0.0013 0.0040 0.0013 0.0040 AMMA Belg 0.0013 0.0046 0.0006 0.0055 0.0067 0.0067 Belg 0.0247 0.0037 0.0006 0.0024 0.0067 0.0067	STRONTIUM-90	Bq/g		0.0100	0.2800	0.0160	0.00	8	0.2500	0.017	0	_
Ba/g 0.00483 0.0034 0.0352 0.0043 0.0042 Ba/g 0.0180 0.0034 0.0011 0.0231 0.0043 0.0014 Ba/g 0.0187 0.0034 0.0010 0.0274 0.0047 0.0014 Ba/g 0.0282 0.0030 0.0130 0.0013 0.0261 0.0040 0.0013 AMMA) Ba/g 0.0011 0.0040 0.0013 0.0020 0.0040 0.0026 AMMA) Ba/g 0.0013 0.0006 0.0026 0.0026 0.0067 AMMA Ba/g 0.0013 0.0006 0.0006 0.0006 0.0006 AMMA Ba/g 0.0247 0.0036 0.0005 0.0007 0.0007 Ba/g 0.0247 0.0037 0.0005 0.0005 0.0006 C - Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0009 0.0009	THALLIUM-208	Bq/g		0.0075	0.0018	0.0016	0.012	R	0.0024	0.001	8	-
Bayg 0.0180 0.0034 0.0014 0.0034 0.0014 0.0014 Bayg 0.0187 0.0034 0.0010 0.0274 0.0047 0.0014 Bayg 0.0282 0.0130 0.0330 0.0361 0.0380 0.0380 AMMA) Bayg 0.0011 0.0006 0.0013 0.00261 0.0013 0.0004 AMMA) Bayg 0.0011 0.0006 0.0076 0.0005 0.0004 0.0004 AMMA Bayg 0.0247 0.0037 0.0005 0.0005 0.0005 0.0006 Bayg 0.0247 0.0037 0.0005 0.0005 0.0005 0.0006 C - Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0008 0.0008 0.0009	THORIUM-228	Bq/g		0.0263	0.0049	0.0034	0.03	2	0.0063	0.004	5	_
Bayla 0.0187 0.0034 0.0010 0.0274 0.0047 0.0014 Bayla 0.0210 0.0130 0.0130 0.0130 0.0330 0.0410 0.0150 0.0380 AMMA Bayla 0.0011 0.0040 0.0013 0.0040 0.0013 0.0013 AMMA Bayla 0.0011 0.0046 0.0076 0.0055 0.0067 0.0067 Bayla 0.0247 0.0037 0.0005 0.0037 0.0006 0.0005 C - Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0007 0.0008 0.0037 0.0008	THORIUM-230	Ba/g		0.0180	0.0034	0.0011	0.02	Ξ	0.0043	0.00	4	_
Bd/g 0.0310 0.0130 0.0330 0.0410 0.0150 0.0380 AMMA) Bd/g 0.0262 0.0040 0.0013 0.0261 0.0040 0.0013 AMMA) Bd/g 0.0013 0.0006 0.0006 0.0026 0.0040 0.0007 AMMA) Bd/g 0.0247 0.0037 0.0005 0.0005 0.0007 C - Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0003 0.0008	THORIUM-232	Ba/g		0.0187	0.0034	0.0010	0.027	7	0.0047	0.001	4	- 7
Bolg 0.0282 0.0040 0.0013 0.0040 0.0013 AMMA) Bolg 0.0011 0.0006 0.0008 0.0020 0.0010 0.0004 AMMA) Bolg 0.0013 0.0046 0.0076 0.0005 0.0055 0.0067 Bolg 0.0247 0.0037 0.0006 0.0037 0.0008 0.0008	THORIUM-234	Ba/g		0,0310	0.0130	0.0330	0.041	9	0.0150	0.038	0	\neg
AMMA) Ba/g 0.0013 0.0046 0.0076 0.0055 0.0055 0.0067 Ba/g 0.0247 0.0037 0.0008 0.0234 0.0037 0.0008 C - Presence of high TDS in sample required reduction of sample size which increased the MDA. 0.0037 0.0008	URANIUM-233/34	Bq/g		0.0282	0.0040	0.0013	0.02	<u>=</u>	0,0040	0.00	3	-
5 (GAMIMA) Bq/g -0.0013 0.0046 0.0076 0.0005 0.0005 0.0005 0.0055 0.0008 0.0008 3 Bq/g 0.0247 0.0037 0.0008 0.00034 0.0008 0.0037 0.0008 C - Presence of high TDS in sample required reduction of sample size which increased the MDA.	URANIUM-235	Bo/g		0.0011	0.0008	0.0008	0.00	2	0.0010	0,000	4	_
Bajg 0.00247 0.0037 0.0008 0.0234 0.0008 0.0008 0.0037 0.0008 C - Presence of high TDS in sample required reduction of sample size which increased the MDA.	URANIUM-235 (GAMMA)	Bq/g		-0.0013	0.0048	0.0076	0.00	20	0.0055	0.008	7	_
C - Presence of high TDS in sample required reduction of sample size which increased the MDA. Y - Chemical yield exceeded acceptance limits.	URANIUM-238	Bafg		0.0247	0.0037	0.0008	0.022	<u>₹</u>	0.0037	0000	8	_
	QUALIFIERS:	C - Presence o Y - Chemical yk	質な	h TDS in sample coeded acceptar	required reduc sce limits.	tion of sample	e size which inc	ressed (the MDA.		PAGE#2	

٢

1995 Surface Water Radiochemistry

3

ı	
ı	
ł	
i	
1	

45

2	EW MEX	ĮŽ	O ENVIRC	NMEN	10	EPARI	E	NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	OVERSIG	HT B	JRE	AU, WIP	C		
			SIIMMAR	7 OF 1995	SUF	PEACE W	A	ER RADIOCHE	EMISTRY RE	SULTS		4			
	Location		PIERC	CE CANYON				RCE CANYON SITE INFLUENT	INFLUENT 06/28/95			UPRIN	UPRIVER PECOS		
Sell Consoline	INITE	٥	ACTIVITY	O ERROR	0	MDA	G	ACTIVITY Q	ERROR Q	MDA	σ	ACTIVITY C	Q ERROR	٥	MDA
ACTINIUM-228	Bolt	1	6	-	18	0.5100	П	-0.0370	0.7399	1.3688	┪	0.2700	0.8200		1.5000
AMPRICHIM 241	Ba/L		0.0008	0.0012	2	0.0011		0.0011	0.0011	0.0013	1	0.0010	0.0011		0.000
BISMITH.212	Ba/L	Γ	0.3800	0.6000	0	0.7300			SME			1.3000	1.7000		2.0000
PISMITH.214	Bolt	Г	0.1700	0.2000	L	0.2800	П	1.0359	0.5549	0.7029		-0.2200	0.4300		0.7700
CERIII 194	Boll				_			0.0962	0.1332	0.2257	U			\Box	
CECHW.497	Pa	Γ	-0.0140	0.0800	0	0.1200		-0.0888	0.1813	0,3515		-0.0900	0.1900		0.3500
CORAL T.67	Bod				Ľ			0.0185	0.0925	0.1554					
COBAI T-80	Bort		0,0080	0.0610	0	0.1300		0.0982	0,1332	0.3700		0690'0-	0.0610		0.3900
O AI BUA	708	O	0.5000	1,2000	0	2.3000	ပ	0.0444	0.0629	0.1073	0	0.3800	0.3000		0.4400
O DETA	Bod.	C	1,2000	1.3000	9	2.1000	,	0.1295	0.0888	0.1036	O	0.6500	0.2800		0.4100
G-0610	700	,	00100	0.3400	١	0,0210	Г					0,0400	0.2800		0,0140
CEAC-210	400	Γ	1 0000	11 0000	9	15,0000						1.8000	4.1000	5	8,3000
LEAD-ZIUGS)	100	Γ	0 1200	0.1900		0.2800		-0.0370	0.3700	0.5549		0.0800	0.3400		0.4900
LEAD-214	100		00700	0.1800	9	0.3100	Γ	0.7029	0.4440	0.6289		0.0700	0.4300	0	0,7200
CEAU-ZIA	100	Γ		00000	9	0.000		0.0002	0.0005	0.0010		0.0000	0.0000		0,0015
PLUI CAIUM-230	200		10000	0.0008	90	0.0021		-0.0001	0.0002	0.0010		-0.0005	0.0008	6	0.0030
PLOTONIUM-KOSMO	100	T	0.2000	0 2300	ē	0.2800			2			0.4200	0,3000		0.3900
PLUI DANIUM-ZAI	1 50	Γ	0.0019	0.0024	1	0.0032	>	0.0041	0.0078	0.0111		0.0380	0.0120		0.0043
POLONIOM-Z 10	100		1,7000	1,2000	9	1,7000		0.4440	2.7747	4,0896		1.2000	2.9000		4.3000
DADILL SOS	Post I		0.4000	0.7100	9	2.5000						1.4000	1.9000		4.4000
CADIUM-263	Bod	Γ	0.0023	0.0045	100	0.0083						0.0138	0.0072	7	0.0083
CACIOM-220	Pool I		0000	2,1000	0	3,2000		ī				0.0000	4,5000		6.8000
DADIUM-ZZGGGMINA)	Pod	Γ	0.0110	0.0140	9	0.0240		land as	JE	W		0.0140	0,0160	-	0.0270
STECHTINGS	Bad	Г	0000	2.1000	9	0.1300		-0.0037	0.0096	0.0170		0,1000	3,7000		0.2300
THAI I BIM-208	Bort		0.0500	0.1100	2	0.1600		0.0888	0.2516	0.3700		0,0700	0.2800		0.3800
THORIUM-228	Pg.		0.0128	0,0055	10	.0,0059		0.0035	0.0030	0.0037		0.0346	0.0070		0.0052
THORIUM-230	Bo/L		0.0001	0.0010	0	0.0019		0.0001	0.000	0.0012		0.0142	0.0037		0.0017
THORIUM-232	Bort		90000	0.0011	=	0.0017		0.0008	0.0008	0,0010		0.0144	0.0037	$\frac{1}{2}$	0.0017
THOBINA.234	Bort		0.4000	1.7000	2	5,3000		1.4798	3.6996	5.9193		2.2000	2.5000		5 7000
11RANILIM-239/34	Ba/L		0.3480	0.0850	ß	0.0240		0.0692	0.0129	0.0044		0.1400	0.0460	↲	0.0290
LIRANIIM-235	Ball		0.0380	0.0210	0	0.0170		0.0036	0.0030	0.0028		0.0210	0.0180	╬	0.0180
URANIUM-235 (GAMMA)	Bo/L		-0.2100	0.4400	, Q	0.8400		0.0370	0.9969	1.4798		0.8000	1,000		1.4000
URANIUM-238	Bq/L		0.1230	0.0380	g	0,0200	1	0.0244	0.0074	0,0028	-	0.0450	0.0250		0.0180
	C - Presence	7 7	oh TDS in eampl	e required re	ductio	n of sample	e etze	ple required reduction of sample size which increased the MDA.	the MDA.						
	Y - Chemical y	圣	Y - Chemical yield exceeded acceptance limits.	ance limits.		•						L	PAGE 1 of 3		

2	JEW MEX	18	O ENVIR	ONME	NTDI	PARI	MEN	IT, DOE	NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	HE	JRE	AU, WIP	_			
			SUMMAR	IY OF 1	885 SUR	FACE W	ATER	RADIOCHE	SUMMARY OF 1995 SURFACE WATER RADIOCHEMISTRY RESULTS	SULTS						Ī
	Location		BRA	BRANTLEY LAKE	KA KA			CAR	CARLSBAD			N	INDIAN TANK	XX.		
RADIONUCI IDE	UNITS	G	ACTIVITY	Q ERROR	OR O	MDA	Q	ACTIVITY Q	a ERROR a	MDA	a	ACTIVITY	Q	ERROR Q	Н	MDA
ACTINIUM-228	Bolt		10		6	0.5400	Н	9	0.8100	1.5000		-0.6289	\dashv	0.4809	77	1.2949
AMERICIUM-241	Ba/L		0.0013	0	0.0016	0.0021		0.0002	0.0008	0.0017	-	0.0016	+	0.0013	0.0	0.0007
BISMUTH-212	Bq/L		-0.2100	0	0.2900	0.8800		-1.1000	0.7000	2.5000						
BISMUTH-214	Bq/L		0.1200	Ö.	0.2000	0,3100		-0.1000	0.4700	0.7500		1.9238	+	0.6859	6	0.7029
CESIUM-134	Ball											0.0185		0.1554	0.2	0.2849
CESIUM-137	Bq/L		-0,0050	Ó	0.0920	0.1300		-0.1300	0.1200	0.3700		0.0074	\dashv	0.1887	6	0.3367
COBALT-67	Bc/L											-0.1073	\dashv	0.1036	6	0.1924
COBALT-80	Balt		-0.0330	0	0.0400	0.0980		-0.1290	0.0940	0.3800		-0.0866	-	0.1036	0.3	0.3515
G-ALPHA	Beh	O	0.0300	O	0.3500	0.7100	O	0.2900	0.5200	0.9200	O	0.7399	1	0.3330	0.3	0,3515
G-BETA	Ba/L	ပ	0.3000	0	0.3500	0.5900	O	-0.2200	0.4400	0.8000	O	1.9904	\dashv	0.2886	0.2	0.2960
LEAD-210	Bal		-0.0100	Ö	0,2600	0.0150		0.000	0,2200	0.0130			1		_	
LEAD-210/GS)	Ba/L		1,0000	10.	10,0000	15,0000		1.3000	3.8000	5.9000			-	1	4	
FAD-212	Ba/L		-0.0200	_	0.2000	0.3100		0.0100	0.3600	0.5300		0.2109	\dashv	0.3589	6	0.5179
1 FAD-214	Ba/L		0,0200	0	0.1900	0.3200		0.2100	0.4000	0.8300		1.2949		0.4809	0.5	0.5919
PI LITONILIM-238	Ba/L		-0,0004	°	0.0004	0.0018		-0.0002	0.0003	0.0018		0.000	\dashv	0.0000		0.0005
PLUTONIUM-239/40	Bolt		0.0005	o	0,0011	0.0018		0.0002	0.0008	0.0018		0.0001	+	0.0004	8	0.0008
PI LITTONILIM-241	Bort		0.2400	0	0.2000	0.2100		0.5300	0.2600	0.2800			\dashv		\dashv	
POLONIUM-210	Bor		0.0072	Ö	0,0057	0,0051		0.0053	0.0042	0.0037		0.0259	1	0.0104	의	0.0029
POTASSIUM-40	Ban		-0.0900	0	0.9700	1.7000		-1.2000	2.4000	4.4000		0.2590	+	2,8857	4	4,4395
RADNUM-223	Bar		-0.3200	O	0,7000	2.6000		0.5000	1.4000	5.5000			\dashv		4	
RADIUM-226	8		0.0038	°	0,0049	0.0081	H	0.0129	0.0069	0.0077			+	1	4	
RADIUM-228(GAMMA)	Bq/l.		0.0000	2	2.1000	3.1000		0,000	4.5000	6,1000			+		4	
RADIUM-228	Bolt		0.0100	0	0.0160	0.0260	$\frac{1}{1}$	0.000	0.0160	0.0270	1		+	1	4	
STRONTIUM-80	Bo/L		0,0000	2	2,3000	0.1500	\dashv	0.0000	2.2000	0.1400		0.0237	+	0.0104	의	0.0155
THALL(UM-208	Boff		0.0110	O	0.1000	0.1500		0.0100	0.2500	0.3700		0.0962	+	0.2516	6	0.3515
THORIUM-228	Bolt		0.0087	0	0.0058	0.0067	-	0,0050	0,0047	0.00		0.0222	+	0.0044		0.0031
THORIUM-230	Bolt	17.1	0.0017	0	0.0019	0.0025		0.0015	0.0015	0.0018		0.0215	┨	0.0041	읙	0.0011
THORIUM-232	Bor		-0.0004	0	0,0011	0.0025	-	-0.0004	0.0007	0.0019		0.0229	+	0.0041		0.0012
THORIUM-234	BqA		-0.1000	1	1,7000	6,3000	-	0.5000	2.4000	5,7000		0.9819	+	2.5157	5.9	5.9193
URANIUM-233/34	Bq/L		0.1900	0	0.0510	0.0230	\dashv	0.2480	0.0620	0.0250		0.0385	+	0.0100	의	0,0044
URANIUM-235	Bq/L		0,0280	0	0.0180	0.0089	\dashv	0.0670	0.0330	0.0230		0.0053	\dashv	0.0038	8	0.0026
URANIUM-235 (GAMMA)	Bq/L		0.0100	0	0.5500	0.8300	\dashv	0.6700	0.9800	1.4000		0.5549	\dashv	1.0359		1.5168
URANIUM-238	Boll		0.0800	0	0,0330	0.0220		0.1290	0.0460	0.0300		0.0314	\dashv	0.0089		0.0036
QUALIFIERS:	C - Presence or Y - Chemical y	名	C - Presence of high TDS in sample required reduction of sample size which increased the MDA. Y - Chemical yield exceeded acceptance limits.	le require lance limit	d reduction) of sample	etze whi	ich increased t	he MDA.			-	PAGE 2 of 3	2 of 3		

21.5	NEW ME	区	NEW MEXICO ENVIRON	NO	MENT	DEP	ARTI	MENT,		OVER	SIG	41 B(JRE	MENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	Д			
ī			SUMMARYO	<u>الم</u>	IF 1995 SURFACE WATER RADIOCHEMISTRY RESULTS	JRFAC	E WA	TER RA	DIOCE	EMISTR	Y RES	ULTS						Ī
	Location Comple Date		FAC	FACILITY	WEST										á			
RADIONUCLIDE	UNITB	σ	ACTIVITY	0	Q ERROR (a MDA	Н	Q ACTIVITY		Q ERROR	٥ م	MDA	ø	ACTIVITY	o	ERROR	a	WDA WDA
ACTINIUM-228	Ball			\dashv		-	\dashv		+		+				1		\dagger	
AMERICIUM-241	Bq/L	٧	0.0018	\dashv	0000	69	0.0018		+		$\frac{1}{1}$		1				\dagger	T
BERYLLIUM-7	Ball	Y	1.3171	┪	00000	13	1.3171		+	1	+						\dagger	
BISMUTH-212	Ba/L			\dashv	1	\dashv	\dashv		+	\downarrow	+		1		1	1	╁	T
BISMUTH-214	Ba/L	٧	0.0200		0.000	0.0	0.0200		\dagger		+		1				+	
CESIUM-134	Bo/L								-		4		1			1	\dagger	
CESIUM-137	Bolt	٧	0.1354		0.0000	0.1	0.1354		+		-					1	\dagger	Î
COBALT-57	Ba/L					-	\dashv		\dashv		-					1	\dagger	
COBALT-60	Bq/L	v	0.1809		0.000	0.1	0.1809		\dashv		\dashv		1		1		\dagger	Ī
G-ALPHA	Bq/L	Ц					\dashv		\dashv		+					1	\dagger	Ī
G-BETA	Bq/L										\dashv]		+	
LEAD-210	Bq/L	Ц	0.1295	H	0.0185	0.0	0.000		+		$\frac{1}{1}$		\rfloor				+	T
(LEAD-210/GS)	Ball					-	\dashv		1		\dashv		1		1		+	Ī
LEAD-212	Bon.								\dashv		$\frac{1}{1}$		ļ				†	
LEAD-214	Ba/L	>	0.0107		0.000	8	0.0107		1		4						+	
PLUTONIUM-238	Baff	v	0.0015		0.000	0.0	0.0015		\dashv		-		1				\dagger	
PLUTONIUM-239/40	Ball	v	20000	H	0.000	0.0	0.0007		*:		4			_	1		+	
PLUTONIUM-241	Ba/L	v	0.4070	H	0.0000	0.0	0.000				\dashv]	ļ			\dagger	
POLONIUM-210	Ball	L		H					\dashv		\dashv		ightharpoons				\dagger	
POTASSIUM-40	Ball	L	2.1569		4.1065	0.0	0.000		-		-]				\dagger	
RADIUM-223	Ball			H					+		-		\Box		1		\dagger	
RADIUM-226	Ball	٧	0.0148	H	0.000	0.0	0.0148				4						\dagger	
RADIUM-228(GAMMA)	Ball			H					+		4						\dagger	
RADIUM-228	Ball	٧	0.0370	H	0,000	0.0	0.0370		+		4		ightharpoons				\dagger	
STRONTIUM-90	Ba/L	v	0.0518	H	0.000	00	0.0518		+	$\frac{1}{1}$	+		\downarrow			1	\dagger	Ī
THALLIUM-208	Bq/L					\dashv	\dashv		+		+		1		1	1	\dagger	
THORIUM-228	Bq/L	>	0.0044		0.000	0.0	0.0044		1		+		1		1		\dagger	
THORIUM-230	Ball		0.0067		0.0022	8	0.000	_	1		+		1		1		\dagger	
THORIUM-232	Boll	v	0.0022	ᅱ	0000	8	0.0022		\dagger	$\frac{1}{1}$	+		1		1		t	
THORIUM-234	Boll			1		-	\dashv		+		+		Ţ				\dagger	
URANIUM-233/34	Bq/L			\dashv		\downarrow	\dashv		+		+		1				\dagger	
URANIUM-233	Ball	v	0,0013		0.000	8	0.0013		1		+		\downarrow		1		\dagger	Ī
URANIUM-234	Bq/L		0.0053	\vdash	0.0019	0.0	0.000		1		-				1		\dagger	
URANIUM-235	Bort	×	0.0016		0.000	00	0.0016				-		1		1		+	
URANIUM-235 (GAMMA)	Bq/L						1		\dagger		+		1		1		+	
URANIUM-238	Bq/L		0.0023		0.0011	9	0.000		+		\dashv]]		1	
QUALIFIERS:	< - Less than detectable.	dete	ctable.												PAG	PAGE 3 of 3		-

1995 Soil Radiochemistry

TOTAL SECTION			NEW ME	XICO EL	O ENVIRONME SUMMARY OF	NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP SUMMARY OF 1995 SOIL RADIOCHEMISTRY RESULTS	PARTME OIL RAD	TMENT, DOE OVERSIGHT BU RADIOCHEMISTRY RESULTS	OVER	SIGH RESU	T BUR	EAU, W	llPP		
	Location Depth series		SOUTHEA!	SOUTHEAST CONTROL SURFACE	<u> </u>	3	WIPP EAST EAST DEEP		IIW	PP SOUTH SOU INTERMEDIATE	WIPP SOUTH SOUTH INTERMEDIATE	_	WIPP SOUTH BOUTH MEAN CONCE MEAN MINIMUM DETE	WIPP SOUTH BOUTH AND WIPP EAST EAST MEAN CONCENTRATION AND MEAN MINIMUM DETECTABLE ACTIVITY (MDA)	
PADIONIELIDE	STIMI	a	ACTIVITY	ERROR	MDA	ACTIVITY	ERROR	MDA	A ACTIVITY	-	ERROR	MDA	Mean Activity	Mean MDA	7
ACTINIUM-228	Ba/a		0.0098	0.0023	82	ш	_	0.0048	0	0.0083	0.0037	0.0052	0.0096	0.0050	7
AMERICIUM-241	Ba/g		0.0000	0.0005	0.0012	0,0003	3 0.0006	0.000	0	0.0004	0.0008	90000	0.0004	0.0008	_
BISMUTH-214	Bo/g		0.0080	0,0017	0.0017	0,0085	5 0.0025	0.0024	0	0.0100	0.0025	0.0024	0.0098	0.0024	_
CESIUM-134	Bq/g		-0.0001	0.0003	0.0007	-0.0001	1 0.0003	0.0010	9	-0.0001	0.0004	0.0011	-0.0001	0.0011	7
CESIUM-137	Bq/g		0.0037	0.0009	0.0006	0.0050	0.0014	0.0012	Ö		0.0011	0.0011	0.0045	0.0012	_
COBALT-57	Ba/a		100001	0,0004	0.0007	-0.0001	1 0.0005	0.0008	9		0.0005	0.000	-0.0001	0.0009	-
COBALT-80	Ba/a		0.0000	0.0003	0,000	0.0004	4 0.0008	0.0010	9	-0.005	0.0005	0.0014	-0.0001	0.0012	
G-ALPHÀ	Ba/a	ပ	-0.0888	0.0851	0.2294 C	-0.0185	5 0.0925	0.2183	0	0.1628	0.1406	0.2035	0.0722	0.2109	-,
G-BETA	Ba/o		0.2812	0.1295	0.1961	0.2035	5 0.1221	0.1887	•	0.4846	0.1480	0.2035	0.3441	0.1961	-
I FAD-212	Bo/o		0.0087	0.0016	0.0015	0,0085	5 0.0019	0.0018	0	0.0082	0.0019	0.0019	0.0084	0.0019	-
EAD-214	Ba/c		0.0105	0.0016	0.0015	0,0092	2 0.0020	0.0022	0	0.0113	0.0021	0.0022	0.0103	0.0022	_
PLUTONIUM-238	Bafo	ै	-0,0003	0.0018	0.0025	0.0015	5 0.0016	0.0021		0.004	0.0018	0.0024	0.0010	0.0023	7
PI 1/TONIUM-239/40	Ba/a		-0.0001		0.0017	-0.0004	0.0005	0.0013	0	0.0002	0.0008	0.0013	-0.0001	0.0013	î
POLONIUM-210	Beka		0,0055	0.0115	0.0148	0.0052	2 0.0155	0.0218	٥	0.0185	0.0085	0.0028	0,0119	0.0123	- 1
POTASSIUM-40	Ba/a		0,1709		0.0085	0.2320	0.0348	0.0107	9	0.2357	0.0348	0.0104	0.2339	0.0106	7
STRONTIUM-90	Ba/a		0,0033	0.0089	0.0152	-0.0048	8 0.0074	0.0137	°	0.000	0.0081	0.0141	-0.0024	0.0139	$\overline{}$
THALLIUM-208	Bafa		0.0028		9000'0	0.0031	11 0,0011	0.0012	•	0.0031	0.0012	0.0014	0.0031	0.0013	_
THORIUM-228	Ba/a		0.0139		0.0027	0,0137	7 0,0033	0.0027	9	0.0130	0.0030	0.0023	0.0134	0.0025	_
THORIUM-230	Bq/g		0.0090	0.0022	0.000	0.0087	7 0.0022		9	0.0041	0.0014	0.000	0.0084	0.0010	1
THORIUM-232	Bø/g		0,0092	0.0022	0.000	0.0098	6 0.0023	0.000	9	0.0066	0.0018	0.0007	0.0081	0.0007	_
THORIUM-234	Bq/a		0.0141	0.0148	0.0925	0.0074	4 0.0122	0.0370	9	0.0144	0.0129	0.0407	0.0109	0.0389	7
LIRANILIM-23334	Ba/a		0.0108	0.0030	0.0015	0.0086	6 0.0027	0.0016	٩	0.0097	0.0027	0.0011	0.0092	0.0014	-
IRANILIM-235	Bo/a		0.0008	6000'0	0.0011	0,0023	3 0.0013	0.0010	9	0.0013	0.0010	0.0010	0.0018	0,0010	7
IIBANII IM-235/GAMMAN	Ba/a		0,0001	0.0031	0.0048	0.0015	5 0.0037	0.0059	?	-0.0019	0.0034	0.0059	-0.0002	0.0059	T
URANIUM-238	Bq/g		0.0072	Ш	0.0012	0.0115	5 0.0029	0.0010	1	0.0056	0.0021	0.0013	0,0086	0.0012	T
									_	-	1				
avalifiers:	C - Presen	87	C - Presence of high TDS in sample required reduction of sample size which increased the MDA.	sample requi	ired reduction	n of sample stz	e which incre	ased the MC	¥.						
		S. R	ord exceeded a	Commission							}	j			ì

64

1995 Ground Water Radiochemistry

10E 241 7 7		West		CULEBRA CULEBRA CUL	BRA BRA		II	H-14 CULEBRA	<u>\$</u>			H-18 CULEBRA			- 0	WIPP-19 CULEBRA		
4 S B		Semple Deta	H	CZ90	06/23/85	ACM	A A	ACTIVITY E	OG/1805	MDA	ACTIVITY	ITY ERROR	Н	MDA	Н	ACTIVITY ERROR	Н	MDA
ACTINIUM-228 AMERICIUM-241 BERYLLRUM-7 BISMUTH-212 BISMUTH-214	SAMPLE LYPE	UNITE	7	0 55.40	27.5	9	╁	0 8478	0.3330	9	┢		0.6659	1.5908	1		ļ	1.7018
MERYLIM-7 BERYLIM-7 BISMUTH-212 BISMUTH-214		Post of	t	0.0001	0.000	0,0014	H	0.0006	0.0010	0.0015	Ö		0.0000	0.0013	9	90000	0.009	0.0013
BISMUTH-212 BISMUTH-214		Box					H				\downarrow	1	+	+	+		-	
BISMUTH-214		BoA		00			+		+		- -		L	9000		2 2200	0 8430	1 7018
		Bol	H	2.6267	0,4440	0.3162	+	080	0.3863	0.3256	7		1	0.7029	7 6	1.	┸	0.2886
CESH M4.134	-	Bolt	H	-0.0107	0.0211	0,1073	+	-0.0070	0.0207	0.0000	2 4	_L	_	0.4070		_	L	0.3283
CESI BA (37		Bot.		-0.0296	0.0556	0.1443	+	0.0111	0.0962	0.1332	7		1.	0.4070	7	L	L	0.2331
COBALT-67		Bolt.	H	-0.0111	0.0740	0.1285	+	-0.0259	0.0666	0.1184	? .	1	0,1256	0.2163	?		1_	0.4070
COBALT-60		Bolt		0.0296	0.000	0.1369	-	0 0592	0.0629		1			7 2002	+	Ľ	<u> </u>	20.7177
G-ALPHA		Bolt	0	5,9193	7.3992	12,2087	0	7,3902	3.6096	4.0696	4	0.0484		L	+	<u> </u>	٠.	20.7177
G-8ETA		Bot.	0	22.5875	7,7691	1.088	 	1716.7	7,877	4.00%	ļ	1	1.		-	1_	F	
		Bot	1		1	1	+	1			\downarrow		+			H		
	DUPLICATE	Bor	+			+	+	†	1	+	-				'			
LEAD-210(GS)		Bor	+		4000	97860	╀	0 4666	1881	0.2812	°	0.4070	0,3700 0,	0,5179	0	0.0000	0.4070	0.5549
LEAD-212		Bol	\dagger	02/01	0.407.0	2070	+	20162	23,48	0.2823	7	<u> </u> _		0.7399	3	3.4778 (0.6659	0.6859
LEAD-214		Both	\dagger	3.033/	1000	00760	\dagger	2000	9000	0,0014	Ś	L		0.0012	٥	0.0018	0.0012	0.0010
PLUTONIUM-238		Bon	†	0.0002	00000	2000	H	0000	9000	0.0006			0.0006	0.0011	0	0,0003	0.0007	0.0011
PLUTONIUM-239/40	†	Bor	\dagger	0.000	0,000	333	╁					L	\vdash			- (1	
PLUTONIUM-241		Bol.	1	77000	60000	77,00	 >	0 000	0.0084	0.0078		0.0022 0.	0.0044	0.0063	0	0.0012	0.0037	0.0078
		Bol	\dagger	רושים	0.0003	1	+	0.000			-	L				ŀ	1	
	DUPLICATE	Bol	\dagger	40.000	2 4447	4 8008	+	8 SASS	1.6496	1.77581	\$	5.0684 3.	3,5146 4	4.0896	4	14.0565	4.8095	3.6996
POTASSIUM 40		Bon	\dagger	14.0000	1	200	+				L						-	
RADIUM-223	+	30%	\dagger				+									$\frac{1}{1}$		
RADIUM-226	1	5	\dagger			T	-									-	+	T
RADIUM-226(GAMMA)		100	\dagger														\dagger	
RADIUM-228	†	100	t	O OOSK	200	0.0166		0.0063	0.0104	0.0174	0	0,0055 0.	0.0089	0.0152	٩	-0.0067	0.0111	0.0203
		100	†	3	2000		\vdash									_L		1
	מינות	1 2	+	0.0703	0.1184	0.1702	-	-0.0333	0.1073	0,1702	?	-0.0407 0.		0.4070	Ÿ	4	0.1406	0.4070
THALLUM-208		200		0.0511	0.0067	0.0033	-	0.0163	0,0041	0.0033	9	_1	_1	0.0036			0.0137	0.0048
TUDBII BA 220		Bel	f	0.0003	0.0008	0,0013		0.0001	0.0005	0.0009			ᆚ	0.0013		0,000	0.0023	0.0023
TUODE M. 222	1	BoA	f	0.0011	0.0009	0.0010		0.0002	9000	0.0011	1	1.	1	0.001Z			2 6807	5 0101
TUDBUR 1234		Bor	T	-0.5549	1,8498	6,9193		0.000	4,0696	5.5494		_		5.9193		1	0.000	0.0055
HIDANIE MA 23374		Bort.		0,5253	0.0444	0.0041	+	0.2888	0.0298	0.0052	1	0.6622 0	0.0451	0.0041	1	1_		2000
MIDDAN MACOA		Bot	-			Q	\dashv	1				Į.	┸	188		0.0463	0 0087	0.0041
Drawin na 236		Bort	T	0.0159	0.0059	0.0034		0.0070	0.0041	0.0034	-	-	┸	0.0026			4 0720	1 557R
HOANII M. 235 (CANALA)		Bof.		0.3330	0.6289	0,9619	1	-0.2220	0.5179	0.9249	1		⊥	1.62/6			0 0 185	0.0041
DALIT DE 228		BoA	T	0.0788	0.0137	0.0041	Ш	0.0481	0.0111	0.0044	1	0.11361 0	0.0159 U	0.0044		ı	20120	
							ĝ											
QUALIFIERS: BOL	Below the De Presence of high	BDL - Below the Detection Limit. C - Presence of high TDS in semple required reduction of semple size which incressed the MDA.	ulnoer e	ed reduction	of sample	stze which it	normene	I the MDA.							PAGE 1 of 3	10(3		
· · · · · · · · · · · · · · · · · · ·	Chemical yield a	moseded scorp.	fance in															

	NEW MEXICO		NO.	MENT DE	PARTME	ENT, DO		ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	T BURE	:AU, WI LTS	ద			
	00			Wa	WQSP-2			WQSP-3	P.3			M C	WQSP-4	
		1		3	EBRA			CULEBRA	88A 85			280	08/28/95 08/28/95	
RADIONIICI IDE	SAMPLE TYPE	UNITS	σ	ACTIVITY	Y ERROR	MDA	o	ACTIVITY	Y ERROR	MDA	σ	ACTIVITY ERROR	ERROR	MDA
ACTINIUM-228		Bq/L					1		1		1	77000		Ī
AMERICIUM-241		Bq/L	B 0,	0.0277			릷	0.0181		1		0.0044	T	
BERYLLIUM-7		Bq/l.	BOL	1.0544			릶	1,3097		1		7906.0	T	
BISMUTH-212		Bq/L			- 1.		T		300	0.000	T	44 4697	4 4643	0.0280
BISMUTH-214		Be/L		4,4395	0.4550	0.0274	Ī	6.3263	0.6400	U.02/U	T	1 .4007	250	0,0400
CESIUM-134		Bq/L					į	0027	1		2	0 1583		
CESIUM-137		Bq/L	릶	0.1424		1		0.1720	1		5	0.1.0		
COBALT-57		Bq/L						0,000	1	1	Š	0.1020		
COBALT-80		Bq/L	릷	0.1909			힖	0.2312				12 2087	8 8790	0.0044
G-ALPHA		Bq/L					T				T	48 4847	12 578A	00100
G-BETA		Ba/l.					T	***************************************		Ī	Š	10.40.		
LEAD-210		Bq/L	펿	0.6733				1,3541		Ī		0.000		
LEAD-210	DUPLICATE	Bq/L					T				T			
LEAD-210(GS)		Ba/t												
LEAD-212		Bq/L					T		00700	0000	Ī	11 8757	1 1013	0.0170
LEAD-214		Bq/L		4.5875	0.4624	0.0133		6.3833	0.640	701070	į	9.00		
PLUTONIUM-238		Ba/L	ם				ם	0.0215	1	1		0.00		
Printonium-239/40		Bq/L	80	0.0141			ם	0.0089				0.000		
DI LITONII IM. 241		Bq/L	BD	5.8306			뎚	5.6123			a a			
BOI ONI IM-240		Ball	BDLY	0,1225			四人	0.0683			BOLY	0.4765		
POLONISM 210	DUPLICATE	Bo/L										1000	2007	4 0000
POTASHIM 40		Bq/L		17.1681	4.1085	2.0200		47.7248				26.3781	4.43BD	4.0090
PANILIM-223		Bq/L										1000	4 4700	0.0420
PACITIM-228		Bq/L		4,5135	0.4587	0.0133		6.3633	0.6400	0.0152		11.6807		2
RADIUM-228(GAMMA)		Bq/L				- }						7 8030	0 4008	0.0407
RADIUM-228		Ba/L		0.6807		- 1		1.2098	0.1338	0.0366	1	00220	1_	0 8859
STRONTIUM-80		Bq/L		0.7388	0.4440	0.6659	90	0.6659				0.7388		
STRONTIUM-80	DUPLICATE	Bolt	4											
THALLIUM-208		Bo/L	_			0000	Ē	0.0583				0.0270	0.0052	0.0041
THORIUM-228		Ba/L		7970'0	_l_	0.0200		10000	0.0452	0.0048		0.0085		0.0087
THORIUM-230		Bq/L			1800.0	30.0	-1-	0.0450	0.010		9	0.0018		
THORIUM-232		Bo/L		0.0082			5	2				0.5823		
THORIUM-234		30/1	1											
URANIUM-233/34		Ba/L	1		0 1000	0.000		0.4514	77700	0.0030		7.0	0.0703	0.0022
URANIUM-234		Ball		UTZT.L	1	L		0000	L.			0.0063	ı	0.0018
URANIUM-235	ï	Bo/L	_		0.0033	1100.0		0,0200						
URANIUM-235 (GAMMA)		Boll	1	0.0118	_L			7 1005	0.0407	0.0048		0.0925	0.0137	0.0018
URANIUM-238		Bq/L	4	0.1791	0.0244	0.000		0.1003	1	Ł			ı	L
QUALIFIERS:	BDL - Below the Detection Limit. C - Presence of high TDS in sample required reduction of sample size which increased the MDA.	Detection Limit. gh TDS in samp	ž red	ired reduction	of sample si	ze which in	ocress.	d the MDA.				2 C H C H C H C H C H C H C H C H C H C	_	
	Y - Chemical yield exceeded acceptance limits	exceeded acce	phance	limits.									_	
											١			

ı	ı		
I	ı		
1	l		
	ľ		
	K		
	ı		

		NEW ME		NEW MEXICO ENVIRONM		ENT DEPARTMEN	RTME	ENT DEPARTMENT, DOE OVERSIGHT	T, DOE OVERSIGHT	SIGHT	BUREAU,	U, WIPP					
		N Med		May Wa				WQSP-8	9-8			WQSP-6a	-6a		Rust	Rustler/Culebra Mean	an
	*	Zone		CULEBRA	BRA			CULEBR	86.₹ 86.			DEWEY LAKE	₩ 2 ¥ 2		1991	Activity and MDA 1995 NMED Results	Its
PADIONICION	SAMPLE TYPE	UNITS	o	ACTIVITY ERR	ERROR	MDA	0	ACTIVITY	ERROR	MDA	Q AC	ACTIVITY E	ERROR	MDA	Mean	Std. Dev.	MDA
ACTINITM.228		Bolt	Γ									0.4100	0.8300		0.3539	0.4039	0.8879
AMERICIUM-241		Boll	쯟	0.0268			BOL	0.0159		0.0159	$\frac{1}{1}$	-0.0001	0.0007	0.0019	0.0117	0.0119	0.0050
BERYLLIM.7		Bell	펿	1.0174			BOL	1.1987		1.1987	$\frac{1}{1}$				1.1077	0.1435	1.1987
BISMITH-212		Boll.									$\frac{1}{1}$	0.3000	7000	2.3000			1
DISMITH.044		Bolt.	Γ	7.0292	0.7103	0.0226		1.6204	0.1708		$\frac{1}{1}$	0.800	0.5800	0.7300	4.7235	3.4009	0.2075
CECH MA-194		Ball					_							_	0.0466	0.0854	0.1508
CEOLOGICAL AND		Bod	Ž	0.1182			- G	0.1321		0.1321		-0.0700	0.1800	0.3100	0.0870	0.1187	0.2042
COBALT.57		Bolt												_	-0.0173	0.0077	0.1554
000A1T.60		Bod	뎚	0.1408			BDL.	0.1828		0.1828	_	-0.0200	0.1100	_	0.1352	0.0766	0.2141
O AI DUA		Box									ပ	-0.3100	0.7200	_	7.7691	3.0657	5,9205
Special Control of the Control of th		Roll	Γ				-				ပ	0.2800	0.7700		21.4021	19,4331	5.5519
C:0110		1 50	Ē	0.8381			8	0.6980		0.8880		0.000	2.1000	0.1100	0.8909	0.2759	0.8990
LEAD-210	11100100100	1 50					Ē	0.6918		0.6918	L				0.6918		0 6918
LEAD-210	DUPLICATE	700	Τ								-	0.700	4.2000	6.5000			
LEAD-210(GS)		2001	T				1					0000	0.3500	0.5300	0.2812	0.1206	0.3613
LEAD-212		201	T	0000	00000	0.0400	t	1 4887	0 1513		-	1.000	0.4700	0.8800	4.8381	3.4243	0.2022
LEAD-214		201	į	0.0223	0.000	0.0122	3	9000		A 00.0		5000	0 0007	_	0.0139	0.0191	0.0016
PLUTONIUM-238		Bort		0.0444			7 6	0.0020	1	0.0020	+		0000 C	-	0.0057	0.0077	6000 0
PLUTONIUM-239/40		Boll	8	0.0200				1100.0		1000	+	0.2400	1000		4 7525	2.1443	5.9083
PLUTONIUM-241		Berl		5.4828			됣	2.9003		2000	+	2000	200	_	2000	0.5404	0.0480
POLONIUM-210		Bort.	ם	1.5083			펿	0.0814		0.1633	$\frac{1}{1}$	0.0038	n:napn	-	0.4406	6.0	0.2215
POLONIUM-210	DUPLICATE	Bolt.					副	0.1105		0.2215	$\frac{1}{1}$		9		22.6	44 4546	2 5473
POTASSIUM-40		Ball		13.4295	3.8478	1.7573	†	4.6985	4.0896		$\frac{1}{1}$	0.000	300.7	-	10.01	14,4013	4.047.2
RADIUM-223		Bolt					+				+	8	3000	3.4000			17.00
OADMIN.228		Ba/L		6.8073	0.6881	0.0122					1	0.00	0.0053	0.0075	7.3437	3.0635	0.0144
DADUITA 228/2 AMMA)		Ba/L						1.5464	0.1609			0.800 0.8000	4.3000	8.8000	1.5484		
CANDING AND		Ball		1.3023	0.1443	0.0328		0.2434	0.0418			0.0030	0.0150	0.0280	1.0520	0.6072	0.0356
ETBONTH M.90		Ball	Γ	0.7389	0.4440	0.6859	BDL.	2,2588		2.2588		0.000	2.2000	0.1400	0.8450	0.7417	0.6148
CTDONTH M.OO	N IPI ICATE	Ba/l.	Г				8DF	1.9608		1.9608					1.9608		1.9608
TUAL HIM SOR		Ball	Γ									0.0900	0.2600		-0.0012	0.0621	0.2491
THOSH MA.228		Ball	Γ	0.0750	0.0162	0.0199	BD.	0.0055		0.0055	-	0.0156	0.0062		0.0381	0.0235	0.0085
THOUSE BY 220		Par	Γ	0.0317	0.0111	0.0100		0.0052	0.0018		_	0.0028	0.0019		0.0135	0.0157	0.0050
DESCRIPTION OF THE PROPERTY OF		100	Ę	0.0102			펿	0.0022		0.0022	_	0.0003	0.0008	_	0.0053	0.0062	0.0014
I HURIUM-232			5									0.6000	2.5000	5,7000	-0.0906	0.4927	5.7960
THORIUM-234		200	T									0.3880	0.0680	0.0250	0.4920	0.1890	0.0045
URANIUM-233/34		2001	T	3040	0.4028	A 00.48	t	0.5384	OGRE		_				0.8703	0.4480	0.0022
URANIUM-234		200	T	76100	0.1040	0.00	+	0.0052	0.0018		-	0.0470	0.0240	0.0160	0.0124	0,0062	0.0022
URANIUM-235		200	Ţ	0.0137	2000		T				-	-0.2700	0.9900	1.5000	-0.1543	0.4519	1,1715
URANIUM-235 (GAMMA)		Boll	T		00000	_1_	t	10000	0.0422		-	0.1980	0.0500	0.0240	0.1228	0.0594	0.0028
URANIUM-238		Bolt		0.2201	0.0282	0.0010	1	0.0021	770		1					of or other	Totalion
QUALIFIERS & ACRONYM	BDL - Balow the Detection Limit.	etection Limit.				delan esta	factored	ACM with baseasses, detain sets of	- The	Jewey Lak	в твтрег	of the Rus	ller Forma	lion is excil	Uded Hom	• The Deway Lake member of the Rustler Formation is excluded from the mean calculation.	Cialion.
	C - Presence of high TDS in sample required reduction of sam Y - Chemical yield exceeded acceptance limits.	oxeeded accep	tance tance	fred reduction limits.	or sampre											PAGE 3 of	0(3
	MDA - Minimum Detectable Activity	etectable Activit	, ,	(A) (A) (A)													
Ę.	Std. Uev Standard Devictions of the mean (Avelege)			ARBINA LI		Ĭ											}

بر در

1995 General Chemistry and Metals

Comparison Com		NEW MEXICO		SONMENT D	CHEMI	TMENT, DOE O STRY AND META	VER	ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP OG 1803 GENERAL CHEMISTRY AND METALS ANALYTICAL RESULTS	S WIF				-
March Marc		HOLIVOOT		WEST		H-03b3		H-14 cutesta		H-18 CULEBRA		WIPP-19. culebra	- 17
The color of the		SAMPLE DATE	0070 0070	100 m		65/23/85	ı	06/19/35	╛	04/04/95	1	05/02/95	_
Transport Tran	PARAMETER			SULT	^	RESULT	>	RESULT	3	RESULT	1	RESULT	_
The control of the	AMMONIA AS NITROGEN	mo/L			\dashv		†		1		1		_
Column	INCARBONATE AS CACO	שטר		62,0000	$\frac{1}{1}$		†				1		
Track, C 1,0000 C C C C C C C C C	CARBON DIOMOE AS CACOS	mot.	7	1,000	$\frac{1}{2}$		†				-		
Turb. Co. 1,0000 Co.	CARBONATE AS CACOS	Ą		1,000	1		t		I		L		
The color of the	HYDROXIDE AS CACOS	1		1.0000	$\frac{1}{1}$		Ť		I		_		
Table	TOTAL ALKALINITY AS CACOS	Tag.		63,000			T				Ц		-
TOTAL CONTROL CONTRO	TOTAL DISSOLVED SOLIDS	ğ		90,000	-		T						7
Triangle Triangle	TOTAL ORGANIC CARBON	TOTAL STATE OF THE PARTY OF THE			1		T						-
Control of the cont	TOTAL ORGANIC HALIDES	Tal.	 	0.420	$\frac{1}{1}$		T				Ц		1
Control Cont	TOTAL PHOSPHATE AS PHOSPHORUS	TAN-	1	U.1300	$\frac{1}{1}$		T				Ц		7
Control Cont	TOTAL SUSPENDED SOLIDS			20000	1		T						7
Title	ELECTRICAL CONDUCTIVITY	umporom	<u> </u>	140.000			T						1
Table Tabl	CHORIDE		<u> </u>	10,000							4		T
Tright	SULFATE			0.2000	L						4		T
Tright T	FLUORIDE				H						4		Т
Fight	HODIDE		20		-		Γ				4		\neg
Tright Column C	NITRATE AS NITROGEN	É		0.4400									Т
Track	£	3	\ \	2	L		Γ				4		T
Tradition Control Co	PHENOUS, TOTAL	Į į	\ \ +	1000	L		ŀ				\dashv		T
Title	SPECIFIC GRAVITY			00400		0,0020	v	0.0020	_	0.00	4	0.020	्रा
March Marc	ARSENIC	Ē		0 100		0.0234		0.025		0.016	2	0.036	gil
March March Company March Company	BARIUM			9000	_	00100		0,001		0.00	_	0.010	οl
Mark	BERYLLUM	É		0.000		17.4000	1	9.460		13.000	_	0000	οĪ
100000 1140,000 1140,	BORCN	Z		O, O. C.	L						-		T
ILM	BROMIDE	Į.	,	0.000		0.0100		0,001	\perp	00.00			o i
Hard High	CADMIUM	Ę.		S mm	-	1440,0000		1720.000		1140.000	밁	1500.000	او
120	CALCHUM			0.0400	÷	0.0100	I _	0,001	_	000			ol o
Track	CHOMICA			2,000		0.1500	4 1	0.376		0.24			श
March	NO.	-	V	00000		0.0100		1,400	t	0.01	1		श
Table Tabl	150	7		0,0100		0.3050		0.360		0.24	318	DAR OND	2 9
The control of the property of the control of the		Van		40000		744,000		633.000		524.00	3 5	000	2
Mark Tight Column Tight Colombia	MANAGOROM MANAGO	jag.	•	0,0002		0.0002	V	0.000			¥ 8	540.000	12
Triple Control Triple Control Triple Control Control	TOTA OCH MA	m,		2,000		428,0000		Z34.000		70.00	┸		9
N	TOP SALLY	Ę	•	0,0050	_	0.0300	_1.	0,003	┇		1_		ı I
Market spike recovery exceeded acceptance 17700 of serricide the RDL by the dilution factor. 17800 of service 17800 of	SCHOOL STATE	mor.						1	١,	A 80	12	3.640	ĪŖ
mgh, c 0.0100 c 0.0010 c 0.001	32.6	mo/l.		8,7000		4,3700	_	4.700	1_		1		2
mg/L 24,3000 30,0000 11,8000 14,8000	SA VE	mon.	*	00100		0.0010	4	000000	4	A750 00	L	248	2
Tue. U - Constituent was analyzed for but not detected (sample quantitation must be corrected for ditution and percent moisture). H - Bample analyzed for but not detected (sample quantitation must be corrected for ditution and percent moisture). H - Bample analyzed for but not detected for district managements. QH - Detection level elevated due to matrix interference. B - Reported value was determined from the method of standard addition. C - Any constituent that was elecated to the associated blank whose concentration was greater than the reporting detection limit (RDL). N - Matrix spile recovery accessed acceptance limits. D - Presence of high levels of interfering constituents required dilution of sample which increased the RDL by the dilution factor. - Less than detectable.	MUSCOS	mor		9,000		47700.0000		3430.000	1	14 80	 8	23.100	8
yueithers (V column): H - Sample analyzed for but not detected (sample quantitation must be corrected for dilution and percent moisture). H - Sample analyzes performed outside of method holding time. QH - Detection level elevated that to match interference. S - Reported value was determined from the method of standard addition. C - Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL). N - Martic palies recovery exceeded acceptance limits. D - Preserve of high levels of interfering constituents required dilution of sample which increased the RDL by the dilution factor. < Less than detectable.	STRONTUM	T mol.		0,100	1	24,3000		30.800					г
rd addition. In the concentration was greater than the reporting detection limit (RDL). In the whose concentration was greater than the reporting detection of earnple which increased the RDL by the dilution factor.	LEGEND for qualifiers (V column):	U - Constituent w H - Sample analy	es anelyzed for l	but not detected (taids of method h	eemple of	uantitiation must be com re.	pets	or ditution and percent m		_•		¥.	
was also detacted in the sesociated blank whose concentration was greater than the reporting occasion mill (1927) secends acceptance firsts. It is consistent to a second of sample which increased the RDL by the dilution factor.		GH - Detection Management	wel elevated our se was determin	of from the matter of from the matter	d of stark	fard addition.	Þ		1	(ICI)			
is of interfering constituents required dilution of sample which increased the RDL by the dilution factor.		C - Any constitue	of that was elso	detected in the ar	seoclated its.	Nank whose concerum		e greater unu tue tepot					
< - Less than detectable.	<u> </u>	D ecression of	igh levels of inte	rfering conetituen	ts require	d dilution of semple whi	둳	eased the RDL by the di		ctor.		raje i	
		< - Less than del	ectable.		١		l		١				

						NOON O	a CVX	7.0		A GOOM	W/OND-69	- C
	LOCATION		WQSP-1	WGSP-Z		WGSF-3	ANCOL	Ī		AVCOP-0		B 1
	ZONE		CULEBRA	CULEBRA		CULEBRA	CULEBRA	<u> </u>		CULEBRA	07/13/95	Š &
	SAMPLEDATE	Ė	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	7 11 10		THE SECTION OF		RESULT	F	RESULT		RESUL
PARAMETER	CIANO	+	VESSEL		+				v	0.080.0		
ANTWORM AS IN INCHES	100	ŀ	49 0000	48,0000	t	34.5000		43,0000	r	47.5000		
CAPPONALE AS CACOS	200	t							Н			
CADBONATE AS CACOS	mod	V	> [0000] <	9:0000	٧	00000	>	6.0000	٧	2,0000		
HYDROXIDE AS CACOS	mod	v	_	5.0000	٧	00000	~	5.0000	٧	2.0000		
TOTAL ALKALINITY AS CACOS	Pou	t	-	48.0000	Г	34.5000		43.0000		47.5000		
TOTAL DISSOLVED BOLIDS	John T	t	67600,0000	64400.0000	-	224000.0000	,	109000.0000		22200.0000		
TOTAL ORGANIC CARBON	J/OE		▶ 000000	0.5000	٧	12.4000		0,7000		0.7000		
TOTAL OBGANIC HALIDES	- Note		6.7000	3,5000	П	7,5000		0.5800	1	2.9000		
TOTAL PHOSPHATE AS PHOSPHORUS	L	t	0.2600		v		>	0.1000	+	0.4300		
TOTAL SLISPENDED BOX 103	L	\vdash	1_	20,0000	v		>	20,0000	v	20.0000		
ELECTRICAL CONDUCTIVITY	umhoslom		78500.0000	17000.0000		168000,0000		99500.0000				
CLI COIDE	and a	t	38400.00001	34700.0000		135000,0000		55400,0000		7590.0000		
STATES TO THE PARTY OF THE PART	2000		0000 0577	4670.0000	l	6630.0000		6650,0000		5210.0000		
	Pod.	t	1,0000	1.4000	T	0.7400		1.5000		2.2000		
	low.	٧	2.5000 <		v	9.0000	>	5.0000	٧	0.5000		
MITDATE AS NITROSEN	Mod	٧	┺	009000	v		>	0.0600				
	80					6.8300		7.1100		7,5800		
OUENOLS TOTAL	mod	٧	0.0200	0.0200	H	0.0400		0.0200				
	lm/o			1.0450		1,1504		1,0089				
ADSENIO GENERAL	mod	٧	0.1500	0.4000	Ē	0.1900	H	0.0400	¥ E	0.0100	D	0.0050
DADE IN	Joe E	t	1	0.0200	HØ	0.04001	EH.	0.0400	Į.	0.0500	5	0.0500
	mod.	٧	0.0040	0.0060	H	0.0130			A H H	0.0200	D	0.0010
PER I LEGIT	low.	1	7		T	45.4000		29.4000		16.7000		0.3800
NO LOGO	2	ŀ	SO DOOD	46.0000	T	120.0000		70,0000	_	18,0000		
SKOMOT	all lines	ţ	€10000	00200	ŧ		₩ H G	0.1000	တ	0.0064	n	0.0010
CADMIUM	TOTAL STREET	1	4700 0000	4480 0000		1330,0000		1510,0000		811,000	۵	590,0000
CALCIUM		†		+	3	-	Ŧ		He	0.0500	2	0.0050
CHROMIUM	Joe I	+	₩ 0000 0	0.000					ê	0.0500		0.1600
IRON	TANK	ţ	S CHAPTER C	0.2000	Ę		E	0.4000	Ş	0.0110	-	0.0030
LEAD	TOTAL STATE	1	_	0.5200				0.8000		0,3800	ח	0.1000
LITHIUM	10E	1	0000 4 60	OUU OYG	T	2060,0000		1130.0000	r	275.0000	٥	160,0000
MAGNESIUM	1000 F	ţ	A 0500 0		ļ	┺	v	0,0005	v	2000'0	ᇹ	0.0002
MERCORY	1000	†	╄	7	T	1480.0000		771.0000		205.0000		4.7000
POLASSICAN	200	t	0.2620	0.2000	H	0.4200	HE	0.2000	€S	0.0300	z	0.0160
SELENION	wo.		10.8000	14,3000		5,3000		1,2000				
NCCI III	mod				П					4,6800	١	11.0000
SII VER	mo/L		0,00501		Ħ	0.0400	H		E E	0.0500	ı	0.0020
SOCIA	mo/L		20200,00001	22400.0000		76800.0000		35500.0000	†	5840,000	ł	300.000
STRONTIUM	mar			21.1000		21,2000		23.8000		13.6000	-	8.70W
ILEGEND for qualifiers (V column):	U - Constituent v	# 9E	_	rample quantifation must be corrected for dilution and percent moisture)	Tecle	I for dilution and percent m	olsturo).					
	H - Sample anal	ě.	H - Sample analysis performed outside of method hol	holding time.								
			(Dr.) - Detection (sve) electrica due to manta mismismente.	nos. of stepdard addition								
	o - Keported var	1	0 - Reported value was described in the une more of the second	and of statement and an accompanies of the statement of the second of th	affon	ves greater than the report	ng delection	Ilmit (RDL).				
	N - Matthe anilia		N - Matrix collections that the moreovered accordance (imilia)				•	•				
	D. Presence of	Ž	D. Desance of blob levels of interfering constituents required dilution of sample which increased the RDL by the dilution factor.	required dilution of sample w	幸	oressed the RDL by the di	ution factor.					Page 2
	< - Less than detectable	rects	to									

1995 Volatile Organics

VOSPTION VOSPTION	NEW	MEXICO EN		NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	AR	TMENT, DOE	9 2	ERSIGHT BU	S S	AU, WIPP		
March Marc		LOCATION		WQSP-1		WQSP-2 CULEBRA		WQSP-3 CULEBRA		WQSP-4 CULEBRA	٦	NQSP-6 CULEBRA
Warth		SAMPLE DATE		06/17/85		08/31/95	j	09/19/95		1	ŀ	10/18/95
1,000 1,00	PARAMETER	UNITS	^	RESULT	7	RESULT	>	RESULT	_1	+	$\frac{1}{\sqrt{2}}$	RESULT
1987 1987	1.1.1-TRICHLOROETHANE	uon.	٧	1.0000	٧	1,0000	v	1,000	L	1	+	1.0000
UNIT C 0.2000 C 0.200	1.1.2.2-TETRACHLOROETHANE	nov.			٦		1					0.2000
UNIT C 0.2000 C 0.2000 C 0.2000 C	1.1.2.2-TETRACHLOROETHANE	מסער	٧	0.2000	ᅱ	0.2000	V	0.2000		4	+	
ug/L c 0.2000 c 0.2000 c 0.2000 c ug/L c 0.5000 c 0.2000 c 0.5000 c ug/L c 0.5000 c 0.2000 c 0.5000 c ug/L c 0.5000 c 0.5000 c 0.5000 c ug/L c 0.5000 c 0.5000 c 0.5000 c ug/L c 0.5000 c 0.5000 c 0.5000 c 0.5000 c ug/L c 0.5000 c 0.5000 c 0.5000 c 0.5000 c 0.5000 c ug/L	1 1 2 TRICHLOROETHANE	ng/l.	v	0,2000	V	0.2000	V	0.2000	[4	+	0.2000
1497 c	A COCH OBORTHANE	LIG/L	v	0.2000	v	0.2000	٧	0,2000	\perp		1	0.2000
uglf. c 0,2000 c 0,2	A DICH OBORTHENE	Ua/L	v	0.2000	v	0.2000	V	0.2000	- 1			0.2000
ug/L c 0.55000 c 0.	1 2 DIRPOMOFTHANE (FOB)	na/L	v	0,2000	٧	0.2000	٧	0.2000		_ !.	J	0.2000
Mail. C	4 2 DICH OBORENZENE	LIGA	v	0.5000	٧	0,5000	٧	0.5000	_1		J	0.5000
Mail	4 2 DICH OBOETHANE (FDC)	ray	v	0.5000	٧	0.5000	V	0.5000		_		0.5000
CHICACOMETHANE UNIT C 0.5000 C 0.5000 C 0.5000 C	4 DICH COCORDANE	100	v	0.2000	v	0.2000	٧	0.2000		_	╣	0.2000
OKONDENZENE Ug/L C O.5000 C O.50	4 2 DICH COORENZENE	1/0/1	v	0.5000	v	0.5000	v	0005'0		<u></u>	╢	. 0.5000
CHICAGNETHANE UNIT CHICAGNETHANE UNIT	A COURT ODOBRATER	no.l.	v	0,5000	٧	0.5000	٧	0.5000		_	╢	0.5000
CHLOROMETHANE ug/L c 0.5000	ACETONIE	/ws							٧	20,0000	\dashv	
CHICAROMETHANE up.L. c 0,2000 c 0,2000 c 0,2000 c 0,2000 c 0,5000	DENZENE	l'oss	V	0.5000	٧	0.5000	٧	0.5000			v	0.5000
UNIT C	DENCENE PROMODIOUI OBOMETUANE	641	V	0.2000	٧	0.2000	v	0.2000	_	- 1	V	0.2000
Ug/L C	BROMODICALONOMETRANS	001	v	0.5000	v	0.5000	٧	0.5000		- 1		0.5000
Ug/L C	DECOMOCIONE DE LA COMOCIONE DE	No.	v	1.0000	v	1,0000	v	1,0000		_	╣	1.0000
UNIV. C	BROMOME I HAVE	1000	v	0.2000	٧	0.2000	٧	0,2000		1	V	0,2000
UMIL C	CANDOI TELINACITECTURE	nov	٧	00200	٧	0.5000	٧	0.5000			v	0.5000
Ugh, c 0.5000 c 0.5000 c 0.5000 c Ugh, c 1.0000 c 1.0000 c 1.0000 c Ugh, c 1.0000 c 1.0000 c 1.0000 c Ugh, c 0.2000 c 0.2000 c 0.2000 c 0.2000 c Ugh, c 0.2000 c 0.2000 c 0.2000 c 0.2000 c Ugh, c 0.2000 c 0.200	CHIODOGTUANE	130A	V	0.5000	v	0,5000	V	0.5000		- 1	J	0.5000
Ug/L C	CHLCROE IFONT	ua/L	٧	0.5000	v	0.5000	v	0.5000	_	Щ.	\ \	0.5000
Marie Marie Coloro Col	OUT OBOMETUANE	ua/L	٧	1,0000	٧	1,0000	V	1.0000			┧	1.0000
E	COLONOSE: DONE DE LA SOCIAL DE DETAENE	LIO/L	٧	0,2000	٧	0.2000	٧	0.2000	_	4	┧	0.2000
BE Ug/L C D.2000 C D.2000 C D.2000 C	COST 14-DOCUMENT	inof.	٧	0.2000	٧	0,2000	٧	0.2000		_1	⇃	0.2000
Color Colo	COST CONCOLO DE CONCOL	190/1	٧	0,2000	٧	0.2000	٧	0.2000	- 1	_1	v	0.2000
ETHER (MTBE) Ug/L c 2.5000	CHAN DENYENE	Ua/L	٧	0,5000		0.5000	v	0.5000	<u> </u>		V	0.5000
ug/L c 2,0000 c 2,0000 c 2,0000 c ug/L c 0,5000 c 0,2000 c	WETHY JAINTY FINER (MTBE)	na/L	٧	2,5000		2.5000	v	2.5000	_1		 	2.5000
ug/L 4 0.5000 4 0.50	METHY ENE CHI ORIDE	UG/L	٧	2.0000	٧	2.0000	٧	2.0000	<u> </u>		┧	2.0000
Ug/L c 0.5000 c 0.2000 c 0.20	TETTO ACHI OROFTHENE	ua/L	٧	0.5000	٧	0.5000	٧	0,5000			╫	0.5000
DETHENE Ug/L c 0.5000 c 0.5000 c 0.5000 c OPROPENE Ug/L c 0.2000 c 0.2000 c 0.2000 c OPROPENE Ug/L c 0.2000 c 0.2000 c 0.2000 c MATHANE Ug/L c 0.2000 c 0.2000 c 0.2000 c INDETHANE Ug/L c 0.5000 c 0.5000 c 0.5000 c	TAN	No/L	٧	0.5000	٧	0005'0		0.5000			+	1.0000
OETHENE Ug/L c 1,0000 c 1,0000 c 1,0000 c OPROPENE Ug/L c 0,2000 c 0,2000 c 0,2000 c MATHANE Ug/L c 0,2000 c 0,2000 c 0,2000 c INDETHANE Ug/L c 0,6000 c 0,5000 c 0,5000 c	TOTAL XVI ENES	ng/L	٧	0.5000		0.5000	٧	0.5000	_1		,	0.5000
OPROPENE Ug/L c 0,2000 c 0,2000 c 0,2000 c OPROPENE Ug/L c 0,2000 c 0,2000 c 0,2000 c MATHANE Ug/L c 0,5000 c 0,5000 c 0,5000 c INDETHANE Ug/L c 0,5000 c 0,5000 c 0,5000 c	TO ANG. 1 2.DICHI OROETHENE	na/L	v	1.0000		1.0000		1.0000			╁	1.0000
METHANE Ug/L C	TENNOTIFE STORY ORODROPENE	ual	v	0.2000	Ľ	0.2000		0,2000	- 1		╮	0.2000
METHANE ug/L 0.2000 0.2000 IROETHANE ug/L 0.6000 0.5000 0.5000	FANS. LOTE SECTION TO THE SECTION TO	110/1	V	0.2000		0,2000		0.2000		- 1	┧	0.2000
ug/L 2,0000 ug/L 0,5000 0,5000	TRICALCACE INFINE	na/L	v	0.2000		0.2000		0.2000		- 1	┧	0.2000
> 10002.0	TAICHTONOTEVONOMENT TO THE	l'on							v	2.0000	\dagger	
	I KICALOAOI NI PLOCACEI I MAIS	1000	٧	0.6000	1	0,5000		0.5000		_	V	0.5000

< - Less than detectable.

LEGEND FOR QUALIFIERS:

1995 TCLP Semivolatile Organics and TCLP Metals

NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP

TCLP SEMIVOLATILE ORGANICS AND TCLP METALS RESULTS

(Split Samples of Soil taken during the WIPP RCRA Voluntary Corrective Action Program SWMU Investigation)

	Location			NS S	MU-001a	SWMU-001a (Wells H-14 and P-1	ē	2-1 Hydro	F. Pa	Hydro-Pad Mudpit)	(1	
	Sample ID#			S85	S951004H14EM				88	S951004H14WM 10/04/95	W	
PARAMETER	UNITS	G	RESULT	G	Н	Q MB** RESULT	O	RESULT	o		Q MB** RESULT	F
1,4-Dichlorobenzene	mg/L	U***	0.10		0.10 U	0.10	n	0.10	Н	0.10 U		0.10
2,4,5-Trichlorophenol	mg/L	כ	0.10		0.10 U	0.10	כ	0.10	ᅥ	0.10 U		0.10
2,4,8-Trichlorophenol	mg/L	ם	0.10		0.10 U	0.10)	0.10	\dashv	0.10		0.10
2,4-Dinitrotoluene	mg/L	ם	0.10		0.10 U	0.10	D	0.10	\dashv	0.10 U		0.10
2-Methylphenol	mg/L	ב	0.10		0.10 U	0.10	D	0.10	┪	0.10 U		0.10
3 & 4 -Methylphenol	mg/L	כ	0.20		0.20 U	0.20	⊃	0.20	\dashv	0.20 U		0.20
Hexachlorobenzene	mg/L	ב	0.10		0.10	0.10	D	0.10	\dashv	0.10 U		0.10
Hexachlorobutadiene	mg/L	ח	0.10		0.10 U	0.10	C	0.10	\dashv	0.10 U		0.10
Hexachloroethane	mg/L	ר	0.10		0.10 U	0.10	\Box	0.10	\dashv	0.10 L	0	0.10
Nitrobenzene	mg/L	ח	0.10		0.10 U	0.10	U	0.10	┪	0.10 L	0	0.10
Pentachlorophenol	mg/L	ב	0.50		0.50 U	09'0	U	0.50	\dashv	0.50	0	0.50
Pyridine	mg/L	ב	0.50		0.50 U	0.50	ר	0.50		0.50 ר	0	0.50
Arsenic	mg/L	ב	1.00		1.00 U	1.00	ב	1.00	\dashv	1.00 U		1.0
Barlum	mg/L	ב	10.00		10.00	10.00	J	10.00		10.00 U		10.00
Cadmium	mg/L	n	0.10		0.10 U	0.10 U	ר	0.10		0.10 U		0.10
Chromium	mg/L	ח	0.50		0.50 U	0.50	U	0.50	\dashv	0.50		0.50
Lead	mg/L	ם	1.00		1.00 U	1.00)	1.00		1.00		1.00
Mercury	mg/L	ם	0.02		0.02 U	0.02	כ	0.02	\dashv	0.02 U		0.02
Selenium	mg/L	ח	0.10		0.10 U	0.10	⊃	0.10	一	0.10 U		0.10
Silver	mg/L	ח	0.50		0.50 U	U 05:0	כ	0.50		0.50		0.50

^{*} PQL - Practical Quantilation Limit

1995 Biotic Tissue Total Metals

	NEW	ĮΣ	TEXICO ENVI	RONMEN	<u>□</u>	NEW MEXICO ENVIRONMENT DEPARTMENT, DOE OVERSIGHT BUREAU, WIPP	, DOE OVE	RSI ISI	GHT BURE	AU, WIPP			
				Ţ	500	BIOTIC TISSUE	RESULTS						
	Location/Tissue	L	Pecos River/Catfish										
	Sample ID		BIO850823PECCAT	зсат									
PARAMETER	UNITS	>	RESU	PQL	>	RESULT	Pal	3	RESULT	POL	V RESULT	77	POL
Arsenic	mg/kg	n	0.2500	0.2500									
Barlum	mg/kg	n	2.5000	2.5000									
Bervillum	mg/kg	ח	0.0500	0.0500									
Boron	mg/kg	ņ	5.0000	5,0000									
Cadmium	ma/ka	2	0.0500	0.0500									
Calcium	ma/kg	٥	8100,0000	125,0000								-	
Chromium	ma/ka	•	0.5900	0.2500								1	
Iron	mg/kg	٠	12.0000	5.0000								+	
Lead	ma/ka	2		0.1500							-	ä	
1 Hhlum	ma/kg	2		5,0000								+	
Magneslum	mg/kg		330.0000	25,0000			•					+	
Mercury	mg/kg	Ξ	0.0530	0,0095							+	-	
Potassium	mg/kg		3100.0000	25.0000									
Selenium	mg/kg		0.6100	0.2500			:						
Silicon	mg/kg	ပ		5.0000									
Silver	mg/kg	Ц	0.1400	0.1000				Ţ					
Sodium	mg/kg		720.0000	25.0000				Ţ					
Strontfum	mg/kg	Ω	32.0000	25.0000									
		L				4							
			4										

DATA QUALIFIERS (COLUMN V):

PQL- Practical Quantitation Limit

U - Constituent was analyzed for but not detected (sample quantitation must be corrected for dilution and percent molsture). H - Sample analysis performed outside of method holding time.

C - Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL). D - Presence of high levels of interfering constituents required dilution of sample which increased the RDL by the dilution factor.
- Relative Percent Difference (RPD) for duplicate analysis exceeded acceptance limits.

APPENDIX II

Graph BT-1 NMED/WIPP 1995 Pecos River Catfish

NMED/WIPP BIOTIC TISSUE RADIOCHEMISTRY PECOS RIVER CATFISH 1995

94

LAL - WIPP Baseline Mean minus 2 standard deviations.

UAL - WIPP Baseline Mean plus 2 standard deviations.

Oraph BT-2 NMED/WIPP 1995 NW1 Vegetation

NMED/WIPP VEGETATION RADIOCHEMISTRY NW 1 MONITORING PLOT - VEGETATION 1995

Graph GW-1 NMED/WIPP GROUND WATER 1995 LAL - WIPP Baseline minus 2 standard deviations UAL - WIPP Baseline plus 2 standard deviations Pu-238 WIPP Baseline Mean Upper Action Level (UAL) Lower Action Level (LAL) NMED/WIPP 1995 CULEBRA GROUND WATER **U-235** MEAN ACTIVITY of SELECTED ISOTOPES Mean Minimum Detectable Activity Pu-239/40 M the mean baseline concentration DOE/WIPP has not established NMED 1995 Mean Conc. +/-28D for Am-241. Am-241 Becquerels per Liter -4.0E-02 ---2.0E-02 --4.0E-02 --6.0E-02

Graph GW-7 NMED/WIPP GROUNDWATER 1995 EPA Risk Based Concentrations
Fe = 11 mg/L
B = 3.3 mg/L
Sr = 22 mg/L Na (E-03) Ca (E-02) NMED/WIPP GROUND WATER CHEMISTRY NMED 1995 Result (E) Mg (E-02) NMED 1995 Results vs. WIPP Background Well WIPP-19 Major Cations K (E-02) Lower 95% Confidence Interval Sr (E-01) B (E-01) H 4 Li (E+01) Upper 95% Confidence Interval concentration is reported as < or = 2 mg/L. Fe (E+01) The Baseline £ -5.0 --10.0 20.0 الوس بة 0.0 5.0 0.0 25.0 35.0 30.0

APPENDIX III

PROPOSED WIPP RADIONUCLIDE DISPOSAL INVENTORY Table-3

SOURCE: Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report, CAO-94-1005, Revision 1, February 1995

NUCLIDE	UNITS	TOTAL CH*	% OF TOTAL CH	TOTAL RH**	% OF TOTAL RH	CH +RH	% OF TOTAL INVENTORY
AMERICIUM-241	Curles	223000.0	6.1944%	530.0	0.0251%	223530.0	3.9147%
COBALT-80	Curles	153.0	0.0043%	10800.0	0.5118%	10953.0	0.1918%
CESIUM-137	Curies	5320.0	0.1478%	328000.0	15.5450%	333320.0	5.8375%
PLUTONIUM-238	Curies	1890000.0	52.5000%	÷ 3530.0	0.1673%	1893530.0	33.1616%
PLUTONIUM-239/240	Curles	457200.0	12.7000%	6584.0	0.3120%	463784.0	8,1223%
PLUTONIUM-241	Curles	1010000.0	28.0556%	906.0	0.0429%	1010906.0	17.7041%
STRONTIUM-90	Curles	4070.0	0.1131%	668000.0	31.6588%	672070.0	11.7701%
URANIUM-233/234	Curles	1630.0	0.0453%	857.0	0.0408%	2487.0	0.0436%
URANIUM-235	Curies	. 2.9	0.0001%	5.7	. 0.0003%	8.5	0.0001%
URANIUM-238	Curles	18.8	0,0005%	13.1	0.0006%	31.9	0.0008%
TOTAL INVENTORY	Curles	3600000.0	99.7610%	2110000.0	48.305%	5710000.0	80.7464%
CH* - Contact Handled TRU-waste	FRU-waste		RH* - Remote Handled TRU-waste	1 TRU-waste			

81

APPENDIX IV

Figure 1 WIPP Location in Southeastern New Mexico

Figure 2 Biotic Tissue sample locations: Catfish

Figure 3 Biotic Tissue sample locations: Vegetation

Figure 4 Sediment and Surface water Sample locations

Figure 5 Soil Sample locations

