Isotope and Aqueous Chemistry Investigations of Groundwater in the Española Basin, New Mexico

(LA-UR-08-0945)

Patrick Longmire¹, Michael Dale², Kim Granzow², and Michael Rearick¹ April 28, 2008

¹Los Alamos National Laboratory ² NM Environment Department, DOE Oversight Bureau

Acknowledgements

Kay Birdsell, LANL **David Broxton, LANL** Dale Counce, Retired Jeff Heikoop, LANL Mat Johansen, DOE Danny Katzman, LANL Toti Larson, LANL Andrew Manning, USGS George Perkins, LANL Ardyth Simmons, LANL David Vaniman, LANL Monty Vesselinov, LANL Steve Yanicak, NMED-OB

Alethea Banar, Bill Bartels, Dave Englert, Marcey Hess, Jim Jordon, and Max Maes

Motivation of Study

Establish an understanding of the groundwater flow system at Los Alamos (water sources, mixing relations, flow paths, and travel times) that is independent of numerical models.

Evaluate natural and anthropogenic sources of chromium and uranium in the subsurface.

Of particular interest is the vulnerability of natural discharge areas near the Rio Grande to contamination.

Topics of Interest

- Groundwater Age (Tritium/helium-3 and carbon-14 dating methods)
- Delineation of Groundwater Flow Paths
- Aqueous Chemistry of Chromium and Uranium

Analytical Methods

- **Carbon-14**, accelerator mass spectrometry
- **Tritium**, helium ingrowth and electrolytic enrichment
- Stable isotopes, isotope ratio mass spectrometry
- Anions, ion chromatography
- Metals, inductively couple (argon) plasma-optical emission spectroscopy (ICP-OES) and inductively couple (argon) plasma-mass spectrometry (ICP-MS)
- Total carbonate alkalinity, titration

LANL Stratigraphy

Generalized Expected Trends in Groundwater Age for Conceptual Model of Groundwater Flow

Conceptual Model for Tritium and Helium

Sampling Stations for Hydrochemical Investigation

Median Background Composition of the Regional Aquifer, Los Alamos, New Mexico

Analyte	Millimoles/Liter	Milligrams/Liter
Са	0.29	11.7
Mg	0.12	2.96
Na	0.54	12.50
К	0.04	1.89
CI	0.06	2.22
SO ₄	0.03	2.90
HCO ₃	1.18	68.80
F	0.02	0.32
SiO ₂	1.16	69.55
Cr	5.87e-05	0.00305
NO ₃ (N)	0.04	0.54
U	1.89e-06	0.00045

Stable Isotope Results for Springs and Wells, Pajarito Plateau, New Mexico

Atmospheric Tritium Input Curve and Perched Intermediate-Depth Groundwater

Unadjusted Radiocarbon Ages of DIC and Geology near the Regional Aquifer Water Table, Pajarito Plateau, New Mexico

Carbon-14 (Percent Modern Carbon) Versus δ^{13} C, Pajarito Plateau and Surrounding Area, New Mexico

Sandia Canyon, New Mexico

Over 15 years of Cr(VI) release from the TA-03 cooling tower.

Between 31,000 and 72,000 kg of Cr(VI) were released between 1956 and 1972.

Most of the Cr(VI) is from dissociation of potassium dichromate $(K_2Cr_2O_7)$.

Sandia Canyon wetland

Figure 3-2. Dissolved hexavalent chromium concentrations (in µg/L) in regional and intermediate wells

Oxidation-Reduction Conditions for Chromium in Aqueous Solutions

Groundwater Remediation of Chromium(VI)

Chemical Reduction with Ferrous Chloride

 $CrO_4^{2-} + 3FeCI_2 + 8H_2O =$ $Cr(OH)_3am + 3Fe(OH)_3am + 6CI^- + 4H^+$

Addition of $CaCO_3$ or $Ca(OH)_2$ is required to maintain neutral pH conditions depending on the buffering capacity of the aquifer.

Results of Geochemical Modeling (PHREEQC2.2) Reacting R-28 Groundwater with Ferrous Chloride in Equilibrium with Calcite

Mean Concentrations of Dissolved Uranium (μ g/L) in the Regional Aquifer from 2005 through 2007, Pajarito Plateau (1 to 5 samples per location, mean background = 0.63 μ g/L)

Uranium Concentrations in Groundwater, Española Basin, New Mexico

Log [H₄SiO₄] Versus Log ([Ca²⁺]/[H⁺]²) Diagram at 25^oC and 1 Bar Pressure for the Regional Aquifer, Los Alamos and the Española Basin, New Mexico

Summary and Conclusions

- Groundwater can have a mixed age, containing modern and submodern components.
- Variations in unadjusted ¹⁴C ages (570 to 13,005 years) for the regional aquifer result from sources of recharge water, mixing of waters, and hydraulic properties of the aquifer material.
- Application of ¹⁴C ages with mobile chemicals such as tritium and chloride define preferred groundwater flow paths within the regional aquifer.

Summary and Conclusions

- Transport of chromium(VI) is likely under relatively oxidizing and basic pH conditions.
- Dissolved concentrations of uranium(VI) are less than 2.52e-08 molar (6 µg/L) within the regional aquifer.
- Much higher concentrations of natural uranium (up to 7.65e-03 molar, 1820 $\mu\text{g/L}$) are observed east of the Rio Grande.

Supplemental Material

Average Mixing Ratios for the Regional Aquifer Containing Chloride from Alluvial Ground Water, Pajarito Plateau, New Mexico

Atmospheric Tritium Input Curve and White Rock Canyon Springs

Carbon-14 (Percent Modern Carbon) Versus Chloride (mmol/L), Los Alamos, New Mexico

Saturation Index Map for CaCO₃ (Calcite) for the Regional Aquifer

Tritium (TU) Versus Chloride (mmol/L), Los Alamos, New Mexico

Chromium and Uranium

- Speciation
- Adsorption
- Mineral Equilibrium
- Groundwater Remediation (Chromium)

All other uses for this map should be confirmed with the LANL Environmental Programs Directorate.

Figure 6.0-1. Conceptual hydrogeologic cross section showing potential chromium transport pathways and dissolved hexavalent chromium values (μg/L) for surface water, monitoring wells, and water supply wells in the vicinity of Sandia Canyon

Background Total Dissolved Cr and Cr(VI) Concentrations (μg/L), Los Alamos, New Mexico

Regional Aquifer

<u>Chemical</u>	Range	Mean	<u>1σ</u>
Cr ¹	0.4 to 7.2	3.1	±1.6
Cr(VI)²	3.9 to 5.3	4.6	±0.5

¹Upper Tolerance Limit (95th confidence interval, 95th percentile) = 5.75 μ g/L. Number of samples = 80 ²Number of samples = 9

Soil Leaching Method

Drying Time Soil

110°C for 16 hours in pre-weighed glass bottles

Soil : Deionized Water Ratio

50 mg dry soil to 75 mL of deionized H_2O

Contact-Reaction Time

48 hours in 125 mL Erlenmeyer flasks Decanted into 50 mL centrifuge tubes for 30 minutes

Filtering

0.25 micrometer membranes

Porewater Chemistry of SCC-2, Bandelier Tuff (Sample collected from 20.0 to 24.0 ft, pH = 8.10)

Analyte	Millimoles/Liter	Milligrams/Liter
Са	0.30	12.2
Mg	0.10	2.52
Na	4.83	111
K	3.05	119
CI	2.99	106
SO ₄	1.80	173
HCO ₃ (calculated)	1.09	66.4
PO ₄	0.20	18.7
F	1.41	26.8
SiO ₂	7.50	450
Cr	0.03	1.33
Fe	0.07	4.18

Surface Complexation of Chromium(VI) Species CrO₄²⁻

[Fe⁺...CrO₄²⁻]⁻ Clay K_2 : FeOH + CrO₄²⁻ - H₂O + H⁺ = FeCrO₄⁻; logK₂ = 10.82 OH····CrO₄²⁻ $K_3: FeOH + CrO_4^{2-} = FeOHCrO_4^{2-};$ Fe(OH)₃ $logK_3 = 3.9$ (estimated) **HIFO** "hydrous ferric oxide" HCrO₄-

Distributions of Chromium in the Vadose Zone, Sandia Canyon

Geochemical Conceptual Model for Chromium in Miocene Sediments, Mortandad Canyon

Geochemical Conceptual Model for Chromium in the Cerros del Rio Basalt

Results of Geochemical Modeling (PHREEQC2.2) Reacting R-28 Groundwater with Ferrous Chloride in Equilibrium with Calcite

Results of Geochemical Modeling (PHREEQC2.2) Reacting R-28 Groundwater with Ferrous Chloride in Equilibrium with Calcite

Sources of Uranium

Natural - Whole rock concentrations of uranium range from <1 mg/kg to >15 mg/kg.

Uranium-bearing solids, at pH 7, have varying solubilities in which silica glass ($10^{-2.71}$ M) is the most soluble and ZrSiO₄ ($10^{-15.54}$ M) is the least soluble.

Natural uranium concentrations exceed $10^{-7.90}$ M (3.0 µg/L) east of the Rio Grande, within the Española Basin.

Calculated Distribution of Dissolved U(VI) Species (MINTEQA2), Regional Aquifer (Median Composition), Los Alamos, New Mexico (log m U(VI) = -8.72, log m total $CO_3 = -2.95$ log m H₄SiO₄ = -2.94, and log m F = -4.77)

Photograph of the Jemez Mountains and Pajarito Plateau (view to the west with industrial sources of uranium discharges)

Surface Complexation Modeling (MINTEQA2) of U(VI) onto Hydrous Ferric Oxide (HFO), Spring 2B, White Rock Canyon, New Mexico $(\log [UO_2^{2+}] = -7.0, \log [H_4SiO_4] = -2.90, \log [total CO_3^{2-}] = -2.70, HFO = 0.009 g/L, I = 0.007 m)$

Hydrochemical Conceptual Model for Part of the Española Basin, New Mexico

