Applications of ¹⁴C Ground-water Dating in Hydrologic and Geochemical Studies of the Regional Aquifer, Pajarito Plateau, New Mexico

(LA-UR-08-0945)

Michael Dale¹, Kim Granzow¹, and Patrick Longmire²

March 6, 2008

¹ NM Environment Department, DOE Oversight Bureau ²Los Alamos National Laboratory

Acknowledgements

Mat Johansen, DOE Ardyth Simmons, LANL David Vaniman, LANL David Broxton, LANL Andrew Manning, USGS Dale Counce, Retired Steve Yanicak, NMED-OB Ed Kwicklis, LANL

Alethea Banar, Bill Bartels, Dave Englert, Jeff Heikoop, Marcey Hess, Jim Jordon, Toti Larson, Max Maes George Perkins, and Mike Rearick

Motivation of Study

Establish an understanding of the ground-water flow system at Los Alamos (water sources, ages and travel times, mixing relations, and flow paths) that is independent of numerical models.

This understanding can be used either to guide the development or evaluation of results of corresponding flow models.

Analytical Methods

- **Carbon-14**, accelerator mass spectrometry
- **Tritium**, helium ingrowth and electrolytic enrichment
- Stable isotopes, isotope ratio mass spectrometry
- Anions, ion chromatography
- Metals, inductively couple (argon) plasma-optical emission spectroscopy (ICP-OES) and inductively couple (argon) plasma-mass spectrometry (ICP-MS)
- Total carbonate alkalinity, titration

LANL Stratigraphy

Generalized Cross Section Showing Ground-water Type and Expected Trends in Ground-water Age for Conceptual Model of Ground-water Flow

Sampling Stations for Radiocarbon Dating

Average Mixing Ratios for the Regional Aquifer Containing Chloride from Alluvial Ground Water, Pajarito Plateau, New Mexico

Unadjusted Radiocarbon Ages of DIC and Geology near the Regional Aquifer Water Table, Pajarito Plateau, New Mexico

Carbon-14 (Percent Modern Carbon) Versus δ^{13} C, Pajarito Plateau and Surrounding Area, New Mexico

Saturation Index Map for CaCO₃ (Calcite) for the Regional Aquifer

Carbon-14 (Percent Modern Carbon) Versus Chloride (mmol/L), Los Alamos, New Mexico

Summary and Conclusions

- The regional aquifer consists of submodern (pre-1943) or mixed (pre- and post-1943) ages.
- Submodern-ground water is common in the regional aquifer. Average ages for the regional aquifer range from 570 to 13,005 years based on unadjusted ¹⁴C results.

Summary and Conclusions

- Variations in unadjusted ¹⁴C ages for the regional aquifer result from sources of recharge water, mixing of waters, and hydraulic properties of the aquifer material.
- Application of ¹⁴C ages with mobile chemicals such as chloride define preferred ground-water flow paths within the regional aquifer.
- The next step in this work will be to apply these unadjusted ¹⁴C ages as constraints to hydrologic flow and transport models and as input to geochemical models.

Supplemental Material

Average Ground-Water Flow Rates Near the Regional Water Table, Based on Unadjusted ¹⁴C Ages, Pajarito Plateau, New Mexico

Ranges of Apparent ³H/³He Ages in the Regional Aquifer

Bicarbonate (mmol/L) Versus δ^{13} C (per mil), Los Alamos, New Mexico

Carbon-14 (Percent Modern Carbon) Versus Tritium (TU), Los Alamos, New Mexico

Tritium (TU) Versus Chloride (mmol/L), Los Alamos, New Mexico

