
Source Water Assessment & Protection Program Report of Water Utility

Public Water System #

for Surface Water systems

New Mexico Environment Department -Drinking Water Bureau February 2004 Funded under *the Federal Safe Drinking Water Act Amendments of 1996*

TABLE OF CONTENTS

ACRONYMS

TABLES

Table 1	Inventory of Actual and Potential Sources of Contamination	6
Table 2	PSOC Ranking Determination	7
Table 3	PSOC Vulnerability Inventory and Ranking	8
Table 4	Sensitivity Analysis Definitions, Explanatory Note, and Information Sources	8
Table 5	Composite Sensitivity Ranking	10
Table 6	Composite Sensitivity Rank Assigned	10
Table 7	Susceptibility Ranking	11
Table 8	Source Susceptibility Ranking	11

APPENDICES

Appendix A Source Area Delineations (Examples) Appendix B Source Construction Data & Susceptibility Analysis Appendix C Inventory of Actual and Potential Sources of Contamination (Example) Appendix D Management Strategy and Schedule (Example) Appendix E Contingency Protocol and Schedule (Example) Appendix F Media Aid Examples Appendix G Source Water Protection Categoris: Measures & Tools examples Appendix H Zoning Ordinance Example Appendix I Source Water Protection Planning Tasks Exercise Appendix J Protection Plan Template with Assessment Data Appendix K Potential Sources of Contamination Appendix L Contaminants of Concern Appendix M DRASTIC and WRASTIC Index Conservative Value Calculations Appendix N U.S. Geological Survey Topographic Map Legend

ACRONYMS

ARCGIS	ArcView Geographic Information System
BMP	Best Management Practices
CERCLA	Comprehensive Environmental Response Compensation and Liability
	Act
DWB	Drinking Water Bureau
EPA	Environmental Protection Agency
GGAP	Ground-Water Protection Policy and Action Plan
GPAB	Ground Water Protection Advisory Board
GPD/FT^2	Gallons Per Day Per Foot Squared
GPS	Global Positioning System
LU	Land Use
MCL	Maximum Contaminant Level
NMED	New Mexico Environment Department
NMED-DWB	New Mexico Environment Department Drinking Water Bureau
PIC	Policy Implementation Committee
PSOC	Potential Sources of Contamination
RCRA	Resource Conservation and Recovery Act
SDWA	Safe Drinking Water Act
SWA	Source Water Assessment
SWAPP	Source Water Assessment and Protection Program
WSS	Water Supply System

SOURCE WATER ASSESSMENT AND PROTECTION PLAN PROCESS FOR THE WATER SYSTEM

INTRODUCTION

The New Mexico Environment Department Drinking Water Bureau's (NMED-DWB) *Source Water Assessment and Protection Program* (SWAPP)¹ is a federally funded national program. The program is part of a national effort to prevent adverse effects to human health and the environment and to manage and protect the environmental integrity of states' ground water resources.

The SWAPP is intended to be an information-gathering tool that identifies, evaluates, and prevents contaminants² from polluting public drinking water systems. As the lead agency under SWAPP responsible for source water protection of public drinking water supplies, NMED-DWB is attaching this *Request for Participation in the New Mexico Source Water Protection Plan Process* to your completed Source Water Assessment Report, and hopes that your water utility will join the Source Water Protection Plan (SWAPP) portion of this program.

Your choice to continue with SWAPP is voluntary, however, your participation will be a valuable contribution to both your <u>community and the state</u>. Source water protection benefits all of New Mexico and may be measured in many ways.³ In recognition of the importance of this program toward the protection of the state's water resources, the executive branch agency will give special recognition and commendation to water utilities with approved source water protection plans that are also in compliance with the Safe Drinking Water Act. <u>Plan approval is conducted by NMED-DWB and is based on the satisfactory completion of all steps outlined in the Source Water Protection Plan Template</u> (see Appendix J).

SOURCE WATER PROTECTION PLAN PROCESS

A SWAPP incorporates six steps. Steps 2-4 have been completed for your water utility by NMED-DWB, and are incorporated in this report. <u>NMED-DWB will continue to work with you toward the development, adoption, and management of an approved SWAPP, should you choose to proceed</u>. The remainder of this report describes the six steps for developing a SWAPP, incorporates the findings of the assessments conducted by NMED-DWB, and gives examples of SWAPP tools and documents. The six steps of the SWAPP are as follows:

- 1. Formation of a Community Planning team
- 2. Delineation of Source Water Protection Areas (completed by NMED-DWB under SWAPP)
- 3. Inventory of Actual and Potential Sources of Contamination (completed by NMED-DWB under SWAPP)
- 4. Completion of a Susceptibility Analysis (completed by NMED-DWB under SWAPP)
- 5. Management of Source Water Protection Areas
- 6. Planning for Existing and Future Events / Contingency Protocol

¹ SWAPP incorporates the goals and mandates of the *Safe Drinking Water Act* such as the *Source Water Assessment Program* and the *Wellhead Protection Program* described in Sections 1453 and 1428 of the *Federal Safe Drinking Water Act Amendments of 1996*, respectively. The general goals of SWAPP are the identification and management of existing and potential sources of pollution as they may impact public drinking water sources.

² The Contaminants of Concern (COC) (refer to your utility's Source Water Assessment) are defined as broad land-use categories, facilities, or activities that store, use, or produce as a product or by-product any contaminants regulated under the federal *Safe Drinking Water* Act, including microbiological contaminants giardia lamblia, cryptosporidium, and total coliform bacteria, and synthetic organic contaminants included in the New Mexico *Pesticide Management Plan*.

COC identified in this report have been determined by NMED-DWB as posing a *significant* likelihood of having the potential to impact drinking water sources. For example, COC that were not considered as having the potential to impact drinking water sources are small quantities of highly volatile organic chemicals that would most likely volatilize upon release into the environment.

³ Source water protection is a relatively new and pro-active approach for ensuring safe and reliable sources of drinking water. Benefits range from protecting human health and the quality of life to maintaining tourism and property values. Benefits may also be measured by considering what the costs might be if the water source was to become polluted. Costs incurred from polluted water may include the costs of treatment, land purchase and well drilling (for locating a new water supply) or, in the worst case, the costs of the complete loss of a water supply utility.

Compliance with other programs may also result in savings. For instance, the federal *Safe Drinking Water Act Amendments of 1996* requires treatment under the Disinfection Byproducts Rule, however, systems with cleaner water sources will naturally require less disinfection to begin with. Further, sampling waivers issued because of the SWAP Plan may reduce the frequency of sampling requirements, which would result in the reduction of sampling costs.

STEP 1 FORM A COMMUNITY PLANNING TEAM

Forming a community planning team (team) may be as simple as calling someone who may be interested in participating on the team such as a resident near a public water source(s). The team should include everyone that is interested in and/or may be affected by the SWAPP. Other potential team members may include a utility or public works employee, a geologist, hydrologist, or engineer, a citizen with computer and/or public relations skills, an attorney, and Realtor. In addition, local governments that are not directly involved in your water utility may in fact be the legal authority for authorizing and enforcing protection measures and, thereby, may help with the adoption of a protection plan. Examples of local governmental entities include commissioners, council members, and mayors.

The team determines the goals of the program and the roles and responsibilities of the participants. The team must make every effort to involve the public in plan development and implementation, and to secure the public's support.⁴ Other tasks include the development of protection plan management strategies (refer to Step 5, Manage the Source Water Protection Area), the establishment and continued evaluation of both short- and long-term goals (see Step 6, Planning for Existing and Future Events / Contingency Protocol), record keeping, and ensuring that the public receives proper notification during all of the relevant stages of the process. The team submits the SWAPP⁵ to NMED-DWB for approval (documentation of source water management control tools such as agreements, ordinances, regulations, and public notice(s), etc., should be attached).

STEP 2 DELINEATE SOURCE WATER PROTECTION AREAS (COMPLETED BY NMED-DWB)

The State of New Mexico's *Designated Fixed Radius* method was used to delineate groundwater sources. The method utilizes a 1,000-foot radius (72.12 acres) as the delineated source area or *capture zone*, which is further subdivided into three zones. Zone A represents a radius that is from 0 to 200 feet from the wellhead, Zone B is 200 to 500 feet from the wellhead, and Zone C is the area between 500 to 1,000 feet from the wellhead. Surface water⁶ source delineation was determined according to buffer zones as they applied to two classifications of watersheds.

Type A Watersheds were defined as having an area under thirty square miles, and the entire watershed was delineated according to topographic or U.S. Geological Survey 8-Digit Cataloging Units. Buffer zones within the watershed were defined as follows: Buffer Zone A is a 200 foot-wide strip of land paralleling either bank of an active stream channel and/or extending from the mouth or inlet of an impoundment to the uppermost boundary of the watershed; Buffer Zone B is a 300 foot-wide strip of land beginning at the outside margin of buffer Zone A; and Buffer Zone C is the balance of the land area extending to the topographic boundary.

Type B watersheds were defined as having an area over thirty square miles, and the entire watershed was delineated according topographic or U.S. Geological Survey 8-Digit Cataloging Units; however; PSOC inventories and susceptibility analysis criteria were applied only to that portion of the watershed defined as a Critical Stream Segments were defined as the reach of the watercourse beginning 500 feet below a public water system intake and extending for a distance of ten miles upstream. Zones A, B. and C were defined within the Critical Stream Segments as follows: Zone A is a 200 foot-wide strip of land paralleling either bank of an active stream channel; Buffer Zone B is a 300 foot-wide strip of land paralleling an active stream channel and beginning at the outside margin of Buffer Zone A, and Buffer Zone C is a ½ mile-wide corridor of land paralleling either bank of an active stream channel, but excluding buffer zones A and B. You may decide to customize or use another delineation method to produce the maps or use these to satisfy the requirements for this Step. Geographical Information Systems ArcView 8.0 was used to generate the maps.

The PSOC were assembled through database⁷ tables and shapefiles, sanitary surveys, and water system and DWB staff review within the context of the limitations of resources, and other available information. As shown in the example of the groundwater delineation, Appendix A, PSOC identified from the databases, such as UST facilities are shown as points, while

⁴ Keeping records of public participation (i.e., sign-in sheets) is important and may help you to recall public involvement, in addition to serving as a list of possible future team members.

⁵ A cover sheet should be attached and signed by an official of the governing entity when returning the SWAPP. For water utilities helping to develop SWAP Plans on a watershed scale, there may be several governing entities.

⁶ Where it was determined that ground water sources were under the direct influence of surface water (GWUDI), the interface zone was delineated as the watershed boundary. In areas where aquifer units outcrop near an active stream channel and where geological interpretation allowed more accurate definition of interface zones, the length of the critical stream segment may have been reduced.

⁷ Drinking water supply systems, Federal Toxic Release Inventory, Underground Injection Control (including Monitoring Wells and Impoundments, Federal Permit Facility, Federal Industrial Permit Facilities, Oil Conservation District Wells, Petroleum Storage, Roads (by county), Railroads, State Impaired Waters (303 d List), Land Use/Land Cover (by county), and Hazardous and solid waste facilities. Base Maps were produced using *All Topo Maps*. All data was projected to North American Datum 83 /Universal Transverse Mercator Zone 13.

the three-letter text code (ISM in the example) indicates the PSOC was identified during an onsite survey. The Map Legend remains consistent throughout the SWAPP.

STEP 3 INVENTORY ACTUAL AND POTENTIAL SOURCES OF CONTAMINATION (COMPLETED BY NMED-DWB)

PSOC regulated by the *Safe Drinking Water Act* (SDWA) were inventoried if located within a delineated area as required under the SWAPP process. For Type A watersheds PSOC located within the watershed were inventoried. For Type B watersheds only those PSOC located within a critical stream segment were inventoried. Only facilities and/or land use where potential use of SDWA regulated contaminants may pose a **significant** likelihood of impacting ground water were identified as PSOC. PSOC, along with their associated codes, and Contaminants of Concern generally associated with the PSOC are listed in Appendices C and D, respectively.

The identified contaminants were assembled through database⁸ tables and shape files, sanitary surveys, water system and DWB staff review within the context of the limitations of resources and available information. Table 1 shows PSOC identified from the map example (Appendix A –groundwater delineation, p. 15). PSOCs identified from the databases, such as UST facilities are shown as points, while the three-letter text code (RSF) indicates the PSOC was identified during an onsite survey. Water systems, which choose to develop a Source Water Protection Plan, may to be provided with additional information.

Table 1 (Example)	INVENTORY OF ACTUAL	AND POTENTIAL SOURCES OF	CONTAMINATION	
Description of Contaminant	Actual Contamination	Potential Contamination	Distance from Wellhead and/or Zone of Influence	Number of Sources of Contamination (may be expressed by a range i.e. 2-4).
Monitoring Well	No	Yes	Zone A	1+
Hazardous/Solid Waste Generator	No	Yes	Zone B	2-4
Petroleum Storage	No	Yes	Zone B	2-4
Primary Highway	No	Yes	Zone B	2-4
Railroad	No	Yes	Zone B	2-4
Single family Residences – Unsewered	No	Yes	Zone B	2-4
Abandoned Well	No	Yes	Zone C	3-4
Arroyo	No	Yes	Zone C	3-4
Federal Toxic Release Inventory Site	No	Yes	Zone C	3-4
Railroad	No	Yes	Zone C	3-4
Secondary Highway	No	Yes	Zone C	3-4

⁸ Drinking water supply systems, Federal Toxic Release Inventory, Underground Injection Control (including Monitoring Wells and Impoundments, Federal Permit Facility, Federal Industrial Permit Facilities, Oil Conservation District Wells, Petroleum Storage, Roads (by county), Railroads, State Impaired Waters (303 d List), Land Use/Land Cover (by county), Hazardous and solid waste facilities. Base Maps were produced using *All Topo Maps*. All data was projected to North American Datum 83 /Universal Transverse Mercator Zone 13.

STEP 4 CONDUCT A SUSCEPTIBILITY ANALYSIS (COMPLETED BY NMED-DWB)

Susceptibility analyses provide a method to identify and prioritize potential risks to human health and the environment by identifying the water sources most likely to be impacted by a contaminant. Once completed, consideration should be given to the effects on human health the contaminants may pose, such as *acute* (appearing within hours or days) verses *chronic* (exposure over many years) health effects. Management plans should reflect the findings of the assessments, by directing the development and implementation of the management plan to the sources with the highest susceptible ranking and with the potential for causing acute adverse human health effects.

NMED-DWB susceptibility analysis was performed using decision matrices. Susceptibility was defined as a combination of the **vulnerability** of a water source to contamination due to characteristics of the contaminant, and the **sensitivity** of a water source to contamination due to characteristics of the source water area (Appendix B).

Vulnerability Rank

Once identified according to zone of influence, a vulnerability⁹ rank was determined based on the number of PSOC located in a particular zone. The vulnerability rank may have been increased due to one or more of the following:

- 1. State of New Mexico Environment Department *Drinking Water Regulations* (regulations) for compliance samples were exceeded: 3 or more violations within 12 months, with a set period of review.
- 2. Three or more categories of PSOC occurred within the same zone of influence.
- 3. Records maintained for facilities operating under a New Mexico Environment Department (NMED) Ground Water Discharge Plan, Abatement Plan, Solid Waste Facility Permit, or Underground Storage Tank registration, or operating under an United States Environmental Protection Agency National Pollutant Discharge Elimination System permit or any other federal or state permitting system indicate the effectiveness of treatment processes used and the compliance status of the facility with the terms and conditions of its permit.

Tables 2 and 3 show the vulnerability-ranking scheme and an example of a PSOC inventory determined from the map shown in Appendix A. As shown in Table 3, the vulnerability rank that corresponds to the example inventory is "low" as Zone B and C are the zones where the highest Vulnerability Rank (refer to Appendix A).

Table 2 (Example)							
PSOC RANKING DETERMINATION							
		Zone		Ranking			
	Zone A	Zone B	Zone C				
-	1+	10+	15+	high			
Number of PSOC in Zone	0	8-9	12-14	moderately high			
	0	5-7	8-11	moderate			
	0	3-4	5-7	moderately low			
	0	0-2	0-4	low			

Sensitivity Rank

The sensitivity of a water source to contamination was determined from ranks calculated for the following four matrices: 1) depth to groundwater (the upper most screened interval), 2) well construction/integrity information, 3) construction and

⁹ This report uses the term *vulnerability* to express the characteristics of contaminants in terms of the likelihood of 1) discharge, 2) spill or accidental release, and 2) the number of potential contaminant sources according to their location to a water source. Although determining vulnerability based on the number and location of the PSOC in relation to the wellhead neglects the basic chemical characteristics of the contaminants such as density and volatility, and the likelihood of accidental spills or releases, the number and location of contaminant sources capable of impairing a supply well are easily counted and provide information relevant to initial protection planning efforts. *Please note that vulnerability is not used to describe hydrogeologic related factors. Hydrogeologic factors are incorporated in the sensitivity analysis using DRASTIC (see footnote 9).*

integrity of the well, and 4) calculated DRASTIC¹⁰ Index (refer to Appendix B for matrices). The sensitivity of surface water systems to PSOC was similarly determined, and was assessed according to an evaluation of 1) stream flow rate or area of a reservoir (the highest sensitivity rank is used), 2) the adequacy of construction and physical integrity of intake structures, and 3) calculation of the WRASTIC Index¹¹ for the system or intake.

Table 3 (Example)							
PSOC VULNERABILITY INVENTORY AND RANKING							
Map ReferenceDescriptionZone of InfluenceNumber of TypeVulnerability Rank							
Base Map	Primary Highway	В	0-2	Low			
Base Map	Secondary Highway	В	0-2	Low			
Appendix K	ISM	С	0-4	Low			
Map Legend	Petroleum Storage	С	0-4	Low			

Table 4 provides definitions, explanatory notes, references, and additional information related to the sensitivity evaluation criteria.

Table 4 (Example)					
SENSITIVITY ANALYSIS DEFINITIONS, EXPLANATORY NOTE, and INFORMATION SOURCE (S)					
General Information					
Water Supply Source Name	The name of the well assessed.				
Source Type	Where the drinking water comes from, i.e. ground water, surface water, or ground water under the direct influence of surface water.				
Susceptibility Analysis Date The date the susceptibility was completed.					
Date of PSOC Inventory The date the onsite inventory was completed.					
Hydraulic Conductivity A description of the rate at which water can move through a permeable medium (vertical movement).					
Depth of Screened Interval	The top of the well screen where water is allowed to enter the well casing.				
Information Assessment – Administrator and operat	tor knowledge of the water supply system				
Well Casing Generally determined from well logs.					
Location of Screened Interval (s) Generally determined from well logs.					
Total Completion Depth The depth to water measured from ground surface. Generally determined from well logs.					

¹⁰ *DRASTIC* is a method developed in 1987 by the National Ground Water Association to evaluate the potential for ground water contamination in any hydrogeologic setting in the United States, and is an acronym for: depth to water (D); net recharge (R); aquifer media (A); soil media (S); topography (T); impact of vadose zone media (I); and aquifer hydraulic conductivity (C). The method assigns a relative rank and weight to each of these factors to determine the relative sensitivity (high, moderately high, moderately low, or low) of a given supply well to surface-derived contamination. The higher the DRASTIC Index, the more sensitive the well is to contamination.

¹¹ WRASTIC is a method developed by the NMED-DWB to evaluate the potential for surface water contamination and is an acronym for wastewater discharges (W); recreational land use impacts (R); agricultural land use impacts (A), size of watershed (S); transportation avenues (T); industrial land use impacts (I); and amount of vegetative ground cover (C). The method assigns a relative weight to each of these factors to determine the relative sensitivity of a given surface water supply to surface-derived contamination. The higher the WRASTIC Index, the more sensitive the water supply is to contamination.

•					
SENSITIVITY ANALYSIS DEFINITIONS	, EXPLANATORY NOTE, and INFORMATION SOURCE (S)				
Pump, Type, Size, and Setting Generally determined from well logs.					
Drilling Log or Equivalent	A log produced by the driller of the well – usually filed at the Office of State Engineer.				
DRASTIC Index Parameters (see footnote	10)				
Depth to Water	The depth to water from ground surface. Generally determined from well logs.				
Net Recharge	The amount of annual rainfall.				
Aquifer Media	The aquifer's primary media.				
Soil Media	Values generally determined estimated from the Soil Conservation Service's Soil Surveys.				
General Topography	The slope of the ground surface (estimated from U.S. Topographic maps).				
Hydraulic Conductivity	A description of the rate at which water can move through a permeable medium.				
Impact of Vadose Zone Media	Primary vadose zone material type.				
WRASTIC Index Parameters (see footnote	11)				
Wastewater	The presence and type of wastewater generation in the delineated source area.				
Recreational Activities	Consideration of recreational use in the delineated source area.				
Agricultural Land Use Impacts	The number of agricultural land uses in the delineated source area.				
Size of the Watershed	The evaluation of watershed.				
Transportation Avenues	An evaluation of types of transportation within the area of the watershed.				
Industrial Land Use Impacts	The amount of industrial discharge within the watershed area.				
Vegetative Ground Cover	The amount or percentage of vegetative ground cover.				
Surface Water Intake	A constructed devise where water is directed into a water system.				
Turbidity	Used as a measurement of suspended solids and colloidal or soluble organic matter that does not settle out of water.				
Watershed	For purposes of the SWAPP assessment, a watershed is defined as 1) the topographic boundary from which water in this area of land drains downslope to the lowest point, and 2) a boundary defined according to the USGS 8-Digit Cataloging Units of New Mexico.				
Source Area Delineation Data					
Map Legend	Map Legend criteria reflect PSOC such as petroleum storage sites, hazardous and solid waste generator sites, and toxic inventory release facilities. In addition, topography and general land us are shown. The Map Legend remains constant throughout the assessment (see footnote 7).				
Source Area Delineations	The State of New Mexico's <i>Designated Fixed Radius</i> method for the State Sanitary Survey is a 1,000 feet, and is based on an arbitrarily chosen radius. The area of land defined as a <i>watershed</i> as noted above.				

Rankings were then entered as shown in Table 5, and a final *point sum* determined. Table 6 shows the final ranking criteria for sensitivity.

Table 5 (Example)					
COMPOSITE SENSITIVITY RANKING					
Rank for Depth of Screened Interval					
High (25 points)					
Moderately High (20 points)					
Moderate (15 points)					
Moderately Low (10 points)					
Low (5 point)					
Rank for Well Construction Records					
High (25 points)					
Moderately High (20 points)					
Moderate (15 points)					
Moderately Low (10 points)					
Low (5 point)					
Rank for Integrity of Construction					
High (25 points)					
Moderately High (20 points)					
Moderate (15 points)					
Moderately Low (10 points)					
Low (5 point)					
Rank for DRASTIC Index					
High (25 points)					
Moderately High (20 points)					
Moderate (15 points)					
Moderately Low (10 points)					
Low (5 point)					
Point Sum					
Rank Assigned (see Ranking Guide, below)					

Table 6 (Example)						
COMPOSITE SENSITIVITY RANK ASSIGNED						
Sum of Sensitivity Points Composite Sensitivity Range Composite Rank Assigned						
90-100	high					
70-85	moderately high					
50-65	moderate					
30-45	moderately low					
20-25	low					

Susceptibility Rank

Together, the rankings determined from the vulnerability and sensitivity analysis were merged as shown in table 7. Susceptibility ranks were increased where professional judgment or extenuating circumstances and/or facts warranted an increased rank such as if a nearby contaminant plume was know to exist but falls outside the delineated areas. Further, ranks were increased where systems were reported on quarterly chemical monitoring and/or NMED-DWB Escalation reports and where land use and/or land cover in the source area of delineation that fell under one or more of the following categories: 1) agricultural, 2) rangeland, 3) commercial, industrial, transportation, and utility, 4) open water and/or irrigation, and 5) urban/recreational grass area.

Table 7 (Example)									
	SUSCEPTIBILITY RANKING								
		S	ensitivity Ranking						
		High	Moderately High	Moderate	Moderately Low	Low			
	High	High	high	moderately high	moderately high	moderate			
Vulnerability Bonking	Moderately High	High	moderately high	moderately high	moderate	moderate			
Ranking	Moderate	moderately high	moderately high	moderate	moderate	moderately low			
	Moderately Low	moderately high	moderate	moderate	moderately low	moderately low			
	Low	Moderate	moderate	moderately low	moderately low	low			

Increases in rank are determined in the *Operational Exceptions* and are reflected in the *Final Rank column* of Table 8. Ranking of the entire water system was determined by using the median of the source ranks (only applicable where water utilities have multiple water sources). The final rank is noted in *Assessment Findings and Summary* (See below).

Table 8	SOURCE SUSCEPTIBILITY RANKING FOR YOUR WATER SYSTEM					
SOURCE NAME	Sensitivity RankVulnerability RankSusceptibility RankOperational ExceptionsFinal Rank					

STEP 5 MANAGE THE SOURCE WATER PROTECTION AREA

The goals of managing a source water protection area are pollution prevention and management of threats to source water. Management "measures or tools" range from promoting pubic education through public service radio campaigns where there are little to no associated costs, to developing complex protection plans involving new land acquisitions, where financing may be a considerable factor of the management plan. In addition, management of source water protection areas may involve a variety of strategies each targeted to address a specific goal. It may be most effective to adopt a simple plan and continue to update it; however, efforts should focus on water sources with the highest susceptibility to contamination. Primary categories of protection measures/tools include the following (also refer to Appendix G, Examples of Source Water Protection Planning Categories, Measures and Tools):

- Public education such as giving presentations at schools, business meetings, and government forums, and
 participation in water-related events sponsored by other groups and organizations;
- Best management practices (BMPs) such as preventing leaks or spills by installation of "secondary containment" equipment;
- Regulatory controls such as zoning ordinances and subdivision controls, construction and operating standards, health regulations (such as setting setback requirements for septic tanks and/or sewer lines from drinking water wells), and permitting or inspections;
- Point source pollution restrictions, requirements, and/or controls for fixed PSOC such as waste processing plants and inorganic sources such as salts, nutrients, and heavy metals; and
- Land acquisitions, land leasing, economic incentives such as cost-share programs, and conservation easements.

Implementing protection measures, along with water quality monitoring, capacity¹² building, and treatment can significantly protect a water source.

STEP 6 PLAN FOR EXISTING AND FUTURE EVENTS / CONTINGENCY PROTOCOL

Where the management of source water protection areas may help reduce the likelihood of water pollution and help focus efforts on the successful treatment of contaminated water, planning for future events that are both expected and unexpected is also a necessary part of the SWAPP. Contingency planning provides the information that is helpful during these events. This includes emergency contact information, protocols and strategies, and revenues from budgeting.

Determine if there are local emergency response teams that your water utility could contact for assistance. On the state level, the State of New Mexico Environment Department Office of Emergency Preparedness organizes assistance for damage caused by events such as wildfires, and will provide water utilities with information regarding damage assessments related to drinking water systems. Further, the New Mexico National Guard is the entity responsible for providing public water utilities with a source of water under emergency conditions.¹³ When water outages may not be classified as "emergency conditions," water utilities should know and develop their options of supplying their customers with safe drinking water. Categories of contingency planning that should be addressed in your SWAPP include the following:

- Water outages due to contamination, mechanical or physical breakdown of a system, and natural disasters such as floods and drought;
- Water conservation;
- Accidental leaks or spills;
- Land acquisition for future water supplies; consider and/or identify where a new well could be drilled should a new
 water source be required; and
- Land acquisition as a source water protection measure.

ASSESSMENT FINDINGS AND SUMMARY

The Susceptibility Analysis of the water utility reveals that the utility is well maintained and operated, and the sources of drinking water are generally protected from potential sources of contamination based on an evaluation of the available information. The susceptibility rank of the entire water system is _____.

NMED-DWB staff is available to help your water utility continue with the development of the SWAP Plan, which may include providing additional mapping, (refer to Step 2), evaluation of BMP (refer to Step 5), or providing emergency planning options (refer to Step 6). This SWAPP Report is intended primarily to provide water utilities with information about the susceptibility of their water supplies to contamination, and to help water utilities initiate Source Water Assessment and Protection Plans for the protection of theses water resources.

The remainder of this report 1) offers a template and information for developing a source water protection plan for your water utility, 2) provides examples of management categories commonly utilized in protection planning, and 3) includes an exercise (Appendix I) to help illustrate some of the SWAPP steps.

REPORTING:

The report was provided to the Water Supply System for initial review, and is now available at the State of New Mexico Environment Department Drinking Water Bureau, 525 Camino de Los Marquez, Suite 4, Santa Fe, NM 87505.

Copies may also be requested by emailing the Drinking Water Bureau at <u>SWAPP@nmenv.state.nm.us</u> or by calling (505) 827-7536 (toll free 1-877-654-8720). Please include your name, address, telephone number, and email address, and the name of the water utility. *NMED-DWB may charge a nominal fee for paper copies*.

¹² Capacity Development program support services are available on a priority basis to assist eligible public water systems enhance *technical, managerial*, and *financial* capacities.

¹³ The State of New Mexico recognizes emergency conditions according to categories Type A and Type B. Type A conditions are major state or county disasters, including nuclear, earthquakes, volcano eruptions, floods, hurricanes, and tornadoes. Type B disasters are water outages due to drought, major contamination of a system's basic water source, and major destruction or impairment of a system's physical facilities.

REFERENCES

American Water Works Association, 2002, Source *Water Protection Reference Manual*. American Water Resource Foundation.

American Water Works Association, 1984. AWWA Standards for Water Wells; AWWA A100-84, Denver, Colorado.

Robson, S. G. and E. R. Banta, 1995. *Ground Water Atlas of the United States, Segment 2: Arizona, Colorado, New Mexico, and Utah*; U.S. Geological Survey Hydrologic Investigations Atlas 730-C.

International City/County Management Association, 2003. Drinking Water Source Awareness Media Campaign Guidelines. Washington, D.C.

State of New Mexico Environment Department 1999-2003. Sanitary Survey Report. Drinking Water Bureau.

State of New Mexico Environment Department, 2000. *State of New Mexico Source Water Assessment and Protection Program.* Drinking Water Bureau. February.

U. S. Environmental Protection Agency, 2002, Source Water Protection, Best Management Practices and Other Measures for Protecting Drinking Water Supplies. CD Produced with the Drinking Water Academy.

U. S. Environmental Protection Agency, 1993. Wellhead Protection: A Guide for Small Communities; EPA-625/R-93/002. Office of Water / Office of Research and Development. Washington, D.C.

U.S. Environmental Protection Agency, 1997. *State Source Water Assessment and Protection Programs Guidance Final Guidance*, EPA816-R-97-009. Washington, DC.

U.S. Environmental Protection Agency, 1987. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings, EPA-600/2-87-035. Washington, DC.

U. S. Environmental Protection Agency, 1975. *Manual of Water Well Construction Practices*; EPA-570/975-001. Office of Water Supply. Washington, D.C.

Databases, Shape files, and Software

Bureau of the Census. Tiger/Line Files Redistricting Census 2000 (Railroads) <u>http://rgisedac.unm.edu</u>. US. Department of Commerce. Washington, DC.

Bureau of the Census, 1994-2000. Tiger/Line Files Redistricting Census 2000 (Roads) <u>http://rgisedac.unm.edu</u>. US. Department of Commerce. Washington, DC.

Earth Data Analysis Center, 2001. U.S. Geological Survey. *New Mexico Land Cover Data Set Edition 1 Land Use and Land Cover Digital Data from 1:25,000 and 1:100,00 Scale Maps* <u>http://rgisedac.unm.edu</u>. University of New Mexico, Albuquerque, New Mexico

Ground Water Quality Bureau, April, 2003. Underground Injection Control Sites. Dataset includes facilities where GPS readings were available. New Mexico Environment Department, Santa Fe, New Mexico. October.

IGage Mapping Corporation, 2001. All Topo Maps, New Mexico. Salt Lake City, Utah.

IGage Mapping Corporation, 2001. All Topo Maps, Big Topo Pro. Salt Lake City, Utah.

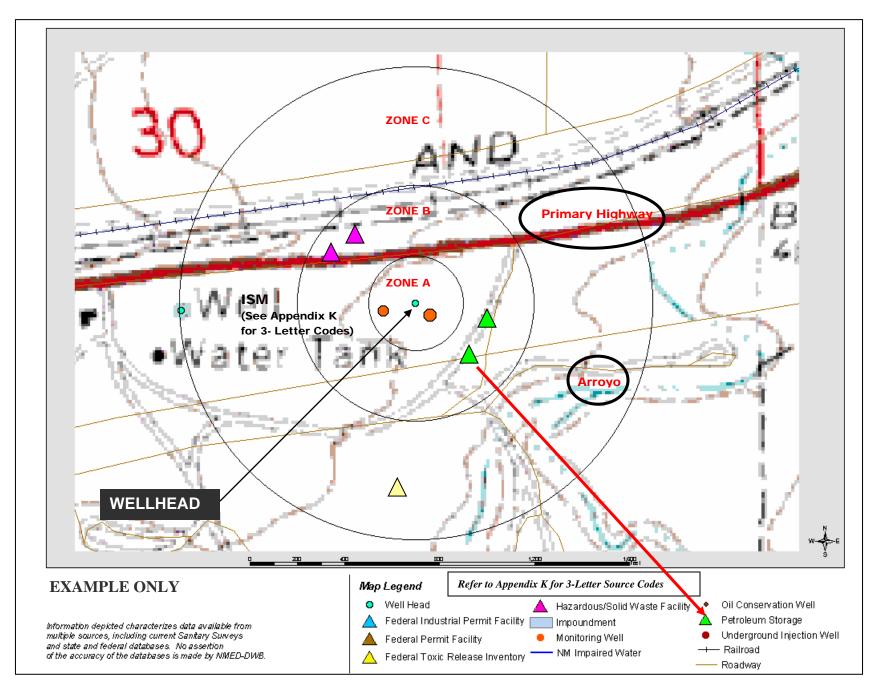
National Geographic, 2001. New Mexico, Seamless USGS Topographic Maps on CD-ROM. San Francisco, California.

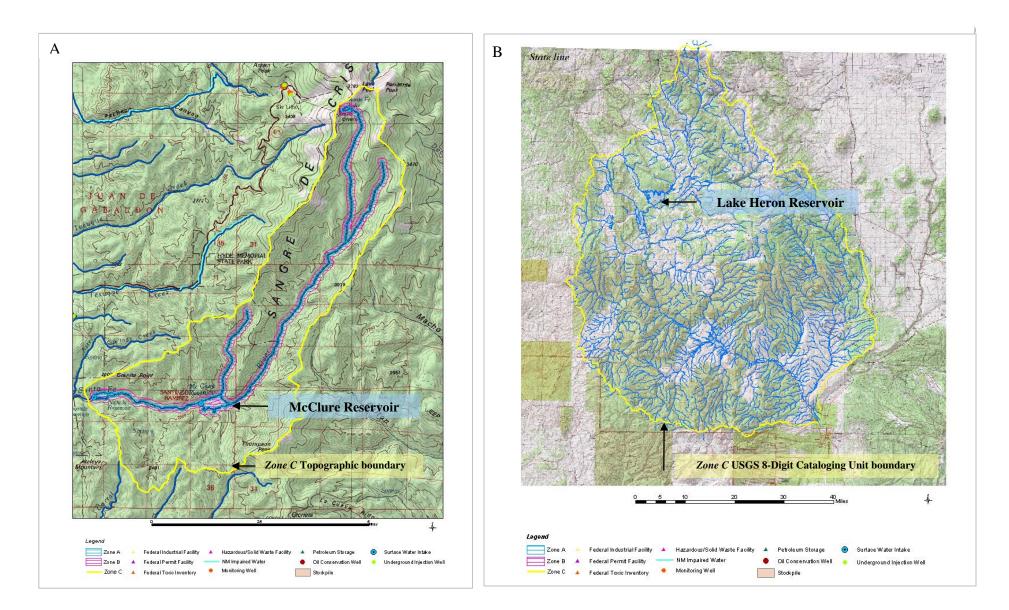
New Mexico Energy, Mineral and Natural Resources Department, 2002. *Basic Well Summary with Lat/Long Information added 10/15/02* <u>http://www.emnrd.state.nm.us/ocd/data.htm</u>.

New Mexico Environment Department, Drinking Water Bureau. WRASTIC Index Calculator. Version 1.10.

Petroleum Storage Tank Bureau, May, 2003. Dataset includes facilities where GPS readings were available. New Mexico Environment Department. September. Santa Fe, New Mexico. October.

Productive Data Solutions, 2002. Database compilation and projections. Albuquerque, New Mexico.


Purdue Research Foundation, 1994. Wellhead Protection Program. West Lafayette, Indiana.


Surface Water Quality Bureau, 2002. 303 (d) Listed Waters of New Mexico (ARCGIS shapefiles). New Mexico Environment Department. Santa Fe, New Mexico. October.

U. S. Environmental Protection Agency, (2001). *Resource Conservation and Recovery Information System*: Better Assessment Science Integrating Point and Nonpoint Sources. Version 3, EPA-823-B-01-001. June.

U. S. Environmental Protection Agency, (2001). *Permit Compliance System (PCS) Sites and Computed Annual Loadings*. Better Assessment Science Integrating Point and Nonpoint Sources. Version 3, EPA-823-B-01-001. June.

U. S. Environmental Protection Agency, (2001). *Toxic Release Inventor (TRI), Sites and Pollutant Release Data.* Better Assessment Science Integrating Point and Nonpoint Sources. Version 3, EPA-823-B-01-001. June.

Example A: *Type A* Watershed. The delineation includes the entire topographic boundary, shown highlighted in yellow. The boundary is designated as Zone C. All PSOC lying within Zones A, B, and C are inventoried according to SWAPP.

Example B: *Type B* Watershed. A *Type B* watershed has an area greater than 30 square miles (see State of New Mexico, Source Water Assessment and Protection Program, February 2000). The delineated area extends 10-miles from the uppermost reservoir intake. Buffer Zone C, termed the *Critical Stream Segment* and shown as a green border, encompasses a ¹/₂ mile-wide corridor extending up to 10 miles from the uppermost intake. All PSOC lying within the 10-mile radius in Zones A, B, and those within the critical stream segments, Zone C, are inventoried according to SWAPP.

PART 1 (A) SOURCE DATA: GROUND WATER SYSTEM

Parameter	(Source Name)
Source Type	Ground Water
Susceptibility Analysis Date	
Susceptibility Analysis Completed by	NMED-DWB
Date of PSOC Inventory	

PART 1 (B) SOURCE DATA SURFACE WATER SYSTEMS(Direct Intakes from Reservoirs and Streams)

Parameter	(Source Name)
Source Type	
Susceptibility Analysis Date	
Susceptibility Analysis Completed by	NMED-DWB
Date of PSOC Inventory	
Annual average surface area of reservoir (acres)	
Typical reservoir depth or range in depth (ft)	
Average annual stream flow (ft3/sec)	
Type (drop inlet, tower & gate, perforated pipe, etc.)	
Construction material (concrete, steel, PVC, etc.)	
Depth of intake or range of inlet depths (ft below ground or ft above mean sea level)	
Site security (fencing, lock boxes, etc.)	
Typical duration of use (hours per day)	
Method of discharge (pump or gravity flow)	
Year installed or constructed	

PART 2 (A) SENSITIVITY ANALYSIS: GROUND WATER SYSTEM

1. SENSITIVITY RANKING FOR DEPTH OF SCREENED INTERVAL

Screened Interval Depth	less than 100 feet	101 – 200 feet	201 – 500 feet	501 – 700 feet	greater than 700 feet
Sensitivity Rank	high	moderately high	moderate	moderately low	low

2. SENSITIVITY RANKING FOR AVAILABLE CONSTRUCTION RECORDS

Construction Information Available (y/n)	Casing diameter, length and materials	Location of screened interval(s)	Total completion depth	Static water level at completion	Pump type, size and setting	Drilling log or equivalent	Total Points	Rank Assigned (see Ranking Guide, below)
Points for Yes	2	3	3	2	2	3	15	

Point Value	Sensitivity Rank
0-3	high
4-6	moderately high
7-9	moderate
10-12	moderately low
13-15	low

2B. SENSITIVITY RANKING FOR WELL INTEGRITY

Physical Integrity of Supply Well	Is the well located outside of an area susceptible to flooding?	Does well casing terminate at least 12 inches above floor or ground level?	Is the wellhead properly sealed?	Is annular space pressure-grouted to depth of at least 20 feet?	Is there a concrete pad around the wellhead that slopes away from casing?	Is well vent screened and oriented to open downward or is cap vented?	Are valves, pump controls and meters properly maintained and operated?	Is the wellhead fenced, housed or properly protected?	Total Points	Rank Assigned (see Ranking Guide, below)
Points for Yes	2	2	3	3	1	1	1	2	15	

3. DRASTIC INDEX PARAMETERS & RANKING

Depth to Water (ft)	Net Annual Recharge (in/yr)*	Aquifer Media (material type)	Soil Type (texture)**	General Topography (%)	Vadose Zone Impact (material type)	Hydraulic Conductivity (gpd/ft2)***	Index Value:	Rank Assigned (see Ranking Guide, below):

* Robson and Banta, 1995

** Folks, 1975

*** Shomaker and Associates, 1995

DRASTIC Index	<u>Sensitivity Rank</u>
greater than 200	high
171-200	moderately high
131-170	moderate
100-130	moderately low
less than 100	low

4. COMPOSITE SENSITIVITY RANKING FOR GROUND WATER SUPPLIES

Each sensitivity rank determined from the preceding ranking guides is given a numerical value, and a composite sensitivity rank is assigned using the formula Sensitivity Rank = Well Depth Rank + Well Construction/Integrity Rank + DRASTIC Index Rank

Rank for Depth of Screened Interval			Rank for Well Construction Records			Rank for Integrity of Construction				Rank for DRASTIC Index											
High (25 points)	Moderately High (20 points)	Moderate (15 points)	Moderately Low (10 points)	Low (5 points)	High (25 points)	Moderately High (20 points)	Moderate (15 points)	Moderately Low (10 points)	Low (5 points)	High (25 points)	Moderately High (20 points)	Moderate (15 points)	Moderately Low (10 points)	Low (5 points)	High (25 points)	Moderately High (20 points)	Moderate (15 points)	Moderately Low (10 points)	Low (5 points)	Point Sum	Rank Assigned (see Ranking Guide, below)

Sum of Sensitivity Points	Composite Sensitivity Rank
90-100	high
70-85	moderately high
50-65	moderate
30-45	moderately low
20-25	low

PART 2 (B) SENSITIVITY ANALYSIS: SURFACE WATER SYSTEM

1. Sensitivity Ranking for Reservoir Area, Stream Flow Rate and Area of Wetlands or Marshes at Springs

	Averag	Average Reservoir Size (acres)					e Annual	Stream I	Flow (cfs))	Area of wetland or marsh (acres)				-	Sensitivity Rank
Source	High = 0-100	Moderately High = 100 - 200	Moderate = 200 – 500	Moderately Low = 500 - 1000	Low = More than 1000	High = Less than 100	Moderately High = 100 - 225	Moderate = 225 - 350	Moderately Low = 350 - 500	Low = More Than 500	High = Greater than 2	Moderately High = 1 - 2	Moderate = $1/2$ - 1	Moderately Low = 14 - 1/2	Low = None	Highest Rank Assigned
(Source Name)																

2. Sensitivity Ranking for Drainage Basin Impacts on Raw Water Quality

Water Quality Parameter	Points for Yes	(Source Name)
Does daily average raw water turbidity regularly exceed ten NTU (answer "yes" if raw water quality not monitored)?	5	
Does monthly raw water TOC regularly exceed 8.0 mg/L and is raw water alkalinity less than 60 mg/L as CaCO3 (answer "yes" if unmonitored)?	5	
Is any reach of the water source upstream from the intake listed as threatened or impaired under Section 303 (d) of the Clean Water Act?	3	
Has urbanization, overgrazing, logging, wildfire or other watershed phenomenon reduced or impacted riparian vegetation upstream from the intake?	3	
Does the watershed consist of steep topography (slopes greater than 30%) and sparse vegetation (less than 20% coverage)?	2	
Is watershed response to storm events quick and intense (i.e., is the region upstream of the intake prone to flash flooding)?	2	
Total Points	20	
Rank Assigned (see Ranking Guide, below)		

Point Value Sensitivity Rank	
13-20	high
9-12	moderately high
6-8	moderate
3-5	moderately low
0-2	low

3. SENSITIVITY RANKING FOR INTEGRITY & MAINTENANCE OF INTAKE STRUCTURES

Integrity and Maintenance of Direct and Indirect Intake Facilities	Points for Yes	(Source name)
Have regulatory deficiencies identified in the most recent sanitary survey been corrected? (Answer "yes" if no deficiencies)	10	
Is telemetry or other form of monitoring provided that alerts operator of an upstream spill or accident?	10	
Can intake be closed or adjusted by operator during high runoff, reservoir turnover, or other events affecting water quality?	10	
Does PWS maintain an emergency spill or upstream accident response plan?	5	
Is access to the area immediately around the intake restricted or controlled from recreational users, wildlife, livestock, etc.?	5	
Is there an upstream reservoir, detention pond, wetland or other feature that intercepts or buffers nutrient and sediment loading to the intake?	5	
Is conveyance between intake and treatment facility lined, enclosed or otherwise protected from contamination?	3	
Are intakes, screens and drain lines properly maintained and free of debris?	2	
Total Points	50	
Rank Assigned (see Ranking Guide, below)	-	

RANKING GUIDE

Point Value	<u>Sensitivity Rank</u>	
0-10	high	
11-20	moderately high	
21-30	moderate	
31-40	moderately low	
41-50	low	

4. WRASTIC Index =

Parameter	(Source name)
Wastewater Presence	
Recreational Impact	

Agricultural Impact	
Size of Watershed (square miles)	
Transportation Avenues	
Industrial Impact	
Vegetative Ground Cover (%)	
Rank	

RANKING GUIDE

Point Value	Sensitivity Rank	
50-82	high	
43-49	moderately high	
35-42	moderate	
27-34	moderately low	
0-26	low	

5. COMPOSITE SENSITIVITY RANKING FOR SURFACE WATER SUPPLIES:

Sensitivity Rank = Area Rank + Integrity & Maintenance Rank + Raw Water Quality Rank + WRASTIC Index Ran	ık
--	----

	(Source name)
Reservoir Area, Stream Flow Rate and Spring Area	
High (25 points)	
Moderately High (20 points)	
Moderate (15 points)	
Moderately Low (10 points)	
Low (5 points)	
Drainage Basin Impacts on Raw Water Quality	
High (25 points)	
Moderately High (20 points)	
Moderate (15 points)	
Moderately Low (10 points)	
Low (5 points)	
Integrity of Construction and Maintenance	
High (25 points)	
Moderately High (20 points)	

APPENDIX B: SOURCE DATA & SUSCEPTIBILITY ANALYSIS

	(Source name)
Reservoir Area, Stream Flow Rate and Spring Area	
Moderate (15 points)	
Moderately Low (10 points)	
Low (5 points)	
WRASTIC Index	
High (25 Points)	
Moderately High (20 Points)	
Moderate (15 Points)	
Moderately Low (10 Points)	
Low (5 Points)	
Point Sum	
Rank Assigned (see Ranking Guide, below)	
Sensitivity Rank	

RANKING GUIDE

Sum of Sensitivity Points	Composite Sensitivity Rank	
80-100	high	
60-80	moderately high	
40-60	moderate	
20-40	moderately low	
0-20	low	

PART 3 VULNERABILITY ANALYSES:

3.1 GROUND WATER SYSTEMS

PSOC Ranking Determination Guide				
Zone			Ranking	
Number of PSOC in Zone	Zone A	Zone B	Zone C	
	1+	10+	15+	high
	0	8-9	12-14	moderately high
	0	5-7	8-11	moderate
	0	3-4	5-7	moderately low
	0	0-2	0-4	low

(Source name)					
Map Reference Description Zone of Influence Number of Type Vulnerability Rank					

FINAL VULNERABILITY RANK =

3.2 SURFACE WATER SYSTEMS:

(Source name)				
Map Reference	Description	Zone of Influence	Number of Type	Vulnerability Rank
FINAL VULNERABILITY RANK	=			

SUSCEPTIBILITY RANKING GUIDE						
	Sensitivity Ranking					
		High	Moderately High	Moderate	Moderately Low	Low
	High	High	High	Moderately High	Moderately High	Moderate
Vulnanskility Donking	Moderately High	High	Moderately High	Moderately High	Moderate	Moderate
Vulnerability Ranking	Moderate	Moderately High	Moderately High	Moderate	Moderate	Moderately Low
	Moderately Low	Moderately High	Moderate	Moderate	Moderately Low	Moderately Low
	Low	Moderate	Moderate	Moderately Low	Moderately Low	Low

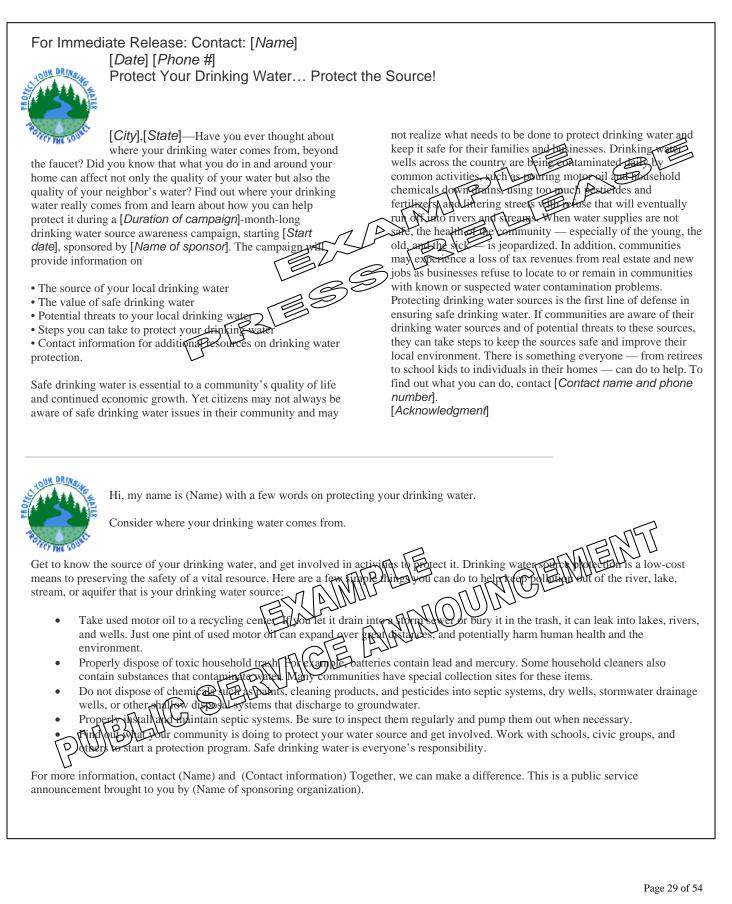
SUSCEPTIBILITY RANKS - All SOURCES

Source Name	Sensitivity Rank	Vulnerability Rank	Susceptibility Rank

The Inventory of Actual and Potential Sources of Contamination was completed by NMED-DWB and is incorporated in Appendix J at Step 3, Number 9.

	INVENTORY OF ACTUAL	AND POTENTIAL SOURCES OF	F CONTAMINATION	
Description of Contaminant	Actual Contamination	Potential Contamination	Distance from Wellhead and/or Zone of Influence	Number of Sources of Contamination (may be expressed by a range i.e., 2-4).
Monitoring Well	No	Yes	Zone A	1+
Hazardous/Solid Waste Generator	No	Yes	Zone B	2-4
Petroleum Storage	No	Yes	Zone B	2-4
Primary Highway	No	Yes	Zone B	2-4
Railroad	No	Yes	Zone B	2-4
Single family Residences – Unsewered	No	Yes	Zone B	2-4
Abandoned Well	No	Yes	Zone C	3-4
Arroyo	No	Yes	Zone C	3-4
Federal Toxic Release Inventory Site	No	Yes	Zone C	3-4
Railroad	No	Yes	Zone C	3-4
Secondary Highway	No	Yes	Zone C	3-4

Adoption of management strategies for specific contaminate sources should be based on a thorough review of the exiting management types. For instance, when considering management of storm water runoff, ¹⁴ management methods range from non-structural methods (sewer stenciling, good housekeeping, education,) to engineered devices (buffer and filter strips, infiltration, BMPs) and for municipal systems compliance with U.S. EPA's *National Pollutant Discharge Elimination System (NPDES) Permitting Program* is a regulatory requirement.


	MANAGEMENT STRATE	EGY AND SCHEDULE (E)	(AMPLE)	
Management Measure/Tool	Management Strategy	Assigned to /Implemented by	Time Line	Update Schedule and Planned Date
Wellhead Protection Ordinance	Identify the wellhead protection area, draft a source water protection ordinance (see example, Appendix G), identify the entity responsible for hearing ordinances, gain citizen support, and petition for adoption of ordinance.	Mr. XYZ and Ms. ABC	July 2003	Not Applicable
Wellhead Protection Sign Posting	Identify the source water delineation area; identify how many signs will be needed and where they may be purchased, the costs and budget considerations, and guidelines and/or laws for posting the signs. Post the signs.	Mr. XYZ and Ms. ABC	August 2003	Every 10 years (August 2013)
Adopt a Zoning Ordinance	Research zoning ordinances. Identify any existing zoning ordinances, and procedures necessary for adoption. Talk with city planners and landowners, gain public support, and petition to adopt the zoning ordinance.	Mr. XYZ Attorney, and Ms. ABC City Planning	d Ms. ABC City September 2003 No	
Well Abandonment Procedures	Determine if an additional water source is necessary. Check local and state guidelines and regulations for proper well abandonment procedures, properly abandon the well, and report well abandonment to NMED-Drinking Water Bureau.	Ms. Hydrologist	July 2003	Not Applicable
Strom Water Drain Protection	Contact the city-planning department and inquire about storm water drains. Check local and state guidelines and regulations for requirements, and research storm water protection measures/tools.	Mr. Hydrologist	July 2003	Bi-Yearly (July 2005)

¹⁴ *Storm water runoff* is rain or snowmelt flowing from rooftops and other structures, pavement on roads, sidewalks, and parking lots, and degraded land covers such as dirt parking lots, walking paths, baseball fields and suburban lawns, and areas of insufficient land cover such as vegetation.

Your Water Utilities *Contingency Protocol and Schedule* should include the first three categories in Column 1 of the table below, in addition to categories you may wish to include.

CONTINGENCY PROTOCOL AND SCHEDULE (EXAMPLE)						
Contingency Planning Categories	Protocol Elements	Current Issue	Future Issue	Assigned to - Implemented by	Time Line	Update Schedule and Planned Update
Emergency Water Outage	Develop a protocol: list all potential types of water outages, identify responsible agencies/parties, and provide contact information. Estimate how much water per day will be needed by your customers, and budget for this potential expense.	No	Yes	Ms. ABC	July 2003	Quarterly September 2003, November 2003, etc.
Accidental Leak or Spill Near or Into Water Source	Develop a protocol: list all potential types of leaks and spills, identify responsible agencies/parties, and provide contact information.	Yes	Yes	Mr. XYZ and Ms. ABC	August 2003	Yearly August 2004
Water Conservation	Develop a Water Conservation Plan: research the status of your aquifer, identify existing conservation methods, and promote the plan.	Yes	Yes	Ms. DEF	August 2003	Bi-Yearly August 2005
Land Acquisition for New Water Source	Develop a Land Acquisition Strategy: Identify when the source will be needed, where potential new water sources exist, and research land acquisition methods such as ownership, lease, and/or easements. Identify and discuss future zoning issues surrounding the new source site, and prepare a budget for the costs of acquiring the new source.	No	Possibly	Mr. XYZ Attorney, and Ms. ABC Public Works Director	September 2003	Yearly September 2004

Shown below are two examples of Media Aids developed by the International City/County Management Association to promote source water protection, and which may be used as part of your Source Water Protection Plan. Other forms of media aids include posters, fact sheets, informational flyers, brochures, and resources lists.

Examples of Categories of Management Measures & Tools Used for Source Water Protection Planning

PUBLIC EDUCATION

- **Newspaper Articles**
- Radio
- Pamphlets
- Brochures
- Community Meetings
- Seminars –Slide Shows and Video
- Storm Drain Stencil Program

BEST MANAGEMENT PRACTICES

Agricultural

Tillage Practices / Erosion Control Measures Range & Pasture Management

Forestry

Forest Revegetation Logging & Road Construction Management Streamside Area Management

Urban

Buffer Zones / Setbacks Primary & Secondary Containment Storm Drain Maintenance

Waterbody **River/Reservoir Management Program(s) Shoreline Restoration**

ZONING (Regulatory)

- **Overlay/Protection District**
- **Prohibition of Various Land Use**
- **Special Permitting**
- Large-Lot Zoning
- **Transfer of Development Rights**
- Growth Control
- Performance Standards

HEALTH REQUIREMENTS (Regulatory)

- Privately Owned Wastewater Treatment Plant
- Septic Cleaner Ban
- Septic System Upgrade
- **Toxic & Hazardous Materials Handling** Requirements
- Private Well Protection

LAND TRANSFER (Non-Regulatory/

- Voluntary)
- Sale/Donation
- **Conservation Easement**
- Limited Development
- **LEGISLATIVE (Regulatory)**
- Regional Source Water Protection Districts
- Land Banking

POINT SOURCE POLLUTION RESTRICTIONS

Waste Processing Plants

LAND ACQUISITION (Non-Regulatory & **Regulatory**)

OTHER (Non-Regulatory)

- Increased Monitoring
- Hazardous Waste Collection

A Variety of Resources are Available

Water Sourcebooks Contain 324 Activities for Grades K-12

U.S. EPA STORM DRAIN STENCILING PROGRAMS

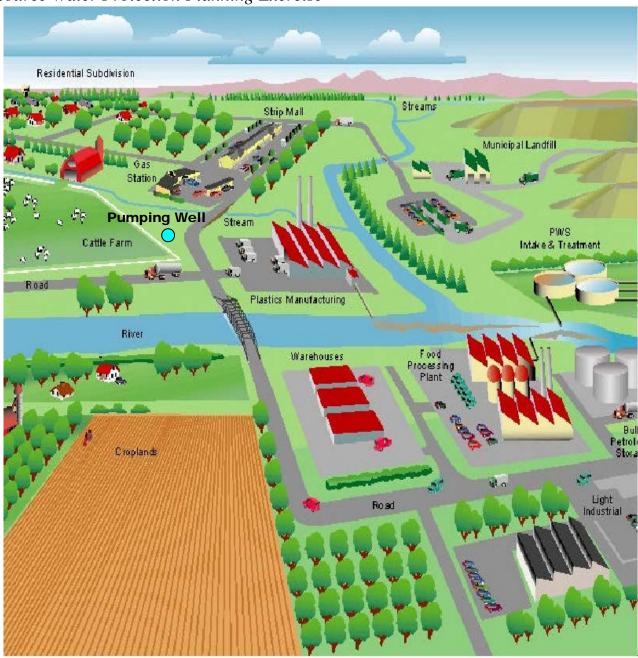
DUMP NO WASTE PROTECT YOUR GROUND WATER

Planning tools such as ordinances, zoning decisions, regulations, and descriptions of BMP used to support your Source Water Protection Plan should be attached (*the Ordinance shown below is an example based on a Wellhead Protection Ordinance adopted by the City of Wilber, Saline County, Nebraska*).

ORDINANCE NO
AN ORDINANCE FOR THE CITY OF (NAME), (NAME) COUNTY, (NAME OF STATE) TO CREATE SECTION XXX OF THE MUNICIPAL CODE OF THE CITY OF (NAME), BY ADDING A NEW SECTION TO DESIGNATE A WELLHEAD PROTECTION AREA.
BE IT ORDAINED BY THE MAYOR AND COUNCIL OF THE CITY OF (NAME), STATE OF (NAME), as follows:
Section 1. Definition. Source Water Protection Area means the surface and subsurface area surrounding a water well or well field supplying a public water system through which contaminants are reasonably likely to move toward and reach such water or well field.
 Section 2. The City of (Name) designates a Wellhead Protection Area for the purpose of protection of the public water supply system. The boundaries of the source Water Protection Area are delineated based upon a map propared by the (Name) presented to the Citr of (Name) on (Date), which is on file at the office of the (Name) City/County Clerk and is available for public inspection. Section 3. Any other Ordinance or section passed and approved prior to the passage, approval, and publication of this Ordinance and in conflict the evilation is shoreby repealed. Section 4. This Ordinance shall take effect and be in full force from and after its passage, approval, approval, and publication as required by law. PASSEDAND APPROVED THIS (Date)
Mayor
ATTEST:

City Clerk

(SEAL)


By completing the following exercise many of the tasks and goals of the source water protection planning team (team) should become more apparent.

For the exercise imagine that, as the "Pumping Well (center/left in the graphic) pumps, contaminants are pulled toward the wellhead and eventually may enter the drinking water system. The team should complete the following: 1) Delineate the source water area as it may extend outward from the wellhead, 2) Identify actual (these are not pictured in the illustration) and potential sources of contamination and their potential impacts to your source water, 3) Identify management measures/tools that may be implemented to protect the water source, 4) Identify potential barriers (physical /economic /political) to implementing the measures, and 5) Identify solutions to the potential barriers.

[As an example, imagine the following: The Plastic Manufacturing Plant (plant) is within 1,00 feet of the pumping well. Although no actual contaminants have been detected in your utilities drinking water samples, potential contaminants from the plant include solvents, oils, organic/inorganic chemicals, acids, and bases, which are considered significant sources of contamination. The plant may or may not be adequately designed to prevent releases of theses chemicals into the environment/groundwater.

The team might begin by 1) notifying officials at the plant that the plant is located within a planned source water protection area, 2) Make arrangements with the officials to gather information, discuss concerns, 3) Seek information regarding potential protection measures, and 4) Develop management measures (i.e., BMPs) that may help prevent potential releases. The team should work with the plant officials to document any management measures implemented, select a time for updating the measure(s), properly inform the public of the **proactive** protective measure taken by the plant (any responses from the public should be reviewed and considered), enter the management measure in the Source Water Protection Plan].

Source Water Protection Planning Exercise

This Protection Plan Template lists the necessary elements of a Source Water Protection plan. You may complete this template and return it to NMED-DWB or create a template of your own design.

Source Water Protection Plan of the Water System Public Water System # Date:

Your Water Utility Logo, Picture, or Graphic Here!

Prepared by Water Utility L The New Mexico Environment Department Drinking Water Bureau Funded under the Federal Safe Drinking Water Amendments of 1996 The Water Utility Address Utility Administrator and Operator Contact Information Number of Water Supply Sources (#) Current Date Scheduled Update by (Date)

On (Date) a *Source Water Assessment and Protection Plan* (SWAPP) was adopted by the water utility. The SWAPP complies with the requirements for source water protection defined under the *Safe Drinking Water Act Amendments of 1996*. In recognition for its contribution toward preventing adverse effects to human health and the environment, and for protection of the environmental integrity of the State of New Mexico's ground water resources, the executive branch agency presents the (NAME) Utility with the attached (Certificate/Letter of Commendation).

SOURCE WATER PROTECTION PLAN OF THE WATER UTILITY

(The following information is required for NMED-DWB to approve your protection plan. Once a draft protection plan is prepared, and before public review, your utility must submit the plan to NMED-DWB for review and approval)¹⁵

<u>STEP 1</u>

- 1) List the names of the Community Planning team.
- 2) List the name(s) and provide signature(s) of the governing entity.
- 3) Describe the public's involvement/participation in the development and implementation of the Source Water Protection Plan. Attach copies of all relevant public notice(s).
- 4) Describe how the public will continue to participate in and/or be informed of Source Water Protection Plan issues (one example is to petition to have your Source Water Protection Plan on a weekly or monthly agenda, such as your town or city council meeting).

<u>STEP 2</u>

- 5) Describe the water supply system.
- 6) Describe the hydrogeology of the area.
- 7) Describe how the source water protection area(s) were determined (your answer may include topographic maps, ArcView Geographical Information Systems, Wellhead Analytical Element Model, Modflow, *etc*). Attach a copy of all source water maps (see example, Appendix A). *NMED-DWB has inserted the Source Area Delineation Maps for your water utility. You may use these maps to satisfy this required element, or develop your own approach.*

¹⁵ Please allow 45 days for the NMED-DWB approval process, once you have completed and submitted a SWAPP for review.

Show and/or describe any potential changes to the source water protection area that might be considered. For instance, one might extend a boundary determined in the initial delineation in order to incorporate a particular parcel of land or existing or planned zoning area.

<u>STEP 3</u>

8) List the actual and potential sources of contamination identified during the inventory, identify the distances and/or zones of influence where they are located, and provide the date(s) the inventory was conducted (see example, Appendix B). NMED-DWB has inserted the Inventory of Actual and Potential Sources of Contamination for your water utility. You may use this inventory to satisfy this required element, or you may wish to customize the inventory.

<u>STEP 4</u>

10) NMED-DWB has inserted a susceptibility analysis of your water utility, according to the U.S. EPA approved susceptibility guidelines under SWAPP, 2000.

<u>STEP 5</u>

- 11) List the existing and proposed land use of the delineated source area(s) such as recreation, agriculture, forestry, commercial, and residential. If applicable, this should include current and proposed zoning.
- 12) Provide a management strategy (measures/tools) and schedule for *each* actual and/or potential contaminate (noted in the *Inventory of Actual and Potential Sources of Contamination*). Although there may be a time-delay in the implementing specific management strategies, priority should be given to water sources identified as having the greatest susceptibility to contamination. Your water utility is not required to develop a susceptibility analysis, and, NMED-DWB has completed and inserted an analysis for purposes of prioritizing protection planning, refer to Step 4, # 10).

In addition, state if, when, and how the management strategies will be updated (see example, Appendix D).

<u>STEP 6</u>

13) Develop a *contingency protocol and schedule* that addresses potential future events that may adversely impact your water supply system such as water outages, accidental leaks and/or spills, water conservation, and land acquisition for new sources of water supply. You should include when and how the plan will be updated (see example, Appendix E).

Refer to Appendix K for 3 -Letter PSOC Codes

Map Code	Land Use	Description	Contaminants of Concern*		
AGRICULTUR	AGRICULTURAL LAND USE				
AAP	Animal Processing or Rendering Plants	Commercial Operations/Waste Storage/Disposal Facility	Nitrates, Pathogens, Organic/Inorganic Chemicals		
ACS	Farm/Ranch Agrochemical Storage Facilities or Sites	Farm/Ranch Storage Site	Pesticides, Herbicides, Fertilizers		
ADC	Drainage Canals, Ditches or Acequias-Unlined, Wells (Private, Stock wells, and Irrigation)	Runoff and Infiltration	Pesticides, Herbicides, Fertilizers, Nitrate, Pathogens		
ADF	Livestock Production-Dairies	Livestock Wastes, Runoff and Infiltration	Nitrate, Phosphate, Chloride, Pathogens, Pharmaceuticals		
AFI	Farming-Irrigated Croplands	Runoff and Infiltration	Nitrate, Ammonia, Chloride, Fertilizers, Pesticides, Herbicides		
AFL	Confined Animal Feeding Operations	Runoff and Infiltration of Livestock Wastes	Nitrate, Phosphate, Chloride, Pathogens, Pharmaceuticals		
AFM	Farm Machinery Storage or Maintenance Areas	Farm Machinery Maintenance Areas	Automotive Wastes, Welding Wastes, Fuels, Oils, Lubricants		
AFN	Farming-Non-irrigated Croplands	Runoff and Infiltration Operations	Nitrate, Ammonia, Chloride, Fertilizers, Pesticides, Herbicides		
АНС	Horticultural/Gardens/Nurseries/Greenhouses	Operations/Storage	Pesticides, Herbicides, Fertilizers		
AHF	Hay/Feed and Veterinary Product Storage Sites	Farm/Ranch Storage Site	Fungicides, Pesticides, Nitrates, Pharmaceuticals		
AMA	Manure or Livestock Waste-Land Application Areas	Land Application of Manure	Nitrate, Ammonia, Phosphate, Chloride, Pathogens, Pharmaceuticals		
AMS	Manure or Livestock Waste-Storage Facilities or Sites	Lined and Unlined Manure Storage Facilities	Nitrate, Ammonia, Phosphate, Chloride, Pathogens, Pharmaceuticals		
AOA	Livestock Production-Other Animal	Livestock Wastes	Nitrate, Ammonia, Phosphate, Chloride, Pathogens, Pharmaceuticals		
APF	Livestock Production -Poultry	Poultry Sewage Wastes	Nitrate, Ammonia, Phosphate, Chloride, Pathogens, Pharmaceuticals		
APP	Processing Plants or Mills- Hay, Grain, or Produce	Operations, Waste Storage and Disposal	Organic/Inorganic Chemicals, Lubricants, Machinery Wastes		
ARL	Animal Rangeland	Rangeland and Pasturage	Nitrate, Ammonia, Phosphate, Chloride, Pesticides, Pathogens		
ASC	Bulk Agrochemical Storage-Petroleum/Chemicals	Storage-500 gallons or more	Petroleum Products, Inorganic/Organic Chemicals		
ASF	Bulk Agrochemical Storage-Fertilizers	Feed Mill, Agricultural Co-op	Fertilizers		
ASG	Bulk Agricultural Product Storage-Grain or Produce	Grain Elevator, Warehouse or Storage Site	Fungicides, Oils, Lubricants, Machinery Wastes		

Map Code	Land Use	Description	Contaminants of Concern*
ASH	Livestock Production -Sheep	Livestock Sewage Wastes	Nitrate, Ammonia, Phosphate, Chloride, Pathogens, Pharmaceuticals
ASP	Bulk Agrochemical Storage-Pesticides	Feed Mill, Agricultural Co-op	Pesticides
ASW	Livestock Production -Swine	Livestock Sewage Wastes	Nitrate, Ammonia, Phosphate, Chloride, Pathogens, Pharmaceuticals
COMMERCIAL	. LAND USE		
CAI	Airports (Active/Inactive)	Operations/Maintenance/Construction	Aircraft Fuels, Deicers, Batteries, Diesel Fuel, Chlorinated Solvents, Automobile Wastes, Heating Oil, Building Wastes, Sewage, Septage, Pathogens, Pesticides, Fertilizers
CAR	Automotive Repair Shops	Operations/Maintenance/Storage	Solvents, Metals, Automotive Waste, Oils, Gasoline
CAW	Abandoned/Improperly Closed Wells	Storage/Disposal	Organic/Inorganic Chemicals, Brines, Waste Oil, Treated Sewage Effluent, Storm Water Runoff, Process Waste Water, Metals, Pathogens, Nitrate
CBS	Automotive Body Shops	Operations/Maintenance	Paints, Solvents
СВҮ	Boat Yards/Marinas	Operations/Maintenance	Gasoline, Diesel Fuels, Septage, Wood Treatment Chemicals, Paints, Varnishes, Automotive Wastes, Solvents, Building Wastes
CCG	Camp Grounds - Unsewered	Untreated Domestic Wastewater	Septage, Gasoline, Pesticides, Organic/Inorganic Chemicals
CCE	Cemeteries	Operations/Maintenance	Leachate, Arsenic, Pesticides, Fertilizers
CCW	Car Washes	Unsewered, Without Total Recycling System	Soaps, Detergents, Waxes, Organic/Inorganic Chemicals
ССҮ	Construction/Demolition Yard/Staging Areas	Storage/Maintenance	Gasoline, Diesel Fuels, Wood Treatment Chemicals, Paints, Varnishes, Automotive Wastes, Solvents, Building Wastes, Explosives, Oil
CDC	Dry Cleaning Shops	Operations/Maintenance	Chlorinated Solvents, Organic/Inorganic Chemicals
CFA	Fuel Storage Tanks-Above Ground	Non-Service Station Tanks	Gasoline, Diesel Fuel, Organic/Inorganic Chemicals
CFB	Fuel Storage Tanks-Below Ground	Non-Service Station Tanks	Gasoline, Diesel Fuel, Organic/Inorganic Chemicals
CFC	Funeral Homes/Crematories	Operations	Biohazard Waste, Organic/Inorganic Chemicals, Septage
CFR	Furniture Repair/Refinishing	Operations	Paints, Solvents, Organic Chemicals
CGC	Golf Courses	Operations/Maintenance	Fertilizers, Pesticides, Gasoline, Automotive Wastes, Batteries, Septage
CHG	Historic Gasoline Service Stations	Above/Below Ground Storage Tanks/Operations	Gasoline, Oils, Solvents, Automotive Wastes, Septage

Map Code	Land Use	Description	Contaminants of Concern*
СНМ	Home Manufacturing	Operations/Maintenance/Storage	Paints, Solvents, Organic/Inorganic Chemicals
CHN	Hospitals/Nursing Homes - Unsewered	Wastewater Discharge to Septic Tank/Leach Field	Biohazard Waste, Organic/Inorganic Chemicals, Septage, Radiological Waste
CHW	Hardware/Lumber/Parts Stores	Operations/Storage	Pesticides, Fertilizers, Organic/Inorganic Chemicals
CLD	Laundromats - Unsewered	Wastewater Discharge	Detergents, Soaps, Septage
СРР	Photo Processing Laboratories	Operations/Storage	Organic/Inorganic Chemicals
CPR	Printing Shops	Operations/Storage	Solvents, Inks, Dyes, Organic/Inorganic Chemicals
CPS	Paint Stores	Storage	Paint, Solvents
CRL	Research Laboratories	Operations/Maintenance/Storage	Biohazard Waste, Radiological Materials and Waste, Metals, Organic/Inorganic Chemicals
CRY	Railroad Yards and Tracks	Operations/Maintenance/Storage	Diesel Fuel, Pesticides, Organic/Inorganic Chemicals
CSS	Gasoline Service Stations	Above/Below Ground Storage Tanks/Operations	Gasoline, Oils, Solvents, Automotive Wastes, Septage
CST	Commercial Septic Tanks/Leachfields/Leachpits/Cesspools	Storage/Disposal	Septage, Septic Effluent, Pathogens, Nitrate, Ammonia, Chloride
CVS	Veterinary Facilities	Operations/Maintenance	Biohazard Waste, Organic/Inorganic Chemicals, Septage, Radiological Waste
INDUSTRIAL LAN	ND USE Asphalt Plants	Production/Storage	Petroleum Derivatives
ICC	Cement/Concrete Plants	Operations/Maintenance/Storage	Organic/Inorganic Chemicals, Oils, Natural Gas, Propane,
ICE	Communications Equipment Manufacturers	Production/Maintenance/Storage	Solvents, Organic/Inorganic Chemicals, Oils, Waste Oils, Metals
ICL	Chemical Landfills	Storage/Disposal	Leachate of Organic/Inorganic Chemicals, Acids, Bases, Metals, Solvents, Gasoline, Diesel Fuel, Pesticides, PCB's
ICP	Chemical Production Plants	Production/Maintenance/Storage	Organic/Inorganic Chemicals, Solvents, Oils, Metals
IEE	Electronic/Electrical Equipment Manufacturers	Production/Maintenance/Storage	Solvents, Organic/Inorganic Chemicals, Oils, Waste Oils, Metals, Acids, Bases
IFM	Furniture and Fixture Manufacturers	Production/Maintenance/Storage	Paints, Solvents, Organic/Inorganic Chemicals

Map Code	Land Use	Description	Contaminants of Concern*
IFW	Foundry/Smelting Plants	Production/Maintenance/Storage	Organic/Inorganic Chemicals, Metals, Solvents, Acids, Bases, Oils
IGO	Gas/Oil Wells-Active/Abandoned/Test, Wells Geothermal and Industrial	Production	Oil, Natural Gas, Organic/Inorganic Chemicals, Acids, Bases, Drilling Wastes
IHD	Historic Dumps/Landfills	Storage/Disposal	Leachate of Organic/Inorganic Chemicals, Acids, Bases, Metals, Solvents, Gasoline, Diesel Fuel, Pesticides, PCB's, Automotive Wastes
IHM	Historic Mining Operations	Production Waste/Storage	Metals, Inorganic Chemicals, Acids, Bases, Radiological Materials
IMI	Primary Metal Industries	Steel/Metal Works, Rolling/Wire Mills	Metals, Inorganic Chemicals, Acids, Bases
IMO	Mining Operations (Surface And Subsurface)	Production Waste/Storage	Metals, Inorganic Chemicals, Acids, Bases, Radiological Materials
IMP	Metal Plating/Processing Facilities	Operations/Maintenance/Storage	Organic/Inorganic Chemicals, Acids, Bases, Metals
IMW	Machine/Metal Working Shops	Operations/Maintenance/Storage	Cutting Oils, Metals, Solvents, Organic/Inorganic Chemicals, Detergents
IOG	Oil/Gas Pipelines	Transport	Oils, Gasoline, Volatile Organic Chemicals, Natural Gas, Propane
IPL	Plastics Manufacturing/Molder	Operations/Maintenance/Storage	Solvents, Oils, Organic/Inorganic Chemicals, Acids, Bases
IPM	Paper Mills	Operations/Maintenance/Storage	Acids, Metals, Organic/Inorganic Chemicals
IPP	Petroleum Production/Refining/ Bulk Plants	Operations/Maintenance/Storage	Oils, Gasoline, Diesel Fuels, Organic Chemicals, Oil Drilling/Refining Wastes
IPU	Public Utilities	Power Generating Stations	PCB's, Solvents, Diesel Fuel, Propane, Natural Gas, Oil, Acids, Bases, Organic/Inorganic Chemicals, Metals
IRG	RCRA Waste Generators - Other	Storage/Disposal	Organic/Inorganic Chemicals, Solvents, Metals, PCB's, Acids, Bases, Radiological Materials
IRW	Radioactive Waste Disposal Sites	Storage/Disposal	High and Low Level Radiological Wastes
ISD	Sumps/Dry Wells	Storage/Disposal	Storm Water Runoff, Organic/Inorganic Chemicals, Solvents, Process Wastewater, Pesticides, Oils
ISF	Superfund Sites	Storage/Disposal	Organic/Inorganic Chemicals, Solvents, Metals, PCB's, Acids, Bases, Radiological Materials
ISM	Primary Wood Industries	Saw Mills, Planers, Wood Treatment	Organic/Inorganic Chemicals, Metals, Solvents
IST	Stone, Tile, Glass Manufacturing	Operations/Maintenance/Storage	Solvents, Oils, Metals, Organic/Inorganic Chemicals
ITS	Treatment/Storage/Disposal Ponds/Lagoons	Treatment/Storage	Organic/Inorganic Chemicals, Metals, Acids, Bases, Sewage

Map Code	Land Use	Description	Contaminants of Concern*
ITT	Transport/Distribution, Warehouses, Truck Terminals	Operations/Maintenance/Storage	Gasoline, Diesel Fuels, Automotive Wastes, Metals, Organic/Inorganic Chemicals, Acids, Bases
IUD	Unregulated Dumps/Excavated Sites, Snow Dumps	Storage/Collection/Disposal	Organic/Inorganic Chemicals, Automotive Wastes, Oil, Gasoline, Runoff from Adjacent Sites
IUI	Underground Injection (UIC) Wells	Storage/Disposal	Organic/Inorganic Chemicals, Brines, Waste Oil, Treated Sewage Effluent, Storm Water Runoff, Process Wastewater, Metals, Pathogens, Nitrate
IUR	Utility/Transportation Right of Ways, major transportation corridor	Power Lines, Gas/Oil Pipelines	Pesticides, Gasoline, Diesel Fuels, Automotive Wastes, Organic/Inorganic Chemicals, PCB's, Sewage, Metals, Storm water Runoff, Pathogens
MUNICIPAL/RI	ESIDENTIAL LAND USE		
МНМ	Highway/Road Maintenance Yards	Operations/Maintenance/Storage	Gasoline, Diesel Fuels, Solvents, Road Salt, Asphalt, Pesticides, Automotive Wastes,
MHR	Highway Rest Areas	Operations/Maintenance/Storage/Disposal	Automotive Wastes, Septage, Gasoline, Diesel Fuels, Pesticides
MIN	Incinerators - Commercial or Municipal	Operations/Disposal	Metals, Organic/Inorganic Chemicals
MLF	Municipal Waste Landfills	Storage/Disposal	Leachate, Organic/Inorganic Chemicals, Pesticides, Metals, Oils
MMF	Military Facilities	Operations/Maintenance/Storage/Disposal	Gasoline, Aircraft Fuels, Diesel Fuels, Automotive Wastes, Metals, Organic/Inorganic Chemicals, Explosives, Radiological Materials, Pesticides, Sewage/Septage, Oils, Solvents, Fertilizers, Batteries, Deicers
MMP	Motor Pools	Operations/Maintenance/Storage/Disposal	Gasoline, Diesel Fuel, Oils, Waste Oils, Automotive Waste, Batteries, Metals
MPS	Sewage Pump Stations	Operations/Storage	Sewage, Pathogens, Nitrate, Metals, Organic/Inorganic Chemicals
MPW	Polluted Surface Water Sources	Naturally Occurring/Anthropogenic	Sewage, Pathogens, Nitrate, Metals, Acids, Bases, Organic/Inorganic Chemicals
MRF	Recycling Facilities	Operations/Storage/Disposal	Metals, Organic/Inorganic Chemicals, Pesticides, Automotive Wastes, Oils
MSC	Schools – Unsewered	Wastewater Discharge to Septic Tank/Leach Field	Septage, Septic Effluent, Pathogens, Nitrate, Ammonia, Chloride
MSD	Storm Drainage Collection Areas or Outlets- Unlined	Storage/Disposal	Runoff, Pesticides, Fertilizer, Pathogens, Nitrate, Phosphate, Oil
MSL	Sewer Lines	Transport	Sewage, Pathogens, Nitrate, Metals, Organic/Inorganic Chemicals
MSP	Wastewater Seepage/Retention Ponds (Unlined/Lined)	Storage/Disposal	Sewage Effluent, Nitrate, Ammonia, Pathogens, Organic/Inorganic Chemicals, Pesticides
MSS	Sewage Effluent/Sludge Land Application Areas	Storage/Disposal	Sewage/Sewage Sludge, Nitrate, Pathogens, Organic/Inorganic Chemicals, Metals
MST	Sewage Treatment Plants	Operations/Maintenance/Storage/Disposal	Sewage, Sewage Sludge, Metals, Pathogens, Organic/Inorganic Chemicals

Map Code	Land Use	Description	Contaminants of Concern*	
MSW	Solid Waste Transfer Stations	Storage/Disposal	Metals, Organic/Inorganic Chemicals, Pesticides, Automotive Wastes, Oils	
MWP	Water Treatment Plants and Water Supply Wells	Operations/Maintenance/Storage/Disposal	Organic/Inorganic Chemicals, Chlorine	
RSF	RSF Single Family Residences - Unsewered Wastewater Discharge to Septic Tank/Leach Field or Cesspool Septage, Pathogens, Nitrate, Ammonia, Chloride, Heavy Metals, Househor Pesticides, Herbicides, Cleaning Agents and Solvents, Fuels			
* Contaminants of Concern include substances that are commonly, but not always, associated with the Contaminant Source listed in column 2				

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
VOLATILE ORGANIC CHEMICALS			x.
Benzene	0.005	AAP, APP, CAI, CAR, CBS, CBY, CCY, CDC, CHW, CHM, CHN, CSY, CPP, CPR, CPS, CRL, CRY, CUS, CVS, ICC, ICE, ICL, ICP, IEE, IFW, IFM, IHD, ILS, IMI, IMW, IMP, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, IST, ITS, ITT, IUD, IUI, IUR, MMF, MMP, MSW	Anemia; decrease in blood platelets; nervous system disorders; immune system depression; increased risk of cancer
Carbon Tetrachloride	0.005	AAP, APP, CAI, CDC, CHM, CHN, CHW, CPP, CPR, CRL, CUS, CVS, ICE, ICL, ICP, IEE, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, IST, ITS, ITT+, IUD, MLF, MMF, MMP, MSC, MSW	Liver problems; kidney, lung damage; increased risk of cancer
Ortho-Dichlorobenzene	0.6	CAR, CBS, CBY, CCY, CDC, CFR, CHM, CHW, CPP, CPR, CPS, CRL, CRY, CUS, ICE, ICP, ICL, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, IST, ITS, ITT, IUD, MHM, MMF, MMP, MSC	Liver, kidney, nervous system or circulatory problems
Para-Dichlorobenzene	0.075	ACS, AFI, AFN, AHC, AHF, ASC, ASP, CAR, CDC, CPP, CHW, CPP, CPR, CPS, CRL, CRY, CUS, ICL, ICP, ILS, IMP, IMW, IPL, IPP, IPU, IRG, ISF, ITS, ITT, MMF, MMP, MSC	Eye, respiratory, gastrointestinal tract irritation; anemia; skin lesions; liver, kidney, spleen damage; blood changes
1, 2-Dichloroethane	0.005	ACS, AFI, AFN, AHC, AHF, ASC, ASG, ASP, CFR, CHN, CPP, CPR, CRL, CUS, CVS, ICL, ICP, IEE, IFM, ILS, ITT, IMW, IPL, IPP, IRG, ISD, ISF, IUD, MMF, MSC	Nervous system disorders; lung, kidney, liver, circulatory, gastrointestinal effects; increased risk of cancer
1,1-Dichloroethene	0.007	CPP, CPR, CRL, CUS, ICP, ICL, IHD, ILS, IMW, IPL, IPM, IPU, IRG, ISD, ISF, ISM, ITS, ITT, IUD, MSC	Liver, kidney damage; increased risk of cancer; fetal toxicity
Cis-1, 2-Dichloroethene	0.07	AAP, CAI, CAR, CBS, CCY, CFR, CHG, CHM, CPP, CPR, CPS, CRL, CRY, CSS, CSY, ICP, ICL, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, ITS, ITT, IUD, IUI, MMF, MMP, MSP, MST	Nervous system disorders; liver, circulatory system damage
Trans-1, 2-Dichloroethene	0.1	AAP, CAI, CAR, CBS, CCY, CFR, CHG, CHM, CPP, CPR, CPS, CRL, CRY, CSS, CSY, IEE, IFM, ICP, ICL, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, ITS, ITT, IUD, IUI, MMF, MMP, MSP, MST	Nervous system disorders; liver, circulatory system damage
Dichloromethane	0.005	AAP, APP, ACS, AFI, AFN, AHC, AHF, ASC, ASG, ASP, CAI, CAR, CBS, CBY, CCE, CCY, CFC, CFR, CHN, CHW, CHM, CPP, CPR, CPS, CRY, CRL, CSS, CUS, CVS, ICC, ICE, ICP, ICL, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, IST, ITS, ITT, IUD, MHM, MMF, MMP, MSC, MSP, MSW	Nervous system, liver, blood damage; increased risk of cancer

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
1,2-Dichloropropane	0.1	ACS, AFI, AFN, AHC, AHF, ASC, ASG, ASP, CAW, CPP, CPR, CRL, CUS, ICL, ICP, IHD, ILS, IPM, IPP, IRG, ISD, ISF, ISM, ITT, IUD, IUI, MLF, MSP	Liver, kidney, adrenal glands, bladder, gastrointestinal tract, respiratory tract damage; increased risk of cancer
Ethylbenzene	0.1	CAI, CFR, CHM, CRL, CUS, ICC, ICP, ICL, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IRG, ISD, ISF, ISM, ITS, ITT, IUD, IUI, MSC, MSP	Eye, liver, kidney, central nervous system damage; respiratory irritation
Chlorobenzene	0.005	CAR, CBS, CDC, CHW, CHM, CPP, CPR, CRL, CUS, ICP, ICL, IEE, IHD, ILS, IMI, IMP, IMW, IPL, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, MMF, MSC, MSP	Liver, kidney, central nervous system damage
Styrene	1	CHM, CPP, CPR, CRL, CUS, ICC, ICP, ICL, IEE, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IRG, ISD, ISF, ISM, ITS, ITT, IUD, IUI, MSP	Liver, kidney, circulatory problems; nerve damage; increased risk of cancer
Tetrachloroethene	0.005	AAP, APP, CAI, CAR, CBS, CCY, CDC, CHM, CHN, CHW, CPP, CPR, CRL, CRY, CSS, CSY, CUS, CVS, ICC, ICL, ICP, IEE, IHD, ILS, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, ITS, ITT, IUD, IUI, MMF, MMP, MSC, MSP, MWP	Liver, kidney, circulatory problems; nerve damage; increased risk of cancer
Toluene	1	AAP, APP, CFR, CHW, CHM, CHN, CPP, CPR, CRL, CUS, CVS, ICC, ICP, ICL, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, ITS, ITT, IUD, MMF, MSC, MSP, MWP	Nervous system, liver, kidney damage
1,2,4-Trichlorobenzene	0.07	CRL, CUS, ICL, ICP, IHD, ILS, IPM, IPP, IRG, ISD, ISF, ISM, ITS, IUD	Liver, kidney, adrenal gland changes
1,1,1-Trichloroethane	0.2	AAP, APP, CAR, CAI, CBS, CBY, CCY, CDC, CFR, CHM, CHN, CHW, CPP, CPR, CRL, CUS, CVS, ICP, ICL, IEE, IFM, IHD, IHM, ILS, IMI, IMO, IMP, IMW, IPM, IPP, IRG, ISD, ISF, ISM, ITS, ITT, IUD, MHM, MMF, MMP, MSC, MSP, MWP	Liver, nervous system, circulatory problems
1,1,2-Trichloroethane	0.005	AAP, CDC, CPP, CPR, CRL, CUS, ICP, ICL, IEE, IFW, IHD, ILS, IMI, IMP, IMW, IPL, IPP, IRG, ISD, ISF, ITS, IUD, MSP	Liver, kidney, gastrointestinal tract, immune system problems; lung damage; increased risk of cancer
Trichloroethene	0.005	AAP, AFM, APP, CAI, CAR, CBS, CBY, CFR, CHG, CHM, CHW, CPP, CPR, CRL, CRY, CSY, CUS, ICE, ICL, ICP, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, ITS, ITT, IUD, IUI, MHM, MMF, MMP, MSC, MSP	Liver damage; increased risk of cancer

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
Vinyl Chloride	0.002	CRL, ICP, ICL, IEE, IHD, IMI, IMP, IMW, IPL, IPP, IRG, ISF, IST, ITT, IUD,	Liver, nervous system damage; increased risk of cancer
Xylenes (Total)	10	AAP, APP, ASC, CAI, CAR, CBS, CBY, CCY, CFR, CHM, CHN, CHW, CPP, CPR, CPS, CRL, CUS, CVS, IAS, ICC, ICL, ICP, IEE, IFM, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, IST, ITT, IUD, MHM, MMF, MSC, MSP	Central nervous system, liver, kidney damage
SYNTHETIC ORGANIC CHEMICALS: P	ESTICIDES	к	
Alachlor	0.002	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CCE, CCG, CGC, CHW, CRL, CRY, CUS, ICL, ICP, IHD, ILS, IPP, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHM, MHR, MMF, MPR, MSC, MSD, MSP	Eye, skin irritation; liver, kidney, spleen, nose, eye damage; increased risk of cancer
Aldicarb	0.003	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAW, CGC, CHW, CRL, CUS, ICL, ICP, IHD, ILS, IPP, IRG, ISD, ISF, ITS, ITT, IUD, MPR, MPW, MSC, MSP	Gastrointestinal, central nervous system, eye problems
Aldicarb Sulfone	0.003	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAW, CGC, CHW, CRL, CUS, ICL, ICP, IHD, ILS, IPP, IRG, ISD, ISF, ITS, ITT, IUD, MPR, MPW, MSC, MSP	Gastrointestinal, central nervous system, eye problems
Aldicarb Sulfoxide	0.003	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAW, CGC, CHW, CRL, CUS, ICL, ICP, IHD, ILS, IPP, IRG, ISD, ISF, ITS, ITT, IUD, MPR, MPW, MSC, MSP	Gastrointestinal, central nervous system, eye problems
Atrazine	0.003	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CAI, CAW, CCG, CCE, CFC, CGC, CHW, CRL, CRY, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHD, MHM, MLF, MMF, MPR, MPW, MSC, MSD, MSP, RMS	Cardiovascular system, kidney, adrenal gland damage; increased risk of cancer
Carbofuran	0.04	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAI, CAW, CCE, CCG, CGC, CHW, CPL, CRL, CST, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHR, MLF, MMF, MPR, MSC, MSD, MSP, RMS	Central nervous system, reproductive system damage
Chlordane	0.002	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAI, CAW, CBY, CCY, CRL, CST, CUS, ICP, ICL, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUR, MHM, MLF, MMF, MPR, MRF, MSC, MSD, MSP, RMS	Central nervous system, blood disorders; liver, kidney, heart, lung, spleen, adrenal gland damage; increased risk of cancer

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
2, 4-Dichlorophenoxyacetic acid (2,4-D)	0.07	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CAI, CAW, CCE, CCG, CCY, CGC, CHW, CRL, CRY, CST, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUR, MHM, MHR, MLF, MMF, MPR, MPW, MSC, MSD, MSP	Nervous system, kidney, liver damage
Dalapon	0.2	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CAI, CAW, CCE, CCG, CCY, CGC, CHW, CRL, CRY, CSY, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHD, MHM, MHR, MLF, MMF, MPR, MPW, MSC, MSD, MSP, RMS	Kidney changes
Dibromochloropropane	0.0002	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAI, CAW, CCE, CGC, CHW, CRL, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUR, MHM, MMF, MSC, MSD, MSP	Kidney, liver, reproductive system damage; increased risk of cancer
Dinoseb	0.007	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CHW, CRL, ICL, ICP, IHD, IRG, ISD, ISF, ITT, IUD	Reproductive system problems
Diquat	0.02	ACS, ADC, AFI, AFN, AHC, AHF, ARL, ASC, ASG, ASP, CAW, CGC, CRL, CUS, ICL, ICP, IHD, ILS, IPP, IPU, ISD, ISF, ITS, ITT, IUD, IUR, MHM, MMF, MPW, MSD, MSP	Cataracts
Endothall	0.1	ACS, ADC, AFI, AFN, AHC, AHF, ARL, ASC, ASG, ASP, CAI, CAW, CBY, CCE, CCG, CCY, CGC, CHW, CPL, CRL, CRY, CST, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUR, MHM, MHR, MLF, MMF, MPR, MPW, MSC, MSD, MSP	Stomach, intestinal problems
Endrin	0.002	ACS, ADC, AFI, AFN, AHC, AHF, ARL, ASC, ASG, ASP, CAW, CRL, CRV, CRY, CST, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUR, MHM, MMF	Central nervous system problems; liver damage
Ethylene Dibromide (EDB)	0.00005	ACS, ADC, AHC, APP, ASC, ASG, ASP, CAI, CAW, CFR, CHW, CPP, CPR, CPS, CRL, CUS, ICL, ICP, IFM, IHD, ILS, IPL, IPP, IRG, ISD, ISF, ITS, ITT, IUD, MMF, MSP	Liver, stomach, adrenal gland, reproductive system, respiratory, nervous system, heart, kidney damage; increased risk of cancer
Glyphosate	0.7	ACS, ADC, AFI, AFN, AHC, AHF, AHF, ARL, ASC, ASP, CAI, CAW, CCE, CCG, CCY, CGC, CHW, CPL, CRL, CRY, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, IUD, IUI, IUR, MHM, MHR, MLF, MMF, MPR, MPW, MSC, MSD, MSP, RMS	Respiratory problems; kidney, reproductive system damage
Heptachlor	0.0004	CAI, CCY, CGC, CPL, CRL, CRV, CRY, ICE, ICL, ICP, IHD, IPP, IPU, ISF, ITT, IUD, IUR, MHM, MMF, MSC	Central nervous system, liver damage; increased risk of cancer

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
Heptachlor Epoxide	0.0002	CAI, CCY, CGC, CPL, CRL, CRV, CRY, ICE, ICL, ICP, IHD, IPP, IPU, ISF, ITT, IUD, IUR, MHM, MMF, MSC	Central nervous system, liver damage; increased risk of cancer
Hexachlorobenzene	0.001	ACS, ADC, ASC, ASG, ASP, CPP, CPR, CRL, CUS, ICL, ICP, IHD, ILS, IMW, IPL, IPP, IRG, ISF, ITS, ITT, IUD, MMF	Skin lesions; nerve, liver, kidney damage; reproductive system problems; endocrine gland tumors; increased risk of cancer
Hexachlorocylopentadiene	0.05	CRL, CUS, ICL, ICP, IHD, ILS, IPL, IPP, IRG, ISF, ITS, ITT, IUD	Gastrointestinal problems; liver, kidney, heart damage
Lindane	0.0002	ACS, ADC, ADF, AFI, AFL, AFN, AHC, ARL, ASC, ASP, CCY, CHW, CPP, CPR, CRL, CVS, ICL, ICP, IHD, IPM, IPP, IRG, ISF, ISM, ITS, ITT, IUD, MHM, MMF, MSC, MSP	Liver, kidney damage; pulmonary problems
Methoxychlor	0.04	ACS, ADC, ADF, AFI, AFL, AFN, AHC, AHF, ASC, ASG, ASH, ASP, ASW, CBY, CCG, CGC, CHW, CRL, CUS, ICL, ICP, IHD, ILS, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUR, MHD, MHR, MMF, MPR, MSC, MSD	Central nervous system, gastrointestinal tract problems; liver, kidney, heart damage
Oxamyl (Vydate)	0.2	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CAW, CCE, CGC, CHW, CRL, ICL, ICP, IHD, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHM, MLF, MMF, MSC, MSP	Central nervous system problems
Pentachlorophenol	0.001	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CBY, CCY, CFR, CHW, CRL, CRY, ICL, ICP, IFM, IHD, IPM, IPP, IPU, IRG, ISF, ISM, ITT, IUD, MHM, MLF, MMF	Central nervous system damage, liver, kidney, reproductive system damage; increased risk of cancer
Picloram	0.5	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CAI, CAW, CCE, CCG, CCY, CGC, CHW, CPL, CRL, CRY, ICL, ICP, IHD, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHD, MHM, MHR, MLF, MMF, MPR, MSC, MSD, MSP, RMS	Central nervous system, liver damage
Simazine	0.004	ACS, ADC, AFI, AFN, AHC, ARL, ASC, ASP, CAI, CAW, CBY, CCG, CCE, CCY, CGC, CHW, CPL, CRL, CRY, CSY, ICL, ICP, IHD, IPP, IPU, IRG, ISD, ISF, ITS, ITT, IUD, IUI, IUR, MHD, MHM, MHR, MLF, MMF, MPR, MPW, MSC, MSD, MSP	Reproductive system, blood, kidney, liver, thyroid damage; gene mutation; increased risk of cancer
2,3,7,8-TCDD (Dioxin)	3x10-8	CAI, CRL, ICL, ICP, IEE, IHD, IPP, IPU, ISF, IUD, IUR, MIN, MMF, MSW	Reproductive system problems; birth defects; increased risk of cancer

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
Toxaphene	0.003	ACS, ADC, AFI, AFL, AFN, APF, ARL, ASC, ASP, CRL, ICL, ICP, IHD, IPP, ISF, IUD	Central nervous system, thyroid problems; liver, kidney degeneration; increased risk of cancer
2,4,5-TP (Silvex)	0.05	ACS, ADC, ARL, ASC, ASP, CBY, CCE, CGC, CRL, CRY, ICL, ICP, IHD, IPP, IPU, ISF, ITT, IUD, IUR, MHM, MLF, MMF	Liver, kidney damage; central nervous system problems
Benzo (a) pyrene	0.0002	AFM, CAI, CAR, CBS, CCY, CFC, CRL, CRY, IAS, ICC, ICL, ICP, IFW, IHD, IMI, IMP, IPL, IPP, IPU, IRG, ISF, IST, ITT, MFS, MHM, MIN, MLF, MMF, MMP, MSC	Anemia; immune system depression; reproductive, developmental problems; increased risk of cancer
Di (2-ethylhexyl) adipate	0.4	AAP, CAI, CAR, CBY, CCY, CHW, CPS, CRL, CST, ICL, ICP, IHD, IMI, IMP, IMW, IPL, IPP, IPU, IRG, ISF, ITS, ITT, IUD, MIN, MLF, MMF, MMP, MSL, MSP, MSS, MST	Liver, reproductive system damage; increased risk of cancer
Di (2-ethylhexyl) phthalate	0.006	AAP, APP, CHM, CHW, CPP, CPR, CRL, CSY, ICE, ICL, ICP, IEE, IHD, IMP, IMW, IPL, IPP, IRG, ISF, IST, ITT, IUD, MHM, MIN, MLF, MMF, MRF, MSW	Liver, reproductive system damage; increased risk of cancer
Polychlorinated Biphenyls (PCB's)	0.0005	ACS, ASC, CAI, CCY, CHM, CRL, CRY, CST, CSY, ICL, ICP, IEE, IHD, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, ISM, ITS, IUD, IUR, MHM, MIN, MLF, MMF, MSS, MST, MSW	Skin problems, thymus gland, reproductive system, immune system problems; liver function changes; increased risk of cancer
INORGANIC CHEMICALS	1		1
Antimony	0.006	CRL, CSY, ICL, ICP, IEE, IFW, IHD, IMI, IMP, IPL, IPP, IRG, ISF, IST, IUD, MIN, MLF, MSW	Blood changes; increased risk of cancer
Arsenic	0.05	AAP, ACS, ADC, AFI, AFN, AHC, APP, ASC, ASP, CAI, CAR, CBS, CCE, CCY, CFC, CGC, CHM, CHN, CPP, CPR, CRL, CRV, CSY, CVS, ICL, ICP, IEE, IHD, IMI, IMP, IMW, IPM, IPP, IRG, ISF, ISM, IUD, IPU, MLF, MMF, MSC, MSW	Skin damage; circulatory problems; increased risk of cancer
Asbestos	7 MLF (million fibers/Liter)	CAI, CAR, CBS, CBY, CCY, CHM, CHN, CHW, CRL, CRV, CRY, CSY, ICC, ICL, ICP, IHD, IHM, IMI, IMO, IMW, IPU, IRG, ISF, IST, ITT, IUD, MHD, MHM, MIN, MLF, MMF, MMP, MSC, MSW, MWP	Lung disease, increased risk of cancer

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
Barium	2	CAI, CAR, CAW, CBS, CCY, CFR, CHM, CHN, CHW, CPP, CPR, CRL, CRV, CRY, CSY, CVS, ICC, ICL, ICP, IEE, IFW, IFM, IGO, IHD, IHM, IMI, IPL, IPM, IPP, IPU, IRG, ISF, ISM, IST, ITT, IUD, IUI, IUR, MHM, MIN, MLF, MMF, MMP, MSC, MSW	Gastrointestinal problems; high blood pressure
Beryllium	0.004	CRL, CSY, ICL, ICP, IEE, IFW, IHD, IHM, IMI, IMO, IMP, IMW, IPP, IPU, IRG, IRW, ISF, IST, IUD, MIN, MLF, MMF, MSW	Lung, bone damage; increased risk of cancer
Cadmium	0.005	AAP, APP, CAI, CAR, CBS, CBY, CCY, CHG, CHM, CHW, CPP, CPR, CPS, CRL, CRY, CSS, CSY, ICC, ICE, ICL, ICP, IEE, IFW, IHD, IHM, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, ISM, IST, ITT, IUD, IUR, MHM, MIN, MLF, MMF, MMP, MSC, MSP, MSS, MST, MSW, MWP	Gastrointestinal problems; kidney, liver, bone, blood damage
Chromium	0.1	CPP, CPR, CRL, CSY, ICC, ICL, ICP, IEE, IFW, IHD, IHM, IMI, IMO, IMP, IMW, IPP, IPU, IRG, ISF, IST, ITS, ITT, IUD, MIN, MLF, MMF, MPW, MSC, MSP, MSS, MST	Skin problems; liver, kidney, circulatory, nerve damage.
Copper	1.3 TT** Action Level	AAP, ACS, ADC, AHC, APF, APP, ASC, ASP, CAR, CBS, CCY, CHM, CHN, CHW, CPP, CPR, CRL, CRY, CST, CSY, CVS, ICL, ICP, IEE, IFM, IFW, IHD, IHM, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, ISM, IST, ITS, ITT, IUD, MIN, MLF, MMF, MSP, MSS, MST, MSW	Gastrointestinal problems; liver, kidney damage; anemia
Cyanide	0.2	ACS, ADC, AFI, AFN, AHC, ASC, ASP, CCY, CHN, CHW, CPP, CPR, CPS, CRL, CST, CUS, CVS, ICL, ICP, IEE, IFW, IHD, ILS, IMI, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISD, ISF, ISM, IST, ITS, ITT, IUD, MHM, MLF, MMF, MPW, MSC, MSS, MST	Thyroid problems; nerve damage
Fluoride	4	ACS, ADC, ASC, ASF, CCY, ICC, ICL, ICP, IFW, IHM, IMI, IMO, IMP, IST, IUD, MWP	Tooth mottling; bone disease
Lead	0.015 TT**	CAI, CAR, CBS, CBY, CCY, CFR, CHG, CHM, CHN, CHW, CPP, CPR, CPS, CRL, CRY, CSY, ICC, ICL, ICP, IEE, IFM, IFW, IHD, IHM, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, ISM, IST, ITS, ITT, IUD, IUR, MHD, MHM, MIN, MLF, MMF, MMP, MRF, MSC, MSP, MSS, MST, MSW, MWP, RMS	Blood, neurological development problems; kidney disease; stroke; increased risk of cancer
Mercury	0.002	AAP, ACS, ADC, AFI, AFN, AHC, APP, ASC, ASP, CAI, CAR, CBS, CBY, CCY, CFR, CHM, CHN, CHW, CPP, CPR, CRL, CRV, CRY, CST, CSY, CUS, CVS, ICE, ICL, ICP, IEE, IFM, IFW, IHD, IHM, ILS, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, ISM, IST, ITS, ITT, IUD, IUR, MHM, MIN, MLF, MMF, MPW, MRF, MSC, MSP, MSS, MST, MSW	Kidney damage
Nickel	0.1	CAI, CAR, CBS, CBY, CCY, CPP, CPR, CRL, CST, CSY, CUS, ICE, ICL, ICP, IEE, IFW, IHD, IHM, ILS, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, IST, ITS, ITT, IUD, MHM, MIN, MLF, MMF, MMP, MPW, MRF, MSC, MSP, MSS, MST, MSW	Gastrointestinal irritation; nerve, liver, kidney, reproductive system damage

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
Nitrate	10	AAP, ACS, ADC, ADF, AFI, AFL, AFN, AHC, AMA, AMS, AOA, APF, APP, ARL, ASC, ASF, ASH, ASW, CAI, CAW, CBB, CBY, CCE, CCG, CCW, CCY, CFC, CGC, CHG, CHN, CPL, CPP, CPR, CRL, CST, CVS, ICL, ICP, IHD, IHM, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, ISD, ISF, ISM, ITS, ITT, IUD, IUR, MHD, MHM, MLF, MMF, MPR, MPS, MPW, MSC, MSD, MSL, MSP, MSS, MST, MSW, MWP, RMS	Methemoglobinemia; spleen damage
Nitrite	1	AAP, ACS, ADC, ADF, AFI, AFL, AFN, AHC, AMA, AMS, AOA, APF, APP, ARL, ASC, ASF, ASH, ASW, CAI, CAW, CBB, CBY, CCG, CCE, CCW, CCY, CFC, CGC, CHG, CHN, CPL, CPP, CPR, CRL, CST, CVS, ICL, ICP, IHD, IHM, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, ISD, ISF, ISM, ITS, ITT, IUD, IUR, MHD, MHM, MLF, MMF, MPR, MPS, MPW, MSC, MSD, MSL, MSP, MSS, MST, MSW, MWP, RMS	Methemoglobinemia; spleen damage
Selenium	0.05	ADC, AFI, AFN, ARL, CPP, CPR, CRL, ICC, ICL, ICP, IEE, IFW, IHD, IHM, IMI, IMO, IMP, IMW, IPL, IPM, IPP, IPU, IRG, ISF, IST, IUD, MHM, MIN, MLF, MMF, MPW, MSC, MSS, MST, MSW	Peripheral nervous system, kidney, liver, circulatory system damage
Thallium	0.002	CHN, CPP, CRL, ICC, ICE, ICL, ICP, IEE, IFW, IHD, IHM, IMI, IMO, IMP, IPL, IPP, IPU, IRG, ISF, IUD, IUR, MIN, MLF, MMF, MSS, MST, MSW	Blood chemistry changes; nerve, liver, kidney, intestinal, reproductive system damage
RADIONUCLIDES	- [1
Beta Particles and Photon Emitters	4 Millirems per year	CAW, CHN, CRL, IGO, IHM, IMO, IRG, IRW, ISF, MMF, MWP	Increased risk of cancer
Gross Alpha Particle Activity	15 Picocuries per Liter	CAW, CHN, CRL, IGO, IHM, IMO, IRG, IRW, ISF, MMF, MWP	Increased risk of cancer
Radium 226 and Radium 228 (Combined)	5 Picocuries per year	CAW, CHN, CRL, IGO, IHM, IMO, IRG, IRW, ISF, MMF, MWP	Increased risk of cancer
MICROBIOLOGICAL (Pathogenic organi	sms)		
Crytosporidium parvum		AAP, ADC, ADF, AFL, AMA, AMS, AOA, APF, APP, ARL, ASH, ASW, CAW, CBY, CCG, CFC, CHN, CPL, CRV, CSS, CST, CVS, ISD, ITS, IUI, IUR, MHD, MHR, MMF, MPR, MPS, MPW, MSC, MSD, MSL, MSP, MSS, MST, MWP, RMS	Cryptosporidiosis (a gastroenteric disease
Giardia lambia	TT**	AAP, ADC, ADF, AFL, AMA, AMS, AOA, APF, APP, ARL, ASH, ASW, CAW, CBY, CCG, CFC, CHN, CPL, CRV, CSS, CST, CVS, ISD, ITS, IUI, IUR, MHD, MHR, MMF, MPR, MPS, MPW, MSC, MSD, MSL, MSP, MSS, MST, MWB, PMS	Giardiasis (a gastroenteric disease)

MPW, MSC, MSD, MSL, MSP, MSS, MST, MWP, RMS

Name of Contaminant	MCL *	Potential Contaminant Source (by Contaminant Code)***	Health Effects
Legionella sp.	TT**	ADC, CBY, ITS, MPW, MSD, MSP, MWP	Legionnaire's Disease; pneumonia
Total Coliforms (Including	5 Percent (See NOTE 1)	AAP, ADC, ADF, AFL, AMA, AMS, AOA, APF, APP, ARL, ASH, ASW, CAW, CBY, CCG, CFC, CHN, CPL, CRV, CSS, CST, CVS, ISD, ITS, IUI, IUR, MHD, MHR, MMF, MPR, MPS, MPW, MSC, MSD, MSL, MSP, MSS, MST, MWP, RMS	Used as an indicator that other potentially harmful bacteria may be present (see NOTE 2)
Fecal Coliform & E. coli)			
Turbidity	TT**	ADC, CBY, CCG, CCW, CCY, CGC, CPL, CRV, CRY, ICC, IHD, IHM, IMO, IPM, IUD, IUR, MHD, MHM, MHR, MIN, MLF, MMF, MPR, MPW, MRF, MSC, MSD, MSL, MSP, MSS, MST, MSW, RMS	Turbidity has no health effects but can interfere with disinfection and provide a medium for bacterial growth. It may indicate the presence of microbes
Viruses (Enteric)	TT**	AAP, ADC, ADF, AFL, AMA, AMS, AOA, APF, APP, ARL, ASH, ASW, CAW, CBY, CCG, CFC, CHN, CPL, CRV, CSS, CST, CVS, ISD, ITS, IUI, IUR, MHD, MHR, MMF, MPR, MPS, MPW, MSC, MSD, MSL, MSP, MSS, MST, MWP, RMS	Gastroenteric disease

DRASTIC Index Conservative Values were used to complete the DRASTIC Index under the Sensitivity Analysis when adequate and/or complete information was not available (one or more of the conservative values may have been used).

Equation for WRASTIC Index conservative value calculation:

- 1. Where DRASTIC Index = $D_R \times D_W + R_R \times R_W + A_R \times A_W + S_R \times S_W + T_R \times T_W + I_R \times I_W + C_R \times C_W$
- D (depth to ground water) Use 10 (10 x 5[weight] = 50)
- R (recharge) If the well is near a stream bed or is receiving mountain front recharge, use 9 (9 x 4[weight] = 36 as the "Most conservative". Otherwise use 6(6 x 4[weight] = 24
- A (aquifer media) Use 10 (10 x 3[weight] = 30)
- S (soil media) Use 10 (10 x 2[weight] = 20)
- T (Topography/slope) Use $10 (10 \times 1[\text{weight}] = 10)$
- I (Impacts of the Vadose Zone) If the well is in a limestone area, use 10 (10 x 5[weight] = 50). If the well is not in a limestone area, use 8 (8 x 5[weight] = 40.
- C (Hydraulic Conductivity) Use 10 (10 x 4[weight] = 40

DRASTIC (conservative) = $(10 \times 5) + (9 \times 4) + (10 \times 3) + (10 \times 2) + (10 \times 1) + (10 \times 5) + (10 \times 4) = 236$ (If the lower values for R and I are used the result will be 214. Both of these results fall in the "High" range).

The Pesticide Index equation was used when calculating a DRASTIC Index for a well located in an area where crops and/or orchards were the predominant land use or when pesticide use was known.

2. Where DRASTIC Pesticide Index = $D_R \times D_W + R_R \times R_W + A_R \times A_W + S_R \times S_W + T_R \times T_W + I_R \times I_W + C_R \times C_W$

- D (depth to ground water) Use $10 (10 \times 5[\text{weight}] = 50)$
- R (recharge) If the well is near a stream bed or is receiving mountain front recharge, use 9 (9 x 4[weight] = 36 as the "Most conservative". Otherwise use 6(6 x 4[weight] = 24
- A (aquifer media) Use 10 (10 x 3[weight] = 30)
- S (soil media) Use 10 (10 x 5[weight] = 50)
- T (Topography/slope) Use $10 (10 \times 3[\text{weight}] = 30)$
- I (Impacts of the Vadose Zone) If the well is in a limestone area, use 10 (10 x 4[weight] = 40). If the well is not in a limestone area, use 8 (8 x 4[weight] = 32
- C (Hydraulic Conductivity) Use 10 (10 x 4[weight] = 40

(10 x 5) + (9 x 4) + (10 x 3) + (10 x 5) + (10 x 3) + (10 x 4) + (10 x 4) = 276(If the lower values for R and I are used the result will be 260. Both of these results fall in the "High" range).

If a screened interval is needed the conservative value used was <100 feet.

WRASTIC Index¹⁶ *Conservative Values* were used to complete the WRASTIC Index under the Sensitivity Analysis when adequate and/or complete information was not available (one or more conservative values may have been used):

Equation for WRASTIC Index conservative value calculation:

1. Where WRASTIC Index = $W_{Rx} x W_W + R_R x R_W + A_R x A_W + S_R x S_W + T_R x T_W + I_R x I_W + C_R x C_W$

- W (Wastewater presence) use 5 (5 x 3[weight])= 15
- R (Recreational impact) use 5 (5 x 2[weight]) = 10
- A (Agricultural impact) use 5 (5 x 2[weight]) = 10
- S (Size of the watershed) use 5 (5 x 1[weight]) = 5
- T (Transportation Avenues) use 5 (5 x 1[weight]) = 5
- I (Industrial impact) use 8 (8 x 4[weight]) = 32
- C (vegetative Cover) use 5 (5 x 1[weight]) = 5

(5x3) + (5x2) + (5x2) + (5x1) + (5x1) + (5x1) + (8x4) + (5x1) = 82

¹⁶ See State of New Mexico Source Water Assessment and Protection Program, February 2000, Appendix E WRASTIC Index.

ROADS AND RELATED FEATURES

VEGETATION Woods Scrub Orchard Vineyard Mangrove

CONTOURS

Roads on Provisional edition maps are not classified as primary, secondary, or light duty. They are all symbolized as light duty roads.

Primary highway	
Secondary highway	
Light duty road	
Unimproved road	
Trail	was not use for the se
Dual highway	
Dual highway with median strip	
Road under construction	<u> </u>
Underpass; overpass	<u>+ +++</u> + <u>+</u> =
Bridge	+++
Drawbridge	→ ~~ → ~ ←
Tunnel	

RAILROADS AND RELATED FEATURES

Standard gauge single track; station	++-
Standard gauge multiple track	+++
Abandoned	
Under construction	
Narrow gauge single track	<u>+</u>
Narrow gauge multiple track	
Railroad in street	
Juxtaposition	±,
Roundhouse and turntable	-+-000
	-

MINES AND CAVES Quarry or open pit mine Gravel, sand, clay, or borrow pit X Mine tunnel or cave entrance -<</td> Prospect; mine shaft X Mine dump Italings

LAND SURVEY SYSTEMS

U.S. Public Land Survey System			
Township or range line			
Location doubtful			
Section line			
Location doubtful			
Found section corner; found closing corner		DARIES	
Witness corner; meander corner	WC MC	ional	
Other land surveys		e or territorial	
Township or range line	•••••	nty or equivalent	
Section line		township or equivalent	
Land grant or mining claim; monument	0	prporated city or equivalent	
Fence line		k, reservation, or monument	
		Small park	

RIVERS, LAKES, AND CANALS

Intermittent stream	
Intermittent river	
Disappearing stream	
Perennial stream	
Perennial river	
Small falls; small rapids	+++-
Large falls; large rapids	57 [
Masonry dam	-
Dam with lock	
Dam carrying road	=[=[
Perennial lake; Intermittent lake or pond	
Dry lake	i (i) (ii)
Narrow wash	
Wide wash	- Wash
Canal, flume, or aqueduct with lock	<u> </u>
Elevated aqueduct, flume, or conduit	
Aqueduct tunnel	→====÷
Well or spring; spring or seep	. 8

Topographic Intermediate Index Supplementary Depression Cut; fill -@ Bathymetric Intermediate Index Primary -Index Primary --Supplementary

ALTA XIX Mangrove

ILDINGS AND RELATED FEATURES	
Building	
School; church	£ 1
Built-up Area	
Racetrack	\circ
Airport	XA
Landing strip	c======
Well (other than water); windmill	0 ž
Tanks	• Ø
Covered reservoir	0
Gaging station	
Landmark object (feature as labeled)	0
Campground; picnic area	I
Cemetery: small; large	+ Cem