Concentration-Time (CT) Assessment

New Mexico Rural Water Association Annual Conference Albuquerque, NM April 2016

Peter Nathanson, PE DWB SWIG Tech Services Manager 505.222.9509 peter.nathanson@state.nm.us

Chlorine Demand

The consumption of the chlorine used for disinfection

What is added

What is used

What remains

Dosage – Demand = Residual

Organics Microorganisms Ammonia-Nitrogen Nitrate Iron Silt

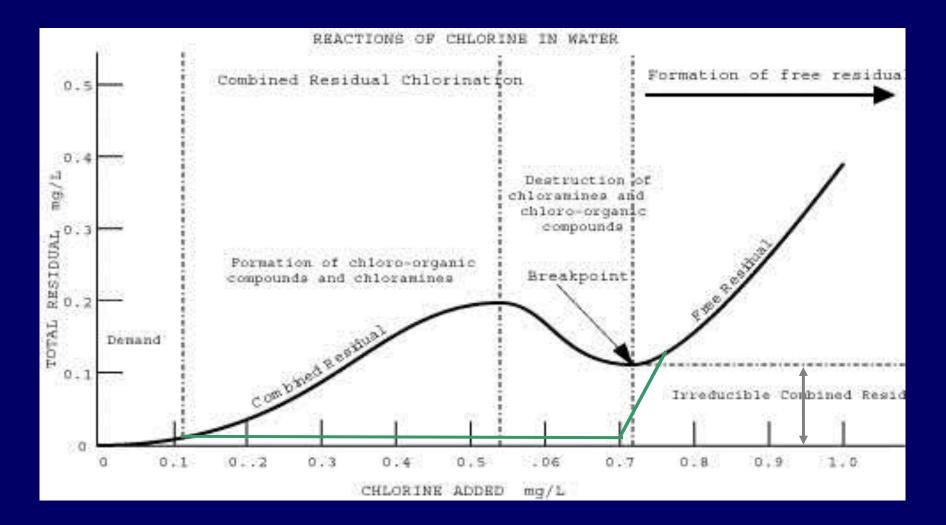
Chlorine Residuals

Free Chlorine Residual

Uncombined chlorine in the form of HOCl, hypochlorous acid or OCl, hypochlorite ion

Combined Chlorine Residual

Chlorine that is combined with ammonia-nitrogen to form chloramines: NH₂Cl, NHCl₂, NCl₃


***** Total Chlorine Residual

Free Residual + Combined Residual = Total Residual

Chlorination

Breakpoint chlorination > addition of enough chlorine to destroy majority of nitrogen compounds irreducible combined residual * Total chlorine residual Free + combined residual ***** Effectiveness Iower pH, higher temperature Free > combined residual combined lasts longer Combined forms fewer TTHMs

The Breakpoint Curve

CT Worksheet

Baffling factor

Correct table
 extrapolation
 worst case analysis

Use tables to prove chlorine effectiveness
 lower pH
 higher temperature

Detention Time

Theoretical detention time, TDT = volume ÷ flow

basin, pipe, process volume

peak instantaneous flow

amount of time water is in basin assuming perfect plug flow & no short-circuiting

* Actual detention time can be less than theoretical due to shortcircuiting

baffling factor, BF

✓ 0.1 = no baffling; agitated basin, hi velocities

- \checkmark 0.3 = poor; single or multiple inlets, outlets
- ✓ 0.5 = average; baffled inlet, outlet, some intra-basin
- ✓ 0.7 = superior; perf inlet, perf/serp intra-basin, outlet weir or perf launders

✓ 1.0 = perfect plug flow; very hi L:W, perf inlet, outlet & intra-basin

> ADT = TDT x BF, which also = disinfectant contact time

Calculating CT

C = disinfectant residual, milligrams/Liter
ideally, for each basin or process
worst-case based on highest pH, lowest temperature
measured at peak instantaneous flow

T = time water in contact with disinfectant, minutes
 based on actual detention time

 \diamond C x T = CT, (mg-min)/L

Calculating Inactivation

Need log inactivation for *Giardia* per regs
Need log inactivation for viruses if using different primary disinfectant

- O₃, chloramines, chlorine dioxide
 not as effective for inactivating viruses as inactivating *Giardia*
- Compare calculated CT to required CT from tables
 separate CT tables for different disinfectants due to varying effectiveness
 - separate CT tables for Giardia and viruses
 - > CT req'd for desired log inactivation based on
 - ✓ residual & pH (for chlorine), temperature

Log Reduction

Refers to logarithmic theory
Relates to the percentage of microorganisms physically removed or inactivated by a given process
Rule of "9's" – the log number coincides with the number of 9's in the percent reduction

> 1-log reduction = 90% removed or inactivated > 2-log reduction = 99% removed or inactivated > 3-log reduction = 99.9% removed or inactivated round up to next highest integer for 0.5-logs $\checkmark 3.5 \text{-log} \rightarrow 4 \text{-log} = 99.99\%$ ***** Regulations allow credit for some physical processes total log reduction = physical log removal + log removal from disinfection

Determining Required CT

- Calculate CT based on system operating parameters & configuration
- ***** Use CT tables to determine required CT
 - Find appropriate table for disinfectant used
 - find appropriate table for target microorganism
 for chlorine
 - ✓ find appropriate portion of table based on worstcase (lowest measured) temperature
 - ✓ find appropriate column based on worst-case
 (highest measured) pH
 - ✓ find appropriate row based on worst-case (lowest measured) residual

✓ identify CT required from row/column convergence

Determining Actual Log Inactivation

Actual log inactivation is based on ratio of calculated
 CT to required CT from table

- * Depends on whether system is required to achieve 3-log *Giardia* or 4-log virus inactivation
 - actual Giardia log inactivation = 3 x (CT_{calc}/CT_{reqd})
 regs require 3-log removal or inactivation for
 Giardia
 - > actual virus log inactivation = 4 x (CT_{calc}/CT_{reqd})

 ✓ regs require 4-log removal or inactivation for
 viruses

can modify either equation for multiple disinfection segments within treatment process

www.epa.gov/safewater/mdbp/pdf/ profile/lt1profiling.pdf

