Environmental Improvement Board 20-33A

Administrative Record Index

<u>Permit</u>	Bates Numbers
XTO Corral Canyon 23 GCP No. 8729	0001 - 0232
XTO Big Eddy GCP No. 8730	0233 - 00461
Spur Energy Dorami 2H, 4H, &9H Federal Tank Battery GCP No. 8733	00462 - 0676

Administrative Record XTO Corral Canyon 23 GCP No. 8729

Bates Numbers: 0001 - 0232

Adminstrative Record Index XTO Corral Canyon 23 - GCP No. 8729

DATE	FROM	то	FORMAT	SUBJECT
3/11/2020 -	NMED/XTO/WEG	NMED/XTO/WEG	Emails	Email correspondence relating to XTO Energy Inc. Corral
5/12/2020				Canyon 23 General Construcion Oil and Gas Permit
				Application
2/24/2020	XTO	NMED	Documents	XTO Application for GCP-Oil and Gas
3/13/2020	XTO	N/A	Photos	Location Verification
3/13/2020	XTO	N/A	Documents	Gas Stack Verification
3/11/2020	Jeremy Nichols	NMED	Email	Comments on application for GCP-Oil and Gas
	(WEG)			
3/27/2020	NMED	XTO	Letter	Approval letter for GCP-Oil and Gas
3/27/2020	NMED	N/A	Documents	Statement of Basis / Data Base Summary GCP-Oil and Gas

From: <u>Jeremy Nichols</u>

To: Olivia.yiu@state.nm.us; Coriz, Asheley, NMENV; Mascarenas, Marvin, NMENV; Kimbrell, Joseph, NMENV;

Mashburn, Joseph, NMENV; Espinoza, Arianna, NMENV; Primm, Kathleen, NMENV; Springer, Vanessa, NMENV

Cc: Schooley, Ted, NMENV; Romero, Rhonda, NMENV

Subject: [EXT] Comments on Applications for General Construction Permits for Oil and Gas Facilities

Date: Wednesday, March 11, 2020 9:39:54 PM
Attachments: 2020-3-11 WG Comments on GCP Applications.pdf

Dear New Mexico Environment Department, Air Quality Bureau Staff:

Attached, please find comments from WildEarth Guardians regarding several general construction permit applications for oil and gas facilities in Eddy and Lea Counties in southeast New Mexico. These comments are directed to New Mexico Environment Department, Air Quality Bureau staff listed as contacts for the specific permits. Our comments address common issues related to ozone pollution in southeast New Mexico and therefore are directed to all staff contacts. We look forward to our comments being considered as the Air Quality Bureau reviews the referenced permit applications. Thank you.

Sincerely,

Jeremy Nichols

From: Espinoza, Arianna, NMENV

To: <u>Tole, Raymond</u>
Cc: <u>Evan Tullos</u>

Subject: GCP O&G Application for Corral Canyon 23

Date: Friday, March 27, 2020 9:35:05 AM

Attachments: <u>image001.png</u>

GCP OG Approval (8729).pdf Copy of Registration Form (8729).pdf

External Email - Think Before You Click

Regarding:

XTO Energy Inc Corral Canyon 23 Permit No. 8729

AI: 39444

Good morning Mr. Tole,

Please find the attached courtesy copy of GCP O&G Approval Letter and Registration Form, and to XTO Energy Inc, Corral Canyon 23.

Here is a link to the GCP Oil and Gas Permit: https://www.env.nm.gov/wp-content/uploads/sites/2/2018/06/GCP-Oil-Gas-Final-002.pdf

The letter and copy of registration form will be mailed to your attention.

Thank you,

Link to Industry/Consultant Feedback Questionnaire.

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Arianna Espinoza

Permitting – Technical Services Permit Writer New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1, Santa Fe, NM 87505

Office: (505) 476-4367

arianna.espinoza@state.nm.us
https://www.env.nm.gov/

From: Schooley, Ted, NMENV

To: <u>Jeremy Nichols</u>; <u>Romero, Rhonda, NMENV</u>

Subject: RE: [EXT] request for updates on oil and gas general permit registrations

Date: Tuesday, May 12, 2020 8:20:00 AM

Mr. Nichols,

Thank you for your email regarding the status of the Oil and Gas General Construction Permits (O&G GCPs) for which WEG has submitted comments. At the bottom of this email is a table showing the status of the registrations WEG has inquired about. Information regarding GCP registration applications can be found on the Bureau's website on the following page:

https://www.env.nm.gov/air-quality/aqb-p_current_permitting_activites/, which includes this link: Current Permitting Actions for NSR and Title V – Updated 04/30/2020.

Administrative review of the Department's determination to grant an application to register under a GCP is available pursuant to the Environmental Improvement Board's GCP regulations at subsection 20.2.72.220.C(5) NMAC (available here), which in turn references the Air Quality Control Act at NMSA 1978, Section 74-2-7. Subsection 74-2-7(H) of the statute provides that any person who participated in a permitting action before the Department and who is adversely affected by such permitting action may file a petition for hearing before the EIB within 30 days from the date notice is given of the Department's action.

For any of the O&G GCP registration applications listed below on which WEG submitted comments, you may regard the date of this email as the date notice was provided to WEG of the Department's action on those applications.

Best.

Ted Schooley

Permit Programs Section Chief
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1, Santa Fe, NM 87505
Office: (505) 476-4334
ted.schooley@state.nm.us

https://www.env.nm.gov/air-quality/

"Innovation, Science, Collaboration, Compliance"

Company	Facility(ies)	NSR Permit	Date Application	Permitting	Status
Company	1 acmity(ies)	No.	Received	Action Type	
Cimarex Energy Co.	Dos Equis 11-14	8136M1	March 30, 2020	GCP-Oil and	Issued
of Colorado	Federal Com 4H	91201/11	IVIAI CI 30, 2020	Gas	
Matador Production	Ray state Slot 3	8793	March 20, 2020	GCP-Oil and	Issued
Co.	Facility	8/93	March 30, 2020	Gas	
Matador Production	Stebbins 19 Fed 3	7011142	March 2C 2020	GCP-Oil and	Issued
Co.	Facility	7811M2	March 26, 2020	Gas	
Matador Production	Grevey Com Tank	0700	March 2C 2020	GCP-Oil and	Issued
Co.	Battery	8780	March 26, 2020	Gas	
New Mexico Gas	Lea County	0701	Manala 26, 2020	GCP-Oil and	Issued
Company	Compressor Station	8781	March 26, 2020	Gas	

Summit Midstream Permian LLC	Lane Gas Plant	7426M1	March 26, 2020	GCP-Oil and Gas	Withdrawn
XTO Energy Inc.	Poker Lake Unit 28, Big Sinks Tank Battery	8395M1	March 26, 2020	GCP- GCP Oil and Gas	Issued
XTO Energy Inc.	Poker Lake Unit 21, Brushy Draw West Tank	8398M1	March 26, 2020	GCP- GCP Oil and Gas	Issued
XTO Energy Inc.	Poker Lake Unit 17, Twin Wells Ranch West	8782	March 26, 2020	GCP-Oil and Gas	Issued
Devon Energy Production Co.	Belloq 11 CTB 1	8201M2	March 26, 2020	GCP- Oil and Gas	Issued
Ameredev II LLC	Nandina CBT	8189M1	March 25, 2020	GCP- Oil and Gas	Issued
Marathon Oil Permian LLC	Mazer Rackham 20 Fed Com CTB	8652M1	March 23, 2020	GCP- Oil and Gas	Issued
Chevron USA Inc.	Dagger Lake Section 4 CTB	8776	March 20, 2020	GCP6/NOI	Issued
Chevron USA Inc.	Dagger Lake Section 4 CS	8777	March 20, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Papa Fritas 27 CTB 2	8778	March 20, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Papas Fritas 27 CTB 1	8779	March 19, 2020	GCP- Oil and Gas	Issued
Cotton Draw Midstream LLC	Moon Compressor Station	8110M2	March 18, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Uraninite 32 CTB 2	8773	March 18, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Stebbins 20 Fed Facility	7585M1	March 18, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Jack Sleeper Facility	8772	March 18, 20209	GCP- Oil and Gas	Issued
Cimarex Energy Co. of Colorado	Parkway 15-14, North State Com 1H, 2H	8701M1	March 17, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Leslie Fed West Facility	8769	March 16, 2020	GCP- Oil and Gas	Issued
Tap Rock Operating LLC	Money Graham Facility	8634M1	March 16, 2020	GCP- Oil and Gas	Issued
ConocoPhillips Co.	Emerald Federal No. 3 Production	4610M1	March 12, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Boundary Raider 7 CTB 2	8766	March 12, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Rodney Robinson North Facility	8765	March 12, 2020	GCP- Oil and Gas	Issued
XTO Energy Inc.	Legg Federal Tank Battery	5044M4	March 12, 2020	GCP- Oil and Gas	Issued
Cimarex Energy Co. of Colorado	Tar Heel 19-18 Fed 1- 3H and 17-19H	8763	March 11, 2020	GCP- Oil and Gas	Issued
Matador Production	Stebbins 20/19 Fed	7792M2	March 11, 2020	GCP- Oil and	Issued

Co.	Facility			Gas	
DCP Operating	West Turkey Track	2098M5	March 4, 2020	GCP- Oil and	Issued
Company LP	Compressor Station	20381013	Wild Cit 4, 2020	Gas	
DCP Operating	Jackson Booster	2041M6	March 4, 2020	GCP- Oil and	Issued
Company LP	Station	20411110	Wiai Cii 4, 2020	Gas	
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020	GCP-Oil and	Issued
ATO Effergy file.	James Namen Offic Di 7	0740	Widi Ci 1 4, 2020	Gas	
OXY USA Inc.	NC Sand Dunes	8744	March 3, 2020	GCP- Oil and	Issued
ONT OSA IIIC.	Compressor Station	0744	Wild Cit 3, 2020	Gas	
EOG Resources Inc.	Viper Localized Gas	8739	March 2, 2020	GCP-Oil and	Issued
LOG Nesources inc.	Lift Station	0733	Widicii 2, 2020	Gas	
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020	GCP-Oil and	Issued
Log nesources me.	Date 11 CIB	0730	Widi Cii 2, 2020	Gas	
Lucid Energy	Greyhound	8084M2	March 2, 2020	GCP-Oil and	Issued
Delaware LLC	Compressor Station	000 11112	Widi Cii 2, 2020	Gas	
Matador Production	Dr. Scrivner Facility	7825M3	March 2, 2020	GCP-Oil and	Issued
Co.	Dr. Seriviner ruenity	70231113	Widi Cii 2, 2020	Gas	
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8015M1	March 2, 2020	GCP-Oil and	Issued
				Gas	
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020	GCP- Oil and	Issued
/ III CI COCV II EEO	Time Straw CTB	02171112	1 001 441 y 27, 2020	Gas	
Devon Production	Blue Krait 23 CTB 2	8734	February 27, 2020	GCP-Oil and	Issued
Co.	blue Mult 25 CTB 2	0731	1 CD1 dd1 y 27, 2020	Gas	
Kaiser-Francis Oil	South Bell Lake Pad 11	7132M3	February 27, 2020	GCP-Oil and	Issued
Co.	South Bell Lake Fud 11	71321113	1 051 441 y 27, 2020	Gas	
Kaiser-Francis Oil	North Bell Lake Pad 0	8149M3	February 10, 2020	GCP Oil and	Issued
Co.		01131113	1 001 441 y 10, 2020	Gas	
Spur Energy	Dorami 2H, 4H and 9H			GCP-Oil and	Issued
Partners LLC	Federal Oil Tank	8733	February 27, 2020	Gas	
	Battery				
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020	GCP-Oil and	Issued
2			, 20, 2020	Gas	
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020		Issued
ATO LITERSY ITTE.	Corrai Carryon 25	3,23	1 001 001 y 20, 2020	Gas	

From: Jeremy Nichols < jnichols@wildearthguardians.org>

Sent: Monday, May 4, 2020 7:45 PM

To: Schooley, Ted, NMENV <ted.schooley@state.nm.us>; Romero, Rhonda, NMENV

<Rhonda.Romero@state.nm.us>

Subject: [EXT] request for updates on oil and gas general permit registrations

Dear Mr. Schooley and Ms. Romero:

I am writing regarding the status of the oil and gas general permit registrations listed below that are under review by the New Mexico Environment Department. As you know, WildEarth Guardians has commented on general permit applications listed below over the past several weeks. We have not

received a response from the Environment Department or a notification that any registration has been approved. It is not currently possible to determine online whether registrations have been granted or denied. Pursuant to Section 74-7-H NMSA, a person participating in a permitting action has 30 days after notification of the permitting action to file a request for hearing with the Environmental Improvement Board. If general permit registrations that WildEarth Guardians has commented on have been granted, we reques the Environment Department provide us notification so that we may file a request for hearing with the Board.

To this end, if you could please provide the status of each of the following general permit registrations, it would be much appreciated. Thank you. - Jeremy Nichols

Company	Facility(ies)	NSR Permit No.	Date Application Received
Cimarex Energy Co. of Colorado	Dos Equis 11-14 Federal Com 4H	8136M1	March 30, 2020
Matador Production Co.	Ray state Slot 3 Facility	8793	March 30, 2020
Matador Production Co.	Stebbins 19 Fed 3 Facility	7811M2	March 26, 2020
Matador Production Co.	Grevey Com Tank Battery	8780	March 26, 2020
New Mexico Gas Company	Lea County Compressor Station	8781	March 26, 2020
Summit Midstream Permian LLC	Lane Gas Plant	7426M1	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 28, Big Sinks Tank Battery	8395M1	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 21, Brushy Draw West Tank	8398M1	March 26, 2020
Matador Production Co.	Stebbins 19 Fed 3 Facility	7811M2	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 17, Twin Wells Ranch West	8782	March 26, 2020
Devon Energy Production Co.	Belloq 11 CTB 1	8201M2	March 26, 2020
Ameredev II LLC	Nandina CBT	8189M1	March 25, 2020
Marathon Oil Permian LLC	Mazer Rackham 20 Fed Com CTB	8652M1	March 23, 2020
Chevron USA Inc.	Dagger Lake Section 4 CTB	8776	March 20, 2020
Chevron USA Inc.	Dagger Lake Section 4 CS	8777	March 20, 2020
Devon Energy Production Co.	Papa Fritas 27 CTB 2	8778	March 20, 2020
Devon Energy Production Co.	Papas Fritas 27 CTB 1	8779	March 19, 2020
Cotton Draw Midstream LLC	Moon Compressor Station	8110M2	March 18, 2020
Devon Energy Production Co.	Uraninite 32 CTB 2	8773	March 18, 2020
Matador Production Co.	Stebbins 20 Fed Facility	7585M1	March 18, 2020
Matador Production Co.	Jack Sleeper Facility	8772	March 18, 20209
Cimarex Energy Co. of Colorado	Parkway 15-14, North State Com 1H, 2H	8701M1	March 17, 2020

Matador Production Co.	Leslie Fed West Facility	8769	March 16, 2020
Tap Rock Operating LLC	Money Graham Facility	8634M1	March 16, 2020
ConocoPhillips Co.	Emerald Federal No. 3 Production	4610M1	March 12, 2020
Devon Energy Production Co.	Boundary Raider 7 CTB 2	8766	March 12, 2020
Matador Production Co.	Rodney Robinson North Facility	8765	March 12, 2020
XTO Energy Inc.	Legg Federal Tank Battery	5044M4	March 12, 2020
Cimarex Energy Co. of Colorado	Tar Heel 19-18 Fed 1-3H and 17- 19H	8763	March 11, 2020
Matador Production Co.	Stebbins 20/19 Fed Facility	7792M2	March 11, 2020
DCP Operating Company LP	West Turkey Track Compressor Station	2098M5	March 4, 2020
DCP Operating Company LP	Jackson Booster Station	2041M6	March 4, 2020
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020
OXY USA Inc.	NC Sand Dunes Compressor Station	8744	March 3, 2020
EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020
Lucid Energy Delaware LLC	Greyhound Compressor Station	8084M2	March 2, 2020
Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8737	March 2, 2020
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020
Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020
Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020
Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M1	February 27, 2020
Spur Energy Partners LLC	Dorami 2H, 4H and 9H Federal Oil Tank Battery	8733	February 27, 2020
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020

(303) 437-7663

www.wildearthguardians.org/climateenergy

February 24, 2020

Rhonda Romero New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

RE: Application for GCP-Oil and Gas

Corral Canyon 23 XTO Energy Inc.

Dear Ms. Romero:

XTO Energy Inc. is submitting the attached application to request coverage under the GCP-Oil and Gas for the proposed Corral Canyon 23 facility. Also included are a CD containing the electronic files and a check for the filing fee. If you have any questions regarding this application please contact me at (865) 850-2007 or etullos@pei-tx.com. Please inform the permit writer assigned to this project that I am happy to walk through the process simulation during review of the application.

Sincerely,

Evan Tullos Vice President

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY EDDY COUNTY, NEW MEXICO GCP-OIL AND GAS PERMIT APPLICATION

T.J. TOLE
ENVIRONMENTAL ENGINEER
XTO ENERGY INC.

2/22/2020

PREPARED BY:

XTO ENERGY INC.

CORRAL CANYON 23 TANK BATTERY

GCP-OIL AND GAS PERMIT APPLICATION

Table of Contents

Section 1	Company Information
Section 2	Tables
Section 3	Registration Summary
Section 4	Process Flow and Description of Routine Operations
Section 5	Emissions Calculations Forms
Section 6	Information Used to Determine Emissions
Section 7	Maps
Section 8	Applicable State and Federal Regulations
Section 9	Proof of Public Notice
Section 10	Certification

Section 1 Company Information

XTO Energy Inc. Corral Canyon 23 February 2020: Revision 0

Replace Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Nonattainment Areas)

If a fee is required and is not submitted with the application, the registration will be denied.

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #:			
1	Facility Name: Corral Canyon 23	Plant primary SIC Code (4 1311 Plant NAIC code (6 digits) 211120	G ,			
a	a Facility Street Address (If no facility street address, check here ⊠ and provide directions in Section 4):					
2	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (832) 624-4426	5			
a	Plant Operator Address: 22777 Springwoods Village Parkway, W4.6B.344, Spring, TX 77389					
3	Plant Owner(s) name(s): XTO Energy Inc.	Phone/Fax: (832) 624-4420	5			

GCP-Oil and Gas Form: 10 December 2019

a	Plant Owner(s) Mailing Address	s(s): 22777 Springwoods Vill	age Parkway,	W4.6B.344, Spring,	TX 77389		
4	Bill To (Company): XTO Energ	y Inc.		Phone/Fax: (832)	624-4426		
a	Mailing Address: 22777 Springv Spring, TX 77389	woods Village Parkway, W4.	6B.344,	E-mail: raymond_tole@xtoenergy.com			
5	☐ Preparer: ☑ Consultant: Evan Tullos			Phone/Fax: (865) 8	850-2007		
a	Mailing Address: 5 Cardinal Co	urt; Edwardsville, IL 620205		E-mail: etullos@p	ei-tx.com		
6	Plant Operator Contact:			E-mail: raymond_1	tole@xtoenergy	.com	
a	Mailing Address: 22777 Springv Spring, TX 77389	woods Village Parkway, W4.	6B.344,	E-mail: raymond_	tole@xtoenergy	v.com	
7	Air Permit Contact ¹ : Raymond (TJ) Tole		Title: Environmen	tal Engineer		
a	E-mail: raymond_tole@xtoenerg	gy.com		Phone/Fax: (832)	624-4426		
b	Mailing Address: 22777 Springs	woods Village Parkway, W4.	6B.344, Sprin	g, TX 77389			
	¹ The Air Permit Contact will rec	eive official correspondence	from the Depa	artment.			
0	Will this facility operate in conju	unction with other air regulat	ed parties on t	he same property?	⊠ No	Yes	;
8	If yes, what is the name and NO	I or permit number (if known	n) of the other	facility?			
2)	Applicability						
1	Is the facility located in Bernalil					⊠No	Yes
	answered Yes to the question above						
2	Is the facility's SIC code 1311, I all the equipment at the facility is			es may be approved	provided that	□No	⊠Yes
3	Does the regulated equipment un	nder this GCP-Oil and Gas R	egistration inc		on of	□No	⊠Yes
4	Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit, and no others? Will the regulated equipment as specified in this GCP-Oil and Gas Registration emit less than the total No Yes						
	emissions in Table 106 of the GCP-Oil and Gas permit?						
5	Does all equipment comply with the stack parameter requirements as established in the GCP-Oil and Gas Permit?						
6	Equipment shall be at least 100 meters (m) from any stack to terrain that is five (5) or more meters above the top of the stack. Will the equipment at the facility meet this terrain requirement?						
7	Is the facility at least 150 m from any source that emits over 25 tons/year of NO _x ? This is the distance between the two nearest stacks that emit NO _x at each of the facilities. Not the facility boundaries or the						
	between the two nearest stacks t center to center distances.	hat emit NOx at each of the f	facilities. Not i	the facility boundari	es or the		
8	Is the facility at least 3 miles fro	m any Class I area? This is the	he distance fro	om the nearest facilit	y boundary to	□No	⊠Yes
T.C.	the nearest boundary of the Clas		1:0 0 .1:		•.		
	answered NO to any of questions		iality for this	general construction	permit.		
3)	Current Facility Stat	us					
1	Has this facility already been constructed? Yes No If yes, is it currently operating in New Mexico? Yes No						
2	Does this facility currently have a construction permit or Notice of Intent (NOI) (20.2.72 NMAC or 20.2.73 NMAC)? Yes No If yes, the permit No. or NOI No., and whether it will remain active or not:						
3	Is this Registration in response to a Notice of Violation (NOV)? Yes Nov date: NOV Tracking No.						
4	Check if facility is a: Minor Source: Synthetic Minor Source: (SM80 = Controlled Emissions > 80 TPY of any regulated air pollutant):					nt): 🛚	
4)	Facility Location Info						
1	a) Latitude (decimal degrees): 32.111087	b) Longitude (decimal degr -103.958233	rees):	c) County: Eddy	d) Elevat 3094	ion (ft):	
2	a) UTM Zone: ☐12 or ☐13 b) UTME (to nearest 10 meters) 598280 c) UTMN (to nearest 10 meters): 3553220						

GCP-Oil and Gas Form: 10 December 2019

3	e) Specify which datum is used: NAD 27 NAD 83 WGS 84 See this link for more info. http://en.wikipedia.org/wiki/North_American_Datum						
4	Name and zip code of nearest New Mexico town and tribal community: Malaga - 88263						
5	Detailed Driving Instructions including direction and distar necessary). If there is no street address, provide public road Rd. Drive 2.4 mi. to L on Longhorn Rd. Drive 1.8 mi. to L R at Y, then right at Y after 0.7 mi. Drive 0.3 mi. to R, then	d mileage marker: Drive S on U on Pipeline Road 1. Drive 1.8 m	S 285 for 12.5 mi. to L on Whitehorn i. to L on lease road. After 2.2 mi., go				
6	The facility is 10.2 (distance) miles SE (direction) of Malag	ga, NM (nearest town).					
7	Land Status of facility (check one): Private Indian/	Pueblo 🗌 Government 🔀 BI	LM Forest Service Military				
5)	Other Facility Information						
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL).	Oil (bbl/day): 25,000 Gas (MMscf/day): 60.84 NGL (bbl/day):	(bbl/yr): 9,124,999 (MMscf/yr): 22,207 (bbl/yr):				
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.	□No ⊠Yes					
6) S	ubmittal Requirements						
1	Include one hard copy original signed and notarized Reg ias we bind the document on top, not on the side; except lan is not possible, print single sided. Please use numbered ta process.	dscape tables, which should be	nead-to-head. If 'head-to-toe printing'				
2	Include one double sided hard copy, flip on long edge for	r Department use. This <u>copy</u> doe	es not need to be 2-hole punched.				
3	The entire Registration package should be submitted electronically on one compact disk (CD). Include a single PDF document of the entire Registration as submitted and the individual documents comprising the Registration. The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDFs of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. Spreadsheets must be unlocked since we must be able to review the formulas and inputs.						
	Ensure all of these are included in both the electronic and hard copies.						
	 \Box Word Document part of the Registration Form (Sections 1 and 3-10) \Box Excel Document part of the Registration Form (Section 2) \Box Air Emissions Calculation Tool (AECT) If there is a justified reason for including other calculations, include the unlocked Excel Spreadsheet. Justification must be provided in Section 5 of the application. \Box PDF of entire application 						
	To avoid errors, it is best to start with both a blank version of this form and the AECT for each application.						

Section 2 Tables

February 2020: Revision 0

Section 2 Tables

Insert Excel spreadsheet with applicable tables filled out. If applicable to the facility all tables must be filled out completely. The unit numbering system must be consistent throughout this Registration

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/22/2020

				Tabl	e 2-A:	Regulated	Emission	Sources		
Unit and	stack numbering mus	st correspond througho	ut the applicat	ion package.	Equipment			under 20.2.7	2.202.B	
Unit Number ¹	Source Description	Manufacturer/Make /Model	Serial#	Manufact- urer's Rated Capacity ³ (Specify	Requested Permitted Capacity ³ (Specify	Date of Manufacture ² Date of Construction/	Controlled by Unit # Emissions vented to	Source Classi- fication Code (SCC)	RICE Ignition Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
	ELECTRIC			Units)	Units)	Reconstruction ²	Stack #			
BC1- BC2	BOOSTER COMPRESSORS	TBD	TBD	N/A	N/A	TBD TBD	N/A N/A	31088811	N/A	 □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
FUG	FUGITIVE EMISSIONS	TBD	TBD	N/A	N/A	TBD TBD	N/A N/A	31088811	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
	THE A THER					TBD	N/A			□ Existing (unchanged) □ To be Removed
HT1	HEATER TREATER	TBD	TBD	4 MMBtu/hr	4 MMBtu/hr	TBD	HT1	31000404	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
HTTO	HEATER	TDD	TDD	4	4	TBD	N/A	21000404	27/4	☐ Existing (unchanged) ☐ To be Removed
HT2	TREATER	TBD	TBD	MMBtu/hr	MMBtu/hr	TBD	HT2	31000404	N/A	✓ New/Additional□ To Be Modified□ To be Replaced
	VAPOR		mp.p.	27/1	27/1	TBD	VRU1 & LPF			☐ Existing (unchanged) ☐ To be Removed
VRT	RECOVERY TOWER	TBD	TBD	N/A	N/A	TBD	LPF	N/A	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
MADILL	VAPOR	TDD	TDD	3.1/4	27/4	TBD	LPF	27/4	27/4	☐ Existing (unchanged) ☐ To be Removed
VRU1	RECOVERY UNIT FOR VRT	TBD	TBD	N/A	N/A	TBD	LPF	N/A	N/A	✓ New/Additional□ To Be Modified□ To be Replaced
VDIIO	VAPOR	TDD	TDD	NT/A	NT/A	TBD	LPF	NI/A	21/4	□ Existing (unchanged) □ To be Removed
VRU2	RECOVERY UNIT FOR OIL TANKS	TBD	TBD	N/A	N/A	TBD	LPF	N/A	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
OT1	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
011	TANK	IBD	TDD	730 001	750 001	TBD	LPF	40400312	IVA	☐ To Be Modified ☐ To be Replaced
ОТ2	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
012	TANK	155	TDD	750 001	750 001	TBD	LPF	10100312	1011	☐ To Be Modified ☐ To be Replaced
ОТ3	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
013	TANK	155	155	750 001	750 001	TBD	LPF	10100312		☐ To Be Modified ☐ To be Replaced
OT4	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
	TANK					TBD	LPF			☐ To Be Modified ☐ To be Replaced
OT5	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
	TANK					TBD	LPF			☐ To Be Modified ☐ To be Replaced
ОТ6	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
	TANK					TBD	LPF			☐ To Be Modified ☐ To be Replaced
SKTK1	SKIM TANK	TBD	TBD	1000 bbl	1000 bbl	TBD	LPF	40400315	N/A	 □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
						TBD	LPF			☐ To Be Modified ☐ To be Replaced

						Regulated				
Unit and	stack numbering mus	st correspond througho	ut the applicat	ion package.	Equipment	•		under 20.2.7	2.202.B	
Unit Number ¹	Source Description	Manufacturer/Make /Model	Serial #	Manufact- urer's Rated Capacity ³ (Specify	Requested Permitted Capacity ³ (Specify	Date of Manufacture ² Date of Construction/	Controlled by Unit # Emissions vented to	Source Classi- fication Code (SCC)	=	For Each Piece of Equipment, Check Onc
				Units)	Units)	Reconstruction ²	Stack #			
SKTK2	SKIM TANK	TBD	TBD	1000 bbl	1000 bbl	TBD TBD	LPF LPF	40400315	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
										☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed
WT1	PRODUCED WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD TBD	LPF LPF	40400315	N/A	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced
	PRODUCED					TBD	LPF			☐ Existing (unchanged) ☐ To be Removed
WT2	WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
M/T2	PRODUCED	TDD	TDD	750111	750111	TBD	LPF	40400215	27/4	☐ Existing (unchanged) ☐ To be Removed
WT3	WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
WT4	PRODUCED	TBD	TBD	750 1.1.1	750 1-1-1	TBD	LPF	40400215	NT/A	☐ Existing (unchanged) ☐ To be Removed
W14	WATER TANK	IBD	IBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
WT5	PRODUCED	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
W 13	WATER TANK	IBD	IBD	730 001	730 001	TBD	LPF	40400313	IN/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
WTC	PRODUCED	TDD	TDD	750111	750111	TBD	LPF	40400215	27/4	☐ Existing (unchanged) ☐ To be Removed
WT6	WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
HDE	HIGH	Т1-	TDD	60	60	TBD	N/A	21000160	NT/A	☐ Existing (unchanged) ☐ To be Removed
HPF	PRESSURE FLARE	Tornado	TBD	MMscf/d	MMscf/d	TBD	HPF	31000160	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
HPF-HT	HIGH	T. 1	TDD	3.7/4	NT/ A	TBD	N/A	21000160	27/4	☐ Existing (unchanged) ☐ To be Removed
SSM	PRESSURE FLARE - HT SSM	Tornado	TBD	N/A	N/A	TBD	HPF	31000160	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
HPF-	HIGH PRESSURE	m 1	TDD	3.7/4	NT/ A	TBD	N/A	21000160	27/4	☐ Existing (unchanged) ☐ To be Removed
SALES SSM	FLARE - SALES GAS SSM	Tornado	TBD	N/A	N/A	TBD	HPF	31000160	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
LDE	LOW PRESSURE	T 1	TDD	2 MM (/1	2.3434 (/1	TBD	N/A	21000160	NT/A	☐ Existing (unchanged) ☐ To be Removed
LPF	FLARE - PILOT	Tornado	TBD	2 MMscf/d	2 Minisci/d	TBD	LPF	31000160	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
LPF-	LOW PRESSURE	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
VRT	FLARE - VRT	Tornauo	עמו	1 1/71	11/71	TBD	LPF	31000100	11/71	☐ To Be Modified ☐ To be Replaced
LPF-OT	LOW PRESSURE FLARE - OIL	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
L11-01	TANKS	Tornado	100	11/71	11/71	TBD	LPF	31000100	1071	☐ To Be Modified ☐ To be Replaced
LPF-TL	LOW PRESSURE FLARE - TRUCK	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
LFT-1L	LOADING	Tornado	עמו	11/71	18/74	TBD	LPF	31000100	11/71	☐ To Be Modified ☐ To be Replaced

				Tabl	e 2-A:	Regulated	Emission	Sources		
Unit and s	stack numbering mus	st correspond througho	ut the applicat	ion package.	Equipment	that qualifies for	an exemption	under 20.2.72	2.202.B	
Unit				Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	
Number ¹	Source Description	Manufacturer/Make /Model	Serial#	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
I DE WE	LOW PRESSURE	T. 1	TDD	27/4	3 T/4	TBD	N/A	21000160	27/1	☐ Existing (unchanged) ☐ To be Removed
LPF-W I	FLARE - WATER TANKS	Tornado	TBD	N/A	N/A	TBD	LPF	31000160	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
LPF- VRT	LOW PRESSURE FLARE - VRT	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
SSM	SSM					TBD	LPF			☐ To Be Modified ☐ To be Replaced
LPF-OT	LOW PRESSURE FLARE - OIL	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
SSM	TANK SSM					TBD	LPF			☐ To Be Modified ☐ To be Replaced
TL-O	TRUCK LOADING - OIL	N/A	N/A	1,825,000		TBD	LPF	40600132	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
TL-O	(UNCOLLECTED VAPORS)	IV/A	11/14	bbl/yr	bbl/yr	TBD	LPF	40000132	IVA	☐ To Be Modified ☐ To be Replaced
TL-W	TRUCK LOADING - H20	N/A	N/A	1,825,000	1,825,000	TBD	N/A	40600250	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
1 L-W	(UNCOLLECTED VAPORS)	IN/A	IN/A	bbl/yr	bbl/yr	TBD	N/A	40600250	IN/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
ROAD	ROAD	N/A	N/A	N/A	N/A	N/A	N/A	31088811 N/A		□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
ROAD	EMISSIONS	N/A	N/A	13/73	13/71	N/A	N/A	31088811	17/14	☐ To Be Modified ☐ To be Replaced

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

^{4&}quot;4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ¹ Date of Installation	For Each Piece of Equipment, Check Onc
						/Construction ¹	
	None						☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ To Be Modified □ To be Replacement Unit □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
LPF	Low Pressure Flare	TBD	VOC, HAPs	OT1-6, SKTK1-2, WT1-6, VRT, TL-O	98%	Manufacturer Data
VRU1	Vapor Recovery Unit	TBD	VOC, HAPs	VRT	98%	Engineering Estimate
VRU2	Vapor Recovery Unit	TBD	VOC, HAPs	OT1-6	98%	Engineering Estimate
HPF	High Pressure Flare	TBD	VOC, HAPs	Sales Gas, Heater Treater	98%	Manufacturer Data
List each con	ntrol device on a separate line. For each control device, list all e	mission units	controlled by the control device.	•		-

² Glycol Dehydration Units: Indicate each stream that is being controlled and which unit is controlling each stream (condensables, non-condensables, flash tank, reboiler etc.)

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

11	NO	Ox	C	O	V(OC	SC	Ox	PM	110 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
BC1 & BC2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	2.44	10.69	-	-	-	-	-	-	-	-	-	-
HT1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	ı	-	1	-
HT2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	1	-	1	-
VRT	-	-	1	-	11613.56	12716.85	ı	-	1	-	-	-	0.23	0.25	ı	-
OT1	-	-	•	-	268.78	539.12	-	-	•	-	-	-	0.00	0.01	1	-
OT2	-	-	ı	-	268.78	539.12	1	-	1	-	-	-	0.00	0.01	1	-
OT3	-	-	•	-	268.78	539.12	-	-	•	-	-	-	0.00	0.01	1	-
OT4	-	-	ı	-	268.78	539.12	1	-	1	-	-	-	0.00	0.01	1	-
OT5	-	-	•	-	268.78	539.12	-	-	•	-	-	-	0.00	0.01	1	-
OT6	-	-	-	-	268.78	539.12	-	-	-	-	-	-	0.00	0.01	1	-
SKTK1	-	-	1	-	73.78	80.83	1	-	ı	-	-	1	0.03	0.03	•	-
SKTK2	-	-	1	-	73.78	80.83	1	-	ı	-	1	1	0.03	0.03	•	-
WT1	-	-	•	-	0.51	0.57	-	-	•	-	-	-	0.00	0.00	1	-
WT2	-	-	ı	-	0.51	0.57	1	-	1	-	-	-	0.00	0.00	1	-
WT3	-	-	•	-	0.51	0.57	-	-	•	-	-	-	0.00	0.00	1	-
WT4	-	-	1	-	0.51	0.57	1	-	ı	-	1	1	0.00	0.00	•	-
WT5	-	-	1	-	0.51	0.57	1	-	ı	-	-	1	0.00	0.00	•	-
WT6	-	-	1	-	0.51	0.57	1	-	ı	-	ı	1	0.00	0.00	•	-
HPF	0.08	0.34	0.15	0.67	0.16	0.68	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	•	-
LPF	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	•	-
TL-O	-	-	-	-	59.53	224.65	-	-	-	-	-	-	0.08	0.30	-	-
TL-W	-	-	-	-	0.00	0.01	-	-	-	-	-	-	0.00	0.00	-	-
ROAD	-	-	-	-	-	-	-	-	0.48	1.67	0.05	0.17	-	-	-	-
Totals	1.24	5.41	1.17	5.13	13439.11	16353.31	0.01	0.03	0.57	2.07	0.14	0.56	0.40	0.68	0	0

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Tirit No	N	Ox	CC)	V(OC	S	Ox	PM	110 ¹	PM	[2.5]	Н	I ₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
BC1-BC2	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
FUG	-	-	-	-	2.44	10.69	-	-	-	-	1	-	-	-	-	-
HT1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	-	-	-	-
HT2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	-	-	-	-
TL-O	-	-	-	-	0.77	2.92	-	-	1	-	ı	-	0.00	0.00	-	-
TL-W	-	-	-	-	0.00	0.01	-	-	-	-	-	-	0.00	0.00	-	-
ROAD	0.48 1.67 0.05 0.17									-	-					
VRT	Emissions Represented at LPF.															
OT1	Emissions Represented at LPF.															
OT2	Emissions Represented at LPF.															
OT3	Emissions Represented at LPF.															
SKTK1	Emissions Represented at LPF.															
SKTK2	Emissions Represented at LPF.															
WT1								ns Represe								
WT2								ns Represe								
WT3								ns Represe								
WT4								ns Represe								
WT5								ns Represe								
WT6								ns Represe								
HPF-NO	0.08	0.34	0.15	0.67	0.16	0.68	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	-	-
HPF-HT SSM	23.78	2.60	47.47	5.20	91.10	9.98	0.26	0.03	0.07	0.01	0.07	0.01	0.00	0.00	-	-
HPF-SALES SSM	484.82	11.75	967.88	23.46	988.72	23.96	3.87	0.09	19.27	0.47	19.27	0.47	0.04	0.00	-	-
LPF-NO	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	-	-
LPF-VRT	0.85	0.83	1.69	1.67	4.65	4.58	0.01	0.01	0.02	0.02	0.02	0.02	0.00	0.00	-	-
LPF-OT	0.12	0.17	0.23	0.35	0.65	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	
LPF-TL	0.15	0.65	0.30	1.31	0.84	3.69	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00		
LPF-WT	2.04 2.85 4.07 5.68 3.01 3.30 0.11 0.15 0.09 0.12 0.09 0.12 0.00 0.00															
LPF-VRT SSM																
LPF-OT SSM	M 5.84 2.88 11.65 5.76 32.25 16.17 0.06 0.03 0.12 0.06 0.12 0.06 0.00 0.00															
Totals	560.21	31.79	1117.09	57.79	1351.72	103.00	4.73	0.39	21.01	2.85	20.58	1.35	0.05	0.01	0	0

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type	Serving Unit Number(s) from	Orientation	Height Above	Temp.	Flow Rate	Velocity	Inside Diameter (ft)
(Engine,	Table 2-A	(H-Horizontal	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (it)
Heater	HT1	Vertical	20	1000	25	31.5	1.00
Heater	HT2	Vertical	20	1000	25	31.5	1.00
Flare	HPF	Vertical	145	1800	366	671.9	0.83
Flare	LPF	Vertical	40	1800	404	128.8	2.00

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the

threshold amounts described above. Add additional rows as necessary.

Stack No.	Unit No.(s)		HAPs	n-He	exane	Ben	zene	Name	Pollutant Here IAP	Name	Pollutant Here IAP	Namo	Pollutant Here IAP	Name	Pollutant Here IAP	Name Hero	Pollutant e
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FUG	FUG	0.13	0.59	0.05	0.22	0.03	0.11		-	-	-	-	-	-	-	-	-
HT1	HT1	0.01	0.03	0.01	0.03	0.00	0.00	1	-	-	-	-	-	-	-	-	-
HT2	HT2	0.01	0.03	0.01	0.03	0.00	0.00	-	-	-	-	-	-	-	-	-	-
TL-O	TL-O	0.03	0.11	0.02	0.06	0.01	0.02	-	-	-	-	-	-	-	-	-	-
TL-W	TL-W	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-	-	-	-	-	-	-
ROAD	ROAD			-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	VRT	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT1	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT2	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT3	See LPF	See LPF	-	-	•	-	-	-	1	-	-	-	1	-	-	-
LPF	OT4	See LPF	See LPF	ı	-	1	-	•	-	-	-	1	-	-	-	-	-
LPF	OT5	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT6	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	SKTK1	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	SKTK2	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT1	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT2	See LPF	See LPF		-	1	-	1	-	-	-	-	-	-	-	-	-
LPF	WT3	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT4	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT5	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT6	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HPF	HPF-NO	0.00	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HPF	HPF-HT SSM	3.59	0.39	1.84	0.20	0.83	0.09	-	-	-	-	-	-	-	-	-	-
HPF	HPF-SALES SSM	29.15	0.71	15.30	0.37	6.95	0.17	-	-	-	-	-	-	-	-	-	-
LPF	LPF-NO	0.00	0.01	-	-		-	-	-	-	-	-	-	-	-	-	-
LPF	LPF-VRT	0.20	0.19	5.09	0.56	2.31	0.25	-	-	-	-	-	-	-	-	-	-
LPF	LPF-OT	0.03	0.04	0.01	0.02	0.01	0.01	-	-	-	-	-	-	-	-	-	-
LPF	LPF-TL	0.03	0.13	0.02	0.08	0.01	0.03	-	-	-	-	-	-	-	-	-	-
LPF	LPF-WT	0.30	0.32	0.01	0.01	0.16	0.18	-	-	-	-	-	-	-	-	-	-
LPF	LPF-VRT SSM	9.77	1.07	5.09	0.56	2.31	0.25	-	-	-	-	-	-	-	-	-	-
LPF	LPF-OT SSM	1.31	0.63	0.70	0.35	0.30	0.13	-	-	-	-	-	-	-	-	-	-
Tot	als:	44.33	4.28	28.15	2.50	12.90	1.25	-	-	-	-	-	-	-	-	-	-

Specify fuel chara		-J: Allowable Fuels and F		ombustion Emiss	sion Unit	s:		
1 2		Fuel Source		Specify Units				
Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	(purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO2 percentage (%) of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value (BTU/SCF)	Annual Fuel Usage (MMSCF/y)	Fuel an Conte O&C	the Allowable and Fuel Sulfur ant meet GCP G Condition A110.A?
HT1	Field Gas	Field Natural Gas	N/A	N/A	1385.8	25.3	✓ Yes	☐ No
HT2	Field Gas	Field Natural Gas	N/A	N/A	1385.8	25.3	✓ Yes	☐ No
HPF	Field Gas	Field Natural Gas	N/A	N/A	1385.8	3.5	✓ Yes	□ No
LPF	Field Gas	Field Natural Gas	N/A	N/A	1385.8	1.8	✓ Yes	□No

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Unit and stack numbering must correspond throughout the application package.

include approp	priate tank-nasi	ning modeling input data. Unit an	d stack numbering	must correspond	unroughout the	application pac	kage.					
Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space (M)	Со	lor	Separator Pressure (psia)	Annual Throughput (gal/yr)	Turn- overs (per year)
							(141)	Roof	Shell	(psia)	(gal/yl)	(per year)
OT1	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	ОТ	OT	17.7	63,874,996	2,028
OT2	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	ОТ	OT	17.7	63,874,996	2,028
OT3	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	ОТ	OT	17.7	63,874,996	2,028
OT4	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	ОТ	OT	17.7	63,874,996	2,028
OT5	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	17.7	63,874,996	2,028
OT6	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	17.7	63,874,996	2,028
SKTK1	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	1,000	4.7	9.1	OT	OT	101.7	459,904,447	10,950
SKTK2	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	1,000	4.7	9.1	OT	OT	101.7	459,904,447	10,950
WT1	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT2	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT3	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT4	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT5	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT6	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	ОТ	OT	15.1	153,300,000	4,867

Section 3 Registration Summary

Section 3 Registration Summary

<u>The Registration Summary:</u> Provide information about the registration submittal. The Registration Summary shall include a brief description of the facility and its process. In case of a modification to a facility, please describe the proposed changes.

Specify Facility Type: Check the appropriate box below:
☐ Production Site
☐ Tank Battery
Compressor Station
☐ Natural Gas Plant
Other, please specify:
Registration Summary: This application requests a GCP-O&G permit for a proposed facility under 20.2.72 NMAC. The
Corral Canyon 23 is an oil and gas production battery, with an average well production of 20,000 BOPD, 60,000 BWPD, an
60.84 MMscfd. An additional 5,000 BOPD of dead oil may be transferred directly into the storage tanks from surrounding
patteries. The site will consist of the following permitted equipment:

- WT1-WT6: Six (6) produced water tanks
- OT1-OT6: Six (6) oil tanks
- O SKTK1-SKTK2: Two (2) water skim tanks
- o BC1-BC2: Two (2) electric booster compressors
- o FUG: Fugitive equipment leaks
- o HT1-HT2: Two (2) heater treaters
- o TL-O: Truck loading of oil
- o TL-W: Truck loading of water
- o ROAD: Haul road emissions
- O VRT: Vapor recovery tower
- VRU1: Vapor recovery unit for VRT
- VRU2: Vapor recovery unit for OT1-OT6
- o HPF: High pressure flare
- o LPF: Low pressure flare

Written description of the routine operations of the facility: Mixed hydrocarbons (20000 BOPD/60000 BWPD/60.84 MMSCFD) enter the facility through inlet separators where the gas is sent to the sales line and the oil is sent to auxiliary heaters (HT1-HT2). The remainder of the gas is picked up by electric booster compressors (BC1-BC2) for sales. During normal operation, 100% of the gas is routed to sales. During BC1-BC2 downtime (876 hours), all gas is flared at the high pressure flare (HPF). Water from the inlet is routed to two water skim tanks (SKTK1-SKTK2), then to six water storage tanks (WT1-WT6). Skim tank and water tank vapors are routed to the low pressure flare (LPF).

Oil flows from the heaters to a vapor recovery tower (VRT), then to six sales tanks (OT1-OT6). Gas from the VRT is routed to a vapor recovery unit (VRU)/flare closed vent system. Gas is picked up for sales by the VRU (VRU1), with gas routed to LPF during VRU downtime. XTO assumes a VRU collection efficiency of 98%, with 876 hours of downtime. Up to 5,000 BOPD of dead oil may also be piped into OT1-OT6. Gas from the oil tanks is also routed to a VRU/LPF vent system, with the tanks using VRU2. XTO assumes a VRU collection efficiency of 98%, with 2,190 hours of downtime. Oil is primarily shipped offsite via pipeline LACT; however 1,825,000 barrels per year of oil truck loading and 1,825,000 barrels per year of water truck loading were included. 98.7% of the loading vapors are routed to LPF, with the remaining volume accounted for at the truck loading station.

HPF would also be used in the event of third party sales line maintenance or downtime which required gas flaring. These emissions are illustrated in the application.

A process flow diagram is included in Section 4 of the application.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/22/2020

XTO Energy Inc. Corral Canyon 23 February 2020: Revision 0

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM): SSM emissions related to VRU downtime are illustrated at the low pressure flare. Booster compressor downtime and any internal or sales line maintenance is illustrated at the high pressure flare.

<u>Malfunction Emissions (M):</u> Malfunctions would be reported in accordance with 20.2.7 NMAC.

The permit does not authorize emissions from SSM and Malfunction to be combined as 10 TPY VOC. However, they may be permitted separately. In the allowable emissions table in Section 2, these two events are separate line items and must be kept separate.

1		
Allowable Oper	cations: Check the appr	ropriate box below:
☐ Facility ope	rates continuously (876)	0 hours per year)
	ng regulated equipment oject to Condition A108	will operate less than 8760 hours per year. Add additional rows as necessary. These c.C of the Permit.
Table A – Equ	ipment Operating Les	s Than 8760 hours per year
Unit #	Requested Annual Operating Hours	
Verification of	f Compliance with St	tack Parameter Requirements:
	Stack Calculator and Solow is required to be file	tack Requirements Explained Guidance on our website: All of the verification lled out.

www.env.nm.gov/air-quality/air-quality-oil-and-gas-gcp-application-forms/

Check the box for each type of equipment at this facility:

	Engine(s)
	Turbine(s)
X	Flares(s)
	Enclosed Combustion Device (s)
\times	Heater(s)
	Reboiler(s)

For each type of equipment checked above, complete the applicable section below.

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/22/2020

XTO Energy Inc. Corral Canyon 23 February 2020: Revision 0

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emis		hr		
Engine/Generator/Heater/Reboiler Unit Number	1	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
HT1	20	1000	31.5	1
HT2	20	1000	31.5	1
Table 1 Minimum Parameters: For verification, list the minimum parameters based on the NOx lb/hr emission rate from the GCP O&G Table 1.	5.9	571	49.2	0.3

4.	Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP O&G?
	Yes. Skip step 5 below.
\boxtimes	No. Go to step 5 below.

- 5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.
 - The heaters emit less than 1.23 lb/hr.

Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Table C: Turbine/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total I	NOx Emission Rate:	lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

4.	Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP
	O&G?
	Yes. Skip step 5 below.
	No. Go to step 5 below.

5. For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G, explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page 18 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

February 2020: Revision 0

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Table D: Flare Stack Height Parameter Verification:

Flare Unit Number	SO ₂ Emission Rate (lb/hr)	Height (ft)	Table 3 Minimum Stack Height: For verification, list the minimum height parameters based on the SO2 emission rate from the GCP O&G Table 3.
HPF	4.12	145	9.8
LPF	0.60	40	6.6

4.	Do all flares comply with minimum stack height requirements? ☐ Yes ☐ No
5.	Does the flare gas contain 6% H₂S or less by volume (pre-combustion)? ☐ Yes. Skip step 6 below. ☐ No. Go to step 6 below.
6.	Explain in detail how assist gas will be added to reduce the gas composition to 6% H ₂ S or less by volume.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/22/2020

XTO Energy Inc. Corral Canyon 23 February 2020: Revision 0 **Enclosed Combustion Device(s) (ECD):**

According facility:	ng to GCP O&G Condition A208.A, the facility must meet one of the following options if an ECD is installed at the
Option 1	<u>.</u>
1.	Will the ECD(s) meet the SO₂ emission limit of 0.7 lb/hr and operate with a velocity of at least one (1) foot per second? Yes. Skip Option 2 below. No. Go to Option 2 below.
Option 2).
2.	Will the ECD(s) meet the SO_2 emission limit of 0.9 lb/hr and operate with a velocity of at least two (2) feet per second? Yes No

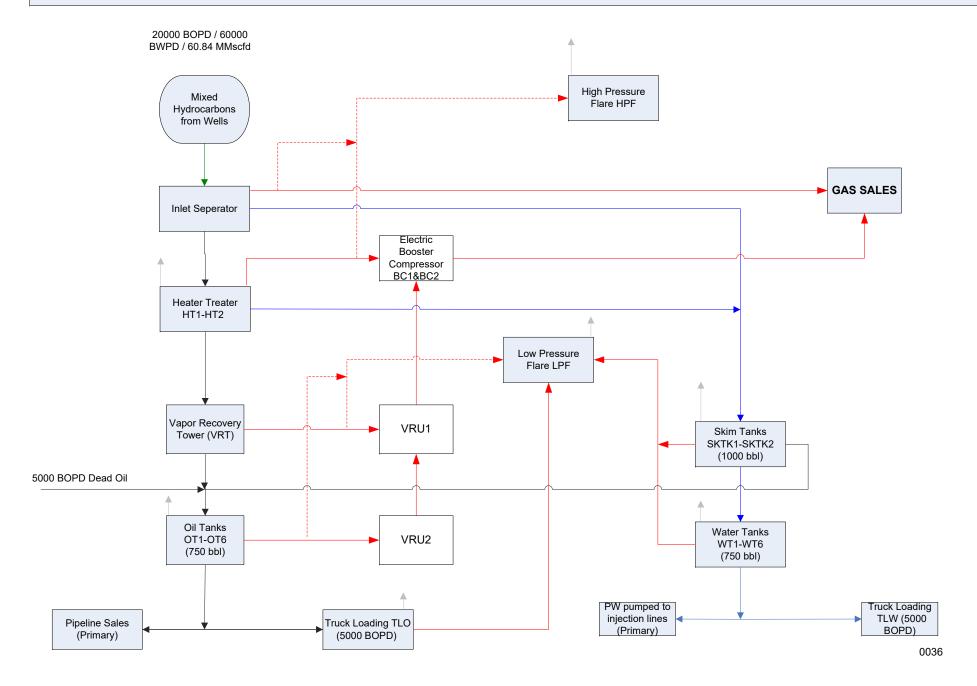
GCP-Oil and Gas Form: 10 December 2019 Printed: 2/22/2020

Section 4 Process Flow and Description of Routine Operations

Section 4

February 2020: Revision 0

Process Flow Sheet


Attach a <u>process flow sheet</u> indicating all individual equipment, all emission points, and types of control applied to those points. All units must be labeled, and the unit numbering system must be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water). The process flow sheet must be a legible size.

A process flow diagram is included.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/22/2020

0035

XTO Energy Inc. Corral Canyon 23 Process Flow Diagram

Section 5 Emissions Calculations Forms

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration. If the AECT, for a piece of equipment is under development, provide alternate calculations. **Do not include alternative calculations unless there is an issue being resolved with the AECT. This will delay review of the application.** The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. The inputs must match the gas analyses information submitted. Inputs that don't match may be grounds for denial of the application submittal.

<u>SSM Calculations</u>: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank).

<u>Control Devices:</u> Report all control devices and list each pollutant controlled by the control device. Indicate in this section if you chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

<u>Calculation Details:</u> The AECT is required for all emission calculations. If the AECT is not functioning, alternative calculations may be submitted only for the portions of the AECT with issues being resolved. Utilize this section to explain in detail, on an equipment-by-equipment basis, why alternative calculations are necessary.

Explain here: The AECT does not work for the LPF since there are more streams than the AECT can manage. The AECT does not work for the storage tanks since we consider the VRU to be 98% efficient instead of 100%. The AECT also cannot handle differing downtimes. The AECT will work only for the heaters, roads, and VRT emissions. Since XTO assumes the burners are only 70% efficient, the AECT does not match the Excel calculations. Since XTO breaks down the liquid and gas compositions for each section of the plant, the fugitive calculations are more accurate than the AECT, which uses the same analysis across the site.

Equipment Forms Submitted in this Section (add additional rows as necessary):

Equipment Type	Quantity	Check Box to Indicate Units that are Controlled	Enter Control Device Type and Pollutant Controlled
Engine			
Turbine			
Tanks	15		Oil – VRU/Flare; Skim & Water – Flare (VOC/HAP)
Generator			
VRU	2		Flare (VOC/HAP)
VRT	1		VRU/Flare (VOC/HAP)
ULPS			
Glycol Dehydrator			
Flare	2	\boxtimes	Sales gas, Tank Vapors, VRT Vapors, Truck loading (VOC/HAP)

Form Revision: 10 December 2019 Printed: 2/22/2020

ATO Energy Inc.		2011	ar Carryon 25
Amine Unit		П	
Cryogenic Unit			
Fugitive Emissions	1		
Heater	2		
Truck Loading	2		Flare (VOC/HAP)
Enclosed Combustion			List all streams controlled by the ECD
Device (ECD)	1	Ш	, and the second
Thermal Oxidizer (TO)			List all streams controlled by the TO
Other			
Other			
copy and paste each appl	icable section a	ınd label th	e emissions unit, control device, or gas combustion scenario. Please e unit number(s) if the scenarios vary. eator, or Flash Tower Located Upstream of Storage Vessels: If the
	following units opriate box. RU1 er and VRU Conpressor	located ups	stream of the storage vessels and is used to flash and capture flashing
capture flashing emissions of NSPS OOOO or NSPS Unit number:	prior to any sto OOOOa. A pro	rage vessels cess vs cont	torage Vessels: Check the box below if the facility is using a VRU to sto limit the PTE of the storage vessels to below applicability thresholds trol determination should be prepared for this type of VRU application.
storage vessel emissions to Unit number: VRU2 VRU controlling Stora 60.5411	limit the PTE t	o below NS	essels: Check the box below if this facility is using a VRU to reduce PS OOOO or NSPS OOOOa applicability thresholds: he facility is subject to the requirements under NSPS OOOO, 40 CFR he facility is subject to the requirements under NSPS OOOOa, 40 CFR
scenarios. Flares shall ass	ume a destruction efficient	on efficienc	arios below and check the boxes next to any appropriate facility operating y of 95%, unless the facility is subject to requirements for flares under 40 98%) is supported by a manufacturer specification sheet (MSS) for that
Unit number: HPF/LPF Controls storage vesses Provides a federally experience of the controls of the glycol de controls the amine under controls truck loading Operates only during of the controls of the control of the controls of the controls of the control	els in accordance inforceable control of OOOa. The control of the	e with 40 C rol for the st LPF ents, such as downtime an uring VRU	pustion device (ECD), thermal oxidizer (TO): FR 60, Subpart OOOO or OOOOa. Forage vessels to limit the PTE to below applicability thresholds of 40 FOR VRU downtime, check one below: For represented as uncontrolled VOC emissions from the compressor downtime are represented as controlled emissions from the combustion
☐ Controls the facility d			
Amine Unit: Provide the Design Capacity in MMsc. Rich Amine Flowrate in ga	f/day	nation for e	ach amine unit.

Form Revision: 10 December 2019 Printed: 2/24/2020 ₀₀₃₉

Lean Amine Flowrate in gal/min	
Mole Loading H ₂ S	
Sour Gas Input in MMscf/day	

Glycol Dehydration Unit(s): Provide the following information for each glycol dehydration unit:

Please include an extended gas analysis in Section 6 of this application.										
<u>Unit #</u>	Glycol Pump Circulation Rate									
requirements of 40 CFR 60.5416(a). This monitoring	quirements, and Inspections for Tanks ice Inspection ack Loading partment-approved Equivalent									
	ag in accordance with Condition A212: Check the box that applies. cility is below the fugitive H ₂ S screening threshold in Condition A212, or									
Condition A212.A applies. Because the facility is facility is voluntarily complying with Condition	s above the fugitive H ₂ S screening threshold in Condition A212, or the A212.A, and Condition A212.A applies									

Form Revision: 10 December 2019 Printed: 2/22/2020 ₀₀₄₀

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY FACILITY EMISSIONS SUMMARY

EMISSIONS SUMMARY TABLE FACILITY voc SO_2 PM_{10} HAPs CO2e EMISSION SOURCE NOx CO IDENTIFICATION STACK (INCLUDES HAPs) DESCRIPTION NUMBER NUMBER lb/hr TPY 1b/hr TPY 1b/hr TPY lb/hr TPY lb/hr TPY 1b/hr TPY TPY FUGITIVE EMISSIONS FUG 2.44 10.69 0.13 0.59 322.48 HEATER TREATER HT1 HT1 0.56 2.45 0.47 2.06 0.03 0.13 0.00 0.01 0.04 0.19 0.01 0.03 2051.91 HEATER TREATER HT2 HT2 0.56 2.45 0.47 2.06 0.03 0.13 0.00 0.01 0.04 0.19 0.01 0.03 2051.91 TRUCK LOADING - OIL (UNCOLLECTED VAPORS) TL-O TL-O 0.77 2.92 0.03 0.11 0.33 TRUCK LOADING - H20 TL-W TL-W 0.00 0.01 0.00 0.00 1.79 UNCOLLECTED VAPORS) ROAD EMISSIONS ROAD ROAD ---0.48 1.67 Emissions Represented at LPF. VAPOR RECOVERY TOWER VRT LPF OIL STORAGE TANK OT1 LPF Emissions Represented at LPF. OIL STORAGE TANK OT2 LPF Emissions Represented at LPF OIL STORAGE TANK OT3 LPF Emissions Represented at LPF. OIL STORAGE TANK LPF Emissions Represented at LPF. OIL STORAGE TANK OT5 LPF Emissions Represented at LPF. OIL STORAGE TANK OT6 LPF Emissions Represented at LPF. SKIM TANK SKTK1 LPF Emissions Represented at LPF. SKIM TANK SKTK2 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT1 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT2 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT3 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT4 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT5 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT6 LPF Emissions Represented at LPF. HIGH PRESSURE FLARE - NORMAL HPF-NO HPF 0.34 0.15 0.67 0.16 0.68 0.00 0.00 0.01 0.00 0.02 0.08 0.00 OPERATION HIGH PRESSURE FLARE - HT SSM HPF-HT SSM HPF 23.78 2.60 47.47 5.20 91.10 9.98 0.26 0.03 0.07 0.01 3.59 0.39 11570.08 HIGH PRESSURE FLARE - SALES HPF-SALES SSM HPF 484.82 11.75 967.88 23.46 988.72 23.96 3.87 0.09 19.27 0.47 29.15 0.71 GAS SSM LOW PRESSURE FLARE - PILOT LPF-NO LPF 0.04 0.17 0.08 0.33 0.08 0.34 0.00 0.00 0.00 0.01 0.00 0.01 LOW PRESSURE FLARE - VRT LPF-VRT 0.85 0.83 1.69 1.67 4.65 4.58 0.01 0.01 0.02 0.02 0.20 0.19 LOW PRESSURE FLARE - OIL LPF-OT LPF 0.12 0.17 0.23 0.35 0.65 0.97 0.00 0.00 0.00 0.00 0.03 0.04 LOW PRESSURE FLARE - TRUCK LPF-TL LPF 0.15 0.65 0.30 1.31 0.84 3.69 0.00 0.00 0.00 0.01 0.03 0.13 11340.46 LOADING

LOW PRESSURE FLARE - WATER

TANKS

LPF-WT

LPF

2.85

2.04

4.07

5.68

3.01

3.30

0.11

0.15

0.09

0.12

0.30

0.32

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY FACILITY EMISSIONS SUMMARY

EMISSIONS SUMMARY TABLE FACILITY IDENTIFICATION NUMBER (FIN) VOC (INCLUDES HAPs) co SO_2 PM_{10} HAPs CO2e STACK NUMBER NOx EMISSION SOURCE DESCRIPTION lb/hr TPY lb/hr TPY lb/hr lb/hr 1b/hr TPY TPY lb/hr TPY TPY TPY LOW PRESSURE FLARE - VRT SSM LPF-VRT SSM LPF 42.35 84.54 9.26 232.27 25.43 0.43 0.05 0.90 0.10 9.77 1.07 4.64 LOW PRESSURE FLARE - OIL TANK SSM LPF-OT SSM LPF 5.84 2.88 11.65 5.76 32.25 16.17 0.06 0.03 0.12 0.06 1.31 0.63 UTILITY FLARES: HIGH PRESSURE 11570.08 HPF HPF 508.67 14.69 1015.51 29.33 1079.98 34.62 4.12 0.12 19.34 0.49 32.75 1.12 SUMMARY UTILITY FLARES: LOW PRESSURE SUMMARY LPF LPF 50.41 100.64 24.35 268.46 54.49 0.60 0.24 1.11 0.32 11.40 2.40 11340.46 VOC (INCLUDES HAPs) NOx CO SO_2 PM_{10} HAPs CO2e TOTAL FACILITY WIDE EMISSIONS TPY TPY lb/hr 1b/hr TPY 1b/hr lb/hr TPY lb/hr TPY 1b/hr TPY TPY 560.21 31.79 1117.09 57.79 1351.72 103.00 4.73 0.39 21.01 2.85 44.33 4.28 27338.96

CORRAL CANYON 23 TANK BATTERY

FACILITY EMISSIONS SUMMARY - UNCONTROLLED EMISSIONS DURING NORMAL OPERATION

			EMIS	SIONS S	UMMAR	YTABLE								
	FACILITY IDENTIFICATION		N	Ox		O	V	OC ES HAB-)	s	O ₂	P	M ₁₀	н	APs
EMISSION SOURCE DESCRIPTION	NUMBER (FIN)	STACK NUMBER	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
FUGITIVE EMISSIONS	FUG	FUG		-	_	-	2.44	10.69	_	_	-	_	0.13	0.59
IEATER TREATER	HT1	HT1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03
HEATER TREATER	HT2	HT2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03
APOR RECOVERY TOWER	VRT	LPF		-		-	11613.56	12716.85	-	-	-	-	488.29	534.6
DIL STORAGE TANK	OT1	LPF		-		_	268.78	539.12	1			-	10.89	21.0
DIL STORAGE TANK	OT2	LPF		-		-	268.78	539.12	-		-	-	10.89	21.0
DIL STORAGE TANK	ОТ3	LPF		-		-	268.78	539.12			-	-	10.89	21.0
KIM TANK	OT4	LPF		-		-	268.78	539.12	-		-	-	10.89	8.89
KIM TANK	OT5	LPF		-		_	268.78	539.12	_		_	-	10.89	8.89
PRODUCED WATER TANK	OT6	LPF		-	_	-	268.78	539.12			_	_	10.89	8.89
KIM TANK	SKTK1	LPF		-	_	-	73.78	80.83			_	_	7.26	7.95
KIM TANK	SKTK2	LPF				_	73.78	80.83	-				7.26	7.95
PRODUCED WATER TANK	WT1	LPF	-	-	-	_	0.51	0.57					0.05	0.07
PRODUCED WATER TANK	WT2	LPF					0.51	0.57	_				0.05	0.07
PRODUCED WATER TANK	WT3	LPF	-	-	-	_	0.51	0.57					0.05	0.07
PRODUCED WATER TANK	WT4	LPF		-		_	0.51	0.57	1			-	0.05	0.07
PRODUCED WATER TANK	WT5	LPF					0.51	0.57	_				0.05	0.07
PRODUCED WATER TANK	WT6	LPF		-		_	0.51	0.57	1			-	0.05	0.07
JTILITY FLARES: HIGH PRESSURE SUMMARY	HPF	HPF	0.08	0.34	0.15	0.67	0.16	0.68	0.00	0.00	0.00	0.01	0.00	0.02
JTILITY FLARES: LOW PRESSURE SUMMARY	LPF	LPF	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01
TRUCK LOADING - OIL UNCOLLECTED VAPORS)	TL-O	TL-O		-	-	_	59.53	224.65	-	_		-	2.21	8.36
TRUCK LOADING - H20 UNCOLLECTED VAPORS)	TL-W	TL-W		-	-	_	0.00	0.01	1	_		_	0.00	0.00
OAD EMISSIONS	ROAD	ROAD		-	-	_	-		-		0.48	1.67	_	-
			N	Юх		ю	V	ЭС	s	O ₂	P	M ₁₀	н	APs
TOTAL FACILITY WII	DE EMISSIONS		lb/hr	TPY	lb/hr	TPY	(INCLUE	ES HAPs) TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TP
TOTAL MILET I WIL		1.24	5.41	1.17	5.13	13439.11	16353.31	0.01	0.03	0.57	2.07	570.84	649.8	

CORRAL CANYON 23 TANK BATTERY

Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

 $Emission \ Rate_{\chi}(lb/hr) = Burner \ Rating \ (MMBTU/hr) * EF_{\chi} \ (lb/MMSCF) \ / \ Heating \ Value \ of \ Fuel \ Gas \ (BTU/SCF)$

Annual Emission Rate $_{\rm X}$ (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_GAS * $H_2S_{WEIGHT\,\%}$ * (1 - DRE)

 $P = Pressure\ (psia),\ V = Fuel\ Consumed\ in\ a\ hour\ (ft^3/hr),\ 10.73 = Ideal\ Gas\ Constant,\ T = Temperature\ (^\circR)$

Uncontrolled H_2S Mass Flow Rate (lb/hr) = $P * V / 10.73 / T * MW_{GAS} * H_2S_{WEIGHT \%}$

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) *SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 MW_{GAS} = Molecular Weight of the Gas, $H_2S_{WEIGHT\%}$ = Weight Percent of the H_2S in the Fuel Gas, DRE = Burner Combustion Efficiency of H_2S

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY BURNER CALCULATIONS

	CRITERIA & REGULATED POLLUTANTS																	
						CKIII	EKIA &	REGUL	AIEDF	OLLU1.	ANIS							
						AP-42 Factor	ro ¹		1									
						lb/MMSCF					lb/hr			tpy				
Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr) ²	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}	NOx CO VOC			SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}
HT1	1385.8	8760	4.00	136	114	7.5	0.82	10.3	0.56	0.47	0.03	0.00	0.04	2.45	2.06	0.13	0.01	0.19
HT2	1385.8	8760	4.00	136	114	7.5	0.82	10.3	0.56	0.47	0.03	0.00	0.04	2.45	2.06	0.13	0.01	0.19
	tors are adjusted for Site Fuel Heating Value: Example Calculation - Nox Factor = 100 * 1273.6/1020 = 125 lb/MMSCF. AP-42 Table 1.4-1, 1.4-2, & 1.4-3.																	
0% burner effic	iency.													NOx	со	VOC	SO ₂	PM _{10 & 2.5}
												Tota	l (tpy)	4.91	4.12	0.27	0.03	0.37
HAZARDOUS AIR POLLUTANTS (HAPs)																		
						HAZA	ARDOU	S AIR P	OLLUT	ANTS (I	HAPs)							
						HAZA	ARDOU	S AIR P	OLLUT	ANTS (I	HAPs)							
					2	HAZA		S AIR P	OLLUT.	ANTS (I	HAPs)							
							rs	S AIR P	OLLUT	ANTS (I	HAPs)					tpy		
Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene		AP-42 Facto	rs	S AIR Po	OLLUT. Benzene	ANTS (F	,	НСНО	Diclorobenz	Benzene	Toluene	tpy N-Hexane	НСНО	Diclorobenz
Source ID				Benzene 0.002853		AP-42 Facto	rs				lb/hr	HCHO 0.000294	Diclorobenz	Benzene 0.000036	Toluene 0.000058		HCHO 0.001288	Diclorobenz
	(BTU/SCF)	Hours	(MMBTU/Hr)		Toluene	AP-42 Facto lb/MMSCF N-Hexane	rs HCHO	Diclorobenz	Benzene	Toluene	lb/hr N-Hexane					N-Hexane		Diclorobenz 0.000021 0.000021
HT1	(BTU/SCF) 1385.8	Hours 8760	(MMBTU/Hr) 4.00	0.002853	Toluene 0.004619	AP-42 Factor lb/MMSCF N-Hexane 2.446	rs HCHO 0.101901	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059	0.000294	0.000005	0.000036	0.000058	N-Hexane 0.030918	0.001288	0.000021
HT1	(BTU/SCF) 1385.8	8760 8760	(MMBTU/Hr) 4.00	0.002853	Toluene 0.004619	AP-42 Factor lb/MMSCF N-Hexane 2.446	rs HCHO 0.101901	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059 0.007059	0.000294	0.000005	0.000036	0.000058	N-Hexane 0.030918	0.001288	0.000021
HT1 HT2 Source: AP-42 1	(BTU/SCF) 1385.8 1385.8 Fable 1.4-1, 1.4-2	8760 8760 8760	(MMBTU/Hr) 4.00	0.002853 0.002853	Toluene 0.004619 0.004619	AP-42 Facto lb/MMSCF N-Hexane 2.446 2.446	HCHO 0.101901 0.101901	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059 0.007059	0.000294	0.000005	0.000036	0.000058	N-Hexane 0.030918 0.030918	0.001288	0.000021

CORRAL CANYON 23 TANK BATTERY

BURNER CALCULATIONS - GHG EMISSIONS

CRITERIA & REGULATED POLLUTANTS

				40 CFR 98 Factors ¹ lb/MMSCF				lb/hr		Tons / Year			
Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	(()	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	
HT1	1385.8	8760	4.00	117	0.002	0.0002	467.989	0.009	0.001	2049.793	0.039	0.004	
HT2	1385.8	8760	4.00	117	0.002	0.0002	467.989	0.009	0.001	2049.793	0.039	0.004	
*Source: 40 C	Source: 40 CFR 98						Total I	missions (To	ns/Year)	4099.585	0.077	0.008	

	Conversion to CO2e												
Source	CO ₂	CH4	CH4 → CO2e	N2O	N2O → CO2e	Total CO2e							
HT1	2049.793	0.039	0.966	0.004	1.151	2051.910							
HT2	2049.793	0.039	0.966	0.004	1.151	2051.910							
Total	4099.585	0.039	0.966	0.004	1.151	4101.702							

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY AUXH - EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Exhaust Stack and Fuel Consumption Data

Source Name	AUXH1 and AUXH2
Burner Rating (btu/hr)	4000000
Heating Value (btu/scf)	1386
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1
Stack Temperature (°F)	1000
Stack Diameter (ft)	1
Stack Height (ft)	20
Fuel Consumption (scf/hr)	2886
Fuel Consumption (scf/day)	69272
Fuel Consumption (mmscf/year)	25.284
Air Injection Rate (scf/hr)	28863.2
Total exhaust flow rate @ STP (scf/hr)	31749.5
Total exhaust flow rate @ STP (scf/sec)	8.8
Total exhaust flow rate @ 1000 °F (acf/hr)	89142.8
Total exhaust flow rate @ 1000 °F (acf/sec)	24.8
Exhaust Stack Exit Velocity @ STP (ft/sec)	11.229
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	31.528

¹Air/Gas Ratio is based on the Manufacturer's Data of XTO's typical burner installations

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY FUEL GAS ANALYSIS - PROMAX RESULTS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Carbon Dioxide	0.1764	0.3297
Nitrogen	0.9102	1.0827
Methane	69.3253	47.2273
Ethane	14.8343	18.9416
Propane	8.2101	15.3736
Isobutane	1.1013	2.7181
n-Butane	2.6972	6.6571
Isopentane	0.6000	1.8384
n-Pentane	0.6421	1.9672
n-Hexane	0.1350	0.4940
Cyclohexane	0.0236	0.0844
i-C6	0.2144	0.7847
i-C7	0.2681	1.1406
Methylcyclohexane	0.0076	0.0317
Octane	0.0666	0.3230
Nonane	0.0102	0.0558
Benzene	0.0676	0.2242
Toluene	0.0361	0.1412
Ethylbenzene	0.0017	0.0077
o-Xylene	0.0077	0.0347
H2S	0.0009	0.0013
Water	0.6555	0.5015
2,2,4 Trimethylpentane	0.0081	0.0393
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000

MOLECULAR WEIGHT	23.55
SATURATED BTU	1385.8
NMHC	50.86
VOCs (NMNEHC)	31.92
HAPs	0.94
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

CORRAL CANYON 23 TANK BATTERY

Methodology for Flare Calculations

Flare Calculations

VOC Flare Calculations - Uses the Ideal Gas Law for Mixtures

VOC Mass Flow Rate (lb/day) = P * V / 10.73 / T * MW_{GAS} * VOC_{WEIGHT} % * (1 - DRE)

P = Pressure (psia), V = Volume of Gas in a Day (ft³/day), 10.73 = Ideal Gas Constant, T = Temperature (°R)

 $MW_{GAS} = Molecular\ Weight\ of\ the\ Gas,\ VOC_{WEIGHT\%} = Weight\ Percent\ of\ the\ Total\ VOC,\ DRE = Flare\ Destruction\ Efficiency$

NOx & CO Calculations - TCEQ Emission Factors Used

NOx (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^6 (BTU/MMBTU)

 $CO (lb/day) = Heating \ Value \ (BTU/ft^3) * EF (lb/MMBTU) * V (ft^3/Day) / 10^6 \ (BTU/MMBTU)$

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

*NOx and CO Emission Factors are the highest of Low BTU and High BTU options for TCEQ Flare Emission Factors - Calculating emissions using these factors overestimates either NOx or CO depending on the Heating Value of the Gas

SO₂ & H₂S Calculations - Mass Balance

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_GAS * $H_2S_{WEIGHT\,\%}$ * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * $H_2S_{WEIGHT \%}$

 $SO_{2}\ Emission\ Rate\ (lb/hr) = Uncontrolled\ H_{2}S\ Mass\ Rate\ (lb/hr) * SO_{2}\ Conversion\ Efficiency * (MW\ of\ SO_{2}\ (lb/lb-mol))\ /\ MW\ of\ H_{2}S\ (lb/lb-mol))$

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 $MW_{GAS} = Molecular \ Weight \ of the \ Gas, H_2S_{WEIGHT\%} = Weight \ Percent \ of \ the \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ of \ H_2S \ in \ Gas \ Stream, \ Gas \$

CORRAL CANYON 23 TANK BATTERY

COMBINED HP & LP FLARING - TOTAL EMISSIONS SUMMARY

Flare Emissions Summary Table

Stream Source	NOx		СО		Total VOC (Includes Total HAPs)		SO_2		PM _{10 & 2.5}		Total HAPs		CO2e
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY
High Pressure Flaring	508.67	14.69	1015.51	29.33	1079.98	34.62	4.12	0.12	19.34	0.49	32.75	1.12	11570.08
Low Pressure Flaring	50.41	12.20	100.64	24.35	268.46	54.49	0.60	0.24	1.11	0.32	11.40	2.40	11340.46
Total Emissions	559.09	26.89	1116.15	53.67	1348.44	89.11	4.72	0.37	20.45	0.81	44.15	3.52	22910.54

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY HP FLARING - TOTAL EMISSIONS SUMMARY

Flare Emissions Summary Table

Stream Source	N	Эx	C	О		VOC otal HAPs)	S	O_2	PM_1	0 & 2.5	Total	HAPs
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Pilot Fuel & Purge Gas	0.08	0.34	0.15	0.67	0.16	0.68	0.00	0.00	0.00	0.01	0.00	0.02
Booster Compressor SSM	23.78	2.60	47.47	5.20	91.10	9.98	0.26	0.03	0.07	0.01	3.59	0.39
Sales Gas Flaring	484.82	11.75	967.88	23.46	988.72	23.96	3.87	0.09	19.27	0.47	29.15	0.71
Total Emissions	508.67	14.69	1015.51	29.33	1079.98	34.62	4.12	0.12	19.34	0.49	32.75	1.12

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY HP FLARE - PILOT & PURGE GAS

Flare Pilot & Purge Gas Emissions

Pilot Fuel + Purge Gas	9600	SCF/Day
Duration	8760	Hours/Year
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
BTU	1385.85	Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO ¹	3.665	3.665	0.15	0.67
NOx^1	1.836	1.836	0.08	0.34
VOCs ²	3.744	3.744	0.16	0.68
SO_2^3	0.015	0.015	0.00	0.00
H_2S^3	0.000	0.000	0.00	0.00
PM _{10 & 2.5}	0.073	0.073	0.00	0.01

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC weight % * Gas MW

 $^{^3}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 $^{^4}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER GAS ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1934	0.2592
Nitrogen	0.2235	0.1907
Methane	41.2006	20.1266
Ethane	23.1369	21.1846
Propane	17.9810	24.1438
Isobutane	2.7664	4.8961
n-Butane	7.0706	12.5139
Isopentane	1.7152	3.7682
n-Pentane	1.8965	4.1666
n-Hexane	0.4451	1.1679
Cyclohexane	0.0781	0.2002
i-C6	0.6778	1.7786
i-C7	0.9228	2.8157
Methylcyclohexane	0.0269	0.0804
Octane	0.2611	0.9080
Nonane	0.0441	0.1724
Benzene	0.2205	0.5245
Toluene	0.1298	0.3642
Ethylbenzene	0.0067	0.0217
o-Xylene	0.0305	0.0987
H2S	0.0017	0.0018
Water	0.9424	0.5170
2,2,4 Trimethylpentane	0.0284	0.0986
Decanes Plus	0.0001	0.0007
Total	100.00	100.0000

MOLECULAR WEIGHT	32.84
SATURATED BTU	1889.48
NMHC	78.90
VOCs (NMNEHC)	57.72
HAPs	2.28
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

CORRAL CANYON 23 TANK BATTERY

HEATER TREATER GAS - FLARING VOC EMISSIONS

Heater Treater VOC Emissions¹

Emissions Component	Uncontro	olled Heater Treat	Controlled Heater Treater S (Booster Downtime - 10 Flared) ²		
	Max lb/hr	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	20.455	5.114	22.398	0.409	0.045
Nitrogen	15.046	3.762	16.476	0.301	0.033
Methane	1588.340	397.085	1739.232	31.767	3.478
Ethane	1671.835	417.959	1830.660	33.437	3.661
Propane	1905.367	476.342	2086.377	38.107	4.173
Isobutane	386.386	96.596	423.092	7.728	0.846
n-Butane	987.563	246.891	1081.381	19.751	2.163
Isopentane	297.374	74.343	325.624	5.947	0.651
n-Pentane	328.817	82.204	360.054	6.576	0.720
n-Hexane	92.167	23.042	100.923	1.843	0.202
Cyclohexane	15.801	3.950	17.302	0.316	0.035
i-C6	140.364	35.091	153.699	2.807	0.307
i-C7	222.209	55.552	243.319	4.444	0.487
Methylcyclohexane	6.344	1.586	6.946	0.127	0.014
Octane	71.659	17.915	78.467	1.433	0.157
Nonane	13.605	3.401	14.898	0.272	0.030
Benzene	41.389	10.347	45.321	0.828	0.091
Toluene	28.743	7.186	31.473	0.575	0.063
Ethylbenzene	1.715	0.429	1.878	0.034	0.004
o-Xylene	7.789	1.947	8.529	0.156	0.017
H2S	0.139	0.035	0.152	0.003	0.000
Water	40.801	10.200	44.677	0.816	0.089
2,2,4 Trimethylpentane	7.783	1.946	8.523	0.156	0.017
Decanes Plus	0.059	0.015	0.065	0.001	0.000

Emissions Component	Uncontrolled Heater Treater Stream			Controlled Heater Treater Stream (Booster Downtime - 100% Flared) ²		
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	
STREAM TOTAL	7891.75	1972.94	8641.46	157.83	17.28	
VOC TOTAL	4555.13	1138.78	4987.87	91.10	9.98	
HAP TOTAL	179.59	44.90	196.65	3.59	0.39	

¹Uncontrolled emissions and gas volume are based on Promax Results. Treater vapors are collected for sales by booster compressor. 100% of vapors are flared during booster downtime.

²Controlled Emissions were calculated by the following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare Reduction = 98% Booster Collection Efficiency = 100%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by booster downtime.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY HP FLARE COMBUSTION EMISSIONS - HEATER TREATER GAS

Heater Treater Gas Routed to HP Flare During Booster Downtime - Combustion Emissions

Daily Treater Gas Flared Hourly Treater Gas Flared Daily Treater Gas Flared	2,188,638 91,193 547,159	SCF/Day (Based on Maximum Hourly) SCF/Hr (Based on Maximum Hourly) SCF/Day (Based on Annual Average)
Annual Treater Gas Flared	19,971,321	SCF/Year (Based on Annual Average)
Duration	876	Hours/Year
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	1889.48	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	47.47	5.20
NOx^1	23.78	2.60
SO_2^2	0.26	0.03
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.07	0.01

¹ The CO and NOx emission factors (0.2755 and 0.138 lb/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

² Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY INLET GAS ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1764	0.3297
Nitrogen	0.9102	1.0827
Methane	69.3253	47.2273
Ethane	14.8343	18.9416
Propane	8.2101	15.3736
Isobutane	1.1013	2.7181
n-Butane	2.6972	6.6571
Isopentane	0.6000	1.8384
n-Pentane	0.6421	1.9672
n-Hexane	0.1350	0.4940
Cyclohexane	0.0236	0.0844
i-C6	0.2144	0.7847
i-C7	0.2681	1.1406
Methylcyclohexane	0.0076	0.0317
Octane	0.0666	0.3230
Nonane	0.0102	0.0558
Benzene	0.0676	0.2242
Toluene	0.0361	0.1412
Ethylbenzene	0.0017	0.0077
o-Xylene	0.0077	0.0347
H2S	0.0009	0.0013
Water	0.6555	0.5015
2,2,4 Trimethylpentane	0.0081	0.0393
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000

MOLECULAR WEIGHT	23.55
SATURATED BTU	1385.85
NMHC	50.86
VOCs (NMNEHC)	31.92
HAPs	0.94
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY HP FLARE COMBUSTION EMISSIONS

HP Gas Routed to HP Flare - Sales Gas Downtime - Combustion Emissions

Total Gas Flared 60,841,018 SCF/Day Total Gas Flared 122,881,458 SCF/Year Duration 48 Hours/Year² Flared Yes (Yes/No) Vented No (Yes/No) **Heat Content** 1385.85 Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr) ¹	Annualized Emission Rate (TPY)
CO ¹	23229.18	23229.18	967.88	23.46
NOx ¹	11635.67	11635.67	484.82	11.75
VOCs ²	23729.31	23729.31	988.72	23.96
SO_2^3	92.77	92.77	3.87	0.09
H_2S^3	0.99	0.99	0.04	0.00
PM _{10 & 2.5}	462.39	462.39	19.27	0.47
HAPs ²	699.71	699.71	29.15	0.71
n-Hexane ²	367.26	367.26	15.30	0.37
Benzene ²	166.71	166.71	6.95	0.17

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * Weight % * Gas MW

 $^{^3}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

⁴ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY HIGH PRESSURE FLARING EMISSIONS - GHG

Pilot Consumpt		Inlet Gas Fl		Treater Gas F	
(scf/year	,	(scf/ye	,	(scf/yea	,
3,504,000		122,881	,458	19,971,3	321
Pilot & Purg	e Gas	Inlet Gas Co	ombusted	Treater Gas Co	ombusted
		Ea,CH4 = Va * XCH4	* [(1- η)* ZL + ZU	•	
Va =	3504000	Va =	122881458	Va =	19971321
XCH ₄ =	0.6933	XCH ₄ =	XCH ₄ = 0.6933		0.4120
N =	0.98	N =	0.98	N =	0.98
Z _L =	1	Z _L =	Z _L = 1		1
Z _U =	0	Z _U =	$\mathbf{Z}_{\mathbf{U}} = 0$		0
Ea,CH ₄ =	48583	Ea,CH ₄ =	1703758	Ea,CH ₄ =	164566
		Ea,CO2 (uncombust	ed) = Va * XCO2		
Va =	3504000	Va =	122881458	Va =	19971321
X _{CO2} =	0.0018	X _{CO2} =	0.0018	X _{CO2} =	0.0018
Ea,CO2 (uncombusted)	6182	Ea,CO2 (uncombusted)	216809	Ea,CO2 (uncombusted)	35237
		Ea,CO2 (combusted) = Σ	(η * Va * Yj * Rj * ZL)		
Ea,CO2 (combusted) =	5125546	Ea,CO2 (combusted) =	179747317	Ea,CO2 (combusted) =	41723932
		Es,n = Ea,n * (459.67 + Ts)	* Pa / (459.67 + Ta) * Ps		
$E_{a,n}(CH4) =$	43735	$E_{a,n}(CH4) =$	1533735	$E_{a,n}(CH4) =$	148143
$E_{a,n}(CO2) =$	4619618	$E_{a,n}(CO2) =$	162004957	$E_{a,n}(CO2) =$	37591895
		Masss,i = Es,i	i * ρi * 103		
Mass _{CH4}	0.840	Mass _{CH4}	29.448	Mass _{CH4}	2.844
Mass _{C02}	242.992	Mass _{C02}	8521.461	Mass _{C02}	1977.334
		CO2e = CO2 + (CH4 X GWP)		
CO ₂	243	CO ₂	8521	CO ₂	1977
CH₄	1	CH ₄	29	CH ₄	3
CO ₂ e	264	CO ₂ e	9258	CO ₂ e	2048

CORRAL CANYON 23 TANK BATTERY

LP FLARING - TOTAL EMISSIONS SUMMARY

Flare Emissions Summary Table - Total Emissions

	Normal Operations												
Stream Source	NOx		C	CO (In		Total VOC (Includes Total HAPs)		SO_2		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Pilot Fuel & Purge Gas	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01	
Vapor Recovery Tower (VRT)	0.85	0.83	1.69	1.67	4.65	4.58	0.01	0.01	0.02	0.02	0.20	0.19	
Oil Storage Tanks	0.12	0.17	0.23	0.35	0.65	0.97	0.00	0.00	0.00	0.00	0.03	0.04	
Truck Loading of Oil	0.15	0.65	0.30	1.31	0.84	3.69	0.00	0.00	0.00	0.01	0.03	0.13	
Skim & Water Tanks	2.04	2.85	4.07	5.68	3.01	3.30	0.11	0.15	0.09	0.12	0.30	0.32	

VRU Downtime Emissions - SSM												
Stream Source	NOx		C	О		VOC Total HAPs)	S	O_2	PM_1	0 & 2.5	Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Vapor Recovery Tower (VRT)	42.35	4.64	84.54	9.26	232.27	25.43	0.43	0.05	0.90	0.10	9.77	1.07
Oil Storage Tanks	5.84	2.88	11.65	5.76	32.25	16.17	0.06	0.03	0.12	0.06	1.31	0.63

Low Pressure Flaring Summary												
Stream Source	NOx		NOx CO (In			VOC otal HAPs)	SO ₂		PM _{10 & 2.5}		Total HAPs	
Sueam Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Normal Operations ¹	2.23	4.68	4.45	9.33	3.93	12.88	0.11	0.17	0.09	0.16	0.33	0.70
VRU Downtime - SSM	48.18	7.52	96.19	15.01	264.52	41.61	0.49	0.07	1.02	0.16	11.07	1.70
Combined Flaring Total ²	50.41	12.20	100.64	24.35	268.46	54.49	0.60	0.24	1.11	0.32	11.40	2.40

1 Hourly emissions during normal operations do not include emissions from the VRT & Oil Tanks during normal operation as they cannot occur at the same time as VRU downtime.

²Combined Flaring Hourly Rates denotes the peak hourly rate possible.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - PILOT & PURGE GAS

Flare Pilot & Purge Gas Emissions

Pilot Fuel + Purge Gas	4800	SCF/Day
Duration	8760	Hours/Year
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
BTU	1385.85	Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO ¹	1.833	1.833	0.08	0.33
NOx ¹	0.918	0.918	0.04	0.17
VOCs ²	1.872	1.872	0.08	0.34
SO_2^3	0.007	0.007	0.00	0.00
H_2S^3	0.000	0.000	0.00	0.00
PM _{10 & 2.5}	0.036	0.036	0.00	0.01

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC weight % * Gas MW

³ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

⁴ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LOW PRESSURE FLARING EMISSIONS - GHG

LP FLARE - GHG EMISSIONS

Pilot Consumpt (scf/year			Total LP Flare Gas Rate (scf/year)		
1,752,00	0	82,259,6	82,259,647		
Pilot & Press	a Cas	Total Cas Con	whereto d		
Pilot & Purg		Total Gas Cor	nbustea		
**		(CH ₄ * [(1- η)* ZL + ZU	02050745		
Va =	1752000	Va =	82259647		
XCH ₄ =	0.6933	XCH ₄ =	0.1473		
N =	0.98	N =	0.98		
Z _L =	1	Z _L =	1		
$Z_U =$	0	$Z_U =$	0		
Ea,CH ₄ =	24292	Ea,CH ₄ =	242304		
	E _{a,CO2} (uncor	nbusted) = $V_a * X_{CO2}$			
Va =	1752000	Va =	82259647		
X _{CO2} =	0.0018	X _{CO2} =	0.0017		
Ea,CO2 (uncombusted)	3091	Ea,CO2 (uncombusted)	139616		
•	Ea,CO2 (combusted	$I) = \sum (\eta * Va * Yj * Rj * ZL)$			
Ea,CO2 (combusted) =	2562773	Ea,CO2 (combusted) =	234360042		
	Es,n = Ea,n * (459.67	+ Ts) * Pa / (459.67 + Ta) * Ps			
$E_{a,n}(CH4) =$	21867	$E_{a,n}(CH4) =$	218124		
E _{a,n} (CO2) =	2309809	E _{a,n} (CO2) =	211098223		
<u>'</u>	Mass _{s,i}	= E _{s,i} * ρi * 10 ³			
Mass _{CH4}	0.420	Mass _{CH4}	4.188		
Mass _{C02}	121.496	Mass _{C02}	11103.767		
	CO ₂ e = CO	D ₂ + (CH ₄ X GWP)			
CO ₂	121	CO ₂	11104		
CH₄	0.4	CH ₄	4.2		
CO ₂ e	132	CO ₂ e	11208		

0061

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY VRT VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1076	0.1033
Nitrogen	0.0227	0.0139
Methane	10.9458	3.8298
Ethane	22.3190	14.6370
Propane	30.7298	29.5538
Isobutane	5.7507	7.2899
n-Butane	15.3038	19.3999
Isopentane	3.8349	6.0345
n-Pentane	4.2203	6.6409
n-Hexane	0.9459	1.7778
Cyclohexane	0.1663	0.3052
i-C6	1.4769	2.7758
i-C7	1.9000	4.1523
Methylcyclohexane	0.0547	0.1171
Octane	0.4849	1.2080
Nonane	0.0761	0.2128
Benzene	0.4737	0.8070
Toluene	0.2601	0.5226
Ethylbenzene	0.0125	0.0290
o-Xylene	0.0563	0.1303
H2S	0.0022	0.0016
Water	0.7984	0.3137
2,2,4 Trimethylpentane	0.0575	0.1432
Decanes Plus	0.0001	0.0005
Total	100.00	100.0000

MOLECULAR WEIGHT	45.85
SATURATED BTU	2589.13
NMHC	95.74
VOCs (NMNEHC)	81.10
HAPs	3.41
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

CORRAL CANYON 23 TANK BATTERY VAPOR RECOVERY TOWER EMISSIONS

VRT VOC Emissions Routed to VRU/Flare Vent System¹

Emissions Component	Uncor	trolled VRT St	ream		VRT Stream Operations)	Controlled VRT Stream (VRU Downtime - 100% Flared)		
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
Carbon Dioxide	14.785	3.696	16.190	0.006	0.006	0.296	0.032	
Nitrogen	1.987	0.497	2.176	0.001	0.001	0.040	0.004	
Methane	548.424	137.106	600.525	0.219	0.216	10.968	1.201	
Ethane	2096.013	524.003	2295.134	0.838	0.826	41.920	4.590	
Propane	4232.082	1058.020	4634.129	1.693	1.668	84.642	9.268	
Isobutane	1043.915	260.979	1143.087	0.418	0.412	20.878	2.286	
n-Butane	2778.057	694.514	3041.972	1.111	1.095	55.561	6.084	
Isopentane	864.141	216.035	946.234	0.346	0.341	17.283	1.892	
n-Pentane	950.971	237.743	1041.313	0.380	0.375	19.019	2.083	
n-Hexane	254.573	63.643	278.757	0.102	0.100	5.091	0.558	
Cyclohexane	43.699	10.925	47.851	0.017	0.017	0.874	0.096	
i-C6	397.496	99.374	435.259	0.159	0.157	7.950	0.871	
i-C7	594.610	148.653	651.098	0.238	0.234	11.892	1.302	
Methylcyclohexane	16.773	4.193	18.367	0.007	0.007	0.335	0.037	
Octane	172.979	43.245	189.412	0.069	0.068	3.460	0.379	
Nonane	30.477	7.619	33.372	0.012	0.012	0.610	0.067	
Benzene	115.563	28.891	126.541	0.046	0.046	2.311	0.253	
Toluene	74.834	18.709	81.944	0.030	0.029	1.497	0.164	
Ethylbenzene	4.148	1.037	4.542	0.002	0.002	0.083	0.009	
o-Xylene	18.666	4.666	20.439	0.007	0.007	0.373	0.041	
H2S	0.232	0.058	0.254	0.000	0.000	0.005	0.001	
Water	44.922	11.231	49.190	0.018	0.018	0.898	0.098	
2,2,4 Trimethylpentane	20.502	5.126	22.450	0.008	0.008	0.410	0.045	
Decanes Plus	0.074	0.019	0.081	0.000	0.000	0.001	0.000	

Emissions Component	uncontrolled VRT Stream			Controlled \(\text{Normal C}\)	VRT Stream Operations)	Controlled VRT Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	14319.93	3579.98	15680.32	5.73	5.64	286.40	31.36
VOC TOTAL	11613.56	2903.39	12716.85	4.65	4.58	232.27	25.43
HAP TOTAL	488.29	122.07	534.67	0.20	0.19	9.77	1.07

 $^{\rm l}$ Uncontrolled emissions and gas volume are based on Promax Results. VRT vapors are collected for sales by a VRU. 100% of vapors are flared during VRU downtime.

 2 Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by VRU downtime.

Normal Operations	VRU Collection Efficiency	98%
VRU Downtime	VRU Collection Efficiency	0%
VRU Downtime	Hours	876
Flare Destruction Effici	98%	

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - VAPOR RECOVERY TOWER - NORMAL OPERATIONS

VRT Emissions Routed to VRU/Flare Vent System

2844486	SCF/Day (Based on Maximum Hourly)
118520	SCF/Hour (Based on Maximum Hourly)
711122	SCF/Day (Based on Annual Average)
98	Percentage
2370	SCF/Hour (Based on Maximum Hourly)
7884	Hours/Year
4672069	SCF/Year (Based on Annual Average)
Yes	(Yes/No)
No	(Yes/No)
2589.13	Btu/SCF
	118520 711122 98 2370 7884 4672069 Yes No

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	1.69	1.67
NOx^1	0.85	0.83
SO_2^2	0.01	0.01
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.02	0.02

 $^{^{1} \} The \ CO \ and \ NOx \ emission \ factors \ (0.2755lb \ and \ 0.138/MMBtu) \ are \ based \ on \ TCEQ \ document \ RG-109, \ Basis \ for \ Emission \ Calculation \ from \ Flare \ Systems.$

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation:\ SCF/day\ ^*14.7\ /\ 10.73\ /\ 528\ ^*H2S\ PPM\ ^*H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - VAPOR RECOVERY TOWER - VRU DOWNTIME

VRT Emissions Flared During VRU Downtime

Daily VRT Gas Volume	2844486	SCF/Day (Based on Maximum Hourly)
Hourly VRT Gas Volume	118520	SCF/Hour (Based on Maximum Hourly)
Daily VRT Gas Volume	711122	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	0	Percentage
Hourly VRT Gas Volume	118520	SCF/Hour (Based on Maximum Hourly)
Duration	876	Hours/Year
Annual VRT Gas Volume	25955936	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	2589.13	Btu/SCF

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	84.54	9.26
NOx^1	42.35	4.64
$\mathrm{SO_2}^2$	0.43	0.05
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.90	0.10

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

² Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY VRU - COST BENEFIT ANALYSIS

VAPOR RECOVERY TOWER VRU

Unit Variable	Vapor Recovery Tower	
Vapor Emission Rate (mscfd)	696.899	
Heating Value (btu/scf)	2589.13	
Value of gas sold (\$/MMBtu)	\$ 2.10	
VRU Rental Rate (\$/Month)	\$ 5,400.00	
VRU Count	1	
Total Monthly Rental Rate (\$/Month)	\$ 5,400.00	
Annual Rental Rate Cost (\$/Year)	\$ 64,800.00	
Expectancy of VRU (years)	5	
Annual Revenue Total (\$/Year)	\$ 1,244,739.18	
Five Year Profit (\$)	\$ 5,899,695.91	

Is the primary purpose of the equipment to control air pollution?

No, the primary purpose is to recover product for sale.

Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?

The VRU generates income for the site.

Would the equipment be installed if no air quality regulations are in place?

The equipment would be installed regardless of air quality regulations.

- (1) Vapor emissions are obtained from Promax Modeling.
- $(2) \ Value \ of \ gas \ sold \ based \ on \ 3-month \ average \ from \ http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm$
- (3) Heating vales of vapors are based on Promax results.
- (4) Rental estimate includes installation, operation, and maintenance of VRU.

CORRAL CANYON 23 TANK BATTERY

Calculation Methodology for Heater Treater, VRT, & Tank Emissions

Calculation Methodology

Storage Tank Emissions - VOC Emissions

The heater treater gas, VRT, and storage tank emissions were estimated using a representative pressurized liquid analysis that produces from the same formation as the wells that flow into the facility and Promax Simulation Software. The heater treater gases are routed to a booster compressor and routed to sales during normal operations. During booster compressor downtime the off gases are routed to the high pressure flare. The VRT and storage tanks emissions are controlled a VRU and a 98% collection efficiency is represented, which the remaining 2% of the gas constantly being routed to flare. During VRU downtime all the assoicated gas will be routed to the flare for combustion. All skim tank and water tank emissions are routed directly to the low pressure flare.

Working & Breathing Emissions: AP-42 Chapter 7.1.3.1

 $L_T = L_S + L_W$ (Total losses, lb/yr: Equation 1-1)

L_S = 365 V_VW_VK_EK_S (Standing Storage Losses, lb/hr: Equation 1-2)

 $L_W = 0.0010 M_V P_{VA} Q K_N K_P$ (Working Storage Losses, lb/hr: Equation 1-29)

Promax Model GOR Check

Oil Throughput Minus Dead Oil

20000

bbl/Day

Sources	SCF/Day	SCF/bbl
Heater Treater	547159	27.36
Vapor Recovery Tower	711122	35.56
Oil Tank	66996	3.35

Total GOR 66.26 Flash Liberation of Sample GOR 53.20

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY OIL STORAGE TANK EMISSIONS SUMMARY

TOTAL EMISSIONS SUMMARY

FIN	Half Description	Tank	Control Ton	Material Throughput (bbls/day)	Material Type	Total VOC Emissions	
FIN	Unit Description	Controlled (Yes/No)	Control Type		Y T [[]]1[/Produced Water)	lb/hour	TPY
OT1	Oil Storage Tank	Yes	Flare	4166.7	OIL	5.48	2.86
OT2	Oil Storage Tank	Yes	Flare	4166.7	OIL	5.48	2.86
ОТ3	Oil Storage Tank	Yes	Flare	4166.7	OIL	5.48	2.86
OT4	Oil Storage Tank	Yes	Flare	4166.7	OIL	5.48	2.86
OT5	Oil Storage Tank	Yes	Flare	4166.7	OIL	5.48	2.86
OT6	Oil Storage Tank	Yes	Flare	4166.7	OIL	5.48	2.86
	Oil Tank Emissions			32.90	17.14		

 $^{{}^*\}textit{Emissions are represented at LPF}. \textit{ The VOC rate includes emissions during operation of the VRU and during VRU downtime.}\\$

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY OIL TANK VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.0717	0.0643
Nitrogen	0.0007	0.0004
Methane	1.1693	0.3823
Ethane	24.5065	15.0161
Propane	35.9617	32.3141
Isobutane	6.3918	7.5704
n-Butane	16.9223	20.0428
Isopentane	4.3000	6.3220
n-Pentane	4.6824	6.8842
n-Hexane	1.0579	1.8577
Cyclohexane	0.1380	0.2367
i-C6	1.6116	2.8300
i-C7	1.9031	3.8860
Methylcyclohexane	0.0450	0.0901
Octane	0.4569	1.0634
Nonane	0.0575	0.1502
Benzene	0.3837	0.6107
Toluene	0.2214	0.4157
Ethylbenzene	0.0109	0.0236
o-Xylene	0.0429	0.0928
H2S	0.0019	0.0013
Water	0.0006	0.0002
2,2,4 Trimethylpentane	0.0621	0.1445
Decanes Plus	0.0001	0.0003
Total	100.00	100.0000

MOLECULAR WEIGHT	49.07
SATURATED BTU	2772.59
NMHC	99.55
VOCs (NMNEHC)	84.54
HAPs	3.15
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY

${\bf OIL\ STORAGE\ TANK\ \textbf{-}\ EMISSIONS\ SUMMARY}$

Oil Storage Tank VOC Emissions Routed to Flare & VRU2

Emission Component		ontrolled Oil Tank W&B Stream Uncontrolled Oil Tank Flash Stream Controlled By Flare - VRU Downtime		Uncontrolled Oil Tank Flash Stream			y Flare - VRU	Controlled By	c Stream VRU & Flare - Operations
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.340	1.490	1.215	0.304	1.330	0.031	0.014	0.001	0.001
Nitrogen	0.002	0.010	0.168	0.042	0.184	0.003	0.001	0.000	0.000
Methane	2.022	8.856	34.229	8.557	37.480	0.725	0.232	0.015	0.014
Ethane	79.425	347.883	194.093	48.523	212.532	5.470	2.802	0.109	0.168
Propane	170.920	748.632	422.585	105.646	462.731	11.870	6.057	0.237	0.363
Isobutane	40.043	175.387	105.185	26.296	115.177	2.905	1.453	0.058	0.087
n-Butane	106.013	464.337	281.208	70.302	307.923	7.744	3.861	0.155	0.232
Isopentane	33.439	146.465	87.337	21.834	95.634	2.416	1.210	0.048	0.073
n-Pentane	36.413	159.489	96.285	24.071	105.432	2.654	1.325	0.053	0.079
n-Hexane	9.826	43.039	25.294	6.324	27.697	0.702	0.354	0.014	0.021
Cyclohexane	1.252	5.484	3.542	0.885	3.878	0.096	0.047	0.002	0.003
i-C6	14.969	65.564	39.454	9.863	43.202	1.088	0.544	0.022	0.033
i-C7	20.554	90.028	59.920	14.980	65.613	1.609	0.778	0.032	0.047
Methylcyclohexane	0.477	2.088	1.344	0.336	1.472	0.036	0.018	0.001	0.001
Octane	5.625	24.637	17.024	4.256	18.641	0.453	0.216	0.009	0.013
Nonane	0.794	3.479	2.942	0.736	3.222	0.075	0.034	0.001	0.002
Benzene	3.230	14.148	11.631	2.908	12.736	0.297	0.134	0.006	0.008
Toluene	2.199	9.630	7.462	1.865	8.171	0.193	0.089	0.004	0.005
Ethylbenzene	0.125	0.547	0.408	0.102	0.447	0.011	0.005	0.000	0.000
o-Xylene	0.491	2.151	1.831	0.458	2.005	0.046	0.021	0.001	0.001
H2S	0.007	0.031	0.018	0.005	0.020	0.001	0.000	0.000	0.000
Water	0.001	0.005	3.216	0.804	3.522	0.064	0.018	0.001	0.001
2,2,4 Trimethylpentane	0.764	3.348	2.092	0.523	2.290	0.057	0.028	0.001	0.002
Decanes Plus	0.001	0.006	0.006	0.002	0.007	0.000	0.000	0.000	0.000

Emission Component		Uncontrolled Oil Tank W&B Stream Uncontrolled Oil Tank Flash Stream Oil Tank S Controlled By I Downti				y Flare - VRU	Oil Tank Stream Controlled By VRU & Flare - Normal Operations		
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	528.93	2316.73	1398.49	349.62	1531.35	38.55	19.24	0.77	1.15
VOC TOTAL	447.14	1958.46	1165.55	291.39	1276.28	32.25	16.17	0.65	0.97
HAP TOTAL	16.64	72.86	48.72	12.18	53.35	1.31	0.63	0.03	0.04

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using LPF and VRU2.

²Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare Destruction Efficiency 98%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours for normal operation.

VRU Downtime VRU	Efficiency 0%
VRU Downtime	Hours 2190

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - OIL STORAGE TANKS

Flared Oil Storage Tank Emissions - VRU Normal Operations

Daily Oil Tank Gas Volume	366149	SCF/Day (Based on Maximum Hourly)
Hourly Oil Tank Gas Volume	15256	SCF/Hour (Based on Maximum Hourly)
Daily Oil Tank Gas Volume	165162	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	98	Percentage
Hourly Oil Tank Gas Volume (Post-VRU)	305	SCF/Hour (Based on Maximum Hourly)
Duration	6570	Hours/Year
Annual Oil Tank Gas Volume (Post-VRU)	904262	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Heating Volume	2772.59	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	0.23	0.35
NOx^1	0.12	0.17
$SO_2^{\ 2}$	0.00	0.00
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.00	0.00

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

² Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - OIL STORAGE TANKS

Flared Oil Storage Tank Emissions - VRU Downtime

Daily Oil Tank Gas Volume	366149	SCF/Day (Based on Maximum Hourly)
Hourly Oil Tank Gas Volume	15256	SCF/Hour (Based on Maximum Hourly)
Daily Oil Tank Gas Volume	165162	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	0	Percentage
Hourly Oil Tank Gas Volume	15256	SCF/Hour (Based on Maximum Hourly)
Duration	2190	Hours/Year
Annual Oil Tank Gas Volume	15071032	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Heating Volume	2772.59	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	11.65	5.76
NOx^{1}	5.84	2.88
SO_2^2	0.06	0.03
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.12	0.06

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation:\ SCF/day*14.7\ /\ 10.73\ /\ 528*H2S\ PPM*H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY VRU - COST BENEFIT ANALYSIS

STORAGE TANK VRUs

Unit Variable	(Oil Tanks
Vapor Emission Rate (mscfd)		161.859
Heating Value (btu/scf)		2773
Value of gas sold (\$/MMBtu)	\$	2.10
VRU Rental Rate (\$/Month)	\$	5,400.00
VRU Count		1
Total Monthly Rental Rate (\$/Month)	\$	5,400.00
Annual Rental Rate Cost (\$/Year)	\$	64,800.00
Expectancy of VRU (years)		5
Annual Revenue Total (\$/Year)	\$	257,985.25
Five Year Profit (\$)	\$	965,926.23

Is the primary purpose of the equipment to control air pollution?

No, the primary purpose is to recover product for sale.

Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?

The VRU generates income for the site.

Would the equipment be installed if no air quality regulations are in place?

The equipment would be installed regardless of air quality regulations.

- (1) Vapor emissions are obtained from Promax Modeling.
- (2) Value of gas sold based on 3-month average from http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm
- (3) Heating vales of vapors are based on Promax results.
- (4) Rental estimate includes installation, operation, and maintenance of VRU.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY SKIM TANK EMISSIONS SUMMARY

TOTAL EMISSIONS SUMMARY

EIN	FIN Unit Description		Unit Description Controlled Contro		Control Type	Material	Material Type	Total VOC Emissions	
FIN Unit Description		(Yes/No)	Control Type	Throughput (bbls/day)	(Oil/Produced Water)	lb/hour	TPY		
SKTK1	Skim Tank	Yes	Flare	30000	PRODUCED WATER	1.48	1.62		
SKTK2	Skim Tank	Yes	Flare	30000	PRODUCED WATER	1.48	1.62		
SKIM Tank Emissions						2.95	3.23		

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY SKIM TANK VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.9533	1.8475
Nitrogen	0.4584	0.5654
Methane	65.4527	46.2360
Ethane	17.7429	23.4924
Propane	6.7741	13.1531
Isobutane	0.5899	1.5097
n-Butane	1.9425	4.9715
Isopentane	0.2898	0.9205
n-Pentane	0.1421	0.4513
n-Hexane	0.0193	0.0732
Cyclohexane	0.0426	0.1577
i-C6	0.0596	0.2263
i-C7	0.0451	0.1991
Methylcyclohexane	0.0069	0.0300
Octane	0.0028	0.0142
Nonane	0.0004	0.0021
Benzene	0.3750	1.2898
Toluene	0.1894	0.7683
Ethylbenzene	0.0085	0.0399
o-Xylene	0.0392	0.1835
H2S	0.0058	0.0087
Water	4.8587	3.8542
2,2,4 Trimethylpentane	0.0011	0.0054
Decanes Plus	0.0000	0.0002
Total	100.00	100.0000

MOLECULAR WEIGHT	22.71
SATURATED BTU	1281.58
NMHC	47.49
VOCs (NMNEHC)	24.00
HAPs	2.36
H2S Mole Percentage	0.01

 $^1\!\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC.

CORRAL CANYON 23 TANK BATTERY SKIM TANKS - EMISSIONS SUMMARY

Skim Tank VOC Emissions Routed to Flare Vent System

Emission Component		lled Skim Tank B Stream Uncontrolled		d Skim Tank I	Flash Stream	Skim Tank Stream Controlled by Flare	
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.384	1.682	11.358	2.840	12.437	0.235	0.282
Nitrogen	0.001	0.006	3.476	0.869	3.806	0.070	0.076
Methane	0.321	1.404	284.263	71.066	311.268	5.692	6.253
Ethane	0.205	0.897	144.433	36.108	158.155	2.893	3.181
Propane	0.020	0.088	80.866	20.217	88.549	1.618	1.773
Isobutane	0.001	0.002	9.282	2.321	10.164	0.186	0.203
n-Butane	0.002	0.008	30.565	7.641	33.469	0.611	0.670
Isopentane	0.000	0.000	5.660	1.415	6.197	0.113	0.124
n-Pentane	0.000	0.000	2.775	0.694	3.039	0.055	0.061
n-Hexane	0.000	0.000	0.450	0.112	0.493	0.009	0.010
Cyclohexane	0.000	0.000	0.970	0.242	1.062	0.019	0.021
i-C6	0.000	0.000	1.391	0.348	1.523	0.028	0.030
i-C7	0.000	0.000	1.224	0.306	1.341	0.024	0.027
Methylcyclohexane	0.000	0.000	0.184	0.046	0.202	0.004	0.004
Octane	0.000	0.000	0.087	0.022	0.096	0.002	0.002
Nonane	0.000	0.000	0.013	0.003	0.014	0.000	0.000
Benzene	0.004	0.015	7.930	1.982	8.683	0.159	0.174
Toluene	0.000	0.002	4.724	1.181	5.173	0.094	0.103
Ethylbenzene	0.000	0.000	0.245	0.061	0.268	0.005	0.005
o-Xylene	0.000	0.000	1.128	0.282	1.235	0.023	0.025
H2S	0.002	0.008	0.053	0.013	0.058	0.001	0.001
Water	24.536	107.468	23.696	5.924	25.947	0.965	2.668
2,2,4 Trimethylpentane	0.000	0.000	0.033	0.008	0.036	0.001	0.001
Decanes Plus	0.000	0.000	0.002	0.000	0.002	0.000	0.000

Emission Component		l Skim Tank Stream	Uncontrolled Skim Tank Flash Stream		Skim Tank Stream Controlled by Flare		
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	25.48	111.58	614.81	153.70	673.22	12.81	15.70
VOC TOTAL	0.03	0.12	147.53	36.88	161.54	2.95	3.23
HAP TOTAL	0.00	0.02	14.51	3.63	15.89	0.29	0.32

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

Flare Destruction Efficiency 98%

 3 Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation.

 $^{^2} Controlled\ Emissions\ Were\ Calculated\ by\ the\ Following:\ Uncontrolled\ Emissions\ ^*\ (1\ -\ Flare\ Destruction\ Efficiency)$

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - SKIM AND WATER TANKS

Flared Skim and Water Tank Emissions

Daily Water Tank Gas Volume	276892	SCF/Hour (Based on Maximum Hourly)
Hourly Water Tank Gas Volume	11537	SCF/Hour (Based on Maximum Hourly)
Daily Water Tank Gas Volume	88196	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	0	Percentage
Hourly Water Tank Gas Volume	11537	SCF/Hour (Based on Maximum Hourly)
Duration	8760	Hours/Year
Annual Water Tank Gas Volume	32191401	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	1281.58	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	4.07	5.68
NOx^1	2.04	2.85
SO_2^2	0.11	0.15
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.09	0.12

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation:\ SCF/day*14.7\ /\ 10.73\ /\ 528*H2S\ PPM*H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY PRODUCED WATER STORAGE TANK EMISSIONS SUMMARY

TOTAL EMISSIONS SUMMARY

FIN	Hait Description	Tank Material Material Type		Total VOC Emissions			
FIN	Unit Description	Controlled (Yes/No)	Control Type	Throughput (bbls/day)	(Oil/Produced Water)	lb/hour	TPY
WT1	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT2	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT3	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT4	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT5	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT6	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
	Water Tank Emissions					0.06	0.07

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY PRODUCED WATER TANK VAPOR ANALYSIS - PROMAX RESULTS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Carbon Dioxide	0.6485	1.5657
Nitrogen	0.0034	0.0052
Methane	1.4426	1.2695
Ethane	0.5095	0.8404
Propane	0.0337	0.0814
Isobutane	0.0007	0.0021
n-Butane	0.0022	0.0070
Isopentane	0.0001	0.0003
n-Pentane	0.0000	0.0000
n-Hexane	0.0000	0.0000
Cyclohexane	0.0000	0.0000
i-C6	0.0000	0.0000
i-C7	0.0000	0.0000
Methylcyclohexane	0.0000	0.0000
Octane	0.0000	0.0000
Nonane	0.0000	0.0000
Benzene	0.0033	0.0140
Toluene	0.0004	0.0019
Ethylbenzene	0.0000	0.0000
o-Xylene	0.0000	0.0001
H2S	0.0038	0.0071
Water	97.3518	96.2050
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0000	0.0000
Total	100.00	100.0000

MOLECULAR WEIGHT	18.23
SATURATED BTU	74
NMHC	0.95
VOCs (NMNEHC)	0.11
HAPs	0.02
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC.

CORRAL CANYON 23 TANK BATTERY

PRODUCED WATER TANKS - EMISSIONS SUMMARY

Produced Water Tank VOC Emissions - Routed to Flare Vent System

Emission Component	Uncontrolled PW W&B Stream		Uncontrolled PW Flash Stream			PW Tank Stream Controlled By Flare	
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.394	1.724	0.232	0.058	0.254	0.013	0.040
Nitrogen	0.001	0.006	0.071	0.018	0.078	0.001	0.002
Methane	0.319	1.398	5.801	1.450	6.352	0.122	0.155
Ethane	0.211	0.926	2.948	0.737	3.228	0.063	0.083
Propane	0.020	0.090	1.650	0.413	1.807	0.033	0.038
Isobutane	0.001	0.002	0.189	0.047	0.207	0.004	0.004
n-Butane	0.002	0.008	0.624	0.156	0.683	0.013	0.014
Isopentane	0.000	0.000	0.116	0.029	0.126	0.002	0.003
n-Pentane	0.000	0.000	0.057	0.014	0.062	0.001	0.001
n-Hexane	0.000	0.000	0.009	0.002	0.010	0.000	0.000
Cyclohexane	0.000	0.000	0.020	0.005	0.022	0.000	0.000
i-C6	0.000	0.000	0.028	0.007	0.031	0.001	0.001
i-C7	0.000	0.000	0.025	0.006	0.027	0.000	0.001
Methylcyclohexane	0.000	0.000	0.004	0.001	0.004	0.000	0.000
Octane	0.000	0.000	0.002	0.000	0.002	0.000	0.000
Nonane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.004	0.015	0.162	0.040	0.177	0.003	0.004
Toluene	0.000	0.002	0.096	0.024	0.106	0.002	0.002
Ethylbenzene	0.000	0.000	0.005	0.001	0.005	0.000	0.000
o-Xylene	0.000	0.000	0.023	0.006	0.025	0.000	0.001
H2S	0.002	0.008	0.001	0.000	0.001	0.000	0.000
Water	24.193	105.964	0.484	0.121	0.530	0.494	2.130
2,2,4 Trimethylpentane	0.000	0.000	0.001	0.000	0.001	0.000	0.000
Decanes Plus	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Emission Component	Uncontrolled P	W W&B Stream	Uncontrolled PW Flash Stream		PW Tank Stream Controlled by Flare		
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	25.15	110.14	12.55	3.14	13.74	0.75	2.48
VOC TOTAL	0.03	0.12	3.01	0.75	3.30	0.06	0.07
HAP TOTAL	0.00	0.02	0.30	0.07	0.32	0.01	0.01

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

 $^{^2} Controlled\ Emissions\ Were\ Calculated\ by\ the\ Following:\ Uncontrolled\ Emissions\ *\ (1\ -\ Flare\ Destruction\ Efficiency)$ 98%

Flare Destruction Efficiency

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY OIL TRUCK LOADING EMISSIONS

Truck Loading Losses Calculations - VOCs

Oil Loading	5000	bbls / Day
Operating Schedule	365	Day/Year
Total Production	1825000	bbls / Year

LL= 12.46 * SPM/T * (1-EFF/100)	
Saturation Factor (S) =	0.6
Average True Vapor Pressure of liquid loaded (P) =	10.36
Maximum True Vapor Pressure of liquid loaded (P) =	12.19
Average Temperature of bulk liquid loaded in Rankin $(T)^1$ =	548.1
Maximum Temperature of bulk liquid loaded in Rankin $(T)^1$ =	560.0
Molecular Weight $(M)^1 =$	49.07
Collection Efficiency (EFF) ² =	98.70
Hourly LL (lb Total HC / bbl Throughput) =	0.0044
Hourly LL (lb VOC/bbl Throughput) =	0.0037
Annual LL (lb Total HC / bbl Throughput) =	0.0038
Annual LL (lb VOC/bbl Throughput) =	0.0032
Estimated Throughput (bbls/Year) =	1825000
Truck Loading Rate (bbls/hour) =	210
Estimated # of Loads (Approximately 1 hr/Load) =	8690

COMPONENT	lb/hr	TPY
VOCs	0.77	2.92
HAPs	0.03	0.11
Benzene	0.01	0.02
n-Hexane	0.02	0.06

¹Based on PROMAX Results

²Based on DOT Oil Trucks at a collection efficiency of 98.7%. Controlled emissions at 98% flare efficiency are shown on the LP Flare Truck Loading page. Emissions here include only those emitted as a result of incomplete collection.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY WATER TRUCK LOADING EMISSIONS

Truck Loading Losses Calculations - VOCs

Water Loading	5000	bbls / Day
Operating Schedule	365	Day/Year
Total Production	1825000	bbls/Year

LL= 12.46 * SPM/T * (1-EFF/100)	
Saturation Factor (S) =	0.6
Average True Vapor Pressure of liquid loaded (P) =	0.56
Maximum True Vapor Pressure of liquid loaded (P) =	0.81
Average Temperature of bulk liquid loaded in Rankin $(T)^1$ =	542.2
Maximum Temperature of bulk liquid loaded in Rankin $(T)^1$ =	554.1
Molecular Weight $(M)^1$ =	18.23
Collection Efficiency (EFF) =	0.00
Hourly LL (lb Total HC / bbl Throughput) =	0.0084
Hourly LL (lb VOC/bbl Throughput) =	0.0000
Annual LL (lb Total HC / bbl Throughput) =	0.0059
Annual LL (lb VOC / bbl Throughput) =	0.0000
Estimated Throughput (bbls/Year) =	1825000
Truck Loading Rate (bbls/hour) =	210
Estimated # of Loads (Approximately 1 hr/Load) =	8690

COMPONENT	lb/hr	TPY
VOCs	0.00	0.01
HAPs	0.00	0.00
Benzene	0.00	0.00
n-Hexane	0.00	0.00

¹Based on PROMAX Results

²Based on DOT Oil Trucks at a collection efficiency of 98.7%. Controlled emissions at 98% flare efficiency are shown on the LP Flare Truck Loading page. Emissions here include only those emitted as a result of incomplete collection.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY LP FLARE - CONTROLLED TRUCK LOADING EMISSIONS

LP Flare - Truck Loading of Oil

	Oil Load	ing (Captured \	LP F	lare	
Component	Mole %	Weight %	lb/hr	lb/hr	TPY
Carbon Dioxide	0.074	0.067	0.034	0.034	0.147
Nitrogen	0.000	0.000	0.000	0.000	0.001
Methane	1.101	0.362	0.182	0.004	0.016
Ethane	25.305	15.603	7.828	0.157	0.686
Propane	36.023	32.574	16.342	0.327	1.432
Isobutane	6.309	7.520	3.772	0.075	0.330
n-Butane	16.640	19.833	9.950	0.199	0.872
Isopentane	4.196	6.209	3.115	0.062	0.273
n-Pentane	4.560	6.747	3.385	0.068	0.297
n-Hexane	1.024	1.810	0.908	0.018	0.080
Cyclohexane	0.133	0.230	0.116	0.002	0.010
i-C6	1.563	2.762	1.386	0.028	0.121
i-C7	1.837	3.774	1.893	0.038	0.166
Methylcyclohexane	0.043	0.087	0.044	0.001	0.004
Octane	0.438	1.025	0.514	0.010	0.045
Nonane	0.055	0.145	0.073	0.001	0.006
Benzene	0.371	0.594	0.298	0.006	0.026
Toluene	0.213	0.402	0.202	0.004	0.018
Ethylbenzene	0.010	0.023	0.011	0.000	0.001
o-Xylene	0.041	0.089	0.045	0.001	0.004
H2S	0.002	0.001	0.001	0.000	0.000
Water	0.001	0.000	0.000	0.000	0.000
2,2,4 Trimethylpentane	0.060	0.140	0.070	0.001	0.006
Decanes Plus	0.000	0.000	0.000	0.000	0.000

Stream Total	50.17	1.04	4.54
VOC Total	42.12	0.84	3.69
HAP Total	1.53	0.03	0.13

Annual Hours (hrs)	8690	Molecular Weight	49
Heating Value of Vapor (Btu/scf)	2756	Volumetric Flow (scf/hr)	395.54
Vapor Balance Loading Capture	98.7%	Heat Released (MMBtu/hr)	1.090
Destruction Efficiency of Flare	98%		

Criteria Pollutant Emissions from Flare ²					
Component	Emission Rate	Emission Rate	Emission	Emission Factor Units	
-	(lb/hr)	(TPY)	Factor		
NO_{χ}	0.15	0.65	0.138	lb/MMBtu	
СО	0.30	1.31	0.2755	lb/MMBtu	
SO_2	0.00	0.00			
PM_{10}	0.00	0.01	7.60	lb/MMscf	
$PM_{2.5}$	0.00	0.01	7.60	lb/MMscf	
H_2S	0.00	0.00			

 $^{^{\}mathrm{1}}$ Oil Loading vapors properties determined from ProMax

² Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY ROAD EMISSIONS

PM ₁₀ Emissions				
$E = k(s/12)^a (W/3)^b$				
a	0.9			
b	0.45			
k	1.5			
Silt %	4.8			
Vehicle Weight (tons)	28			
E-Hourly (lbs/VMT)	1.80			
Rain Days	70			
E-Annual (lbs/VMT)	1.45			
Truckloads per year	17381			
Driving Distance Per Load (ft)	700			
Annual Distance (miles)	2304			
Control Efficiency - 15 MPH Limit				
Emissions (lbs/hr)	0.48			
Emissions (tpy)	1.67			

PM _{2.5} Emissions				
$E = k(s/12)^a (W/3)^b$				
a	0.9			
b	0.45			
k	0.15			
Silt %	4.8			
Vehicle Weight (tons)	28			
E-Hourly (lbs/VMT)	0.18			
Rain Days	70			
E-Annual (lbs/VMT)	0.15			
Truckloads per year	17381			
Driving Distance Per Load (ft)	700			
Annual Distance (miles)	2304			
Control Efficiency - 15 MPH Limit				
Emissions (lbs/hr)	0.05			
Emissions (tpy)	0.17			

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) *2 trucks per hour (One for oil and one for water) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2

AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

XTO ENERGY INC.

CORRAL CANYON 23 TANK BATTERY

Calculation Methodology for Fugitive & Road Emissions

Calculation Methodology

Fugitives (Equipment Leaks) - VOC Emissions

Fugitives were calculated using AP-42 factors based on the type of fitting, valve, line, etc. and based on how the line is used (i.e. gas, light liquid service, etc.). Since these emission factors are for estimating total hydrocarbon emissions, the calculated emissions are multiplied by the VOC or HAP Weight Percentage of the service type. Fugitive Emissions are divided into sections of the facility to more accurately account for compositional analysis and counts.

Road Emissions - PM Emissions

The PM Emissions were calculated using AP-42 Factors from section 13.2.2 "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources."

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY FUGITIVE EMISSIONS - TOTAL EMISSION SUMMARY

EQUIPMENT LEAK EMISSION SUMMARY TABLE

Stream Source	Total	VOCs	Total	HAPs	Ben	zene	Hex	ane	CH4	CO2	CO2e
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY	TPY	TPY
Inlet & Sales Section	0.85	3.74	0.05	0.21	0.01	0.03	0.01	0.06	4.46	6.10	117.55
Heater Treater Section	0.76	3.33	0.04	0.17	0.01	0.03	0.01	0.06	3.19	4.60	84.29
Storage Tank Section	0.83	3.63	0.05	0.20	0.01	0.05	0.02	0.10	4.58	6.18	120.64
Total Emissions	2.44	10.69	0.13	0.59	0.03	0.11	0.05	0.22	12.22	16.88	322.48

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY FACILITY INLET GAS ANALYSIS - PROMAX

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1779	0.3290
Nitrogen	0.9132	1.0753
Methane	69.6002	46.9342
Ethane	14.4918	18.3168
Propane	7.8044	14.4657
Isobutane	1.0612	2.5928
n-Butane	2.6253	6.4140
Isopentane	0.6310	1.9136
n-Pentane	0.6807	2.0643
n-Hexane	0.2037	0.7379
Cyclohexane	0.1878	0.6644
i-C6	0.3150	1.1410
i-C7	0.2802	1.1803
Methylcyclohexane	0.1182	0.4880
Octane	0.0825	0.3960
Nonane	0.0278	0.1500
Benzene	0.0924	0.3034
Toluene	0.0517	0.2001
Ethylbenzene	0.0020	0.0089
o-Xylene	0.0119	0.0532
H2S	0.0010	0.0014
Water	0.6311	0.4779
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0089	0.0916
Total	100.00	100.0000

MOLECULAR WEIGHT	23.79
SATURATED BTU	1398
NMHC	51.182
VOCs (NMNEHC)	32.87
HAPs	1.30
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY FACILITY INLET FLUID ANALYSIS - PROMAX

Fluid Composition

Component	Mole %	Weight %
Carbon Dioxide	0.0135	0.0041
Nitrogen	0.0262	0.0050
Methane	1.8491	0.2040
Ethane	2.5026	0.5174
Propane	4.3487	1.3185
Isobutane	1.3060	0.5219
n-Butane	4.5915	1.8349
Isopentane	2.5435	1.2618
n-Pentane	3.6721	1.8217
n-Hexane	2.5190	1.4926
Cyclohexane	0.0000	0.0000
i-C6	2.7051	1.6029
i-C7	10.9925	7.5734
Methylcyclohexane	0.0000	0.0000
Octane	12.6190	9.9111
Nonane	5.8823	5.1873
Benzene	1.4955	0.8032
Toluene	2.8516	1.8066
Ethylbenzene	0.4121	0.3009
o-Xylene	2.2869	1.6694
H2S	0.0000	0.0000
Water	0.0000	0.0000
2,2,4 Trimethylpentane	0.5060	0.3974
Decanes Plus	36.8766	61.7660
Total	100.00	100.0000

MOLECULAR WEIGHT	145.44
NMHC	99.79
VOCs (NMNEHC)	99.27
HAPs	6.47
H2S Mole Percentage	0.00

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION VOCs

		Estimated		Emissions			T . 1 CH	T / 1 CO2	CH4	CO2	CO2e		
Component Type	Service	Components	Hours	Factors	Total VOC Weight %	lb/hour	lb/year	tons/year	Total CH4 Weight %	Total CO2 Weight %	Emissions	Emissions	Emissions
7.1		Count			Ů	10/11041	.,,	.,	Ü	Ü	ton/year	ton/year	ton/year
	Gas/Vapor	50	8760	0.00992000	32.87	0.16	1427.98	0.71	46.93	0.33	1.15	2.17	30.99
Valves	Light Oil	50	8760	0.00550000	99.27	0.27	2391.40	1.20	0.20	0.00	1.20	1.20	31.26
varves	Heavy Oil	0	8760	0.00001900	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	99.27	0.01	93.92	0.05	0.20	0.00	0.05	0.05	1.23
	Gas/Vapor	0	8760	0.00529000	32.87	0.00	0.00	0.00	46.93	0.33	0.00	0.00	0.00
D C1-	Light Oil	0	8760	0.02866000	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	99.27	0.00	4.61	0.00	0.20	0.00	0.00	0.00	0.06
Connectors	Gas/Vapor	200	8760	0.00044000	32.87	0.03	253.35	0.13	46.93	0.33	0.20	0.38	5.50
	Light Oil	200	8760	0.00046300	99.27	0.09	805.25	0.40	0.20	0.00	0.40	0.41	10.52
	Heavy Oil	0	8760	0.00001700	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	99.27	0.01	105.66	0.05	0.20	0.00	0.05	0.05	1.38
	Gas/Vapor	200	8760	0.00086000	32.87	0.06	495.19	0.25	46.93	0.33	0.40	0.75	10.75
F1	Light Oil	200	8760	0.00024300	99.27	0.05	422.63	0.21	0.20	0.00	0.21	0.21	5.52
Flanges	Heavy Oil	0	8760	0.00000086	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	99.27	0.00	2.70	0.00	0.20	0.00	0.00	0.00	0.04
	Gas/Vapor	10	8760	0.00441000	32.87	0.01	126.96	0.06	46.93	0.33	0.10	0.19	2.76
Open-ended	Light Oil	0	8760	0.00309000	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	32.87	0.00	0.00	0.00	46.93	0.33	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	99.27	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	99.27	0.15	1343.53	0.67	0.20	0.00	0.68	0.68	17.56

Emission Component	lb/hr	lb/year	TPY
Total VOC	0.85	7473.17	3.74

CH4		CO2	CO2e
Emissio	ns	Emissions	Emissions
4.46		6.10	117.55

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION HAPs

		Estimated	Estimated Emissions				Emissions		
Component Type	Service	Components Count	Hours	Factors	Total HAPs Weight %	lb/hour	lb/year	tons/year	
	Gas/Vapor	50	8760	0.00992000	1.30	0.01	56.64	0.03	
Valves	Light Oil	50	8760	0.00550000	6.47	0.02	155.86	0.08	
vaives	Heavy Oil	0	8760	0.00001900	6.47	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00021600	6.47	0.00	6.12	0.00	
	Gas/Vapor	0	8760	0.00529000	1.30	0.00	0.00	0.00	
Duman Caala	Light Oil	0	8760	0.02866000	6.47	0.00	0.00	0.00	
Pump Seals	Heavy Oil	0	8760	0.00113000	6.47	0.00	0.00	0.00	
	Water/Light Oil	10	8760	0.00005200	6.47	0.00	0.29	0.00	
	Gas/Vapor	200	8760	0.00044000	1.30	0.00	10.05	0.01	
Connectors	Light Oil	200	8760	0.00046300	6.47	0.01	52.48	0.03	
	Heavy Oil	0	8760	0.00001700	6.47	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00024300	6.47	0.00	6.89	0.00	
	Gas/Vapor	200	8760	0.00086000	1.30	0.00	19.64	0.01	
Elamana	Light Oil	200	8760	0.00024300	6.47	0.00	27.55	0.01	
Flanges	Heavy Oil	0	8760	0.00000086	6.47	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00000620	6.47	0.00	0.18	0.00	
	Gas/Vapor	10	8760	0.00441000	1.30	0.00	5.04	0.00	
Open-ended	Light Oil	0	8760	0.00309000	6.47	0.00	0.00	0.00	
Lines	Heavy Oil	0	8760	0.00030900	6.47	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00055000	6.47	0.00	0.00	0.00	
	Gas/Vapor	0	8760	0.01940000	1.30	0.00	0.00	0.00	
Other:	Light Oil	0	8760	0.01650000	6.47	0.00	0.00	0.00	
Other:	Heavy Oil	0	8760	0.00006800	6.47	0.00	0.00	0.00	
	Water/Light Oil	5	8760	0.03090000	6.47	0.01	87.57	0.04	

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.05	428.30	0.21

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION BENZENE

		Estimated			T (1 P		Emissions	
Component Type	Service	Components Count	Hours	Factors	Total Benzene Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	0.30	0.00	13.18	0.01
Valves	Light Oil	50	8760	0.00550000	0.80	0.00	19.35	0.01
vaives	Heavy Oil	0	8760	0.00001900	0.80	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.80	0.00	0.76	0.00
	Gas/Vapor	0	8760	0.00529000	0.30	0.00	0.00	0.00
Dumm Cools	Light Oil	0	8760	0.02866000	0.80	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	0.80	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.80	0.00	0.04	0.00
	Gas/Vapor	200	8760	0.00044000	0.30	0.00	2.34	0.00
Connectors	Light Oil	200	8760	0.00046300	0.80	0.00	6.52	0.00
	Heavy Oil	0	8760	0.00001700	0.80	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.80	0.00	0.85	0.00
	Gas/Vapor	200	8760	0.00086000	0.30	0.00	4.57	0.00
E1	Light Oil	200	8760	0.00024300	0.80	0.00	3.42	0.00
Flanges	Heavy Oil	0	8760	0.00000086	0.80	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.80	0.00	0.02	0.00
	Gas/Vapor	10	8760	0.00441000	0.30	0.00	1.17	0.00
Open-ended	Light Oil	0	8760	0.00309000	0.80	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	0.80	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.80	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	0.30	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	0.80	0.00	0.00	0.00
Otner:	Heavy Oil	0	8760	0.00006800	0.80	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.80	0.00	10.87	0.01

Emission Component	lb/hr	lb/year	TPY
Total Benzene	0.007	63.09	0.032

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSIONS HEXANE

		Estimated			Table		Emissions	
Component Type	Service	Components Count	Hours	Factors	Total Hexane Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	0.74	0.00	32.06	0.02
Valves	Light Oil	50	8760	0.00550000	1.49	0.00	35.96	0.02
vaives	Heavy Oil	0	8760	0.00001900	1.49	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	1.49	0.00	1.41	0.00
	Gas/Vapor	0	8760	0.00529000	0.74	0.00	0.00	0.00
D C1-	Light Oil	0	8760	0.02866000	1.49	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	1.49	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	1.49	0.00	0.07	0.00
	Gas/Vapor	200	8760	0.00044000	0.74	0.00	5.69	0.00
Connectors	Light Oil	200	8760	0.00046300	1.49	0.00	12.11	0.01
	Heavy Oil	0	8760	0.00001700	1.49	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	1.49	0.00	1.59	0.00
	Gas/Vapor	200	8760	0.00086000	0.74	0.00	11.12	0.01
E1	Light Oil	200	8760	0.00024300	1.49	0.00	6.35	0.00
Flanges	Heavy Oil	0	8760	0.00000086	1.49	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	1.49	0.00	0.04	0.00
	Gas/Vapor	10	8760	0.00441000	0.74	0.00	2.85	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.49	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.49	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	1.49	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	0.74	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	1.49	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	1.49	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	1.49	0.00	20.20	0.01

Emission Component	lb/hr	lb/year	TPY
Total Hexane	0.015	129.45	0.065

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER GAS ANALYSIS - FUGITIVE EMISSIONS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %	
Carbon Dioxide	0.1934	0.2592	
Nitrogen	0.2235	0.1907	
Methane	41.2006	20.1266	
Ethane	23.1369	21.1846	
Propane	17.9810	24.1438	
Isobutane	2.7664	4.8961	
n-Butane	7.0706	12.5139	
Isopentane	1.7152	3.7682	
n-Pentane	1.8965	4.1666	
n-Hexane	0.4451	1.1679	
Cyclohexane	0.0781	0.2002	
i-C6	0.6778	1.7786	
i-C7	0.9228	2.8157	
Methylcyclohexane	0.0269	0.0804	
Octane	0.2611	0.9080	
Nonane	0.0441	0.1724	
Benzene	0.2205	0.5245	
Toluene	0.1298	0.3642	
Ethylbenzene	0.0067	0.0217	
o-Xylene	0.0305	0.0987	
H2S	0.0017	0.0018	
Water	0.9424	0.5170	
2,2,4 Trimethylpentane	0.0284	0.0986	
Decanes Plus	0.0001	0.0007	
Total	100.00	100.0000	

MOLECULAR WEIGHT	23.55
SATURATED BTU	1385.85
NMHC	78.90
VOCs (NMNEHC)	57.72
HAPs	2.28
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER LIQUID ANALYSIS - FUGITIVE EMISSIONS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Carbon Dioxide	0.0064	0.0019
Nitrogen	0.0011	0.0002
Methane	0.5822	0.0639
Ethane	1.6081	0.3308
Propane	3.9204	1.1827
Isobutane	1.3881	0.5520
n-Butane	4.9496	1.9681
Isopentane	2.8231	1.3935
n-Pentane	3.9892	1.9691
n-Hexane	2.8193	1.6622
Cyclohexane	0.6883	0.3963
i-C6	3.1604	1.8633
i-C7	11.0042	7.5437
Methylcyclohexane	0.4611	0.3098
Octane	12.5592	9.8149
Nonane	5.8895	5.1677
Benzene	1.5767	0.8426
Toluene	2.8849	1.8185
Ethylbenzene	0.4086	0.2968
o-Xylene	2.2774	1.6542
H2S	0.0002	0.0000
Water	0.0543	0.0067
2,2,4 Trimethylpentane	0.4692	0.3667
Decanes Plus	36.4785	60.7944
Total	100.00	100.0000

MOLECULAR WEIGHT	146.17
NMHC	99.93
VOCs (NMNEHC)	99.60
HAPs	6.64
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION VOCs

Commonant	Component	Estimated			Total VOC		Emissions		Total CH4	Total CO2	CH4	CO2	CO2e
Туре	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year	Weight %	Weight %	Emissions	Emissions	Emission
							-	-			ton/year	ton/year	ton/year
	Gas/Vapor	40	8760	0.00992000	57.72	0.23	2006.34	1.00	46.93	0.33	0.92	1.73	24.79
Valves	Light Oil	40	8760	0.00550000	99.60	0.22	1919.42	0.96	0.20	0.00	0.96	0.96	25.00
var-c5	Heavy Oil	0	8760	0.00001900	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00021600	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	57.72	0.00	0.00	0.00	46.93	0.33	0.00	0.00	0.00
Pump Seals	Light Oil	0	8760	0.02866000	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
rump seals	Heavy Oil	0	8760	0.00113000	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00044000	57.72	0.05	444.95	0.22	46.93	0.33	0.20	0.38	5.50
	Light Oil	200	8760	0.00046300	99.60	0.09	807.90	0.40	0.20	0.00	0.40	0.41	10.52
Connectors	Heavy Oil	0	8760	0.00001700	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	57.72	0.10	869.68	0.43	46.93	0.33	0.40	0.75	10.75
F1	Light Oil	200	8760	0.00024300	99.60	0.05	424.02	0.21	0.20	0.00	0.21	0.21	5.52
Flanges	Heavy Oil	0	8760	0.00000086	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	57.72	0.02	178.39	0.09	46.93	0.33	0.08	0.15	2.20
Open-ended	Light Oil	0	8760	0.00309000	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	57.72	0.00	0.00	0.00	46.93	0.33	0.00	0.00	0.00
0.1	Light Oil	0	8760	0.01650000	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	99.60	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00

Emission Component	lb/hr	lb/year	TPY
Total VOC	0.76	6650.70	3.33

CH4	CO2	CO2e
Emissions	Emissions	Emissions
3.19	4.60	84.29

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION HAPS

		Estimated			T. C. LILAD.		Emissions	
Component Type	Service	Components Count	Hours	Factors	Total HAPs Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	40	8760	0.00992000	2.28	0.01	79.10	0.04
Valves	Light Oil	40	8760	0.00550000	6.64	0.01	127.98	0.06
vaives	Heavy Oil	0	8760	0.00001900	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00021600	6.64	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	2.28	0.00	0.00	0.00
D C1-	Light Oil	0	8760	0.02866000	6.64	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	6.64	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00044000	2.28	0.00	17.54	0.01
	Light Oil	200	8760	0.00046300	6.64	0.01	53.87	0.03
Connectors	Heavy Oil	0	8760	0.00001700	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	6.64	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	2.28	0.00	34.29	0.02
El	Light Oil	200	8760	0.00024300	6.64	0.00	28.27	0.01
Flanges	Heavy Oil	0	8760	0.00000086	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	6.64	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	2.28	0.00	7.03	0.00
Open-ended	Light Oil	0	8760	0.00309000	6.64	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	6.64	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	2.28	0.00	0.00	0.00
Other	Light Oil	0	8760	0.01650000	6.64	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	6.64	0.00	0.00	0.00

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.04	348.09	0.17

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION BENZENE

		Estimated			Tital	Emissions			
Component Type	Service	Components Count	Hours	Factors	Total Benzene Weight %	lb/hour	lb/year	tons/year	
	Gas/Vapor	40	8760	0.00992000	0.52	0.00	18.23	0.01	
Valves	Light Oil	40	8760	0.00550000	0.84	0.00	16.24	0.01	
vaives	Heavy Oil	0	8760	0.00001900	0.84	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00021600	0.84	0.00	0.00	0.00	
	Gas/Vapor	0	8760	0.00529000	0.52	0.00	0.00	0.00	
D C1-	Light Oil	0	8760	0.02866000	0.84	0.00	0.00	0.00	
Pump Seals	Heavy Oil	0	8760	0.00113000	0.84	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00005300	0.84	0.00	0.00	0.00	
	Gas/Vapor	200	8760	0.00044000	0.52	0.00	4.04	0.00	
	Light Oil	200	8760	0.00046300	0.84	0.00	6.83	0.00	
Connectors	Heavy Oil	0	8760	0.00001700	0.84	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00024300	0.84	0.00	0.00	0.00	
	Gas/Vapor	200	8760	0.00086000	0.52	0.00	7.90	0.00	
E1	Light Oil	200	8760	0.00024300	0.84	0.00	3.59	0.00	
Flanges	Heavy Oil	0	8760	0.00000086	0.84	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00000620	0.84	0.00	0.00	0.00	
	Gas/Vapor	8	8760	0.00441000	0.52	0.00	1.62	0.00	
Open-ended	Light Oil	0	8760	0.00309000	0.84	0.00	0.00	0.00	
Lines	Heavy Oil	0	8760	0.00030900	0.84	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00055000	0.84	0.00	0.00	0.00	
	Gas/Vapor	0	8760	0.01940000	0.52	0.00	0.00	0.00	
Other:	Light Oil	0	8760	0.01650000	0.84	0.00	0.00	0.00	
Otner:	Heavy Oil	0	8760	0.00006800	0.84	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.03090000	0.84	0.00	0.00	0.00	

Emission Component	lb/hr	lb/year	TPY
Total Benzene	0.007	58.46	0.029

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION HEXANE

		Estimated			T. 4.1 II.		Emissions			
Component Type	Service	Components Count	Hours	Factors	Total Hexane Weight %	lb/hour	lb/year	tons/year		
	Gas/Vapor	40	8760	0.00992000	1.17	0.00	40.60	0.02		
Valves	Light Oil	40	8760	0.00550000	1.66	0.00	32.03	0.02		
vaives	Heavy Oil	0	8760	0.00001900	1.66	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00021600	1.66	0.00	0.00	0.00		
	Gas/Vapor	0	8760	0.00529000	1.17	0.00	0.00	0.00		
Duman Caala	Light Oil	0	8760	0.02866000	1.66	0.00	0.00	0.00		
Pump Seals	Heavy Oil	0	8760	0.00113000	1.66	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00005300	1.66	0.00	0.00	0.00		
	Gas/Vapor	200	8760	0.00044000	1.17	0.00	9.00	0.00		
	Light Oil	200	8760	0.00046300	1.66	0.00	13.48	0.01		
Connectors	Heavy Oil	0	8760	0.00001700	1.66	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00024300	1.66	0.00	0.00	0.00		
	Gas/Vapor	200	8760	0.00086000	1.17	0.00	17.60	0.01		
E1	Light Oil	200	8760	0.00024300	1.66	0.00	7.08	0.00		
Flanges	Heavy Oil	0	8760	0.00000086	1.66	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00000620	1.66	0.00	0.00	0.00		
	Gas/Vapor	8	8760	0.00441000	1.17	0.00	3.61	0.00		
Open-ended	Light Oil	0	8760	0.00309000	1.66	0.00	0.00	0.00		
Lines	Heavy Oil	0	8760	0.00030900	1.66	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00055000	1.66	0.00	0.00	0.00		
	Gas/Vapor	0	8760	0.01940000	1.17	0.00	0.00	0.00		
Other:	Light Oil	0	8760	0.01650000	1.66	0.00	0.00	0.00		
Omer:	Heavy Oil	0	8760	0.00006800	1.66	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.03090000	1.66	0.00	0.00	0.00		

Emission Component	lb/hr	lb/year	TPY
Total Hexane	0.014	123.40	0.062

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY OIL TANK SECTION GAS ANALYSIS - FUGITIVE EMISSIONS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.0717	0.0643
Nitrogen	0.0007	0.0004
Methane	1.1693	0.3823
Ethane	24.5065	15.0161
Propane	35.9617	32.3141
Isobutane	6.3918	7.5704
n-Butane	16.9223	20.0428
Isopentane	4.3000	6.3220
n-Pentane	4.6824	6.8842
n-Hexane	1.0579	1.8577
Cyclohexane	0.1380	0.2367
i-C6	1.6116	2.8300
i-C7	1.9031	3.8860
Methylcyclohexane	0.0450	0.0901
Octane	0.4569	1.0634
Nonane	0.0575	0.1502
Benzene	0.3837	0.6107
Toluene	0.2214	0.4157
Ethylbenzene	0.0109	0.0236
o-Xylene	0.0429	0.0928
H2S	0.0019	0.0013
Water	0.0006	0.0002
2,2,4 Trimethylpentane	0.0621	0.1445
Decanes Plus	0.0001	0.0003
Total	100.00	100.0000

MOLECULAR WEIGHT	49.07
SATURATED BTU	2772.59
NMHC	99.55
VOCs (NMNEHC)	84.54
HAPs	3.15
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY WATER TANK LIQUID ANALYSIS - FUGITIVE EMISSIONS

Water Composition

Component	Mole %	Weight %
Carbon Dioxide	0.0004	0.0009
Nitrogen	0.0000	0.0000
Methane	0.0013	0.0012
Ethane	0.0005	0.0008
Propane	0.0001	0.0003
Isobutane	0.0000	0.0000
n-Butane	0.0000	0.0001
Isopentane	0.0000	0.0000
n-Pentane	0.0000	0.0000
n-Hexane	0.0000	0.0000
Cyclohexane	0.0000	0.0000
i-C6	0.0000	0.0000
i-C7	0.0000	0.0000
Methylcyclohexane	0.0000	0.0000
Octane	0.0000	0.0000
Nonane	0.0000	0.0000
Benzene	0.0009	0.0038
Toluene	0.0003	0.0017
Ethylbenzene	0.0000	0.0001
o-Xylene	0.0001	0.0005
H2S	0.0000	0.0000
Water	99.9963	99.9905
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0000	0.0000
Total	100.00	100.0000

MOLECULAR WEIGHT	18.02
NMHC	0.01
VOCs (NMNEHC)	0.01
HAPs	0.01
H2S Mole Percentage	0.00

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY OIL TANK CONDENSATE ANALYSIS - FUGITIVE EMISSIONS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Carbon Dioxide	0.0009	0.0003
Nitrogen	0.0000	0.0000
Methane	0.0274	0.0029
Ethane	0.4614	0.0910
Propane	2.3763	0.6874
Isobutane	1.1140	0.4248
n-Butane	4.2699	1.6280
Isopentane	2.7140	1.2846
n-Pentane	3.9224	1.8565
n-Hexane	2.8780	1.6270
Cyclohexane	0.5763	0.3182
i-C6	3.1767	1.7959
i-C7	11.5849	7.6152
Methylcyclohexane	0.3886	0.2503
Octane	13.3381	9.9949
Nonane	6.2560	5.2636
Benzene	1.6310	0.8358
Toluene	3.0449	1.8404
Ethylbenzene	0.4345	0.3026
o-Xylene	2.4202	1.6856
H2S	0.0001	0.0000
Water	0.0105	0.0012
2,2,4 Trimethylpentane	0.5033	0.3772
Decanes Plus	38.8705	62.1167
Total	100.00	100.0000

MOLECULAR WEIGHT	152.44
NMHC	37.788
VOCs (NMNEHC)	37.100
HAPs	4.524
H2S Mole Percentage	0.01053

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS VOCs

		Estimated			Total VOC		Emissions		Total CH4	Total CO2	CH4	CO2	CO2e
Component Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year	Weight %	Weight %	Emissions	Emissions	Emissions
							-				ton/year	ton/year	ton/year
Valves	Gas/Vapor	50	8760	0.00992000	84.54	0.42	3673.03	1.84	46.93	0.33	1.15	2.17	30.99
	Light Oil	50	8760	0.00550000	37.10	0.10	893.75	0.45	0.20	0.00	1.20	1.20	31.26
	Heavy Oil	0	8760	0.00001900	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.01	0.00	0.01	0.00	0.20	0.00	0.05	0.05	1.23
	Gas/Vapor	5	8760	0.00529000	84.54	0.02	195.87	0.10	46.93	0.33	0.06	0.12	1.65
Pump Seals	Light Oil	5	8760	0.02866000	37.10	0.05	465.73	0.23	0.20	0.00	0.63	0.63	16.29
· 1 · · · ·	Heavy Oil	0	8760	0.00113000	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.01	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.06
Connectors	Gas/Vapor	50	8760	0.00044000	84.54	0.02	162.92	0.08	46.93	0.33	0.05	0.10	1.37
	Light Oil	50	8760	0.00046300	37.10	0.01	75.24	0.04	0.20	0.00	0.10	0.10	2.63
	Heavy Oil	0	8760	0.00001700	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.01	0.00	0.01	0.00	0.20	0.00	0.05	0.05	1.38
	Gas/Vapor	50	8760	0.00086000	84.54	0.04	318.43	0.16	46.93	0.33	0.10	0.19	2.69
171	Light Oil	50	8760	0.00024300	37.10	0.00	39.49	0.02	0.20	0.00	0.05	0.05	1.38
Flanges	Heavy Oil	0	8760	0.00000086	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.01	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.04
	Gas/Vapor	0	8760	0.00441000	84.54	0.00	0.00	0.00	46.93	0.33	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00030900	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.01	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	84.54	0.16	1436.63	0.72	46.93	0.33	0.45	0.85	12.12
0.1	Light Oil	0	8760	0.01650000	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	37.10	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.01	0.00	0.09	0.00	0.20	0.00	0.68	0.68	17.56

Emission Component	lb/hr	lb/year	TPY
Total VOC	0.83	7261.17	3.63

CH4	CO2	CO2e
Emissions	Emissions	Emissions
4.58	6.18	120.64

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS HAPs

C		Estimated			Total HAPs		Emissions	
Component Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	3.15	0.02	136.65	0.07
Valves	Light Oil	50	8760	0.00550000	4.52	0.01	108.98	0.05
	Heavy Oil	0	8760	0.00001900	4.52	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.01	0.00	0.01	0.00
	Gas/Vapor	5	8760	0.00529000	3.15	0.00	7.29	0.00
D C1-	Light Oil	5	8760	0.02866000	4.52	0.01	56.79	0.03
Pump Seals	Heavy Oil	0	8760	0.00113000	4.52	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.01	0.00	0.00	0.00
6	Gas/Vapor	50	8760	0.00044000	3.15	0.00	6.06	0.00
	Light Oil	50	8760	0.00046300	4.52	0.00	9.17	0.00
Connectors	Heavy Oil	0	8760	0.00001700	4.52	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.01	0.00	0.01	0.00
	Gas/Vapor	50	8760	0.00086000	3.15	0.00	11.85	0.01
El	Light Oil	50	8760	0.00024300	4.52	0.00	4.82	0.00
Flanges	Heavy Oil	0	8760	0.00000086	4.52	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.01	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	3.15	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	4.52	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	4.52	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.01	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	3.15	0.01	53.45	0.03
Otherm	Light Oil	0	8760	0.01650000	4.52	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	4.52	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.01	0.00	0.08	0.00

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.05	395.15	0.20

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS BENZENE

Commons		Estimated			Total Benzene		Emissions	
Component Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	0.42	0.00	18.06	0.01
Valves	Light Oil	50	8760	0.00550000	1.84	0.01	44.34	0.02
	Heavy Oil	0	8760	0.00001900	1.84	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.00	0.00	0.00	0.00
	Gas/Vapor	5	8760	0.00529000	0.42	0.00	0.96	0.00
Duman Cools	Light Oil	5	8760	0.02866000	1.84	0.00	23.10	0.01
Pump Seals	Heavy Oil	0	8760	0.00113000	1.84	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.00	0.00	0.00	0.00
Connectors	Gas/Vapor	50	8760	0.00044000	0.42	0.00	0.80	0.00
	Light Oil	50	8760	0.00046300	1.84	0.00	3.73	0.00
	Heavy Oil	0	8760	0.00001700	1.84	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.00	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00086000	0.42	0.00	1.57	0.00
E1	Light Oil	50	8760	0.00024300	1.84	0.00	1.96	0.00
Flanges	Heavy Oil	0	8760	0.00000086	1.84	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	0.42	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.84	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.84	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.00	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	0.42	0.00	7.06	0.00
Other:	Light Oil	0	8760	0.01650000	1.84	0.00	0.00	0.00
Omer:	Heavy Oil	0	8760	0.00006800	1.84	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.00	0.00	0.02	0.00

Emission Component	lb/hr	lb/year	TPY
Total Benzene	0.012	101.61	0.051

XTO ENERGY INC. CORRAL CANYON 23 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS HEXANE

Component Type	Service	Estimated Components Count	Hours	Factors	Total Hexane Weight %	Emissions		
						lb/hour	lb/year	tons/year
Valves	Gas/Vapor	50	8760	0.00992000	1.86	0.01	80.72	0.04
	Light Oil	50	8760	0.00550000	1.63	0.00	39.19	0.02
	Heavy Oil	0	8760	0.00001900	1.63	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.00	0.00	0.00	0.00
Pump Seals	Gas/Vapor	5	8760	0.00529000	1.86	0.00	4.30	0.00
	Light Oil	5	8760	0.02866000	1.63	0.00	20.42	0.01
	Heavy Oil	0	8760	0.00113000	1.63	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.00	0.00	0.00	0.00
Connectors	Gas/Vapor	50	8760	0.00044000	1.86	0.00	3.58	0.00
	Light Oil	50	8760	0.00046300	1.63	0.00	3.30	0.00
	Heavy Oil	0	8760	0.00001700	1.63	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.00	0.00	0.00	0.00
Flanges	Gas/Vapor	50	8760	0.00086000	1.86	0.00	7.00	0.00
	Light Oil	50	8760	0.00024300	1.63	0.00	1.73	0.00
	Heavy Oil	0	8760	0.00000086	1.63	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.00	0.00	0.00	0.00
Open-ended Lines	Gas/Vapor	0	8760	0.00441000	1.86	0.00	0.00	0.00
	Light Oil	0	8760	0.00309000	1.63	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00030900	1.63	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.00	0.00	0.00	0.00
Other:	Gas/Vapor	10	8760	0.01940000	1.86	0.00	31.57	0.02
	Light Oil	0	8760	0.01650000	1.63	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00006800	1.63	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.00	0.00	0.02	0.00

Emission Component	lb/hr	lb/year	TPY
Total Hexane	0.022	191.85	0.096

AIR EMISSIONS CALCULATION TOOL

Instructions for Completing the Equipment Calculation Forms

- 1. Click the **Start Button** below to reset the form to begin data entry.
- 2. The Air Emissions Calculation Tool initially loads with the Core Data **Information Form.** Once all information is entered on this form, the necessary equipment calculation pages will be created based on the information entered on the Core Data Information Form. The customized *Air Emissions Calculation* **Tool** should now be saved to your computer before entering any other information on the equipment calculation pages. Warning, every time you click on the **Start Button b**elow, the **Air Emissions Calculation Tool** will reset and all data entered will be lost.
- Green/Blue colored information boxes require users to enter the required information for the subject facility. Default values may be changed if not appropriate for the facility.
- Yellow colored boxes represent calculated values based on user information entered and may not be changed.
- Yellow boxes with green/blue cross-hatching represent calculated values based on user information entered, however users may input data in these boxes, if necessary.

Page 1 of 27 Ver.-Draft 8/10/18

Core Data Information

Mandatory - All appropriate Data Must Be Entered For All Boxes Below. This Data Will Automatically Create All Required Equipment Forms And Populate This Data In All Emissions Calculation Forms.

Date Field Feb 21, 2020	Permit/NOI/NPR Number
Company Name: XTO Energy Inc.	Select Application Type GCP-O&G
Facility Name: Corral Canyon 23	AI# if Known
Max. Facility Gas Production 60,841.02 (Mscf/d) 2,535.04 (Mscf/h)	Elevation (ft.) 3,076
Max. Facility Oil Production 25,000 (BOPD) 1,041.67 (BOPH)	Sour Gas Streams at This Site? NO
Max. Facility Produced Water 60,000 (BWPD) 2,500 (BWPH)	Jour Gas Streams at This Site! NO

Enter The Quantity Of All Air Emissions Sources Located At The Facility (Leave Blank For Each Equipment Type That Is Not Present)

Equipment	Quantity	Equipment	Quantity
Amine Unit(s)		Compressor Engine (s)	
Dehydrator(s)		Enclosed Combustion Device(s) (ECD)	
Equipment Fugitives	/	Flare(s)	2
Flash Tower/Ultra-Low Pressure Separator(s) [^]	1	Generator Engine (s)	
Gunbarrel Separator(s)/Tank(s)		Heater(s), Heater Treaters	2
Number of Paved Haul Roads Segments		Number of Unpaved Haul Road Segments	1
Low Pressure Compressor(s)* & Compressor(s)*	2	Oil/Condensate Storage Tank(s)	6
Oil/Condensate Truck Loading	✓	Produced Water Storage Tank(s)	6
Produced Water Truck Loading	✓	Pumpjack Engine(s)	
Reboilers(s) (Amine Units)		Placeholder for Future Use	
Reboilers(s) (Glycol, others)		Startup, Shutdown & Maintenance and Malfunction	✓
Skim Oil or Slop Oil Tank(s)	2	Thermal Oxidizer(s) (TO)	
Vapor Combustion Device(s) (VCU)		Vapor Recovery Unit(s) (VRU)^	2

Click Here to Generate Required Forms & Save to Your Computer

Complete all required forms that follow, for the equipment at the subject facility, based on the selections made above. Items with an * indicate an air emissions calculation form currently not required at this time and those with ^ indicate forms under construction at this time.

Ver.-Draft 8/10/18 Page 2 of 27

Company Name: XTO Energy Inc. Feb 21, 2020 Facility Name:

Corral Canyon 23

Permit Number: Al# if Known:

Elevation (ft.): 3,076

Heaters, Heated Separators & Heater Treaters (Only for units rated <100 MMBTU/Hr)

Enter appropriate information in green boxes below changing default values as appropriate and adding additional rows for each heater unit.

Enter the Sulfur Content of Gas or use default value (grains/10⁶ scf).

SO₂ emissions based on AP-42 EF and assumes 100% conversion of fuel grains/1000000 scf. Change default value of 2000 as needed based on gas analysis submitted with application. sulfur to SO2 and assumes sulfur content in natural gas of 2,000 2,000

Enter the Site Fuel Heat Value of Gas or use default value (Btu/scf).

,385.8

		Emi	Emissions From All	om All He	aters, He	Heaters, Heated Separators & Heater Treaters	arators &	Heater Ti	reaters			
Add/Remove Rows	Unit ID	Heat Input	NOX	×	0)	0	NOC	00)S	SO2	PM/PM10/PM2.5	/PM2.5
		MMBtu/hr	ydd	tpy	ydd	tpy	ydd	tpy	hdd	tpy	ydd	tpy
+	KIH I	4	0.533	2.335	0.448	1.962	0.029	0.127	0	0	0.04	0.175
+	НТ2	4	0.533	2.335	0.448	1.962	0.029	0.127	0	0	0.04	0.175
	Totals		1.066	4.67	0.896	3.924	0.058	0.254	0	0	0.08	0.35

0108

Calculation Tool for Heaters, Heated Separators & Heater Treater Emissions (Uncontrolled) for Oil & Gas Production Sites (Only for units rated <100 MMBTU/Hr)

All emission factors based on AP-42, Table 1.4-1, Table 1.4-2 and Table 1.4-3 (July 1998) https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf

Emission factors for natural gas combustion in boilers and furnaces are presented in AP42, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4. The Tables present emission factors on a volume basis (lb/10⁶ scf). To convert to an energy basis (lb/MMBtu), divide by a heating value of 1,020 MMBtu/10⁶ scf. The emission factors may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value.

NOx Sample Calculation

= AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat pph Value Btu/scf * 1000000/1Btu/MMBtu

= 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1Btu/MMBtu

=0.096 lb/hr

= AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat tpy value Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000 lbs

= 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs

= 0.42 tpy

SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/ 10^6 scf) to 2,000 grains/ 10^6 scf.

Technical Disclaimer

This document is intended to help you accurately determine heaters, heated separators & heater treaters emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of heaters, heated separators & heater treaters emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Page 4 of 27 Ver.-Draft 8/10/18

Feb 21, 2020 Company Name: XTO Energy Inc.

Facility Name: Corral Canyon 23 Permit Number: GCP-O&G-null

AI# if Known:

Elevation (ft.):

3,076

Flash Tower/Ultra-low Pressure **Separators Air Emissions Calculations Form Under Development**

Please submit all required calculations and supporting documentation for all Flash Tower/Ultra-low Pressure Separators emissions in the application.

Ver.Draft 8/10/18 Page 5 of 27

Feb 21, 2020 Permit Number: GCP-O&G-null Al# if Known:

Company Name: XTO Energy Inc.

Facility Name: Corral Canyon 23 Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Oil/Condensate VOC Flash Emissions Calculations Form **Select Tanks Flash Emission Calculation Method**

GOR	E & P Tanks	ProMax
Vasquez-Beggs	HYSYS	VMGSim

ProMax Oil Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

	Tanks VOC Cont	trol Method	
Capture Efficiency	100	Represent Uncaptured/Uncollected VOC's at Tanks	NO
VOC Control Method ¹	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO
VOC Destruction Efficiency ²	99.96	Represent VOC Controlled Emissions at Tanks*	NO

Notes Both the VRU and flare have control efficiencies of 98%. The AECT is not correctly calculating VOC emissions after control nor does it calculate emissions during VRU downtime.

Total VOC	Flash Emis	sions From	Oil/Condens	sate Storage	e Tanks Cald	culated with	ProMax
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emission	ns at the Tanks
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy
+	OT1	194.26	212.71	0	0	0	0
+	OT2	194.26	212.71	0	0	0	0
+	OT3	194.26	212.71	0	0	0	0
+	OT4	194.26	212.71	0	0	0	0
+	OT5	194.26	212.71	0	0	0	0
+	OT6	194.26	212.71	0	0	0	0
	Totals	1,165.56	1,276.26	0	0	0	0

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GOR Methodology

= GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-VOC pph

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol)

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol

= 216.45 lbs/hr

= GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-VOC tpy

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton

= 948.05 tpy

Vasguez-Reggs Methodology

	vasqı	rez-Red	gs wietno	oaology						
INPUTS				Cons	traints			Constan	ts	
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gr	avity
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	4,166.67	0	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460))$ for P + Patm

Patm

20

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Page 7 of 27 Ver.-Draft 8/10/18

Feb 21, 2020 Permit Number: GCP-O&G-null Al# if Known:

Company Name: XTO Energy Inc.

Facility Name: Corral Canyon 23 Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Oil/Condensate VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7 **ProMax** E & P Tanks EPA Tanks 4.09d

ProMax Oil Tanks W & S Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

	Tanks VOC Co	ntrol Method	
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO
VOC Control Method	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO
VOC Destruction Efficiency	99.96	Represent VOC Controlled Emissions at Tanks*	NO

Notes Both the VRU and flare have control efficiencies of 98%. The AECT does not calculate emissions during VRU downtime.

Total VOC	W & S Emis	sions From	Oil/Conden	sate Storage	e Tanks Cald	culated with	ProMax
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emission	s at the Tanks
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy
+	OT1	74.52	326.41	0.03	0.14	0	0
+	OT2	74.52	326.41	0.03	0.14	0	0
+	OT3	74.52	326.41	0.03	0.14	0	0
+	OT4	74.52	326.41	0.03	0.14	0	0
+	OT5	74.52	326.41	0.03	0.14	0	0
+	OT6	74.52	326.41	0.03	0.14	0	0
	Totals	447.12	1,958.46	0.18	0.84	0	0

Feb 21, 2020 Permit Number: GCP-O&G-null

Company Name: XTO Energy Inc. AI# if Known: **Facility Name:** Corral Canyon 23

Elevation (ft.): 3,076

Emissions From Loading Petroleum Liquid

Select Appropriate AP-42 Petroleum Liquid Loading Methodology & Enter appropriate information in the green boxes below changing default values as appropriate.

> **Emission Unit ID:** TL-O

Facility Oil Throughput 76,650,000 (gal/yr)

Max. Hourly Loading 8,820 Rate (gal/hr)

Select Appropriate AP-42 Petroleum Liquid Loading Methodology Below*

	AP-42, 5.2-4 Equation 1
--	-------------------------

AP-42, Table 5.2-5

S - Saturation Factor 0.6 (From AP-42 Table 5.2-1)

M - Molecular Weight of 49.07 Vapors (lb/lb-mole)

Submerged Loading Dedicated Normal Service

Select Emission Source - From AP-42 Table 5.2-5

Pannual - Avg. Annual 10.36 True Vapor Pressure of Liquid Loaded (psia)

Phourly - Max Hourly 12.19 True Vapor Pressure of Liquid Loaded (psia)

Submerged Loading Vapor Balance Service Splash Loading Dedicated Normal Service

Tannual - Average 88.1 Annual Temperature ^OF of Bulk Liquid Loaded

T_{hourly} - Maximum 100 Hourly Temperature ^OF of Bulk Liquid Loaded

Splash Loading Vapor Balance Service

	Truck Loading VOC	Control Method	
Capture Efficiency	98.7	Represent Uncaptured/Uncollected VOC's at Loading Rack	YES
VOC Control Method ¹	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Loading Rack	NA
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Loading Rack	NO

Notes The VOC wt% in the gas stream is 84.5% The rates calculated using the AP-42 equation above are for total hydrocarbons and therefore artificially inflated. The values in the Excel workbook are correct.

	Total VO	C Emissions I	From Loading	Petroleum L	iquids	
Pollutant	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at	the Loading Rack
	pph*	tpy*	pph*	tpy*	pph*	tpy*
VOC	70.43	265.75	2.31	9.63	0.92	3.45

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See next page for calculation notes. You may elect to represent the controlled emissions at the loading rack or at the control device or tanks by selecting the appropriate drop-down options under Truck Loading VOC Control Method.

Page 9 of 27 Ver.Draft 8/10/18

Calculation Tool for Emissions From Loading Petroleum Liquid

Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5

https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: Equation 1 $L_{I} = 12.46 * SPM/T$

where:

 $L_L = loading loss$, pounds per 1000 gallons (lb/10 3 gal) of liquid loaded;

S = a saturation factor (see Table 5.2-1 reproduced below))

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

 $T = \text{temperature of bulk liquid loaded, } ^{\circ}R (^{\circ}F + 460)$

VOC pph = (12.46*0.6*7.0 (psia)*50 (lb/lb-mole)/550°R)/1000 (gal) * 8400 (gal/hr)

= (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000 * 1533000 (gal/yr) * 1/2000 (ton/lbs)VOC tpy

= 2.46 tpy

Cargo Carrier	Mode of Operation	S Factor
ank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5
	Submerged loading: dedicated normal service	0.6
	Submerged loading: dedicated vapor balance service	1.0
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.0
Marine vesse l s ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

AP-42 Table 5.2-5

VOC pph = (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) = 16.8 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) = 1.53 tpy

Table 5.2-5 TOTAL UNCONTROLLED	Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS									
Emission Source	Crude Oil (lb/1000 gal transferred) ^b									
Loading Operations ^c										
	Submerged loading: dedicated normal service	2								
	Submerged loading: dedicated vapor balance service	3								
	Splash loading: dedicated normal service	5								
	Splash loading: dedicated vapor balance service	3								

a Reference 2......VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- ^) Vapor balancing emissions to tanks must be represented at the tanks;

Technical Disclaimer

This document is intended to help you accurately determine truck loading petroleum emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading petroleum emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Page 10 of 27 Ver.-Draft 8/10/18

Date: Feb 21, 2020 **Permit Number:** GCP-O&G-null

Company Name: XTO Energy Inc. Facility Name: Corral Canyon 23

Al# if Known: Elevation (ft.): 3,076

Slop Oil or Skim Oil Tanks VOC Flash Emissions Calculations Form
Select Flash Emission Calculation Method

GOR	E & P Tanks	ProMax
Vasquez-Beggs	HYSYS	VMGSim

ProMax Slop Oil or Skim Oil Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Slop Oil or Skim Oil Tanks VOC Control Method										
Capture Efficiency	100	Represent Uncaptured/Uncollected VOC's at Tanks	NO							
VOC Control Method ¹	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Tanks	NO							
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Tanks*	NO							
Notes										

Total VC	Total VOC Flash Emissions From Slop Oil or Skim Oil Tanks Calculated with ProMax											
Add/Remove Rows	Tank ID	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Tanks						
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy					
+	STK-1	73.76	80.77	1.48	1.62	0	0					
+	STK-2	73.76	80.77	1.48	1.62	0	0					
	Totals	147.52	161.54	2.96	3.24	0	0					

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GOR Methodology

VOC pph = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol)

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol

= 216.45 lbs/hr

VOC tpy = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton

= 948.05 tpy

Vasquez-Beggs Methodology

INPUTS		Cons	traints			Constan	ts		
API Gravity	API	16	<api></api>	58	⁰ API			⁰ API Gr	avity
Separator Pressure (psig)	Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)	Ti	70	<ti></ti>	295	0F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition	SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW	MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas	VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460)) \text{ for } P + Patm$

Patm

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 12 of 27

Permit Number: GCP-O&G-null Feb 21, 2020

Company Name: XTO Energy Inc.

Al# if Known: Corral Canyon 23 **Facility Name:** Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Slop Oil or Skim Oil VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7 **ProMax** E & P Tanks EPA Tanks 4.09d

ProMax Slop Oil or Skim Oil Tanks W & S Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Slop Oil or Skim Oil Tanks VOC Control Method										
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO							
VOC Control Method Flare (FL) Represent VRU/ULPC Downtime Emissions at Tanks										
VOC Destruction Efficiency 98 Represent VOC Controlled Emissions at Tanks*										
Notes										

Total VC	Total VOC W & S Emissions From Slop Oil or Skim Oil Tanks Calculated with ProMax											
Add/Remove Rows	Tank ID	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Tanks						
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy					
+	SKTK1	0.01	0.06	0	0	0	0					
+	SKTK2	0.01	0.06	0	0	0	0					
	Totals	0.02	0.12	0	0	0	0					

Date: Feb 21, 2020 **Permit Number:** GCP-O&G-null

Company Name: XTO Energy Inc.

Facility Name: Corral Canyon 23

Al# if Known:
Elevation (ft.): 3,076

Startup, Shutdown & Maintenance and Malfunction

 No SSM emissions are expected from routine operation 		No SSM	emissions are	expected from	routine o	peration
--	--	--------	---------------	---------------	-----------	----------

- Request up to 10 tpy of VOC SSM emissions.
- Request site specific VOC & H2S SSM and enter information below.
- Request site specific VOC & H2S SSM plus 10 tpy VOC and enter information below.
- Request site specific combustion SSM and those emissions are included in Section 4 (attach calculations.)
- Request 10 tpy VOC Malfunction emissions for GCP-O&G, GCP-6 or NSR permitting actions only.

	I	Blowdown	S	Er	ngine Startu	ps
Unit Numbers						
Quantity of Like-kind Blowdown Units or Engines	1					
Total Volume of Each Blowdown or Engine Startup Vent (acf)						
Duration of Event (Minutes)						
Maximum Blowdowns or Startups/hr	1					
Frequency of Blowdowns or Engine Startups (Events/yr)						
Total Actual Volume of Gas Vented (acf/yr)	0	\otimes			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	****
Pressure of Gas Inside Unit Before Venting (psig)						
Final Pressure (psia)	14.7					
Gas Temperature Prior to Venting (°F)						
Vented Gas Molecular Weight (lb/lb-mol						
Vented Gas VOC wt %						
Vented Total HAP wt %						
Vented Gas Benzene wt %						
Vented Gas H ₂ S wt %						

Startup, Shutdown and Maintenance Emissions (SSM) and Malfunction Emissions											
SSM	voc		VOC Total HAP Be		Benz	Benzene		H ₂ S			
	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY			
SSM Blowdowns											
SSM Startups											
SSM Other (Attach Calculations)											
SSM Totals											
Malfunction Total											

Notes

*SSM emissions are illustrated at the high and low pressure flares.

Ver.Draft 8/10/18 Page 14 of 27

Planned SSM Emissions

The venting emissions calculations herein should only be used when only gas (no liquids) is present in the unit. The calculation of the vented gas is based on the volume of the unit and assumes the unit is saturated with vapor at the pressure and temperature of the unit before venting occurs. If liquids are also present in the gas, please enter the calculated amounts in the SSM Other row only and submit separate calculations, since the calculations on this form do not account for the evaporation of liquids that may be present in the unit.

Calculations are based on the Ideal gas law: P(V) = n(R)(T)

VOC result = (((Pressure of Gas Inside the Unit Before Venting) * (Actual Volume of the Vented Unit)) / (Frequency of events) * (Molecular Weight) * VOC wt%)/(Ideal Gas Constant) * (Temperature of Gas Inside the Unit Before Venting)

Where the Ideal Gas Constant = $10.73159 (ft^3*psia)/R*lb-mol$

For SSM combustion emissions, attach separate calculations.

Page 15 of 27 Ver.-Draft 8/10/18

Feb 21, 2020 Permit Number: GCP-O&G-null

Company Name: XTO Energy Inc. **Facility Name:**

Al# if Known: Corral Canyon 23 Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Produced Water VOC Flash Emissions Calculations Form **Select Tanks Flash Emission Calculation Method**

GWR	E & P Tanks	ProMax
Vasquez-Beggs	HYSIS	VMGSim

ProMax Produced Water Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method								
Select % Oil in Water 1 VOC Uncontrolled emissions entered includes this percentage.								
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO					
VOC Control Method	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Tanks	NO					
VOC Destruction Efficiency	Represent VOC Controlled Emissions at Tanks*	NO						
Notes								

Total VOC Emissions From Produced Water Storage Tanks Calculated with ProMax									
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks			
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy		
+	WT 1	0.5	0.55	0.01	0.01	0	0		
+	WT 2	0.5	0.55	0.01	0.01	0	0		
+	WT 3	0.5	0.55	0.01	0.01	0	0		
+	WT 4	0.5	0.55	0.01	0.01	0	0		
+	WT 5	0.5	0.55	0.01	0.01	0	0		
+	WT 6	0.5	0.55	0.01	0.01	0	0		
	Totals	3	3.3	0.06	0.06	0	0		

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GWR Methodology

VOC pph

- = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lbmole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * Percent Oil in Water
- = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 1/100
- $= 2.16 \, lbs/hr$

VOC tpy

- = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lbmole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton * Percent Oil in Water
- = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton * 1/100 = 9.48 tpy

Vasquez-Beggs Methodology

INPUTS		Const	traints			Constan	ts			
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gr	avity
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	0F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Water/Day (BOPD)	10,000	Q	None	<q></q>	None	BOPD	С3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460)) \text{ for } P + Patm$

Patm

20

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine produced water storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of produced water storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 17 of 27

Date: Feb 21, 2020 Permit Number: GCP-O&G-null
Company Name: XTO Energy Inc. Al# if Known:

Company Name: XTO Energy Inc. Facility Name: Corral Canyon 23

ame: Corral Canyon 23 Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Water Tanks VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7 EPA Tanks 4.09d ProMax E & P Tanks

ProMax Produced Water Tanks W & S Emission Calculations

(Assumes W & S emissions are 1% of the emissions calculated based on oil properties and entered as uncontrolled emissions)

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method									
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO						
VOC Control Method	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Tanks	NO						
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO						
Notes									

Total VOC	W & S Emis	sions From I	Produced W	ater Storag	e Tanks Cal	culated with	h ProMax	
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks		
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	WT1	0	0.02	0	0	0	0	
+	WT2	0	0.02	0	0	0	0	
+	WT3	0	0.02	0	0	0	0	
+	WT4	0	0.02	0	0	0	0	
+	WT5	0	0.02	0	0	0	0	
+	WT6	0	0.02	0	0	0	0	
	Totals	0	0.12	0	0	0	0	

Permit Number: GCP-O&G-null Feb 21, 2020

Company Name: XTO Energy Inc. AI# if Known: **Facility Name:** Corral Canyon 23

Elevation (ft.): 3,076

Emissions From Loading Produced Water Liquids

Select Appropriate AP-42 Pe	troleum Liqui	d Loading Methoa changing default			ate information in the	green boxes below			
	Em	ission Unit ID:	TL	-W					
Facility Produced Water Throughput (gal/yr)	.825,000	Max. Hourly Loading Rate (gal/hr)		8,820	% Oil in Water	1			
Sel	ect Appropria	ite AP-42 Petroleur	m Liquid Lo	ading Meth	odology Below*				
● AP-42	2, 5.2 - 4 Equation	on 1		P	NP-42, Table 5.2-5				
- Saturation Factor rom AP-42 Table 5.2-1)		M - Molecular Weight of Vapors (lb/lb-mole)			Select Emission Source - From AP-42 Table 5.2-5 Submerged Loading Dedicated Normal Service				
annual - Avg. Annual rue Vapor Pressure of quid Loaded (psia)	56 True Vapo	Max Hourly or Pressure of aded (psia)	0.81	Splash L	ged Loading Vapor Ba oading Dedicated Nor oading Vapor Balance	mal Service			
annual - Average nnual Temperature ^O F 82 Bulk Liquid Loaded	2.2 Hourly Te	Maximum mperature ^O F quid Loaded	94.1						
otes:The value below represents rather than 1% of the oil.	THC, not VOC	See the Excel wor	kbook for V	OC calculatio	ons since it uses the co	mposition of the wate	≘r		

Total VOC Emissions From Loading Produced Water Liquids								
Based On % Oil in Water Selected Above								
Pollutant	Uncontrolled Emissions (pph)	Uncontrolled Emissions (tpy)						
VOC	0.02	0						

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See reverse side for calculation notes

Calculation Tool for Emissions From Loading Produced Water Liquids

Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5

https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading produced water liquids can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: Equation 1 $L_{\rm L} = 12.46 * {\rm SPM/T}$

where:

 $L_L = loading loss$, pounds per 1000 gallons (lb/10³ gal) of liquid loaded (assumes 1% oil in water)

S = a saturation factor (see Table 5.2-1 reproduced below))

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

T = temperature of bulk liquid loaded, °R (°F + 460)

VOC pph = $(12.46*0.6*7.0 \text{ (psia)}*50 \text{ (lb/lb-mole)}/550^{\circ}\text{R})/1000 \text{ (gal)}*8400 \text{ (gal/hr)}*0.01 \text{ (1% oil in water)}$

= 39.96 lb/hr

VOC tpy = (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000*1533000 (gal/hr)*1/2000 (ton/lbs)*0.01 (1% oil in water)

= 2.46 tpy

Cargo Carrier	Mode of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5
	Submerged loading: dedicated normal service	0.6
	Submerged loading: dedicated vapor balance service	1.0
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.0
Marine vesse l s ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

AP-42 Table 5.2-5 (assumes 1% oil in water)

VOC pph= (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) * 0.01 (1% oil in water) = 0.168 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) * 0.01 (1% oil in water) = 0.0153 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS							
Emission Source	Mode of Operation	Crude Oil (lb/1000 gal transferred) ^b					
Loading Operations ^c							
	Submerged loading: dedicated normal service	2					
	Submerged loading: dedicated vapor balance service	3					
	Splash loading: dedicated normal service	5					
	Splash loading: dedicated vapor balance service	3					

a Reference 2.VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1.

Technical Disclaimer

This document is intended to help you accurately determine truck loading produced water emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading produced water emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 20 of 27

Pate: Feb 21, 2020 Permit Number: GCP-0&G-null

Company Name:XTO Energy Inc.Al# if Known:Facility Name:Corral Canyon 23Elevation (ft.):3,076

Elevation (resp. 5)07

Flare

	Enter information in green boxes below changing default values as appropriate.							
		Gas Stream	Gas Stream	Gas Stream		Gas Stream	Gas Stream	Gas Stream
		1	2	3		1	2	3
Emission	Unit ID	FL-1	FL-1b	FL-1c	Hourly Gas Routed to Flare (MMBtu/hr)	172.30735	3,513.18518	0
Hourly Gas Str (Mscf		91.193	2,535.04		Annual Gas Routed to Flare (MMBtu/yr)	37,734.8050	170,293.248	0
Annual Gas Str (MMsc		19.971	122.88		Pilot Gas Routed to Flare (MMBtu/hr)	0.55434	0	0
Max. Heat Value	of Gas (Btu/scf)	1,889.48	1,385.85	1,200	Gas MW (lb/lbmol)	32.84	23.55	
Field Gas Mol Fi H2S/lb		0	0		Gas Pressure (psia)	14.7	14.7	14.7
Field Gas Sulf (S grains/		5	5	5	Gas Temperature (°F)	70	70	70
Pilot Gas to Fla	are (Mscf/hr)	0.4			Field Gas H2S Wt.% to Flare (%)	0	0	
Max. Heat Value scf	_ `	1,385.85	1,020	1,020	Flare Control Efficiency	98	98	95
Pilot Gas Sulf (S grains/		0.25	0.25	0.25	Total VOC wt.% to Flare (%) ¹	57.72	31.92	100
Source of Flare E	mission Factors	TCEQ Air or	TCEQ Air or		Safety Factor Applied to Total Emissions (%)			

Total Emissions to Flare															
Pollutant		NOx			CO			VOC			SO2			H2S	
Gas Streams to Flare	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Uncontrolled (pph)	0	0	0	0	0	0	4,467.78	49,253,82 +		0	0	0	0	0	0
Uncontrolled (tpy)	0	0	0	0	0	0	489.22	1,193.73	YYY	0	0	0	0	0	0
Field Gas (pph)	23.7784	484.8196		47.4707	967.8825		89.36	985.08		0	0		0	0	
Field Gas (tpy)	2.6037	11.7502	0	5.198	23.4579	0	9.78	23.87		0	0	0	0	0	0
Pilot Gas (pph)	0.0765			0.1527			0	0	0	0.0003	0	0	0	0	0
Pilot Gas (tpy)	0.3351			0.6689			0	0	0	0.0012	0	0	0	0	0
Subtotal Flare (pph)	23.8549	484.8196	0	47.6234	967.8825	0	89.36	985.08	0	0.0003	0	0	0	0	0
Subtotal Flare (tpy)	2.9388	11.7502	0	5.8669	23.4579	0	9.78	23.87	0	0.0012	0	0	0	0	0
Total Flare (pph)		508.67			1,015.51			1,074.44			0.0003			0	
Total Flare (tpy)		14.69			29.32			33.65			0.0012			0	

See reverse side for calculation notes.

Use Highest NOx & CO Emission

Factors From AP-42 or TCEQ

NO

NO

1) Based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf; *) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012); #) Assumes H₂S is converted to SO₂ at selected control efficiency; SO2 emissions based on mass balance;

+) Assumes H_2S Destruction Efficiency equals flare destruction efficiency;

Ver.Draft 8/10/18 Page 21 of 27

Calculation Tool for Flare Emissions for Oil & Gas Production Sites

All emission factors based on AP-42, Emission factors for NOx, CO & VOC, Table 13.5-1, (December 2016); https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05_12-13-16.pdf or https://www.tceq.texas.gov/assets/public/comm_exec/pubs/rg/rg360/rg36011/rg-360a.pdf

- 1) Information included in calculation tool must be based on representative gas analysis which must be submitted with application;
- 2) Assumes pilot gas used has a negligible amount of VOC's and 0.25 grains H2S/100 scf;
- 3) SO₂ calculations assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance;
- 4) H₂S calculations assume H₂S Destruction Efficiency equals flare destruction efficiency;

Sample Calculations

NOx pph

- = hourly gas routed to flare (MMBtu/hr) * NOx Emission factor (lbs/MMBtu)
- = 1(MMBtu/hr) * 0.068 (lbs/MMBtu)
- = 0.068 lbs/hr

NOx tpy = annual gas routed to flare (MMBtu/yr) * NOx Emission factor (lbs/MMBtu) * 1/lbs/ton)

- = 1000 (MMBtu/yr) * 0.068 (lb/MMBtu) * 1/2000 (lbs/ton)
- = 0.034 tpy

SO₂ pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/lb

- -mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60° F, 1 atm * Conversion Rate of H₂S to SO₂ lb-mol SO₂/lb-mol H₂S * Molecular Weight of Sulfur Dioxide (64 lb SO₂/lb-mol SO₂)
- = 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * 0.95 lb-mol SO₂/lb-mol H₂S * 64 lb/lb-mol

Residual

 H_2S pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H_2S (mol H_2S)

lb-mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60^OF, 1 atm * (100-(Flare Control Efficiency))/100) * Molecular Weight of Hydrogen Sulfide (34 lb H₂S/lb-mol H₂S)

= 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * (100-95%/100) * 34 lb/lb-mol

Flare, Vapor Combustion Devices & Enclosed Combustion Devices Emission Factors									
Contaminant	Assist Type	Waste Gas Stream Heat Value (Btu/scf)							
NOx	Steam	≥1000	0.068	0.0485					
	Steam	<1000	0.068	0.068					
	Air or Unassisted	≥1000	0.068	0.138					
	Air or Unassisted	<1000	0.068	0.0641					
CO	Steam	≥1000	0.31	0.3503					
	Steam	<1000	0.31	0.3465					
	Air or Unassisted	≥1000	0.31	0.2755					
	Air or Unassisted	<1000	0.31	0.5496					
VOC	Air & Steam Assist	≥300	0.66						

Technical Disclaimer

This document is intended to help you accurately determine flares, enclosed combustion devices and vapor combustion units emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of flares, enclosed combustion devices and vapor combustion units emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 22 of 27

ate: Feb 21, 2020 Permit Number: GCP-O&G-null

Company Name: XTO Energy Inc.

Al# if Known:

Facility Name: Corral Canyon 23 Elevation (ft.): 3,076

Emission Unit ID: FUG Fill all green/blue boxes changing default values as appropriate.

Emission	Unit ID:	FUG	Fill	all gre	en/bl	ue bo	xes c	hangi	ng	defa	iult v	alues a	ıs ap	prop	riat	e.			
Fugitive	Volatile	Organio	Cor	npound	ls (VO	C), To	tal HA	Ps (HA	λ P),	Benz	zene	(CH6) &	Hyd	rogei	n Su	fide	(H ₂ S)	Emiss	ions
						Unc	ontrolle	ed Tota	ıl					Co	ontro	lled T	otal		
				VC	OC	Total	HAP	CH ₆		Н	1 ₂ S	VO	C	Total	HAP		CH ₆	H	I ₂ S
	%VOC %HA	P %CH ₆	%H ₂	S PPH	TPY	PPH	TPY F	PPH T	PΥ	PPH	TPY	PPH	TPY	PPH	TPY	PPH	H TPY	' PPH	TPY
	2.87% 1.3			0.75	3.27	0.03	0.13	0		0	0	0	0	0	0	0	0	0	0
Heavy Oil				0		_	0			0	0	0	0	0	0	0	0	0	0
Light Oil 9				1.22		_	0.35			0	0	0		0	0	0	0	0	0
Water/Oil (0		,	0	_		0	0	0	-	0	0	0	0	0	0
	Totals	<u> </u>		1.97			0.48 0			0	0	0		0	0	0	0	0	0
					ļ		d VOC, I		Ť				+				4P & CI		
Equipment	Service ^a	EF ^b		No. of	VOC	VOC	HAP	HAP	CH	- 1	CH ₆	Control	VO			HAP	HAP	CH ₆	CH ₆
Type				Sources	PPH	TPY	PPH	TPY	PF			Efficiency				PPH	TPY	PPH	TPY
Valves	Gas	0.00992		140	0.4565			0.0793	+	0		0%	0	_) 0		0	0	0
	Heavy Oil			0	0	0	0	0	0	0		0%	0	() 0		0	0	0
	Light Oil	0.00551		140	0.766	3.3551		0.2186	0	0		0%	0	() 0		0	0	0
	Water/Oil	0.00021	605	50	0.0001	0.0004	0	0	0	0		0%	0	(0		0	0	0
Subtotals					1.2226	5.355	0.068	0.2979	-	0			0	() 0		0	0	0
Pump Seals	Gas	0.00529	104	5	0.0087	0.0381	0.0003	0.0013	0	0		0%	0	() 0		0		0
	Heavy Oil	0.02865	98	0	0	0	0	0	0	0		0%	0	() 0		0	0	0
	Light Oil	0.02865	98	5	0.1423	0.6233	0.0093	0.0407	0	0		0%	0	() 0		0	0	0
	Water/Oil	0.00005	291	10	0	0	0	0	0	0		0%	0	(0		0	0	0
Subtotals					0.151	0.6614	0.0096	0.042	0	0			0	() 0		0	0	0
Connectors	Gas	0.00044	092	450	0.0652	0.2856	0.0026	0.0114	0	0		0%	0	(0		0	0	0
	Heavy Oil	0.00001	653	0	0	0	0	0	0	0		0%	0	() 0	ı	0	0	0
	Light Oil	0.00046	297	450	0.2068	0.9058	0.0135	0.0591	0	0		0%	0	() 0		0	0	0
	Water/Oil	0.00024	251	50	0.0001	0.0004	0	0	0	0		0%	0	() 0		0	0	0
Subtotals	•				0.2721	1.1918	0.0161	0.0705	0	0			0	() 0		0	0	0
Flanges	Gas	0.00085	979	450	0.1272	0.5571	0.005	0.0219	0	0		0%	0	(0		0	0	0
	Heavy Oil	0.00000	086	0	0	0	0	0	0	0		0%	0	() 0		0	0	0
	Light Oil	0.00024	251	450	0.1083	0.4744	0.0071	0.0311	0	0		0%	0	() 0		0	0	0
	Water/Oil	0.00000	639	50	0	0	0	0	0	0		0%	0	(0		0	0	0
Subtotals	•				0.2355	1.0315	0.0121	0.053	0	0			0	() 0		0	0	0
Open Ends	Gas	0.00440	92	18	0.0261	0.1143	0.001	0.0044	0	0		0%	0	() 0		0	0	0
	Heavy Oil	0.00030	864	0	0	0	0	0	0	0		0%	0	() 0		0	0	0
	Light Oil	0.00308	644	0	0	0	0	0	0	0		0%	0	() 0		0	0	0
	Water/Oil	0.00055	115	0	0	0	0	0	0	0		0%	0	(0		0	0	0
Subtotals	1	ı			0.0261	0.1143	0.001	0.0044	0	0			0	(0		0	0	0
Other ^c	Gas	0.01940	048	10		_	0.0025	0.011	0	0		0%	0	(0		0	0	0
	Heavy Oil	0.00007	055	0	0	0	0	0	0	0		0%	0	(0		0	0	0
	Light Oil	0.01653	45	0	0	0	0	0	0	0		0%	0	(0		0	0	0
	Water/Oil	0.03086	44	5	0.0015	0.0066	0.0001	0.0004	0	0		0%	0	(0		0	0	0
Subtotals	L	1			0.0653		0.0026		_	0			0	_	0		0	0	0
	-				3.0000	1.200		<u> </u>	1								l		

Based on: 1995 Protocol for Equipment Leak Emission Estimates, Table 2.4 Version Date: 6/23/16; See next page for calculation notes.

Ver.Draft 8/10/18 Page 23 of 27

MEACO

New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Calculation Tool for Fugitive Emissions Oil & Gas Production Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), Table 2-4; available at the EPA Web site at https://www3.epa.gov/ttn/chief/efdocs/equiplks.pdf

- a) Service categories are defined as follows:
 - 1) Gas/vapor material in a gaseous state at operating conditions;
 - 2) Light liquid material in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure over 0.3 kilopascals (kPa) at 200C is greater than or equal to 20 weight percent;
 - 3) Heavy liquid not in gas/vapor service or light liquid service.
 - 4) Water/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.
- b) These factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.
- c) The "other" equipment type was derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.
- d) Note that the average factors generally determine total hydrocarbon emissions. Therefore, you may need to multiply the calculated emission rates by the stream's weight percentage of VOC compounds to determine total VOC emissions. Please attach a copy of the appropriate gas and oil analysis with the stream's weight percentage of VOC compounds identified.

VOC Sample Calculation

For 10 Valves in Gas Service with a gas stream weight percentage of 25% VOC

Emission Factor (EF) lb/hr=0.0045 kg/hr * 2.2046 lbs/kg

Gas Valves Uncontrolled Emissions

pph EF (Valves in Gas Service) * Number of Valves in Gas Service & VOC wt% 0.0099207 |b/hr * 10 valves = 0.099207 |b/hr * 25%/100

tpy EF (Valves in Gas Service) * Number of Valves in Gas Service * 8760 hrs/yr * 1ton/2000 lbs 0.0099207 lb/hr * 10 valves * 8760 hrs/yr * 1/2000 ton/lbs = 0.4345 tons/yr * 25%/100

Total Uncontrolled Fugitive Emissions for all Service types in Gas Service

pph (Uncontrolled pph Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100 tpy (Uncontrolled tpy Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100

Technical Disclaimer

This document is intended to help you accurately determine equipment leak fugitive emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how piping components work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of equipment leak fugitive emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 24 of 27

Date: Feb 21, 2020 **Permit Number:** GCP-O&G-null

Company Name: XTO Energy Inc. **Facility Name:** Corral Canyon 23

Al# if Known: Elevation (ft.):

own: (ft.): 3,076

Unpaved Haul Roads

Enter Information in all green boxes.

Haul Koad	Fugitive Emissi	on Unit ID:	ROAD	
% Silt Mean Vehicle Weight (tons)	4.8		nce-Round-trip in Miles d-trip distance within es)	0.13
Rain Days	70	Number of Haul I	Road Round-trips/hour	2
•		Number of Haul I	Road Round-trips/yr	17,381
User % Control	0	Vehicle Miles Tra	veled/hr (VMT/hr)	0.26
		Vehicle Miles Tra	veled/yr (VMT/yr)	2,259.53

Notes:* The values here a slightly different from the Excel workbook due to rounding. The actual distance per load is 0.133 miles.

	Hourly lbs/VMT			Annually lbs/VMT	
TSP	PM10	PM2.5	TSP	PM10	PM2.5
7.05	1.8	0.18	5.7	1.45	0.15

		TSP/PM1	0/PM2.5 Emissi	on Rates		
Control	TS	SP	PN	110	PM	2.5
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Continuous	1.83	6.49	0.47	1.65	0.05	0.17
0% Control	1.83	6.44	0.47	1.64	0.05	0.17
User % Control	1.83	6.44	0.47	1.64	0.05	0.17

NMED-AQB Unpaved Haul Road Calculation Tool

All emission factors based on AP-42, AP-42 13.2.2-4; November 2006

https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf

Emissions from vehicles traveling on unpaved surfaces at industrial sites (based on 8760 Hours/year) can be estimated using the following expression:

 $E = k (s/12)^a (W/3)^b$ AP-42 13.2.2-4; Equation 1a:

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

Table 13.2.2-2	2. CONSTANT	TS FOR EQUA	TION 1a
Constant	Industr	rial Roads (Equa	ation 1a)
	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9
a	0.9	0.9	0.7
b	0.45	0.45	0.45
Quality Rating	В	В	В
*Assumed equivalent	t to total suspe	nded particulate	matter (TSP)

Technical Disclaimer

This document is intended to help you accurately determine unpaved haul road emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how unpaved haul roads work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of unpaved haul road emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 26 of 27

Permit Number:

A	
1/2	
V	
100	

Fac

Company Name: XTO Energy Inc. Facility Name: Corral Canyon 2	· Name: ame:	XTO Energy Inc. Corral Canyon 23	gy Inc. 1yon 23										AI# if Known: Elevation (ft.):		3,076			
					rotal Reqυ	nested Em	issions F	Total Requested Emissions For All Regulated Facility Equipment (GCP-O&G Request)	ulated Fa	cility Equi	pment (G	CP-O&G	Reduest)					
Emission	ž	NOX		9	<u>У</u>	VOC	Š	SOx	TSP	٩	PM10	10	PM2.5	2.5	Ϋ́	H ₂ S	Total HAP	HAP
Unit	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Engines	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
Heaters	1.07	4.67	6.0	3.92	90.0	0.25	0	0	0.08	0.35	0.08	0.35	0.08	0.35	1	1		
Oil Tanks Flash	1	1	1	ı	0	0	1	1	1	1	1	1	1	1				
Oil Tanks W & S	1	1	-	1	0	0	1	1	1	1	1	1	1	1				
Water Tks Flash	-	1	-	ı	0	0	1	1	1	1	1	1	1	1				
Water Tks W & S	1	1	1	1	0	0	1	1	1	1	1	1	1	1				
Skim or Slop Tank	1	1	1	ı	0	0	1	1	1	1	1	1	1	1				
GBS	1	1	1	1			1	1	1	1	1	1	1	1				
ECD	0	0	0	0	0	0	0	0										
NCU	0	0	0	0	0	0	0	0										
10	0	0	0	0	0	0	0	0										
Flares	508.67	14.69	1,015.51	29.32	1,074.44	33.65	0	0										
Fugitives	-	-	-	-	1.97	8.64									0	0	0.11	0.48
SSM																		
Malf.	1	1	-	-	1		1	ı	1	1	1	1	1	1	1	1	1	1
Unpaved Haul Rds.	1	1	1	ı	ı	1	ı	ı	1.83	6.44	0.47	1.64	0.05	0.17	ı	1	ı	ı
Paved Haul Rds.	-	-	-	-	-	-	ı	-	0	0	0	0	0	0	-	-	0	0
Oil Load	-	1	-	-	0.92	3.45	ı	1	1	1	-	1	-	-				
Water Loading	-	-	-	-	0.02	0	ı	1	-	-	-	1	-	-				
Amine Unt	-	1	-	1	0	0	-	1	-	1	1	-	1	1	0	0	0	0
Amine Reb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1		
Dehy Unit	-	1	_	-			-	-	-	1	-	-	-	-				
Dehy Reb.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1		
Totals	509.74	19.36	1,016.4	33.24	1,077.4	45.99	0	0	1.91	6.79	0.55	1.99	0.13	0.52	0	0	0.11	0.48
] :	<u> </u>											

Page 27 of 27 A red-outlined cell indicates that the facility exceeds the allowable emission limits for that pollutant for the requested permitting action and the application cannot be approved as proposed. Ver.-Draft 8/10/18

Section 6 Information Used to Determine Emissions

Section 6

Information Used to Determine Emissions

Check the box for each type of information submitted. This documentation is required. If applicable to the facility.

Failure to include applicable supporting documentation may result in application denial.

ver	Specifications for control equipment, including control efficiency specifications and sufficient engineering data for ification of control equipment operation, including design drawings, test reports, and design parameters that affect
	Engine or Generator Manufacturer specifications Catalyst Manufacturer specifications (If a catalyst is being utilized to reduce emissions, the catalyst manufacturer emission factors must be used in all emission calculations. A 25% safety factor may be applied to each pollutant. NSPS JJJJ emission factors may not be utilized in lieu of catalyst manufacture specifications when a catalyst is installed, and the catalysts manufacturer achieves higher control efficiency. Flare Manufacturer specifications Oil/Liquid Analysis: This data is required to match the inputs in all applicable emission calculations. For facilities that have not been constructed and a representative analysis is used it cannot be older than 1 year. For existing facilities, the gas analyses required by Condition A201.A (must be 1 year old or less). Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
	Extended Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations. If requesting to use a representative gas sample, include a discussion of why the sample is representative for this facility and an explanation of how it is representative (e.g., same reservoir, same similar API gravity, similar composition).
	If test data are used, to support emissions calculations or to establish allowable emission limits, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates. Fuel specifications sheet. If computer models are used to estimate emissions, include an input summary and a detailed report, and a disk containing the input file used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, accuracy of the model, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

<u>Representative Gas Analysis Justification:</u> * The analysis came from the Corral Canyon, which produces from the same reservoir and has similar characteristics.

Heaters (HT1-HT2)

Emission rates for NOx, CO, VOC, PM, and HAP were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. Emissions were increase assuming a burner efficiency of 70%. The AECT calculated emissions are lower than the Excel workbook.

Vapor Recovery Tower (VRT)

Flashing, working and breathing losses were estimated using Promax. A VRU is used to capture 98% of the vapors when operating. During VRU downtime (876 hours), VRT vapors are routed from to the low pressure flare (LFP) with a control efficiency of 98%. The hourly VRT emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly VRT emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

Form Revision: 10 December 2019 Printed: 2/22/2020

February 2020: Revision 0

Oil Storage Tanks (OT1-OT6)

Flashing, working and breathing losses were estimated using Promax. A VRU is used to capture 98% of the tank vapors when operating (LPF-OT). During VRU downtime (2,190 hours), tank vapors are routed from the storage tanks to the low pressure flare (LFP) with a control efficiency of 98% (LPF-OT SSM). Oil is normally piped offsite but up to 5000 BOPD can be trucked offsite. Truck loading is controlled by LPF. The hourly tank emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly tank emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

Water Skim Tanks (SKTK1-SKTK2)

Flashing, working and breathing losses were estimated using Promax, assuming a maximum throughput of 60000 BWPD. Tank vapors are routed to LPF, which has a control efficiency of 98% (LPF-WT). Water is normally piped offsite but up to 5000 BOPD can be trucked offsite. The hourly tank emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly tank emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

Water Tanks (WT1-WT6)

Working and breathing losses were estimated using Promax, assuming a maximum throughput of 60000 BWPD. Tank vapors are routed to LPF, which has a control efficiency of 98% (LPF-WT). Water is normally piped offsite but can be trucked offsite as well. The hourly tank emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly tank emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

High Pressure Flare (HPF)

The flare uses a continuously lit pilot. Heater treater gas is routed to the flare during booster compressor (BC1/BC2) downtime (HPF-HT SSM) and inlet gas is routed to the flare during sales line downtime or during unplanned maintenance activities (HPF-SALES SSM). Heater treater gas volumes were estimated using Promax. Inlet volumes are based on production estimates. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used. On the AECT, FL-1 is the treater gas stream during booster downtime and FL-1b is the inlet gas stream.

Low Pressure Flare (LPF)

The flare uses a continuously lit pilot. LPF collects 2% of all VRT and oil tanks gas during normal VRU operation and 100% of all tank gas during VRU downtime. All skim tank, water tank, and oil truck loading emissions are routed to the flare. The gas volumes are calculated using Promax. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used. The AECT does not work for the LPF since there are too many streams.

Fugitives (FUG)

Fugitives for the facility were calculated using factors in Table 2-4 of EPA-453/R-95-017, 1995 Protocol for Equipment Leak Emission Estimates.

Haul Road (ROAD)

Haul road emissions were calculated using Equation 1a in AP-42, Section 13.2.2.

Form Revision: 10 December 2019 Printed: 2/22/2020

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc.

22777 Springwoods Village Pkwy.

Spring, Texas 77389

Sample: Corral Canyon Tank Battery - FWKO 900

First Stage Separator

Spot Gas Sample @ 87 psig & 86 °F

Date Sampled: 08/20/2019 Job Number: 192968.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.919	
Carbon Dioxide	0.179	
Methane	70.043	
Ethane	14.584	3.997
Propane	7.854	2.218
Isobutane	1.068	0.358
n-Butane	2.635	0.851
2-2 Dimethylpropane	0.007	0.003
Isopentane	0.635	0.238
n-Pentane	0.685	0.254
Hexanes	0.522	0.220
Heptanes Plus	<u>0.869</u>	0.345
Totals	100.000	8.485

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.263	(Air=1)
Molecular Weight	94.05	
Gross Heating Value	4891	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.826	(Air=1)
Compressibility (Z)	0.9950	
Molecular Weight	23.80	
Gross Heating Value		
Dry Basis	1442	BTU/CF
Saturated Basis	1418	BTU/CF

^{*}Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (14) R. Perez Certified: FESCO, Ltd. - Alice, Texas

Analyst: NG Processor: RG

Cylinder ID: T-2763 David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

001/001/51/5	1101.07	0514		14/ T 0/
COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	0.919			1.082
Carbon Dioxide	0.179			0.331
Methane	70.043			47.216
Ethane	14.584	3.997		18.427
Propane	7.854	2.218		14.553
Isobutane	1.068	0.358		2.608
n-Butane	2.635	0.851		6.436
2,2 Dimethylpropane	0.007	0.003		0.021
Isopentane	0.635	0.238		1.925
n-Pentane	0.685	0.254		2.077
2,2 Dimethylbutane	0.007	0.003		0.025
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.058	0.024		0.210
2 Methylpentane	0.165	0.070		0.598
3 Methylpentane	0.087	0.036		0.315
n-Hexane	0.205	0.086		0.742
Methylcyclopentane	0.101	0.036		0.357
Benzene	0.093	0.027		0.305
Cyclohexane	0.189	0.066		0.668
2-Methylhexane	0.025	0.012		0.105
3-Methylhexane	0.028	0.013		0.118
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.071	0.032		0.296
n-Heptane	0.057	0.027		0.240
Methylcyclohexane	0.119	0.049		0.491
Toluene	0.052	0.049		0.201
Other C8's	0.065	0.010		0.301
n-Octane	0.003	0.009		0.086
	0.002	0.009		
Ethylbenzene M & P Xylenes	0.002	0.001		0.009 0.045
O-Xylene	0.002	0.001		0.009
Other C9's	0.024	0.012		0.127
n-Nonane	0.004	0.002		0.022
Other C10's	0.007	0.004		0.042
n-Decane	0.001	0.001		0.006
Undecanes (11)	<u>0.001</u>	0.001		0.006
Totals	100.000	8.485		100.000
Camputad Daal Charact	aviation of Tatal Commis			
Computed Real Charact	ensucs of Total Sample	0.000	(A:- 4)	
Specific Gravity		0.826	(Air=1)	
Compressibility (Z)		0.9950		
_		23.80		
Gross Heating Value		4 4 4 0	DTU/OF	
		1442	BTU/CF	
Saturated Basis		1418	BTU/CF	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Corral Canyon Tank Battery - FWKO 900

First Stage Separator

Spot Gas Sample @ 87 psig & 86 °F

Date Sampled: 08/20/2019 Job Number: 192968.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.179		0.331
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.919		1.082
Methane	70.043		47.216
Ethane	14.584	3.997	18.427
Propane	7.854	2.218	14.553
Isobutane	1.068	0.358	2.608
n-Butane	2.642	0.854	6.457
Isopentane	0.635	0.238	1.925
n-Pentane	0.685	0.254	2.077
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.205	0.086	0.742
Cyclohexane	0.189	0.066	0.668
Other C6's	0.317	0.134	1.148
Heptanes	0.282	0.119	1.116
Methylcyclohexane	0.119	0.049	0.491
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.093	0.027	0.305
Toluene	0.052	0.018	0.201
Ethylbenzene	0.002	0.001	0.009
Xylenes	0.012	0.005	0.054
Octanes Plus	<u>0.120</u>	<u>0.061</u>	<u>0.590</u>
Totals	100.000	8.485	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.060	(Air=1)
Molecular Weight	117.01	
Gross Heating Value	6153	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.826	(Air=1)	
Compressibility (Z)	0.9950		
Molecular Weight	23.80		
Gross Heating Value			
Dry Basis	1442	BTU/CF	
Saturated Basis	1418	BTU/CF	

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc.

22777 Springwoods Village Pkwy.

Spring, Texas 77389

Sample: Corral Canyon Tank Battery - FWKO 900

First Stage Separator Hydrocarbon Liquid

Sampled @ 87 psig & 86 °F

Date Sampled: 08/21/19 Job Number: 192968.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nituanan	0.000	0.005	0.005
Nitrogen	0.026	0.005	0.005
Carbon Dioxide	0.014	0.004	0.004
Methane	1.849	0.544	0.207
Ethane	2.503	1.162	0.525
Propane	4.349	2.080	1.338
Isobutane	1.306	0.742	0.530
n-Butane	4.542	2.486	1.841
2,2 Dimethylpropane	0.050	0.033	0.025
Isopentane	2.544	1.615	1.280
n-Pentane	3.672	2.311	1.848
2,2 Dimethylbutane	0.036	0.026	0.022
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.399	0.284	0.240
2 Methylpentane	1.412	1.018	0.849
3 Methylpentane	0.857	0.608	0.515
n-Hexane	2.519	1.798	1.514
Heptanes Plus	73.923	<u>85.283</u>	<u>89.256</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.8254	(Water=1)
°API Gravity	39.92	@ 60°F
Molecular Weight	173.1	
Vapor Volume	14.76	CF/Gal
Weight	6.88	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.7887	(Water=1)
°API Gravity	47.91	@ 60°F
Molecular Weight	143.4	
Vapor Volume	17.03	CF/Gal
Weight	6.57	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (14) Perez Analyst: RR Processor: ANBdjv

Processor: ANBdjv Cylinder ID: W-2619 David Dannhaus 361-661-7015

Page 1 of 3

FESCO, Ltd. Job Number: 192968.002

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.014	0.004	0.004
Nitrogen	0.026	0.005	0.005
Methane	1.849	0.544	0.207
Ethane	2.503	1.162	0.525
Propane	4.349	2.080	1.338
Isobutane	1.306	0.742	0.530
n-Butane	4.592	2.519	1.866
Isopentane	2.544	1.615	1.280
n-Pentane	3.672	2.311	1.848
Other C-6's	2.705	1.936	1.626
Heptanes	10.992	7.572	7.025
Octanes	12.619	9.783	9.308
Nonanes	5.882	5.437	5.201
Decanes Plus	36.877	57.841	62.672
Benzene	1.495	0.727	0.815
Toluene	2.852	1.658	1.833
E-Benzene	0.412	0.276	0.305
Xylenes	2.287	1.533	1.694
n-Hexane	2.519	1.798	1.514
2,2,4 Trimethylpentane	<u>0.506</u>	<u>0.457</u>	0.403
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.7887	(Water=1)
°API Gravity	47.91	@ 60°F
Molecular Weight	143.4	
Vapor Volume	17.03	CF/Gal
Weight	6.57	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8546	(Water=1)
Molecular Weight	243.6	

Characteristics of Atmospheric Sample:

°API Gravity	45.26	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	9.64	psi

QUALITY CONTROL CHECK			
	Sampling		
	Conditions	Test S	amples
Cylinder Number		W-2619*	
Pressure, PSIG	87	80	
Temperature, °F	86	86	

^{*} Sample used for analysis

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.026	0.005	0.005
Carbon Dioxide	0.014	0.004	0.004
Methane	1.849	0.544	0.207
Ethane	2.503	1.162	0.525
Propane	4.349	2.080	1.338
Isobutane	1.306	0.742	0.530
n-Butane	4.542	2.486	1.841
2,2 Dimethylpropane	0.050	0.033	0.025
Isopentane	2.544	1.615	1.280
n-Pentane	3.672	2.311	1.848
2,2 Dimethylbutane	0.036	0.026	0.022
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.399	0.284	0.240
2 Methylpentane	1.412	1.018	0.849
3 Methylpentane	0.857	0.608	0.515
n-Hexane	2.519	1.798	1.514
Methylcyclopentane	1.687	1.036	0.990
Benzene	1.495	0.727	0.815
Cyclohexane	4.127	2.439	2.423
2-Methylhexane	0.929	0.750	0.650
3-Methylhexane	0.841	0.670	0.588
2,2,4 Trimethylpentane	0.506	0.457	0.403
Other C-7's	1.146	0.863	0.793
n-Heptane	2.263	1.813	1.582
Methylcyclohexane	5.342	3.728	3.659
Toluene	2.852	1.658	1.833
Other C-8's	5.341	4.333	4.106
n-Octane	1.936	1.722	1.543
E-Benzene	0.412	0.276	0.305
M & P Xylenes	1.715	1.155	1.270
O-Xylene	0.572	0.378	0.424
Other C-9's	4.372	3.962	3.851
n-Nonane	1.510	1.475	1.351
Other C-10's	4.633	4.614	4.566
n-decane	1.021	1.088	1.014
Undecanes(11)	4.261	4.353	4.369
Dodecanes(12)	2.994	3.303	3.362
Tridecanes(13)	3.042	3.600	3.714
Tetradecanes(14)	2.657	3.368	3.522
Pentadecanes(15)	2.326	3.158	3.342
Hexadecanes(16)	1.722	2.499	2.667
Heptadecanes(17)	1.501	2.304	2.482
Octadecanes(18)	1.395	2.254	2.443
Nonadecanes(19)	1.219	2.051	2.236
Eicosanes(20)	0.947	1.656	1.816
Heneicosanes(21)	0.841	1.547	1.706
Docosanes(22)	0.748	1.434	1.591
Tricosanes(23)	0.643	1.278	1.426
Tetracosanes(24)	0.562	1.157	1.297
Pentacosanes(25)	0.508	1.086	1.223
Hexacosanes(26)	0.458	1.014	1.147
Heptacosanes(27)	0.432	0.993	1.128
Octacosanes(28)	0.360	0.856	0.975
Nonacosanes(29)	0.337	0.825	0.944
Triacontanes(30)	0.282	0.713	0.818
Hentriacontanes Plus(31+)	<u>3.988</u>	<u>12.690</u>	14.883
Total	100.000	100.000	100.000

Page 3 of 3

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: XTO Energy, Inc. Date Sampled: 08/21/19

22777 Springwoods Village Pkwy.

Spring, Texas 77389 Date Analyzed: 09/09/19

Sample: Corral Canyon Tank Battery - FWKO 900 Job Number: J192968

FLASH LIBERATION OF HYDROCARBON LIQUID						
	Separator HC Liquid	Stock Tank				
Pressure, psig	87	0				
Temperature, °F	86	70				
Density of Separator HC Liquid (g/cc)	0.7670					
Gas Oil Ratio (1)		53.2				
Gas Specific Gravity (2)		1.318				

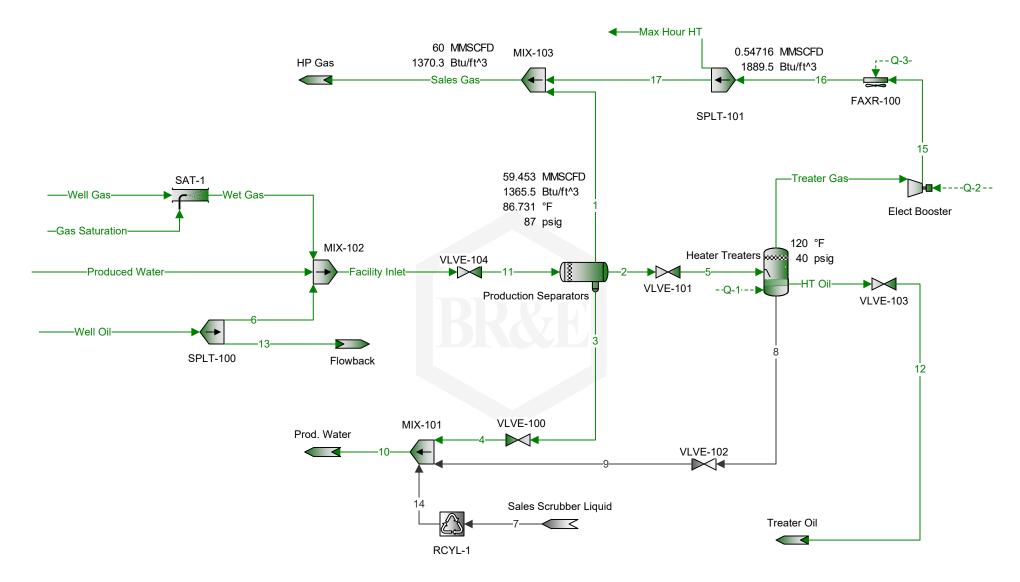
STOCK TANK FLUID PROPERTIES				
Shrinkage Recovery Factor (3)	0.9469			
Density of Stock Tank HC Liquid (g/cc @ 60 °F)	0.7997			
Oil API Gravity at 60 °F	45.26			

Quality Control Check						
	Sampling Conditions Test Samples					
Cylinder No.		W-2619*				
Pressure, psig	87	80				
Temperature, °F	86	86				

(1) - Scf of flashed	l vapor per	barrel of	stock	tank o	il
----------------------	-------------	-----------	-------	--------	----

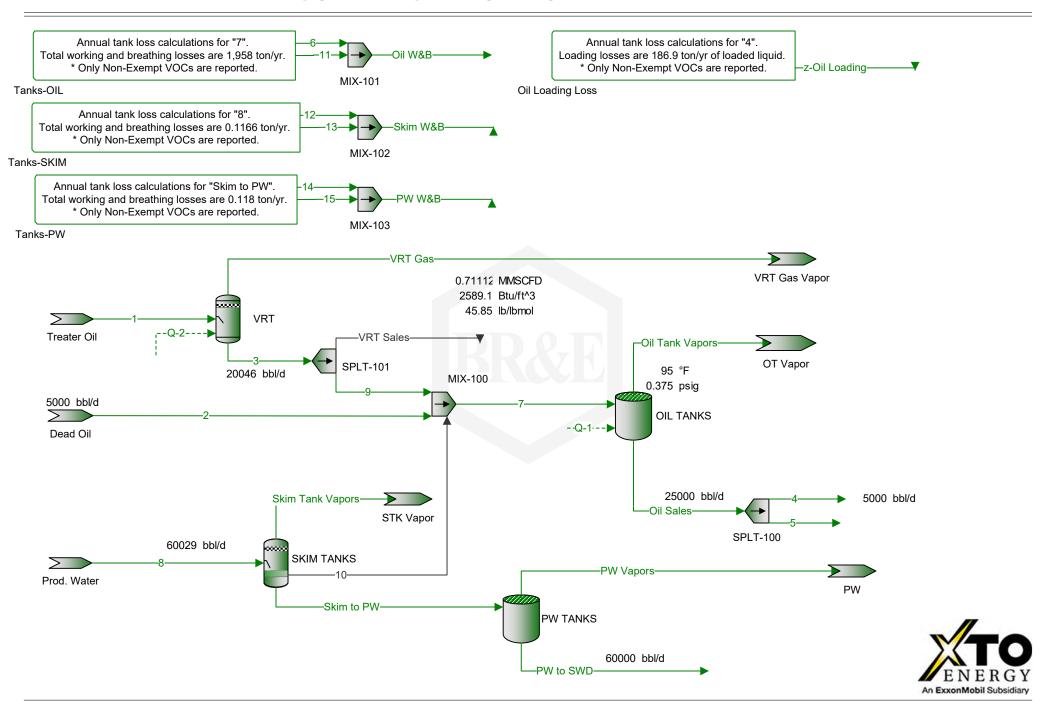
Analyst: E.T. III

Base Conditions: 15.025 PSI & 60 °F

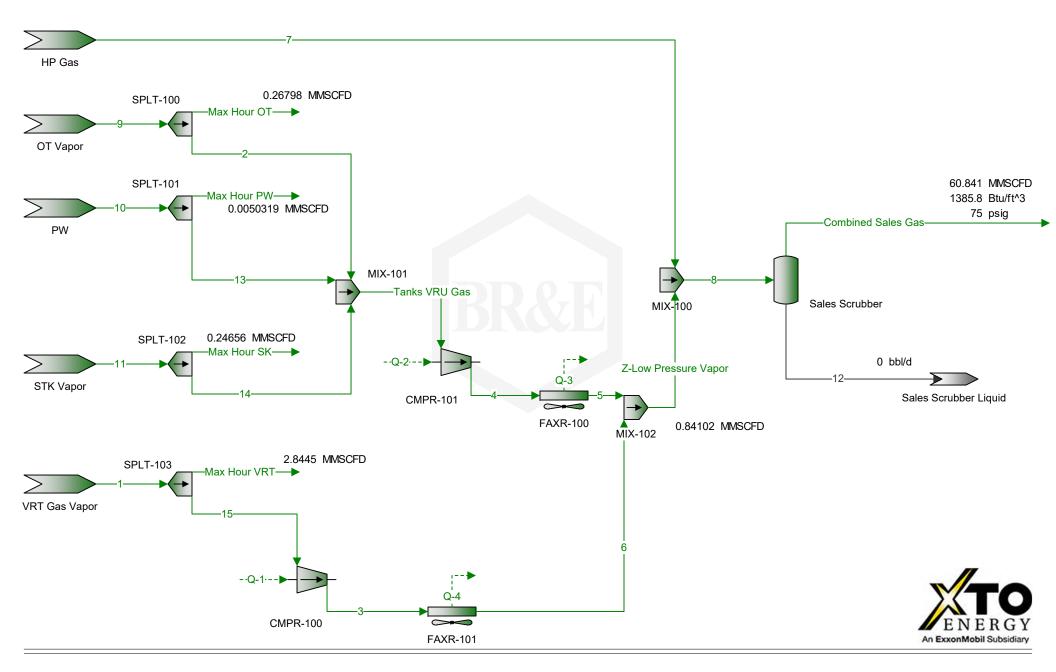

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

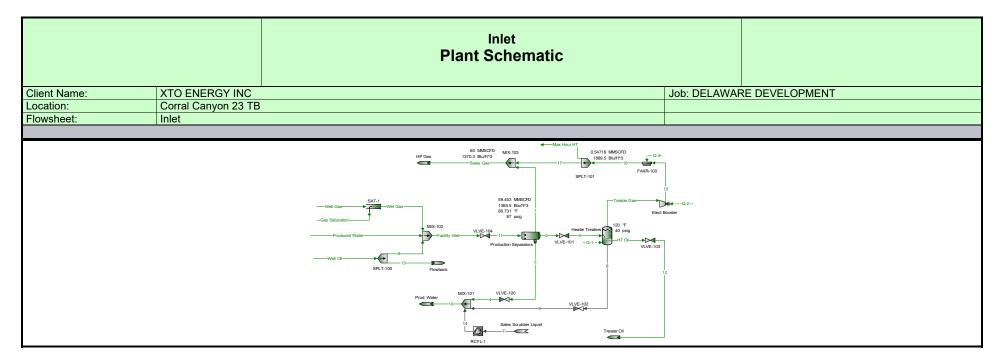
^{(2) -} Air = 1.000


^{(3) -} Fraction of first stage separator liquid

CORRAL CANYON 23 TANK BATTERY



CORRAL CANYON 23 TANK BATTERY



2/14/2020

CORRAL CANYON 23 TANK BATTERY

2/14/2020

Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT
Location: Corral Canyon 23 TB
Flowsheet: Inlet

Connections						
	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water	
From Block	MIX-102		Heater Treaters	SPLT-101		
To Block	VLVE-104	SAT-1	VLVE-103		MIX-102	

	Stream Composition								
	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water				
Mole Fraction	%	%	%	%	%				
Carbon Dioxide	0.0210923	0 *	0.00640699	0.193409	0 *				
Nitrogen	0.107092	0 *	0.00114485	0.223507	0 *				
Methane	8.15811	0 *	0.582155	41.2006	0 *				
Ethane	1.75745	0 *	1.60806	23.1369	0 *				
Propane	1.02979	0 *	3.92039	17.981	0 *				
Isobutane	0.15988	0 *	1.38806	2.76637	0 *				
n-Butane	0.433294	0 *	4.94956	7.07055	0 *				
Isopentane	0.144131	0 *	2.82308	1.71516	0 *				
n-Pentane	0.18126	0 *	3.98919	1.89651	0 *				
n-Hexane	0.0936817	0 *	2.81933	0.445064	0 *				
Cyclohexane	0.0218748	0 *	0.688286	0.0781276	0 *				
i-C6	0.111814	0 *	3.16042	0.677803	0 *				
i-C7	0.337909	0 *	11.0042	0.922818	0 *				
Methylcyclohexane	0.013773	0 *	0.461149	0.0268863	0 *				
Octane	0.360048	0 *	12.5592	0.261052	0 *				
Nonane	0.166598	0 *	5.88946	0.0441425	0 *				
Benzene	0.0522942	0 *	1.57673	0.220495	0 *				
Toluene	0.0852112	0 *	2.88485	0.129813	0 *				
Ethylbenzene	0.0116772	0 *	0.408626	0.00672125	0 *				
o-Xylene	0.0648983	0 *	2.27745	0.0305318	0 *				
H2S	0.00011574	0 *	0.000191494	0.00169526	0 *				
Water	85.6488	100 *	0.0542826	0.942448	100 *				
2,2,4-Trimethylpentane	0.014052	0 *	0.469211	0.0283546	0 *				
Decanes Plus	1.02514	0 *	36.4785	0.000100962	0 *				

	Facility Inlet	Gas	HT Oil	Max Hour HT	Produced
Mass Fraction	%	Saturation %	%	%	Water %
Carbon Dioxide	0.0417637	0 *	0.00192908	0.25919	0 *
					·
Nitrogen	0.134974	0 *	0.000219414	0.190657	0 *
Methane	5.88828	U	0.0638938	20.1266	0 *
Ethane	2.37755	0 *	0.330805	21.1846	0 *
Propane	2.04301	0 *	1.1827	24.1438	0 *
Isobutane	0.418084	0 *	0.551951	4.89607	0 *
n-Butane	1.13306	0 *	1.96815	12.5139	0 *
Isopentane	0.467858	0 *	1.39348	3.76816	0 *
n-Pentane	0.58838	0 *	1.96908	4.16659	0 *
n-Hexane	0.363217	0 *	1.66218	1.16789	0 *
Cyclohexane	0.0828277	0 *	0.396298	0.200218	0 *
i-C6	0.433518	0 *	1.86327	1.77862	0 *
i-C7	1.52337	0 *	7.5437	2.81571	0 *
Methylcyclohexane	0.0608426	0 *	0.309771	0.0803854	0 *
Octane	1.85039	0 *	9.81493	0.908025	0 *
Nonane	0.96133	0 *	5.16772	0.172396	0 *
Benzene	0.18378	0 *	0.842603	0.52446	0 *
Toluene	0.353237	0 *	1.8185	0.364213	0 *
Ethylbenzene	0.0557763	0 *	0.296795	0.0217284	0 *
o-Xylene	0.309987	0 *	1.65417	0.098703	0 *
H2Ś	0.000177469	0 *	4.46493E-05	0.00175932	0 *
Water	69.421	100 *	0.00669039	0.517005	100 *
2,2,4-Trimethylpentane	0.0722175	0 *	0.366684	0.0986266	0 *

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: XTO ENERGY INC Location: Corral Canyon 23 TB Flowsheet: Inlet Facility Inlet Gas HT Oil Max Hour HT Produced

	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water
Mass Fraction	%	%	%	%	%
Decanes Plus	11.2354	0 *	60.7944	0.000748912	0 *
	Facility Inlet	Gas	HT Oil	May Hour HT	Produced

	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	527.041	0 *	4.49902	20.4546	0 *
Nitrogen	1703.32	0 *	0.511721	15.0462	0 *
Methane	74307.7	0 *	149.014	1588.34	0 *
Ethane	30003.8	0 *	771.507	1671.84	0 *
Propane	25782	0 *	2758.3	1905.37	0 *
Isobutane	5276.06	0 *	1287.27	386.386	0 *
n-Butane	14298.8	0 *	4590.14	987.563	0 *
Isopentane	5904.17	0 *	3249.89	297.374	0 *
n-Pentane	7425.12	0 *	4592.31	328.817	0 *
n-Hexane	4583.65	0 *	3876.55	92.1669	0 *
Cyclohexane	1045.25	0 *	924.25	15.8007	0 *
i-C6	5470.82	0 *	4345.55	140.364	0 *
i-C7	19224.3	0 *	17593.5	222.209	0 *
Methylcyclohexane	767.808	0 *	722.451	6.34381	0 *
Octane	23351.2	0 *	22890.5	71.659	0 *
Nonane	12131.6	0 *	12052.2	13.6051	0 *
Benzene	2319.23	0 *	1965.13	41.389	0 ,
Toluene	4457.7	0 *	4241.13	28.7428	0 *
Ethylbenzene	703.874	0 *	692.189	1.71475	0 *
o-Xylene	3911.9	0 *	3857.86	7.78939	0 *
H2S	2.23958	0 *	0.104132	0.138841	0 ,
Water	876065	751.927 *	15.6034	40.8007	875313 *
2,2,4-Trimethylpentane	911.355	0 *	855.186	7.78336	0 ,
Decanes Plus	141786	0 *	141785	0.0591023	0 ,

Stream Properties								
Property	Units	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water		
Temperature	°F	86.7311	327.72	120	90	86 *		
Pressure	psig	87	87	40	80	87 *		
Molecular Weight	lb/lbmol	22.2265	18.0153	146.167	32.8401	18.0153		
Mass Flow	lb/h	1.26196E+06	751.927	233221	7891.75	875313		
Std Vapor Volumetric Flow	MMSCFD	517.105	0.380136	14.5319	2.18864	442.514		
Std Liquid Volumetric Flow	sgpm	3183.41	1.50316	598.737	36.2482	1749.81 *		
Gross Ideal Gas Heating Value	Btu/ft^3	418.996	50.31	7712.11	1889.48	50.31		

Process Streams Report All Streams Tabulated by Total Phase Client Name: XTO ENERGY INC Location: Corral Canyon 23 TB Flowsheet: Inlet Connections Sales Gas Treater Gas Well Gas Well Gas

Connections						
	Sales Gas	Treater Gas	Well Gas	Well Oil	Wet Gas	
From Block	MIX-103	Heater			SAT-1	
		Treaters				
To Block	HP Gas	Elect Booster	SAT-1	SPLT-100	MIX-102	

Stream Composition								
Mole Fraction	Sales Gas %	Treater Gas	Well Gas %	Well Oil %	Wet Gas %			
Carbon Dioxide	0.176531	0.193409	0.178998 *	0.0135 *	0.177868			
Nitrogen	0.92217	0.223507	0.918991 *	0.02618 *	0.913191			
Methane	70.0906	41.2006	70.0423 *	1.84912 *	69.6002			
Ethane	14.7346	23.1369	14.5839 *	2.50262 *	14.4918			
Propane	7.9175	17.981	7.85392 *	4.34866 *	7.80435			
Isobutane	1.04105	2.76637	1.06799 *	1.30604 *	1.06125			
n-Butane	2.53323	7.07055	2.64197 *	4.5915 *	2.6253			
Isopentane	0.558103	1.71516	0.634994 *	2.54353 *	0.630986			
n-Pentane	0.595839	1.89651	0.684993 *	3.67212 *	0.68067			
n-Hexane	0.124531	0.445064	0.204998 *	2.51901 *	0.203704			
Cyclohexane	0.0217596	0.0781276	0.188998 *	0 *	0.187805			
i-C6	0.198144	0.677803	0.316997 *	2.70515 *	0.314996			
i-C7	0.246989	0.922818	0.281997 *	10.9925 *	0.280217			
Methylcyclohexane	0.00700339	0.0268863	0.118999 *	0 *	0.118248			
Octane	0.0612112	0.261052	0.0829992 *	12.619 *	0.0824753			
Nonane	0.00939297	0.0441425	0.0279997 *	5.88233 *	0.027823			
Benzene	0.0619714	0.220495	0.0929991 *	1.49547 *	0.0924121			
Toluene	0.0330114	0.129813	0.0519995 *	2.85165 *	0.0516713			
Ethylbenzene	0.00156635	0.00672125	0.00199998 *	0.41215 *	0.00198736			
o-Xylene	0.00702742	0.0305318	0.0119999 *	2.28691 *	0.0119241			
H2S	0.000895051	0.00169526	0.00099999 *	0 *	0.000993679			
Water	0.649438	0.942448	0 *	0 *	0.631138			
2,2,4-Trimethylpentane	0.00746299	0.0283546	0 *	0.506 *	0			
Decanes Plus	1.11304E-05	0.000100962	0.00899991 *	36.8766 *	0.00894311			

Mana Fraction	Sales Gas	Treater Gas	Well Gas %	Well Oil %	Wet Gas %
Mass Fraction					
Carbon Dioxide	0.334029	0.25919	0.330024	0.00408509 *	0.329043
Nitrogen	1.11069	0.190657	1.00040	0.00504263 *	1.07531
Methane	48.3445	20.1266	47.1596 *	0.203966 *	46.9342
Ethane	19.0491	21.1846	18.4048 *	0.517411 *	18.3168
Propane	15.0107	24.1438	14.5352 *	1.31848 *	14.4657
Isobutane	2.60153	4.89607	2.60524 *	0.521939 *	2.59279
n-Butane	6.33043	12.5139	6.4448 *	1.83492 *	6.414
Isopentane	1.73125	3.76816	1.92281 *	1.26179 *	1.91362
n-Pentane	1.84831	4.16659	2.07422 *	1.82166 *	2.0643
n-Hexane	0.461399	1.16789	0.741432 *	1.49257 *	0.737889
Cyclohexane	0.0787354	0.200218	0.667574 *	0 *	0.664383
i-C6	0.734142	1.77862	1.14651 *	1.60286 *	1.14103
i-C7	1.06407	2.81571	1.18593 *	7.57344 *	1.18026
Methylcyclohexane	0.0295647	0.0803854	0.490378 *	0 *	0.488035
Octane	0.300622	0.908025	0.397912 *	9.9111 *	0.39601
Nonane	0.0517957	0.172396	0.150719 *	5.18735 *	0.149998
Benzene	0.208125	0.52446	0.304884 *	0.803185 *	0.303427
Toluene	0.130774	0.364213	0.201084 *	1.80658 *	0.200123
Ethylbenzene	0.00714966	0.0217284	0.0089114 *	0.300855 *	0.00886881
o-Xylene	0.032077	0.098703	0.0534684 *	1.66937 *	0.0532128
H2Ś	0.00131152	0.00175932	0.00143036 *	0 *	0.00142352
Water	0.503031	0.517005	0 *	0 *	0.47794
2,2,4-Trimethylpentane	0.0366525	0.0986266	0 *	0.397417 *	0
Decanes Plus	0.000116575	0.000748912	0.0920141 *	61.766 *	0.0915743

^{*} User Specified Values

[?] Extrapolated or Approximate Values

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB

Flowsheet: Inlet

Maca Flow	Sales Gas lb/h	Treater Gas lb/h	Well Gas lb/h	Well Oil lb/h	Wet Gas lb/h
Mass Flow					
Carbon Dioxide	511.817	5.11366	517.673 *	13.4248 *	517.673
Nitrogen	1701.86	3.76154	1691.75 *	16.5715 *	1691.75
Methane	74075.9	397.085	73840 *	670.291 *	73840
Ethane	29188	417.959	28817.2 *	1700.36 *	28817.2
Propane	23000.1	476.342	22758.4 *	4332.9 *	22758.4
Isobutane	3986.2	96.5964	4079.15 *	1715.24 *	4079.15
n-Butane	9699.81	246.891	10090.9 *	6030.09 *	10090.9
Isopentane	2652.71	74.3434	3010.64 *	4146.61 *	3010.64
n-Pentane	2832.07	82.2042	3247.7 *	5986.5 *	3247.7
n-Hexane	706.979	23.0417	1160.89 *	4905.02 *	1160.89
Cyclohexane	120.643	3.95018	1045.25 *	0 *	1045.25
i-C6	1124.89	35.091	1795.14 *	5267.47 *	1795.14
i-C7	1630.43	55.5522	1856.87 *	24888.5 *	1856.87
Methylcyclohexane	45.3007	1.58595	767.808 *	0 *	767.808
Octane	460.629	17.9148	623.029 *	32570.8 *	623.029
Nonane	79.3641	3.40126	235.987 *	17047.1 *	235.987
Benzene	318.9	10.3473	477.371 *	2639.5 *	477.371
Toluene	200.378	7.1857	314.847 *	5936.96 *	314.847
Ethylbenzene	10.9551	0.428687	13.953 *	988.699 *	13.953
o-Xylene	49.1501	1.94735	83.7179 *	5486.03 *	83.7179
H2S	2.00958	0.0347102	2.23958 *	0 *	2.23958
Water	770.771	10.2002	0 *	0 *	751.927
2,2,4-Trimethylpentane	56.1609	1.94584	0 *	1306.03 *	0
Decanes Plus	0.178623	0.0147756	144.071 *	202981 *	144.071

Stream Properties							
Property	Units	Sales Gas	Treater Gas	Well Gas	Well Oil	Wet Gas	
Temperature	°F	85.8543	120 *	86 *	86 *	86	
Pressure	psig	80	40	87 *	87 *	87	
Molecular Weight	lb/lbmol	23.2586	32.8401	23.8266	145.438	23.7899	
Mass Flow	lb/h	153225	1972.94	156575	328629	157327	
Std Vapor Volumetric Flow	MMSCFD	60	0.547159	59.8501 *	20.5794	60.2302	
Std Liquid Volumetric Flow	sgpm	833.832	9.06205	841.87	845.833 *	843.373	
Gross Ideal Gas Heating Value	Btu/ft^3	1370.25	1889.48	1406.59	7673.74	1398.03	

Remarks

Well Gas:

Corral Canyon TB Sample Data: 8/20/19

Well Oil:

Corral Canyon TB Sample Data: 8/20/19

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Corral Canyon 23 TB Location: Flowsheet: Inlet Connections 3 5 From Block VLVE-100 VLVE-101 Production Production Production Separators Separators Separators To Block Heater MIX-103 VLVE-101 VLVE-100 MIX-101 **Treaters** Stream Composition 2 3 5 4 % **Mole Fraction** % % % 0.176376 0.0131925 0.000501489 0.0131925 Carbon Dioxide 0.000501489 Nitrogen 0.9286 0.0092135 6.9629E-05 6.9629E-05 0.0092135 0.010618 Methane 70 3565 0.010618 2 05604 2 05604 Ethane 14.6573 2.38926 0.00302838 0.00302838 2.38926 7.82488 4.43059 0.00109828 0.00109828 4.43059 Propane 1.43808 9.15467E-05 Isobutane 1.02517 9.15467E-05 1.43808 5.02652 0.000311853 5.02652 n-Butane 2.49147 0.000311853 Isopentane 0.547454 2.78287 4.47826E-05 4.47826E-05 2.78287 n-Pentane 0.583868 3.91326 2.09676E-05 2.09676E-05 3.91326 2.73317 2.81089E-06 n-Hexane 0 121581 2 81089F-06 2 73317 0.0212408 0.666146 8.77955E-06 8.77955E-06 0.666146 Cyclohexane i-C6 0 19373 3 07033 8 90055F-06 8.90055E-06 3.07033 i-C7 0.240769 10.6384 6.61318E-06 6.61318E-06 10.6384 Methylcyclohexane 0.0068204 0.445392 1.17539E-06 1.17539E-06 0.445392 0.059372 Octane 12.113 4.04429E-07 4.04429E-07 12 113 Nonane 0.00907316 5.67736 5.26689E-08 5.26689E-08 5.67736 1.52752 Benzene 0.0605125 0.000927472 0.000927472 1.52752 Toluene 0.0321205 2.78488 0.000361638 0.000361638 2.78488 1.41449E-05 Ethylbenzene 0.0015189 0.394043 1.41449E-05 0.394043 0.00681111 2.19591 9.48013E-05 9.48013E-05 2.19591 o-Xylene H₂S 0.000887687 0.00024606 7.60026E-06 7.60026E-06 0.00024606 Water 0.646741 0.0865107 99.9828 99.9828 0.0865107 2,2,4-Trimethylpentane 0.00727072 0.453215 1.54961E-07 1.54961E-07 0.453215 Decanes Plus 1.03037E-05 35.1549 6.35475E-09 6.35475E-09 35.1549 2 3 5 **Mass Fraction** % % % % % 0.00408712 0.335005 Carbon Dioxide 0.00122497 0.00122497 0.00408712 1.12269 0.00181691 0.000108261 0.000108261 0.00181691 Nitrogen Methane 48.7125 0.232191 0.00945434 0.00945434 0.232191 Ethane 19.0212 0.505738 0.00505415 0.00505415 0.505738 0.00268798 Propane 14.8915 1.37531 0.00268798 1.37531 Isobutane 2.5716 0.588392 0.000295326 0.000295326 0.588392 n-Butane 6.24977 2.05661 0.00100603 0.00100603 2.05661 Isopentane 1.70468 1.4134 0.000179331 0.000179331 1.4134 n-Pentane 1.81807 1.98751 8.39645E-05 8.39645E-05 1.98751 1.34445E-05 1.34445E-05 1.65803 n-Hexane 0.452183 1.65803 Cyclohexane 0.394653 4.10103E-05 4 10103F-05 0.394653 0.0771508 i-C6 0.720518 1.86256 4.25713E-05 4.25713E-05 1.86256 i-C7 7.50404 3.67794E-05 7.50404 1.04122 3.67794E-05 0.0289018 0.307847 6.40545E-06 6.40545E-06 0.307847 Methylcyclohexane Octane 0.292699 9.74022 2.5641E-06 2.5641E-06 9.74022 3 74927F-07 3.74927E-07 5.12582 Nonane 0.0502226 5.12582 Benzene 0.839934 0.00402101 0.00402101 0.839934 0.203999 Toluene 0.127729 1.8063 0.0018494 0.0018494 1.8063 Ethylbenzene 0.00695949 0.294488 8.33486E-05 8.33486E-05 0.294488 o-Xylene 0.0312079 1.64112 0.000558616 0.000558616 1.64112 H2S 0.00130568 5.90329E-05 1.43766E-05 1.43766E-05 5.90329E-05 Water 0.502849 0.0109712 99.9732 99.9732 0.0109712 2,2,4-Trimethylpentane 0.0358441 0.364436 9.8246E-07 9.8246E-07 0.364436 0.000108327 8.59198E-08 **Decanes Plus** 60.2845 8.59198E-08 60.2845

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: XTO ENERGY INC Location: Corral Canyon 23 TB Flowsheet: Inlet

	1	2	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	506.703	9.61268	10.7248	10.7248	9.61268
Nitrogen	1698.1	4.27326	0.947842	0.947842	4.27326
Methane	73678.9	546.099	82.774	82.774	546.099
Ethane	28770	1189.47	44.2497	44.2497	1189.47
Propane	22523.8	3234.64	23.5336	23.5336	3234.64
Isobutane	3889.61	1383.86	2.58562	2.58562	1383.86
n-Butane	9452.92	4837.03	8.8079	8.8079	4837.03
Isopentane	2578.37	3324.23	1.57007	1.57007	3324.23
n-Pentane	2749.87	4674.52	0.73512	0.73512	4674.52
n-Hexane	683.938	3899.59	0.117708	0.117708	3899.59
Cyclohexane	116.692	928.2	0.35905	0.35905	928.2
i-C6	1089.8	4380.64	0.372717	0.372717	4380.64
i-C7	1574.87	17649.1	0.322008	0.322008	17649.1
Methylcyclohexane	43.7147	724.037	0.0560805	0.0560805	724.037
Octane	442.715	22908.4	0.022449	0.022449	22908.4
Nonane	75.9628	12055.6	0.00328253	0.00328253	12055.6
Benzene	308.553	1975.48	35.2044	35.2044	1975.48
Toluene	193.193	4248.32	16.1918	16.1918	4248.32
Ethylbenzene	10.5264	692.618	0.729728	0.729728	692.618
o-Xylene	47.2027	3859.81	4.89075	4.89075	3859.81
H2S	1.97487	0.138842	0.125869	0.125869	0.138842
Water	760.571	25.8036	875278	875278	25.8036
2,2,4-Trimethylpentane	54.2151	857.132	0.00860156	0.00860156	857.132
Decanes Plus	0.163847	141786	0.000752239	0.000752239	141786

Stream Properties							
Property	Units	1	2	3	4	5	
Temperature	°F	86.7311	86.7311	86.7311	86.9382	85.7138	
Pressure	psig	87	87	87	0.375 *	40 *	
Molecular Weight	lb/lbmol	23.1704	142.055	18.017	18.017	142.055	
Mass Flow	lb/h	151252	235194	875513	875513	235194	
Std Vapor Volumetric Flow	MMSCFD	59.4528	15.079	442.573	442.573	15.079	
Std Liquid Volumetric Flow	sgpm	824.77	607.799	1750.85	1750.85	607.799	
Gross Ideal Gas Heating Value	Btu/ft^3	1365.47	7500.83	50.5636	50.5636	7500.83	

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: Corral Canyon 23 TB Flowsheet: Inlet **Connections** 8 9 10 From Block SPLT-100 Sales Scrubber VLVE-102 MIX-101 Heater Liquid **Treaters** RCYL-1 To Block MIX-102 VLVE-102 MIX-101 Prod. Water **Stream Composition** 8 9 10 7 **Mole Fraction** % % % % 0.000501489 0.0135 Carbon Dioxide 6.9629E-05 Nitrogen 0.02618 Methane 1.84912 0.010618 Ethane 0.00302838 2 50262 Propane 4.34866 0.00109828 9.15467E-05 Isobutane 1.30604 0.000311853 n-Butane 4.5915 Isopentane 2.54353 4.47826E-05 n-Pentane 3.67212 2.09676E-05 n-Hexane 2.51901 2.81089E-06 Cyclohexane 8.77955E-06 0 2.70515 8.90055E-06 i-C6 i-C7 10.9925 6.61318E-06 Methylcyclohexane 1.17539E-06 0 Octane 12.619 4.04429E-07 5.88233 Nonane 5.26689E-08 Benzene 1.49547 0.000927472 0.000361638 Toluene 2.85165 Ethylbenzene 0.41215 1.41449E-05 o-Xylene 2.28691 9.48013E-05 H2S 7.60026E-06 0 Water 0 99.9828 2,2,4-Trimethylpentane 0.506 1.54961E-07 Decanes Plus 36.8766 6.35475E-09 6 7 8 9 10 % % **Mass Fraction** % % % Carbon Dioxide 0.00408509 0.00122497 Nitrogen 0.00504263 0.000108261 0.00945434 Methane 0.203966 Ethane 0.517411 0.00505415 Propane 1.31848 0.00268798 Isobutane 0.521939 0.000295326 n-Butane 1.83492 0.00100603 Isopentane 1.26179 0.000179331 n-Pentane 1.82166 8.39645E-05 n-Hexane 1.49257 1.34445E-05 Cyclohexane 0 4.10103E-05 i-C6 1.60286 4.25713E-05 3.67794E-05 i-C7 7.57344 Methylcyclohexane 0 6.40545E-06 9.9111 2.5641E-06 Octane Nonane 5.18735 3.74927E-07 Benzene 0.803185 0.00402101 0.0018494 Toluene 1.80658 Ethylbenzene 0.300855 8.33486E-05 o-Xylene 1.66937 0.000558616 H2S 0 1.43766E-05 Water 0 99.9732 2,2,4-Trimethylpentane 0.397417 9.8246E-07 8.59198E-08 Decanes Plus 61.766

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Client Name:	XTO ENERGY INC	Job: DELAWARE DEVELOPMENT
Location:	Corral Canyon 23 TB	

Flowsheet: Inlet

	6	7	8	9	10
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	9.36791				10.7248
Nitrogen	11.5637				0.947842
Methane	467.734				82.774
Ethane	1186.53				44.2497
Propane	3023.53				23.5336
Isobutane	1196.91				2.58562
n-Butane	4207.84				8.8079
Isopentane	2893.53				1.57007
n-Pentane	4177.42				0.73512
n-Hexane	3422.75				0.117708
Cyclohexane	0				0.35905
i-C6	3675.68				0.372717
i-C7	17367.4				0.322008
Methylcyclohexane	0				0.0560805
Octane	22728.1				0.022449
Nonane	11895.6				0.00328253
Benzene	1841.86				35.2044
Toluene	4142.85				16.1918
Ethylbenzene	689.921				0.729728
o-Xylene	3828.19				4.89075
H2S	0				0.125869
Water	0				875278
2,2,4-Trimethylpentane	911.355				0.00860156
Decanes Plus	141642				0.000752239

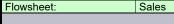
Stream Properties							
Property	Units	6	7	8	9	10	
Temperature	°F	86		120		86.9382	
Pressure	psig	87	75	40	0.375 *	0.375	
Molecular Weight	lb/lbmol	145.438				18.017	
Mass Flow	lb/h	229320	0	0	0	875513	
Std Vapor Volumetric Flow	MMSCFD	14.3604	0	0	0	442.573	
Std Liquid Volumetric Flow	sgpm	590.228 *	0	0	0	1750.85	
Gross Ideal Gas Heating Value	Btu/ft^3	7673.74				50.5636	

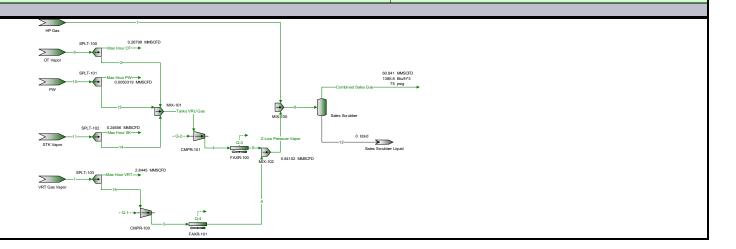
Process Streams Report All Streams **Tabulated by Total Phase** XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB Flowsheet: Inlet Connections 11 13 14 15 From Block VLVE-104 VLVE-103 SPLT-100 RCYL-1 Elect Booster To Block Production Treater Oil Flowback MIX-101 FAXR-100 Separators Stream Composition 11 12 13 14 15 **Mole Fraction** % % % % 0.0210923 0.00640699 0.0135 0 0.193409 Carbon Dioxide 0.223507 Nitrogen 0.107092 0.00114485 0.02618 0 Methane 8.15811 0.582155 1.84912 19 41.2006 2.50262 Ethane 1 75745 1 60806 0 23 1369 Propane 1.02979 3.92039 4.34866 0 17.981 2.76637 Isobutane 0.15988 1.38806 1.30604 0 0 * n-Butane 0.433294 4.94956 4.5915 7.07055 Isopentane 0.144131 2.82308 2.54353 0 * 1.71516 n-Pentane 0.18126 3.98919 3.67212 0 1.89651 n-Hexane 0.0936817 2.81933 2.51901 0 0.445064 Cyclohexane 0.0218748 0.688286 0 0.0781276 2.70515 i-C6 0.111814 3.16042 0 0.677803 i-C7 0.337909 11.0042 10.9925 n 0.922818 Methylcyclohexane 0.013773 0.461149 0 0 0.0268863 Octane 0.360048 12.5592 12.619 0 0.261052 * 0.166598 5.88946 5.88233 0.0441425 Nonane n Benzene 0.0522942 1.57673 1.49547 0.220495 0 0.129813 Toluene 0.0852112 2.88485 2.85165 0 Ethylbenzene 0.0116772 0.408626 0.41215 0 0.00672125 o-Xylene 0.0648983 2.27745 2.28691 0 0.0305318 H2S 0.00011574 0.000191494 0 * 0.00169526 0 Water 85.6488 0.0542826 0 80 0.942448 2,2,4-Trimethylpentane 0.014052 0.469211 0.506 0 0.0283546 Decanes Plus 1.02514 36.4785 36.8766 0.000100962 11 13 14 12 15 **Mass Fraction** % % % % % Carbon Dioxide 0.0417637 0.00192908 0.00408509 0 * 0.25919 Nitrogen 0.134974 0.000219414 0.00504263 0 * 0.190657 Methane 0.0638938 5.88828 15.3198 0.203966 20.1266 Ethane 2.37755 0.330805 0.517411 0 21.1846 Propane 2.04301 1.1827 1.31848 Λ 24.1438 0 * Isobutane 0.418084 0.551951 0.521939 4.89607 n-Butane 1.13306 1.96815 1.83492 0 12.5139 Isopentane 0.467858 1.39348 1.26179 0 3.76816 n-Pentane 0.58838 1.96908 1.82166 0 4.16659 * n-Hexane 0.363217 1.66218 1.49257 0 1.16789 0.0828277 0.396298 0 0.200218 Cyclohexane 0 i-C6 0.433518 1.86327 1.60286 0 1.77862 i-C7 1.52337 7.5437 7.57344 0 2.81571 Methylcyclohexane 0.0608426 0.309771 0 0.0803854 0 9.81493 9.9111 0 * 0.908025 Octane 1 85039 Nonane 0.96133 5.16772 5.18735 0 0.172396 Benzene 0.18378 0.842603 0.803185 0 0.52446 Toluene 0.353237 1.8185 1.80658 0 0.364213 Ethylbenzene 0.0557763 0.296795 0.300855 0.0217284 0 0 * o-Xylene 0.309987 1.65417 1.66937 0.098703 H2S 0.000177469 4.46493E-05 0 0 0.00175932 Water 69.421 0.00669039 0 72.4367 0.517005 2,2,4-Trimethylpentane 0.0722175 0.366684 0.397417 0 0.0986266 Decanes Plus 11.2354 60.7944 61.766 12.2435 0.000748912

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: Corral Canyon 23 TB Flowsheet: Inlet 12 13 14 11 15 **Mass Flow** lb/h lb/h lb/h lb/h lb/h 4.49902 0 * Carbon Dioxide 527.041 2.40493 5.11366 Nitrogen 1703.32 0.511721 2.96864 0 3.76154 Methane 74307.7 149.014 120.077 0 397.085 0 * Ethane 30003.8 771.507 304.605 417.959 2758.3 776.199 0 * 476.342 Propane 25782 Isobutane 5276.06 1287.27 307.27 0 * 96.5964 1080.24 14298.8 246.891 n-Butane 4590.14 0 Isopentane 5904.17 3249.89 742.828 0 74.3434 * 7425.12 4592.31 n-Pentane 1072.43 0 82.2042 4583.65 3876.55 878.689 0 * 23.0417 n-Hexane Cyclohexane 0 * 1045.25 924.25 0 3.95018 i-C6 5470.82 4345.55 943.619 0 35.091 i-C7 19224.3 17593.5 4458.55 0 55.5522 * 767.808 722.451 Methylcyclohexane 0 1.58595 0 0 * Octane 23351.2 22890.5 5834.76 17.9148 3053.84 0 * Nonane 12052.2 3.40126 12131.6 472.843 0 10.3473 Benzene 2319.23 1965.13 Toluene 4457.7 4241.13 1063.55 0 7.1857 0 * Ethylbenzene 703.874 692.189 177.116 0.428687 o-Xylene 3911.9 3857.86 982.772 0 * 1.94735 H2S 2.23958 0.104132 0 0 0.0347102 Water 876065 15.6034 0 0 10.2002 2,2,4-Trimethylpentane 233.963 911.355 855.186 0 1.94584 0 * Decanes Plus 141786 141785 0.0147756 36362.2


Stream Properties						
Property	Units	11	12	13	14	15
Temperature	°F	86.7311	113.769	86	75 *	218.062
Pressure	psig	87 *	3 *	87	80 *	85 *
Molecular Weight	lb/lbmol	22.2265	146.167	145.438	19.8963	32.8401
Mass Flow	lb/h	1.26196E+06	233221	58870.9	0	1972.94
Std Vapor Volumetric Flow	MMSCFD	517.105	14.5319	3.68661	0	0.547159
Std Liquid Volumetric Flow	sgpm	3183.41	598.737	151.523	0	9.06205
Gross Ideal Gas Heating Value	Btu/ft^3	418.996	7712.11	7673.74	358.435	1889.48


	All St	reams Report treams by Total Phase		
Client Name: XTO ENERGY IN	NC		Job: DELAWA	RE DEVELOPMENT
Location: Corral Canyon 2				-
Flowsheet: Inlet				
	Conn	ections		
	16	17		
From Block	FAXR-100	SPLT-101		
To Block	SPLT-101	MIX-103		
TO BIOCK	31 E1-101	WIIX-103		
	24			
		omposition		
Mala Francisco	16	17		
Mole Fraction	%	%		
Carbon Dioxide	0.193409	0.193409		
Nitrogen Methane	0.223507 41.2006	0.223507 41.2006		
Ethane	23.1369	23.1369		
Propane	17.981	17.981		
Isobutane	2.76637	2.76637		
n-Butane	7.07055	7.07055		
Isopentane	1.71516	1.71516		
n-Pentane	1.89651	1.89651		
n-Hexane	0.445064	0.445064		
Cyclohexane	0.0781276	0.0781276		
i-C6	0.677803	0.677803		
i-C7	0.922818	0.922818		
Methylcyclohexane	0.0268863	0.0268863		
Octane	0.261052	0.261052		
Nonane	0.0441425	0.0441425		
Benzene	0.220495	0.220495		
Toluene	0.129813	0.129813		
Ethylbenzene o-Xylene	0.00672125 0.0305318	0.00672125 0.0305318		
H2S	0.00169526	0.00169526		
Water	0.942448	0.942448		
2,2,4-Trimethylpentane	0.0283546	0.0283546		
Decanes Plus	0.000100962	0.000100962		
3333.1331.133	0.000	0.000.00002		
	16	17		
Mass Fraction	%	%		
Carbon Dioxide	0.25919	0.25919		
Nitrogen	0.190657	0.190657		
Methane	20.1266	20.1266		
Ethane	21.1846	21.1846		
Propane	24.1438	24.1438		
Isobutane	4.89607	4.89607		
n-Butane	12.5139	12.5139		
Isopentane	3.76816	3.76816		
n-Pentane	4.16659	4.16659		
n-Hexane	1.16789	1.16789		
Cyclohexane	0.200218 1.77862	0.200218 1.77862		
i-C6 i-C7	2.81571	2.81571		
Methylcyclohexane	0.0803854	0.0803854		
Octane	0.908025	0.908025		
Nonane	0.172396	0.900025		
Benzene	0.52446	0.52446		
Toluene	0.364213	0.364213		
Ethylbenzene	0.0217284	0.0217284		
o-Xylene	0.098703	0.098703		
H2S	0.00175932	0.00175932		
Water	0.517005	0.517005		
2,2,4-Trimethylpentane	0.0986266	0.0986266		
Decanes Plus	0.000748912	0.000748912		

Process Streams Report All Streams **Tabulated by Total Phase** XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Corral Canyon 23 TB Location: Flowsheet: Inlet 16 17 **Mass Flow** lb/h lb/h Carbon Dioxide 5.11366 5.11366 Nitrogen 3.76154 3.76154 Methane 397.085 397.085 Ethane 417.959 417.959 476.342 476.342 Propane Isobutane 96.5964 96.5964 n-Butane 246.891 246.891 Isopentane 74.3434 74.3434 82.2042 n-Pentane 82.2042 n-Hexane 23.0417 23.0417 Cyclohexane 3.95018 3.95018 i-C6 35.091 35.091 i-C7 55.5522 55.5522 Methylcyclohexane 1.58595 1.58595 Octane 17.9148 17.9148 Nonane 3.40126 3.40126 Benzene 10.3473 10.3473 Toluene 7.1857 7.1857 Ethylbenzene 0.428687 0.428687 o-Xylene 1.94735 1.94735 H2S 0.0347102 0.0347102 Water 10.2002 10.2002 2,2,4-Trimethylpentane 1.94584 1.94584 Decanes Plus 0.0147756 0.0147756 **Stream Properties Property** Units 16 17 Temperature °F 90 90 80 Pressure 80 psig Molecular Weight lb/lbmol 32.8401 32.8401 Mass Flow 1972.94 1972.94 lb/h Std Vapor Volumetric Flow MMSCFD 0.547159 0.547159 Std Liquid Volumetric Flow sgpm 9.06205 9.06205 Gross Ideal Gas Heating Value Btu/ft^3 1889.48 1889.48 Remarks

Sales **Plant Schematic**

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB

Client Name:	XTO ENERGY INC	Job: DELAWARE DEVELOPMENT
Location:	Corral Canyon 23 TB	
Flowsheet:	Sales	

Connections							
	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT		
From Block	Sales Scrubber	SPLT-100	SPLT-101	SPLT-102	SPLT-103		
To Block							

Stream Composition								
	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT			
Mole Fraction	%	%	%	%	%			
Carbon Dioxide	0.176437	0.0937901	0.95334	0.95334	0.10757			
Nitrogen	0.910185	0.0204244	0.458365	0.458365	0.0227164			
Methane	69.3253	7.25133	65.4527	65.4527	10.9458			
Ethane	14.8343	21.9376	17.7429	17.7429	22.319			
Propane	8.2101	32.57	6.77406	6.77406	30.7298			
Isobutane	1.10126	6.15048	0.5899	0.5899	5.75074			
n-Butane	2.6972	16.4431	1.94251	1.94251	15.3038			
Isopentane	0.600041	4.11403	0.289757	0.289757	3.83492			
n-Pentane	0.642071	4.53552	0.142068	0.142068	4.22026			
n-Hexane	0.134983	0.997549	0.0192851	0.0192851	0.945867			
Cyclohexane	0.0236035	0.143028	0.0425661	0.0425661	0.166254			
i-C6	0.214442	1.55598	0.0596282	0.0596282	1.4769			
i-C7	0.268067	2.03235	0.0451338	0.0451338	1.90002			
Methylcyclohexane	0.0076043	0.0465341	0.00693399	0.00693399	0.0546973			
Octane	0.0665929	0.506498	0.00282303	0.00282303	0.484864			
Nonane	0.0102387	0.0779711	0.000367991	0.000367991	0.0760849			
Benzene	0.0675964	0.50606	0.374993	0.374993	0.473698			
Toluene	0.0360935	0.275233	0.189376	0.189376	0.260052			
Ethylbenzene	0.00171413	0.0130703	0.00852577	0.00852577	0.0125112			
o-Xylene	0.00769339	0.0586262	0.0392499	0.0392499	0.0562937			
H2S	0.000916165	0.00181593	0.0057835	0.0057835	0.00218232			
Water	0.655484	0.606727	4.85866	4.85866	0.798405			
2,2,4-Trimethylpentane	0.00810115	0.0622288	0.00106449	0.00106449	0.057468			
Decanes Plus	1.22385E-05	8.76523E-05	2.30528E-05	2.30528E-05	9.76646E-05			

	O a mala line and	Mary Harry OT	Mars Harry DVA	Mary Harry Old	Mars Harry VDT
	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT
Mass Fraction	Sales Gas	%	%	%	%
Carbon Dioxide	0.329737	0.0868451	1.84747	1.84747	0.103251
Nitrogen	1.08274	0.0120381	0.565404	0.565404	0.0138792
Methane	47.2273	2.44755	46.236	46.236	3.8298
Ethane	18.9416	13.8787	23.4924	23.4924	14.637
Propane	15.3736	30.2173	13.1531	13.1531	29.5538
Isobutane	2.71807	7.52131	1.50974	1.50974	7.28994
n-Butane	6.65712	20.108	4.97149	4.97149	19.3999
Isopentane	1.8384	6.24509	0.920543	0.920543	6.03453
n-Pentane	1.96717	6.88491	0.451343	0.451343	6.64089
n-Hexane	0.493962	1.80867	0.0731791	0.0731791	1.77775
Cyclohexane	0.084355	0.253261	0.157743	0.157743	0.305164
i-C6	0.784737	2.82118	0.226265	0.226265	2.77583
i-C7	1.14065	4.28466	0.199141	0.199141	4.15233
Methylcyclohexane	0.0317059	0.0961311	0.0299788	0.0299788	0.117132
Octane	0.323023	1.21729	0.0141995	0.0141995	1.20796
Nonane	0.0557633	0.210402	0.00207823	0.00207823	0.212829
Benzene	0.224218	0.831689	1.2898	1.2898	0.807006
Toluene	0.141221	0.533559	0.768332	0.768332	0.522588
Ethylbenzene	0.00772781	0.029195	0.0398563	0.0398563	0.0289693
o-Xylene	0.034684	0.130953	0.183486	0.183486	0.130347
H2S	0.00132591	0.00130212	0.00867928	0.00867928	0.00162214
Water	0.501457	0.229973	3.85424	3.85424	0.313706
2,2,4-Trimethylpentane	0.0392963	0.149558	0.00535426	0.00535426	0.143172
Decanes Plus	0.0001266	0.000449245	0.000247276	0.000247276	0.000518887

^{*} User Specified Values
? Extrapolated or Approximate Values

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Flowsheet: Corral Canyon 23 TB Sales

	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	518.715	1.21452	0.231804	11.3584	14.7855
Nitrogen	1703.28	0.168351	0.0709421	3.47616	1.98749
Methane	74294.1	34.2287	5.80129	284.263	548.424
Ethane	29797.4	194.093	2.94762	144.433	2096.01
Propane	24184.4	422.585	1.65033	80.8663	4232.08
Isobutane	4275.85	105.185	0.189429	9.28204	1043.91
n-Butane	10472.4	281.208	0.62378	30.5652	2778.06
Isopentane	2892.02	87.3369	0.115502	5.65959	864.141
n-Pentane	3094.59	96.2847	0.0566307	2.7749	950.971
n-Hexane	777.061	25.2941	0.00918188	0.449912	254.573
Cyclohexane	132.7	3.54182	0.0197922	0.969818	43.6993
i-C6	1234.48	39.4539	0.0283898	1.3911	397.496
i-C7	1794.37	59.9205	0.0249864	1.22434	594.61
Methylcyclohexane	49.8771	1.34438	0.00376149	0.184313	16.7732
Octane	508.152	17.0237	0.00178163	0.0872998	172.979
Nonane	87.7222	2.94245	0.000260758	0.0127772	30.477
Benzene	352.722	11.6311	0.161833	7.9298	115.563
Toluene	222.157	7.46177	0.0964036	4.72378	74.8343
Ethylbenzene	12.1568	0.408289	0.00500083	0.245041	4.14838
o-Xylene	54.5621	1.83136	0.0230222	1.12809	18.6655
H2S	2.08582	0.01821	0.001089	0.0533611	0.232289
Water	788.85	3.21615	0.483597	23.6963	44.9224
2,2,4-Trimethylpentane	61.8177	2.09155	0.000671807	0.0329185	20.5022
Decanes Plus	0.199157	0.00628264	3.10261E-05	0.00152028	0.0743042

Stream Properties									
Property	Units	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT			
Temperature	°F	83.6695	95	86.9382	86.9382	100			
Pressure	psig	75	0.375	0.375	0.375	3			
Molecular Weight	lb/lbmol	23.5488	47.5289	22.71	22.71	45.8502			
Mass Flow	lb/h	157312	1398.49	12.5471	614.81	14319.9			
Std Vapor Volumetric Flow	MMSCFD	60.841	0.267982	0.00503189	0.246563	2.84449			
Std Liquid Volumetric Flow	sgpm	850.081	5.40768	0.0676927	3.31694	56.2064			
Gross Ideal Gas Heating Value	Btu/ft^3	1385.85	2681.02	1281.58	1281.58	2589.13			

Process Streams Report All Streams **Tabulated by Total Phase** XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB Flowsheet: Sales **Connections** Tanks VRU **Z-Low** 1 2 3 Pressure Gas Vapor SPLT-100 From Block MIX-101 MIX-102 VRT Gas CMPR-100 Vapor To Block CMPR-101 MIX-100 SPLT-103 MIX-101 FAXR-101 Stream Composition Tanks VRU Z-Low 1 2 3 Gas **Pressure** Vapor % % % **Mole Fraction** % % 0.0937901 0.10757 Carbon Dioxide 0.51001 0.169726 0.10757 Nitrogen 0.232488 0.0551155 0.0227164 0.0204244 0.0227164 Methane 35.4341 14.728 10.9458 7.25133 10.9458 Ethane 19.9064 21.9464 22.319 21.9376 22.319 Propane 20.0788 29.0847 30.7298 32.57 30.7298 3.45788 5.39661 5.75074 6.15048 5.75074 Isobutane 14.3953 15.3038 16.4431 n-Butane 9.42149 15.3038 Isopentane 2.2622 3.59202 3.83492 4.11403 3.83492 n-Pentane 2.40808 3.94037 4.22026 4.53552 4.22026 n-Hexane 0.523844 0.880686 0.945867 0.997549 0.945867 Cyclohexane 0.0943816 0.143028 0.155153 0.166254 0.166254 0.831403 1.3772 1.4769 1.4769 i-C6 1.55598 1.77183 i-C7 1.07008 1.90002 2.03235 1.90002 Methylcyclohexane 0.0273586 0.0504748 0.0546973 0.0546973 0.0465341 Octane 0.262604 0.450536 0.484864 0.506498 0.484864 0.0705723 0.0760849 0.0403933 0.0779711 0.0760849 Nonane Benzene 0.442593 0.468894 0.473698 0.50606 0.473698 0.233658 0.260052 Toluene 0.255976 0.260052 0.275233 Ethylbenzene 0.0108697 0.0122576 0.0125112 0.0130703 0.0125112 0.0552049 0.0562937 0.0562937 o-Xylene 0.0492436 0.0586262 H2S 0.00373715 0.00242246 0.00218232 0.00181593 0.00218232 Water 2.66564 1.0868 0.798405 0.606727 0.798405 2,2,4-Trimethylpentane 0.0326112 0.0536289 0.057468 0.0622288 0.057468 9.76646E-05 9.76646E-05 Decanes Plus 5.63713E-05 9.12869E-05 8.76523E-05 Tanks VRU Z-Low 3 Gas Pressure Vapor **Mass Fraction** % % % % Carbon Dioxide 0.632068 0.168791 0.103251 0.0868451 0.103251 0.0120381 Nitrogen 0.183403 0.0348894 0.0138792 0.0138792 Methane 16.0078 5.3391 3.8298 2.44755 3.8298 Ethane 16.8559 14.912 14.637 13.8787 14.637 Propane 24.9329 28.9811 29.5538 30.2173 29.5538 Isobutane 5.65967 7.08789 7.28994 7.52131 7.28994 15.4206 18.9067 19.3999 20.108 19.3999 n-Butane Isopentane 4.5962 5.85627 6.03453 6.24509 6.03453 n-Pentane 4.89259 6.42421 6.64089 6.88491 6.64089 n-Hexane 1.71498 1.77775 1.80867 1.77775 1.27123 Cyclohexane 0.223681 0.295066 0.305164 0.253261 0.305164 i-C6 2.68185 2.77583 2.77583 2.01759 2.82118 i-C7 3.01947 4.01193 4.15233 4.28466 4.15233 0.0961311 Methylcyclohexane 0.0756453 0.11199 0.117132 0.117132 Octane 0.844722 1.16294 1.20796 1.21729 1.20796 Nonane 0.145889 0.204533 0.212829 0.210402 0.212829 0.973555 0.827647 0.807006 0.831689 0.807006 Benzene Toluene 0.606263 0.532959 0.522588 0.533559 0.522588 0.0324966 0.029195 Ethylbenzene 0.0294064 0.0289693 0.0289693 o-Xylene 0.147221 0.132438 0.130347 0.130953 0.130347

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: Corral Canyon 23 TB Flowsheet: Sales Tanks VRU Z-Low 2 3 Gas **Pressure** Vapor **Mass Fraction** % 0.00162214 0.00162214 0.00358665 0.00130212 H2S 0.00186561 Water 0.313706 0.229973 0.313706 1.35232 0.442429 2,2,4-Trimethylpentane 0.104901 0.138429 0.143172 0.149558 0.143172 Decanes Plus 0.0003867 0.000502504 0.000518887 0.000449245 0.000518887 Tanks VRU Z-Low 2 3 1 Gas Pressure Vapor **Mass Flow** lb/h lb/h lb/h lb/h lb/h Carbon Dioxide 3.20118 6.89756 3.69637 0.30363 3.69637 Nitrogen 0.928864 0.496871 0.0420878 0.496871 1.42574 Methane 81.0733 218.179 137.106 8.55717 137.106 524.003 Ethane 85.3684 609.372 48.5232 524.003 1058.02 Propane 126.276 1184.3 105.646 1058.02 Isobutane 28.664 289.643 260.979 26.2962 260.979 n-Butane 78.0992 772.613 694.514 70.302 694.514 Isopentane 23.278 239.313 216.035 21.8342 216.035 262.522 237.743 24.0712 24.7791 237.743 n-Pentane 6.43829 63.6433 6.32352 63.6433 n-Hexane 70.0815 Cyclohexane 1.13286 12.0577 10.9248 0.885456 10.9248 i-C6 10.2183 109.592 99.3741 9.86346 99.3741 i-C7 15.2924 163.945 148.653 14.9801 148.653 4.19329 Methylcyclohexane 0.383114 4.5764 0.336096 4.19329 Octane 4.27819 47.523 43.2448 4.25592 43.2448 Nonane 0.738873 8.35812 7.61925 0.735613 7.61925 4.93068 28.8907 2.90777 Benzene 33.8213 28.8907 Toluene 21.7791 18.7086 1.86544 3.07049 18.7086 Ethylbenzene 0.164583 1.20168 1.03709 0.102072 1.03709 0.745618 5.412 4.66639 0.457841 4.66639 o-Xylene H2S 0.0762372 0.018165 0.0580721 0.00455251 0.0580721 Water 6.849 18.0796 11.2306 0.804037 11.2306 0.531284 5.12555 2,2,4-Trimethylpentane 5.65683 0.522887 5.12555 Decanes Plus 0.00195849 0.0205345 0.0185761 0.00157066 0.0185761 Stream Properties **Property** Units Tanks VRU **Z-Low** 2 3 Gas Pressure Vapor °F 92.1103 Temperature 98.6616 100 95 350 Pressure psig 0.375 0.375 80 85 3 Molecular Weight lb/lbmol 35.5109 44.2533 45.8502 47.5289 45.8502 506.462 4086.44 Mass Flow 3579 98 349.622 3579.98 lb/h Std Vapor Volumetric Flow MMSCFD 0.129894 0.841016 0.711122 0.711122 0.0669956 Std Liquid Volumetric Flow sgpm 2.19808 16.2497 14.0516 1.35192 14.0516 Gross Ideal Gas Heating Value Btu/ft³ 2003.37 2498.66 2589.13 2681.02 2589.13 Remarks

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Location: Corral Canyon 23 TB Flowsheet: Sales Connections 8 6 CMPR-101 HP Gas From Block FAXR-100 FAXR-101 MIX-100 To Block FAXR-100 MIX-102 MIX-102 MIX-100 Sales Scrubber Stream Composition 6 7 8 4 5 % **Mole Fraction** % % % 0.51001 0.51001 0.10757 0.176531 0.176437 Carbon Dioxide Nitrogen 0.232488 0.232488 0.0227164 0.92217 0.910185 10.9458 Methane 35.4341 35.4341 70.0906 69.3253 Ethane 19.9064 19.9064 22.319 14.7346 14.8343 8.2101 Propane 20.0788 20.0788 30.7298 7.9175 Isobutane 3.45788 3.45788 5.75074 1.04105 1.10126 15.3038 2.53323 n-Butane 9.42149 9.42149 2.6972 Isopentane 2.2622 2.2622 3.83492 0.558103 0.600041 n-Pentane 2.40808 2.40808 4.22026 0.595839 0.642071 n-Hexane 0.523844 0.523844 0.945867 0.124531 0.134983 Cyclohexane 0.0943816 0.166254 0.0217596 0.0236035 0.0943816 i-C6 0.831403 0.831403 1.4769 0.198144 0.214442 i-C7 1.07008 1.07008 1.90002 0.246989 0.268067 Methylcyclohexane 0.0273586 0.0273586 0.0546973 0.00700339 0.0076043 0.262604 0.484864 0.0612112 0.0665929 Octane 0.262604 Nonane 0.0403933 0.0403933 0.0760849 0.00939297 0.0102387 0.0619714 0.442593 0.442593 0.473698 0.0675964 Benzene Toluene 0.233658 0.233658 0.260052 0.0330114 0.0360935 0.0108697 0.0108697 0.00156635 0.00171413 Ethylbenzene 0.0125112 o-Xylene 0.0492436 0.0492436 0.0562937 0.00702742 0.00769339 H2S 0.00373715 0.00373715 0.00218232 0.000895051 0.000916165 Water 2.66564 0.798405 0.649438 0.655484 2.66564 2,2,4-Trimethylpentane 0.0326112 0.0326112 0.057468 0.00746299 0.00810115 Decanes Plus 5.63713E-05 9.76646E-05 1.11304E-05 1.22385E-05 5.63713E-05 4 5 6 7 R **Mass Fraction** % % % % 0.632068 0.103251 Carbon Dioxide 0.632068 0.334029 0.329737 Nitrogen 0.183403 0.183403 0.0138792 1.11069 1.08274 Methane 16.0078 16.0078 3.8298 48.3445 47.2273 Ethane 16 8559 16.8559 19 0491 18.9416 14 637 Propane 24.9329 24.9329 29.5538 15.0107 15.3736 5.65967 7.28994 2.71807 Isobutane 5.65967 2.60153 15.4206 15.4206 19.3999 6.33043 6.65712 n-Butane Isopentane 4.5962 4.5962 6.03453 1.73125 1.8384 n-Pentane 4 89259 4.89259 6 64089 1 84831 1 96717 n-Hexane 1.27123 1.27123 1.77775 0.461399 0.493962 0.305164 Cyclohexane 0.223681 0.223681 0.0787354 0.084355 2.01759 i-C6 2.01759 2.77583 0.734142 0.784737 i-C7 3.01947 3.01947 4.15233 1.06407 1.14065 Methylcyclohexane 0.0756453 0.0756453 0.117132 0.0295647 0.0317059 Octane 0.844722 0.844722 1.20796 0.300622 0.323023 0.0557633 0.145889 0.145889 0.212829 0.0517957 Nonane Benzene 0.973555 0.973555 0.807006 0.208125 0.224218 Toluene 0.606263 0.606263 0.522588 0.130774 0.141221 Ethylbenzene 0.0324966 0.0324966 0.0289693 0.00714966 0.00772781 o-Xylene 0.147221 0.147221 0.130347 0.032077 0.034684 0.00358665 0.00162214 H2S 0.00358665 0.00131152 0.00132591 1.35232 1.35232 0.313706 0.503031 0.501457 0.104901 0.143172 2,2,4-Trimethylpentane 0 104901 0.0366525 0.0392963 Decanes Plus 0.0003867 0.0003867 0.000518887 0.000116575 0.0001266

^{*} User Specified Values

[?] Extrapolated or Approximate Values

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Flowsheet: Corral Canyon 23 TB

Sales

	4	5	6	7	8
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	3.20118	3.20118	3.69637	511.817	518.715
Nitrogen	0.928864	0.928864	0.496871	1701.86	1703.28
Methane	81.0733	81.0733	137.106	74075.9	74294.1
Ethane	85.3684	85.3684	524.003	29188	29797.4
Propane	126.276	126.276	1058.02	23000.1	24184.4
Isobutane	28.664	28.664	260.979	3986.2	4275.85
n-Butane	78.0992	78.0992	694.514	9699.81	10472.4
Isopentane	23.278	23.278	216.035	2652.71	2892.02
n-Pentane	24.7791	24.7791	237.743	2832.07	3094.59
n-Hexane	6.43829	6.43829	63.6433	706.979	777.061
Cyclohexane	1.13286	1.13286	10.9248	120.643	132.7
i-C6	10.2183	10.2183	99.3741	1124.89	1234.48
i-C7	15.2924	15.2924	148.653	1630.43	1794.37
Methylcyclohexane	0.383114	0.383114	4.19329	45.3007	49.8771
Octane	4.27819	4.27819	43.2448	460.629	508.152
Nonane	0.738873	0.738873	7.61925	79.3641	87.7222
Benzene	4.93068	4.93068	28.8907	318.9	352.722
Toluene	3.07049	3.07049	18.7086	200.378	222.157
Ethylbenzene	0.164583	0.164583	1.03709	10.9551	12.1568
o-Xylene	0.745618	0.745618	4.66639	49.1501	54.5621
H2S	0.018165	0.018165	0.0580721	2.00958	2.08582
Water	6.849	6.849	11.2306	770.771	788.85
2,2,4-Trimethylpentane	0.531284	0.531284	5.12555	56.1609	61.8177
Decanes Plus	0.00195849	0.00195849	0.0185761	0.178623	0.199157

Stream Properties								
Property	Units	4	5	6	7	8		
Temperature	°F	350 *	100 *	100 *	85.8543	84.3413		
Pressure	psig	80 *	80 *	80 *	80	80		
Molecular Weight	lb/lbmol	35.5109	35.5109	45.8502	23.2586	23.5488		
Mass Flow	lb/h	506.462	506.462	3579.98	153225	157312		
Std Vapor Volumetric Flow	MMSCFD	0.129894	0.129894	0.711122	60	60.841		
Std Liquid Volumetric Flow	sgpm	2.19808	2.19808	14.0516	833.832	850.081		
Gross Ideal Gas Heating Value	Btu/ft^3	2003.37	2003.37	2589.13	1370.25	1385.85		

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Location: Corral Canyon 23 TB Flowsheet: Sales Connections 10 11 12 13 From Block STK Vapor SPLT-101 OT Vapor ΡW Sales Scrubber To Block SPLT-100 SPLT-101 SPLT-102 Sales Scrubber MIX-101 Liquid Stream Composition 12 11 13 **Mole Fraction** % % % 0.0937901 0.95334 0.95334 0.95334 Carbon Dioxide Nitrogen 0.0204244 0.458365 0.458365 0.458365 Methane 7.25133 65.4527 65.4527 65.4527 17.7429 Ethane 21.9376 17 7429 17.7429 Propane 6.77406 6.77406 6.77406 32.57 Isobutane 6.15048 0.5899 0.5899 0.5899 n-Butane 16.4431 1.94251 1.94251 1.94251 Isopentane 4.11403 0.289757 0.289757 0.289757 n-Pentane 4 53552 0.142068 0.142068 0.142068 n-Hexane 0.997549 0.0192851 0.0192851 0.0192851 Cyclohexane 0.143028 0.0425661 0.0425661 0.0425661 i-C6 1.55598 0.0596282 0.0596282 0.0596282 i-C7 2.03235 0.0451338 0.0451338 0.0451338 Methylcyclohexane 0.0465341 0.00693399 0.00693399 0.00693399 Octane 0.506498 0.00282303 0.00282303 0.00282303 0.0779711 0.000367991 0.000367991 0.000367991 Nonane Benzene 0.50606 0.374993 0.374993 0.374993 0.275233 0.189376 0.189376 0.189376 Toluene Ethylbenzene 0.0130703 0.00852577 0.00852577 0.00852577 o-Xylene 0.0586262 0.0392499 0.0392499 0.0392499 H2S 0.00181593 0.0057835 0.0057835 0.0057835 Water 0.606727 4.85866 4.85866 4.85866 2,2,4-Trimethylpentane 0.0622288 0.00106449 0.00106449 0.00106449 Decanes Plus 8.76523E-05 2.30528E-05 2.30528E-05 2.30528E-05 12 9 10 11 13 % **Mass Fraction** % % % % Carbon Dioxide 0.0868451 1.84747 1.84747 1.84747 Nitrogen 0.0120381 0.565404 0.565404 0.565404 46.236 Methane 2 44755 46.236 46 236 Ethane 13.8787 23.4924 23.4924 23.4924 30.2173 Propane 13.1531 13.1531 13.1531 Isobutane 7.52131 1.50974 1.50974 1.50974 n-Butane 20.108 4.97149 4.97149 4.97149 Isopentane 6 24509 0.920543 0.920543 0.920543 n-Pentane 6.88491 0.451343 0.451343 0.451343 n-Hexane 1.80867 0.0731791 0.0731791 0.0731791 0.157743 0.157743 0.157743 Cyclohexane 0.253261 i-C6 2.82118 0.226265 0.226265 0.226265 i-C7 4.28466 0.199141 0.199141 0.199141 Methylcyclohexane 0.0961311 0.0299788 0.0299788 0.0299788 0.0141995 0.0141995 0.0141995 Octane 1 21729 Nonane 0.210402 0.00207823 0.00207823 0.00207823 Benzene 0.831689 1.2898 1.2898 1.2898 0.768332 0.768332 0.768332 Toluene 0.533559 Ethylbenzene 0.029195 0.0398563 0.0398563 0.0398563 o-Xylene 0.130953 0.183486 0.183486 0.183486 H2S 0.00130212 0.00867928 0.00867928 0.00867928 Water 0.229973 3.85424 3.85424 3.85424 0.149558 2,2,4-Trimethylpentane 0.00535426 0.00535426 0.00535426 0.000449245 0.000247276 0.000247276 0.000247276 **Decanes Plus**

^{*} User Specified Values

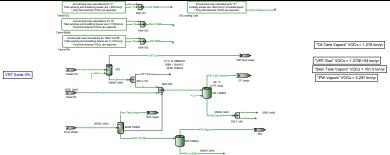
[?] Extrapolated or Approximate Values

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB

Flowsheet: Sales

	9	10	11	12	13
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.30363	0.057951	2.8396		0.057951
Nitrogen	0.0420878	0.0177355	0.86904		0.0177355
Methane	8.55717	1.45032	71.0659		1.45032
Ethane	48.5232	0.736905	36.1083		0.736905
Propane	105.646	0.412583	20.2166		0.412583
Isobutane	26.2962	0.0473573	2.32051		0.0473573
n-Butane	70.302	0.155945	7.64131		0.155945
Isopentane	21.8342	0.0288755	1.4149		0.0288755
n-Pentane	24.0712	0.0141577	0.693726		0.0141577
n-Hexane	6.32352	0.00229547	0.112478		0.00229547
Cyclohexane	0.885456	0.00494805	0.242454		0.00494805
i-C6	9.86346	0.00709744	0.347775		0.00709744
i-C7	14.9801	0.00624661	0.306084		0.00624661
Methylcyclohexane	0.336096	0.000940371	0.0460782		0.000940371
Octane	4.25592	0.000445407	0.021825		0.000445407
Nonane	0.735613	6.51895E-05	0.00319429		6.51895E-05
Benzene	2.90777	0.0404582	1.98245		0.0404582
Toluene	1.86544	0.0241009	1.18094		0.0241009
Ethylbenzene	0.102072	0.00125021	0.0612601		0.00125021
o-Xylene	0.457841	0.00575555	0.282022		0.00575555
H2S	0.00455251	0.00027225	0.0133403		0.00027225
Water	0.804037	0.120899	5.92406		0.120899
2,2,4-Trimethylpentane	0.522887	0.000167952	0.00822963		0.000167952
Decanes Plus	0.00157066	7.75652E-06	0.00038007		7.75652E-06

Stream Properties								
Property	Units	9	10	11	12	13		
Temperature	°F	95	86.9382	86.9382		86.9382		
Pressure	psig	0.375	0.375	0.375	75	0.375		
Molecular Weight	lb/lbmol	47.5289	22.71	22.71		22.71		
Mass Flow	lb/h	349.622	3.13678	153.702	0	3.13678		
Std Vapor Volumetric Flow	MMSCFD	0.0669956	0.00125797	0.0616407	0	0.00125797		
Std Liquid Volumetric Flow	sgpm	1.35192	0.0169232	0.829235	0	0.0169232		
Gross Ideal Gas Heating Value	Btu/ft^3	2681.02	1281.58	1281.58		1281.58		


Process Streams Report	
Location: Corral Canyon 23 TB Flowsheet: Sales Connections # 14 15 From Block SPLT-102 SPLT-103 CMPR-100 Stream Composition Mole Fraction 14 15 Mole Fraction % % % % % Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	
Location: Corral Canyon 23 TB Flowsheet: Sales Connections 14 15 From Block SPLT-102 SPLT-103 CMPR-100 Stream Composition Mole Fraction 14 15 Mole Fraction % % % % Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	ENT
Connections 14	
14 15	
14 15	
14 15	
From Block SPLT-102 SPLT-103 To Block MIX-101 CMPR-100 Stream Composition 4 15 Mole Fraction % % Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	
To Block MIX-101 CMPR-100	
Stream Composition Mole Fraction 14 15 4 4 15 4 </td <td></td>	
Mole Fraction 14 15 Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	
Mole Fraction 14 15 Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	
Mole Fraction % % Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	
Carbon Dioxide 0.95334 0.10757 Nitrogen 0.458365 0.0227164	
Nitrogen 0.458365 0.0227164	
EE 4507 40 0450	
Methane 65.4527 10.9458 Ethane 17.7429 22.319	
Ethane 17.7429 22.319 Propane 6.77406 30.7298	
Isobutane 0.5899 5.75074	
n-Butane 0.5899 5.75074 n-Butane 1.94251 15.3038	
Isopentane 0.289757 3.83492 n-Pentane 0.142068 4.22026	
n-Hexane 0.142006 4.22020 0.945867	
Cyclohexane 0.0425661 0.166254	
i-C6 0.0596282 1.4769	
i-C7 0.0451338 1.90002	
Methylcyclohexane 0.00693399 0.0546973	
Octane 0.00282303 0.484864	
Nonane 0.000367991 0.0760849	
Benzene 0.374993 0.473698	
Toluene 0.189376 0.260052	
Ethylbenzene 0.00852577 0.0125112	
o-Xylene 0.0392499 0.0562937	
H2Ś 0.0057835 0.00218232	
Water 4.85866 0.798405	
2,2,4-Trimethylpentane 0.00106449 0.057468	
Decanes Plus 2.30528E-05 9.76646E-05	
14 15	-
Mass Fraction % %	
Carbon Dioxide 1.84747 0.103251	
Nitrogen 0.565404 0.0138792	
Methane 46.236 3.8298	
Ethane 23.4924 14.637	
Propane 13.1531 29.5538	
Isobutane 1.50974 7.28994	
n-Butane 4.97149 19.3999	
Isopentane 0.920543 6.03453	
n-Pentane 0.451343 6.64089	
n-Hexane 0.0731791 1.77775	
Cyclohexane 0.157743 0.305164	
i-C6 0.226265 2.77583	
i-C7 0.199141 4.15233	
Methylcyclohexane 0.0299788 0.117132	
Octane 0.0141995 1.20796	
Nonane 0.00207823 0.212829	
Benzene 1.2898 0.807006 Toluene 0.768332 0.522588	
Ethylbenzene 0.0398563 0.0289693 o-Xylene 0.183486 0.130347	
H2S 0.00867928 0.00162214	
Water 3.85424 0.313706	
2,2,4-Trimethylpentane 0.00535426 0.143172	
Decanes Plus 0.000247276 0.000518887	
0.000211210 0.000310001	

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Corral Canyon 23 TB Location: Flowsheet: Sales 14 15 **Mass Flow** lb/h lb/h Carbon Dioxide 2.8396 3.69637 Nitrogen 0.86904 0.496871 Methane 71.0659 137.106 Ethane 36.1083 524.003 20.2166 1058.02 Propane Isobutane 2.32051 260.979 n-Butane 7.64131 694.514 Isopentane 1.4149 216.035 0.693726 237.743 n-Pentane n-Hexane 0.112478 63.6433 Cyclohexane 0.242454 10.9248 i-C6 0.347775 99.3741 i-C7 0.306084 148.653 Methylcyclohexane 0.0460782 4.19329 Octane 0.021825 43.2448 Nonane 0.00319429 7.61925 Benzene 1.98245 28.8907 Toluene 1.18094 18.7086 Ethylbenzene 0.0612601 1.03709 o-Xylene 0.282022 4.66639 0.0580721 H2S 0.0133403 Water 5.92406 11.2306 2,2,4-Trimethylpentane 0.00822963 5.12555 Decanes Plus 0.00038007 0.0185761 **Stream Properties Property** Units 14 15 86.9382 Temperature °F 100 Pressure 0.375 psig 3 Molecular Weight lb/lbmol 22.71 45.8502 Mass Flow 153.702 3579.98 lb/h Std Vapor Volumetric Flow MMSCFD 0.0616407 0.711122 Std Liquid Volumetric Flow sgpm 0.829235 14.0516 Gross Ideal Gas Heating Value Btu/ft^3 1281.58 2589.13 Remarks

Tankage **Plant Schematic**

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB

Tankage Flowsheet:

"Oil Tank Vapors" VOCs = 1,276 ton/yr

Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT
Location: Corral Canyon 23 TB
Flowsheet: Tankage

Connections								
	Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors			
From Block	OIL TANKS	OIL TANKS	MIX-101	PW TANKS	PW TANKS			
To Block	SPLT-100	OT Vapor			PW			

Stream Composition								
	Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors			
Mole Fraction	%	%	%	%	%			
Carbon Dioxide	0.000899867	0.0937901	0.0717366	0.000366051	0.95334			
Nitrogen	2.62518E-05	0.0204244	0.000719174	4.4866E-06	0.458365			
Methane	0.0273987	7.25133	1.16931	0.00131602	65.4527			
Ethane	0.461359	21.9376	24.5065	0.000506823	17.7429			
Propane	2.37634	32.57	35.9617	0.000135566	6.77406			
Isobutane	1.11405	6.15048	6.39178	7.71091E-06	0.5899			
n-Butane	4.26987	16.4431	16.9223	3.57883E-05	1.94251			
Isopentane	2.71402	4.11403	4.30003	3.60273E-06	0.289757			
n-Pentane	3.92242	4.53552	4.68242	7.76972E-07	0.142068			
n-Hexane	2.87801	0.997549	1.05789	7.00935E-08	0.0192851			
Cyclohexane	0.576259	0.143028	0.13802	2.73041E-06	0.0425661			
i-C6	3.17671	1.55598	1.61158	4.26215E-07	0.0596282			
i-C7	11.5849	2.03235	1.90313	1.98779E-07	0.0451338			
Methylcyclohexane	0.388637	0.0465341	0.045047	1.89957E-07	0.00693399			
Octane	13.3381	0.506498	0.456859	3.21899E-09	0.00282303			
Nonane	6.25596	0.0779711	0.0574559	3.69957E-10	0.000367991			
Benzene	1.63098	0.50606	0.383668	0.000874302	0.374993			
Toluene	3.04488	0.275233	0.221377	0.000334771	0.189376			
Ethylbenzene	0.434496	0.0130703	0.0109214	1.2935E-05	0.00852577			
o-Xylene	2.42023	0.0586262	0.0429122	8.92357E-05	0.0392499			
H2S	6.47333E-05	0.00181593	0.00192345	6.77927E-06	0.0057835			
Water	0.0105291	0.606727	0.000562942	99.9963	4.85866			
2,2,4-Trimethylpentane	0.503338	0.0622288	0.0620868	3.67518E-09	0.00106449			
Decanes Plus	38.8705	8.76523E-05	5.3468E-05	3.07892E-09	2.30528E-05			

	Oil Sales	Oil Tank	Oil W&B	PW to SWD	PW Vapors
Mana Franklan	0/	Vapors	0/	0/	0/
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.000259798	0.0868451	0.0643344	0.000894174	1.84747
Nitrogen	4.82432E-06	0.0120381	0.000410541	6.97616E-06	0.565404
Methane	0.00288345	2.44755	0.382258	0.00117184	46.236
Ethane	0.091006	13.8787	15.0161	0.000845881	23.4924
Propane	0.687408	30.2173	32.3141	0.000331804	13.1531
Isobutane	0.424774	7.52131	7.57042	2.4876E-05	1.50974
n-Butane	1.62805	20.108	20.0428	0.000115456	4.97149
Isopentane	1.28455	6.24509	6.32204	1.44276E-05	0.920543
n-Pentane	1.8565	6.88491	6.88423	3.11149E-06	0.451343
n-Hexane	1.62699	1.80867	1.85773	3.3527E-07	0.0731791
Cyclohexane	0.31815	0.253261	0.236702	1.27545E-05	0.157743
i-C6	1.79586	2.82118	2.83004	2.03866E-06	0.226265
i-C7	7.6152	4.28466	3.88599	1.10555E-06	0.199141
Methylcyclohexane	0.250326	0.0961311	0.0901306	1.03523E-06	0.0299788
Octane	9.99494	1.21729	1.06344	2.04093E-08	0.0141995
Nonane	5.26356	0.210402	0.150164	2.63366E-09	0.00207823
Benzene	0.835751	0.831689	0.610702	0.00379063	1.2898
Toluene	1.84044	0.533559	0.415653	0.00171207	0.768332
Ethylbenzene	0.302606	0.029195	0.0236274	7.62224E-05	0.0398563
o-Xylene	1.68558	0.130953	0.0928365	0.00052584	0.183486
H2S	1.44727E-05	0.00130212	0.00133582	1.28241E-05	0.00867928
Water	0.00124436	0.229973	0.000206662	99.9905	3.85424
2,2,4-Trimethylpentane	0.377177	0.149558	0.144521	2.33016E-08	0.00535426
Decanes Plus	62.1167	0.000449245	0.000265416	4.16302E-08	0.000247276

^{*} User Specified Values

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Flowsheet: Corral Canyon 23 TB

Tankage

	Oil Sales	Oil Tank	Oil W&B	PW to SWD	PW Vapors
Mara Flam	11- /1-	Vapors	11- 11-	11- 11-	11- /1-
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.745088	0.30363	0.340287	7.82721	0.057951
Nitrogen	0.0138359	0.0420878	0.00217149	0.0610662	0.0177355
Methane	8.2696	8.55717	2.02189	10.2578	1.45032
Ethane	261.001	48.5232	79.4254	7.40447	0.736905
Propane	1971.45	105.646	170.92	2.90446	0.412583
Isobutane	1218.23	26.2962	40.0426	0.217754	0.0473573
n-Butane	4669.17	70.302	106.013	1.01065	0.155945
Isopentane	3684.04	21.8342	33.4395	0.126293	0.0288755
n-Pentane	5324.35	24.0712	36.4131	0.0272366	0.0141577
n-Hexane	4666.14	6.32352	9.82616	0.0029348	0.00229547
Cyclohexane	912.44	0.885456	1.252	0.111648	0.00494805
i-C6	5150.43	9.86346	14.969	0.0178455	0.00709744
i-C7	21840	14.9801	20.5544	0.00967753	0.00624661
Methylcyclohexane	717.922	0.336096	0.476732	0.00906196	0.000940371
Octane	28665	4.25592	5.6249	0.000178654	0.000445407
Nonane	15095.6	0.735613	0.794269	2.30539E-05	6.51895E-05
Benzene	2396.89	2.90777	3.23021	33.1815	0.0404582
Toluene	5278.3	1.86544	2.19853	14.9867	0.0241009
Ethylbenzene	867.86	0.102072	0.124973	0.667217	0.00125021
o-Xylene	4834.15	0.457841	0.491044	4.60297	0.00575555
H2S	0.041507	0.00455251	0.0070656	0.112257	0.00027225
Water	3.56875	0.804037	0.00109311	875272	0.120899
2,2,4-Trimethylpentane	1081.73	0.522887	0.76442	0.000203972	0.000167952
Decanes Plus	178148	0.00157066	0.00140388	0.000364413	7.75652E-06

Stream Properties									
Property	Units	Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors			
Temperature	°F	95	95 *	100.014	86.9382	86.9382			
Pressure	psig	0.375	0.375 *	7.07154	0.375	0.375 *			
Molecular Weight	lb/lbmol	152.436	47.5289	49.0731	18.0163	22.71			
Mass Flow	lb/h	286795	349.622	528.935	875356	3.13678			
Std Vapor Volumetric Flow	MMSCFD	17.1351	0.0669956	0.0981664	442.51	0.00125797			
Std Liquid Volumetric Flow	sgpm	729.167	1.35192	2.03468	1750	0.0169232			
Gross Ideal Gas Heating Value	Btu/ft^3	8032.11	2681.02	2772.59	50.3886	1281.58			

Process Streams Report All Streams Tabulated by Total Phase XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Flowsheet: Corral Canyon 23 TB Tankage

Connections								
	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas			
From Block	MIX-103	SKIM TANKS	SKIM TANKS	MIX-102	VRT			
To Block		STK Vapor	PW TANKS		VRT Gas Vapor			

Stream Composition								
	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas			
Mole Fraction	%	%	%	%	%			
Carbon Dioxide	0.648547	0.95334	0.000368761	0.624264	0.10757			
Nitrogen	0.00341261	0.458365	5.78963E-06	0.00359083	0.0227164			
Methane	1.44256	65.4527	0.00150209	1.42957	10.9458			
Ethane	0.509533	17.7429	0.000557261	0.487163	22.319			
Propane	0.0336609	6.77406	0.000154823	0.0327365	30.7298			
Isobutane	0.000662284	0.5899	9.38786E-06	0.000647989	5.75074			
n-Butane	0.00219098	1.94251	4.13104E-05	0.00214931	15.3038			
Isopentane	8.23135E-05	0.289757	4.42644E-06	8.18037E-05	3.83492			
n-Pentane	1.22991E-05	0.142068	1.18084E-06	1.39462E-05	4.22026			
n-Hexane	3.13322E-07	0.0192851	1.24917E-07	3.72317E-07	0.945867			
Cyclohexane	1.01073E-05	0.0425661	2.85141E-06	9.25893E-06	0.166254			
i-C6	2.87972E-06	0.0596282	5.95725E-07	3.10367E-06	1.4769			
i-C7	3.85197E-07	0.0451338	3.27085E-07	4.28998E-07	1.90002			
Methylcyclohexane	3.23341E-07	0.00693399	2.09668E-07	3.01969E-07	0.0546973			
Octane	1.10907E-09	0.00282303	1.12443E-08	1.52317E-09	0.484864			
Nonane	3.12468E-11	0.000367991	1.41608E-09	4.25567E-11	0.0760849			
Benzene	0.00327893	0.374993	0.000875365	0.00323333	0.473698			
Toluene	0.000380707	0.189376	0.000335308	0.000374889	0.260052			
Ethylbenzene	4.98541E-06	0.00852577	1.29592E-05	4.89378E-06	0.0125112			
o-Xylene	2.41417E-05	0.0392499	8.93471E-05	2.38533E-05	0.0562937			
H2S	0.00379357	0.0057835	6.79569E-06	0.0037158	0.00218232			
Water	97.3518	4.85866	99.996	97.4124	0.798405			
2,2,4-Trimethylpentane	4.98054E-09	0.00106449	6.70132E-09	5.63199E-09	0.057468			
Decanes Plus	5.32297E-14	2.30528E-05	3.14444E-09	4.60254E-14	9.76646E-05			

	PW W&B	Skim Tank	Skim to PW	Skim W&B	VRT Gas
Mass Fraction	%	Vapors %	%	%	%
Carbon Dioxide	1.56567	1.84747	0.000900791	1.5078	0.103251
Nitrogen	0.00524402	0.565404	9.00222E-06	0.00552063	0.0138792
Methane	1.26945	46.236	0.00133752	1.25865	3.8298
Ethane	0.840435	23.4924	0.000930061	0.803936	14.637
Propane	0.0814205	13.1531	0.000378935	0.0792239	29.5538
Isobutane	0.00211154	1.50974	3.0286E-05	0.00206699	7.28994
n-Butane	0.00698542	4.97149	0.000133271	0.00685596	19.3999
Isopentane	0.000325771	0.920543	1.77263E-05	0.000323914	6.03453
n-Pentane	4.86761E-05	0.451343	4.72883E-06	5.52222E-05	6.64089
n-Hexane	1.48111E-06	0.0731791	5.975E-07	1.76086E-06	1.77775
Cyclohexane	4.66607E-05	0.157743	1.33198E-05	4.27653E-05	0.305164
i-C6	1.36127E-05	0.226265	2.84946E-06	1.46787E-05	2.77583
i-C7	2.11724E-06	0.199141	1.81916E-06	2.35917E-06	4.15233
Methylcyclohexane	1.7415E-06	0.0299788	1.14266E-06	1.6272E-06	0.117132
Octane	6.94937E-09	0.0141995	7.1292E-08	9.54884E-09	1.20796
Nonane	2.19833E-10	0.00207823	1.00808E-08	2.99551E-10	0.212829
Benzene	0.0140495	1.2898	0.00379524	0.013861	0.807006
Toluene	0.00192417	0.768332	0.00171482	0.00189571	0.522588
Ethylbenzene	2.90332E-05	0.0398563	7.6365E-05	2.85137E-05	0.0289693
o-Xylene	0.000140592	0.183486	0.000526496	0.000138982	0.130347
H2S	0.00709205	0.00867928	1.28552E-05	0.00695011	0.00162214
Water	96.205	3.85424	99.9901	96.3126	0.313706
2,2,4-Trimethylpentane	3.12078E-08	0.00535426	4.24882E-08	3.53073E-08	0.143172

^{*} User Specified Values
? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB Flowsheet: Tankage PW W&B Skim Tank Skim to PW Skim W&B VRT Gas Vapors %

%

%

%

Decanes Plus	7.11285E-13	0.000247276	4.25162E-08	6.15323E-13	0.000518887
	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.393719	2.8396	7.88516	0.384117	3.69637
Nitrogen	0.00131872	0.86904	0.0788017	0.0014064	0.496871
Methane	0.319229	71.0659	11.7081	0.320645	137.106
Ethane	0.211344	36.1083	8.14137	0.204806	524.003
Propane	0.0204748	20.2166	3.31705	0.0201826	1058.02
Isobutane	0.000530989	2.32051	0.265111	0.000526573	260.979
n-Butane	0.00175662	7.64131	1.1666	0.00174659	694.514
Isopentane	8.19217E-05	1.4149	0.155168	8.25185E-05	216.035
n-Pentane	1.22406E-05	0.693726	0.0413942	1.40681E-05	237.743
n-Hexane	3.72454E-07	0.112478	0.00523027	4.48585E-07	63.6433
Cyclohexane	1.17338E-05	0.242454	0.116596	1.08946E-05	10.9248
i-C6	3.4232E-06	0.347775	0.024943	3.73945E-06	99.3741
i-C7	5.32424E-07	0.306084	0.0159241	6.01008E-07	148.653
Methylcyclohexane	4.37935E-07	0.0460782	0.0100023	4.14535E-07	4.19329
Octane	1.74756E-09	0.021825	0.000624061	2.43261E-09	43.2448
Nonane	5.52815E-11	0.00319429	8.82434E-05	7.63119E-11	7.61925
Benzene	0.00353304	1.98245	33.222	0.00353115	28.8907
Toluene	0.000483873	1.18094	15.0108	0.000482939	18.7086
Ethylbenzene	7.30098E-06	0.0612601	0.668468	7.26399E-06	1.03709
o-Xylene	3.53548E-05	0.282022	4.60873	3.54062E-05	4.66639
H2S	0.00178344	0.0133403	0.112529	0.00177057	0.0580721
Water	24.1927	5.92406	875272	24.536	11.2306
2,2,4-Trimethylpentane	7.84784E-09	0.00822963	0.000371924	8.99468E-09	5.12555
Decanes Plus	1.78867E-13	0.00038007	0.000372169	1.56756E-13	0.0185761

Skim Tank	Skim to PW	Skim W&B	
Vapors		SKIM W&B	VRT Gas
86.9382	86.9382	94.6044	100 *
0.375	0.375	-11.9022	3
22.71	18.0163	18.221	45.8502
153.702	875359	25.4754	3579.98
0.0616407	442.511	0.0127337	0.711122
0.829235	1750.02	0.0533806	14.0516
1281.58	50.3921	73.1504	2589.13
	0.0616407 0.829235	153.702 875359 0.0616407 442.511 0.829235 1750.02	153.702 875359 25.4754 0.0616407 442.511 0.0127337 0.829235 1750.02 0.0533806

Remarks

Mass Fraction

%

Process Streams Report All Streams **Tabulated by Total Phase** XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB Flowsheet: Tankage **Connections** VRT Sales z-Oil Loading 2 3 From Block Treater Oil VRT SPLT-101 Dead Oil To Block VRT MIX-100 SPLT-101 Stream Composition **VRT Sales** z-Oil Loading 2 3 1 % **Mole Fraction** Carbon Dioxide 0.00120185 0.0739963 0.00640699 0.00150602 0.00120185 Nitrogen 3.4931E-05 0.000453105 0.00114485 0.000394928 3.4931E-05 Methane 0.0489144 1.10061 0.582155 0.0825859 0.0489144 Ethane 0.542419 25.3045 1.60806 0.555552 0.542419 2.54096 2.54096 2.30169 Propane 36.0232 3.92039 Isobutane 1.16359 6.30897 1.38806 1.01135 1.16359 4.4168 n-Butane 4.4168 16.64 4.94956 3.91048 Isopentane 2.77101 4.19637 2.82308 2.50879 2.77101 n-Pentane 3.9773 4.5605 3.98919 3.71025 3.9773 n-Hexane 2.91572 1 02427 2.81933 2.6866 2.91572 Cyclohexane 0.715146 0.133447 0.688286 0.715146 2.85715 3.24704 i-C6 3.24704 1.56302 3.16042 i-C7 11.4727 1.83674 11.0042 11.8546 11.4727 Methylcyclohexane 0.482062 0.0434509 0.461149 0 0.482062 13.1805 0.437649 12.5592 13.7281 13.1805 Octane Nonane 6.18858 0.0550164 5.88946 6.40898 6.18858 1.63348 Benzene 1.63348 0.370745 1.57673 1.59847 Toluene 3.01991 0.213002 2.88485 3.09209 3.01991 0.408626 Ethylbenzene 0.0104634 0.429007 0.429007 0.448578 o-Xylene 2.39173 0.0410637 2.27745 2.4899 2.39173 H2S 8.90597E-05 0.00195628 0.000191494 0 8.90597E-05 Water 0.0159952 0.000566965 0.0542826 0.0159952 0 2,2,4-Trimethylpentane 0.490397 0.0598971 0.469211 0.547493 0.490397 Decanes Plus 4.93068E-05 36.4785 40.2054 38.3554 38.3554 **VRT Sales** z-Oil Loading 1 2 3 **Mass Fraction** % % 0.000349521 0.0667809 0.00192908 0.000427927 0.000349521 Carbon Dioxide Nitrogen 6.46629E-06 0.000260292 0.000219414 7.14294E-05 6.46629E-06 Methane 0.00518544 0.362076 0.0638938 0.00855403 0.00518544 0.330805 Ethane 0.107778 15.6032 0.107855 0 107778 Propane 0.740408 32.5742 1.1827 0.655293 0.740408 0.379523 0.446909 7.51963 0.551951 0.446909 Isobutane 1.6964 19.8331 1.96815 1.46746 1.6964 n-Butane Isopentane 1.32113 6.20867 1.39348 1.16866 1.32113 n-Pentane 1 89625 6 74741 1.96908 1.72833 1.89625 n-Hexane 1.66038 1.81007 1.66218 1.49479 1.66038 0.397718 Cyclohexane 0.230307 0.396298 0.397718 1.58968 i-C6 1.84905 2.76213 1.86327 1.84905 7.66935 i-C7 7.59657 3.77415 7.5437 7.59657 Methylcyclohexane 0.312774 0.0874872 0.309771 0.312774 0 Octane 9.94911 1.02517 9.81493 10.1246 9.94911 5.24497 0.144698 5.16772 5.3071 5.24497 Nonane 0.806146 0.843158 Benzene 0.843158 0.593865 0.842603 Toluene 1.8387 0.402459 1.8185 1.83944 1.8387 Ethylbenzene 0.30097 0.0227798 0.296795 0.307478 0.30097 o-Xylene 1.67792 0.0893996 1.65417 1.7067 1.67792 H2S 2.00572E-05 0.00136722 4.46493E-05 2.00572E-05 0 0.00190418 0.000209456 0.00669039 0 0.00190418 0.140306 0.403782 2,2,4-Trimethylpentane 0.370169 0.366684 0.370169 Decanes Plus 61.7422 0.000246309 60.7944 63.2348 61.7422

^{*} User Specified Values

Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT Location: Corral Canyon 23 TB

Flowsheet: Tankage

	VRT Sales	z-Oil Loading	1	2	3
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0	0.0339434	4.49902	0.246073	0.802645
Nitrogen	0	0.000132301	0.511721	0.0410744	0.0148493
Methane	0	0.184036	149.014	4.91887	11.9079
Ethane	0	7.93081	771.507	62.0201	247.504
Propane	0	16.5568	2758.3	376.816	1700.28
Isobutane	0	3.82208	1287.27	218.239	1026.29
n-Butane	0	10.0808	4590.14	843.841	3895.63
Isopentane	0	3.15574	3249.89	672.019	3033.86
n-Pentane	0	3.42958	4592.31	993.849	4354.57
n-Hexane	0	0.920021	3876.55	859.556	3812.91
Cyclohexane	0	0.117061	924.25	0	913.325
i-C6	0	1.40394	4345.55	914.121	4246.18
i-C7	0	1.91832	17593.5	4410.14	17444.9
Methylcyclohexane	0	0.044468	722.451	0	718.258
Octane	0	0.521074	22890.5	5822.01	22847.3
Nonane	0	0.0735472	12052.2	3051.77	12044.6
Benzene	0	0.30185	1965.13	463.563	1936.24
Toluene	0	0.204562	4241.13	1057.75	4222.42
Ethylbenzene	0	0.0115785	692.189	176.81	691.152
o-Xylene	0	0.04544	3857.86	981.414	3853.2
H2S	0	0.000694931	0.104132	0	0.0460595
Water	0	0.000106463	15.6034	0	4.37279
2,2,4-Trimethylpentane	0	0.0713148	855.186	232.189	850.06
Decanes Plus	0	0.000125194	141785	36362.2	141785

Stream Properties								
Property	Units	VRT Sales	z-Oil Loading	1	2	3		
Temperature	°F	100	98.726	113.769	85.9447	100		
Pressure	psig	3	7.16426	3	25	3		
Molecular Weight	lb/lbmol	151.329	48.7645	146.167	154.884	151.329		
Mass Flow	lb/h	0	50.828	233221	57503.5	229641		
Std Vapor Volumetric Flow	MMSCFD	0	0.00949301	14.5319	3.38137	13.8208		
Std Liquid Volumetric Flow	sgpm	0	0.196327	598.737	145.833	584.685		
Gross Ideal Gas Heating Value	Btu/ft^3	7975.7	2756.33	7712.11	8156.66	7975.7		

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Location: Corral Canyon 23 TB Flowsheet: Tankage Connections 6 8 From Block SPLT-100 SPLT-100 MIX-100 Prod. Water To Block MIX-101 OIL TANKS SKIM TANKS Stream Composition 6 7 8 4 5 % **Mole Fraction** 0.000899867 0.000899867 0.0717366 0.00126164 0.000501489 Carbon Dioxide Nitrogen 2.62518E-05 2.62518E-05 0.000719174 0.000105694 6.9629E-05 0.0273987 0.0555331 Methane 0.0273987 1 16931 0.010618 Ethane 0.461359 0.461359 24.5065 0.545 0.00302838 2.49393 Propane 35.9617 0.00109828 2.37634 2.37634 9.15467E-05 Isobutane 1.11405 1.11405 6.39178 1.13366 0.000311853 n-Butane 4.26987 4.26987 16.9223 4.31728 Isopentane 2.71402 2.71402 4.30003 2.71947 4.47826E-05 n-Pentane 3.92242 3.92242 4.68242 3.92481 2.09676E-05 2.87801 2.87801 2.87068 n-Hexane 1.05789 2.81089E-06 Cyclohexane 0.576259 0.13802 0.574572 8.77955E-06 0.576259 i-C6 3.17671 3.17671 1.61158 3.1704 8.90055E-06 i-C7 11.5849 11.5849 1.90313 11.5477 6.61318E-06 Methylcyclohexane 0.388637 0.388637 0.045047 0.387305 1.17539E-06 13.3381 13.3381 0.456859 13.2881 4.04429E-07 Octane Nonane 6.25596 6.25596 0.0574559 6.2319 5.26689E-08 1.63098 0.383668 1.6266 0.000927472 Benzene 1.63098 0.000361638 Toluene 3.04488 3.04488 0.221377 3.0341 $0.434\overline{496}$ 1.41449E-05 Ethylbenzene 0.432854 0.434496 0.0109214 o-Xylene 2.42023 2.42023 0.0429122 2.41103 9.48013E-05 H2S 6.47333E-05 6.47333E-05 0.00192345 7.15535E-05 7.60026E-06 Water 0.0105291 0.0105291 0.000562942 0.0128511 99.9828 2,2,4-Trimethylpentane 0.503338 0.503338 0.0620868 1.54961E-07 0.50162 Decanes Plus 38.8705 5.3468E-05 38.7191 6.35475E-09 38.8705 4 5 6 7 R **Mass Fraction** 0.0643344 0.000259798 0.000365223 0.00122497 Carbon Dioxide 0.000259798 Nitrogen 4.82432E-06 4.82432E-06 0.000410541 1.94758E-05 0.000108261 Methane 0.00288345 0.00288345 0.382258 0.00586003 0.00945434 0.00505415 0.107794 Ethane 0.091006 0.091006 15 0161 Propane 0.687408 0.687408 32.3141 0.723363 0.00268798 0.424774 0.424774 7.57042 0.433415 0.000295326 Isobutane 1.62805 1.62805 20.0428 1.65055 0.00100603 n-Butane Isopentane 1.28455 1.28455 6.32204 1.29059 0.000179331 n-Pentane 1 8565 1 8565 6 88423 1 86262 8.39645E-05 n-Hexane 1.62699 1.62699 1.85773 1.62722 1.34445E-05 Cyclohexane 0.31815 0.31815 0.236702 0.318071 4.10103E-05 i-C6 1.79586 1.79586 2.83004 1.79711 4.25713E-05 3.88599 i-C7 7.6152 7.6152 7.61114 3.67794E-05 Methylcyclohexane 0.250326 0.250326 0.0901306 0.250138 6.40545E-06 Octane 9.99494 9.99494 1.06344 9.98425 2.5641E-06 5.25741 3.74927E-07 5.26356 5.26356 0.150164 Nonane Benzene 0.835751 0.835751 0.610702 0.835746 0.00402101 0.415653 Toluene 1.84044 1.84044 1.83885 0.0018494 8.33486E-05 Ethylbenzene 0.302606 0.302606 0.0236274 0.302274 o-Xylene 1.68558 1.68558 0.0928365 1.68368 0.000558616 1.44727E-05 H2S 1.44727E-05 0.00133582 1.60405E-05 1.43766E-05 0.00124436 0.00124436 0.000206662 0.00152285 99.9732 2,2,4-Trimethylpentane 0.144521 9.8246E-07 0.377177 0.377177 0.3769 Decanes Plus 62.1167 62,1167 0.000265416 62.0411 8.59198E-08

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT Location: Corral Canyon 23 TB Flowsheet: Tankage

	4	5	6	7	8
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.149018	0.596071	0.336022	1.04872	10.7248
Nitrogen	0.00276718	0.0110687	0.00214427	0.0559237	0.947842
Methane	1.65392	6.61568	1.99655	16.8268	82.774
Ethane	52.2001	208.801	78.4299	309.524	44.2497
Propane	394.29	1577.16	168.778	2077.1	23.5336
Isobutane	243.646	974.585	39.5407	1244.53	2.58562
n-Butane	933.833	3735.33	104.684	4739.47	8.8079
Isopentane	736.808	2947.23	33.0203	3705.87	1.57007
n-Pentane	1064.87	4259.48	35.9567	5348.42	0.73512
n-Hexane	933.228	3732.91	9.70299	4672.47	0.117708
Cyclohexane	182.488	729.952	1.23631	913.325	0.35905
i-C6	1030.09	4120.35	14.7814	5160.3	0.372717
i-C7	4368	17472	20.2967	21855	0.322008
Methylcyclohexane	143.584	574.338	0.470756	718.258	0.0560805
Octane	5733	22932	5.5544	28669.3	0.022449
Nonane	3019.13	12076.5	0.784313	15096.4	0.00328253
Benzene	479.379	1917.51	3.18972	2399.8	35.2044
Toluene	1055.66	4222.64	2.17097	5280.17	16.1918
Ethylbenzene	173.572	694.288	0.123407	867.963	0.729728
o-Xylene	966.831	3867.32	0.48489	4834.61	4.89075
H2S	0.0083014	0.0332056	0.00697704	0.0460595	0.125869
Water	0.713751	2.855	0.00107941	4.37279	875278
2,2,4-Trimethylpentane	216.345	865.381	0.754839	1082.25	0.00860156
Decanes Plus	35629.5	142518	0.00138628	178148	0.000752239

Stream Properties						
Property	Units	4	5	6	7	8
Temperature	°F	95	95	100.014	97.2388	86.9382
Pressure	psig	0.375	0.375	7.07154	3	0.375
Molecular Weight	lb/lbmol	152.436	152.436	49.0731	152.028	18.017
Mass Flow	lb/h	57359	229436	522.305	287145	875513
Std Vapor Volumetric Flow	MMSCFD	3.42703	13.7081	0.096936	17.2021	442.573
Std Liquid Volumetric Flow	sgpm	145.833 *	583.333	2.00918	730.519	1750.85
Gross Ideal Gas Heating Value	Btu/ft^3	8032.11	8032.11	2772.59	8011.27	50.5636

Remarks

Process Streams Report All Streams **Tabulated by Total Phase** XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB Flowsheet: Tankage **Connections** 10 11 12 13 From Block SPLT-101 SKIM TANKS To Block MIX-100 MIX-100 MIX-101 MIX-102 MIX-102 Stream Composition 9 10 11 12 13 **Mole Fraction** % % Carbon Dioxide 0.00120185 0.0717366 0.624264 0.624264 Nitrogen 3.4931E-05 0.000719174 0.00359083 0.00359083 1.42957 Methane 0.0489144 1 16931 1.42957 Ethane 0.542419 24.5065 0.487163 0.487163 2.54096 Propane 35.9617 0.0327365 0.0327365 0.000647989 0.000647989 Isobutane 1.16359 6.39178 n-Butane 4.4168 16.9223 0.00214931 0.00214931 Isopentane 2.77101 4.30003 8.18037E-05 8.18037E-05 n-Pentane 3.9773 4.68242 1.39462E-05 1.39462E-05 3.72317E-07 1.05789 n-Hexane 2.91572 3.72317E-07 Cyclohexane 0.715146 0.13802 9.25893E-06 9.25893E-06 i-C6 3.24704 1.61158 3.10367E-06 3.10367E-06 i-C7 11.4727 1.90313 4.28998E-07 4.28998E-07 Methylcyclohexane 0.482062 0.045047 3.01969E-07 3.01969E-07 13.1805 0.456859 1.52317E-09 1.52317E-09 Octane Nonane 6.18858 0.0574559 4.25567E-11 4.25567E-11 Benzene 1.63348 0.383668 0.00323333 0.00323333 0.000374889 Toluene 3.01991 0.221377 0.000374889 4.89378E-06 Ethylbenzene 4.89378E-06 0.429007 0.0109214 o-Xylene 2.39173 0.0429122 2.38533E-05 2.38533E-05 H2S 8.90597E-05 0.00192345 0.0037158 0.0037158 Water 0.0159952 0.000562942 97.4124 97.4124 2,2,4-Trimethylpentane 0.490397 0.0620868 5.63199E-09 5.63199E-09 Decanes Plus 5.3468E-05 4.60254E-14 4.60254E-14 38.3554 9 10 11 12 13 **Mass Fraction** % % 0.0643344 1.5078 Carbon Dioxide 0.000349521 1.5078 Nitrogen 6.46629E-06 0.000410541 0.00552063 0.00552063 Methane 0.00518544 0.382258 1.25865 1.25865 Ethane 0.107778 15 0161 0.803936 0.803936 Propane 0.740408 32.3141 0.0792239 0.0792239 0.446909 7.57042 0.00206699 0.00206699 Isobutane 1.6964 20.0428 0.00685596 0.00685596 n-Butane Isopentane 1.32113 6.32204 0.000323914 0.000323914 n-Pentane 1 89625 6 88423 5.5222E-05 5 52222F-05 1.66038 n-Hexane 1.85773 1.76086E-06 1.76086E-06 0.397718 0.236702 Cyclohexane 4.27653E-05 4.27653E-05 i-C6 1.84905 2.83004 1.46787E-05 1.46787E-05 3.88599 i-C7 7.59657 2.35917E-06 2.35917E-06 Methylcyclohexane 0.312774 0.0901306 1.6272E-06 1.6272E-06 Octane 9.94911 1.06344 9.54884E-09 9.54884E-09 0.150164 2.99551E-10 2.99551E-10 5.24497 Nonane Benzene 0.843158 0.610702 0.013861 0.013861 0.415653 Toluene 1.8387 0.00189571 0.00189571 2.85137E-05 Ethylbenzene 0.30097 0.0236274 2.85137E-05 o-Xylene 1.67792 0.0928365 0.000138982 0.000138982 H2S 0.00695011 2.00572E-05 0.00133582 0.00695011 0.00190418 0.000206662 96.3126 96.3126 0.144521 3.53073E-08 3.53073E-08 2,2,4-Trimethylpentane 0.370169 Decanes Plus 61.7422 0.000265416 6.15323E-13 6.15323E-13

^{*} User Specified Values

Process Streams Report All Streams Tabulated by Total Phase

XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: Corral Canyon 23 TB

Flowsheet: Tankage

	9	10	11	12	13
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.802645		0.00426519	0.382843	0.00127436
Nitrogen	0.0148493		2.72177E-05	0.00140174	4.66595E-06
Methane	11.9079		0.0253426	0.319581	0.00106379
Ethane	247.504		0.995524	0.204127	0.000679474
Propane	1700.28		2.14233	0.0201156	6.69587E-05
Isobutane	1026.29		0.501897	0.000524826	1.74698E-06
n-Butane	3895.63		1.32878	0.00174079	5.79455E-06
Isopentane	3033.86		0.419133	8.22447E-05	2.73767E-07
n-Pentane	4354.57		0.456405	1.40214E-05	4.66729E-08
n-Hexane	3812.91		0.123162	4.47097E-07	1.48825E-09
Cyclohexane	913.325		0.0156927	1.08585E-05	3.61445E-08
i-C6	4246.18		0.187623	3.72705E-06	1.24062E-08
i-C7	17444.9		0.25763	5.99014E-07	1.99393E-09
Methylcyclohexane	718.258		0.00597539	4.1316E-07	1.37528E-09
Octane	22847.3		0.070503	2.42454E-09	8.07052E-12
Nonane	12044.6		0.00995543	7.60587E-11	2.53175E-13
Benzene	1936.24		0.0404877	0.00351943	1.17151E-05
Toluene	4222.42		0.0275566	0.000481337	1.60222E-06
Ethylbenzene	691.152		0.00156643	7.23989E-06	2.40993E-08
o-Xylene	3853.2		0.00615479	3.52887E-05	1.17465E-07
H2S	0.0460595		8.85609E-05	0.00176469	5.87411E-06
Water	4.37279		1.37011E-05	24.4546	0.0814018
2,2,4-Trimethylpentane	850.06		0.0095813	8.96484E-09	2.98412E-11
Decanes Plus	141785		1.75963E-05	1.56236E-13	5.2006E-16

Stream Properties						
Property	Units	9	10	11	12	13
Temperature	°F	100		100.014	94.6044	94.6044
Pressure	psig	3	0.375	7.07154	-11.9022	-11.9022
Molecular Weight	lb/lbmol	151.329		49.0731	18.221	18.221
Mass Flow	lb/h	229641	0	6.62971	25.3909	0.0845183
Std Vapor Volumetric Flow	MMSCFD	13.8208	0	0.00123043	0.0126914	4.22458E-05
Std Liquid Volumetric Flow	sgpm	584.685	0	0.0255028	0.0532035	0.000177098
Gross Ideal Gas Heating Value	Btu/ft^3	7975.7	-	2772.59	73.1504	73.1504

Remarks

	All St	Process Streams Report All Streams Tabulated by Total Phase				
Client Name: XTO ENERGY IN	IC		Job: DELAWARE DEVELOPMENT			
Location: Corral Canyon 23						
Flowsheet: Tankage						
	Conn	ections				
	14	15				
From Block	14	15				
To Block	MIX-103	MIX-103				
10 Block	MIX-103	MIV-102				
		1/1				
		omposition				
	14	15				
Mole Fraction	%	%				
Carbon Dioxide	0.648547	0.648547				
Nitrogen	0.00341261	0.00341261				
Methane	1.44256	1.44256				
Ethane	0.509533	0.509533				
Propane	0.0336609	0.0336609 0.000662284				
Isobutane	0.000662284					
n-Butane	0.00219098 8.23135E-05	0.00219098				
Isopentane		8.23135E-05				
n-Pentane n-Hexane	1.22991E-05 3.13322E-07	1.22991E-05 3.13322E-07				
Cyclohexane	3.13322E-07 1.01073E-05	1.01073E-05				
i-C6	2.87972E-06	2.87972E-06				
i-C7	3.85197E-07	3.85197E-07				
Methylcyclohexane	3.23341E-07	3.23341E-07				
Octane	1.10907E-09	1.10907E-09				
Nonane	3.12468E-11	3.12468E-11				
Benzene	0.00327893	0.00327893				
Toluene	0.000380707	0.000380707				
Ethylbenzene	4.98541E-06	4.98541E-06				
o-Xylene	2.41417E-05	2.41417E-05				
H2S	0.00379357	0.00379357				
Water	97.3518	97.3518				
2,2,4-Trimethylpentane	4.98054E-09	4.98054E-09				
Decanes Plus	5.32297E-14	5.32297E-14				
	14	15				
Mass Fraction	%	%				
Carbon Dioxide	1.56567	1.56567		-		
Nitrogen	0.00524402	0.00524402				
Methane	1.26945	1.26945				
Ethane	0.840435	0.840435				
Propane	0.0814205	0.0814205				
Isobutane	0.00211154	0.00211154				
n-Butane	0.00698542	0.00698542				
Isopentane	0.000325771	0.000325771				
n-Pentane	4.86761E-05	4.86761E-05				
n-Hexane	1.48111E-06	1.48111E-06				
Cyclohexane	4.66607E-05	4.66607E-05				
i-C6	1.36127E-05	1.36127E-05				
i-C7	2.11724E-06	2.11724E-06				
Methylcyclohexane	1.7415E-06	1.7415E-06				
Octane	6.94937E-09	6.94937E-09				
Nonane Benzene	2.19833E-10 0.0140495	2.19833E-10 0.0140495				
Toluene	0.0140495	0.0140495				
Ethylbenzene	2.90332E-05	2.90332E-05				
o-Xylene	0.000140592	0.000140592				
H2S	0.000140392	0.00709205				
Water	96.205	96.205				
2,2,4-Trimethylpentane	3.12078E-08	3.12078E-08				
Decanes Plus	7.11285E-13	7.11285E-13				
,	7.112002 10					

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: Corral Canyon 23 TB Flowsheet: Tankage 14 15 **Mass Flow** lb/h lb/h Carbon Dioxide 0.392333 0.00138666 4.64445E-06 Nitrogen 0.00131407 Methane 0.318105 0.00112431 Ethane 0.000744345 0.2106 0.0204027 7.21114E-05 Propane Isobutane 0.000529119 1.87012E-06 n-Butane 0.00175044 6.18675E-06 Isopentane 8.16332E-05 2.88524E-07 1.21975E-05 4.31108E-08 n-Pentane 3.71143E-07 1.31177E-09 n-Hexane Cyclohexane 1.16924E-05 4.13258E-08 i-C6 3.41114E-06 1.20563E-08 i-C7 5.30549E-07 1.87517E-09 Methylcyclohexane 4.36393E-07 1.54239E-09 Octane 1.7414E-09 6.15482E-12 Nonane 5.50868E-11 1.94699E-13 1.24432E-05 Benzene 0.00352059 Toluene 0.000482168 1.70418E-06 Ethylbenzene 7.27527E-06 2.57137E-08 o-Xylene 3.52303E-05 1.24518E-07 H2S 0.00177716 6.28118E-06 Water 24.1075 0.0852055 2,2,4-Trimethylpentane 2.76397E-11 7.8202E-09 Decanes Plus 1.78237E-13 6.29961E-16 **Stream Properties** Units **Property** 14 15 Temperature °F 94.0874 94.0874 Pressure -11.9148 -11.9148 psig Molecular Weight lb/lbmol 18.23 18.23 Mass Flow 0.0885666 25.0584 lb/h Std Vapor Volumetric Flow MMSCFD 4.42473E-05 0.012519 Std Liquid Volumetric Flow sgpm 0.0525602 0.000185769 Gross Ideal Gas Heating Value Btu/ft^3 73.6745 73.6745 Remarks

Tanks-PW				
	Use	er Value [TVP]		
Parameter	0.559353 psia	Upper Bound	psia	
Lower Bound	psia	* Enforce Bounds	False	
	User	Value [MaxVP]		
Parameter	0.809591 psia	Upper Bound	psia	
Lower Bound	psia	* Enforce Bounds	False	
	User Valu	e [AvgLiqSurfaceT]		
Parameter	82.1609 °F	Upper Bound	°F	
Lower Bound	°F	* Enforce Bounds	False	
	User Valu	e [MaxLiqSurfaceT]		
Parameter	94.0874 °F	Upper Bound	°F	
Lower Bound	°F	* Enforce Bounds	False	

Remarks

This User Value Set was programmatically generated. GUID={AADD249D-3323-4DB5-8BE4-B48D5B5C5F5B}

June 27, 2019

XTO Energy Inc. #700, 1 Riverway Drive Houston, TX 77056

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation
The Tornado Combustion Technologies Inc. (TCTI) designed a dual air assisted flare system for XTO Energy Inc.
Battery Facilities (TCTI Design Reference No.: TOR0817B Rev. 0).

The flare has a 24-inch outer diameter air tip, 8-inch outer diameter annular low pressure air assisted waste gas tip for continuous flaring operations, and 6-inch outer diameter high pressure waste gas tip for facility emergency relieving cases. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 40-feet tall. To date TCTI has provided twenty-four (24) flares of this design to XTO Energy Midstream Operations Compressor Facilities, under the following job number:

•	13881/16123;	•	14329/16627;	•	14589/16931;
•	14010/16304;	•	14472/16792;	•	14590/16932;
•	14206/16513;	•	14465/16786;	•	14653/16991;
•	14207/16514;	•	14491/16806;	•	14565/17000;
•	14208/16515;	•	14531/16848;	•	14712/17047;
•	14209/16516	•	14552/16870·	•	14713/17048

14210/16517; • 14553/16871; • 14714/17049; 14211/16518; • 14573/16892; • 14744/17100.

This flare design is intended to operate such that:

- i) The maximum high pressure emergency flow rates does not exceed a maximum flow rate of 3,000,000 SCFD, a maximum continuous flowrate of 2,000,000 SCFD which will operate without visible emissions (i.e. excessive soot formation) and, and a maximum net heat release of 255,421,950.00 BTU/h; and,
- ii) The maximum low pressure emergency flow rate does not exceed a maximum flow rate of 1,500,000 SCFD, a maximum continuous flowrate of 800,000 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of and 127,710,975.00 BTU/h.

For more detailed information please refer to the design datasheets.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

TOR0817BR0-40FT.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

- TCTI has been designed the flare so each riser of the dual flare system will operate independently. Thus the calculated 40 CFR 60.18 maximum exit velocity for the high pressure and low pressure air assisted flares is 205.70 ft/s, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the high pressure air assisted flare as determined by paragraph (f)(4) in 40 CFR 60.18, are 385.91 ft/s, and 122.44 ft/s, for the emergency and continuous operating cases respectfully, and for the low pressure air assisted flare are 128.87 ft/s, and 70.55 ft/s, for the emergency and continuous operating cases respectfully. As can be seen the actual exit velocity of the low pressure air assisted flare and the continuous operating case of the high pressure air assisted flare are within the requirements of 40 CFR 60.18. The exit velocity of the emergency case through the high pressure air assisted flare although greater than the requirements of 40 CFR 60.18, is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as the case presented to TCTI for the high pressure air assisted flare have been presented as an emergency case, that is not representative of the flare's performance;
- The calculated lower heating value of the waste gas for both the high pressure air assisted flare and low pressure air assisted flare is 2,043.38 BTU/SCF. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for an air assisted flare, as the heating value of the waste gas is greater than 300 BTU/SCF;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;
- Tornado has designed the flare to modulate the air flow based upon the waste gas flow rate to the flare for the cases presented which are not considered startup, shutdown, or malfunction as per 40 CFR 60.8(c). By doing this in conjunction with proper flare tuning, the flare's air blower cannot introduce too much air into the jet exit stream thus lowering the destruction efficiency of the flare by quenching mechanisms.

With both flares being designed to operate as described above the Tornado Combustion Technologies Inc. flare system has been designed to operate in compliance with 40 CFR 60.18. As per EPA studies EPA-600/2-83-052, EPA-600/2-86-080, and EPA-600/2-85-106 meeting the criteria of 40 CFR 60.18 will attain a minimum Destruction Removal Efficiency (DRE) of 98% for hydrocarbon compounds.

XTO Energy has advised that the site under consideration does not need to meet the requirements of 40 CFR 60 Subpart OOOO and only the general requirements must be adhered.

Regards,

Brian Herrler, P.Eng
Combustion Engineering
Tornado Combustion Technologies Inc.
200 – 261200 Wagon Wheel Way
Municipal District of Rocky View, Alberta
T4A 0E3

Phone: (403) 244-3333 Mobile: (403) 669-3400

Email: bherrler@tornadotech.com

Cc: (4) Gene Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Cliff Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Bryce Thomas, Flare Manager, Tornado Combustion Technologies Inc; Ian Burge, Combustion Engineering, Tornado Combustion Technologies Inc.

June 27, 2019

XTO Energy Inc. 6401 N. Holiday Hill Rd. Midland, TX 79707

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation
The Tornado Combustion Technologies Inc. (TCTI) designed a high pressure gas assisted flare system for XTO
Energy Inc. Facilities designed on February 20, 2018 (TCTI Design Reference No.: TOR1017D Rev. 2).

The flare has a 14-inch outer diameter tip, with a set of twelve (12) high pressure gas assisted injection nozzles for facility emergency relieving cases and heater treater off gas. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 145-feet tall. To date TCTI has provided twenty-nine (29) flares of this design to XTO Energy Inc. Facilities, under the following job numbers:

•	141	44/	164	70;
---	-----	-----	-----	-----

- 14184/16523;
- 14203/16519;
- 14204/16520;
- 14205/16521;
- 14330/16628;
- 14464/16785;
- 14490/16805;
- 14530/16847;
- 14532/16849;

- 14549/16867;
- 14550/16868:
- 14551/16869;
- 14555/16885;
- 14571/16890;
- 14572/16891;
- 14586/16928:
- 14587/16929;
- 14588/16930;14634/16977;

- 14643/16987;
- 14652/16992:
- 14707/17042;
- 14708/17043;
- 14709/17044;
- 14710/17045:
- 14711/17046:
- 14743/17099;
- 14766/17129.

This flare design is intended to operate such that:

- i) The maximum emergency flow rate does not exceed a maximum flow rate of 60,000,000 SCFD, and a maximum net heat release of 3,572,833,240.71 BTU/h; and,
- ii) The maximum continuous flowrate from the heater treater of 2,000,000 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of 219,758,943.81 BTU/h.

For more detailed information please refer to the design datasheets of the flare stack.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

TOR1017DR2-145FT.

Thus either the above provided TCTI job numbers or above model number can be used to relate back to this design and the intended operating parameters of the flare system design.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

- The calculated 40 CFR 60.18 maximum exit velocity for the flare is 400 ft/s, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the flare as determined by paragraph (f)(4) in 40 CFR 60.18, is cases respectfully 671.88 ft/s for the emergency relief case and 28.60 ft/s for the heater treater off gas case. Where the flare's exit velocity is greater than the requirements of 40 CFR 60.18, the flare is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as this case has been presented as an emergency case that is not representative of the flare's performance. The remaining case is in compliance with the requirements defined in 40 CFR 60.18, which respect to the maximum exit velocity;
- The calculated lower heating value of the waste gas for the flare is 1,413.84 BTU/SCF and 1,986.95 BTU/SCF for the emergency relief and heater treater off gas cases respectfully. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for a non-assisted flare, as the heating value of the waste gas is greater than 200 BTU/SCF;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;

With both flares being designed to operate as described above the Tornado Combustion Technologies Inc. flare system has been designed to operate in compliance with 40 CFR 60.18. As per EPA studies EPA-600/2-83-052, EPA-600/2-86-080, and EPA-600/2-85-106 meeting the criteria of 40 CFR 60.18 will attain a minimum Destruction Removal Efficiency (DRE) of 98% for hydrocarbon compounds.

XTO Energy has advised that the site under consideration does not need to meet the requirements of 40 CFR 60 Subpart OOOO and only the general requirements must be adhered.

Regards,

Permit Number: P10806
Date: 2019-06-27

Brian Herrler, P.Eng
Combustion Engineering
Tornado Combustion Technologies Inc.
200 – 261200 Wagon Wheel Way
Municipal District of Rocky View, Alberta
T4A 0E3

Phone: (403) 244-3333 Mobile: (403) 669-3400

Email: bherrler@tornadotech.com

Cc:(4) Gene Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Cliff Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Bryce Thomas, Flare Manager, Tornado Combustion Technologies Inc; Ian Burge, Combustion Engineering, Tornado Combustion Technologies Inc.

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source)b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

For flares subject to Chapter 115, Subchapter H, relating to highly reactive volatile organic compounds, flow rate and composition data required by 30 TAC 115.725–26 should be used to determine emissions for any portions of 2009 that HRVOC monitors were installed and operational.

In the absence of monitoring data, selection of the most accurate method may sometimes require exercising scientific judgment. For example, when using the results of a one-time performance test, the test conditions should be compared to the flare's actual operating conditions during the inventory year to determine whether the test accurately represents the flare's performance. If test conditions do not accurately model flare operation, then engineering determinations based on detailed process evaluation may provide the best data.

NO_x and CO Emissions

To calculate NO_x and CO emissions, the net heating value of the flared gas must be known. Using the actual short-term flared gas composition and flow rate data for the inventory year, calculate the net heating value of the flared gas and the total heat release for each short time period. Use these total heat release data, in conjunction with the appropriate emission factors from TCEQ Air Permits guidance, to determine NO_x and CO emissions for each time segment. Since the calculated net heating value of the gas and the assist gas type will determine the appropriate emission factors, carefully select the correct factors for each flare from Table A-6.

Calculate emissions using the most accurate data for the gas flow rate and composition available. (See "Flared Gas Flow Rate and Composition" earlier in this supplement for more information on preferred data.)

Table A-6. TCEQ Air Permits Flare Emission Factors

Contaminant	Assist Type	Waste Gas Stream Net Heating Value ^{a,b}	Emission Factor
NO _x	Steam	High Btu	0.0485 lb/MMBtu
		Low Btu	0.068 lb/MMBtu
	Air or	High Btu	0.138 lb/MMBtu
	Unassisted	Low Btu	0.0641 lb/MMBtu
CO	Steam	High Btu	0.3503 lb/MMBtu
		Low Btu	0.3465 lb/MMBtu
	Air or	High Btu	0.2755 lb/MMBtu
	Unassisted	Low Btu	0.5496 lb/MMBtu

^a High Btu: > 1000 Btu/scf

^b Low Btu: 192–1000 Btu/scf

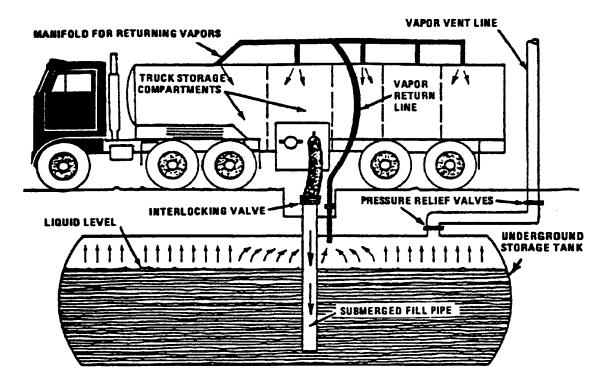


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks passing the NSPS-level annual test (3 inches pressure change) A collection efficiency of 70 percent should be assumed for trucks not passing one of these annual leak tests⁶.

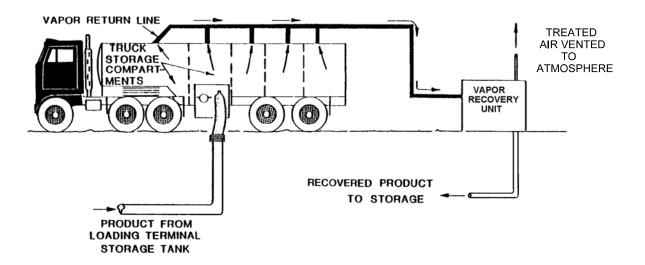


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L_I) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal Gasoline Reid vapor pressure (RVP) is 9 psia Product temperature is 80°F Vapor recovery efficiency is 95 percent Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

S = saturation factor (see Table 5.2-1) - 1.00P = true vapor pressure of gasoline = 6.6 psia M = molecular weight of gasoline vapors = 66 T = temperature of gasoline = 540°R

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_{L} = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb/} 10^{3} \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal}) (8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds (lb)}$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations. These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons (lb/10³ gal).

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO_2^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
$\mathrm{SO_2}^\mathrm{d}$	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D	
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е	
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е	
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е	
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е	
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е	
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е	
71-43-2	Benzene ^b	2.1E-03	В	
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е	
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е	
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е	
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е	
106-97-8	Butane	2.1E+00	Е	
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е	
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	E	
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е	
74-84-0	Ethane	3.1E+00	E	
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е	
86-73-7	Fluorene ^{b,c}	2.8E-06	E	
50-00-0	Formaldehyde ^b	7.5E-02	В	
110-54-3	Hexane ^b	1.8E+00	Е	
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е	
91-20-3	Naphthalene ^b	6.1E-04	Е	
109-66-0	Pentane	2.6E+00	Е	
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D	

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
74-98-6	Propane	1.6E+00	Е	
129-00-0	Pyrene ^{b, c}	5.0E-06	E	
108-88-3	Toluene ^b	3.4E-03	С	

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

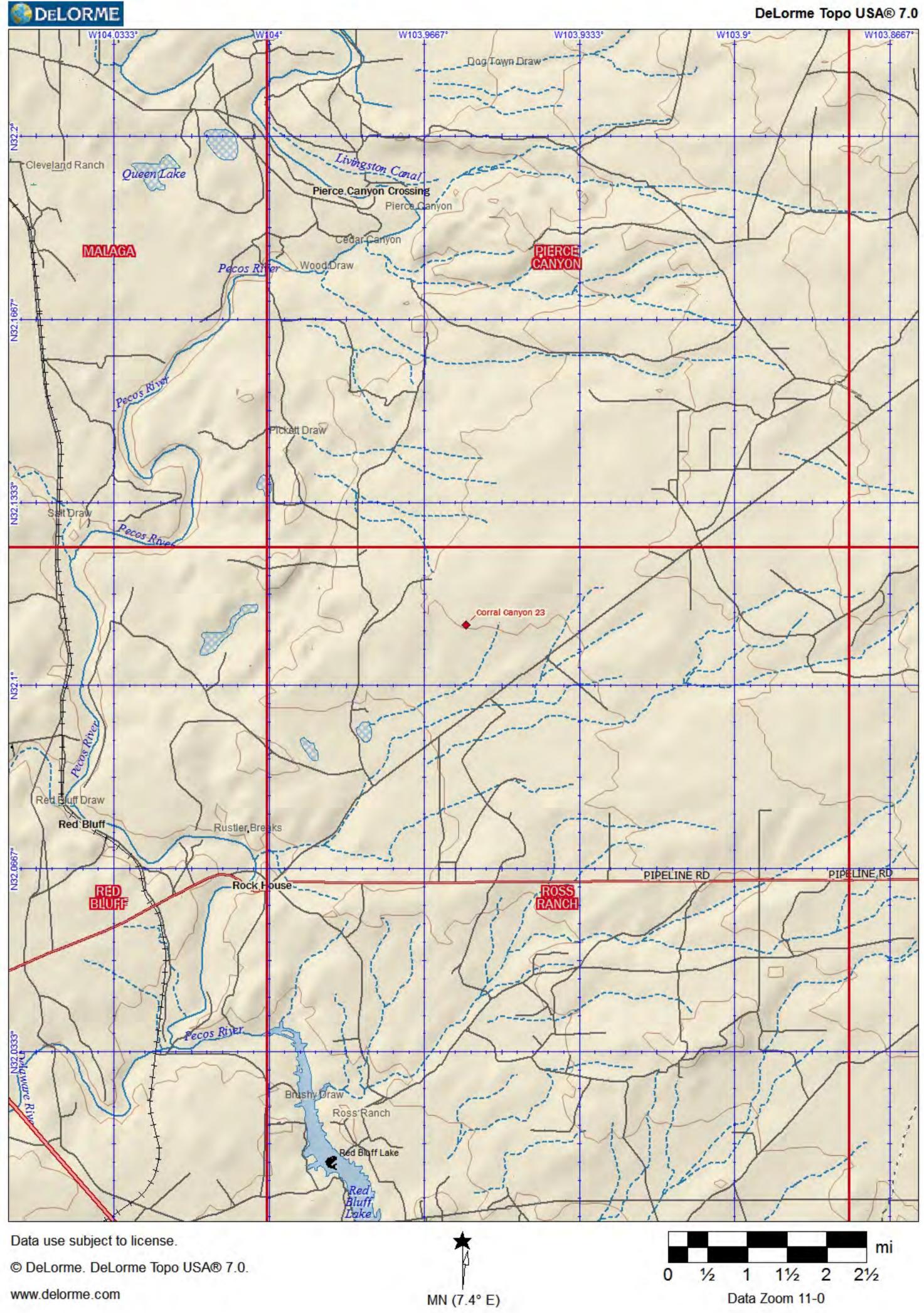
^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

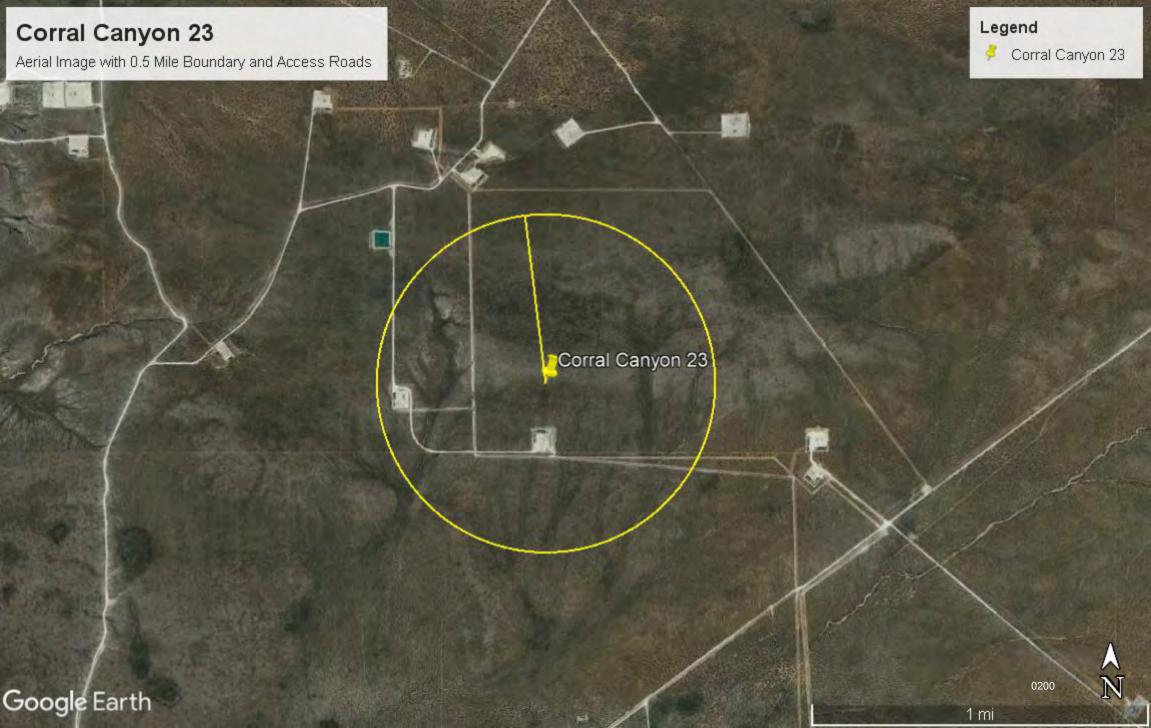
^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Section 7 Maps

Section 7

February 2020: Revision 0


Map(s)


<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

A site location map and an aerial illustrating access roads and a 0.5 mile boundary are attached.

Form Revision: 10 December 2019 Printed: 2/22/2020

Section 8 Applicable State and Federal Regulations

Section 8A

Applicable State & Federal Regulations

<u>Provide a discussion demonstrating compliance with each applicable state & federal regulation</u>. All input cells should be filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	Yes	This applies to all sites.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide, and Nitrogen Dioxide.	Facility	Yes	This applies to all sites.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	Yes	This applies to all sites.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	Use the regulation link (left) then cut & paste applicable sections.	OT1- OT6	Yes	The site is subject to 20.2.38.109 since the capacity is > 20,000 gallons. Liquids are pumped into the tanks below liquid level and a VRU/flare vent system is used to control tank emissions.
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	HPF, LPF, HT1- HT2	Yes	These units are fuel burning equipment.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	NOI: 20.2.73.200 NMAC applies to all facilities emitting over 10 TPY of any regulated air contaminate. Thus, permitted facilities are also subject to this rule. This GCP-O&G registration also serves the purpose of meeting 20.2.73 the NMAC notification requirements.) Emissions Inventory: 20.2.73.300.A(1) NMAC applies to facilities registering under the GCP. Emission Inventory reporting is required upon request by the department per 20.2.73.300.B(4) NMAC.	Facility	Yes	Under 20.2.73.300.B(4) NMAC, the NMED is requesting emissions inventory reporting from minor sources for calendar year 2020.

Form Revision: 10 December 2019 Printed: 2/22/2020

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended on the date of certification.	FUG	Yes	See discussion in Federal regulations.
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended on the date of certification.		No	The facility does not fit into any of the source categories.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended on the date of certification.	N/A	No	The facility does not fit into any of the source categories.

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 50	NAAQS	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	Facility	Yes	Compliance with the requirements of the GCP indicates compliance with NAAQS.
40 CFR 60, Subpart A	General Provisions	Applies if any other NSPS subpart applies.	FUG	Yes	See discussion below.
40 CFR 60, Subpart OOOO	Crude Oil and Natural Gas Production, Transmission and Distribution After August 23, 2011, and on or before September 18, 2015		N/A	No	This facility will be constructed after the applicability date of NSPS OOOO. See NSPS OOOOa.
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5385a): controllers (60.5390a); storage vessels (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	FUG	Yes	The oil and water storage tanks were constructed after the applicability date of the rule; however emissions are limited by permit to less than 6 tpy. The tanks are exempt per 60.5365a(e) The site does not use high bleed pneumatic controllers. Since the compressors on the VRU are servicing the well, they are exempt per 60.5365a(c)). Fugitive leaks will be subject to NSPS OOOOa per 60.5365a(i).
40 CFR 60, Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	N/A	No	The facility does not operate any affected sources.
40 CFR 60, Subpart JJJJ	CFR 60, Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines See 40 CFR 60.4 through 5 to dete applicable category engine size, fuel of manufacture.		N/A	No	The facility does not operate any affected sources.

Form Revision: 10 December 2019

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 63, Subpart A	General Provisions	Applies if any other subpart applies.	N/A	No	The facility does not operate any affected sources.
40 CFR 63, Subpart HH	NESHAP for Glycol Dehydrators	See 40 CFR 63, Subpart HH	N/A	No	The facility does not operate any affected sources.
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	N/A	No	The facility does not operate any affected sources.

Form Revision: 10 December 2019 Printed: 2/22/2020

Section 8B Compliance Test History

To evaluate the requirement for compliance tests, you must submit a compliance test history. The table below provides an example.

Since this is a proposed facility, no testing has been conducted.

Form Revision: 10 December 2019 Printed: 2/22/2020

Section 9 Proof of Public Notice

Religion

For whoever needs to hear this: Luke 12:32

I don't know exactly who needs to hear this. But, for those of you who do, this is for you.

Fear has no place in the Christ follower's world. Fear only brings discouragement, failure and anxiety.

I am talking about the kind of fear that paralyzes one from acting in good faith. I have often struggled to make some hard decisions or say some honest things to people out of fear. I don't want them to think I am self-righteous, or judgmental, or overly critical. I worry about their perception of me, and I lack the faith to actually step in when someone I know needs a compassionate hand and the truth of God's sovereignty.

As some of you know, this world is a broken place. Politicians lie and cheat to secure power. Nations war with each other over issues of race and religion. They don't just work through their differences with love and understanding, they kill each other and murder innocent bystanders. Sicknesses take the lives of our most precious, delicate little ones. The elderly are cheated and defrauded by scam artists who prey on the trust of senior adults.

This world is broken. relationships outside

Marriages fail because men and women selfishly pursue their covenant agreements. Children are abused by adults who have

Pastor's Corner

By Ty Houghtaling

never discovered the hope found in a loving Heavenly Father. When there is no hope for ever finding anything but brokenness, people will surrender themselves over to their sin nature.

Let's be honest – we become self-absorbed, self-centered and

self-destructive. We will let worry and fear consume us. We become callous to the needs of others. We spend gross amounts of time focusing on all the things we don't have while neglecting and destroying the things we do have. We want but we do not

lose because we don't fight the good fight.

Yet God, in His wisdom, still calls to us and speaks softly to our hearts. He invites us to call upon Him for all our needs. He calls us to trust Him, to have faith in Him, to join Him in the only effort that will touch eternity. He calls you and me.

You might be pretty special, but I am not. Yet, He calls me to join Him. And when I do join Him, I find great satisfaction. My eyes lift up. My heart finds peace. I experience real joy, not circumstantial happiness. When I join God, fear is driven from

In the Gospel of Luke, Jesus him at ty@fbcartesia.org.)

have, we fight but we ultimately tells the listening crowds, "Do not be afraid, little flock, for your Father has been pleased to give you the kingdom" (Luke 12:32 NIV). I am so blessed by that promise. I know that no matter what happens in this broken world, I have been given the Kingdom of God. That makes me a little less worried and a whole lot more excited about what God is going to do through me and my church.

> I don't know who needed to hear this; but listen, God loves you and His love drives out fear. (EDITOR'S NOTE:

Houghtaling is the lead pastor at First Baptist Church. Contact

Does your church have an upcoming event the public should know about? Email editor@artesianews.com

No retirement from serving God

Years ago when I was working with Marvin Clack, BMA of Texas missionary, starting a church mission on Cedar Creek Lake in Gun Barrel City, Texas, we went to visit a family that had moved into the area that our mission church was located.

We were told about this family by their former pastor from the community they had left to move to the Cedar Creek Lake area. We had a real cordial visit until we began talking about them coming to help in the work at the mission. At that point the husband said, "Brother Clack, we were real active in the church we left, but we have retired and we aren't going get involved like that again.'

I thought as we left, "Who told them that they could retire from serving God?" In the book of Joshua we have a man that may have had a reason to retire. He was eighty-five years old and had served God for more than forty-five years. Yet, he was not ready for retirement. His name was Caleb, and you will find his story in Joshua chapter fourteen (14:6-15).

Those that don't retire from serving God remember all the experiences of faith they have had in the past. Like Caleb they remember how faithfully they

Pastor's Corner

By Rick Smith

retiring. You are just continuing your rebellion into your old age. But if you have been serving the Lord then you know what I

You remember both your victories and defeats in serving the Lord. You remember all that you learned and experienced. They also remember God's promises (v. 9). They know the Lord keeps His promises and they look forward to receiving all that God has for them. The they remember God's blessings, both past and present, (v. 10). They have learned through experience that God can and will use them if they will only submit to obey Him. Don't just look back and remember when. What you did in the past you can do now. Put yourself in the path of faithful obedience and expect God to use you.

Unlike Caleb, your physical served God (Joshua 14:7-8). strength may have declined, but (v. 12). Don't sit around letting If you have not been serving you now have more spiritual George, whoever George is, do the Lord in the past, your not strength than when you started it. Jesus said, "Follow Me...".

(v. 11). Within the physical limitations that you have there are things that you can do that younger believers don't have the experience to do. You know more scripture than they do. In fact, you know more scripture than you obey. Give your physical weaknesses to God and He will make you strong.

The Lord told Paul, "My grace is sufficient for thee: for my strength is made perfect in weakness (2 Corinthians 12:9)." God can use your weakness as an opening to share the gospel with those that are trying to help you. You can be a witness to the doctors and nurses that minister to you physical infirmities. God can use your weaknesses to bring others to Christ. Don't retire. Instead let God use you until He calls you home.

a mountain and get into the battle calvarymissionarybaptistartesia.

He didn't say follow me until 60 or 70 or 85. Pick up your sword and fight until the battle is won or they carry you off the field dead on your shield. Paul said, "I have fought the good fight, I have finished the race, I have kept the faith (2 Timothy 4:7)." This is not the time to quit and retire, but to finish well for the Lord. "...who knoweth whether thou art come to the kingdom for such a time as this? (Esther 4:14)." God may have reserved you just for this time in your life for greater service. Gratefully and willingly call on God to use you for great things at this time in your life.

Don't make excuses. Give your life to be used by the Lord until the Father calls you home. As He has used you in the past, the Lord wants to use you now and in the future. Ask for the mountain and the Lord will give you the strength to win it. What is the mountain that God wants you to claim? Pray, trust God, and fight for it.

If you have any questions, we invite you to visit with us this Sunday. Bible study is at 9:45 a.m. and worship at 10:50 a.m. We are located at 711 W. Washington Ave. Visit Like Caleb you need to ask for online at www.facebook.com/

(EDITOR'S NOTE: Rick Smith is the pastor at Calvary Baptist Church.)

Legal Notice

NOTICE

XTO Energy Inc. announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas) for the facilities listed below. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is January 23, 2020. This notice is a requirement according to New Mexico air quality regulations. The names, county, exact initial location, direction and approximate mileage of nearby city for the facilities are listed below. The standard operating schedule of this facility will be

Facility	UTM Zone	UTM Easting	UTM Northing	County	Direction	Miles	City
Poker Lake Unit 17 Twin Wells Ranch West Tank Battery	13	612707	3563902	Eddy	E	16	Malaga
Poker Lake Unit 30 Big Sinks West Tank Battery	13	611218	3552581	Eddy	SE	17	Malaga
Big Eddy Unit DI 5 Tank Battery	13	607478	3601404	Eddy	NE	23	Carlsbad
Big Eddy Unit DI 38 Tank Battery	13	595853	3582266	Eddy	NE	9	Loving
Corral Canyon 23 Tank Battery	13	598284	3553224	Eddy	SE	10	Malaga
James Ranch Unit DI 7 Tank Battery	13	611463	3578497	Eddy	E	17	Loving
Poker Lake Unit Big Sinks 2-25-30 Tank Battery	13	608494	3558022	Eddy	SE	14	Malaga
Poker Lake Unit 423 Tank Battery	13	602371	3553461	Eddy	SE	12	Malaga
Poker Lake Unit 26 Brushy Draw West Tank Battery	13	607857	3552568	Eddy	SE	15	Malaga
Ross Draw 25 Central Tank Battery	13	599903	3543069	Eddv	S	16	Malaga

Air emissions of any regulated air contaminant will be less than or equal to:

All Cli	All chilosophis of any regulated an contaminant win be less than of equal to.					
		Tons per year (TPY)				
1.	Nitrogen Oxides (NOx)	95				
2.	Carbon Monoxide (CO)	95				
3.	Volatile Organic Compounds (VOC) (stack)	95				
4.	Particulate Matter (PM10)	25				
5.	Particulate Matter (PM2.5)	25				
6.	Sulfur Dioxide (SO2)	95				
7.	Hydrogen Sulfide (H2S)	25				
8.	Any one (1) Hazardous Air Pollutant (HAP)	<10				
9.	Sum of all Hazardous Air Pollutants (HAPs)	< 25				

The owner and/or operator of the Plant is:

XTO Energy Inc.; 22777 Springwoods Village Pkwy, W4.6B.344; Spring, TX 77389

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

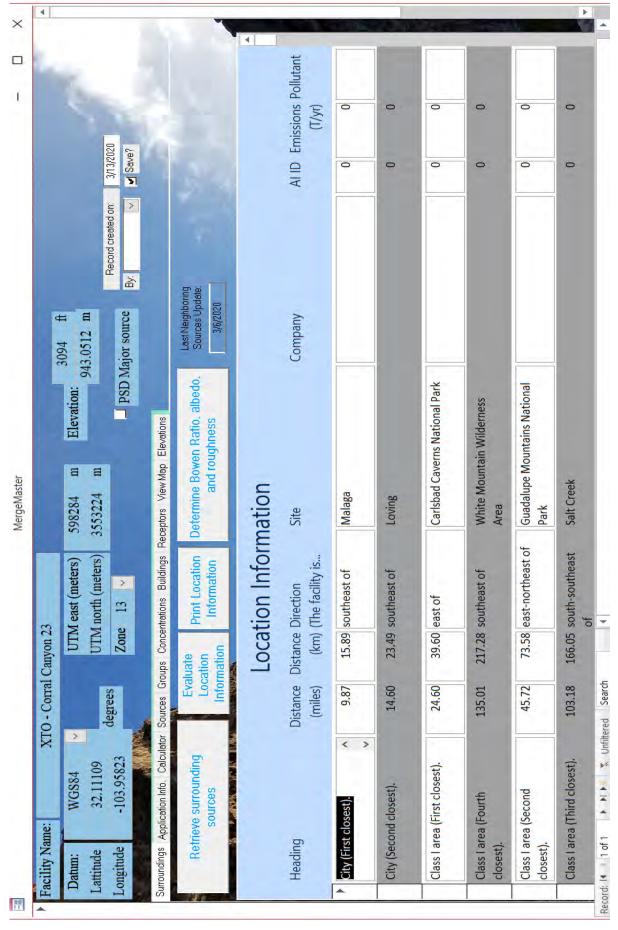
Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

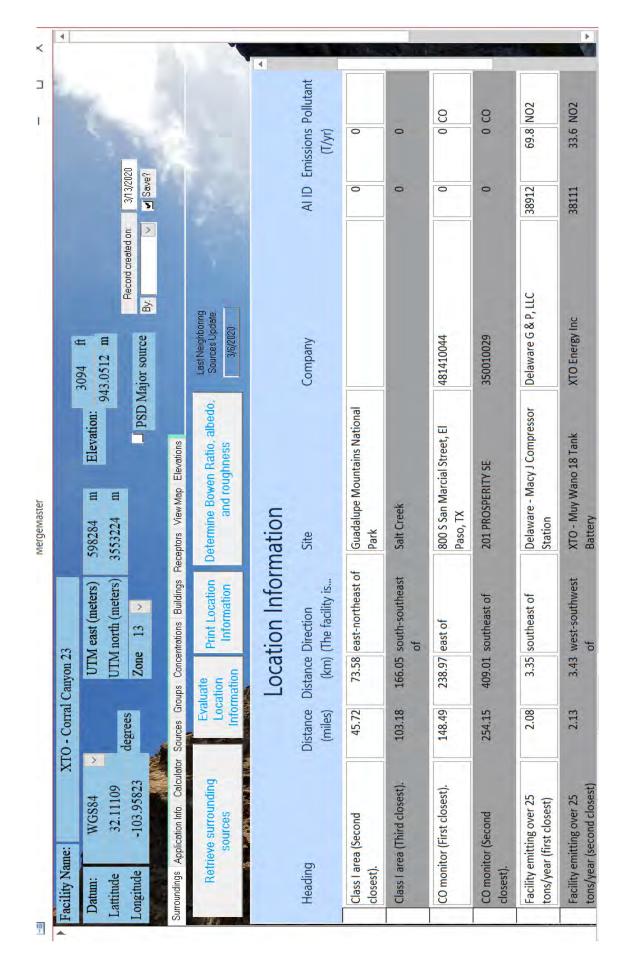
Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Section 9 Proof of Public Notice

General Posting of Notice	Coranlaryon 23
(DATE), I posted a true and correct copy of	the attached Public Notice in a publicly accessible and public road, at the entrance of the property on which the
Signed this 33 day of January	ny , 2020.
Signature Min	1-23-2020.
	SOFETY ENVIRONMENTAL JOANT OR RELATIONSHIP TO APPLICANT
Printed Name Title {APPL	ICANT OR RELATIONSHIP TO APPLICANT)
circulation in the applicable cou	I newspaper advertisement posted in a newspaper in general nty is attached. The original or copy of the advertisement date and newspaper or publication title.
	OR
stating that the advertisement wa	r or publication in general circulation in the applicable county as published is attached. The affidavit includes the date of the la legible photocopy of the entire ad.
Evan Julios	2/21/20
Signature	Date
Evan Tullos - Vice President - Consulta	
Printed Name Title (ADDI	ICANT OF DELATIONSHIP TO ADDITION TO




Section 10 Certification

Section 10 Certification

Company Name: PEI on behalf of XTO Energy Inc. I, Evan Tullos, hereby certify that the information and data submitted in this Registration are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this 24th day of February, 2020, upon my oath or affirmation, before a notary of the State of Illinois. *Signature Evan Tullos Vice President Title Printed Name Scribed and sworn before me on this day of February My authorization as a notary of the State of Illinois expires on the Z day of August . 2020 Notary's Signature Mark Reed MARK L. REED OFFICIAL SEAL Notary Public, State of Illinois My Commission Expires August 02, 2020 Notary's Printed Name

Form Revision: 10 December 2019

			Group Comments	3 Small heater, no minimum stack parameters.		3 Small heater, no minimum stack parameters.				1		0	
	Clear Facility	Import Facility	Temperature (deg. F)	1000	0	1000	0	0	0	0	0	0	0
019			Velocity (ft/s)	31.5	0	31.5	0	0	0	0	0	0	0
nber 25, 2(Calculate	Export Facility	Diameter (ft)	1	0	1	0	0	0	0	0	0	0
n: Nover			Height (ft)	20	0	20	0	145	9.9	40	9.9	0	0
Program version: November 25, 2019	Diameter 1.414214	Set flare NOX emission rate to 0. Set SO2 emission rate to 0 for all equipment but flares and ECD's.	SO2 Rate (lb/hr)	0 Actual	Minimum	0 Actual	Minimum	0 Actual	Minimum	0 Actual	Minimum	0 Actual	Minimum
ulator	Equivalent Di	et flare NO) et SO2 emi quipment bu		0.56		0.56		0		0		0	
Salcı		\(\text{\text{\$\tilde{\tilde{\text{\$\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\text{\$\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\text{\$\tilde{\text{\$\tilde{\text{\$\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\tan}}\$\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\text{\$\tilde{\tilde{\text{\$\tilde{\tilde{\tilde{\text{\$\tilde{\t	t Type N	>		>		>		>		>	
tack (1.12	0	Equipment Type NOX Rate (Ib/hr)	Heater		Heater		Flare		Flare			
GCP Oil & Gas Stack Calculator	NOX Total emission rate	Group 2 NOX emission rate SO2 total emission rate	Equipment ID Equipment Name	▶ 1 HT-1		2 HT-2		3 HPF		4 LPF		*	

March 11, 2020

BY ELECTRONIC MAIL

Olivia Yiu, Asheley Coriz, Marvin Mascarenas, Joseph Kimbrell, Joseph Mashburn, Arianna Espinoza, Kathleen Primm, Vanessa Springer New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Olivia.yiu@state.nm.us, marvin.mascarenas@state.nm.us, Joseph.kimbrell@state.nm.us, joseph.mashburn@state.nm.us, Arianna.espinoza@state.nm.us, kathleen.primm@state.nm.us, Vanessa.springer@state.nm.us

Re: Comments on Applications for General Construction Permits for Oil and Gas Facilities, **Concerns Over Approval of General Permits in Southeast New Mexico**

Dear New Mexico Air Quality Bureau Contacts:

WildEarth Guardians submits the following comments in response to several applications for general construction permits for oil and gas facilities in southeast New Mexico for which you have been identified as New Mexico Environment Department ("NMED") contacts.

In light of ongoing violations of the 8-hour ozone national ambient air quality standards ("NAAQS") in Eddy and Lea Counties, the New Mexico Environment Department ("NMED") is no longer permitted to allow oil and gas companies to obtain general permits for their operations. In light of this, NMED must reject the following registrations for general construction permits and must immediately halt the issuance of any further general construction permits for oil and gas facilities in Eddy and Lea Counties.

301 N. Guadalupe St., Suite 201

Santa Fe, NM 87501

505-988-9126

wildearthguardians.org

SANTA FE

Our comments are specific to the following applications for general construction permits submitted for oil and gas facilities located in Eddy or Lea Counties:

Company	Facility(ies)	NSR Permit No.	Date Application Received
DCP Operating Company LP	West Turkey Track Compressor Station	2098M5	March 4, 2020
DCP Operating Company LP	Jackson Booster Station	2041M6	March 4, 2020
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020
OXY USA Inc.	NC Sand Dunes Compressor Station	8744	March 3, 2020
EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020
Lucid Energy Delaware LLC	Greyhound Compressor Station	8084M2	March 2, 2020
Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8737	March 2, 2020
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020
Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020
Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020
Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M1	February 27, 2020
Spur Energy Partners LLC	Dorami 2H, 4H and 9H Federal Oil Tank Battery	8733	February 27, 2020
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020

At issue is the fact that ozone monitors in southeast New Mexico are currently violating the ozone NAAQS. At this point, all three ozone monitors in both Eddy and Lea Counties are in nonattainment, with 2017-2019 design values all above the 2015 NAAQS of 0.070 parts per million. What's more, these monitoring sites have recorded regular exceedances of the 2015 8-hour ozone NAAQS since 2015. The tables below show the annual first, second, third, and fourth maximum 8-hour ozone readings at the three monitors in Lea and Eddy Counties between 2015 and 2019.

Hobbs, NM 8-Hour Ozone Readings (in ppm), 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.070	0.069	0.080	0.083	0.082
2 nd Max.	0.069	0.066	0.074	0.078	0.075
3 rd Max.	0.069	0.065	0.072	0.077	0.073
4 th Max.	0.067	0.065	0.069	0.076	0.070
Number of Days	0	0	3	6	3
Above NAAQS	U	U	3	U	3

Carlsbad, NM 8-Hour Ozone Readings (in ppm), 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.069	0.065	0.082	0.096	0.095
2 nd Max.	0.068	0.064	0.078	0.095	0.092
3 rd Max.	0.067	0.064	0.077	0.091	0.084
4 th Max.	0.067	0.063	0.076	0.083	0.080
Number of Days Above NAAQS	0	0	10	18	19

Carlsbad Caverns National Park 8-Hour Ozone Readings, 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.068	0.070	0.069	0.099	0.082
2 nd Max.	0.068	0.069	0.065	0.081	0.080
3 rd Max.	0.065	0.069	0.065	0.080	0.078
4 th Max.	0.065	0.069	0.065	0.080	0.074
Number of Days Above NAAQS	0	0	0	10	6

A violation of the 8-hour ozone NAAQS is triggered when the three-year average of the annual fourth highest daily reading exceeds the NAAQS. *See* 40 C.F.R. § 50.19(b). This three-year average value is commonly referred to as the "design value." Based on this monitoring data, all three ozone monitors are in violation of the NAAQS, with the design value at the Carlsbad monitor even violating the ozone NAAQS adopted in 2008, which limited 8-hour concentrations to no more than 0.075 parts per million. The table below shows that the design values at the Lea and Eddy County monitors have increased over the last five years and that currently, all three monitors are violating the ozone NAAQS.

8-Hour Ozone Design Values for Lea and Eddy County, New Mexico Monitoring Sites

	Monitor ID	2015-	2016-	2017-
Monitor		2017	2018	2019
ivionitor		Design	Design	Design
		Value	Value	Value
Hobbs	350250008	0.067	0.070	0.071
Carlsbad	350151005	0.068	0.074	0.079
Carlsbad	350150010	0.066	0.071	0.073
Caverns	330130010	0.000	0.071	0.073

Under NMED's regulations, a general construction permit cannot be approved if it would "cause or contribute to air contaminant levels in excess of any national or New Mexico ambient air quality standard." 20.2.72.220(A)(2)(c) NMAC. To this end, a source may only register for an oil and gas general construction permit if it can demonstrate compliance with the NAAQS. Indeed, the registration forms for general construction permits for oil and gas facilities requires operators to demonstrate compliance with the NAAQS. Furthermore, NMED

can only approve a general construction permit if it determines that "all facilities registered [] will not cause or contribute to air contaminant levels in excess of any national [] ambient air quality standard." See e.g. NMED, "Air Quality Bureau General Construction Permit for Oil and Gas Facilities, GCP-Oil and Gas" at Condition B100.

In light of current ozone levels in Eddy and Lea Counties, there is no possible way for NMED or sources to conclude that construction and operation of new oil and gas facilities would not cause or contribute to violations of the ozone NAAQS. Every general construction permit registration would authorize increases in nitrogen oxides ("NOx") and volatile organic compounds ("VOCs")—both gases that react with sunlight to form ozone. The general construction permit applications for each facility listed above anticipate increases of up to 95 tons/year for both VOCs and NOx for each source. This means that every source seeking general construction permits will cause or contribute to ozone violations in Eddy and Lea Counties by increasing overall ozone-forming pollution in the region at a time when ozone levels are in violation of the NAAQS.

Given this, there is currently no legal justification for oil and gas sources to qualify for registration for general permits in Eddy and Lea Counties. Accordingly, NMED cannot approve the aforementioned applications for general construction permits, as well as any additional general construction permits, unless and until the ozone NAAQS are attained in Eddy and Lea Counties.

If NMED continues to approve general construction permits for oil and gas facilities in southeast New Mexico, then it will indicate the state implementation plan ("SIP") is inadequate to attain and maintain compliance with the NAAQS and will jeopardize the state's ability to continue implementing its air quality regulatory program under the Clean Air Act.

Thank you for the opportunity to provide these comments.

Sincerely,

Jeremy Nichols

Climate and Energy Program Director

WildEarth Guardians

(303) 437-7663

jnichols@wildearthguardians.org

MICHELLE LUJAN GRISHAM
GOVERNOR

HOWIE C. MORALES
LT. GOVERNOR

New Mexico Environment Department

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JAMES C. KENNEY
CABINET SECRETARY

JENNIFER J. PRUETT
DEPUTY SECRETARY

March 27, 2020

Return Receipt Requested

Raymond Tole Engineer XTO Energy Inc 22777 Springwood Village Parkway W4.6B.344 Spring, TX 77389

Air Quality General Permit GCP-0&G 8729 Agency Interest No. 39444 - PRN20200001 XTO- Corral Canyon 23 AIRS No. 350152320

Dear Mr. Tole:

This letter is in response to your air quality General Construction Permit - Oil & Gas (GCP-O&G) application dated February 24, 2020 for an oil and gas facility in New Mexico. The application was received by the Department on February 26, 2020.

A review has been completed and the information provided is sufficient to issue your permit in accordance with 20.2.72.220 NMAC and the GCP-O&G conditions. Construction or modification may commence 10.2 mi SE of Malaga in Eddy County at latitude and longitude decimal degrees: 32.111087, -103.958233, as represented in the application.

Attached is a copy of your permit registration and the GCP-O&G Permit. The GCP-O&G Permit includes the terms and conditions for operation as well as emission and compliance requirements.

Pursuant to 20.2.75.11 NMAC, the Department will assess an annual fee for this facility. This regulation set the fee amount at \$1,500 through 2004 and requires it to be adjusted annually for the Consumer Price Index on January 1. The current fee amount is available by contacting the Department or can be found on the Department's website. The AQB will invoice the permittee for the annual fee amount at the beginning of each calendar year. This fee does not apply to sources which are assessed an annual fee in accordance with 20.2.71 NMAC. For sources that satisfy the definition of "small business" in subsection F of 20.2.75.7 NMAC, this annual fee will be divided by two.

All fees shall be remitted in the form of a corporate check, certified check, or money order made payable to the "NM Environment Department, AQB" mailed to the address shown on the invoice and shall be accompanied by the remittance slip attached to the invoice. If there is no invoice included, there is no fee balance due at this time.

XTO Energy Inc Corral Canyon 23 GCP-O&G 8729 March 27, 2020

Page 2 of 2

If you have any questions, please contact me in Santa Fe at 505-476-4367.

Sincerely,

Arianna

Digitally signed by Arianna Espinoza Espinoza Date: 2020.03.27 09:30:33 -06'00'

Arianna Espinoza Air Permit Specialist **Permits Section** Air Quality Bureau

cc via email: Evan Tullos, PEI, etullos@pei-tx.com

Enclosure: Instructions to access the Industry/Consultant Feedback Questionnaire online.

Minor Source Emission Inventory in 2020

P.S. The NM Environment Department – Air Quality Bureau (Bureau) will conduct a Minor Source Emissions Inventory (per 20.2.73.300 NMAC) for calendar year 2020. This inventory will apply to all sources with air quality construction permits (20.2.72 NMAC), including General Construction Permits (GCPs). It will also apply to Notices of Intent (NOIs) sources (20.2.73 NMAC). Facility-wide emissions during the calendar year 2020 must be calculated and reported to the Bureau during the period of January 1 through April 1, 2021, using the online reporting tool specified by the Bureau.

We encourage you to sign up for the Minor Source Emissions Inventory bulletins at: https://public.govdelivery.com/accounts/NMED/subscriber/new to receive updates and guidance on the implementation of this requirement.

MICHELLE LUJAN GRISHAM GOVERNOR

HOWIE C. MORALES

LT. GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JAMES C. KENNEY
CABINET SECRETARY

JENNIFER J. PRUETT
DEPUTY SECRETARY

Statement of Basis/Data Base Summary GCP- Oil & Gas (O&G) Permit

Size SM>80

Permit Writer: Arianna Espinoza

GCP No. 8729

Agency Interest No. 39444 - PRN20200001

AIRS ID No. 350152320

SIC Code: 1311: Crude petroleum and natural gas
Facility Type: 0&G-Tank Battery/Bulk Fuel Storage

Company: XTO Energy Inc

Facility:XTO- Corral Canyon 23Type of Permit Action:GCP - Oil and GasRegistration Date:February 24, 2020Receive Date:February 26, 2020

Co. Pub Notice Date/Paper: January 23, 2020/ The Artesia Daily Press

Public Hearing: NA

Permit Due: March 27, 2020
Permit Issued: March 27, 2020

Facility Location: Drive S on US 285 for 12.5 mi. to L on Whitehorn Rd. Drive 2.4

mi. to L on Longhorn Rd. Drive 1.8 mi. to L on Pipeline Road 1. Drive 1.8 mi. to L on lease road. After 2.2 mi., go R at Y, then right at Y after 0.7 mi. Drive 0.3 mi. to R, then 0.5 mi. to new

access road on R

UTM Zone: 13

UTM Easting: 598280 meters
UTM Northing: 3553220 meters
Elevation: 3094 ft feet
County: Eddy

Contact Name: Raymond Tole

Phone: 832-624-4426

Email: raymond_tole@xtoenergy.com

Contact Address: 22777 Springwoods Village Parkway

W4.6B.344

Spring, TX 77389

Consultant Name: PEI

Phone: 865-850-2007 Email: etullos@pei-tx.com

Consultant Address: 5 Cardinal Court

Edwardsville, IL 62025

1.0 Registration Summary:

This application requests a GCP-O&G permit for a proposed facility under 20.2.72 NMAC. The Corral Canyon 23 is an oil and gas production battery, with an average well production of 20,000 BOPD, 60,000 BWPD, and 60.84 MMscfd. An additional 5,000 BOPD of dead oil may be transferred directly into the storage tanks from surrounding batteries. The site will consist of the following permitted equipment: WT1-WT6: Six (6) produced water tanks, OT1-OT6: Six (6) oil tanks, SKTK1-SKTK2: Two (2) water skim tanks, BC1-BC2: Two (2) electric booster compressors, FUG: Fugitive equipment leaks, HT1-HT2: Two (2) heater treaters, TL-O: Truck loading of oil, TL-W: Truck loading of water, ROAD: Haul road emissions, VRT: Vapor recovery tower, VRU1: Vapor recovery unit for VRT, VRU2: Vapor recovery unit for OT1-OT6, HPF: High pressure flare, and LPF: Low pressure flare.

2.0 Description of Modification:

NA

3.0 History (In descending chronological order)

Permit Number	Issue Date	Action Type	Description of Action (Changes)
8729	3/27/202 0	GCP O&G – New etc.	New GCP O&G Registration

<u>Public Response/Concerns:</u> The Climate and Energy Program Director from WildEarth Guardians, Jeremy Nichols, submitted a comment about this facility. This was provided to upper management, and permit writer was instructed to process the application as usual.

4.0 Facility Specifications:

Total Pollutant Emissions from Entire Facility (for information only, not an enforceable condition):

Pollutant	Emissions (tons per year)	Emission Type	Other
Particulate Matter (2.5 microns or less)	1.35	Allowable	
Nitrogen Dioxide	31.79	Allowable	
Particulate Matter (10 microns or less)	2.85	Allowable	
Volatile Organic Compounds (VOC)	103	Allowable	
Carbon Monoxide	57.79	Allowable	

Total HAPS* and NM TAPS that exceed 1.0 ton per year (for information only, not an enforceable condition):

Pollutant	Emissions (tons per year)	Emission Type	Other
Total HAP	4.28	Potential	
Benzene	1.25	Potential	
Hexane	2.5	Potential	

^{*} HAP emissions are already included in VOC emissions

Note: The Total HAPS may not match the sum of the individual HAPS in this table as it will include values from HAPS that are below 1.0 tpy.

Air Pollution Control Devices:

Subject Item ID, Type, ID, (Unit #)	SI Description	Primary	Secondary
OT1	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT7)			Unit
OT2	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT8)			Unit
OT3	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT9)			Unit
OT4	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT10)			Unit
OT5	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT11)			Unit
OT6	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT12)			Unit
SWTK1	Skim Tank, 1000 bbl	Flare	
(EQPT13)			
SWTK2	Skim Tank, 1000 bbl	Flare	
(EQPT14)			
TL-O	Truck Loading - Oil	Flare	
(EQPT3)			
WT1	Produced Water Tank, 750 bbl	Flare	
(EQPT15)			
WT2	Produced Water Tank, 750 bbl	Flare	
(EQPT16)			
WT3	Produced Water Tank, 750 bbl	Flare	
(EQPT17)			
WT4	Produced Water Tank, 750 bbl	Flare	
(EQPT18)			
WT5	Produced Water Tank, 750 bbl	Flare	
(EQPT19)			
WT6	Produced Water Tank, 750 bbl	Flare	
(EQPT20)			

Equipment Specifications (Active):

Unit No. Unit Type Manufacturer Model	o. Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
---------------------------------------	---------------	-----------------------	----------------------	-------------------------------	-----------------------------------	------------------------	-----------------------------

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
FUG RPNT1	Fugitives	NA	NA	NA			/	/	Active	Fugitives
HPF EQPT5	Process Flare	Tornado	TBD	TBD			/	60 MM SCF/d / 60 MM SCF/d	Active	High Pressure Flare
HT-1 EQPT1	Heater Treater/Stack Pak	TBD	TBD	TBD			/	4 MM BTU/h / 4 MM BTU/h	Active	Heater Treater
HT-2 EQPT2	Heater Treater/Stack Pak	TBD	TBD	TBD			/	4 MM BTU/h / 4 MM BTU/h	Active	Heater Treater
LPF EQPT6	Process Flare	Tornado	TBD	TBD			/	2 MM SCF/d / 2 MM SCF/d	Active	Low Pressure Flare
OT1 EQPT7	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 63874.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT2 EQPT8	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 63874.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT3 EQPT9	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 63874.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT4 EQPT10	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 63874.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT5 EQPT11	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 63874.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT6 EQPT12	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 63874.99 M gal/y	Active	Oil Storage Tank, 750 bbl

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
ROAD AREA1	Unpaved roads	NA	NA	NA			/	/	Active	Road Emissions
SWTK1 EQPT13	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	1000 bbl / 459904.95 M gal/y	Active	Skim Tank, 1000 bbl
SWTK2 EQPT14	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	1000 bbl / 459904.95 M gal/y	Active	Skim Tank, 1000 bbl
TL-O EQPT3	Loading/Unlo ading Rack	NA	NA	NA			/	1825000 bbl/y / 1825000 bbl/y	Active	Truck Loading - Oil
TL-W EQPT4	Loading/Unlo ading Rack	NA	NA	NA			/	1825000 bbl/y / 1825000 bbl/y	Active	Truck Loading - Water
WT1 EQPT15	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT2 EQPT16	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT3 EQPT17	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT4 EQPT18	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT5 EQPT19	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
WT6 EQPT20	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl

Emissions: Pollutant **Permitted** (Allowable) Emissions per piece of equipment or Subject Item as represented by applicant.

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	TSP (pph)	TSP (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H₂S (pph)	H ₂ S (tpy)
OT3 (EQPT9)																
OT4 (EQPT1 0)																
SWTK1 (EQPT1 3)																
FUG (RPNT1)					2.44	10.69										
HT-1 (EQPT1)	0.56	2.45	0.47	2.06	0.03	0.13		0.01			0.04	0.19	0.04	0.19		
OT2 (EQPT8)																
OT5 (EQPT1 1)																
WT5 (EQPT1 9)																

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	TSP (pph)	TSP (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H₂S (pph)	H ₂ S (tpy)
WT6									,							
(EQPT2 0)																
WT2																
(EQPT1 6)																
TL-W						0.01										
(EQPT4)																
WT1 (EQPT1 5)																
HT-2 (EQPT2)	0.56	2.45	0.47	2.06	0.03	0.13		0.01			0.04	0.19	0.04	0.19		
LPF	3.2	12.19	6.37	24.36	9.23	54.48										
(EQPT6)																
ОТ6																
(EQPT1 2)																
WT3																
(EQPT1 7)																
WT4																
(EQPT1 8)																
TL-O					0.77	2.92										1
(EQPT3)																
HPF		14.69		29.33		34.62						0.49		0.49		
(EQPT5)																

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	TSP (pph)	TSP (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H₂S (pph)	H₂S (tpy)
ROAD											0.48	1.67	0.05	0.17		
(AREA1																
)																
OT1																
(EQPT7)																
SWTK2																
(EQPT1 4)																

¹ Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO₂

5.0 <u>Compliance Testing:</u> That may apply.

Unit(s)	Compliance Test	Timeline
Engine(s) or Turbine(s) > 180 hp Exemption: Existing units that have been tested within the last five (5) years are not required to perform an initial compliance test.	Initial Compliance Test Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit. A test may be waived by the Department if the test is not required under a NMAC, NSPS, NESHAP or MACT.	Compliance tests shall be conducted within sixty (60) days after the unit(s) achieve the maximum normal production rate. If the maximum normal production rate does not occur within one hundred twenty (120) days of source startup, then the tests must be conducted no later than one hundred eighty (180) days after initial startup of the source.
Engine(s) or Turbine(s) > 180 hp Facilities with a PER less than 80 tpy of each regulated air pollutant shall perform periodic testing every three (3) years.	Periodic Testing Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit. A test may be waived by the Department if the test is not required under a NMAC, NSPS, NESHAP or MACT.	Every three (3) years.
Engine(s) or Turbine(s) > 180 hp Facilities with PER greater than the 80 tpy of any regulated air pollutant shall perform periodic testing once per calendar year for each engine or turbine > 180 hp.	Periodic Testing Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit	Every calendar year.
Flares	N/A unless subject to compliance test under a NMAC, NSPS, NESHAP or MACT.	Test dates according to applicable regulation

	If the owner or operator does	Within sixty (60) days of the start of
Thermal Oxidizers	not provide manufacturer's	operations, and the results shall be
	data to establish the	submitted to the Department within thirty
	minimum operating	(30) days of the test.
	temperature required to	
	achieve 98% control	
	efficiency, the	
	owner/operator shall	
	perform an initial compliance	
	test to determine such	
	operating temperature.	
	N/A unless subject to	Test dates according to applicable
Storage Tanks	compliance test under a	Regulation.
	NMAC, NSPS, NESHAP or	
	MACT.	

6.0 Startup and Shutdown:

Were emissions from startup, shutdown, and scheduled maintenance operations calculated and included in the emission tables? \boxtimes Yes \square No:

- 7.0 <u>State and Federal Regulatory Analysis (NMAC/AQCR): Refer to Section 8 of the GCP O&G Registration Form.</u>
- 8.0 Permit Writer Comments: NA

Administrative Record XTO Big Eddy GCP No. 8730

Bates Numbers: 0233 - 0461

Adminstrative Record Index XTO Big Eddy Unit DI 38 - GCP No. 8730

DATE	FROM	то	FORMAT	SUBJECT
3/11/2020 -	NMED/XTO/	NMED/XTO/WEG	Emails	Email correspondence relating to XTO Energy Inc. Big Eddy
5/12/2020	WEG			General Construcion Oil and Gas Permit Application
2/18/2020	XTO	NMED	Documents	XTO Application for GCP-Oil and Gas
2/18/2020	XTO	N/A	Photos	Location Verification
2/18/2020	XTO	N/A	Documents	Gas Stack Verification
3/11/2020	Jeremy	NMED	Email	Comments on application for GCP-Oil and Gas
	Nichols			
	(WEG)			
3/27/2020	NMED	XTO	Letter	Approval letter for GCP-Oil and Gas
3/27/2020	NMED	N/A	Documents	Statement of Basis / Data Base Summary GCP-Oil and Gas (O&G)

From: <u>Jeremy Nichols</u>

To: Olivia.yiu@state.nm.us; Coriz, Asheley, NMENV; Mascarenas, Marvin, NMENV; Kimbrell, Joseph, NMENV;

Mashburn, Joseph, NMENV; Espinoza, Arianna, NMENV; Primm, Kathleen, NMENV; Springer, Vanessa, NMENV

Cc: Schooley, Ted, NMENV; Romero, Rhonda, NMENV

Subject: [EXT] Comments on Applications for General Construction Permits for Oil and Gas Facilities

Date: Wednesday, March 11, 2020 9:39:54 PM
Attachments: 2020-3-11 WG Comments on GCP Applications.pdf

Dear New Mexico Environment Department, Air Quality Bureau Staff:

Attached, please find comments from WildEarth Guardians regarding several general construction permit applications for oil and gas facilities in Eddy and Lea Counties in southeast New Mexico. These comments are directed to New Mexico Environment Department, Air Quality Bureau staff listed as contacts for the specific permits. Our comments address common issues related to ozone pollution in southeast New Mexico and therefore are directed to all staff contacts. We look forward to our comments being considered as the Air Quality Bureau reviews the referenced permit applications. Thank you.

Sincerely,

Jeremy Nichols

From: <u>Espinoza, Arianna, NMENV</u>

To: "Tole, Raymond"
Cc: "Evan Tullos"

Subject: GCP O&G Application for Big Eddy Unit DI 38

Date: Friday, March 27, 2020 9:09:49 AM

Attachments: <u>image001.png</u>

Copy of Registration Form (8730).pdf

GCP OG Approval (8730).pdf

Regarding:

XTO Energy Inc Big Eddy Unit DI 38 Permit No. 8730

AI: 39443

Good morning Mr. Tole,

Please find the attached courtesy copy of GCP O&G Approval Letter and Registration Form, and to XTO Energy Inc, Big Eddy Unit DI 38.

Here is a link to the GCP Oil and Gas Permit: https://www.env.nm.gov/wp-content/uploads/sites/2/2018/06/GCP-Oil-Gas-Final-002.pdf

The letter and copy of registration form will be mailed to your attention.

Thank you,

Link to Industry/Consultant Feedback Questionnaire.

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Arianna Espinoza

Permitting – Technical Services Permit Writer
New Mexico Environment Department
Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe, NM 87505

Office: (505) 476-4367

arianna.espinoza@state.nm.us
https://www.env.nm.gov/

From: Schooley, Ted, NMENV

To: <u>Jeremy Nichols</u>; <u>Romero, Rhonda, NMENV</u>

Subject: RE: [EXT] request for updates on oil and gas general permit registrations

Date: Tuesday, May 12, 2020 8:20:00 AM

Mr. Nichols,

Thank you for your email regarding the status of the Oil and Gas General Construction Permits (O&G GCPs) for which WEG has submitted comments. At the bottom of this email is a table showing the status of the registrations WEG has inquired about. Information regarding GCP registration applications can be found on the Bureau's website on the following page:

https://www.env.nm.gov/air-quality/aqb-p_current_permitting_activites/, which includes this link: Current Permitting Actions for NSR and Title V – Updated 04/30/2020.

Administrative review of the Department's determination to grant an application to register under a GCP is available pursuant to the Environmental Improvement Board's GCP regulations at subsection 20.2.72.220.C(5) NMAC (available here), which in turn references the Air Quality Control Act at NMSA 1978, Section 74-2-7. Subsection 74-2-7(H) of the statute provides that any person who participated in a permitting action before the Department and who is adversely affected by such permitting action may file a petition for hearing before the EIB within 30 days from the date notice is given of the Department's action.

For any of the O&G GCP registration applications listed below on which WEG submitted comments, you may regard the date of this email as the date notice was provided to WEG of the Department's action on those applications.

Best.

Ted Schooley

Permit Programs Section Chief
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1, Santa Fe, NM 87505
Office: (505) 476-4334
ted.schooley@state.nm.us

https://www.env.nm.gov/air-quality/

"Innovation, Science, Collaboration, Compliance"

Company	Facility(ies)	NSR Permit	Date Application	Permitting	Status
Company	r acinty(ies)	No.	Received	Action Type	
Cimarex Energy Co.	Dos Equis 11-14	8136M1	March 30, 2020	GCP-Oil and	Issued
of Colorado	Federal Com 4H	01201/11	Widi Ci 30, 2020	Gas	
Matador Production	Ray state Slot 3	8793	March 20, 2020	GCP-Oil and	Issued
Co.	Facility	8/93	March 30, 2020	Gas	
Matador Production	Stebbins 19 Fed 3	7011142	Manah 26, 2020	GCP-Oil and	Issued
Co.	Facility	7811M2	March 26, 2020	Gas	
Matador Production	Grevey Com Tank	0700	Manah 26, 2020	GCP-Oil and	Issued
Co.	Battery	8780	March 26, 2020	Gas	
New Mexico Gas	Lea County	0701	Manah 26, 2020	GCP-Oil and	Issued
Company	Compressor Station	8781	March 26, 2020	Gas	

Summit Midstream Permian LLC	Lane Gas Plant	7426M1	March 26, 2020	GCP-Oil and Gas	Withdrawn
XTO Energy Inc.	Poker Lake Unit 28, Big Sinks Tank Battery	8395M1	March 26, 2020	GCP- GCP Oil and Gas	Issued
XTO Energy Inc.	Poker Lake Unit 21, Brushy Draw West Tank	8398M1	March 26, 2020	GCP- GCP Oil and Gas	Issued
XTO Energy Inc.	Poker Lake Unit 17, Twin Wells Ranch West	8782	March 26, 2020	GCP-Oil and Gas	Issued
Devon Energy Production Co.	Belloq 11 CTB 1	8201M2	March 26, 2020	GCP- Oil and Gas	Issued
Ameredev II LLC	Nandina CBT	8189M1	March 25, 2020	GCP- Oil and Gas	Issued
Marathon Oil Permian LLC	Mazer Rackham 20 Fed Com CTB	8652M1	March 23, 2020	GCP- Oil and Gas	Issued
Chevron USA Inc.	Dagger Lake Section 4 CTB	8776	March 20, 2020	GCP6/NOI	Issued
Chevron USA Inc.	Dagger Lake Section 4 CS	8777	March 20, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Papa Fritas 27 CTB 2	8778	March 20, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Papas Fritas 27 CTB 1	8779	March 19, 2020	GCP- Oil and Gas	Issued
Cotton Draw Midstream LLC	Moon Compressor Station	8110M2	March 18, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Uraninite 32 CTB 2	8773	March 18, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Stebbins 20 Fed Facility	7585M1	March 18, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Jack Sleeper Facility	8772	March 18, 20209	GCP- Oil and Gas	Issued
Cimarex Energy Co. of Colorado	Parkway 15-14, North State Com 1H, 2H	8701M1	March 17, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Leslie Fed West Facility	8769	March 16, 2020	GCP- Oil and Gas	Issued
Tap Rock Operating LLC	Money Graham Facility	8634M1	March 16, 2020	GCP- Oil and Gas	Issued
ConocoPhillips Co.	Emerald Federal No. 3 Production	4610M1	March 12, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Boundary Raider 7 CTB 2	8766	March 12, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Rodney Robinson North Facility	8765	March 12, 2020	GCP- Oil and Gas	Issued
XTO Energy Inc.	Legg Federal Tank Battery	5044M4	March 12, 2020	GCP- Oil and Gas	Issued
Cimarex Energy Co. of Colorado	Tar Heel 19-18 Fed 1- 3H and 17-19H	8763	March 11, 2020	GCP- Oil and Gas	Issued
Matador Production	Stebbins 20/19 Fed	7792M2	March 11, 2020	GCP- Oil and	Issued

Co.	Facility			Gas	
DCP Operating	West Turkey Track	2098M5	March 4, 2020	GCP- Oil and	Issued
Company LP	Compressor Station	20381013	Wild Cit 4, 2020	Gas	
DCP Operating	Jackson Booster	2041M6	March 4, 2020	GCP- Oil and	Issued
Company LP	Station	20411110	Wiai Cii 4, 2020	Gas	
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020	GCP-Oil and	Issued
ATO Effergy file.	James Namen Offic Dr 7	0740	Widi Ci 1 4, 2020	Gas	
OXY USA Inc.	NC Sand Dunes	8744	March 3, 2020	GCP- Oil and	Issued
ONT OSA IIIC.	Compressor Station	0744	Wild Cit 3, 2020	Gas	
EOG Resources Inc.	Viper Localized Gas	8739	March 2, 2020	GCP-Oil and	Issued
LOG Nesources inc.	Lift Station	0733	Widicii 2, 2020	Gas	
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020	GCP-Oil and	Issued
Log nesources me.	Date 11 CIB	0730	Widi Cii 2, 2020	Gas	
Lucid Energy	Greyhound	8084M2	March 2, 2020	GCP-Oil and	Issued
Delaware LLC	Compressor Station	000 11112	Widi Cii 2, 2020	Gas	
Matador Production	Dr. Scrivner Facility	7825M3	March 2, 2020	GCP-Oil and	Issued
Co.	Dr. Seriviner ruenity	70231113	Widi Cii 2, 2020	Gas	
ConocoPhillips Co.	Zeppo 5 Fed Com 25H	8015M1	March 2, 2020	GCP-Oil and	Issued
	Battery	331711	171010112, 2020	Gas	
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020	GCP- Oil and	Issued
/ III CI COCV II EEO	Time Straw CTB	02171112	1 001 441 y 27, 2020	Gas	
Devon Production	Blue Krait 23 CTB 2	8734	February 27, 2020	GCP-Oil and	Issued
Co.	blue Mult 25 CTB 2	0731	1 CD1 dd1 y 27, 2020	Gas	
Kaiser-Francis Oil	South Bell Lake Pad 11	7132M3	February 27, 2020	GCP-Oil and	Issued
Co.	South Bell Lake Fud 11	71321113	1 051 441 y 27, 2020	Gas	
Kaiser-Francis Oil	North Bell Lake Pad 0	8149M3	February 10, 2020	GCP Oil and	Issued
Co.		01131113	1 001 441 y 10, 2020	Gas	
Spur Energy	Dorami 2H, 4H and 9H			GCP-Oil and	Issued
Partners LLC	Federal Oil Tank	8733	February 27, 2020	Gas	
	Battery				
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020	GCP-Oil and	Issued
2			1 23. 33. 7 20, 2020	Gas	
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020		Issued
XTO Energy Inc.	,		, ==, ==20	Gas	

From: Jeremy Nichols < jnichols@wildearthguardians.org>

Sent: Monday, May 4, 2020 7:45 PM

To: Schooley, Ted, NMENV <ted.schooley@state.nm.us>; Romero, Rhonda, NMENV

<Rhonda.Romero@state.nm.us>

Subject: [EXT] request for updates on oil and gas general permit registrations

Dear Mr. Schooley and Ms. Romero:

I am writing regarding the status of the oil and gas general permit registrations listed below that are under review by the New Mexico Environment Department. As you know, WildEarth Guardians has commented on general permit applications listed below over the past several weeks. We have not

received a response from the Environment Department or a notification that any registration has been approved. It is not currently possible to determine online whether registrations have been granted or denied. Pursuant to Section 74-7-H NMSA, a person participating in a permitting action has 30 days after notification of the permitting action to file a request for hearing with the Environmental Improvement Board. If general permit registrations that WildEarth Guardians has commented on have been granted, we reques the Environment Department provide us notification so that we may file a request for hearing with the Board.

To this end, if you could please provide the status of each of the following general permit registrations, it would be much appreciated. Thank you. - Jeremy Nichols

Company	Facility(ies)	NSR Permit No.	Date Application Received
Cimarex Energy Co. of Colorado	Dos Equis 11-14 Federal Com 4H	8136M1	March 30, 2020
Matador Production Co.	Ray state Slot 3 Facility	8793	March 30, 2020
Matador Production Co.	Stebbins 19 Fed 3 Facility	7811M2	March 26, 2020
Matador Production Co.	Grevey Com Tank Battery	8780	March 26, 2020
New Mexico Gas Company	Lea County Compressor Station		March 26, 2020
Summit Midstream Permian LLC	Lane Gas Plant	7426M1	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 28, Big Sinks Tank Battery	8395M1	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 21, Brushy Draw West Tank	8398M1	March 26, 2020
Matador Production Co.	Stebbins 19 Fed 3 Facility	7811M2	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 17, Twin Wells Ranch West	8782	March 26, 2020
Devon Energy Production Co.	Belloq 11 CTB 1	8201M2	March 26, 2020
Ameredev II LLC	Nandina CBT	8189M1	March 25, 2020
Marathon Oil Permian LLC	Mazer Rackham 20 Fed Com CTB	8652M1	March 23, 2020
Chevron USA Inc.	Dagger Lake Section 4 CTB	8776	March 20, 2020
Chevron USA Inc.	Dagger Lake Section 4 CS	8777	March 20, 2020
Devon Energy Production Co.	Papa Fritas 27 CTB 2	8778	March 20, 2020
Devon Energy Production Co.	Papas Fritas 27 CTB 1	8779	March 19, 2020
Cotton Draw Midstream LLC	Moon Compressor Station	8110M2	March 18, 2020
Devon Energy Production Co.	Uraninite 32 CTB 2		March 18, 2020
Matador Production Co.	Matador Production Co. Stebbins 20 Fed Facility		March 18, 2020
Matador Production Co. Jack Sleeper Facility		8772	March 18, 20209
Cimarex Energy Co. of Parkway 15-14, North State Com Colorado 1H, 2H		8701M1	March 17, 2020

Matador Production Co.	Leslie Fed West Facility	8769	March 16, 2020
Tap Rock Operating LLC	Money Graham Facility	8634M1	March 16, 2020
ConocoPhillips Co.	Emerald Federal No. 3 Production	4610M1	March 12, 2020
Devon Energy Production Co.	Boundary Raider 7 CTB 2	8766	March 12, 2020
Matador Production Co.	Rodney Robinson North Facility	8765	March 12, 2020
XTO Energy Inc.	Legg Federal Tank Battery	5044M4	March 12, 2020
Cimarex Energy Co. of Colorado	Tar Heel 19-18 Fed 1-3H and 17- 19H	8763	March 11, 2020
Matador Production Co.	Stebbins 20/19 Fed Facility	7792M2	March 11, 2020
DCP Operating Company LP	West Turkey Track Compressor Station	2098M5	March 4, 2020
DCP Operating Company LP	Jackson Booster Station	2041M6	March 4, 2020
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020
OXY USA Inc.	NC Sand Dunes Compressor Station	8744	March 3, 2020
EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020
Lucid Energy Delaware LLC	Greyhound Compressor Station	8084M2	March 2, 2020
Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8737	March 2, 2020
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020
Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020
Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020
Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M1	February 27, 2020
Spur Energy Partners LLC	Dorami 2H, 4H and 9H Federal Oil Tank Battery	8733	February 27, 2020
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020

(303) 437-7663 www.wildearthguardians.org/climate-

XTO ENERGY INC. BEU DI 38 TANK BATTERY EDDY COUNTY, NEW MEXICO GCP-OIL AND GAS PERMIT APPLICATION

PREPARED BY:

T.J. TOLE

ENVIRONMENTAL ENGINEER

XTO ENERGY INC.

2/18/2020

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

GCP-OIL AND GAS PERMIT APPLICATION

Table of Contents

Section 1	Company Information
Section 2	Tables
Section 3	Registration Summary
Section 4	Process Flow S eet
Section 5	Emissions Calculations Forms Information
Section 6	Used to Determine Emissions
Section 7	Maps
Section 8	Applicable State and Federal Regulations
Section 9	Proof of Public Notice
Section 10	Certification

Section 1 Company Information

Big Eddy Unit DI 38 XTO Energy Inc. February 2020: Revision 0

Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Nonattainment Areas)

This Registration is being submitted as (check all that apply):
An initial GCP-Oil and Gas Registration Form for a new facility (Registration fee required).
An updated GCP-Oil and Gas Registration Form for a modification to an existing facility (Registration fee required).
A GCP-Oil and Gas Registration Form for an existing facility currently operating under GCP-1 or GCP-4 (No fee require

The Permitting Administrative Multi-Form may be used for administrative changes identified in the GCP O&G Permit Condition C101.A. No public notification is required, and no filing fees or permit fees apply.

Construction Status: ✓ Not Constructed . Existing Permitted (or NOI) Facility ☐ Existing Non-Permitted (or NOI) Facility

Acknowledgements:

- ☐ I acknowledge that a pre-application meeting is available to me upon request.
- An original signed and notarized Certification for Submittal for this GCP-Oil and Gas Registration is included.
- Proof of public notice is included, if required.
- The Air Emission Calculation Tool (AECT) is included.
- The emissions specified in this Registration Form will establish the emission limits in the GCP-Oil and Gas.
- For new registrations or modifications, a check for the registration fee is included for \$4190 prior to 1/1/20 or \$4260 beginning 1/1/20. There is an annual fee in addition to the registration fee: www.env.nm.gov/air-quality/permit-fees-2/

Facilities qualifying as a "small business" under 20.2.75.7.F NMAC qualify for reduced fees, provided that NMED has a Small Business Certification Form from your company on file. This form can be found at: www.env.nm.gov/aqb/sbap/Small Business Forms.html Provide your Check Number: 1289 and Amount:

If a fee is required and is not submitted with the application, the registration will be denied.

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #:	
1	Facility Name: Big Eddy Unit DI 38	Plant primary SIC Code (4 digits): 1311		
	Tacinty Name. Dig Eddy Olit DI 36	Plant NAIC code (6 digits): 211120		
a	Facility Street Address (If no facility street address, check here \(\sum \) and provide directions in Section 4):			
2	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (832) 624-4426		
a	Plant Operator Address: 22777 Springwoods Village Parkway, W4.6B.344, Spring, TX 77389			
3	Plant Owner(s) name(s): XTO Energy Inc.	Phone/Fax: (832) 624-4426		
a	Plant Owner(s) Mailing Address(s): 22777 Springwoods Village Parkway, W4.6B.344, Spring, TX 77389			

GCP-Oil and Gas Form: 10 December 2019

4	Bill To (Company): XTO Energ	y Inc.		Phone/Fax: (832)	624-4426	
a	Mailing Address: 22777 Springv Spring, TX 77389	woods Village Parkway, W4	.6B.344,	E-mail: raymond_	tole@xtoenergy	v.com
5	☐ Preparer: ☑ Consultant: Evan Tullos			Phone/Fax: (865) 850-2007		
a	Mailing Address: 5 Cardinal Co	urt; Edwardsville, IL 620205	5	E-mail: etullos@pei-tx.com		
6	Plant Operator Contact:			E-mail: raymond_	tole@xtoenergy	v.com
a	Mailing Address: 22777 Springv Spring, TX 77389	woods Village Parkway, W4	.6B.344,	E-mail: raymond_tole@xtoenergy.com		
7	Air Permit Contact ¹ : Raymond (TJ) Tole		Title: Environmental Engineer		
a	E-mail: raymond_tole@xtoenerg	gy.com		Phone/Fax: (832) 624-4426		
b	Mailing Address: 22777 Springs	woods Village Parkway, W4	.6B.344, Sprin	g, TX 77389		
	¹ The Air Permit Contact will rec	eive official correspondence	from the Dep	artment.		
	Will this facility operate in conjunction with other air regulated parties on the same property? No Yes			Yes		
8	If yes, what is the name and NO	I or permit number (if know	n) of the other	facility?		
2)	Applicability					
1	Is the facility located in Bernalil	lo County, on tribal lands, o	r in a nonattair	nment area?		⊠No □Yes
	answered Yes to the question above					
2	Is the facility's SIC code 1311, 1321, 4619, 4612 or 4922? (Other SIC codes may be approved provided that all the equipment at the facility is allowed in the GCP-Oil & Gas Permit.)					
3	Does the regulated equipment under this GCP-Oil and Gas Registration include any combination of Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit, and no others?					
4	Will the regulated equipment as specified in this GCP-Oil and Gas Registration emit less than the total emissions in Table 106 of the GCP-Oil and Gas permit?					
5	Does all equipment comply with the stack parameter requirements as established in the GCP-Oil and Gas Permit?					
6	Equipment shall be at least 100 meters (m) from any stack to terrain that is five (5) or more meters above the No Yes					
7	top of the stack. Will the equipment at the facility meet this terrain requirement? Is the facility at least 150 m from any source that emits over 25 tons/year of NO _x ? This is the distance			No ⊠Yes		
,	between the two nearest stacks that emit NOx at each of the facilities. Not the facility boundaries or the					
	center to center distances.					
8	Is the facility at least 3 miles from any Class I area? This is the distance from the nearest facility boundary to the nearest boundary of the Class I area.					
If you	If you answered NO to any of questions 2-8, your facility does not qualify for this general construction permit.					
3)	Current Facility Stat	us				
1	Has this facility already been con	structed? Yes No	If yes, is it co	urrently operating in	New Mexico?	☐ Yes ⊠ No
2	Does this facility currently have a construction permit or Notice of Intent (NOI) (20.2.72 NMAC or 20.2.73 NMAC)? Yes No remain active or not:					
3	Is this Registration in response to a Notice of Violation (NOV)? Yes No If so, provide current permit #: If yes, NOV date: NOV Tracking No.					
4	Check if facility is a: Minor Source: ☐ Synthetic Minor Source: ☐ (SM80 = Controlled Emissions > 80 TPY of any regulated air pollutant): ☐					
4) Facility Location Information						
,	a) Latitude (decimal degrees):	b) Longitude (decimal deg	rees).	c) County:	d) Elevat	ion (ft):
1	32.37218	103.98081	1005j	Eddy	3076	1011 (11 <i>)</i> .
2	a) LITM Zone: 12 or 13	b) LITME (to nearest 10 meter	rs) 595850	c) LITMN (to neares	t 10 meters): 358	2270

3	e) Specify which datum is used: NAD 27 NAD 83 WGS 84 See this link for more info. http://en.wikipedia.org/wiki/North_American_Datum			
4	Name and zip code of nearest New Mexico town and tribal community: Loving - 88256			
5	Detailed Driving Instructions including direction and distance from nearest NM town and tribal community (attach a road map if necessary). If there is no street address, provide public road mileage marker: Drive E on GR Howard Rd. for 1.6 miles to a L on Hwy 387. Drive 1.5 mi. to R on NM 31. Drive 7.1 mi. to L on lease road. Site is on L in 0.2 mi.			
6	The facility is 9 (distance) miles NE (direction) of Loving, NM (nearest town).			
7	Land Status of facility (check one): Private Indian/Pueblo Government BLM Forest Service Military			
5)	Other Facility Information			
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL).	Oil (bbl/day): 25,000 Gas (MMscf/day): 60.6 NGL (bbl/day):	(bbl/yr): 9,124,999 (MMscf/yr): 22,118 (bbl/yr):	
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.	□No ⊠Yes		
6) S	ubmittal Requirements			
1	Include one hard copy original signed and notarized Registration package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except landscape tables, which should be head-to-head. If 'head-to-toe printing' is not possible, print single sided. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process.			
2	Include one double sided hard copy , flip on long edge for Department use. This <u>copy</u> does not need to be 2-hole punched.			
3	The entire Registration package should be submitted electronically on one compact disk (CD). Include a single PDF document of the entire Registration as submitted and the individual documents comprising the Registration. The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDFs of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. Spreadsheets must be unlocked since we must be able to review the formulas and inputs.			
	Ensure all of these are included in both the electronic and hard copies.			
	 ☑ Word Document part of the Registration Form (Sections 1 and 3-10) ☑ Excel Document part of the Registration Form (Section 2) ☑ Air Emissions Calculation Tool (AECT) If there is a justified reason for including other calculations, include the unlocked Excel Spreadsheet. Justification must be provided in Section 5 of the application. ☑ PDF of entire application 			
	To avoid errors, it is best to start with both a blank vers	sion of this form and the AECT	Γ for each application.	

Section 2 Tables

February 2020: Revision 0

Section 2 Tables

Insert Excel spreadsheet with applicable tables filled out. If applicable to the facility all tables must be filled out completely. The unit numbering system must be consistent throughout this Registration

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/18/2020

				Tabl	le 2-A:	Regulated 1	Emission	Sources		
Unit and s	stack numbering mus	st correspond througho	ut the applicat	ion package.	. Equipment	that qualifies for	an exemption	under 20.2.72	2.202.B	
Unit		Manufacturer/Make		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	
Number ¹	Source Description	/Model	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
BC1-	ELECTRIC	TD D	TDD.	27/4	27/4	TBD	N/A	21000011		☐ Existing (unchanged) ☐ To be Removed
BC2	BOOSTER COMPRESSORS	TBD	TBD	N/A	N/A	TBD	N/A	31088811	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
FUG	FUGITIVE	TBD	TBD	N/A	N/A	TBD	N/A	31088811	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
FUG	EMISSIONS	IBD	IBD	IN/A	IN/A	TBD	N/A	31000011	N/A	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
LIT1	HEATER	TDD	TDD	4	4	TBD	N/A	21000404	37/4	☐ Existing (unchanged) ☐ To be Removed
HT1	TREATER	TBD	TBD	MMBtu/hr	MMBtu/hr	TBD	HT1	31000404	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
HT2	HEATER	TBD	TBD	4	4	TBD	N/A	21000404	21/4	☐ Existing (unchanged) ☐ To be Removed
H12	TREATER	IBD	IBD	MMBtu/hr	MMBtu/hr	TBD	HT2	31000404	N/A	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
I VID.TE	VAPOR	TDD	TDD	27/4	27/4	TBD	VRU1 & LPF	27/1	27/1	☐ Existing (unchanged) ☐ To be Removed
VRT	RECOVERY TOWER	TBD	TBD	N/A	N/A	TBD	LPF	N/A	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
T/DIII	VAPOR	TDD	TD D	27/4	27/4	TBD	LPF	27/1	27/1	☐ Existing (unchanged) ☐ To be Removed
VRU1	RECOVERY UNIT FOR VRT	TBD	TBD	N/A	N/A	TBD	LPF	N/A	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
VDIIO	VAPOR RECOVERY UNIT	TBD	TDD	NI/A	NI/A	TBD	LPF	N/A	N/A	□ Existing (unchanged) □ To be Removed
VRU2	FOR OIL TANKS	IBD	TBD	N/A	N/A	TBD	LPF	N/A	N/A	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
OT1	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
011	TANK	IBD	IBD	/30 001	730 001	TBD	LPF	40400312	IV/A	☐ To Be Modified ☐ To be Replaced
OT2	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
012	TANK	ТВО	IBD	750 001	750 001	TBD	LPF	40400312	IVA	☐ To Be Modified ☐ To be Replaced
OT3	OIL STORAGE	TBD	TBD	750 bbl	750 bbl	TBD	VRU2 & LPF	40400312	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
013	TANK	100	100	750 001	750 001	TBD	LPF	10100312	1011	☐ To Be Modified ☐ To be Replaced
SKTK1	SKIM TANK	TBD	TBD	1000 bbl	1000 bbl	TBD	LPF	40400315	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
SILILI	211111 11111	155	155	1000 001	1000 001	TBD	LPF	.0100313		☐ To Be Modified ☐ To be Replaced
SKTK2	SKIM TANK	TBD	TBD	1000 bbl	1000 bbl	TBD	LPF	40400315	N/A	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
						TBD	LPF			☐ To Be Modified ☐ To be Replaced

						Regulated 1				
Unit and	stack numbering mus	st correspond througho	ut the applicat	ion package.	Equipment	•		under 20.2.7	2.202.B	
Unit Number ¹	Source Description	Manufacturer/Make /Model	Serial#	Manufact- urer's Rated Capacity ³ (Specify	Requested Permitted Capacity ³ (Specify	Date of Manufacture ² Date of Construction/	Controlled by Unit # Emissions vented to	Source Classi- fication Code (SCC)	_	For Each Piece of Equipment, Check Onc
				Units)	Units)	Reconstruction ²	Stack #		1022,2022)	
WT1	PRODUCED WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
	WITTER					TBD	LPF			☐ To Be Modified ☐ To be Replaced
WT2	PRODUCED WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD TBD	LPF LPF	40400315	N/A	 □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
	PRODUCED					TBD	LPF			☐ Existing (unchanged) ☐ To be Removed
WT3	WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
	PRODUCED	mp.p.			==0.111	TBD	LPF	40 400 24 2		☐ Existing (unchanged) ☐ To be Removed
WT4	WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
WT5	PRODUCED	TDD	TDD	750111	750111	TBD	LPF	40400215	27/4	☐ Existing (unchanged) ☐ To be Removed
WT5	WATER TANK	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
WT6	PRODUCED	TBD	TBD	750 bbl	750 bbl	TBD	LPF	40400315	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
W 10	WATER TANK	IBD	IDD	/ 30 001	/30 001	TBD	LPF	40400313	IN/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
	HIGH		mp.p.	60	60	TBD	N/A	21000160		☐ Existing (unchanged) ☐ To be Removed
HPF	PRESSURE FLARE	Tornado	TBD	MMscf/d	MMscf/d	TBD	HPF	31000160	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
HPF-HT	HIGH PRESSURE	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
SSM	FLARE - HT SSM	Tornado	IDD	IN/A	N/A	TBD	HPF	31000100	IN/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
HPF-	HIGH PRESSURE		TD D	37/4	37/4	TBD	N/A	21000160		☐ Existing (unchanged) ☐ To be Removed
SALES SSM	FLARE - SALES GAS SSM	Tornado	TBD	N/A	N/A	TBD	HPF	31000160	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
I DE	LOW PRESSURE	m 1	TDD	2 3 4 3 4 6 4 1	2.3.04 (/1	TBD	N/A	21000160	27/4	☐ Existing (unchanged) ☐ To be Removed
LPF	FLARE - PILOT	Tornado	TBD	2 MMscf/d	2 MMscf/d	TBD	LPF	31000160	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
LPF-	LOW PRESSURE	m 1	TDD	3.7/4	NT/ A	TBD	N/A	21000160	27/4	☐ Existing (unchanged) ☐ To be Removed
VRT	FLARE - VRT	Tornado	TBD	N/A	N/A	TBD	LPF	31000160	N/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
LPF-OT	LOW PRESSURE	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed
Lrr-UI	FLARE - OIL TANKS	TOTHAGO	ממו	IN/A	IN/A	TBD	LPF	31000100	IN/A	✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
LPF-TL	LOW PRESSURE FLARE - TRUCK	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
Lff-IL	LOADING	Tornado	עמו	IN/A	IN/A	TBD	LPF	31000100	IN/PA	☐ To Be Modified ☐ To be Replaced
I DE WT	LOW PRESSURE FLARE - WATER	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	☐ Existing (unchanged) ☐ To be Removed ☑ New/Additional ☐ Replacement Unit
Lrr-W1	TANKS	Tornado	ממו	IN/A	1 N /A	TBD	LPF	31000100	IN/PA	☐ To Be Modified ☐ To be Replaced

Unit and s	stack numbering mus	st correspond througho	out the applicat		le 2-A:	Regulated I			202 B	
Unit	stack numbering mus	1 5	di the applicat	Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by	Source Classi-		
Number ¹	Source Description	Manufacturer/Make /Model	Serial#	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
LPF- VRT	LOW PRESSURE FLARE - VRT	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
SSM	SSM	Tornado	IBD	IN/A	IV/A	TBD	LPF	31000100	IN/A	☐ To Be Modified ☐ To be Replaced
LPF-OT	LOW PRESSURE FLARE - OIL	Tornado	TBD	N/A	N/A	TBD	N/A	31000160	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
SSM	TANK SSM	Tornado	IBD	N/A	N/A	TBD	LPF	31000100	IN/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
TI O	TRUCK LOADING - OIL	27/4	37/4	1,825,000	1,825,000	TBD	LPF	40(00122	27/4	☐ Existing (unchanged) ☐ To be Removed
TL-O	(UNCOLLECTED VAPORS)	N/A	N/A	bbl/yr	bbl/yr	TBD	LPF	40600132	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
TI W	TRUCK LOADING - H20	NI/A	NI/A	1,825,000	1,825,000	TBD	N/A	40600250	NI/A	□ Existing (unchanged) □ To be Removed
TL-W	(UNCOLLECTED VAPORS)	N/A	N/A	bbl/yr	bbl/yr	TBD	N/A	40600250	N/A	✓ New/Additional□ Replacement Unit□ To Be Modified□ To be Replaced
ROAD	ROAD	N/A	N/A	N/A	N/A	N/A	N/A	31088811	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
KOAD	EMISSIONS	IN/A	IN/A	IN/A	1 N /A	N/A	N/A	31000011	IN/PA	☐ To Be Modified ☐ To be Replaced

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

^{4&}quot;4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ¹ Date of Installation	For Each Piece of Equipment, Check Onc
						/Construction ¹	
	None						☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ To Be Modified □ To be Replacement Unit □ To be Replaced
							☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
LPF	Low Pressure Flare	TBD	VOC, HAPs	OT1-3, SKTK1-2, WT1-6, VRT, TL-O	98%	Manufacturer Data
VRU1	Vapor Recovery Unit	TBD	VOC, HAPs	VRT	98%	Engineering Estimate
VRU2	Vapor Recovery Unit	TBD	VOC, HAPs	OT1-3	98%	Engineering Estimate
HPF	High Pressure Flare	TBD	VOC, HAPs	Sales Gas, Heater Treater	98%	Manufacturer Data
List each con	ntrol device on a separate line. For each control device, list all e	mission units	controlled by the control device.			

² Glycol Dehydration Units: Indicate each stream that is being controlled and which unit is controlling each stream (condensables, non-condensables, flash tank, reboiler etc.)

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI NI.	N	Ox	C	0	V	OC	SC	Ox	PM	I10 ¹	PM	[2.5 ¹	Н	I_2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
BC1 & BC2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
FUG	-	-	-	-	2.30	10.08	-	-	-	-	-	-	-	-	-	-
HT1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	-	-	-	-
HT2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	-	-	-	-
VRT	-	-	-	-	7039.89	7708.68	-	-	-	-	-	-	-	-	-	-
OT1	1	-	-	-	330.97	782.34	-	-	-	-	-	-	-	-	-	-
OT2	1	-	-	-	330.97	782.34	-	-	-	-	-	-	-	-	-	-
OT3	1	-	-	-	330.97	782.34	-	-	-	-	-	-	-	-	-	-
SKTK1	-	-	-	-	71.17	77.97	-	-	-	-	-	-	-	-	-	-
SKTK2	-	-	-	-	71.17	77.97	-	-	-	-	-	-	-	-	-	-
WT1	-	-	-	-	0.49	0.55	-	-	-	-	-	-	-	-	-	-
WT2	-	-	-	-	0.49	0.55	-	-	-	-	-	-	-	-	-	-
WT3	-	-	-	-	0.49	0.55	-	-	-	-	-	-	-	-	-	-
WT4	-	-	-	-	0.49	0.55	-	-	-	-	-	-	-	-	-	-
WT5	-	-	-	-	0.49	0.55	-	-	-	-	-	-	-	-	-	-
WT6	-	-	-	-	0.49	0.55	-	-	-	-	-	-	-	-	-	-
HPF	0.07	0.31	0.14	0.61	0.12	0.53	0.00	0.00	0.00	0.01	0.00	0.01	-	-	-	-
LPF	0.04	0.15	0.07	0.31	0.06	0.27	0.00	0.00	0.00	0.01	0.00	0.01	-	-	-	-
TL-O	-	-	-	-	50.91	193.53	-	-	-	-	-	-	-	-	-	-
TL-W	-	-	-	-	0.00	0.01	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.48	1.67	0.05	0.17	-	-	-	-
	1.00				0004.55	10110 6	0.01	0.00	^	2.05	0.1.1	0.76	^			
Totals	1.23	5.37	1.15	5.04	8231.52	10419.61	0.01	0.03	0.57	2.07	0.14	0.56	0	0	0	0

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

II:4 No	N	Ox	CC)	VC	OC	SC	Ox	PM	[10 ¹	PM	2.51	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
BC1-BC2	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-
FUG	-	-	-	-	2.30	10.08	-	-	-	-	1	-	-	-	1	-
HT1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	-	-	-	-
HT2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	-	-	-	-
TL-O	-	-	-	-	0.66	2.52	-	-	-	-	-	-	-	-	-	-
TL-W	-	-	-	-	0.00	0.01	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.48	1.67	0.05	0.17	-	-	-	-
VRT	Emissions Represented at LPF. Emissions Represented at LPF.															
OT1																
OT2		Emissions Represented at LPF. Emissions Represented at LPF.														
OT3		Emissions Represented at LPF. Emissions Represented at LPF.														
SKTK1		★														
SKTK2	Emissions Represented at LPF.															
WT1	Emissions Represented at LPF. Emissions Represented at LPF.															
WT2																
WT3								s Represe								
WT4 WT5								s Represe								
WT6								is Represe is Represe								
HPF-NO	0.07	0.31	0.14	0.61	0.12	0.53	0.00	0.00	0.00	0.01	0.00	0.01	-	_	_	
HPF-HT SSM	20.55	2.25	41.03	4.49	72.24	7.91	0.00	0.00	0.06	0.01	0.06	0.01		-	-	-
HPF-SALES SSM	443.79	21.14	885.97	42.21	764.02	36.40	3.81	0.03	19.19	0.01	19.19	0.01				_
LPF-NO	0.04	0.15	0.07	0.31	0.06	0.27	0.00	0.00	0.00	0.01	0.00	0.01	_	_	-	_
LPF-VRT	0.54	0.54	1.09	1.07	2.82	2.78	0.01	0.01	0.01	0.01	0.01	0.01	-	-	-	_
LPF-OT	0.08	0.11	0.15	0.23	0.40	0.60	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-
LPF-TL	0.13	0.59	0.27	1.17	0.72	3.15	0.00	0.00	0.00	0.01	0.00	0.01				
LPF-WT	2.19 3.00 4.37 6.00 2.91 3.18 0.14 0.19 0.10 0.14 0.10 0.14										-					
LPF-VRT SSM	27.19	2.98	54.28	5.94	140.80	15.42	0.38	0.04	0.62	0.07	0.62	0.07				
LPF-OT SSM	3.84	3.17	7.66	6.33	19.86	16.90	0.05	0.04	0.08	0.07	0.08	0.07	-	-	-	-
Totals	498.91	39.15	994.73	72.48	1003.75	100.00	4.66	0.53	20.62	3.28	20.19	1.78	0	0	0	0

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type	Serving Unit Number(s) from	Orientation	Height Above	Temp.	Flow Rate	Velocity	Inside Diameter (ft)
(Engine,	Table 2-A	(H-Horizontal	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (it)
Heater	HT1	Vertical	20	1000	27	34.3	1.00
Heater	HT2	Vertical	20	1000	27	34.3	1.00
Flare	HPF	Vertical	145	1800	366	671.9	0.83
Flare	LPF	Vertical	40	1800	404	128.8	2.00

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the

threshold amount	s described above.	Add additional	rows as necessary.

Stack No.	Unit No.(s)		HAPs	n-Ho	exane	Ben	zene P 🗆 TAP	Name	Pollutant Here IAP	Namo	Pollutant e Here HAP	Namo	Pollutant e Here HAP	Name	Pollutant e Here HAP	Name Hero	Pollutant e
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FUG	FUG	0.14	0.63	0.04	0.15	0.04	0.16	-	-	-	-	-	-	-	-	-	-
HT1	HT1	0.01	0.03	0.01	0.03	0.00	0.00	-	-	-	-	-	-	-	-	-	-
HT2	HT2	0.01	0.03	0.01	0.03	0.00	0.00	-	-	-	-	-	-	-	-	-	-
TL-O	TL-O	0.03	0.11	0.01	0.04	0.01	0.03	-	-	-	-	-	-	-	-	-	-
TL-W	TL-W	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-	-	-	-	-	-	-
ROAD	ROAD			1	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	VRT	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT1	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT2	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	OT3	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	SKTK1	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	SKTK2	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT1	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT2	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT3	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT4	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT5	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	WT6	See LPF	See LPF	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HPF	HPF-NO	0.00	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HPF	HPF-HT SSM	3.46	0.38	1.22	0.13	1.15	0.13	-	-	-	-	-	-	-	-	-	-
HPF	IPF-SALES SSN	27.65	1.32	9.97	0.48	9.44	0.45	-	-	-	-	-	-	-	-	-	-
LPF	LPF-NO	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LPF	LPF-VRT	0.14	0.14	2.46	0.27	2.34	0.26	-	-	-	-	-	-	-	-	-	-
LPF	LPF-OT	0.02	0.03	0.01	0.01	0.01	0.01	-	-	-	-	-	-	-	-	-	-
LPF	LPF-TL	0.03	0.13	0.01	0.05	0.01	0.04	-	-	-	-	-	-	-	-	-	-
LPF	LPF-WT	0.50	0.55	0.01	0.01	0.29	0.32	-	-	-	-	-	-	-	-	-	-
LPF	LPF-VRT SSM	6.88	0.75	2.46	0.27	2.34	0.26	-	-	-	-	-	-	-	-	-	-
LPF	LPF-OT SSM	0.93	0.76	0.35	0.30	0.31	0.24	-	-	-	-	-	-	-	-	-	-
Tot	als:	39.65	4.88	16.55	1.78	15.93	1.89	-	-	-	-	-	-	-	-	-	- '

		J: Allowable Fuels and F		ombustion Emiss	sion Unit	s:		
Specify fuel chara	cteristics and usage. Unit and sta	ck numbering must correspond throughout t	he application package.	Specify Units				
Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	Fuel Source (purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO2 percentage (%) of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value (BTU/SCF)	Annual Fuel Usage (MMSCF/y)	Fuel an Conte O&C	the Allowable and Fuel Sulfur ont meet GCP G Condition A110.A?
HT1	Field Gas	Field Natural Gas	N/A	N/A	1273.6	27.5	✓ Yes	☐ No
HT2	Field Gas	Field Natural Gas	N/A	N/A	1273.6	27.5	✓ Yes	□No
HPF	Field Gas	Field Natural Gas	N/A	N/A	1273.6	3.5	✓ Yes	☐ No
LPF	Field Gas	Field Natural Gas	N/A	N/A	1273.6	1.8	✓ Yes	□No

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Unit and stack numbering must correspond throughout the application package.

Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space	Co	lor	Separator Pressure	Annual Throughput	Turn- overs
							(M)	Roof	Shell	(psia)	(gal/yr)	(per year)
OT1	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	17.7	127,749,989	4,056
OT2	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	ОТ	OT	17.7	127,749,989	4,056
OT3	TBD	OIL	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	17.7	127,749,989	4,056
SKTK1	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	1,000	4.7	9.1	OT	OT	117.7	459,904,948	10,950
SKTK2	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	1,000	4.7	9.1	OT	OT	117.7	459,904,948	10,950
WT1	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT2	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT3	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT4	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT5	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867
WT6	TBD	PRODUCED WATER	Vertical - Fixed Roof (FX)	N/A	750	4.7	7.3	OT	OT	15.1	153,300,000	4,867

Section 3 Registration Summary

Section 3 Registration Summary

<u>The Registration Summary:</u> Provide information about the registration submittal. The Registration Summary shall include a brief description of the facility and its process. In case of a modification to a facility, please describe the proposed changes.

Specify Facility Type:
Check the appropriate box below:

☐ Production Site

☐ Tank Battery

☐ Compressor Station

☐ Natural Gas Plant

☐ Other, please specify:

Registration Summary: This application requests a GCP-O&G permit for a proposed facility under 20.2.72 NMAC. The Big Eddy Unit (BEU) DI 38 is an oil and gas production battery, with an average well production of 20,000 BOPD, 60,000 BWPD, and 60.6 MMscfd. An additional 5,000 BOPD of dead oil may be transferred directly into the storage tanks from surrounding batteries. The site will consist of the following permitted equipment:

- o WT1-WT6: Six (6) produced water tanks
- o OT1-OT3: Three (3) oil tanks
- o SKTK1-SKTK2: Two (2) water skim tanks
- o BC1-BC2: Two (2) electric booster compressors
- o FUG: Fugitive equipment leaks
- o HT1-HT2: Two (2) heater treaters
- o TL-O: Truck loading of oil
- o TL-W: Truck loading of water
- o ROAD: Haul road emissions
- O VRT: Vapor recovery tower
- o VRU1: Vapor recovery unit for VRT
- o VRU2: Vapor recovery unit for OT1-OT3
- o HPF: High pressure flare
- o LPF: Low pressure flare

Written description of the routine operations of the facility: Mixed hydrocarbons (20000 BOPD/60000 BWPD/60.6 MMSCFD) enter the facility through inlet separators where the gas is sent to the sales line and the oil is sent to auxiliary heaters (HT1-HT2). The remainder of the gas is picked up by electric booster compressors (BC1-BC2) for sales. During normal operation, 100% of the gas is routed to sales. During BC1-BC2 downtime (876 hours), all gas is flared at the high pressure flare (HPF). Water from the inlet is routed to two water skim tanks (SKTK1-SKTK2), then to six water storage tanks (WT1-WT6). Skim tank and water tank vapors are routed to the low pressure flare (LPF).

Oil flows from the heaters to a vapor recovery tower (VRT), then to three sales tanks (OT1-OT3). Gas from the VRT is routed to a vapor recovery unit (VRU)/flare closed vent system. Gas is picked up for sales by the VRU (VRU1), with gas routed to LPF during VRU downtime. XTO assumes a VRU collection efficiency of 98%, with 876 hours of downtime. Up to 5,000 BOPD of dead oil may also be piped into OT1-OT3. Gas from the oil tanks is also routed to the VRU/LPF vent system, with the tanks using VRU2. XTO assumes a VRU collection efficiency of 98%, with 3,154 hours of downtime. Oil is primarily shipped offsite via pipeline LACT; however 1,825,000 barrels per year of oil truck loading and 1,825,000 barrels per year of water truck loading were included. 98.7% of the loading vapors are routed to LPF, with the remaining volume accounted for at the truck loading station.

HPF would also be used in the event of third party sales line maintenance or downtime which required gas flaring. These emissions are illustrated in the application.

A process flow diagram is included in Section 4 of the application.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/18/2020

XTO Energy Inc. Big Eddy Unit DI 38 February 2020: Revision 0

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM): SSM emissions related to VRU downtime are illustrated at the low pressure flare. Booster compressor downtime and any internal or sales line maintenance is illustrated at the high pressure flare.

<u>Malfunction Emissions (M):</u> Malfunctions would be reported in accordance with 20.2.7 NMAC.

The permit does not authorize emissions from SSM and Malfunction to be combined as 10 TPY VOC. However, they may be permitted separately. In the allowable emissions table in Section 2, these two events are separate line items and must be kept separate.

separate.		
Allowable Oper	rations: Check the appr	ropriate box below:
☐ Facility ope	erates continuously (876	0 hours per year)
	ing regulated equipment bject to Condition A108	will operate less than 8760 hours per year. Add additional rows as necessary. These .C of the Permit.
Table A – Equ	nipment Operating Les	s Than 8760 hours per year
Unit #	Requested Annual Operating Hours	
		tack Parameter Requirements:

Please use the Stack Calculator and Stack Requirements Explained Guidance on our website: All of the verification information below is required to be filled out.

www.env.nm.gov/air-quality/air-quality-oil-and-gas-gcp-application-forms/

Check the box for each type of equipment at this facility:

	Engine(s)
	Turbine(s)
\times	Flares(s)
	Enclosed Combustion Device (s)
\times	Heater(s)
	Reboiler(s)

For each type of equipment checked above, complete the applicable section below.

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/18/2020

XTO Energy Inc. Big Eddy Unit DI 38 February 2020: Revision 0

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emis	hr			
Engine/Generator/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
HT1	20	1000	34.3	1
HT2	20	1000	34.3	1
Table 1 Minimum Parameters: For verification, list the minimum parameters based on the NOx lb/hr emission rate from the GCP O&G Table 1.	5.9	571	49.2	0.3

4.	Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP
	O&G?
\boxtimes	Yes.
	Skip step 5 below.
	No. Go to step 5 below.

5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

• The heater emit less than 1.23 lb/hr. Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Table C: Turbine/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emission Rate:		lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

4.	Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP O&G?
=	Yes. Skip step 5 below. No. Go to step 5 below.

5. For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G, explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page 18 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Table D: Flare Stack Height Parameter Verification:

Flare Unit Number	SO ₂ Emission Rate (lb/hr)	Height (ft)	Table 3 Minimum Stack Height: For verification, list the minimum height parameters based on the SO2 emission rate from the GCP O&G Table 3.
HPF	4.08	145	9.8
LPF	0.57	40	6.6

4.	Do all flares comply with minimum stack height requirements? ☐ Yes ☐ No
5.	Does the flare gas contain 6% H ₂ S or less by volume (pre-combustion)? ☐ Yes. Skip step 6 below. ☐ No. Go to step 6 below.
6.	Explain in detail how assist gas will be added to reduce the gas composition to 6% H ₂ S or less by volume.

Enclosed Combustion Device(s) (ECD):

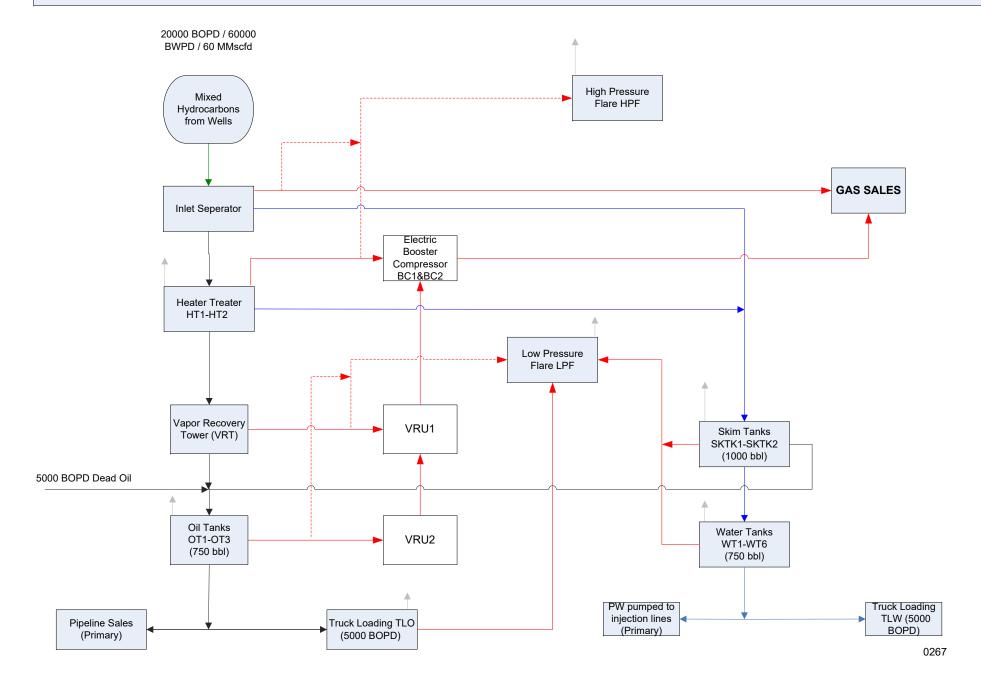
According to GCP O&G Condition A208.A, the facility must meet one of the following options if an ECD is installed at the facility:

Option	<u>1:</u>
1.	Will the ECD(s) meet the SO₂ emission limit of 0.7 lb/hr and operate with a velocity of at least one (1) foot per second? ☐ Yes. Skip Option 2 below. ☐ No. Go to Option 2 below.
Option :	<u>2:</u>
2.	Will the ECD(s) meet the SO_2 emission limit of 0.9 lb/hr and operate with a velocity of at least two (2) feet per second? Yes No

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/18/2020

Section 4 Process Flow Sheet

Section 4


Process Flow Sheet

Attach a <u>process flow sheet</u> indicating all individual equipment, all emission points, and types of control applied to those points. All units must be labeled, and the unit numbering system must be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water). The process flow sheet must be a legible size.

A process flow diagram is included.

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/18/2020

XTO Energy Inc. Big Eddy Unit DI 38 Tank Battery Process Flow Diagram

Section 5 Emissions Calculations Forms

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration. If the AECT, for a piece of equipment is under development, provide alternate calculations. **Do not include alternative calculations unless there is an issue being resolved with the AECT. This will delay review of the application.** The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. The inputs must match the gas analyses information submitted. Inputs that don't match may be grounds for denial of the application submittal.

<u>SSM Calculations</u>: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank).

<u>Control Devices:</u> Report all control devices and list each pollutant controlled by the control device. Indicate in this section if you chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

<u>Calculation Details:</u> The AECT is required for all emission calculations. If the AECT is not functioning, alternative calculations may be submitted only for the portions of the AECT with issues being resolved. Utilize this section to explain in detail, on an equipment-by-equipment basis, why alternative calculations are necessary.

Explain here: The AECT does not work for the LPF since there are more streams than the AECT can manage. The AECT does not work for the storage tanks since we consider the VRU to be 98% efficient instead of 100%. The AECT also cannot handle differing downtimes. The AECT will work only for the heaters, roads, and VRT emissions. Since XTO assumes the burners are only 70% efficient, the AECT does not match the Excel calculations. Since XTO breaks down the liquid and gas compositions for each section of the plant, the fugitive calculations are more accurate than the AECT, which uses the same analysis across the site.

Equipment Forms Submitted in this Section (add additional rows as necessary):

Equipment Type	Quantity	Check Box to Indicate Units that are Controlled	Enter Control Device Type and Pollutant Controlled
Engine			
Turbine			
Tanks	11	\boxtimes	Oil – VRU/Flare; Skim & Water – Flare (VOC/HAP)
Generator			
VRU	2	\boxtimes	Flare (VOC/HAP)
VRT	1	\boxtimes	VRU/Flare (VOC/HAP)
ULPS			
Glycol Dehydrator			
Flare	2	\boxtimes	Sales gas, Tank Vapors, VRT Vapors, Truck loading (VOC/HAP)

A . TT	1					
Amine Unit		<u> </u>				
Cryogenic Unit Fugitive Emissions	1					
Heater	2					
Truck Loading	2		Flare (VOC/HAP)			
Enclosed Combustion	2		List all streams controlled by the ECD			
Device (ECD)			List all streams controlled by the ECD			
Thermal Oxidizer (TO)			List all streams controlled by the TO			
Other			List are sire carris controlled by the 10			
Other		Ħ				
copy and paste each appl	icable section <u>Ultra Low-Pre</u>	and label th	ne emissions unit, control device, or gas combustion scenario. Please the unit number(s) if the scenarios vary. Please the unit number(s) if the scenarios vary. If the stream of the storage vessels and is used to flash and capture flashing			
emissions, check the appround unit number: VRT and V Vapor Recovery Tow ULPS and VRU Com Flash Tower and VRU	opriate box. RU1 er and VRU Co pressor	-	stream of the storage vessels and is used to mash and capture mashing			
Vapor Recovery Unit (VRU) located upstream of Storage Vessels: Check the box below if the facility is using a VRU to capture flashing emissions prior to any storage vessels to limit the PTE of the storage vessels to below applicability thresholds of NSPS OOOO or NSPS OOOOa. A process vs control determination should be prepared for this type of VRU application. Unit number: ☐ VRU capturing emissions prior to any storage vessel and routing directly to the sales pipeline						
Vapor Recovery Unit (VRU) attached to Storage Vessels: Check the box below if this facility is using a VRU to reduce storage vessel emissions to limit the PTE to below NSPS OOOO or NSPS OOOOa applicability thresholds: Unit number: VRU2 ☐ VRU controlling Storage Vessel emissions and the facility is subject to the requirements under NSPS OOOO, 40 CFR 60.5411 ☐ VRU controlling Storage Vessel emissions and the facility is subject to the requirements under NSPS OOOOa, 40 CFR 60.5411a						
<u>Gas Combustion Scenarios</u> : Read through the scenarios below and check the boxes next to any appropriate facility operating scenarios. Flares shall assume a destruction efficiency of 95%, unless the facility is subject to requirements for flares under 40 CFR 60.18, or a higher destruction efficiency (up to 98%) is supported by a manufacturer specification sheet (MSS) for that unit. If so, include the MSS.						
A flare, vapor combustion unit (VCU), enclosed combustion device (ECD), thermal oxidizer (TO): Unit number: HPF/LPF Controls storage vessels in accordance with 40 CFR 60, Subpart OOOO or OOOOa. Provides a federally enforceable control for the storage vessels to limit the PTE to below applicability thresholds of 40 CFR 60, Subpart OOOO or OOOOa. LPF Controls the glycol dehydrator Controls the amine unit Controls truck loading LPF Operates only during maintenance events, such as VRU downtime, check one below: The emissions during VRU downtime are represented as uncontrolled VOC emissions from the compressor The combustion emissions during VRU downtime are represented as controlled emissions from the combustion device LPF (Tank VRU) and HPF (VRT VRU)						
Controls the facility d	Controls the facility during plant turnaround HPF					
Amine Unit: Provide the	following infor	mation for e	each amine unit.			
Design Capacity in MMsc						
Rich Amine Flowrate in gal/min						

Lean Amine Flowrate in gal/min	
Mole Loading H ₂ S	
Sour Gas Input in MMscf/day	

reported in an updated Registration Form to the Department.

<u>Glycol Dehydration Unit(s):</u> Provide the following information for each glycol dehydration unit: Please include an extended gas analysis in Section 6 of this application.

<u>Unit #</u>	Glycol Pump Circulation Rate
V. 1	
Voluntary Monitoring in Accordance with §40 CFR 60.5416	o(a): Check the box(s) to implement a program that meets the
requirements of 40 CFR 60.5416(a). This monitoring program	will be conducted in lieu of the monitoring requirements
established in the GCP-Oil and Gas for individual equipment.	Ceasing to implement this alternative monitoring must be

Condition A205.B Control Device Options, Requirements, and Inspections for Tanks
Condition A206.B Truck Loading Control Device Inspection
Condition A206.C Vapor Balancing During Truck Loading
Condition A209.A Vapor Recovery Unit or Department-approved Equivalent
Condition A210.B Amine Unit Control Device Inspection

<u>Fugitive H₂S Screening Threshold and Monitoring in accordance with Condition A212:</u> Check the box that applies.

Condition A212.A does not apply because the facility is below the fugitive H₂S screening threshold in Condition A212, or

Condition A212.A applies. Because the facility is above the fugitive H₂S screening threshold in Condition A212, or the facility is voluntarily complying with Condition A212.A, and Condition A212.A applies

Form Revision: 10 December 2019 Printed: 2/18/2020 0271

XTO ENERGY INC. BEU DI 38 TANK BATTERY FACILITY EMISSIONS SUMMARY

EMISSIONS SUMMARY TABLE FACILITY VOC (INCLUDES HAPs) co SO_2 PM_{10} HAPs CO2e EMISSION SOURCE NOx IDENTIFICATION STACK DESCRIPTION NUMBER NUMBER lb/hr TPY 1b/hr TPY 1b/hr TPY lb/hr TPY lb/hr TPY 1b/hr TPY TPY FUGITIVE EMISSIONS 2.30 10.08 0.14 0.63 312.03 HEATER TREATER HT1 HT1 0.56 2.45 0.47 2.06 0.03 0.13 0.00 0.01 0.04 0.19 0.01 0.03 2051.91 HEATER TREATER HT2 HT2 0.56 2.45 0.47 2.06 0.03 0.13 0.00 0.01 0.04 0.19 0.01 0.03 2051.91 TRUCK LOADING - OIL (UNCOLLECTED VAPORS) TL-O TL-O 0.66 2.52 0.03 0.11 0.57 TRUCK LOADING - H20 TL-W TL-W 0.00 0.01 0.00 0.00 1.89 UNCOLLECTED VAPORS) ROAD EMISSIONS ROAD ROAD ---0.48 1.67 Emissions Represented at LPF. VAPOR RECOVERY TOWER LPF VRT OIL STORAGE TANK OT1 LPF Emissions Represented at LPF. OIL STORAGE TANK OT2 LPF Emissions Represented at LPF. OIL STORAGE TANK OT3 LPF Emissions Represented at LPF. SKIM TANK SKTK1 LPF Emissions Represented at LPF. SKIM TANK SKTK2 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT1 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT2 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT3 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT4 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT5 LPF Emissions Represented at LPF. PRODUCED WATER TANK WT6 LPF Emissions Represented at LPF. HIGH PRESSURE FLARE - NORMAL HPF-NO HPF 0.07 0.31 0.14 0.61 0.12 0.53 0.00 0.00 0.00 0.01 0.00 0.02 OPERATION HIGH PRESSURE FLARE - HT SSM HPF-HT SSM 20.55 2.25 41.03 7.91 0.26 0.03 0.06 0.01 3.46 0.38 18672.76 HIGH PRESSURE FLARE - SALES HPF-SALES SSM HPF 443.79 21.14 885.97 42.21 764.02 36.40 3.81 0.18 19.19 0.91 27.65 1.32 LOW PRESSURE FLARE - PILOT LPF-NO LPF 0.27 0.00 0.00 0.01 0.00 0.01 0.04 0.15 0.07 0.31 0.06 0.00 LOW PRESSURE FLARE - VRT LPF-VRT LPF 0.54 0.54 1.09 1.07 2.82 2.78 0.01 0.01 0.01 0.01 0.14 0.14 LOW PRESSURE FLARE - OIL

LPF-OT

LPF-TL

LPF-WT

LOW PRESSURE FLARE - TRUCK

LOW PRESSURE FLARE - WATER

TANKS

LPF

LPF

0.08

0.13

2.19

0.11

0.59

3.00

0.15

0.27

0.23

1.17

6.00

0.40

0.72

0.60

3.15

3.18

0.00

0.00

0.14

0.00

0.00

0.19

0.00

0.00

0.10

0.00

0.01

0.14

0.02

0.03

0.50

0.03

0.13

0.55

9865.73

XTO ENERGY INC. BEU DI 38 TANK BATTERY FACILITY EMISSIONS SUMMARY

EMISSIONS SUMMARY TABLE FACILITY IDENTIFICATION NUMBER (FIN) VOC (INCLUDES HAPs) co SO_2 PM_{10} HAPs CO2e STACK NUMBER NOx EMISSION SOURCE DESCRIPTION lb/hr TPY lb/hr TPY lb/hr lb/hr 1b/hr TPY TPY lb/hr TPY TPY TPY LOW PRESSURE FLARE - VRT SSM LPF-VRT SSM LPF 27.19 2.98 54.28 5.94 140.80 15.42 0.38 0.04 0.62 0.07 0.75 6.88 LOW PRESSURE FLARE - OIL TANK SSM LPF-OT SSM LPF 3.84 3.17 6.33 19.86 16.90 0.05 0.04 0.08 0.07 0.93 0.76 UTILITY FLARES: HIGH PRESSURE HPF HPF 464.41 23.70 927.13 47.31 836.38 44.84 4.08 0.21 19.26 0.93 31.12 1.72 18672.76 SUMMARY UTILITY FLARES: LOW PRESSURE SUMMARY LPF LPF 33.39 10.54 66.65 21.05 164.34 42.29 0.57 0.29 0.80 0.30 8.34 2.37 9865.73 VOC (INCLUDES HAPs) NOx CO SO_2 PM_{10} HAPs CO2e TOTAL FACILITY WIDE EMISSIONS TPY TPY TPY lb/hr 1b/hr 1b/hr 1b/hr TPY lb/hr TPY 1b/hr TPY TPY 498.91 39.15 994.73 72.48 1003.75 100.00 4.66 0.53 20.62 3.28 39.65 4.88 32956.80

BEU DI 38 TANK BATTERY

FACILITY EMISSIONS SUMMARY - UNCONTROLLED EMISSIONS DURING NORMAL OPERATION

			EMIS	SIONS S	UMMAR	TABLE								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	c	0		OC DES HAPs)	s	O ₂	P	M ₁₀	H	APs
EMISSION SOURCE PESCHII IION	NUMBER (FIN)	STREET TOMBER	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
FUGITIVE EMISSIONS	FUG	FUG	-		_	-	2.30	10.08	-	-			0.14	0.63
HEATER TREATER	HT1	HT1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03
HEATER TREATER	HT2	HT2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03
VAPOR RECOVERY TOWER	VRT	LPF			-	-	7039.89	7708.68		-		-	344.03	376.72
OIL STORAGE TANK	OT1	LPF	-		_	-	330.97	782.34	-	-		-	15.46	35.12
OIL STORAGE TANK	OT2	LPF	1		-	1	330.97	782.34	-	ı			15.46	35.12
OIL STORAGE TANK	OT3	LPF	1		-	1	330.97	782.34	-	ı			15.46	35.12
SKIM TANK	SKTK1	LPF	1		-	1	71.17	77.97	-	ı			12.29	13.46
SKIM TANK	SKTK2	LPF			-	-	71.17	77.97	-	-			12.29	13.46
PRODUCED WATER TANK	WT1	LPF			-	-	0.49	0.55		-		-	0.09	0.12
PRODUCED WATER TANK	WT2	LPF	-		_	-	0.49	0.55	-	-		-	0.09	0.12
PRODUCED WATER TANK	WT3	LPF	-		-	-	0.49	0.55	-	-		-	0.09	0.12
PRODUCED WATER TANK	WT4	LPF			-	-	0.49	0.55		-		-	0.09	0.12
PRODUCED WATER TANK	WT5	LPF	-			-	0.49	0.55		-			0.09	0.12
PRODUCED WATER TANK	WT6	LPF			-	-	0.49	0.55		-		-	0.09	0.12
UTILITY FLARES: HIGH PRESSURE SUMMARY	HPF	HPF	0.07	0.31	0.14	0.61	0.12	0.53	0.00	0.00	0.00	0.01	0.00	0.02
UTILITY FLARES: LOW PRESSURE SUMMARY	LPF	LPF	0.04	0.15	0.07	0.31	0.06	0.27	0.00	0.00	0.00	0.01	0.00	0.01
TRUCK LOADING - OIL (UNCOLLECTED VAPORS)	TL-O	TL-O	1			ı	50.91	193.53	-	ı		-	2.21	8.38
TRUCK LOADING - H20 (UNCOLLECTED VAPORS)	TL-W	TL-W	-		-	-	0.00	0.01	-	-			0.00	0.00
ROAD EMISSIONS	ROAD	ROAD	-			-			-		0.48	1.67	-	-
		N	Ox		o	v	OC DES HAPs)	s	D ₂	Pi	M ₁₀	н	APs	
TOTAL FACILITY WID		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
	1.23	5.37	1.15	5.04	8231.52	10419.61	0.01	0.03	0.57	2.07	417.91	518.83		

BEU DI 38 TANK BATTERY

Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

 $Emission \ Rate_X (lb/hr) = Burner \ Rating \ (MMBTU/hr) * EF_X (lb/MMSCF) / \ Heating \ Value \ of \ Fuel \ Gas \ (BTU/SCF)$

Annual Emission Rate $_{\rm X}$ (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H_2S_{WEIGHT} % * (1 - DRE)

 $P = Pressure\ (psia),\ V = Fuel\ Consumed\ in\ a\ hour\ (ft^3/hr),\ 10.73 = Ideal\ Gas\ Constant,\ T = Temperature\ (^\circR)$

Uncontrolled H_2S Mass Flow Rate (lb/hr) = $P * V / 10.73 / T * MW_{GAS} * H_2S_{WEIGHT \%}$

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) *SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 MW_{GAS} = Molecular Weight of the Gas, $H_2S_{WEIGHT\%}$ = Weight Percent of the H_2S in the Fuel Gas, DRE = Burner Combustion Efficiency of H_2S

XTO ENERGY INC. BEU DI 38 TANK BATTERY BURNER CALCULATIONS

	CRITERIA & REGULATED POLLUTANTS																	
	AP-42 Factors ¹ Ib/MMSCF Ib/hr tpy																	
Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr) ²	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}
HT1	1273.6	8760	4.00	125	105	6.9	0.75	9.5	0.56	0.47	0.03	0.00	0.04	2.45	2.06	0.13	0.01	0.19
HT2	1273.6	8760	4.00	125	105	6.9	0.75	9.5	0.56	0.47	0.03	0.00	0.04	2.45	2.06	0.13	0.01	0.19
		l Heating Value: l	Example Calculation - I	Nox Factor = 1	00 * 1273.6 / 10	020 = 125 lb/M	MSCF. AP-42	Table 1.4-1, 1.4	I-2, & 1.4-3.									
% burner effic	riency.													NOx	СО	VOC	SO ₂	PM _{10 & 2.5}
												Tota	l (tpy)	4.91	4.12	0.27	0.03	0.37
						нал	ARDOU	S AIR P	OLLUT	ANTS (I	HAPe)							
								S AIR P	OLLUTA	ANTS (I	HAPs)							
						HAZA	rs	S AIR P	OLLUTA	ANTS (I	HAPs)					tpy		
Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene		AP-42 Facto	rs	S AIR PO	DLLUT A	ANTS (I	,	НСНО	Diclorobenz	Benzene	Toluene	tpy N-Hexane	НСНО	Diclorober
Source ID				Benzene 0.002622		AP-42 Facto	rs				lb/hr	HCHO 0.000294	Diclorobenz	Benzene 0.000036	Toluene 0.000058		HCHO 0.001288	
	(BTU/SCF)	Hours	(MMBTU/Hr)		Toluene	AP-42 Facto lb/MMSCI N-Hexane	rs F HCHO	Diclorobenz	Benzene	Toluene	lb/hr N-Hexane					N-Hexane		Dicloroben 0.000021 0.000021
HT1	(BTU/SCF) 1273.6	Hours 8760	(MMBTU/Hr) 4.00	0.002622	Toluene 0.004245	AP-42 Facto lb/MMSCI N-Hexane 2.248	rs F HCHO 0.093650	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059	0.000294	0.000005	0.000036	0.000058	N-Hexane 0.030918	0.001288	0.000021
HT1 HT2	(BTU/SCF) 1273.6	8760 8760	(MMBTU/Hr) 4.00	0.002622	Toluene 0.004245	AP-42 Facto lb/MMSCI N-Hexane 2.248	rs F HCHO 0.093650	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059	0.000294	0.000005	0.000036 0.000036 Benzene	0.000058 0.000058 Toluene	N-Hexane 0.030918 0.030918 Hexane	0.001288 0.001288 HCHO	0.000021 0.000021 Diclorober
HT1 HT2 Fource: AP-42	(BTU/SCF) 1273.6 1273.6 Table 1.4-1, 1.4-2,	8760 8760	(MMBTU/Hr) 4.00	0.002622	Toluene 0.004245 0.004245	AP-42 Facto lb/MMSCI N-Hexane 2.248 2.248	F HCHO 0.093650 0.093650	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059	0.000294	0.000005	0.000036	0.000058	N-Hexane 0.030918 0.030918	0.001288	0.000021

BEU DI 38 TANK BATTERY

BURNER CALCULATIONS - GHG EMISSIONS

CRITERIA & REGULATED POLLUTANTS

				40	0 CFR 98 Facto	rs ¹		lb/hr			Tons / Year	
G ID	Fuel Gas	Operating	Burner Rating	60	,	NO	60	,	NO	60	,	NO
Source ID	(BTU/SCF)	Hours	(MMBTU/Hr)	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O
AUXH1	1273.6	8760	4.00	117	0.002	0.0002	467.989	0.009	0.001	2049.793	0.039	0.004
AUXH2	1273.6	8760	4.00	117	0.002	0.0002	467.989	0.009	0.001	2049.793	0.039	0.004
*Source: 40 CFR 98					Total I	Emissions (To	ns/Year)	4099.585	0.077	0.008		

Conversion to CO2e										
Source	CO ₂	CH4	CH4 → CO2e	N2O	N2O → CO2e	Total CO2e				
AUXH1	2049.793	0.039	0.966	0.004	1.151	2051.910				
AUXH2	2049.793	0.039	0.966	0.004	1.151	2051.910				
Total	4099.585	0.039	0.966	0.004	1.151	4101.702				

XTO ENERGY INC. BEU DI 38 TANK BATTERY AUXH - EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Exhaust Stack and Fuel Consumption Data

Source Name	AUXH1 and AUXH2
Burner Rating (btu/hr)	4000000
Heating Value (btu/scf)	1274
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1
Stack Temperature (°F)	1000
Stack Diameter (ft)	1
Stack Height (ft)	20
Fuel Consumption (scf/hr)	3141
Fuel Consumption (scf/day)	75375
Fuel Consumption (mmscf/year)	27.512
Air Injection Rate (scf/hr)	31406.2
Total exhaust flow rate @ STP (scf/hr)	34546.8
Total exhaust flow rate @ STP (scf/sec)	9.6
Total exhaust flow rate @ 1000 °F (acf/hr)	96996.7
Total exhaust flow rate @ 1000 °F (acf/sec)	26.9
Exhaust Stack Exit Velocity @ STP (ft/sec)	12.218
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	34.306

¹Air/Gas Ratio is based on the Manufacturer's Data of XTO's typical burner installations

XTO ENERGY INC. BEU DI 38 TANK BATTERY FUEL GAS ANALYSIS - PROMAX RESULTS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Carbon Dioxide	0.2434	0.4779
Nitrogen	3.9200	4.8996
Methane	71.7985	51.3920
Ethane	12.4565	16.7118
Propane	6.5455	12.8780
Isobutane	0.7754	2.0108
n-Butane	2.0098	5.2119
Isopentane	0.4411	1.4201
n-Pentane	0.4627	1.4895
n-Hexane	0.0883	0.3397
Cyclohexane	0.0177	0.0665
i-C6	0.1708	0.6565
i-C7	0.2189	0.9787
Methylcyclohexane	0.0057	0.0249
Octane	0.0562	0.2862
Nonane	0.0091	0.0519
Benzene	0.0922	0.3214
Toluene	0.0458	0.1884
Ethylbenzene	0.0038	0.0179
o-Xylene	0.0063	0.0298
H2S	0.0009	0.0014
Water	0.6228	0.5006
2,2,4 Trimethylpentane	0.0087	0.0445
Decanes Plus	0.0000	0.0000
Total	100.00	100.0000

MOLECULAR WEIGHT	22.41
SATURATED BTU	1273.6
NMHC	42.73
VOCs (NMNEHC)	26.02
HAPs	0.94
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

BEU DI 38 TANK BATTERY

Methodology for Flare Calculations

Flare Calculations

VOC Flare Calculations - Uses the Ideal Gas Law for Mixtures

VOC Mass Flow Rate (lb/day) = P * V / 10.73 / T * MW_{GAS} * VOC_{WEIGHT} % * (1 - DRE)

P = Pressure (psia), V = Volume of Gas in a Day (ft³/day), 10.73 = Ideal Gas Constant, T = Temperature (°R)

 $MW_{GAS} = Molecular\ Weight\ of\ the\ Gas,\ VOC_{WEIGHT\%} = Weight\ Percent\ of\ the\ Total\ VOC,\ DRE = Flare\ Destruction\ Efficiency$

NOx & CO Calculations - TCEQ Emission Factors Used

NOx (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^6 (BTU/MMBTU)

 $CO (lb/day) = Heating \ Value \ (BTU/ft^3) * EF (lb/MMBTU) * V (ft^3/Day) / 10^6 \ (BTU/MMBTU)$

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

*NOx and CO Emission Factors are the highest of Low BTU and High BTU options for TCEQ Flare Emission Factors - Calculating emissions using these factors overestimates either NOx or CO depending on the Heating Value of the Gas

SO₂ & H₂S Calculations - Mass Balance

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_GAS * $H_2S_{WEIGHT\,\%}$ * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * $H_2S_{WEIGHT \%}$

 $SO_{2}\ Emission\ Rate\ (lb/hr) = Uncontrolled\ H_{2}S\ Mass\ Rate\ (lb/hr) * SO_{2}\ Conversion\ Efficiency * (MW\ of\ SO_{2}\ (lb/lb-mol))\ /\ MW\ of\ H_{2}S\ (lb/lb-mol))$

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 $MW_{GAS} = Molecular \ Weight \ of the \ Gas, H_2S_{WEIGHT\%} = Weight \ Percent \ of \ the \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ Efficiency \ of \ H_2S \ in \ Gas \ Stream, \ DRE = Flare \ Destruction \ of \ H_2S \ in \ Gas \ Of \ H_2S$

BEU DI 38 TANK BATTERY

COMBINED HP & LP FLARING - TOTAL EMISSIONS SUMMARY

Flare Emissions Summary Table

NOx Stream Source		NOx CO (In			Total VOC (Includes Total HAPs)		SO_2		PM _{10 & 2.5}		Total HAPs		
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY
High Pressure Flaring	464.41	23.70	927.13	47.31	836.38	44.84	4.08	0.21	19.26	0.93	31.12	1.72	18672.76
Low Pressure Flaring	33.39	10.54	66.65	21.05	164.34	42.29	0.57	0.29	0.80	0.30	8.34	2.37	9865.73
Total Emissions	497.79	34.24	993.78	68.36	1000.72	87.13	4.65	0.50	20.06	1.24	39.46	4.08	28538.49

BEU DI 38 TANK BATTERY

HP FLARING - TOTAL EMISSIONS SUMMARY

Flare Emissions Summary Table

Stream Source	NOx		со		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Pilot Fuel & Purge Gas	0.07	0.31	0.14	0.61	0.12	0.53	0.00	0.00	0.00	0.01	0.00	0.02
Booster Compressor SSM	20.55	2.25	41.03	4.49	72.24	7.91	0.26	0.03	0.06	0.01	3.46	0.38
Sales Gas Flaring	443.79	21.14	885.97	42.21	764.02	36.40	3.81	0.18	19.19	0.91	27.65	1.32
Total Emissions	464.41	23.70	927.13	47.31	836.38	44.84	4.08	0.21	19.26	0.93	31.12	1.72

XTO ENERGY INC. BEU DI 38 TANK BATTERY HP FLARE - PILOT & PURGE GAS

Flare Pilot & Purge Gas Emissions

Pilot Fuel + Purge Gas	9600	SCF/Day
Duration	8760	Hours/Year
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
BTU	1273.64	Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO ¹	3.369	3.369	0.14	0.61
NOx ¹	1.687	1.687	0.07	0.31
VOCs ²	2.905	2.905	0.12	0.53
SO_2^3	0.015	0.015	0.00	0.00
H_2S^3	0.000	0.000	0.00	0.00
PM _{10 & 2.5}	0.073	0.073	0.00	0.01

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC weight % * Gas MW

 $^{^3}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 $^{^4}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER GAS ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.2903	0.4153
Nitrogen	1.0619	0.9669
Methane	46.8801	24.4459
Ethane	21.4011	20.9172
Propane	15.8500	22.7180
Isobutane	2.1539	4.0693
n-Butane	5.8244	11.0037
Isopentane	1.3867	3.2519
n-Pentane	1.5008	3.5197
n-Hexane	0.3164	0.8862
Cyclohexane	0.0638	0.1747
i-C6	0.5889	1.6496
i-C7	0.8153	2.6556
Methylcyclohexane	0.0217	0.0692
Octane	0.2341	0.8692
Nonane	0.0410	0.1710
Benzene	0.3290	0.8352
Toluene	0.1782	0.5337
Ethylbenzene	0.0158	0.0545
o-Xylene	0.0266	0.0919
H2S	0.0019	0.0021
Water	0.9851	0.5769
2,2,4 Trimethylpentane	0.0329	0.1222
Decanes Plus	0.0000	0.0003
Total	100.00	100.0000

MOLECULAR WEIGHT	30.76
SATURATED BTU	1760.70
NMHC	73.59
VOCs (NMNEHC)	52.68
HAPs	2.52
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

HEATER TREATER GAS - FLARING VOC EMISSIONS

Heater Treater VOC Emissions¹

Emissions Component	Uncontro	olled Heater Trea	Controlled Heater Treater Stream (Booster Downtime - 100% Flared) ²			
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	
Carbon Dioxide	28.478	7.120	31.184	0.570	0.062	
Nitrogen	66.300	16.575	72.598	1.326	0.145	
Methane	1676.198	419.049	1835.437	33.524	3.671	
Ethane	1434.240	358.560	1570.493	28.685	3.141	
Propane	1557.719	389.430	1705.702	31.154	3.411	
Isobutane	279.022	69.755	305.529	5.580	0.611	
n-Butane	754.495	188.624	826.172	15.090	1.652	
Isopentane	222.978	55.744	244.161	4.460	0.488	
n-Pentane	241.336	60.334	264.263	4.827	0.529	
n-Hexane	60.766	15.191	66.538	1.215	0.133	
Cyclohexane	11.976	2.994	13.114	0.240	0.026	
i-C6	113.107	28.277	123.852	2.262	0.248	
i-C7	182.086	45.521	199.384	3.642	0.399	
Methylcyclohexane	4.745	1.186	5.196	0.095	0.010	
Octane	59.602	14.901	65.264	1.192	0.131	
Nonane	11.722	2.930	12.835	0.234	0.026	
Benzene	57.269	14.317	62.709	1.145	0.125	
Toluene	36.596	9.149	40.073	0.732	0.080	
Ethylbenzene	3.737	0.934	4.092	0.075	0.008	
o-Xylene	6.300	1.575	6.899	0.126	0.014	
H2S	0.143	0.036	0.157	0.003	0.000	
Water	39.554	9.889	43.312	0.791	0.087	
2,2,4 Trimethylpentane	8.376	2.094	9.171	0.168	0.018	
Decanes Plus	0.020	0.005	0.022	0.000	0.000	

Emissions Component	t	Incontrolled Heato Treater Stream	Controlled Heater Treater Stream (Booster Downtime - 100% Flared) ²		
	Max lb/hr	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	6856.76	1714.19	7508.16	137.14	15.02
VOC TOTAL	3611.85	902.96	3954.98	72.24	7.91
HAP TOTAL	173.04	43.26	189.48	3.46	0.38

¹Uncontrolled emissions and gas volume are based on Promax Results. Treater vapors are collected for sales by booster compressor. 100% of vapors are flared during booster downtime.

²Controlled Emissions were calculated by the following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare Reduction = 98% Booster Collection Efficiency = 100%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by booster downtime.

XTO ENERGY INC. BEU DI 38 TANK BATTERY HP FLARE COMBUSTION EMISSIONS - HEATER TREATER GAS

Heater Treater Gas Routed to HP Flare During Booster Downtime - Combustion Emissions

Daily Treater Gas Flared	2,029,879	SCF/Day (Based on Maximum Hourly)
Hourly Treater Gas Flared	84,578	SCF/Hr (Based on Maximum Hourly)
Daily Treater Gas Flared	507,470	SCF/Day (Based on Annual Average)
Annual Treater Gas Flared	18,522,645	SCF/Year (Based on Annual Average)
Duration	876	Hours/Year
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	1760.70	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	41.03	4.49
NOx^1	20.55	2.25
SO_2^2	0.26	0.03
$\mathrm{H_2S^2}$	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.06	0.01

 $^{{}^{1}\}text{ The CO and NOx emission factors (0.2755 and 0.138 lb/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.}$

² Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY INLET GAS ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.2434	0.4779
Nitrogen	3.9200	4.8996
Methane	71.7985	51.3920
Ethane	12.4565	16.7118
Propane	6.5455	12.8780
Isobutane	0.7754	2.0108
n-Butane	2.0098	5.2119
Isopentane	0.4411	1.4201
n-Pentane	0.4627	1.4895
n-Hexane	0.0883	0.3397
Cyclohexane	0.0177	0.0665
i-C6	0.1708	0.6565
i-C7	0.2189	0.9787
Methylcyclohexane	0.0057	0.0249
Octane	0.0562	0.2862
Nonane	0.0091	0.0519
Benzene	0.0922	0.3214
Toluene	0.0458	0.1884
Ethylbenzene	0.0038	0.0179
o-Xylene	0.0063	0.0298
H2S	0.0009	0.0014
Water	0.6228	0.5006
2,2,4 Trimethylpentane	0.0087	0.0445
Decanes Plus	0.0000	0.0000
Total	100.00	100.0000

MOLECULAR WEIGHT	22.41
SATURATED BTU	1273.64
NMHC	42.73
VOCs (NMNEHC)	26.02
HAPs	0.94
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY HP FLARE COMBUSTION EMISSIONS

HP Gas Routed to HP Flare - Sales Gas Downtime - Combustion Emissions

Total Gas Flared 60,598,405 SCF/Day Total Gas Flared 240,566,316 SCF/Year Duration 95 Hours/Year² Flared Yes (Yes/No) Vented No (Yes/No) **Heat Content** 1273.64 Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	itted from the Flare Total Estimated Quantity Emitted (lb/day)		Annualized Emission Rate (TPY)
CO ¹	21263.17	21263.17	885.97	42.21
NOx ¹	10650.88	10650.88	443.79	21.14
VOCs ²	18336.52	18336.52	764.02	36.40
SO_2^3	91.54	91.54	3.81	0.18
H_2S^3	0.97	0.97	0.04	0.00
PM _{10 & 2.5}	460.55	460.55	19.19	0.91
HAPs ²	663.66	663.66	27.65	1.32
n-Hexane ²	239.39	239.39	9.97	0.48
Benzene ²	226.51	226.51	9.44	0.45

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * Weight % * Gas MW

 $^{^3}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

⁴ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY HIGH PRESSURE FLARING EMISSIONS - GHG

Pilot Consumption Rate (scf/year)		Inlet Gas Fla			Treater Gas Flare Rate		
		(scf/ye	·	(scf/yea	·		
3,504,000		240,566,	316	18,522,6	45		
Pilot & Purg	e Gas	Inlet Gas Co	mbusted	Treater Gas Co	mbusted		
		Ea,CH4 = Va * XCH4	* [(1- η)* ZL + ZU				
Va =	3504000	Va =	240566315.9	Va =	18522645		
XCH ₄ =	0.7180	XCH ₄ =	0.7180	XCH ₄ =	0.4688		
N =	0.98	N =	0.98	N =	0.98		
Z _L =	1	Z _L =	1	Z _L =	1		
Z _U =	0	Z _U =	0	Z _U =	0		
Ea,CH ₄ =	50316 Ea,CH ₄ =		3454460	Ea,CH ₄ =	173669		
		Ea,CO2 (uncombuste	ed) = Va * XCO2				
Va =	3504000	Va =	240566315.9	Va =	18522645		
X _{CO2} =	0.0024	X _{CO2} =	0.0024	X _{CO2} =	0.0024		
Ea,CO2 (uncombusted)	8528	Ea,CO2 (uncombusted)	Ea,CO2 (uncombusted) 585503		45081		
		Ea,CO2 (combusted) = Σ	(η * Va * Yj * Rj * ZL)				
Ea,CO2 (combusted) =	4657255	Ea,CO2 (combusted) =	319742799	Ea,CO2 (combusted) =	35741973		
		Es,n = Ea,n * (459.67 + Ts) *	Pa / (459.67 + Ta) * Ps				
$E_{a,n}(CH4) =$	45295	$E_{a,n}(CH4) =$	3109728	$E_{a,n}(CH4) =$	156338		
$E_{a,n}(CO2) =$	4200171	$E_{a,n}(CO2) =$	288361765	$E_{a,n}(CO2) =$	32215756		
		Masss,i = Es,i	* ρi * 103				
Mass _{CH4}	0.870	Mass _{CH4}	59.707	Mass _{CH4}	3.002		
Mass _{C02}	220.929	Mass _{C02}	15167.829	Mass _{C02}	1694.549		
		CO2e = CO2 + (C	CH4 X GWP)				
CO ₂	221	CO ₂	15168	CO ₂	1695		
CH₄	1	CH ₄	60	CH ₄	3		
CO ₂ e	243	CO₂e	16660	CO ₂ e	1770		

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

LP FLARING - TOTAL EMISSIONS SUMMARY

Flare Emissions Summary Table - Total Emissions

Normal Operations												
Stream Source	NOx	Ox	СО		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Pilot Fuel & Purge Gas	0.04	0.15	0.07	0.31	0.06	0.27	0.00	0.00	0.00	0.01	0.00	0.01
Vapor Recovery Tower (VRT)	0.54	0.54	1.09	1.07	2.82	2.78	0.01	0.01	0.01	0.01	0.14	0.14
Oil Storage Tanks	0.08	0.11	0.15	0.23	0.40	0.60	0.00	0.00	0.00	0.00	0.02	0.03
Truck Loading of Oil	0.13	0.59	0.27	1.17	0.72	3.15	0.00	0.00	0.00	0.01	0.03	0.13
Skim & Water Tanks	2.19	3.00	4.37	6.00	2.91	3.18	0.14	0.19	0.10	0.14	0.50	0.55

VRU Downtime Emissions - SSM												
Stroom Source	NOx		СО		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Vapor Recovery Tower (VRT)	27.19	2.98	54.28	5.94	140.80	15.42	0.38	0.04	0.62	0.07	6.88	0.75
Oil Storage Tanks	3.84	3.17	7.66	6.33	19.86	16.90	0.05	0.04	0.08	0.07	0.93	0.76

Low Pressure Flaring Summary												
Stream Source	NOx		СО		Total VOC (Includes Total HAPs)		SO_2		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Normal Operations ¹	2.36	4.39	4.71	8.77	3.69	9.98	0.14	0.21	0.10	0.17	0.53	0.86
VRU Downtime - SSM	31.03	6.15	61.94	12.28	160.66	32.32	0.43	0.08	0.70	0.13	7.81	1.51
Combined Flaring Total ²	33.39	10.54	66.65	21.05	164.34	42.29	0.57	0.29	0.80	0.30	8.34	2.37

1 Hourly emissions during normal operations do not include emissions from the VRT & Oil Tanks during normal operation as they cannot occur at the same time as VRU downtime.

²Combined Flaring Hourly Rates denotes the peak hourly rate possible.

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - PILOT & PURGE GAS

Flare Pilot & Purge Gas Emissions

Pi	ilot Fuel + Purge Gas	4800	SCF/Day
	Duration	8760	Hours/Year
	Flared	Yes	(Yes/No)
	Vented	No	(Yes/No)
	BTU	1273.64	Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO ¹	1.684	1.684	0.07	0.31
NOx ¹	0.844	0.844	0.04	0.15
VOCs ²	1.452	1.452	0.06	0.27
SO_2^3	0.007	0.007	0.00	0.00
H_2S^3	0.000	0.000	0.00	0.00
PM _{10 & 2.5}	0.036	0.036	0.00	0.01

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2}$ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC weight % * Gas MW

³ Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

⁴ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY LOW PRESSURE FLARING EMISSIONS - GHG

LP FLARE - GHG EMISSIONS

Pilot Consumption Rate	Total LP Flare Gas Rate
(coffront)	(coffron)

(scf/ye	ar)	(scf/yea	(scf/year) 78,184,701		
1,752,0	00	78,184,7			
Pilot & Pu	ge Gas	Total Gas Co	mbusted		
	$Ea, CH_4 = Va * XC$	CH ₄ * [(1- η)* ZL + ZU			
Va =	1752000	Va =	78184701		
XCH ₄ =	0.7180	XCH ₄ =	0.2171		
N =	0.98	N =	0.98		
Z _L =	1	Z _L =	1		
Z _U =	0	Z _U =	0		
Ea,CH ₄ =	25158	Ea,CH ₄ =	339521		
	E _{a,CO2} (uncom	busted) = $V_a * X_{CO2}$			
Va =	1752000	Va =	78184701		
X _{CO2} =	0.0024	X _{CO2} =	0.0034		
Ea,CO2 (uncombusted)	4264	Ea,CO2 (uncombusted)	268156		
•	Ea,CO2 (combusted)	= Σ (η * Va * Yj * Rj * ZL)			
Ea,CO2 (combusted) =	2328628	Ea,CO2 (combusted) =	202424798		
•	Es,n = Ea,n * (459.67 +	Ts) * Pa / (459.67 + Ta) * Ps			
$E_{a,n}(CH4) =$	22648	$E_{a,n}(CH4) =$	305639		
$E_{a,n}(CO2) =$	2100085	$E_{a,n}(CO2) =$	182465607		
•	Mass _{s,i} =	· Ε _{s,i} * ρi * 10 ³			
Mass _{CH4}	0.435	$\mathrm{Mass}_{\mathrm{CH4}}$	5.868		
Mass _{C02}	110.464	Mass _{C02}	9597.691		
	$CO_2e = CO_2$	+ (CH ₄ X GWP)			
CO ₂	110	CO ₂	9598		
CH₄	0.4	CH₄	5.9		
CO ₂ e	121	CO ₂ e	9744		

0292

XTO ENERGY INC. BEU DI 38 TANK BATTERY VRT VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1950	0.1995
Nitrogen	0.1374	0.0895
Methane	15.6098	5.8197
Ethane	24.1551	16.8794
Propane	29.3639	30.0911
Isobutane	4.6487	6.2791
n-Butane	12.9343	17.4709
Isopentane	3.1199	5.2312
n-Pentane	3.3505	5.6179
n-Hexane	0.6694	1.3406
Cyclohexane	0.1351	0.2641
i-C6	1.2794	2.5622
i-C7	1.6666	3.8809
Methylcyclohexane	0.0438	0.0998
Octane	0.4322	1.1474
Nonane	0.0702	0.2094
Benzene	0.7027	1.2755
Toluene	0.3544	0.7589
Ethylbenzene	0.0292	0.0720
o-Xylene	0.0487	0.1203
H2S	0.0028	0.0022
Water	0.9846	0.4122
2,2,4 Trimethylpentane	0.0663	0.1759
Decanes Plus	0.0000	0.0002
Total	100.00	100.0000

MOLECULAR WEIGHT	43.03
SATURATED BTU	2430.73
NMHC	93.48
VOCs (NMNEHC)	76.60
HAPs	3.74
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY VAPOR RECOVERY TOWER EMISSIONS

VRT VOC Emissions Routed to VRU/Flare Vent System¹

Emissions Component	Uncon	trolled VRT St	ream		VRT Stream Operations)	Controlled VRT Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	18.331	4.583	20.073	0.007	0.007	0.367	0.040
Nitrogen	8.224	2.056	9.005	0.003	0.003	0.164	0.018
Methane	534.872	133.718	585.685	0.214	0.211	10.697	1.171
Ethane	1551.347	387.837	1698.725	0.621	0.612	31.027	3.397
Propane	2765.601	691.400	3028.333	1.106	1.090	55.312	6.057
Isobutane	577.099	144.275	631.924	0.231	0.227	11.542	1.264
n-Butane	1605.703	401.426	1758.245	0.642	0.633	32.114	3.516
Isopentane	480.782	120.196	526.457	0.192	0.190	9.616	1.053
n-Pentane	516.323	129.081	565.374	0.207	0.204	10.326	1.131
n-Hexane	123.215	30.804	134.920	0.049	0.049	2.464	0.270
Cyclohexane	24.277	6.069	26.583	0.010	0.010	0.486	0.053
i-C6	235.488	58.872	257.860	0.094	0.093	4.710	0.516
i-C7	356.683	89.171	390.568	0.143	0.141	7.134	0.781
Methylcyclohexane	9.177	2.294	10.049	0.004	0.004	0.184	0.020
Octane	105.458	26.365	115.477	0.042	0.042	2.109	0.231
Nonane	19.244	4.811	21.072	0.008	0.008	0.385	0.042
Benzene	117.231	29.308	128.368	0.047	0.046	2.345	0.257
Toluene	69.750	17.437	76.376	0.028	0.027	1.395	0.153
Ethylbenzene	6.618	1.654	7.247	0.003	0.003	0.132	0.014
o-Xylene	11.053	2.763	12.104	0.004	0.004	0.221	0.024
H2S	0.204	0.051	0.224	0.000	0.000	0.004	0.000
Water	37.886	9.472	41.486	0.015	0.015	0.758	0.083
2,2,4 Trimethylpentane	16.168	4.042	17.704	0.006	0.006	0.323	0.035
Decanes Plus	0.017	0.004	0.019	0.000	0.000	0.000	0.000

Emissions Component	Uncon	Uncontrolled VRT Stream			Controlled VRT Stream (Normal Operations)		Controlled VRT Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
STREAM TOTAL	9190.75	2297.69	10063.87	3.68	3.62	183.82	20.13	
VOC TOTAL	7039.89	1759.97	7708.68	2.82	2.78	140.80	15.42	
HAP TOTAL	344.03	86.01	376.72	0.14	0.14	6.88	0.75	

 1 Uncontrolled emissions and gas volume are based on Promax Results. VRT vapors are collected for sales by a VRU. 100% of vapors are flared during VRU downtime.

 2 Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by VRU downtime.

Normal Operations	VRU Collection Efficiency	98%
VRU Downtime	VRU Collection Efficiency	0%
VRU Downtime	Hours	876
Flare Destruction Efficie	ency	98%

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - VAPOR RECOVERY TOWER - NORMAL OPERATIONS

VRT Emissions Routed to VRU/Flare Vent System

Daily VRT Gas Volume	1945295	SCF/Day (Based on Maximum Hourly)
Hourly VRT Gas Volume	81054	SCF/Hour (Based on Maximum Hourly)
Daily VRT Gas Volume	486324	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	98	Percentage
Hourly VRT Gas Volume (Post-VRU)	1621	SCF/Hour (Based on Maximum Hourly)
Duration	7884	Hours/Year
Annual VRT Gas Volume (Post-VRU)	3195147	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heat Content	2430.73	Btu/SCF

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	1.09	1.07
NOx^1	0.54	0.54
SO_2^2	0.01	0.01
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.01	0.01

 $^{^{1} \} The \ CO \ and \ NOx \ emission \ factors \ (0.2755lb \ and \ 0.138/MMBtu) \ are \ based \ on \ TCEQ \ document \ RG-109, \ Basis \ for \ Emission \ Calculation \ from \ Flare \ Systems.$

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation:\ SCF/day\ ^*14.7\ /\ 10.73\ /\ 528\ ^*H2S\ PPM\ ^*H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - VAPOR RECOVERY TOWER - VRU DOWNTIME

VRT Emissions Flared During VRU Downtime

Daily VRT Gas Volume	1945295	SCF/Day (Based on Maximum Hourly)
Hourly VRT Gas Volume	81054	SCF/Hour (Based on Maximum Hourly)
Daily VRT Gas Volume	486324	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	0	Percentage
Hourly VRT Gas Volume	81054	SCF/Hour (Based on Maximum Hourly)
Duration	876	Hours/Year
Annual VRT Gas Volume	17750815	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	2430.73	Btu/SCF

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	54.28	5.94
NOx^{1}	27.19	2.98
$SO_2^{\ 2}$	0.38	0.04
$\mathrm{H_2S^2}$	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.62	0.07

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

² Emissions are based on the following example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S PPM * H2S MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

Calculation Methodology for Heater Treater, VRT, & Tank Emissions

Calculation Methodology

Storage Tank Emissions - VOC Emissions

The heater treater gas, VRT, and storage tank emissions were estimated using a representative pressurized liquid analysis that produces from the same formation as the wells that flow into the facility and Promax Simulation Software. The heater treater gases are routed to a booster compressor and routed to sales during normal operations. During booster compressor downtime the off gases are routed to the high pressure flare. The VRT and storage tanks emissions are controlled a VRU and a 98% collection efficiency is represented, which the remaining 2% of the gas constantly being routed to flare. During VRU downtime all the assoicated gas will be routed to the flare for combustion. All skim tank and water tank emissions are routed directly to the low pressure flare.

Working & Breathing Emissions: AP-42 Chapter 7.1.3.1

 $L_T = L_S + L_W$ (Total losses, lb/yr: Equation 1-1)

 $L_S = 365 V_V W_V K_E K_S$ (Standing Storage Losses, lb/hr: Equation 1-2)

 $L_W = 0.0010 M_V P_{VA} Q K_N K_P$ (Working Storage Losses, lb/hr: Equation 1-29)

Promax Model GOR Check

Oil Throughput Minus Dead Oil

20000

bbl/Day

Sources	SCF/Day	SCF/bb1
Heater Treater	507470	25.37
Vapor Recovery Tower	486324	24.32
Oil Tank	39609	1.98

Total GOR 51.67 Flash Liberation of Sample GOR 47.90

XTO ENERGY INC. BEU DI 38 TANK BATTERY VRU - COST BENEFIT ANALYSIS

VAPOR RECOVERY TOWER VRU

Unit Variable	Vapor Recovery Tower	
Vapor Emission Rate (mscfd)	476.597	
Heating Value (btu/scf)	2430.73	
Value of gas sold (\$/MMBtu)	\$	2.10
VRU Rental Rate (\$/Month)	\$	5,400.00
VRU Count	1	
Total Monthly Rental Rate (\$/Month)	\$	5,400.00
Annual Rental Rate Cost (\$/Year)	\$	64,800.00
Expectancy of VRU (years)	5	
Annual Revenue Total (\$/Year)	\$	799,178.47
Five Year Profit (\$)	\$	3,671,892.37

Is the primary purpose of the equipment to control air pollution?

No, the primary purpose is to recover product for sale.

Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?

The VRU generates income for the site.

Would the equipment be installed if no air quality regulations are in place?

The equipment would be installed regardless of air quality regulations.

- (1) Vapor emissions are obtained from Promax Modeling.
- $(2) \ Value \ of \ gas \ sold \ based \ on \ 3-month \ average \ from \ http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm$
- (3) Heating vales of vapors are based on Promax results.
- (4) Rental estimate includes installation, operation, and maintenance of VRU.

XTO ENERGY INC. BEU DI 38 TANK BATTERY OIL STORAGE TANK EMISSIONS SUMMARY

TOTAL EMISSIONS SUMMARY

FIN	Unit Description	Tank Controlled	Control Type	Material Material Type Type Throughput (C) Material Type		Total VOC	Emissions
TIN	Out Description	(Yes/No)	Control Type	(bbls/day)	(Oil/Produced Water)	lb/hour	TPY
OT1	Oil Storage Tank	Yes	Flare	8333.3	OIL	6.75	5.83
OT2	Oil Storage Tank	Yes	Flare	8333.3	OIL	6.75	5.83
ОТ3	Oil Storage Tank	Yes	Flare	8333.3	OIL	6.75	5.83
	Oil Tank Emissions					20.26	17.50

 $^{^{18}\} Emissions\ are\ represented\ at\ LPF.\ The\ VOC\ rate\ includes\ emissions\ during\ operation\ of\ the\ VRU\ and\ during\ VRU\ downtime.$

XTO ENERGY INC. BEU DI 38 TANK BATTERY OIL TANK VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1270	0.1182
Nitrogen	0.0025	0.0015
Methane	2.1295	0.7228
Ethane	28.6828	18.2471
Propane	35.5850	33.1982
Isobutane	5.3172	6.5385
n-Butane	14.7813	18.1764
Isopentane	3.6521	5.5747
n-Pentane	3.8887	5.9359
n-Hexane	0.7873	1.4354
Cyclohexane	0.1232	0.2194
i-C6	1.4627	2.6668
i-C7	1.7955	3.8063
Methylcyclohexane	0.0397	0.0826
Octane	0.4351	1.0515
Nonane	0.0564	0.1531
Benzene	0.6426	1.0620
Toluene	0.3409	0.6645
Ethylbenzene	0.0290	0.0651
o-Xylene	0.0422	0.0949
H2S	0.0028	0.0020
Water	0.0008	0.0003
2,2,4 Trimethylpentane	0.0756	0.1828
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000

MOLECULAR WEIGHT	47.27
SATURATED BTU	2672.79
NMHC	99.16
VOCs (NMNEHC)	80.91
HAPs	3.50
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY

OIL STORAGE TANK - EMISSIONS SUMMARY

Oil Storage Tank VOC Emissions Routed to Flare & VRU2

Emission Component	Uncontrolled Oil Tank W&B Stream		Uncontrolled Oil Tank Flash Stream		Controlled B	k Stream y Flare - VRU ntime	Controlled By	x Stream VRU & Flare - Operations	
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.560	2.455	1.199	0.300	1.313	0.035	0.027	0.001	0.001
Nitrogen	0.007	0.030	0.321	0.080	0.352	0.007	0.003	0.000	0.000
Methane	3.426	15.005	34.089	8.522	37.328	0.750	0.377	0.015	0.013
Ethane	86.490	378.827	126.461	31.615	138.475	4.259	3.725	0.085	0.132
Propane	157.358	689.227	238.077	59.519	260.694	7.909	6.839	0.158	0.243
Isobutane	30.992	135.746	50.000	12.500	54.750	1.620	1.372	0.032	0.049
n-Butane	86.155	377.359	140.183	35.046	153.500	4.527	3.822	0.091	0.136
Isopentane	26.424	115.736	42.000	10.500	45.990	1.368	1.164	0.027	0.041
n-Pentane	28.136	123.234	45.196	11.299	49.490	1.467	1.244	0.029	0.044
n-Hexane	6.804	29.801	10.620	2.655	11.629	0.348	0.298	0.007	0.011
Cyclohexane	1.040	4.556	1.699	0.425	1.860	0.055	0.046	0.001	0.002
i-C6	12.641	55.366	20.243	5.061	22.166	0.658	0.558	0.013	0.020
i-C7	18.042	79.022	31.022	7.755	33.969	0.981	0.814	0.020	0.029
Methylcyclohexane	0.391	1.714	0.635	0.159	0.695	0.021	0.017	0.000	0.001
Octane	4.984	21.829	8.960	2.240	9.811	0.279	0.228	0.006	0.008
Nonane	0.725	3.178	1.602	0.400	1.754	0.047	0.036	0.001	0.001
Benzene	5.034	22.047	10.230	2.557	11.202	0.305	0.239	0.006	0.009
Toluene	3.150	13.795	6.008	1.502	6.579	0.183	0.147	0.004	0.005
Ethylbenzene	0.309	1.352	0.563	0.141	0.617	0.017	0.014	0.000	0.001
o-Xylene	0.450	1.970	0.935	0.234	1.024	0.028	0.022	0.001	0.001
H2S	0.010	0.042	0.014	0.004	0.016	0.000	0.000	0.000	0.000
Water	0.001	0.006	2.494	0.624	2.731	0.050	0.020	0.001	0.001
2,2,4 Trimethylpentane	0.866	3.795	1.423	0.356	1.558	0.046	0.039	0.001	0.001
Decanes Plus	0.000	0.002	0.001	0.000	0.001	0.000	0.000	0.000	0.000

Emission Component	Uncontrolled Oil Tank W&B Stream		Uncontrolled Oil Tank Flash Stream		Controlled B	k Stream y Flare - VRU ntime	Oil Tanl Controlled By Normal C	VRU & Flare -	
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	473.99	2076.10	773.98	193.49	847.50	24.96	21.05	0.50	0.75
VOC TOTAL	383.50	1679.73	609.40	152.35	667.29	19.86	16.90	0.40	0.60
HAP TOTAL	16.61	72.76	29.78	7.45	32.61	0.93	0.76	0.02	0.03

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using LPF and VRU2.

²Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare Destruction Efficiency 98%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours for normal operation.

Normal Operations	VRU Efficiency	98%	
VRU Downtime	VRU Efficiency	0%	
VRU Downtime	Hours	3154	

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - OIL STORAGE TANKS

Flared Oil Storage Tank Emissions - VRU Normal Operations

Daily Oil Tank Gas Volume Hourly Oil Tank Gas Volume	249770 10407	SCF/Hour (Based on Maximum Hourly) SCF/Hour (Based on Maximum Hourly)
Daily Oil Tank Gas Volume	130943	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	98	Percentage
Hourly Oil Tank Gas Volume (Post-VRU)	208	SCF/Hour (Based on Maximum Hourly)
Duration	5606	Hours/Year
Annual Oil Tank Gas Volume (Post-VRU)	611764	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Heating Volume	2672.79	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	0.15	0.23
NOx^1	0.08	0.11
$SO_2^{\ 2}$	0.00	0.00
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.00	0.00

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation: SCF/day*14.7\ /\ 10.73\ /\ 528*H2S\ PPM*H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - OIL STORAGE TANKS

Flared Oil Storage Tank Emissions - VRU Downtime

Daily Oil Tank Gas Volume	249770	SCF/Hour (Based on Maximum Hourly)
Hourly Oil Tank Gas Volume	10407	SCF/Hour (Based on Maximum Hourly)
Daily Oil Tank Gas Volume	130943	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	0	Percentage
Hourly Oil Tank Gas Volume	10407	SCF/Hour (Based on Maximum Hourly)
Duration	3154	Hours/Year
Annual Oil Tank Gas Volume	17205864	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Heating Volume	2672.79	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	7.66	6.33
NOx^{1}	3.84	3.17
SO_2^2	0.05	0.04
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.08	0.07

¹ The CO and NOx emission factors (0.2755lb and 0.138/MMBtu) are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems.

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation:\ SCF/\ day\ ^*\ 14.7\ /\ 10.73\ /\ 528\ ^*\ H2S\ PPM\ ^*\ H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

 $^{^3}$ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY VRU - COST BENEFIT ANALYSIS

STORAGE TANK VRUs

Unit Variable	Oil Tanks	
Vapor Emission Rate (mscfd)	128.324	
Heating Value (btu/scf)	2673	
Value of gas sold (\$/MMBtu)	\$	2.10
VRU Rental Rate (\$/Month)	\$	5,400.00
VRU Count	1	
Total Monthly Rental Rate (\$/Month)	\$	5,400.00
Annual Rental Rate Cost (\$/Year)	\$	64,800.00
Expectancy of VRU (years)	5	
Annual Revenue Total (\$/Year)	\$	168,253.50
Five Year Profit (\$)	\$	517,267.48

Is the primary purpose of the equipment to control air pollution?

No, the primary purpose is to recover product for sale.

Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?

The VRU generates income for the site.

Would the equipment be installed if no air quality regulations are in place?

The equipment would be installed regardless of air quality regulations.

- (1) Vapor emissions are obtained from Promax Modeling.
- (2) Value of gas sold based on 3-month average from http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm
- (3) Heating vales of vapors are based on Promax results.
- (4) Rental estimate includes installation, operation, and maintenance of VRU.

XTO ENERGY INC. BEU DI 38 TANK BATTERY SKIM TANK EMISSIONS SUMMARY

TOTAL EMISSIONS SUMMARY

FIN	Unit Description	Tank Controlled	Control Type	Material Throughput	Material Type	Total VOC Emissions	
1111	Omi Description	(Yes/No)	Control Type	(bbls/day)	(Oil/Produced Water)	lb/hour	TPY
SKTK1	Skim Tank	Yes	Flare	30000	PRODUCED WATER	1.42	1.56
SKTK2	Skim Tank	Yes	Flare	30000	PRODUCED WATER	1.42	1.56
	SKIM Tank Emissions						3.12

XTO ENERGY INC. BEU DI 38 TANK BATTERY SKIM TANK VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	1.4378	2.8691
Nitrogen	1.9635	2.4941
Methane	67.8591	49.3614
Ethane	14.8457	20.2409
Propane	5.3598	10.7164
Isobutane	0.4055	1.0688
n-Butane	1.4443	3.8063
Isopentane	0.2094	0.6850
n-Pentane	0.1023	0.3348
n-Hexane	0.0125	0.0490
Cyclohexane	0.0326	0.1244
i-C6	0.0471	0.1839
i-C7	0.0355	0.1614
Methylcyclohexane	0.0051	0.0229
Octane	0.0024	0.0122
Nonane	0.0003	0.0018
Benzene	0.5885	2.0843
Toluene	0.2758	1.1521
Ethylbenzene	0.0214	0.1030
o-Xylene	0.0368	0.1774
H2S	0.0065	0.0100
Water	5.3070	4.3351
2,2,4 Trimethylpentane	0.0011	0.0056
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000

MOLECULAR WEIGHT	22.05
SATURATED BTU	1202.58
NMHC	40.93
VOCs (NMNEHC)	20.69
HAPs	3.57
H2S Mole Percentage	0.01

 $^{^1\!\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

SKIM TANKS - EMISSIONS SUMMARY

Skim Tank VOC Emissions Routed to Flare Vent System

Emission Component	Uncontrolled Skim Tank W&B Stream		d Skim Tank I	Flash Stream	Skim Tank Stream Controlled by Flare		
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.575	2.520	19.737	4.934	21.612	0.406	0.483
Nitrogen	0.006	0.026	17.157	4.289	18.787	0.343	0.376
Methane	0.330	1.446	339.560	84.890	371.818	6.798	7.465
Ethane	0.172	0.752	139.238	34.810	152.466	2.788	3.064
Propane	0.016	0.070	73.719	18.430	80.722	1.475	1.616
Isobutane	0.000	0.002	7.352	1.838	8.051	0.147	0.161
n-Butane	0.001	0.006	26.184	6.546	28.671	0.524	0.574
Isopentane	0.000	0.000	4.712	1.178	5.160	0.094	0.103
n-Pentane	0.000	0.000	2.303	0.576	2.522	0.046	0.050
n-Hexane	0.000	0.000	0.337	0.084	0.369	0.007	0.007
Cyclohexane	0.000	0.000	0.856	0.214	0.937	0.017	0.019
i-C6	0.000	0.000	1.265	0.316	1.385	0.025	0.028
i-C7	0.000	0.000	1.110	0.278	1.216	0.022	0.024
Methylcyclohexane	0.000	0.000	0.158	0.039	0.173	0.003	0.003
Octane	0.000	0.000	0.084	0.021	0.092	0.002	0.002
Nonane	0.000	0.000	0.012	0.003	0.014	0.000	0.000
Benzene	0.005	0.024	14.338	3.585	15.700	0.287	0.314
Toluene	0.001	0.003	7.926	1.981	8.679	0.159	0.174
Ethylbenzene	0.000	0.000	0.709	0.177	0.776	0.014	0.016
o-Xylene	0.000	0.000	1.220	0.305	1.336	0.024	0.027
H2S	0.002	0.009	0.069	0.017	0.075	0.001	0.002
Water	25.871	113.316	29.821	7.455	32.654	1.114	2.919
2,2,4 Trimethylpentane	0.000	0.000	0.038	0.010	0.042	0.001	0.001
Decanes Plus	0.000	0.000	0.001	0.000	0.001	0.000	0.000

Emission Component	Uncontrolled Skim Tank W&B Stream		Tank Uncontrolled Skim Tank Flash Stream		Skim Tank Stream Controlled by Flare		
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	26.98	118.18	687.90	171.98	753.26	14.30	17.43
VOC TOTAL	0.02	0.11	142.32	35.58	155.84	2.85	3.12
HAP TOTAL	0.01	0.03	24.57	6.14	26.90	0.49	0.54

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

Flare Destruction Efficiency 98%

 3 Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation.

 $^{^2} Controlled\ Emissions\ *\ (1\ -\ Flare\ Destruction\ Efficiency)$

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - SKIM AND WATER TANKS

Flared Skim and Water Tank Emissions

Daily Water Tank Gas Volume	316578	SCF/Hour (Based on Maximum Hourly)
Hourly Water Tank Gas Volume	13191	SCF/Hour (Based on Maximum Hourly)
Daily Water Tank Gas Volume	99169	SCF/Day (Based on Annual Average)
VRU Collection Efficiency	0	Percentage
Hourly Water Tank Gas Volume	13191	SCF/Hour (Based on Maximum Hourly)
Duration	8760	Hours/Year
Annual Water Tank Gas Volume	36196662	SCF/Year (Based on Annual Average)
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	1202.58	Btu/scf

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	4.37	6.00
NOx^1	2.19	3.00
SO_2^2	0.14	0.19
H_2S^2	0.00	0.00
$PM_{10 \& 2.5}^{3}$	0.10	0.14

 $^{{}^{1}\}text{ The CO and NOx emission factors } (0.2755\text{lb and } 0.138/\text{MMBtu}) \text{ are based on TCEQ document RG-109, Basis for Emission Calculation from Flare Systems}.$

 $^{^2\} Emissions\ are\ based\ on\ the\ following\ example\ calculation:\ SCF/day*14.7\ /\ 10.73\ /\ 528*H2S\ PPM*H2S\ MW.\ SO2\ is\ calculated\ assuming\ MW\ ratio\ of\ 64.07:34.08.$

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4 (External Combustion). The value was reduced by 90% since AP-42 does not have PM factors for flares.

XTO ENERGY INC. BEU DI 38 TANK BATTERY PRODUCED WATER STORAGE TANK EMISSIONS SUMMARY

TOTAL EMISSIONS SUMMARY

FIN	Unit Description	Tank Controlled Control Type	Material	Material Type	Total VOC Emissions		
FIIN	Oint Description	(Yes/No)	Control Type	Throughput (bbls/day)	(Oil/Produced Water)	lb/hour	TPY
WT1	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT2	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT3	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT4	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT5	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
WT6	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.01	0.01
	Water Tank Emissions						0.07

XTO ENERGY INC. BEU DI 38 TANK BATTERY PRODUCED WATER TANK VAPOR ANALYSIS - PROMAX RESULTS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %
Carbon Dioxide	0.9202	2.2145
Nitrogen	0.0140	0.0214
Methane	1.4134	1.2399
Ethane	0.4037	0.6637
Propane	0.0254	0.0613
Isobutane	0.0004	0.0014
n-Butane	0.0016	0.0050
Isopentane	0.0001	0.0002
n-Pentane	0.0000	0.0000
n-Hexane	0.0000	0.0000
Cyclohexane	0.0000	0.0000
i-C6	0.0000	0.0000
i-C7	0.0000	0.0000
Methylcyclohexane	0.0000	0.0000
Octane	0.0000	0.0000
Nonane	0.0000	0.0000
Benzene	0.0048	0.0206
Toluene	0.0005	0.0026
Ethylbenzene	0.0000	0.0001
o-Xylene	0.0000	0.0001
H2S	0.0040	0.0074
Water	97.2119	95.7618
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0000	0.0000
Total	100.00	100.0000

MOLECULAR WEIGHT	18.29
SATURATED BTU	71
NMHC	0.75
VOCs (NMNEHC)	0.09
HAPs	0.02
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

PRODUCED WATER TANKS - EMISSIONS SUMMARY

Produced Water Tank VOC Emissions - Routed to Flare Vent System

Emission Component	Uncontrolled P	W W&B Stream	Uncontrolled PW Flash Stream		PW Tank Stream Controlled By Flare		
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.589	2.582	0.403	0.101	0.441	0.020	0.060
Nitrogen	0.006	0.025	0.350	0.088	0.383	0.007	0.008
Methane	0.330	1.445	6.930	1.732	7.588	0.145	0.181
Ethane	0.177	0.774	2.842	0.710	3.112	0.060	0.078
Propane	0.016	0.071	1.504	0.376	1.647	0.030	0.034
Isobutane	0.000	0.002	0.150	0.038	0.164	0.003	0.003
n-Butane	0.001	0.006	0.534	0.134	0.585	0.011	0.012
Isopentane	0.000	0.000	0.096	0.024	0.105	0.002	0.002
n-Pentane	0.000	0.000	0.047	0.012	0.051	0.001	0.001
n-Hexane	0.000	0.000	0.007	0.002	0.008	0.000	0.000
Cyclohexane	0.000	0.000	0.017	0.004	0.019	0.000	0.000
i-C6	0.000	0.000	0.026	0.006	0.028	0.001	0.001
i-C7	0.000	0.000	0.023	0.006	0.025	0.000	0.000
Methylcyclohexane	0.000	0.000	0.003	0.001	0.004	0.000	0.000
Octane	0.000	0.000	0.002	0.000	0.002	0.000	0.000
Nonane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.005	0.024	0.293	0.073	0.320	0.006	0.007
Toluene	0.001	0.003	0.162	0.040	0.177	0.003	0.004
Ethylbenzene	0.000	0.000	0.014	0.004	0.016	0.000	0.000
o-Xylene	0.000	0.000	0.025	0.006	0.027	0.000	0.001
H2S	0.002	0.009	0.001	0.000	0.002	0.000	0.000
Water	25.488	111.636	0.609	0.152	0.666	0.522	2.246
2,2,4 Trimethylpentane	0.000	0.000	0.001	0.000	0.001	0.000	0.000
Decanes Plus	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Emission Component	Uncontrolled P	Jncontrolled PW W&B Stream		Uncontrolled PW Flash Stream			n Controlled by are
	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	26.62	116.58	14.04	3.51	15.37	0.81	2.64
VOC TOTAL	0.02	0.11	2.90	0.73	3.18	0.06	0.07
HAP TOTAL	0.01	0.03	0.50	0.13	0.55	0.01	0.01

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

 $^{^2} Controlled\ Emissions\ Were\ Calculated\ by\ the\ Following:\ Uncontrolled\ Emissions\ *\ (1\ -\ Flare\ Destruction\ Efficiency)$

Flare Destruction Efficiency

^{98%} ³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation

XTO ENERGY INC. BEU DI 38 TANK BATTERY OIL TRUCK LOADING EMISSIONS

Truck Loading Losses Calculations - VOCs

Oil Loading	5000	bbls / Day
Operating Schedule	365	Day/Year
Total Production	1825000	bbls / Year

LL= 12.46 * SPM/T * (1-EFF/100)	
Saturation Factor (S) =	0.6
Average True Vapor Pressure of liquid loaded (P) =	9.69
Maximum True Vapor Pressure of liquid loaded (P) =	11.32
Average Temperature of bulk liquid loaded in Rankin $(T)^1$ =	548.6
Maximum Temperature of bulk liquid loaded in Rankin $(T)^1$ =	560.5
Molecular Weight $(M)^1 =$	47.27
Collection Efficiency (EFF) ² =	98.70
Hourly LL (lb Total HC / bbl Throughput) =	0.0039
Hourly LL (lb VOC/bbl Throughput) =	0.0032
Annual LL (lb Total HC / bbl Throughput) =	0.0034
Annual LL (lb VOC/bbl Throughput) =	0.0028
Estimated Throughput (bbls/Year) =	1825000
Truck Loading Rate (bbls/hour) =	210
Estimated # of Loads (Approximately 1 hr/Load) =	8690

COMPONENT	lb/hr	TPY
VOCs	0.66	2.52
HAPs	0.03	0.11
Benzene	0.01	0.03
n-Hexane	0.01	0.04

¹Based on PROMAX Results

²Based on DOT Oil Trucks at a collection efficiency of 98.7%. Controlled emissions at 98% flare efficiency are shown on the LP Flare Truck Loading page. Emissions here include only those emitted as a result of incomplete collection.

XTO ENERGY INC. BEU DI 38 TANK BATTERY WATER TRUCK LOADING EMISSIONS

Truck Loading Losses Calculations - VOCs

Water Loading	5000	bbls / Day
Operating Schedule	365	Day/Year
Total Production	1825000	bbls/Year

LL= 12.46 * SPM/T * (1-EFF/100)	
Saturation Factor (S) =	0.6
Average True Vapor Pressure of liquid loaded (P) =	0.59
Maximum True Vapor Pressure of liquid loaded (P) =	0.85
Average Temperature of bulk liquid loaded in Rankin $(T)^1$ =	543.8
Maximum Temperature of bulk liquid loaded in Rankin $(T)^1$ =	555.7
Molecular Weight $(M)^1$ =	18.29
Collection Efficiency (EFF) =	0.00
Hourly LL (lb Total HC / bbl Throughput) =	0.0088
Hourly LL (lb VOC / bbl Throughput) =	0.0000
Annual LL (lb Total HC / bbl Throughput) =	0.0062
Annual LL (lb VOC / bbl Throughput) =	0.0000
Estimated Throughput (bbls/Year) =	1825000
Truck Loading Rate (bbls/hour) =	210
Estimated # of Loads (Approximately 1 hr/Load) =	8690

COMPONENT	lb/hr	TPY
VOCs	0.00	0.01
HAPs	0.00	0.00
Benzene	0.00	0.00
n-Hexane	0.00	0.00

¹Based on PROMAX Results

²Based on DOT Oil Trucks at a collection efficiency of 98.7%. Controlled emissions at 98% flare efficiency are shown on the LP Flare Truck Loading page. Emissions here include only those emitted as a result of incomplete collection.

XTO ENERGY INC. BEU DI 38 TANK BATTERY LP FLARE - CONTROLLED TRUCK LOADING EMISSIONS

LP Flare - Truck Loading of Oil

	Oil Loading (Captured Vapors) ¹			LP F	lare
Component	Mole %	Weight %	lb/hr	lb/hr	TPY
Carbon Dioxide	0.134	0.126	0.056	0.056	0.247
Nitrogen	0.002	0.001	0.001	0.001	0.002
Methane	2.199	0.753	0.338	0.007	0.030
Ethane	29.568	18.962	8.512	0.170	0.746
Propane	35.469	33.356	14.973	0.299	1.312
Isobutane	5.227	6.479	2.909	0.058	0.255
n-Butane	14.479	17.948	8.057	0.161	0.706
Isopentane	3.550	5.462	2.452	0.049	0.215
n-Pentane	3.771	5.802	2.605	0.052	0.228
n-Hexane	0.758	1.393	0.625	0.013	0.055
Cyclohexane	0.118	0.213	0.095	0.002	0.008
i-C6	1.411	2.594	1.164	0.023	0.102
i-C7	1.722	3.679	1.651	0.033	0.145
Methylcyclohexane	0.038	0.080	0.036	0.001	0.003
Octane	0.413	1.006	0.452	0.009	0.040
Nonane	0.054	0.146	0.066	0.001	0.006
Benzene	0.617	1.028	0.461	0.009	0.040
Toluene	0.326	0.640	0.287	0.006	0.025
Ethylbenzene	0.028	0.062	0.028	0.001	0.002
o-Xylene	0.040	0.091	0.041	0.001	0.004
H2S	0.003	0.002	0.001	0.000	0.000
Water	0.001	0.000	0.000	0.000	0.001
2,2,4 Trimethylpentane	0.072	0.177	0.079	0.002	0.007
Decanes Plus	0.000	0.000	0.000	0.000	0.000

Stream Total	44.89	0.95	4.18
VOC Total	35.98	0.72	3.15
HAP Total	1.52	0.03	0.13

Annual Hours (hrs)	8690	Molecular Weight	47
Heating Value of Vapor (Btu/scf)	2653	Volumetric Flow (scf/hr)	368.09
Vapor Balance Loading Capture	98.7%	Heat Released (MMBtu/hr)	0.976
Destruction Efficiency of Flare	98%		

Criteria Pollutant Emissions from Flare ²						
Component	Emission Rate	Emission Rate	Emission Factor	Emission		
-	(lb/hr)	(lb/hr) (TPY)		Factor Units		
NO_{χ}	0.13	0.59	0.138	lb/MMBtu		
СО	0.27	1.17	0.2755	lb/MMBtu		
SO_2	0.00	0.00				
PM_{10}	0.00	0.01	7.60	lb/MMscf		
$PM_{2.5}$	0.00	0.01	7.60	lb/MMscf		
H_2S	0.00	0.00				

 $^{^{\}mathrm{1}}$ Oil Loading vapors properties determined from ProMax

² Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

XTO ENERGY INC. BEU DI 38 TANK BATTERY ROAD EMISSIONS

PM ₁₀ Emissions				
-				
$E = k(s/12)^a (W/3)^b$				
a	0.9			
b	0.45			
k	1.5			
Silt %	4.8			
Vehicle Weight (tons)	28			
E-Hourly (lbs/VMT)	1.80			
Rain Days	70			
E-Annual (lbs/VMT)	1.45			
Truckloads per year	17381			
Driving Distance Per Load (ft)	700			
Annual Distance (miles)	2304			
Control Efficiency - 15 MPH Limit				
Emissions (lbs/hr)	0.48			
Emissions (tpy)	1.67			

PM _{2.5} Emissions				
$E = k(s/12)^a (W/3)^b$				
a	0.9			
b	0.45			
k	0.15			
Silt %	4.8			
Vehicle Weight (tons)	28			
E-Hourly (lbs/VMT)	0.18			
Rain Days	70			
E-Annual (lbs/VMT)	0.15			
Truckloads per year	17381			
Driving Distance Per Load (ft)	700			
Annual Distance (miles)	2304			
Control Efficiency - 15 MPH Limit				
Emissions (lbs/hr)	0.05			
Emissions (tpy)	0.17			

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) *2 trucks per hour (One for oil and one for water) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2

AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

XTO ENERGY INC.

BEU DI 38 TANK BATTERY

Calculation Methodology for Fugitive & Road Emissions

Calculation Methodology

Fugitives (Equipment Leaks) - VOC Emissions

Fugitives were calculated using AP-42 factors based on the type of fitting, valve, line, etc. and based on how the line is used (i.e. gas, light liquid service, etc.). Since these emission factors are for estimating total hydrocarbon emissions, the calculated emissions are multiplied by the VOC or HAP Weight Percentage of the service type. Fugitive Emissions are divided into sections of the facility to more accurately account for compositional analysis and counts.

Road Emissions - PM Emissions

The PM Emissions were calculated using AP-42 Factors from section 13.2.2 "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources."

XTO ENERGY INC. BEU DI 38 TANK BATTERY FUGITIVE EMISSIONS - TOTAL EMISSION SUMMARY

EQUIPMENT LEAK EMISSION SUMMARY TABLE

Stream Source	Total	VOCs	Total	HAPs	Ben	zene	Нех	ane	СН4	CO2	CO2e
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY	TPY	TPY
Inlet & Sales Section	0.81	3.53	0.05	0.22	0.01	0.04	0.01	0.04	4.31	6.09	113.87
Heater Treater Section	0.72	3.17	0.04	0.19	0.01	0.04	0.01	0.04	3.06	4.60	81.11
Storage Tank Section	0.77	3.38	0.05	0.22	0.02	0.07	0.02	0.07	4.43	6.17	117.04
Total Emissions	2.30	10.08	0.14	0.63	0.04	0.16	0.04	0.15	11.81	16.86	312.03

XTO ENERGY INC. BEU DI 38 TANK BATTERY FACILITY INLET GAS ANALYSIS - PROMAX

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.2485	0.4839
Nitrogen	3.9530	4.8998
Methane	71.9867	51.0980
Ethane	12.1822	16.2078
Propane	6.2561	12.2062
Isobutane	0.7554	1.9427
n-Butane	1.9671	5.0588
Isopentane	0.4612	1.4723
n-Pentane	0.4851	1.5485
n-Hexane	0.1213	0.4624
Cyclohexane	0.1451	0.5404
i-C6	0.2395	0.9134
i-C7	0.2197	0.9739
Methylcyclohexane	0.0905	0.3930
Octane	0.0596	0.3014
Nonane	0.0278	0.1579
Benzene	0.1143	0.3951
Toluene	0.0586	0.2391
Ethylbenzene	0.0010	0.0047
o-Xylene	0.0099	0.0467
H2S	0.0010	0.0015
Water	0.6014	0.4794
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0149	0.1732
Total	100.00	100.0000

MOLECULAR WEIGHT	22.60
SATURATED BTU	1282
NMHC	43.037
VOCs (NMNEHC)	26.83
HAPs	1.15
H2S Mole Percentage	0.00

 $^1\mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY FACILITY INLET FLUID ANALYSIS - PROMAX

Fluid Composition

Component	Mole %	Weight %
Carbon Dioxide	0.0072	0.0020
Nitrogen	0.0280	0.0049
Methane	2.4296	0.2421
Ethane	2.2551	0.4212
Propane	3.7081	1.0157
Isobutane	0.9704	0.3504
n-Butane	3.6679	1.3243
Isopentane	2.0109	0.9012
n-Pentane	2.8437	1.2745
n-Hexane	1.7749	0.9501
Cyclohexane	0.0000	0.0000
i-C6	2.3095	1.2363
i-C7	9.6125	5.9832
Methylcyclohexane	0.0000	0.0000
Octane	11.1070	7.8812
Nonane	5.3068	4.2279
Benzene	2.3644	1.1473
Toluene	4.0805	2.3354
Ethylbenzene	1.0199	0.6726
o-Xylene	2.0730	1.3671
H2S	0.0000	0.0000
Water	0.0000	0.0000
2,2,4 Trimethylpentane	0.5700	0.4045
Decanes Plus	41.8607	68.2583
Total	100.00	100.0000

MOLECULAR WEIGHT	160.98
NMHC	99.75
VOCs (NMNEHC)	99.33
HAPs	6.88
H2S Mole Percentage	0.00

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION VOCs

		Estimated					Emissions				CH4	CO2	CO2e
Component Type	Service	Components Count	Hours	Factors	Total VOC Weight %	lb/hour	lb/year	tons/year	Total CH4 Weight %	Total CO2 Weight %	Emissions ton/year	Emissions ton/year	Emissions ton/year
	Gas/Vapor	50	8760	0.00992000	26.83	0.13	1165.73	0.58	51.10	0.48	1.06	2.16	28.72
	Light Oil	50	8760	0.00550000	99,33	0.27	2392.86	1.20	0.24	0.00	1.20	1.20	31.24
Valves	Heavy Oil	0	8760	0.00001900	99,33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	99.33	0.01	93.97	0.05	0.24	0.00	0.05	0.05	1.23
	Gas/Vapor	0	8760	0.00529000	26.83	0.00	0.00	0.00	51.10	0.48	0.00	0.00	0.00
	Light Oil	0	8760	0.02866000	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	99.33	0.00	4.61	0.00	0.24	0.00	0.00	0.00	0.06
	Gas/Vapor	200	8760	0.00044000	26.83	0.02	206.82	0.10	51.10	0.48	0.19	0.38	5.10
	Light Oil	200	8760	0.00046300	99.33	0.09	805.74	0.40	0.24	0.00	0.40	0.41	10.52
Connectors	Heavy Oil	0	8760	0.00001700	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	99.33	0.01	105.72	0.05	0.24	0.00	0.05	0.05	1.38
	Gas/Vapor	200	8760	0.00086000	26.83	0.05	404.25	0.20	51.10	0.48	0.37	0.75	9.96
F1	Light Oil	200	8760	0.00024300	99.33	0.05	422.88	0.21	0.24	0.00	0.21	0.21	5.52
Flanges	Heavy Oil	0	8760	0.00000086	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	99.33	0.00	2.70	0.00	0.24	0.00	0.00	0.00	0.04
	Gas/Vapor	10	8760	0.00441000	26.83	0.01	103.65	0.05	51.10	0.48	0.09	0.19	2.55
Open-ended	Light Oil	0	8760	0.00309000	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	26.83	0.00	0.00	0.00	51.10	0.48	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Other.	Heavy Oil	0	8760	0.00006800	99.33	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	99.33	0.15	1344.35	0.67	0.24	0.00	0.68	0.68	17.55

Emission Component	lb/hr	lb/year	TPY
Total VOC	0.81	7053.28	3.53

CH4	CO2	CO2e		
Emissions	Emissions	Emissions		
4.31	6.09	113.87		

XTO ENERGY INC. BEU DI 38 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION HAPs

		Estimated		Factors	Total HAPs Weight %	Emissions			
Component Type	Service	Components Count	Hours			lb/hour	lb/year	tons/year	
	Gas/Vapor	50	8760	0.00992000	1.15	0.01	49.88	0.02	
Valves	Light Oil	50	8760	0.00550000	6.88	0.02	165.67	0.08	
vaives	Heavy Oil	0	8760	0.00001900	6.88	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00021600	6.88	0.00	6.51	0.00	
	Gas/Vapor	0	8760	0.00529000	1.15	0.00	0.00	0.00	
Druman Caala	Light Oil	0	8760	0.02866000	6.88	0.00	0.00	0.00	
Pump Seals	Heavy Oil	0	8760	0.00113000	6.88	0.00	0.00	0.00	
	Water/Light Oil	10	8760	0.00005200	6.88	0.00	0.31	0.00	
	Gas/Vapor	200	8760	0.00044000	1.15	0.00	8.85	0.00	
	Light Oil	200	8760	0.00046300	6.88	0.01	55.78	0.03	
Connectors	Heavy Oil	0	8760	0.00001700	6.88	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00024300	6.88	0.00	7.32	0.00	
	Gas/Vapor	200	8760	0.00086000	1.15	0.00	17.30	0.01	
E1	Light Oil	200	8760	0.00024300	6.88	0.00	29.28	0.01	
Flanges	Heavy Oil	0	8760	0.00000086	6.88	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00000620	6.88	0.00	0.19	0.00	
	Gas/Vapor	10	8760	0.00441000	1.15	0.00	4.43	0.00	
Open-ended	Light Oil	0	8760	0.00309000	6.88	0.00	0.00	0.00	
Lines	Heavy Oil	0	8760	0.00030900	6.88	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00055000	6.88	0.00	0.00	0.00	
	Gas/Vapor	0	8760	0.01940000	1.15	0.00	0.00	0.00	
Other	Light Oil	0	8760	0.01650000	6.88	0.00	0.00	0.00	
Other:	Heavy Oil	0	8760	0.00006800	6.88	0.00	0.00	0.00	
	Water/Light Oil	5	8760	0.03090000	6.88	0.01	93.07	0.05	

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.05	438.58	0.22

XTO ENERGY INC. BEU DI 38 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION BENZENE

		Estimated			Total Benzene Weight %	Emissions			
Component Type	Service	Components Count	Hours	Factors		lb/hour	lb/year	tons/year	
	Gas/Vapor	50	8760	0.00992000	0.40	0.00	17.17	0.01	
Valves	Light Oil	50	8760	0.00550000	1.15	0.00	27.64	0.01	
vaives	Heavy Oil	0	8760	0.00001900	1.15	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00021600	1.15	0.00	1.09	0.00	
	Gas/Vapor	0	8760	0.00529000	0.40	0.00	0.00	0.00	
Duman Caala	Light Oil	0	8760	0.02866000	1.15	0.00	0.00	0.00	
Pump Seals	Heavy Oil	0	8760	0.00113000	1.15	0.00	0.00	0.00	
	Water/Light Oil	10	8760	0.00005300	1.15	0.00	0.05	0.00	
	Gas/Vapor	200	8760	0.00044000	0.40	0.00	3.05	0.00	
	Light Oil	200	8760	0.00046300	1.15	0.00	9.31	0.00	
Connectors	Heavy Oil	0	8760	0.00001700	1.15	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00024300	1.15	0.00	1.22	0.00	
	Gas/Vapor	200	8760	0.00086000	0.40	0.00	5.95	0.00	
E1	Light Oil	200	8760	0.00024300	1.15	0.00	4.88	0.00	
Flanges	Heavy Oil	0	8760	0.00000086	1.15	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00000620	1.15	0.00	0.03	0.00	
	Gas/Vapor	10	8760	0.00441000	0.40	0.00	1.53	0.00	
Open-ended	Light Oil	0	8760	0.00309000	1.15	0.00	0.00	0.00	
Lines	Heavy Oil	0	8760	0.00030900	1.15	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00055000	1.15	0.00	0.00	0.00	
	Gas/Vapor	0	8760	0.01940000	0.40	0.00	0.00	0.00	
Other:	Light Oil	0	8760	0.01650000	1.15	0.00	0.00	0.00	
Otner:	Heavy Oil	0	8760	0.00006800	1.15	0.00	0.00	0.00	
	Water/Light Oil	5	8760	0.03090000	1.15	0.00	15.53	0.01	

Emission Component	lb/hr	lb/year	TPY
Total Benzene	0.010	87.44	0.044

XTO ENERGY INC. BEU DI 38 TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSIONS HEXANE

		Estimated					Emissions	
Component Type	Service	Components Count	Hours	Factors	Total Hexane Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	0.46	0.00	20.09	0.01
Valves	Light Oil	50	8760	0.00550000	0.95	0.00	22.89	0.01
vaives	Heavy Oil	0	8760	0.00001900	0.95	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.95	0.00	0.90	0.00
	Gas/Vapor	0	8760	0.00529000	0.46	0.00	0.00	0.00
Draman Cools	Light Oil	0	8760	0.02866000	0.95	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	0.95	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.95	0.00	0.04	0.00
	Gas/Vapor	200	8760	0.00044000	0.46	0.00	3.56	0.00
C	Light Oil	200	8760	0.00046300	0.95	0.00	7.71	0.00
Connectors	Heavy Oil	0	8760	0.00001700	0.95	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.95	0.00	1.01	0.00
	Gas/Vapor	200	8760	0.00086000	0.46	0.00	6.97	0.00
Elamana	Light Oil	200	8760	0.00024300	0.95	0.00	4.04	0.00
Flanges	Heavy Oil	0	8760	0.00000086	0.95	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.95	0.00	0.03	0.00
	Gas/Vapor	10	8760	0.00441000	0.46	0.00	1.79	0.00
Open-ended	Light Oil	0	8760	0.00309000	0.95	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	0.95	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.95	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	0.46	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	0.95	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	0.95	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.95	0.00	12.86	0.01

Emission Component	lb/hr	lb/year	TPY
Total Hexane	0.009	81.89	0.041

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER GAS ANALYSIS - FUGITIVE EMISSIONS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %	
Carbon Dioxide	0.2903	0.4153	
Nitrogen	1.0619	0.9669	
Methane	46.8801	24.4459	
Ethane	21.4011	20.9172	
Propane	15.8500	22.7180	
Isobutane	2.1539	4.0693	
n-Butane	5.8244	11.0037	
Isopentane	1.3867	3.2519	
n-Pentane	1.5008	3.5197	
n-Hexane	0.3164	0.8862	
Cyclohexane	0.0638	0.1747	
i-C6	0.5889	1.6496	
i-C7	0.8153	2.6556	
Methylcyclohexane	0.0217	0.0692	
Octane	0.2341	0.8692	
Nonane	0.0410	0.1710	
Benzene	0.3290	0.8352	
Toluene	0.1782	0.5337	
Ethylbenzene	0.0158	0.0545	
o-Xylene	0.0266	0.0919	
H2S	0.0019	0.0021	
Water	0.9851	0.5769	
2,2,4 Trimethylpentane	0.0329	0.1222	
Decanes Plus	0.0000	0.0003	
Total	100.00	100.0000	

MOLECULAR WEIGHT	22.41
SATURATED BTU	1273.64
NMHC	73.59
VOCs (NMNEHC)	52.68
HAPs	2.52
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER LIQUID ANALYSIS - FUGITIVE EMISSIONS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %	
Carbon Dioxide	0.0091	0.0024	
Nitrogen	0.0052	0.0009	
Methane	0.6311	0.0620	
Ethane	1.4161	0.2607	
Propane	3.2936	0.8890	
Isobutane	1.0350	0.3682	
n-Butane	3.9168	1.3936	
Isopentane	2.2152	0.9784	
n-Pentane	3.0711	1.3564	
n-Hexane	1.9547	1.0311	
Cyclohexane	0.5752	0.2963	
i-C6	2.6733	1.4102	
i-C7	9.7251	5.9652	
Methylcyclohexane	0.3812	0.2291	
Octane	11.1985	7.8305	
Nonane	5.4226	4.2573	
Benzene	2.4571	1.1749	
Toluene	4.1571	2.3447	
Ethylbenzene	1.0131	0.6584	
o-Xylene	2.0998	1.3647	
H2S	0.0002	0.0000	
Water	0.0537	0.0059	
2,2,4 Trimethylpentane	0.5363	0.3750	
Decanes Plus	42.1590	67.7449	
Total	100.00	100.0000	

MOLECULAR WEIGHT	163.36
NMHC	99.93
VOCs (NMNEHC)	99.67
HAPs	6.95
H2S Mole Percentage	0.00

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION VOCs

C		Estimated			Total VOC		Emissions		Total CH4	Total CO2	CH4	CO2	CO2e
Component Type	Service	Components Count	s Hours Factors	Factors	Weight %	lb/hour	lb/year	tons/year	Weight %	Weight %	Emissions	Emissions	Emissions
**						-					ton/year	ton/year	ton/year
	Gas/Vapor	40	8760	0.00992000	52.68	0.21	1830.99	0.92	51.10	0.48	0.85	1.73	22.98
Valves	Light Oil	40	8760	0.00550000	99.67	0.22	1920.80	0.96	0.24	0.00	0.96	0.96	25.00
varves	Heavy Oil	0	8760	0.00001900	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00021600	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	52.68	0.00	0.00	0.00	51.10	0.48	0.00	0.00	0.00
Pump Seals	Light Oil	0	8760	0.02866000	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
rump seals	Heavy Oil	0	8760	0.00113000	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Connectors	Gas/Vapor	200	8760	0.00044000	52.68	0.05	406.07	0.20	51.10	0.48	0.19	0.38	5.10
	Light Oil	200	8760	0.00046300	99.67	0.09	808.48	0.40	0.24	0.00	0.40	0.41	10.52
	Heavy Oil	0	8760	0.00001700	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	52.68	0.09	793.68	0.40	51.10	0.48	0.37	0.75	9.96
F1	Light Oil	200	8760	0.00024300	99.67	0.05	424.32	0.21	0.24	0.00	0.21	0.21	5.52
Flanges	Heavy Oil	0	8760	0.00000086	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	52.68	0.02	162.80	0.08	51.10	0.48	0.08	0.15	2.04
Open-ended	Light Oil	0	8760	0.00309000	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	52.68	0.00	0.00	0.00	51.10	0.48	0.00	0.00	0.00
Out	Light Oil	0	8760	0.01650000	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	99.67	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00

Emission Component	lb/hr	lb/year	TPY
Total VOC	0.72	6347.14	3.17

CH4	CO2	CO2e
Emissions	Emissions	Emissions
3.06	4.60	81.11

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION HAPs

C		Estimated			TALLIAD		Emissions			
Component Type	Service	Components Count	Hours	Factors	Total HAPs Weight %	lb/hour	lb/year	tons/year		
	Gas/Vapor	40	8760	0.00992000	2.52	0.01	87.72	0.04		
Valves	Light Oil	40	8760	0.00550000	6.95	0.02	133.92	0.07		
vaives	Heavy Oil	0	8760	0.00001900	6.95	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00021600	6.95	0.00	0.00	0.00		
	Gas/Vapor	0	8760	0.00529000	2.52	0.00	0.00	0.00		
D C1-	Light Oil	0	8760	0.02866000	6.95	0.00	0.00	0.00		
Pump Seals	Heavy Oil	0	8760	0.00113000	6.95	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00005300	6.95	0.00	0.00	0.00		
Connectors	Gas/Vapor	200	8760	0.00044000	2.52	0.00	19.45	0.01		
	Light Oil	200	8760	0.00046300	6.95	0.01	56.37	0.03		
	Heavy Oil	0	8760	0.00001700	6.95	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00024300	6.95	0.00	0.00	0.00		
	Gas/Vapor	200	8760	0.00086000	2.52	0.00	38.02	0.02		
El	Light Oil	200	8760	0.00024300	6.95	0.00	29.58	0.01		
Flanges	Heavy Oil	0	8760	0.00000086	6.95	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00000620	6.95	0.00	0.00	0.00		
	Gas/Vapor	8	8760	0.00441000	2.52	0.00	7.80	0.00		
Open-ended	Light Oil	0	8760	0.00309000	6.95	0.00	0.00	0.00		
Lines	Heavy Oil	0	8760	0.00030900	6.95	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00055000	6.95	0.00	0.00	0.00		
	Gas/Vapor	0	8760	0.01940000	2.52	0.00	0.00	0.00		
Other:	Light Oil	0	8760	0.01650000	6.95	0.00	0.00	0.00		
Otner:	Heavy Oil	0	8760	0.00006800	6.95	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.03090000	6.95	0.00	0.00	0.00		

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.04	372.87	0.19

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION BENZENE

		Estimated			T. (.1 P.		Emissions	
Component Type	Service	Components Count	Hours	Factors	Total Benzene Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	40	8760	0.00992000	0.84	0.00	29.03	0.01
Valves	Light Oil	40	8760	0.00550000	1.17	0.00	22.64	0.01
vaives	Heavy Oil	0	8760	0.00001900	1.17	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00021600	1.17	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	0.84	0.00	0.00	0.00
Duman Caala	Light Oil	0	8760	0.02866000	1.17	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	1.17	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	1.17	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00044000	0.84	0.00	6.44	0.00
	Light Oil	200	8760	0.00046300	1.17	0.00	9.53	0.00
Connectors	Heavy Oil	0	8760	0.00001700	1.17	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	1.17	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	0.84	0.00	12.58	0.01
E1	Light Oil	200	8760	0.00024300	1.17	0.00	5.00	0.00
Flanges	Heavy Oil	0	8760	0.00000086	1.17	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	1.17	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	0.84	0.00	2.58	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.17	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.17	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	1.17	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	0.84	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	1.17	0.00	0.00	0.00
Otner:	Heavy Oil	0	8760	0.00006800	1.17	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	1.17	0.00	0.00	0.00

Emission Component	lb/hr	lb/year	TPY
Total Benzene	0.010	87.81	0.044

XTO ENERGY INC. BEU DI 38 TANK BATTERY TREATER SECTION - FUGITIVE EMISSION HEXANE

6		Estimated			T-1-111		Emissions	
Component Type	Service	Service Components Count Hours Factors Weight %		lb/hour	lb/year	tons/year		
	Gas/Vapor	40	8760	0.00992000	0.89	0.00	30.80	0.02
Valves	Light Oil	40	8760	0.00550000	1.03	0.00	19.87	0.01
vaives	Heavy Oil	0	8760	0.00001900	1.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00021600	1.03	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	0.89	0.00	0.00	0.00
Duman Caala	Light Oil	0	8760	0.02866000	1.03	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	1.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	1.03	0.00	0.00	0.00
Connectors	Gas/Vapor	200	8760	0.00044000	0.89	0.00	6.83	0.00
	Light Oil	200	8760	0.00046300	1.03	0.00	8.36	0.00
	Heavy Oil	0	8760	0.00001700	1.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	1.03	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	0.89	0.00	13.35	0.01
T21	Light Oil	200	8760	0.00024300	1.03	0.00	4.39	0.00
Flanges	Heavy Oil	0	8760	0.00000086	1.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	1.03	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	0.89	0.00	2.74	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.03	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	1.03	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	0.89	0.00	0.00	0.00
Other	Light Oil	0	8760	0.01650000	1.03	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	1.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	1.03	0.00	0.00	0.00

Emission Component	lb/hr	lb/year	TPY
Total Hexane	0.010	86.35	0.043

XTO ENERGY INC. BEU DI 38 TANK BATTERY OIL TANK SECTION GAS ANALYSIS - FUGITIVE EMISSIONS

Gas Composition

Component	Mole %	Weight %
Carbon Dioxide	0.1270	0.1182
Nitrogen	0.0025	0.0015
Methane	2.1295	0.7228
Ethane	28.6828	18.2471
Propane	35.5850	33.1982
Isobutane	5.3172	6.5385
n-Butane	14.7813	18.1764
Isopentane	3.6521	5.5747
n-Pentane	3.8887	5.9359
n-Hexane	0.7873	1.4354
Cyclohexane	0.1232	0.2194
i-C6	1.4627	2.6668
i-C7	1.7955	3.8063
Methylcyclohexane	0.0397	0.0826
Octane	0.4351	1.0515
Nonane	0.0564	0.1531
Benzene	0.6426	1.0620
Toluene	0.3409	0.6645
Ethylbenzene	0.0290	0.0651
o-Xylene	0.0422	0.0949
H2S	0.0028	0.0020
Water	0.0008	0.0003
2,2,4 Trimethylpentane	0.0756	0.1828
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000

MOLECULAR WEIGHT	47.27
SATURATED BTU	2672.79
NMHC	99.16
VOCs (NMNEHC)	80.91
HAPs	3.50
H2S Mole Percentage	0.00

¹Values from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY WATER TANK LIQUID ANALYSIS - FUGITIVE EMISSIONS

Water Composition

Component	Mole %	Weight %		
Carbon Dioxide	0.0005	0.0013		
Nitrogen	0.0000	0.0000		
Methane	0.0013	0.0012		
Ethane	0.0004	0.0007		
Propane	0.0001	0.0003		
Isobutane	0.0000	0.0000		
n-Butane	0.0000	0.0001		
Isopentane	0.0000	0.0000		
n-Pentane	0.0000	0.0000		
n-Hexane	0.0000	0.0000		
Cyclohexane	0.0000	0.0000		
i-C6	0.0000	0.0000		
i-C7	0.0000	0.0000		
Methylcyclohexane	0.0000	0.0000		
Octane	0.0000	0.0000		
Nonane	0.0000	0.0000		
Benzene	0.0013	0.0056		
Toluene	0.0005	0.0024		
Ethylbenzene	0.0000	0.0002		
o-Xylene	0.0001	0.0005		
H2S	0.0000	0.0000		
Water	99.9957	99.9877		
2,2,4 Trimethylpentane	0.0000	0.0000		
Decanes Plus	0.0000	0.0000		
Total	100.00	100.0000		

MOLECULAR WEIGHT	18.02
NMHC	0.01
VOCs (NMNEHC)	0.01
HAPs	0.01
H2S Mole Percentage	0.00

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY OIL TANK CONDENSATE ANALYSIS - FUGITIVE EMISSIONS

Conversion of Mole Percent to Weight Percent

Component	Mole %	Weight %		
Carbon Dioxide	0.0014	0.0004		
Nitrogen	0.0001	0.0000		
Methane	0.0442	0.0042		
Ethane	0.4844	0.0862		
Propane	2.1549	0.5624		
Isobutane	0.8556	0.2943		
n-Butane	3.4487	1.1863		
Isopentane	2.1350	0.9116		
n-Pentane	3.0171	1.2883		
n-Hexane	1.9829	1.0113		
Cyclohexane	0.4762	0.2372		
i-C6	2.6701	1.3618		
i-C7	10.1100	5.9954		
Methylcyclohexane	0.3171	0.1843		
Octane	11.7213	7.9239		
Nonane	5.6669	4.3014		
Benzene	2.5271	1.1683		
Toluene	4.3327	2.3626		
Ethylbenzene	1.0641	0.6686		
o-Xylene	2.1973	1.3806		
H2S	0.0001	0.0000		
Water	0.0130	0.0014		
2,2,4 Trimethylpentane	0.5672	0.3835		
Decanes Plus	44.2126	68.6861		
Total	100.00	100.0000		

MOLECULAR WEIGHT	168.97
NMHC	31.222
VOCs (NMNEHC)	30.659
HAPs	5.032
H2S Mole Percentage	0.01300

 $^{^1\}mathrm{Values}$ from GPSA Engineering Data Book, Volume II, 13th Edition, Figure 23-2

XTO ENERGY INC. BEU DI 38 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS VOCs

		Estimated			T . 11100		Emissions		T . 16774	T . 1 602	CH4	CO2	CO2e
Component Type Service Gas/Vapor	Service	Components Count	Hours	Factors	Total VOC Weight %	lb/hour	lb/year	tons/year	Total CH4 Weight %	Total CO2 Weight %	Emissions	Emissions	Emissions
								-			ton/year	ton/year	ton/year
	, ı	50	8760	0.00992000	80.91	0.40	3515.42	1.76	51.10	0.48	1.06	2.16	28.72
Valves	Light Oil	50	8760	0.00550000	30.66	0.08	738.58	0.37	0.24	0.00	1.20	1.20	31.24
	Heavy Oil	0	8760	0.00001900	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.01	0.00	0.01	0.00	0.24	0.00	0.05	0.05	1.23
	Gas/Vapor	5	8760	0.00529000	80.91	0.02	187.47	0.09	51.10	0.48	0.06	0.12	1.53
Pump Seals	Light Oil	5	8760	0.02866000	30.66	0.04	384.87	0.19	0.24	0.00	0.63	0.63	16.28
	Heavy Oil	0	8760	0.00113000	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.01	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.06
Connectors Light Oil	Gas/Vapor	50	8760	0.00044000	80.91	0.02	155.93	0.08	51.10	0.48	0.05	0.10	1.27
	Light Oil	50	8760	0.00046300	30.66	0.01	62.18	0.03	0.24	0.00	0.10	0.10	2.63
	Heavy Oil	0	8760	0.00001700	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.01	0.00	0.01	0.00	0.24	0.00	0.05	0.05	1.38
	Gas/Vapor	50	8760	0.00086000	80.91	0.03	304.76	0.15	51.10	0.48	0.09	0.19	2.49
F1	Light Oil	50	8760	0.00024300	30.66	0.00	32.63	0.02	0.24	0.00	0.05	0.05	1.38
Flanges	Heavy Oil	0	8760	0.00000086	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.01	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.04
	Gas/Vapor	0	8760	0.00441000	80.91	0.00	0.00	0.00	51.10	0.48	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00030900	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.01	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	80.91	0.16	1374.98	0.69	51.10	0.48	0.42	0.85	11.23
Out	Light Oil	0	8760	0.01650000	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	30.66	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.01	0.00	0.12	0.00	0.24	0.00	0.68	0.68	17.55

Emission Component	lb/hr	lb/year	TPY
Total VOC	0.77	6756.97	3.38

CH4	CO2	CO2e		
Emissions	Emissions	Emissions		
4.43	6.17	117.04		

XTO ENERGY INC. BEU DI 38 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS HAPs

Commonant		Estimated			Total HAPs		Emissions	
Component Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	3.50	0.02	152.27	0.08
Valves	Light Oil	50	8760	0.00550000	5.03	0.01	121.23	0.06
vaives	Heavy Oil	0	8760	0.00001900	5.03	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.01	0.00	0.01	0.00
	Gas/Vapor	5	8760	0.00529000	3.50	0.00	8.12	0.00
Duman Cools	Light Oil	5	8760	0.02866000	5.03	0.01	63.17	0.03
Pump Seals	Heavy Oil	0	8760	0.00113000	5.03	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.01	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00044000	3.50	0.00	6.75	0.00
6	Light Oil	50	8760	0.00046300	5.03	0.00	10.21	0.01
Connectors	Heavy Oil	0	8760	0.00001700	5.03	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.01	0.00	0.01	0.00
	Gas/Vapor	50	8760	0.00086000	3.50	0.00	13.20	0.01
Elaman	Light Oil	50	8760	0.00024300	5.03	0.00	5.36	0.00
Flanges	Heavy Oil	0	8760	0.00000086	5.03	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.01	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	3.50	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	5.03	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	5.03	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.01	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	3.50	0.01	59.56	0.03
Other:	Light Oil	0	8760	0.01650000	5.03	0.00	0.00	0.00
Omer:	Heavy Oil	0	8760	0.00006800	5.03	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.01	0.00	0.12	0.00

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.05	440.01	0.22

XTO ENERGY INC. BEU DI 38 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS BENZENE

Commonant		Estimated			Total Benzene		Emissions	_
Component Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	0.66	0.00	28.87	0.01
Valves	Light Oil	50	8760	0.00550000	2.36	0.01	56.92	0.03
vaives	Heavy Oil	0	8760	0.00001900	2.36	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.00	0.00	0.00	0.00
	Gas/Vapor	5	8760	0.00529000	0.66	0.00	1.54	0.00
Duman Cools	Light Oil	5	8760	0.02866000	2.36	0.00	29.66	0.01
Pump Seals	Heavy Oil	0	8760	0.00113000	2.36	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.00	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00044000	0.66	0.00	1.28	0.00
6	Light Oil	50	8760	0.00046300	2.36	0.00	4.79	0.00
Connectors	Heavy Oil	0	8760	0.00001700	2.36	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.00	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00086000	0.66	0.00	2.50	0.00
El	Light Oil	50	8760	0.00024300	2.36	0.00	2.51	0.00
Flanges	Heavy Oil	0	8760	0.00000086	2.36	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	0.66	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	2.36	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	2.36	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.00	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	0.66	0.00	11.29	0.01
Other:	Light Oil	0	8760	0.01650000	2.36	0.00	0.00	0.00
Omer:	Heavy Oil	0	8760	0.00006800	2.36	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.00	0.00	0.03	0.00

Emission Component	lb/hr	lb/year	TPY
Total Benzene	0.016	139.40	0.070

XTO ENERGY INC. BEU DI 38 TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS HEXANE

Commons		Estimated			Total Hexane		Emissions	
Component Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	1.44	0.01	62.37	0.03
Valves	Light Oil	50	8760	0.00550000	1.01	0.00	24.36	0.01
vaives	Heavy Oil	0	8760	0.00001900	1.01	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.00	0.00	0.00	0.00
	Gas/Vapor	5	8760	0.00529000	1.44	0.00	3.33	0.00
Duman Cools	Light Oil	5	8760	0.02866000	1.01	0.00	12.70	0.01
Pump Seals	Heavy Oil	0	8760	0.00113000	1.01	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.00	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00044000	1.44	0.00	2.77	0.00
6	Light Oil	50	8760	0.00046300	1.01	0.00	2.05	0.00
Connectors	Heavy Oil	0	8760	0.00001700	1.01	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.00	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00086000	1.44	0.00	5.41	0.00
El	Light Oil	50	8760	0.00024300	1.01	0.00	1.08	0.00
Flanges	Heavy Oil	0	8760	0.00000086	1.01	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	1.44	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.01	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.01	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.00	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	1.44	0.00	24.39	0.01
011	Light Oil	0	8760	0.01650000	1.01	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	1.01	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.00	0.00	0.03	0.00

Emission Component	lb/hr	lb/year	TPY
Total Hexane	0.016	138.48	0.069

AIR EMISSIONS CALCULATION TOOL

Instructions for Completing the Equipment Calculation Forms

- 1. Click the **Start Button** below to reset the form to begin data entry.
- 2. The Air Emissions Calculation Tool initially loads with the Core Data **Information Form.** Once all information is entered on this form, the necessary equipment calculation pages will be created based on the information entered on the Core Data Information Form. The customized *Air Emissions Calculation* **Tool** should now be saved to your computer before entering any other information on the equipment calculation pages. Warning, every time you click on the **Start Button b**elow, the **Air Emissions Calculation Tool** will reset and all data entered will be lost.
- Green/Blue colored information boxes require users to enter the required information for the subject facility. Default values may be changed if not appropriate for the facility.
- Yellow colored boxes represent calculated values based on user information entered and may not be changed.
- Yellow boxes with green/blue cross-hatching represent calculated values based on user information entered, however users may input data in these boxes, if necessary.

Page 1 of 27 Ver.-Draft 8/10/18

Core Data Information

Mandatory - All appropriate Data Must Be Entered For All Boxes Below. This Data Will Automatically Create All Required Equipment Forms And Populate This Data In All Emissions Calculation Forms.

Date Field Feb 18, 2020	Permit/NOI/NPR Number
Company Name: XTO Energy Inc.	Select Application Type GCP-O&G
Facility Name: BEU DI 38 Battery	Al# if Known
Max. Facility Gas Production 60,598.41 (Mscf/d) 2,524.93 (Mscf/h)	Elevation (ft.) 3,076
Max. Facility Oil Production 25,000 (BOPD) 1,041.67 (BOPH)	Sour Gas Streams at This Site? NO
Max. Facility Produced Water 60,000 (BWPD) 2,500 (BWPH)	Jour das Streams at This Site! INO

Enter The Quantity Of All Air Emissions Sources Located At The Facility (Leave Blank For Each Equipment Type That Is Not Present)

Equipment	Quantity	Equipment	Quantity
Amine Unit(s)		Compressor Engine (s)	
Dehydrator(s)		Enclosed Combustion Device(s) (ECD)	
Equipment Fugitives	√	Flare(s)	2
Flash Tower/Ultra-Low Pressure Separator(s)^	1	Generator Engine (s)	
Gunbarrel Separator(s)/Tank(s)		Heater(s), Heater Treaters	2
Number of Paved Haul Roads Segments		Number of Unpaved Haul Road Segments	1
Low Pressure Compressor(s)* & Compressor(s)*	2	Oil/Condensate Storage Tank(s)	3
Oil/Condensate Truck Loading	√	Produced Water Storage Tank(s)	6
Produced Water Truck Loading	✓	Pumpjack Engine(s)	
Reboilers(s) (Amine Units)		Placeholder for Future Use	
Reboilers(s) (Glycol, others)		Startup, Shutdown & Maintenance and Malfunction	✓
Skim Oil or Slop Oil Tank(s)	2	Thermal Oxidizer(s) (TO)	
Vapor Combustion Device(s) (VCU)		Vapor Recovery Unit(s) (VRU)^	2

Click Here to Generate Required Forms & Save to Your Computer

Complete all required forms that follow, for the equipment at the subject facility, based on the selections made above. Items with an * indicate an air emissions calculation form currently not required at this time and those with ^ indicate forms under construction at this time.

Ver.-Draft 8/10/18 Page 2 of 27

Date: Feb 18, 2020 Company Name: XTO Energy Inc. Facility Name: BEU DI 38 Battery

Permit Number: Al# if Known: Elevation (ft.): 3,076

Heaters, Heated Separators & Heater Treaters (Only for units rated <100 MMBTU/Hr)

Enter appropriate information in green boxes below changing default values as appropriate and adding additional rows for each heater unit.

Enter the Sulfur Content of Gas or use default value (grains/10⁶ scf).

2,000

SO₂ emissions based on AP-42 EF and assumes 100% conversion of fuel sulfur to SO2 and assumes sulfur content in natural gas of 2,000 grains/1000000 scf. Change default value of 2000 as needed based on gas analysis submitted with application.

Enter the Site Fuel Heat Value of Gas or use default value (Btu/scf).

1,273.6

	Emissions From All Heaters, Heated Separators & Heater Treaters														
Add/Remove Rows	Unit ID	Heat Input	NO	Ο _χ	C	0	VC	OC .	S	02	PM/PM ₁	0/PM _{2.5}			
		MMBtu/hr	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy			
+	нт	4	0.49	2.146	0.411	1.8	0.027	0.118	0	0	0.037	0.162			
+	нт2	4	0.49	2.146	0.411	1.8	0.027	0.118	0	0	0.037	0.162			
	Totals		0.98	4.292	0.822	3.6	0.054	0.236	0	0	0.074	0.324			

Calculation Tool for Heaters, Heated Separators & Heater Treater Emissions (Uncontrolled) for Oil & Gas Production Sites (Only for units rated <100 MMBTU/Hr)

All emission factors based on AP-42, Table 1.4-1, Table 1.4-2 and Table 1.4-3 (July 1998) https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf

Emission factors for natural gas combustion in boilers and furnaces are presented in AP42, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4. The Tables present emission factors on a volume basis (lb/10⁶ scf). To convert to an energy basis (lb/MMBtu), divide by a heating value of 1,020 MMBtu/10⁶ scf. The emission factors may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value.

NOx Sample Calculation

= AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat pph Value Btu/scf * 1000000/1Btu/MMBtu

= 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1Btu/MMBtu

=0.096 lb/hr

= AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat tpy value Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000 lbs

= 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs

= 0.42 tpy

SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/ 10^6 scf) to 2,000 grains/ 10^6 scf.

Technical Disclaimer

This document is intended to help you accurately determine heaters, heated separators & heater treaters emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of heaters, heated separators & heater treaters emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 4 of 27

Date: Feb 18, 2020 **Company Name:** XTO Energy Inc.

Facility Name: BEU DI 38 Battery

Permit Number: GCP-O&G-

Al# if Known:

Elevation (ft.): 3,076

Flash Tower/Ultra-low Pressure Separators Air Emissions Calculations Form Under Development

Please submit all required calculations and supporting documentation for all Flash Tower/Ultra-low Pressure Separators emissions in the application.

Ver.Draft 8/10/18 Page 5 of 27

Date: Feb 18, 2020 Permit Number: GCP-O&G-Company Name: XTO Energy Inc. Al# if Known:

Company Name: XTO Energy Inc. Facility Name: BEU DI 38 Battery

BEU DI 38 Battery Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Oil/Condensate VOC Flash Emissions Calculations Form Select Tanks Flash Emission Calculation Method

GOR	E & P Tanks	ProMax
Vasquez-Beggs	HYSYS	VMGSim

ProMax Oil Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

	Tanks VOC Control Method								
Capture Efficiency	100	Represent Uncaptured/Uncollected VOC's at Tanks	NO						
VOC Control Method ¹	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO						
VOC Destruction Efficiency ²	VOC Destruction Efficiency ² 99.96 Represent VOC Controlled Emissions at Tanks*								

Notes Both the VRU and flare have control efficiencies of 98%. The AECT is not correctly calculating VOC emissions after control nor does it calculate emissions during VRU downtime.

Total VOC	Total VOC Flash Emissions From Oil/Condensate Storage Tanks Calculated with ProMax												
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emission	s at the Tanks						
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy						
+	OT1	203.13	222.43	0	0	0	0						
+	OT2	203.13	222.43	0	0	0	0						
+	OT3	203.13	222.43	0	0	0	0						
	Totals	609.39	667.29	0	0	0	0						

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GOR Methodology

= GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-VOC pph

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol)

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol

= 216.45 lbs/hr

= GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-VOC tpy

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton

= 948.05 tpy

Vasquez-Beggs Methodology

	- 454	er beg	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
INPUTS Constraints							Constan	ts		
API Gravity		API	16	<api></api>	58	⁰ API		⁰ API Gravity		
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	8,333.33	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460))$ for P + Patm

Patm

20

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Page 7 of 27 Ver.-Draft 8/10/18

Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. **Facility Name: BEU DI 38 Battery**

Al# if Known:

Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Oil/Condensate VOC Working & Standing Emissions Calculations Form Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7 EPA Tanks 4.09d **ProMax** E & P Tanks

ProMax Oil Tanks W & S Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method									
Capture Efficiency 100 Represent Uncaptured and/or Controlled VOC's at Tanks									
VOC Control Method	VRU & Flare	Represent VRU/ULPC Downtime Emissions at Tanks	NO						
VOC Destruction Efficiency 99.96 Represent VOC Controlled Emissions at Tanks*									

Notes Both the VRU and flare have control efficiencies of 98%. The AECT does not calculate emissions during VRU downtime.

Total VOC W & S Emissions From Oil/Condensate Storage Tanks Calculated with ProMax												
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks						
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy					
+	OT1	127.83	559.91	0.05	0.24	0	0					
+	OT2	127.83	559.91	0.05	0.24	0	0					
+	OT3	127.83	559.91	0.05	0.24	0	0					
	Totals	383.49	1,679.73	0.15	0.72	0	0					

Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. AI# if Known: **Facility Name: BEU DI 38 Battery Elevation (ft.):** 3,076

Emissions From Loading Petroleum Liquid

Select Appropriate AP-42 Petroleum Liquid Loading Methodology & Enter appropriate information in the green boxes below changing default values as appropriate.

> **Emission Unit ID:** TL-O

Facility Oil Throughput 76,650,000 (gal/yr)

M - Molecular Weight of

Max. Hourly Loading 8,820 Rate (gal/hr)

Select Appropriate AP-42 Petroleum Liquid Loading Methodology Below*

AP-42, 5.2-4 Equation 1

AP-42, Table 5.2-5

Splash Loading Vapor Balance Service

S - Saturation Factor 0.6 (From AP-42 Table 5.2-1)

47.27 Vapors (lb/lb-mole) Phourly - Max Hourly

Submerged Loading Dedicated Normal Service

Select Emission Source - From AP-42 Table 5.2-5

Pannual - Avg. Annual 9.69 True Vapor Pressure of Liquid Loaded (psia)

11.32 True Vapor Pressure of Liquid Loaded (psia)

Submerged Loading Vapor Balance Service Splash Loading Dedicated Normal Service

Tannual - Average 88.6 Annual Temperature ^OF of Bulk Liquid Loaded

T_{hourly} - Maximum 100.5 Hourly Temperature ^OF of Bulk Liquid Loaded

Truck Loading VOC Control Method									
Capture Efficiency	98.7	Represent Uncaptured/Uncollected VOC's at Loading Rack	YES						
VOC Control Method ¹	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Loading Rack	NA						
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Loading Rack	NO						

Notes The VOC wt% in the gas stream is 80.9% The rates calculated using the AP-42 equation above are for total hydrocarbons and therefore artificially inflated. The values in the Excel workbook are correct.

Total VOC Emissions From Loading Petroleum Liquids												
Pollutant	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Loading Rack							
	pph*	tpy*	pph*	tpy*	pph*	tpy*						
VOC	62.95	239.22	2.06	8.63	0.82	3.11						

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See next page for calculation notes. You may elect to represent the controlled emissions at the loading rack or at the control device or tanks by selecting the appropriate drop-down options under Truck Loading VOC Control Method.

Page 9 of 27 Ver.Draft 8/10/18

Calculation Tool for Emissions From Loading Petroleum Liquid

Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5

https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: Equation 1 $L_1 = 12.46 * SPM/T$

where:

 $L_L = loading loss$, pounds per 1000 gallons (lb/10 3 gal) of liquid loaded;

S = a saturation factor (see Table 5.2-1 reproduced below))

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

T = temperature of bulk liquid loaded, °R (°F + 460)

VOC pph = (12.46*0.6*7.0 (psia)*50 (lb/lb-mole)/550°R)/1000 (gal) * 8400 (gal/hr)

 $= 39.96 \, lb/hr$

VOC tpy = (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000*1533000 (gal/yr)*1/2000 (ton/lbs)

= 2.46 tpy

Cargo Carrier	Mode of Operation	S Factor
ank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5
	Submerged loading: dedicated normal service	0.6
	Submerged loading: dedicated vapor balance service	1.0
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.0
Marine vesse l s ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

AP-42 Table 5.2-5

VOC pph = (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) = 16.8 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) = 1.53 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS									
Emission Source Mode of Operation Crude Oil (lb/1000 gal transferred) ^b									
Loading Operations ^c									
	Submerged loading: dedicated normal service	2							
	Submerged loading: dedicated vapor balance service	3							
	Splash loading: dedicated normal service	5							
	Splash loading: dedicated vapor balance service	3							

a Reference 2.VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1.

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- ^) Vapor balancing emissions to tanks must be represented at the tanks;

Technical Disclaimer

This document is intended to help you accurately determine truck loading petroleum emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading petroleum emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 10 of 27

Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. BEU DI 38 Battery **Facility Name:**

Al# if Known:

Elevation (ft.): 3,076

Slop Oil or Skim Oil Tanks VOC Flash Emissions Calculations Form **Select Flash Emission Calculation Method**

GOR	E & P Tanks	ProMax
Vasquez-Beggs	HYSYS	VMGSim

ProMax Slop Oil or Skim Oil Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Slop Oil or Skim Oil Tanks VOC Control Method										
Capture Efficiency	Represent Uncaptured/Uncollected VOC's at Tanks	NO								
VOC Control Method ¹ Flare (FL)		Represent VRU/ULPC Downtime Emissions at Tanks	NO							
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Tanks* NC								
Notes										

Total VOC Flash Emissions From Slop Oil or Skim Oil Tanks Calculated with ProMax												
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emissions after Control		VOC Emissions at the Tanks						
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy					
+	STK-1	71.16	77.92	1.42	1.56	0	0					
+	STK-2	71.16	77.96	1.42	1.56	0	0					
	Totals	142.32	155.88	2.84	3.12	0	0					

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GOR Methodology

VOC pph = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol)

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol

= 216.45 lbs/hr

= GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-**VOC tpy**

mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton

= 948.05 tpy

Vasquez-Beggs Methodology

	-								
INPUTS			Cons	traints		Constants			
API Gravity	API	16	<api></api>	58	⁰ API			⁰ API Gr	avity
Separator Pressure (psig)	Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)	Ti	70	<ti></ti>	295	0F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition	SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW	MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas	VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460)) \text{ for } P + Patm$

Patm

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 12 of 27

Permit Number: GCP-O&G-Feb 18, 2020

Company Name: XTO Energy Inc. **Facility Name: BEU DI 38 Battery**

Al# if Known:

Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Slop Oil or Skim Oil VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7 **ProMax** E & P Tanks EPA Tanks 4.09d

ProMax Slop Oil or Skim Oil Tanks W & S Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Slop Oil or Skim Oil Tanks VOC Control Method									
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO						
VOC Control Method	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Tanks	NO						
VOC Destruction Efficiency 98 Represent VOC Controlled Emissions at Tanks*									
Notes									

Total VOC W & S Emissions From Slop Oil or Skim Oil Tanks Calculated with ProMax												
Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissions at the Tanks						
Up To 10 Units		pph	pph tpy		tpy*	pph	tpy					
+	STK-1	0.01	0.05	0	0	0	0					
+	STK-2	0.01	0.05	0	0	0	0					
	Totals	0.02	0.1	0	0	0	0					

Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. AI# if Known: **Facility Name: BEU DI 38 Battery Elevation (ft.):** 3,076

Startup, Shutdown & Maintenance and Malfunction

No SSM	emissions are	expected	from r	outine	operations.

- Request up to 10 tpy of VOC SSM emissions.
- Request site specific VOC & H2S SSM and enter information below.
- Request site specific VOC & H2S SSM plus 10 tpy VOC and enter information below.
- Request site specific combustion SSM and those emissions are included in Section 4 (attach calculations.)
- Request 10 tpy VOC Malfunction emissions for GCP-O&G, GCP-6 or NSR permitting actions only.

	I	Blowdown	S	Er	ngine Startu	ps
Unit Numbers						
Quantity of Like-kind Blowdown Units or Engines	1					
Total Volume of Each Blowdown or Engine Startup Vent (acf)						
Duration of Event (Minutes)						
Maximum Blowdowns or Startups/hr	1					
Frequency of Blowdowns or Engine Startups (Events/yr)						
Total Actual Volume of Gas Vented (acf/yr)	0	\otimes			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Pressure of Gas Inside Unit Before Venting (psig)						
Final Pressure (psia)	14.7					
Gas Temperature Prior to Venting (°F)						
Vented Gas Molecular Weight (lb/lb-mol						
Vented Gas VOC wt %						
Vented Total HAP wt %						
Vented Gas Benzene wt %						
Vented Gas H ₂ S wt %						

Startup, Shutdown and Maintenance Emissions (SSM) and Malfunction Emissions										
SSM	voc		Total HAP		Benzene		H ₂ S			
	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY		
SSM Blowdowns										
SSM Startups										
SSM Other (Attach Calculations)										
SSM Totals										
Malfunction Total										

Notes

*SSM emissions are illustrated at the high and low pressure flares.

Page 14 of 27 Ver.Draft 8/10/18

MEXICO

New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Planned SSM Emissions

The venting emissions calculations herein should only be used when only gas (no liquids) is present in the unit. The calculation of the vented gas is based on the volume of the unit and assumes the unit is saturated with vapor at the pressure and temperature of the unit before venting occurs. If liquids are also present in the gas, please enter the calculated amounts in the SSM Other row only and submit separate calculations, since the calculations on this form do not account for the evaporation of liquids that may be present in the unit.

Calculations are based on the Ideal gas law: P(V) = n(R)(T)

VOC result = (((Pressure of Gas Inside the Unit Before Venting) * (Actual Volume of the Vented Unit)) / (Frequency of events) * (Molecular Weight) * VOC wt%)/(Ideal Gas Constant) * (Temperature of Gas Inside the Unit Before Venting)

Where the Ideal Gas Constant = 10.73159 (ft³*psia)/R*lb-mol

For SSM combustion emissions, attach separate calculations.

Ver.-Draft 8/10/18 Page 15 of 27

Date: Feb 18, 2020 **Permit Number:** GCP-O&G-

Company Name: XTO Energy Inc. Facility Name: BEU DI 38 Battery

Al# if Known: Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Produced Water VOC Flash Emissions Calculations Form Select Tanks Flash Emission Calculation Method

GWR	E & P Tanks	ProMax
Vasquez-Beggs	HYSIS	VMGSim

ProMax Produced Water Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method						
Select % Oil in Water	VOC Uncontrolled emissions entered includes this percentage.					
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO			
OC Control Method Flare (FL) Represent VRU/ULPC Downtime Emissio at Tanks		Represent VRU/ULPC Downtime Emissions at Tanks	NO			
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO			
Notes						

Total VOC Emissions From Produced Water Storage Tanks Calculated with ProMax								
Add/Remove Rows	Tank ID	VOC Uncontro	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Tanks	
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	WT 1	0.48	0.53	0.01	0.01	0	0	
+	WT 2	0.48	0.53	0.01	0.01	0	0	
+	WT 3	0.48	0.53	0.01	0.01	0	0	
+	WT 4	0.48	0.53	0.01	0.01	0	0	
+	WT 5	0.48	0.53	0.01	0.01	0	0	
+	WT 6	0.48	0.53	0.01	0.01	0	0	
	Totals	2.88	3.18	0.06	0.06	0	0	

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

- 1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.
- 2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;
- 3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;
- 4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;
- 5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GWR Methodology

VOC pph

- = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-mole @ 70°F, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * Percent Oil in Water
- = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 1/100
- = 2.16 lbs/hr

VOC tpy

- = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-mole @ 70^OF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton * Percent Oil in Water
- = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton * 1/100 = 9.48 tpy

Vasquez-Beggs Methodology

INPUTS	INPUTS Constraints			Constants						
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gr	avity
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	0F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Water/Day (BOPD)	10,000	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				

2070

scf/bbl

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

<Rs>

 $Rs = (C1 * SGx * Pi^C2) \exp((C3 * API) / (Ti + 460)) \text{ for } P + Patm$

Patm

20

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

Atmospheric Pressure (psia)

This document is intended to help you accurately determine produced water storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of produced water storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 17 of 27

Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. **Facility Name:**

Al# if Known: **BEU DI 38 Battery** Elevation (ft.): 3,076

Vertical Fixed Roof (VFR) Water Tanks VOC Working & Standing Emissions Calculations Form Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7 **ProMax** E & P Tanks EPA Tanks 4.09d

ProMax Produced Water Tanks W & S Emission Calculations

(Assumes W & S emissions are 1% of the emissions calculated based on oil properties and entered as uncontrolled emissions)

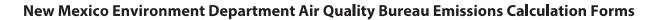
Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

• •							
Tanks VOC Control Method							
Capture Efficiency	100	Represent Uncaptured and/or Controlled VOC's at Tanks	NO				
VOC Control Method	Flare (FL)	Represent VRU/ULPC Downtime Emissions at Tanks	NO				
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	NO				
Notes							

Total VOC W & S Emissions From Produced Water Storage Tanks Calculated with ProMax								
Add/Remove Rows	Tank ID	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Tanks		
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	WT1	0	0.02	0	0	0	0	
+	WT2	0	0.02	0	0	0	0	
+	WT3	0	0.02	0	0	0	0	
+	WT4	0	0.02	0	0	0	0	
+	WT5	0	0.02	0	0	0	0	
+	WT6	0	0.02	0	0	0	0	
	Totals	0	0.12	0	0	0	0	

Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. AI# if Known: **Facility Name:** BEU DI 38 Battery **Elevation (ft.):** 3,076


Emissions From Loading Produced Water Liquids

Select Appropriate AP-42 Petroleum Liquid Loading Methodology & Enter appropriate information in the green boxes below

	changing default	values as appropriate.		
	Emission Unit ID:	TL-W		
Facility Produced Water Throughput (gal/yr)	Max. Hourly Loading Rate (gal/hr)	8,820	% Oil in Water	1
	ppropriate AP-42 Petroleun			
● AP-42, 5.2	-4 Equation 1	AF	P-42, Table 5.2-5	
S - Saturation Factor (From AP-42 Table 5.2-1)	M - Molecular Weight of Vapors (lb/lb-mole)	18 29	sion Source - From A	
Pannual - Avg. Annual True Vapor Pressure of 0.59 Phourly - Max Hourly True Vapor Pressure of			ed Loading Vapor Ba	
True Vapor Pressure of Liquid Loaded (psia)	True Vapor Pressure of Liquid Loaded (psia)	0.05	pading Vapor Balance	
T _{annual} - Average Annual Temperature ^O F of Bulk Liquid Loaded	Thourly - Maximum Hourly Temperature ^O F of Bulk Liquid Loaded	95.7		
Notes:The value below represents THC rather than 1% of the oil.	, not VOC. See the Excel work	kbook for VOC calculation	ns since it uses the co	mposition of the water

Total VOC Emissions From Loading Produced Water Liquids Based On % Oil in Water Selected Above						
Pollutant	Uncontrolled Emissions (pph)	Uncontrolled Emissions (tpy)				
VOC	0.02	0				

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See reverse side for calculation notes

Calculation Tool for Emissions From Loading Produced Water Liquids

Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5

https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading produced water liquids can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: $L_{I} = 12.46 * SPM/T$ Equation 1

where:

 $L_L = loading loss$, pounds per 1000 gallons (lb/10³ gal) of liquid loaded (assumes 1% oil in water)

S = a saturation factor (see Table 5.2-1 reproduced below))

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

 $T = \text{temperature of bulk liquid loaded, } ^{\circ}R (^{\circ}F + 460)$

VOC pph = (12.46*0.6*7.0 (psia)*50 (lb/lb-mole)/550°R)/1000 (gal) * 8400 (gal/hr) * 0.01 (1% oil in water)

= (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000 * 1533000 (gal/hr) * 1/2000 (ton/lbs) * 0.01 (1% oil in water) VOC tpy

= 2.46 tpv

Cargo Carrier	Mode of Operation	S Factor	
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5	
	Submerged loading: dedicated normal service	0.6	
	Submerged loading: dedicated vapor balance service	1.0	
	Splash loading of a clean cargo tank	1.45	
	Splash loading: dedicated normal service	1.45	
	Splash loading: dedicated vapor balance service	1.0	
Marine vesse l s ^a	Submerged loading: ships	0.2	
	Submerged loading: barges	0.5	

AP-42 Table 5.2-5 (assumes 1% oil in water)

VOC pph= (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) * 0.01 (1% oil in water) = 0.168 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) * 0.01 (1% oil in water) = 0.0153 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS						
Emission Source	Mode of Operation	Crude Oil (lb/1000 gal transferred) ^b				
Loading Operations ^c						
	Submerged loading: dedicated normal service	2				
	Submerged loading: dedicated vapor balance service	3				
	Splash loading: dedicated normal service	5				
	Splash loading: dedicated vapor balance service	3				

....VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1.

Technical Disclaimer

This document is intended to help you accurately determine truck loading produced water emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading produced water emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Page 20 of 27 Ver.-Draft 8/10/18

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Permit Number: GCP-O&G-Feb 18, 2020

Company Name: XTO Energy Inc. AI# if Known: **Facility Name:** BEU DI 38 Battery

Elevation (ft.): 3,076

Flare

	Enter information in green boxes below changing default values as appropriate.								
		Gas Stream	Gas Stream	Gas Stream		Gas Stream	Gas Stream	Gas Stream	
		1	2	3		1	2	3	
Emission	Unit ID	FL-1	FL-1b	FL-1c	Hourly Gas Routed to Flare (MMBtu/hr)	148.916485	3,215.85694	0	
Hourly Gas Str (Mscf	/hr)	84.578	2,524.934		Annual Gas Routed to Flare (MMBtu/yr)	32,613.446	306,394.480	0	
Annual Gas Str (MMsc		18.523	240.566		Pilot Gas Routed to Flare (MMBtu/hr)	0.509456	0	0	
Max. Heat Value	of Gas (Btu/scf)	1,760.7	1,273.64	1,200	Gas MW (lb/lbmol)	30.76	22.41		
Field Gas Mol Fr H2S/lb-		0	0		Gas Pressure (psia)	14.7	14.7	14.7	
Field Gas Sulf (S grains/		5	5	5	Gas Temperature (°F)	70	70	70	
Pilot Gas to Fla	are (Mscf/hr)	0.4			Field Gas H2S Wt.% to Flare (%)	0	0		
Max. Heat Value scf		1,273.64	1,020	1,020	Flare Control Efficiency	98	98	95	
Pilot Gas Sulf (S grains/		0.25	0.25	0.25	Total VOC wt.% to Flare (%) ¹	52.68	26.02	100	
Source of Flare Er	mission Factors	TCEQ Air or	TCEQ Air or		Safety Factor Applied to Total Emissions (%)				
Use Highest NOx	& CO Emission	NO	NO						

					Tot	al Emis	sions to	Flare							
Pollutant		NOx		CO			VOC			SO2			H2S		
Gas Streams to Flare	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Uncontrolled (pph)	0	0	0	0	0	0	3,542.34	38,054.01 +		0	0	0	0	0	0
Uncontrolled (tpy)	0	0	0	0	0	0	387.9	1,812.82	YYY	0	0	0	0	X 0 X	0
Field Gas (pph)	20.5505	443.7883		41.0265	885.9686		70.85	761.08		0	0		0	0	
Field Gas (tpy)	2.2503	21.1412	0	4.4925	42.2058	0	7.76	36.26		0	0	0	0	0	0
Pilot Gas (pph)	0.0703			0.1404			0	0	0	0.0003	0	0	0	0	0
Pilot Gas (tpy)	0.3079			0.6148			0	0	0	0.0012	0	0	0	0	0
Subtotal Flare (pph)	20.6208	443.7883	0	41.1669	885.9686	0	70.85	761.08	0	0.0003	0	0	0	0	0
Subtotal Flare (tpy)	2.5582	21.1412	0	5.1073	42.2058	0	7.76	36.26	0	0.0012	0	0	0	0	0
Total Flare (pph)	464.41				927.14		831.93		0.0003			0			
Total Flare (tpy)		23.7			47.31			44.02			0.0012			0	

See reverse side for calculation notes.

Factors From AP-42 or TCEQ

1) Based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf; *) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012); #) Assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance;

NO

NO

Page 21 of 27 Ver.Draft 8/10/18

⁺⁾ Assumes H₂S Destruction Efficiency equals flare destruction efficiency;

New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Calculation Tool for Flare Emissions for Oil & Gas Production Sites

All emission factors based on AP-42, Emission factors for NOx, CO & VOC, Table 13.5-1, (December 2016); https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05_12-13-16.pdf or https://www.tceq.texas.gov/assets/public/comm_exec/pubs/rg/rg360/rg36011/rg-360a.pdf

- 1) Information included in calculation tool must be based on representative gas analysis which must be submitted with application;
- 2) Assumes pilot gas used has a negligible amount of VOC's and 0.25 grains H2S/100 scf;
- 3) SO₂ calculations assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance;
- 4) H₂S calculations assume H₂S Destruction Efficiency equals flare destruction efficiency;

Sample Calculations

NOx pph

- = hourly gas routed to flare (MMBtu/hr) * NOx Emission factor (lbs/MMBtu)
- = 1(MMBtu/hr) * 0.068 (lbs/MMBtu)
- = 0.068 lbs/hr

NOx tpy = annual gas routed to flare (MMBtu/yr) * NOx Emission factor (lbs/MMBtu) * 1/lbs/ton)

- = 1000 (MMBtu/yr) * 0.068 (lb/MMBtu) * 1/2000 (lbs/ton)
- = 0.034 tpy

SO₂ pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/lb

- -mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60^{O} F, 1 atm * Conversion Rate of H₂S to SO₂ lb-mol SO₂/lb-mol H₂S * Molecular Weight of Sulfur Dioxide (64 lb SO₂/lb-mol SO₂)
- = 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * 0.95 lb-mol SO₂/lb-mol H₂S * 64 lb/lb-mol

Residual

H₂S pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/

lb-mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60^oF, 1 atm * (100-(Flare Control Efficiency))/100) * Molecular Weight of Hydrogen Sulfide (34 lb H₂S/lb-mol H₂S)

= 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * (100-95%/100) * 34 lb/lb-mol

Flare	e, Vapor Combustion D	evices & Enclosed Comb	oustion Devices Emission	r Factors
Contaminant	Assist Type	Waste Gas Stream Heat Value (Btu/scf)	AP-42 Emission Factor (lb/MMBtu)	TCEQ Emission Factor (lb/MMBtu)
NOx	Steam	≥1000	0.068	0.0485
	Steam	<1000	0.068	0.068
	Air or Unassisted	≥1000	0.068	0.138
	Air or Unassisted	<1000	0.068	0.0641
СО	Steam	≥1000	0.31	0.3503
	Steam	<1000	0.31	0.3465
	Air or Unassisted	≥1000	0.31	0.2755
	Air or Unassisted	<1000	0.31	0.5496
VOC	Air & Steam Assist	≥300	0.66	

Technical Disclaimer

This document is intended to help you accurately determine flares, enclosed combustion devices and vapor combustion units emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of flares, enclosed combustion devices and vapor combustion units emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 22 of 27

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date: Feb 18, 2020 **Permit Number:** GCP-0&G-

Company Name: XTO Energy Inc.

Al# if Known:

Facility Name: BEU DI 38 Battery Elevation (ft.): 3,076

Emission Unit ID: FUG Fill all green/blue boxes changing default values as appropriate.

Emission	Unit ID:	FUG	Fill	all gre	en/bl	ue bo	oxes c	hang	ing	deta	ault v	values	as	app	ropr	iate	2.			
Fugitive	Volatile	Organi	c Con	npound	ls (VO	C), To	tal HA	Ps (H	AP),	, Ben	zene	(CH6) 8	Ŀ Н	lydro	gen	Sulf	fide (H ₂ S)	Emiss	ions
						Und	ontroll	ed Tota	al						Cor	ntroll	led To	otal		
				VC	DC	Total	HAP	CH ₆	,	I	H ₂ S	VC	C	Т	ota l F	HAP		CH ₆	H	I ₂ S
Service 9	%VOC %H	AP %CH ₆	%H ₂	S PPH	TPY	PPH	TPY	PPH 1	ГРҮ	PPH	I TP	Y PPH	TP	Y P	PH	TPY	PPH	TPY	PPH	TPY
	6.63% 1.15			0.61	2.65	0.03	0.11	0		0	0	0	C	0	0		0	0	0	0
Heavy Oil				0	_	•	0 0	0		0	0	0	C	0	0		0	0	0	0
Light Oil 9				1.23		80.0	0.37			0	0	0	C	_	0		0	0	0	0
Water/Oil (0	0101	Ů	0 0			0	0	0	C	0	0		0	0	0	0
	Total	S		1.84	8.04	0.11	0.48	0		0	0	0	C	0	0		0	0	0	0
					Uncoi	ntrolle	d VOC,	HAP &	CH ₆	Emis	sions			Cont	rolle	OV b	C, HA	P & CH	l ₆ Emis	sions
Equipment	 Service ^a	EF ^k		No. of	voc	VOC	HAP	HAP		- 1	CH_6	Contro	- 1	VOC	VO		IAP	HAP	CH_6	CH ₆
Туре	Service	PPH/Sc	urce	Sources	PPH	TPY	PPH	TPY	PI	PH	TPY	Efficiend	У	PPH	TP\	/ P	PH	TPY	PPH	TPY
Valves	Gas	0.00992	07	140	0.3699	1.6202	0.016	0.0701	1 0	C)	0%		0	0	0	(0	0	0
	Heavy Oi	l 0.00001	852	0	0	0	0	0	0	C)	0%		0	0	0	(0	0	0
	Light Oil	0.00551	15	140	0.7697	3.3713	0.0531	0.2326	5 0	C)	0%		0	0	0		0	0	0
	Water/Oi	I 0.00021	605	50	0.0001	0.0004	1 0	0	0	C)	0%		0	0	0	(0	0	0
Subtotals					1.1397	4.9919	0.0691	0.3027	7 0	C)			0	0	0	(0	0	0
Pump Seals	Gas	0.00529	104	5	0.007	0.030	7 0.0003	0.0013	3 0	C)	0%		0	0	0	(0		0
	Heavy Oi	l 0.02865	98	0	0	0	0	0	0	C)	0%		0	0	0	(0	0	0
	Light Oil	0.02865	98	5	0.1429	0.6259	0.0099	0.0434	1 0	C)	0%		0	0	0	(0	0	0
	Water/Oi	I 0.00005	291	10	0	0	0	0	0	C)	0%		0	0	0	(0	0	0
Subtotals	l	-			0.1499	0.6566	0.0102	0.0447	7 0	C)		T	0	0	0	(0	0	0
Connectors	Gas	0.00044	092	450	0.0528	0.2313	0.0023	0.0101	1 0	C)	0%	t	0	0	0	(0	0	0
	Heavy Oi	I 0.00001	653	0	0	0	0	0	0	C)	0%		0	0	0	(0	0	0
	Light Oil	0.00046	297	450	0.2078	0.9102	0.0143	0.0626	5 0	C)	0%		0	0	0		0	0	0
	Water/Oi			50	0.0001	0.0004		0	0	C)	0%	+	0	0	0		0	0	0
Subtotals					0.2607		0.0166	0.0727	7 0	C)			0	0	0		0	0	0
Flanges	Gas	0.00085	979	450			0.0044			C)	0%		0	0	0		0	0	0
1 13.1923	Heavy Oi			0	0.103	0.431	0	0	0	C		0%		0	0	0		-	0	0
		0.00024		450	0.1089			0.0328	+			0%		0	0	0			0	0
	Water/Oi			50	0.1089	0.477	0.0075	0.0320	0	C		0%		0	0	0			0	0
Subtotals	1774101701	. 0.00000	557	- 30	-	0.928		0.0521	1	C		370		0	0	0		-	0	0
Open Ends	Gas	0.00440	92	18			1 0.0009			C		0%	-	0	0	0			0	0
Open Linus	Heavy Oi			0	0.0211	0.0924	0.0003	0.003	0	C		0%	+	0	0	0		_	0	0
		0.00308		0			0	0	0			0%			_	0			0	0
	Water/Oi			0	0	0	0	0	0	C		0%		0	0	0			0	0
Cubtotala	vvater/OI	1 0.00055	113	U	0	0	0.0009		Ť			0%		0	0			-		
Subtotals	Car	0.01040	040	10						C		00/	L	0	0	0			0	0
Other ^c	Gas	0.01940		10		_	0.0022	+	+	C		0%		0	0	0			0	0
	Heavy Oi			0	0	0	0	0	0	C		0%		0	0	0		_	0	0
		0.01653		0	0	0	0	0	0	C		0%		0	0	0		-	0	0
	Water/Oi	1 0.03086	44	5		0.0066	_	0	0	C		0%		0	0	0			0	0
Subtotals		on: 1995 Pi			0.0532	0.233		0.0096		C				0	0	0			0	0

Based on: 1995 Protocol for Equipment Leak Emission Estimates, Table 2.4 Version Date: 6/23/16; See next page for calculation notes.

Ver.Draft 8/10/18 Page 23 of 27

New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

Calculation Tool for Fugitive Emissions Oil & Gas Production Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), Table 2-4; available at the EPA Web site at https://www3.epa.gov/ttn/chief/efdocs/equiplks.pdf

- a) Service categories are defined as follows:
 - 1) Gas/vapor material in a gaseous state at operating conditions;
 - 2) Light liquid material in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure over 0.3 kilopascals (kPa) at 200C is greater than or equal to 20 weight percent;
 - 3) Heavy liquid not in gas/vapor service or light liquid service.
 - 4) Water/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.
- b) These factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.
- c) The "other" equipment type was derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.
- d) Note that the average factors generally determine total hydrocarbon emissions. Therefore, you may need to multiply the calculated emission rates by the stream's weight percentage of VOC compounds to determine total VOC emissions. Please attach a copy of the appropriate gas and oil analysis with the stream's weight percentage of VOC compounds identified.

VOC Sample Calculation

For 10 Valves in Gas Service with a gas stream weight percentage of 25% VOC

Emission Factor (EF) lb/hr=0.0045 kg/hr * 2.2046 lbs/kg

Gas Valves Uncontrolled Emissions

EF (Valves in Gas Service) * Number of Valves in Gas Service & VOC wt% pph

0.0099207 | b/hr * 10 valves = 0.099207 | b/hr * 25%/100

EF (Valves in Gas Service) * Number of Valves in Gas Service * 8760 hrs/yr * 1ton/2000 lbs tpy 0.0099207 lb/hr * 10 valves * 8760 hrs/yr * 1/2000 ton/lbs = 0.4345 tons/yr * 25%/100

Total Uncontrolled Fugitive Emissions for all Service types in Gas Service

(Uncontrolled pph Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100 pph (Uncontrolled tpy Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100 tpy

Technical Disclaimer

This document is intended to help you accurately determine equipment leak fugitive emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how piping components work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of equipment leak fugitive emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Page 24 of 27 Ver.-Draft 8/10/18

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date: Feb 18, 2020 Permit Number: GCP-O&G-

Company Name: XTO Energy Inc. **Facility Name:** BEU DI 38 Battery

AI# if Known:

Elevation (ft.): 3,076

Unpaved Haul Roads

Enter Information in all green boxes.

Haul Road I	Fugitive Emissi	on Unit ID:	ROAD			
% Silt	4.8	(Only enter roun	Haul Road Distance-Round-trip in Miles (Only enter round-trip distance within facility boundaries)			
Mean Vehicle Weight (tons)	28	•				
Rain Days	70	Number of Haul I	Road Round-trips/hou	2		
		Number of Haul I	Road Round-trips/yr	17,381		
User % Control	0	Vehicle Miles Tra	veled/hr (VMT/hr)	0.26		
		Vehicle Miles Tra	veled/yr (VMT/yr)	2,259.53		

Notes:* The values here a slightly different from the Excel workbook due to rounding. The actual distance per load is 0.133 miles.

	Hourly lbs/VMT			Annually lbs/VMT	
TSP	PM10	PM2.5	TSP	PM2.5	
7.05	1.8	0.18	5.7	1.45	0.15

	TSP/PM10/PM2.5 Emission Rates									
Control	TS	SP	PN	110	PM2.5					
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
Continuous	1.83	6.49	0.47	1.65	0.05	0.17				
0% Control	1.83	6.44	0.47	1.64	0.05	0.17				
User % Control	1.83	6.44	0.47	1.64	0.05	0.17				

NMED-AQB Unpaved Haul Road Calculation Tool

All emission factors based on AP-42, AP-42 13.2.2-4; November 2006

https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf

Emissions from vehicles traveling on unpaved surfaces at industrial sites (based on 8760 Hours/year) can be estimated using the following expression:

AP-42 13.2.2-4; Equation 1a: $E = k (s/12)^a (W/3)^b$

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

Table 13.2.2-2. CONSTANTS FOR EQUATION 1a						
Constant	Industr	rial Roads (Equa	ation 1a)			
	PM-2.5	PM-10	PM-30*			
k (lb/VMT)	0.15	1.5	4.9			
a	0.9	0.9	0.7			
b	0.45	0.45	0.45			
Quality Rating	В	В	В			
*Assumed equivalent	t to total suspe	nded particulate	matter (TSP)			

This document is intended to help you accurately determine unpaved haul road emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how unpaved haul roads work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of unpaved haul road emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ver.-Draft 8/10/18 Page 26 of 27

Technical Disclaimer

New Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

- 0	-	=	50	40
	•		D.	Δ
4/	•	ш		١.
= 1=		ш		1
" \vie	Б.,	-	•	,,
101	150	A.	7	g
100	<_	٠,	d	A
_	_	-	_	

tons/yr 0.48 0.48 0 0 0 **Total HAP** lb/hr 0.11 0.11 0 0 0 tons/yr 0 0 0 H₂S b/hr 0 0 0 3,076 tons/yr Permit Number: AI# if Known: Elevation (ft.): 0.49 0.32 0.17 0 0 í 0 0 PM2.5 Total Requested Emissions For All Regulated Facility Equipment (GCP-O&G Request) lb/hr 0.12 0.07 0.05 0 í 0 0 0 tons/yr 1.96 1.64 0.32 0 0 0 0 PM10 lb/hr 0.54 0.07 0.47 0 0 0 0 tons/yr 6.76 0.32 6.44 0 0 0 ï 0 TSP lb/hr 1.83 0.07 1.9 0 0 0 0 tons/yr 0 0 0 0 0 0 0 0 ř. í 0 ī. Sox lb/hr 0 0 0 0 0 0 0 0 0 tons/yr 55.41 44.02 0.24 8.04 3.11 0 0 0 0 0 0 0 0 0 0 0 0 0 700 834.66 831.93 lb/hr 0.05 1.84 0.82 0.02 0 0 0 0 0 0 0 0 0 0 0 0 tons/yr 50.91 47.31 3.6 0 0 0 0 0 0 r. 0 927.96 lb/hr **BEU DI 38 Battery** 927.14 0.82 Company Name: XTO Energy Inc. 0 0 0 í 0 0 0 tons/yr 27.99 23.7 4.29 0 0 0 0 0 0 NOx 465.39 lb/hr 464.41 0.98 0 0 0 Facility Name: 0 0 0 Amine Reb Water Tks Water Tks Slop Tank Emission **Amine Unt** Fugitives Dehy Unit Dehy Reb. Oil Tanks Oil Tanks Unpaved Haul Rds. Haul Rds. Loading Oil Load Engines Unit Heaters Skim or Totals Paved W & S W & S Flares Water Flash Flash ECD SSM Malf. GBS NCU 2

Page 27 of 27 A red-outlined cell indicates that the facility exceeds the allowable emission limits for that pollutant for the requested permitting action and the application cannot be approved as proposed. Ver.-Draft 8/10/18

0363

Section 6 Information Used to Determine Emissions

Section 6

Information Used to Determine Emissions

Check the box for each type of information submitted. This documentation is required. If applicable to the facility.

Failure to include applicable supporting documentation may result in application denial.

vei	Specifications for control equipment, including control efficiency specifications and sufficient engineering data for ification of control equipment operation, including design drawings, test reports, and design parameters that affect
no	Engine or Generator Manufacturer specifications Catalyst Manufacturer specifications (If a catalyst is being utilized to reduce emissions, the catalyst manufacturer emission factors must be used in all emission calculations. A 25% safety factor may be applied to each pollutant. NSPS JJJJ emission factors may not be utilized in lieu of catalyst manufacture specifications when a catalyst is installed, and the catalysts manufacturer achieves higher control efficiency. Flare Manufacturer specifications Oil/Liquid Analysis: This data is required to match the inputs in all applicable emission calculations. For facilities that have not been constructed and a representative analysis is used it cannot be older than 1 year. For existing facilities, the gas analyses required by Condition A201.A (must be 1 year old or less). Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
	Extended Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
	☑ If requesting to use a representative gas sample, include a discussion of why the sample is representative for this facility and an explanation of how it is representative (e.g., same reservoir, same similar API gravity, similar composition).
	If test data are used, to support emissions calculations or to establish allowable emission limits, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates. Fuel specifications sheet.
	If computer models are used to estimate emissions, include an input summary and a detailed report, and a disk containing the input file used to run the model.
	For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, accuracy of the model, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.
	Representative Gas Analysis Justification: * The analysis came from the Big Eddy Unit 4, which produces from the

Heaters (HT1-HT2)

Emission rates for NOx, CO, VOC, PM, and HAP were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. Emissions were increase assuming a burner efficiency of 70%. The AECT calculated emissions are lower than the Excel workbook.

Vapor Recovery Tower (VRT)

same reservoir and has similar characteristics.

Flashing, working and breathing losses were estimated using Promax. A VRU is used to capture 98% of the vapors when operating. During VRU downtime (876 hours), VRT vapors are routed from to the low pressure flare (LFP) with a control efficiency of 98%. The hourly VRT emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly VRT emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

Form Revision: 10 December 2019 Printed: 2/18/2020

Oil Storage Tanks (OT1-OT3)

Flashing, working and breathing losses were estimated using Promax. A VRU is used to capture 98% of the tank vapors when operating (LPF-OT). During VRU downtime (3,154 hours), tank vapors are routed from the storage tanks to the low pressure flare (LFP) with a control efficiency of 98% (LPF-OT SSM). Oil is normally piped offsite but up to 5000 BOPD can be trucked offsite. Truck loading is controlled by LPF. The hourly tank emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly tank emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

Water Skim Tanks (SKTK1-SKTK2)

Flashing, working and breathing losses were estimated using Promax, assuming a maximum throughput of 60000 BWPD. Tank vapors are routed to LPF, which has a control efficiency of 98% (LPF-WT). Water is normally piped offsite but up to 5000 BOPD can be trucked offsite. The hourly tank emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly tank emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

Water Tanks (WT1-WT6)

Working and breathing losses were estimated using Promax, assuming a maximum throughput of 60000 BWPD. Tank vapors are routed to LPF, which has a control efficiency of 98% (LPF-WT). Water is normally piped offsite but can be trucked offsite as well. The hourly tank emissions and gas volumes were based upon the daily production rate then divided by 24. The maximum hourly tank emissions and gas volumes were calculated by multiplying the normal hourly rate by 4.

High Pressure Flare (HPF)

The flare uses a continuously lit pilot. Heater treater gas is routed to the flare during booster compressor (BC1/BC2) downtime (HPF-HT SSM) and inlet gas is routed to the flare during sales line downtime or during unplanned maintenance activities (HPF-SALES SSM. Heater treater gas volumes were estimated using Promax. Inlet volumes are based on production estimates. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used. On the AECT, FL-1 is the treater gas stream during booster downtime and FL-1b is the inlet gas stream.

Low Pressure Flare (LPF)

The flare uses a continuously lit pilot. LPF collects 2% of all VRT and oil tanks gas during normal VRU operation and 100% of all tank gas during VRU downtime. All skim tank, water tank, and oil truck loading emissions are routed to the flare. The gas volumes are calculated using Promax. Emission rates for NO_x and CO are calculated using factors from TNRCC. H_2S , SO_2 and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used. The AECT does not work for the LPF since there are too many streams.

Fugitives (FUG)

Fugitives for the facility were calculated using factors in Table 2-4 of EPA-453/R-95-017, 1995 Protocol for Equipment Leak Emission Estimates.

Haul Road (ROAD)

Haul road emissions were calculated using Equation 1a in AP-42, Section 13.2.2.

Form Revision: 10 December 2019 Printed: 2/18/2020

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc.

22777 Springwoods Village Pkwy.

Spring, Texas 77389

Sample: BEU DI 4 Tank Battery

First Stage Separator

Spot Gas Sample @ 103 psig & 89 °F

Date Sampled: 08/20/2019 Job Number: 192969.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	3.977	
Carbon Dioxide	0.250	
Methane	72.423	
Ethane	12.256	3.356
Propane	6.294	1.776
Isobutane	0.760	0.255
n-Butane	1.976	0.638
2-2 Dimethylpropane	0.003	0.001
Isopentane	0.464	0.174
n-Pentane	0.488	0.181
Hexanes	0.363	0.154
Heptanes Plus	0.746	0.290
Totals	100.000	6.825

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.242	(Air=1)
Molecular Weight	93.52	
Gross Heating Value	4848	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.783	(Air=1)
Compressibility (Z)	0.9959	
Molecular Weight	22.58	
Gross Heating Value		
Dry Basis	1321	BTU/CF
Saturated Basis	1299	BTU/CF

^{*}Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (16) D. Field Certified: FESCO, Ltd. - Alice, Texas

Analyst: NG Processor: RG

Cylinder ID: T-5241 David Dannhaus 361-661-7015

FESCO, Ltd. Job Number: 192969.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL of	0014		14/ T 0/
COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	3.977			4.934
Carbon Dioxide	0.250			0.487
Methane	72.423			51.450
Ethane	12.256	3.356		16.320
Propane	6.294	1.776		12.290
Isobutane	0.760	0.255		1.956
n-Butane	1.976	0.638		5.086
2,2 Dimethylpropane	0.003	0.001		0.010
Isopentane	0.464	0.174		1.482
n-Pentane	0.488	0.181		1.559
2,2 Dimethylbutane	0.003	0.001		0.011
Cyclopentane	0.071	0.030		0.221
2,3 Dimethylbutane	0.000	0.000		0.000
2 Methylpentane	0.108	0.046		0.412
3 Methylpentane	0.059	0.025		0.225
n-Hexane	0.122	0.051		0.466
Methylcyclopentane	0.094	0.033		0.350
Benzene	0.115	0.033		0.398
Cyclohexane	0.146	0.051		0.544
2-Methylhexane	0.015	0.007		0.067
3-Methylhexane	0.020	0.009		0.089
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.060	0.027		0.264
n-Heptane	0.032	0.015		0.142
Methylcyclohexane	0.091	0.013		0.396
Toluene	0.059	0.020		0.241
Other C8's	0.048	0.020		0.234
n-Octane	0.012	0.025		0.254
	0.001	0.000		
Ethylbenzene	0.001	0.000		0.005 0.038
M & P Xylenes				
O-Xylene	0.002	0.001		0.009
Other C9's	0.025	0.013		0.140
n-Nonane	0.003	0.002		0.017
Other C10's	0.008	0.005		0.050
n-Decane	0.001	0.001		0.006
Undecanes (11)	0.006	0.004		0.040
Totals	100.000	6.825		100.000
Computed Real Charact	eristics of Total Sample			
Specific Gravity		0.783	(Air=1)	
Compressibility (Z)		0.9959		
Molecular Weight		22.58		
Gross Heating Value				
		1321	BTU/CF	
Saturated Basis		1299	BTU/CF	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: BEU DI 4 Tank Battery

First Stage Separator

Spot Gas Sample @ 103 psig & 89 °F

Date Sampled: 08/20/2019 Job Number: 192969.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.250		0.487
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	3.977		4.934
Methane	72.423		51.450
Ethane	12.256	3.356	16.320
Propane	6.294	1.776	12.290
Isobutane	0.760	0.255	1.956
n-Butane	1.979	0.639	5.096
Isopentane	0.464	0.174	1.482
n-Pentane	0.488	0.181	1.559
Cyclopentane	0.071	0.030	0.221
n-Hexane	0.122	0.051	0.466
Cyclohexane	0.146	0.051	0.544
Other C6's	0.170	0.072	0.648
Heptanes	0.221	0.092	0.912
Methylcyclohexane	0.091	0.037	0.396
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.115	0.033	0.398
Toluene	0.059	0.020	0.241
Ethylbenzene	0.001	0.000	0.005
Xylenes	0.010	0.004	0.047
Octanes Plus	<u>0.103</u>	0.053	<u>0.548</u>
Totals	100.000	6.825	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.169	(Air=1)
Molecular Weight	120.24	
Gross Heating Value	6364	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity 0.783 (Ai	1=1)
Compressibility (Z) 0.9959	
Molecular Weight 22.58	
Gross Heating Value	
Dry Basis 1321 BT	U/CF
Saturated Basis 1299 BT	U/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc.

22777 Springwoods Village Pkwy.

Spring, Texas 77389

Sample: BEU DI 4 Tank Battery

First Stage Separator Hydrocarbon Liquid

Sampled @ 103 psig & 89 °F

Date Sampled: 08/20/19 Job Number: 192969.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.028	0.005	0.005
Carbon Dioxide	0.007	0.002	0.002
Methane	2.430	0.669	0.245
Ethane	2.255	0.980	0.426
Propane	3.708	1.660	1.028
Isobutane	0.970	0.516	0.355
n-Butane	3.623	1.856	1.324
2,2 Dimethylpropane	0.045	0.028	0.020
Isopentane	2.011	1.195	0.912
n-Pentane	2.844	1.675	1.290
2,2 Dimethylbutane	0.018	0.012	0.010
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.476	0.317	0.258
2 Methylpentane	1.118	0.754	0.606
3 Methylpentane	0.697	0.463	0.378
n-Hexane	1.775	1.186	0.962
Heptanes Plus	<u>77.995</u>	<u>88.683</u>	<u>92.177</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.8510	(Water=1)
°API Gravity	34.78	@ 60°F
Molecular Weight	187.9	
Vapor Volume	14.01	CF/Gal
Weight	7.09	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.8187	(Water=1)
°API Gravity	41.33	@ 60°F
Molecular Weight	159.0	
Vapor Volume	15.93	CF/Gal
Weight	6.82	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (14) Perez Analyst: RR Processor: ANBdiv

Processor: ANBdjv Cylinder ID: W-0939 David Dannhaus 361-661-7015

Page 1 of 3

FESCO, Ltd. Job Number: 192969.002

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.007	0.002	0.002
Nitrogen	0.028	0.005	0.005
Methane	2.430	0.669	0.245
Ethane	2.255	0.980	0.426
Propane	3.708	1.660	1.028
Isobutane	0.970	0.516	0.355
n-Butane	3.668	1.884	1.345
Isopentane	2.011	1.195	0.912
n-Pentane	2.844	1.675	1.290
Other C-6's	2.310	1.546	1.252
Heptanes	9.613	6.067	5.477
Octanes	11.107	7.935	7.362
Nonanes	5.307	4.498	4.228
Decanes Plus	41.861	64.467	69.109
Benzene	2.364	1.075	1.162
Toluene	4.080	2.220	2.365
E-Benzene	1.020	0.640	0.681
Xylenes	2.073	1.299	1.384
n-Hexane	1.775	1.186	0.962
2,2,4 Trimethylpentane	<u>0.570</u>	<u>0.481</u>	0.409
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity	0.8187	(Water=1)
°API Gravity	41.33	@ 60°F
Molecular Weight	159.0	
Vapor Volume	15.93	CF/Gal
Weight	6.82	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8777	(Water=1)
Molecular Weight	262.5	

Characteristics of Atmospheric Sample:

°API Gravity	39.33	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	8.60	psi

QUALITY CONTROL CHECK							
Sampling							
Conditions Test Samples							
Cylinder Number		W-0939*					
Pressure, PSIG	103	99					
Temperature, °F	89	89					

^{*} Sample used for analysis

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LigVol %	Wt %
	IVIOI 76	LIQVOI 78	VV (/o
Nitrogen	0.028	0.005	0.005
Carbon Dioxide	0.007	0.002	0.002
Methane	2.430	0.669	0.245
Ethane	2.255	0.980	0.426
Propane	3.708	1.660	1.028
Isobutane	0.970	0.516	0.355
n-Butane	3.623	1.856	1.324
2,2 Dimethylpropane	0.045	0.028	0.020
Isopentane	2.011	1.195	0.912
n-Pentane	2.844	1.675	1.290
2,2 Dimethylbutane	0.018	0.012	0.010
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.476	0.317	0.258
2 Methylpentane	1.118	0.754	0.606
3 Methylpentane	0.697	0.463	0.378
n-Hexane	1.775	1.186	0.962
Methylcyclopentane	1.861	1.070	0.985
Benzene	2.364	1.075	1.162
Cyclohexane	3.826	2.116	2.025
2-Methylhexane	0.703	0.531	0.443
3-Methylhexane	0.657	0.490	0.414
2,2,4 Trimethylpentane	0.570	0.481	0.409
Other C-7's	1.072	0.740	0.669
n-Heptane	1.494	1.120	0.942
Methylcyclohexane	4.913	3.209	3.034
Toluene	4.080	2.220	2.365
Other C-8's	4.807	3.571	3.332
n-Octane	1.388	1.155	0.997
E-Benzene	1.020	0.640	0.681
M & P Xylenes	1.472	0.928	0.983
O-Xylene	0.601	0.371	0.401
Other C-9's	4.187	3.474	3.324
n-Nonane	1.120	1.024	0.903
Other C-10's	4.889	4.459	4.344
n-decane	0.761	0.759	0.681
Undecanes(11)	4.502	4.212	4.162
Dodecanes(12)	3.234	3.268	3.274
Tridecanes(13)	3.370	3.652	3.709
Tetradecanes(14)	3.037	3.525	3.629
Pentadecanes(15)	2.551	3.172	3.305
Hexadecanes(16)	1.956	2.599	2.731
Heptadecanes(17)	1.691	2.376	2.520
Octadecanes(18)	1.623	2.401	2.561
Nonadecanes(19)	1.449	2.233	2.397
Eicosanes(20)	1.084	1.737	1.875
Heneicosanes(21)	0.980	1.651	1.793
Docosanes(22)	0.869	1.526	1.667
Tricosanes(23)	0.744	1.355	1.488
• ,			
Tetracosanes(24)	0.665 0.610	1.255 1.194	1.385 1.323
Pentacosanes(25)			
Hexacosanes(26)	0.547	1.110	1.236
Heptacosanes(27)	0.513	1.079	1.207
Octacosanes(28)	0.475	1.033	1.159
Nonacosanes(29)	0.435	0.977	1.100
Triacontanes (30)	0.377	0.873	0.986
Hentriacontanes Plus(31+)	<u>5.499</u>	18.021	20.576
Total	100.000	100.000	100.000

Page 3 of 3

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: XTO Energy, Inc. Date Sampled: 08/20/19

22777 Springwoods Village Pkwy.

Spring, Texas 77389 Date Analyzed: 09/11/19

Sample: BEU DI 4 Tank Battery Job Number: J192969

FLASH LIBERATION OF HYDROCARBON LIQUID					
	Separator HC Liquid	Stock Tank			
Pressure, psig	103	0			
Temperature, °F	89	70			
Density of Separator HC Liquid (g/cc)	0.8039				
Gas Oil Ratio (1)		47.9			
Gas Specific Gravity (2)		1.226			

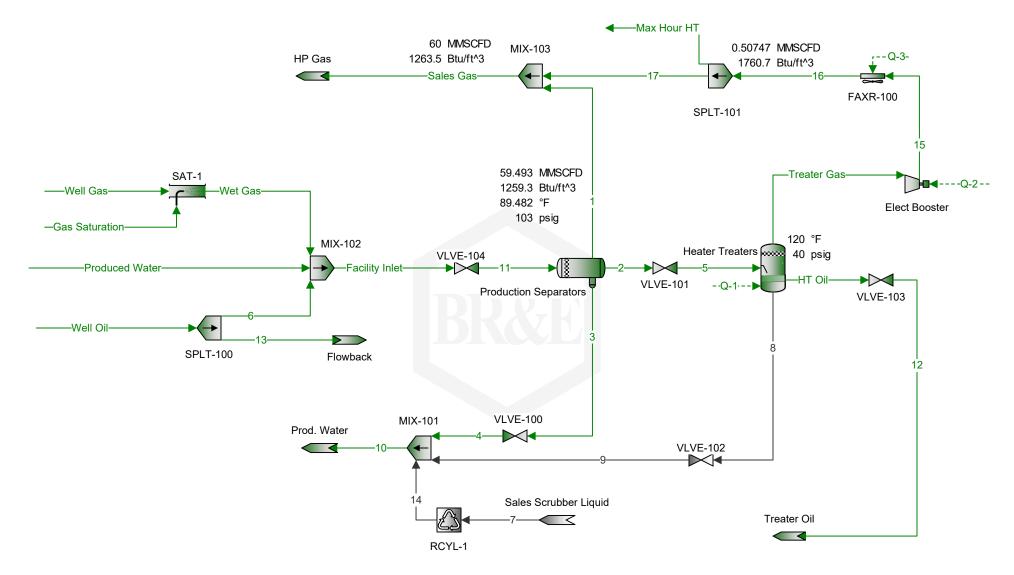
STOCK TANK FLUID PROPERTIES				
Shrinkage Recovery Factor (3)	0.9605			
Density of Stock Tank HC Liquid (g/cc @ 60 °F)	0.8275			
Oil API Gravity at 60 °F	39.33			

Quality Control Check						
Sampling Conditions Test Samples						
Cylinder No.		W-0939*				
Pressure, psig	103	99				
Temperature, °F	89	89				

(1) -	Scf of	flashed	vapor	per	barrel	of	stock	tank	oil
-------	--------	---------	-------	-----	--------	----	-------	------	-----

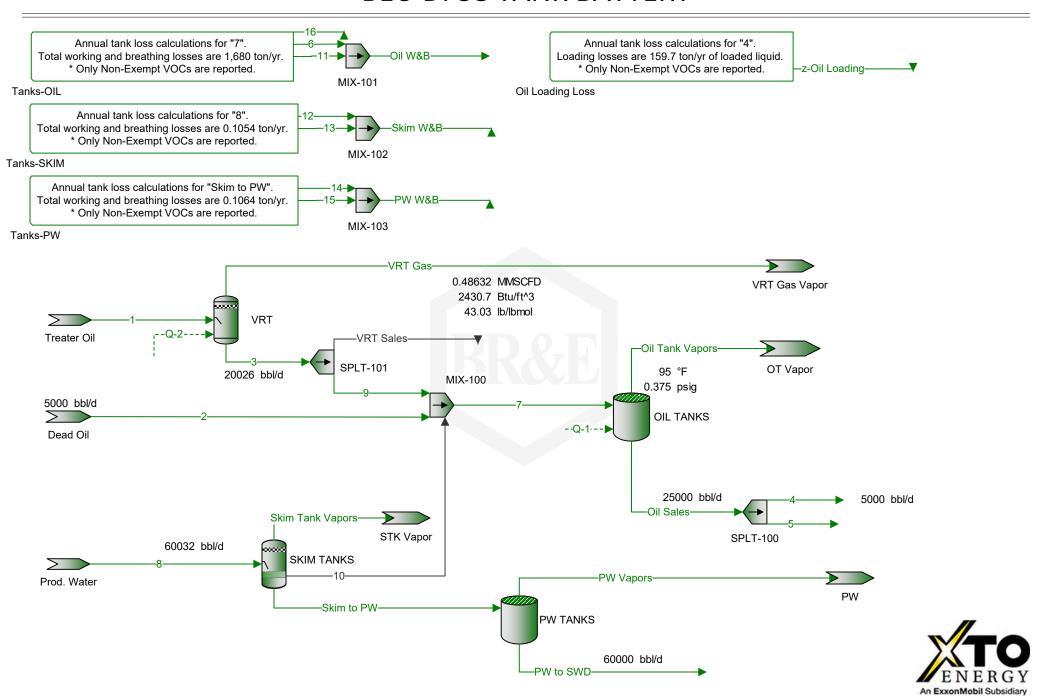
Analyst: R.E.

Base Conditions: 15.025 PSI & 60 °F

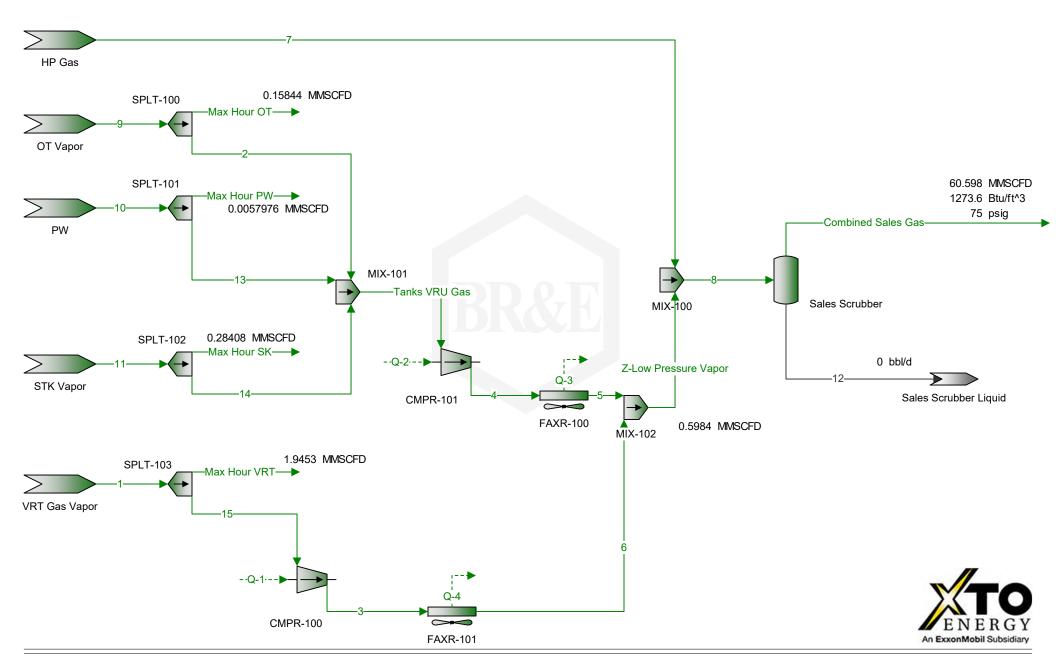

Certified: FESCO, Ltd. - Alice, Texas

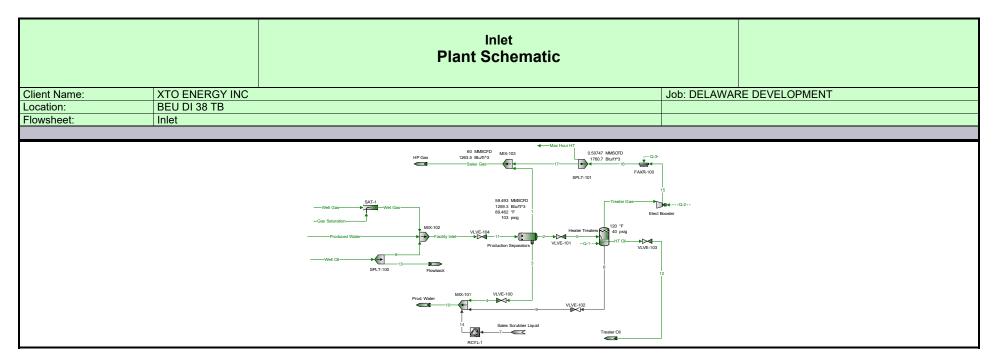
David Dannhaus 361-661-7015

⁽²⁾ - Air = 1.000


^{(3) -} Fraction of first stage separator liquid

BEU DI 38 TANK BATTERY





BEU DI 38 TANK BATTERY

BEU DI 38 TANK BATTERY

Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT Location: Flowsheet: BEU DI 38 TB Inlet

Connections						
	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water	
From Block	MIX-102		Heater	SPLT-101		
			Treaters			
To Block	VLVE-104	SAT-1	VLVE-103		MIX-102	

Stream Composition								
	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water			
Mole Fraction	%	%	%	%	%			
Carbon Dioxide	0.0290843	0 *	0.00906046	0.290335	0 *			
Nitrogen	0.460409	0 *	0.00518636	1.06189	0 *			
Methane	8.43439	0 *	0.63114	46.8801	0 *			
Ethane	1.47546	0 *	1.41613	21.4011	0 *			
Propane	0.824266	0 *	3.29362	15.85	0 *			
Isobutane	0.113171	0 *	1.03496	2.15393	0 *			
n-Butane	0.324472	0 *	3.91681	5.82437	0 *			
Isopentane	0.106113	0 *	2.21522	1.38665	0 *			
n-Pentane	0.130623	0 *	3.0711	1.50082	0 *			
n-Hexane	0.0604242	0 *	1.95465	0.31638	0 *			
Cyclohexane	0.0168753	0 *	0.575178	0.0638496	0 *			
i-C6	0.0881321	0 *	2.67329	0.588899	0 *			
i-C7	0.276424	0 *	9.7251	0.815331	0 *			
Methylcyclohexane	0.0105182	0 *	0.381244	0.0216849	0 *			
Octane	0.296819	0 *	11.1985	0.234111	0 *			
Nonane	0.141739	0 *	5.42256	0.041007	0 *			
Benzene	0.0750016	0 *	2.45712	0.328954	0 *			
Toluene	0.113316	0 *	4.15705	0.178209	0 *			
Ethylbenzene	0.0267349	0 *	1.0131	0.0157928	0 *			
o-Xylene	0.0552599	0 *	2.09985	0.0266254	0 *			
H2S	0.000115584	0 *	0.000212422	0.00188322	0 *			
Water	85.8315	100 *	0.0536626	0.985119	100 *			
2,2,4-Trimethylpentane	0.0148765	0 *	0.536268	0.032899	0 *			
Decanes Plus	1.09427	0 *	42.159	3.38094E-05	0 *			

	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.0574504	0 *	0.00244092	0.415328	0 *
Nitrogen	0.578893	0 *	0.000889377	0.966926	0 *
Methane	6.07313	0 *	0.0619803	24.4459	0 *
Ethane	1.99129	0 *	0.260663	20.9172	0 *
Propane	1.63137	0 *	0.889049	22.718	0 *
Isobutane	0.295233	0 *	0.368233	4.06929	0 *
n-Butane	0.846461	0 *	1.39358	11.0037	0 *
Isopentane	0.343626	0 *	0.97837	3.25194	0 *
n-Pentane	0.422996	0 *	1.35637	3.51968	0 *
n-Hexane	0.233713	0 *	1.03112	0.886214	0 *
Cyclohexane	0.0637446	0 *	0.296321	0.174666	0 *
i-C6	0.340883	0 *	1.41022	1.64957	0 *
i-C7	1.2432	0 *	5.96523	2.65556	0 *
Methylcyclohexane	0.0463531	0 *	0.229145	0.0692075	0 *
Octane	1.52179	0 *	7.83055	0.869245	0 *
Nonane	0.815928	0 *	4.25732	0.170954	0 *
Benzene	0.262951	0 *	1.1749	0.835216	0 *
Toluene	0.468621	0 *	2.34468	0.533723	0 *
Ethylbenzene	0.127394	0 *	0.6584	0.0544987	0 *
o-Xylene	0.263318	0 *	1.36467	0.0918807	0 *
H2S	0.000176807	0 *	4.43168E-05	0.00208621	0 *
Water	69.4026	100 *	0.00591793	0.576868	100 *
2,2,4-Trimethylpentane	0.0762718	0 *	0.374985	0.122153	0 *

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: Flowsheet: BEU DI 38 TB Inlet

	Facility Inlet	Gas Saturation	HT Oil Max Hour HT		Produced Water
Mass Fraction	%	%	%	%	%
Decanes Plus	12.8926	0 *	67.7449	0.000288478	0 *

	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	725.137	0 *	5.86334	28.4781	0 *
Nitrogen	7306.77	0 *	2.13637	66.2998	0 *
Methane	76654.9	0 *	148.883	1676.2	0 *
Ethane	25134	0 *	626.137	1434.24	0 *
Propane	20591	0 *	2135.58	1557.72	0 *
Isobutane	3726.42	0 *	884.531	279.022	0 *
n-Butane	10684	0 *	3347.52	754.495	0 *
Isopentane	4337.23	0 *	2350.14	222.978	0 *
n-Pentane	5339.05	0 *	3258.14	241.336	0 *
n-Hexane	2949.91	0 *	2476.85	60.7656	0 *
Cyclohexane	804.583	0 *	711.792	11.9764	0 *
i-C6	4302.62	0 *	3387.49	113.107	0 *
i-C7	15691.6	0 *	14329.1	182.086	0 *
Methylcyclohexane	585.068	0 *	550.429	4.74539	0 *
Octane	19208	0 *	18809.7	59.6021	0 *
Nonane	10298.6	0 *	10226.5	11.7219	0 *
Benzene	3318.97	0 *	2822.22	57.2688	0 *
Toluene	5914.92	0 *	5632.15	36.5962	0 *
Ethylbenzene	1607.96	0 *	1581.54	3.73685	0 *
o-Xylene	3323.59	0 *	3278.06	6.30004	0 *
H2S	2.23165	0 *	0.106453	0.143046	0 *
Water	875998	713.713 *	14.2155	39.5545	875284 *
2,2,4-Trimethylpentane	962.701	0 *	900.751	8.37574	0 *
Decanes Plus	162730	0 *	162730	0.0197803	0 *

Stream Properties								
Property	Units	Facility Inlet	Gas Saturation	HT Oil	Max Hour HT	Produced Water		
Temperature	°F	89.4822	338.652	120	90	89 *		
Pressure	psig	103	103	40	80	103 *		
Molecular Weight	lb/lbmol	22.2798	18.0153	163.359	30.7648	18.0153		
Mass Flow	lb/h	1.2622E+06	713.713	240210	6856.76	875284		
Std Vapor Volumetric Flow	MMSCFD	515.965	0.360817	13.3922	2.02988	442.5		
Std Liquid Volumetric Flow	sgpm	3144.8	1.42676	593.381	32.2894	1749.76 *		
Gross Ideal Gas Heating Value	Btu/ft^3	411.44	50.31	8518.71	1760.7	50.31		

Remarks

Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: BEU DI 38 TB

Flowsheet: Inlet

Connections Well Gas Well Oil Wet Gas Sales Gas **Treater Gas** From Block MIX-103 Heater SAT-1 Treaters To Block HP Gas Elect Booster SAT-1 SPLT-100 MIX-102

Stream Composition									
Mole Fraction	Sales Gas %	Treater Gas %	Well Gas %	Well Oil %	Wet Gas %				
Carbon Dioxide	0.242392	0.290335	0.249998 *	0.00720998 *	0.248494				
Nitrogen	3.95558	1.06189	3.97696 *	0.0279699 *	3.95304				
Methane	72.298	46.8801	72.4223 *	2.42962 *	71.9867				
Ethane	12.351	21.4011	12.2559 *	2.25508 *	12.1822				
Propane	6.34582	15.85	6.29394 *	3.70807 *	6.25609				
Isobutane	0.741669	2.15393	0.759992 *	0.970398 *	0.755422				
n-Butane	1.91408	5.82437	1.97898 *	3.66792 *	1.96708				
Isopentane	0.417792	1.38665	0.463995 *	2.01085 *	0.461205				
n-Pentane	0.437673	1.50082	0.487995 *	2.84367 *	0.48506				
n-Hexane	0.0833116	0.31638	0.121999 *	1.77488 *	0.121265				
Cyclohexane	0.016682	0.0638496	0.145999 *	0 *	0.145121				
i-C6	0.161137	0.588899	0.240998 *	2.3095 *	0.239548				
i-C7	0.20636	0.815331	0.220998 *	9.61253 *	0.219669				
Methylcyclohexane	0.00534792	0.0216849	0.0909991 *	0 *	0.0904518				
Octane	0.0529148	0.234111	0.0599994 *	11.107 *	0.0596386				
Nonane	0.00853473	0.041007	0.0279997 *	5.30677 *	0.0278313				
Benzene	0.0862301	0.328954	0.114999 *	2.36441 *	0.114307				
Toluene	0.0428365	0.178209	0.0589994 *	4.08046 *	0.0586446				
Ethylbenzene	0.00352623	0.0157928	0.00099999 *	1.01993 *	0.000993976				
o-Xylene	0.00588202	0.0266254	0.0099999 *	2.07301 *	0.00993976				
H2S	0.000884547	0.00188322	0.00099999 *	0 *	0.000993976				
Water	0.614079	0.985119	0 *	0 *	0.601373				
2,2,4-Trimethylpentane	0.00823092	0.032899	0 *	0.569999 *	0				
Decanes Plus	3.66373E-06	3.38094E-05	0.0149999 *	41.8607 *	0.0149096				

	Sales Gas	Treater Gas	Well Gas	Well Oil	Wet Gas
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.479845	0.415328	0.486217 *	0.00197106 *	0.483886
Nitrogen	4.98439	0.966926	4.9234 *	0.00486717 *	4.8998
Methane	52.1715	24.4459	51.3442 *	0.242119 *	51.098
Ethane	16.7055	20.9172	16.2859 *	0.421213 *	16.2078
Propane	12.5869	22.718	12.265 *	1.01569 *	12.2062
Isobutane	1.93904	4.06929	1.95209 *	0.350357 *	1.94273
n-Butane	5.00425	11.0037	5.08313 *	1.32428 *	5.05877
Isopentane	1.35589	3.25194	1.47942 *	0.901216 *	1.47233
n-Pentane	1.42041	3.51968	1.55594 *	1.27447 *	1.54848
n-Hexane	0.322942	0.886214	0.464608 *	0.950102 *	0.462381
Cyclohexane	0.0631518	0.174666	0.543 *	0 *	0.540397
i-C6	0.624616	1.64957	0.917791 *	1.23629 *	0.913392
i-C7	0.930116	2.65556	0.978615 *	5.98319 *	0.973924
Methylcyclohexane	0.0236195	0.0692075	0.394853 *	0 *	0.39296
Octane	0.271887	0.869245	0.302879 *	7.88116 *	0.301427
Nonane	0.049238	0.170954	0.1587 *	4.22789 *	0.157939
Benzene	0.302978	0.835216	0.396971 *	1.14725 *	0.395068
Toluene	0.177538	0.533723	0.240235 *	2.33544 *	0.239083
Ethylbenzene	0.0168394	0.0544987	0.00469164 *	0.67262 *	0.00466915
o-Xylene	0.0280895	0.0918807	0.0469164 *	1.36711 *	0.0466915
H2S	0.00135602	0.00208621	0.0015061 *	0 *	0.00149888
Water	0.497624	0.576868	0 *	0 *	0.479364
2,2,4-Trimethylpentane	0.042292	0.122153	0 *	0.404453 *	0
Decanes Plus	4.32602E-05	0.000288478	0.174006 *	68.2583 *	0.173172

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Inlet

Flowsheet:

Process Streams Report All Streams

Tabulated by Total Phase

Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT Location: BEU DI 38 TB

Well Gas Sales Gas **Treater Gas** Well Oil **Wet Gas Mass Flow** lb/h lb/h lb/h lb/h lb/h Carbon Dioxide 702.767 7.11952 720.446 6.72201 720.446 Nitrogen 7300 16.575 7295.18 16.5988 7295.18 Methane 76408.9 419.049 76078.6 825.712 76078.6 Ethane 358.56 24131.4 24466.3 1436.48 24131.4 Propane 18434.4 389.43 18173.4 3463.87 18173.4 Isobutane 2839.87 69.7555 2892.48 1194.84 2892.48 n-Butane 7329.08 188.624 7531.87 4516.28 7531.87 Isopentane 1985.8 55.7445 2192.11 3073.46 2192.11 2080.29 60.334 2305.49 4346.37 2305.49 n-Pentane 472.972 15.1914 688.427 3240.18 688.427 n-Hexane Cyclohexane 92.4904 2.9941 804.583 0 804.583 i-C6 914.796 28.2768 1359.93 4216.19 1359.93 i-C7 1362.22 45.5214 1450.05 20404.8 1450.05 Methylcyclohexane 34.5924 585.068 585.068 1.18635 0 Octane 398.197 14.9005 448.787 26877.5 448.787 Nonane 2.93048 235.151 14418.6 235.151 72.1126 Benzene 443.733 14.3172 588.206 3912.54 588.206 Toluene 260.017 9.14904 355.965 7964.68 355.965 0.934212 6.95178 2293.87 6.95178 Ethylbenzene 24.6626 o-Xylene 41.139 1.57501 69.5178 4662.32 69.5178 2.23165 H2S 1.986 0.0357616 2.23165 0

Stream Properties							
Property	Units	Sales Gas	Treater Gas	Well Gas	Well Oil	Wet Gas	
Temperature	°F	87.3831	120 *	89 *	89 *	89	
Pressure	psig	80	40	103 *	103 *	103	
Molecular Weight	lb/lbmol	22.2313	30.7648	22.6283	160.983	22.6006	
Mass Flow	lb/h	146457	1714.19	148174	341035	148887	
Std Vapor Volumetric Flow	MMSCFD	60	0.50747	59.6381 *	19.294	59.9989	
Std Liquid Volumetric Flow	sgpm	800.475	8.07236	803.264	845.833 *	804.691	
Gross Ideal Gas Heating Value	Btu/ft^3	1263.52	1760.7	1289.95	8397.12	1282.5	

9.88861

2.09393

0.00494506

728.806

61.9397

0.0633577

Remarks

Water

Decanes Plus

2,2,4-Trimethylpentane

Well Gas:

BEU DI 4 SAMPLE Sample Data: 8/20/19

Well Oil:

BEU DI 3 SAMPLE Sample Data: 8/20/19 0

1379.33

232785

713.713

257.831

0

0

0

257.831

	All St Tabulated b	reams Report reams by Total Phase			
Client Name: XTO ENERGY IN	IC		Job: DELA	WARE DEVELOPM	IENT
Location: BEU DI 38 TB					
Flowsheet: Inlet					
	Conn	ections			
	1	2	3	4	5
From Block	Production	Production	Production	VLVE-100	VLVE-101
	Separators	Separators	Separators		
To Block	MIX-103	VLVE-101	VLVE-100	MIX-101	Heater
					Treaters
	Stream Co	omposition			
	1	2	3	4	5
Mole Fraction	%	%	%	%	%
Carbon Dioxide	0.241983	0.0193296	0.000771852	0.000771852	0.0193296
Nitrogen	3.98026	0.0437662	0.000340441	0.000340441	0.0437662
Methane	72.5148	2.31966	0.0124545	0.0124545	2.31966
Ethane	12.2738	2.14577	0.00284353	0.00284353	2.14577
Propane	6.26475	3.75204	0.000981846	0.000981846	3.75204
Isobutane	0.729622	1.07581	7.14772E-05	7.14772E-05	1.07581
n-Butane Isopentane	1.88073 0.409528	3.98645 2.18497	0.000262376 3.67934E-05	0.000262376 3.67934E-05	3.98645 2.18497
n-Pentane	0.409328	3.01377	1.7307E-05	1.7307E-05	3.01377
n-Hexane	0.0813235	1.89484	2.0969E-06	2.0969E-06	1.89484
Cyclohexane	0.0162796	0.55651	7.33668E-06	7.33668E-06	0.55651
i-C6	0.157488	2.59719	8.03248E-06	8.03248E-06	2.59719
i-C7	0.201165	9.3998	5.96512E-06	5.96512E-06	9.3998
Methylcyclohexane	0.00520857	0.368117	9.77866E-07	9.77866E-07	0.368117
Octane	0.0513692	10.7982	3.88198E-07	3.88198E-07	10.7982
Nonane	0.00825774	5.22608	5.12034E-08	5.12034E-08	5.22608
Benzene	0.0841596	2.37942	0.00139658	0.00139658	2.37942
Toluene Ethylbenzene	0.0416818 0.0034216	4.01179 0.976686	0.000508127 3.40463E-05	0.000508127 3.40463E-05	4.01179 0.976686
o-Xylene	0.0034216	2.02416	8.49704E-05	8.49704E-05	2.02416
H2S	0.00376367	0.000273422	8.40515E-06	8.40515E-06	0.000273422
Water	0.610914	0.0876695	99.9802	99.9802	0.0876695
2,2,4-Trimethylpentane	0.0080205	0.517891	1.80325E-07	1.80325E-07	0.517891
Decanes Plus	3.40659E-06	40.6198	5.22775E-09	5.22775E-09	40.6198
	1	2	3	4	5
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.480609	0.0053665	0.00188534	0.00188534	0.0053665
Nitrogen	5.03197	0.00773438	0.000529317	0.000529317	0.00773438
Methane Ethane	52.4998	0.234756 0.407028	0.0110894 0.00474555	0.0110894 0.00474555	0.234756 0.407028
Propane	16.6556 12.4669	1.04372	0.00474555	0.00474555	1.04372
Isobutane	1.91382	0.394457	0.00240290	0.00240290	0.394457
n-Butane	4.93319	1.46167	0.000230370	0.000230370	1.46167
Isopentane	1.33344	0.99448	0.000147335	0.000147335	0.99448
n-Pentane	1.39555	1.3717	6.93043E-05	6.93043E-05	1.3717
n-Hexane	0.316271	1.03009	1.00293E-05	1.00293E-05	1.03009
Cyclohexane	0.0618312	0.295459	3.42698E-05	3.42698E-05	0.295459
i-C6	0.612478	1.41192	3.84186E-05	3.84186E-05	1.41192
i-C7	0.909681	5.94178	3.31744E-05	3.31744E-05	5.94178
Methylcyclohexane Octane	0.0230796 0.264812	0.228012 7.78122	5.3289E-06 2.46114E-06	5.3289E-06 2.46114E-06	0.228012 7.78122
Nonane	0.264812	4.22837	3.64487E-07	3.64487E-07	4.22837
Benzene	0.296675	1.17249	0.0060547	0.0060547	1.17249
Toluene	0.173319	2.33185	0.00259849	0.00259849	2.33185
Ethylbenzene	0.0163934	0.654121	0.000200613	0.000200613	0.654121
o-Xylene	0.027334	1.35565	0.000500677	0.000500677	1.35565
H2S	0.00134738	5.87849E-05	1.58988E-05	1.58988E-05	5.87849E-05
Water	0.496686	0.00996349	99.9686	99.9686	0.00996349
2,2,4-Trimethylpentane	0.0413462	0.373194	1.14325E-06	1.14325E-06	0.373194
Decanes Plus	4.03561E-05	67.2649	7.61645E-08	7.61645E-08	67.2649

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Inlet

	1	2	3	4	5
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	695.648	12.9829	16.5067	16.5067	12.9829
Nitrogen	7283.42	18.7113	4.63433	4.63433	18.7113
Methane	75989.8	567.932	97.0907	97.0907	567.932
Ethane	24107.8	984.697	41.5487	41.5487	984.697
Propane	18045	2525.01	21.0387	21.0387	2525.01
Isobutane	2770.12	954.287	2.01878	2.01878	954.287
n-Butane	7140.45	3536.14	7.41046	7.41046	3536.14
Isopentane	1930.06	2405.89	1.28997	1.28997	2405.89
n-Pentane	2019.96	3318.48	0.60678	0.60678	3318.48
n-Hexane	457.78	2492.05	0.0878093	0.0878093	2492.05
Cyclohexane	89.4963	714.786	0.300042	0.300042	714.786
i-C6	886.519	3415.76	0.336366	0.336366	3415.76
i-C7	1316.7	14374.6	0.290452	0.290452	14374.6
Methylcyclohexane	33.4061	551.615	0.0466562	0.0466562	551.615
Octane	383.297	18824.6	0.021548	0.021548	18824.6
Nonane	69.1821	10229.4	0.00319119	0.00319119	10229.4
Benzene	429.416	2836.54	53.0108	53.0108	2836.54
Toluene	250.868	5641.3	22.7506	22.7506	5641.3
Ethylbenzene	23.7284	1582.48	1.75643	1.75643	1582.48
o-Xylene	39.564	3279.64	4.38358	4.38358	3279.64
H2S	1.95023	0.142215	0.139199	0.139199	0.142215
Water	718.918	24.1041	875255	875255	24.1041
2,2,4-Trimethylpentane	59.8458	902.845	0.0100095	0.0100095	902.845
Decanes Plus	0.0584127	162730	0.000666844	0.000666844	162730

Stream Properties								
Property	Units	1	2	3	4	5		
Temperature	°F	89.4822	89.4822	89.4822	89.7294	88.5753		
Pressure	psig	103	103	103	0.375 *	40 *		
Molecular Weight	lb/lbmol	22.1585	158.518	18.0174	18.0174	158.518		
Mass Flow	lb/h	144743	241924	875530	875530	241924		
Std Vapor Volumetric Flow	MMSCFD	59.4925	13.8997	442.573	442.573	13.8997		
Std Liquid Volumetric Flow	sgpm	792.402	601.454	1750.94	1750.94	601.454		
Gross Ideal Gas Heating Value	Btu/ft^3	1259.28	8271.98	50.5964	50.5964	8271.98		

Remarks

		Α	s Streams Rep II Streams ated by Total Phase	ort		
Client Name:	XTO ENERGY I	NC		Joh: DE	LAWARE DEVELO	DMENT
Location:	BEU DI 38 TB	NC .		JOD. DE	LAWARE DEVELO	FIVILINI
Flowsheet:	Inlet					
i lowsheet.	IIIIet			<u> </u>		
		С	onnections			
		6	7	8	9	10
From Block		SPLT-100	Sales Scrubl		VLVE-102	MIX-101
			Liquid	Treaters		
To Block		MIX-102	RCYL-1	VLVE-102	MIX-101	Prod. Water
		Strea	m Composition	n		
		6	7	8	9	10
Mole Fraction		%	%	%	%	%
Carbon Dioxide		0.007209				0.000771852
Nitrogen		0.02796				0.000340441
Methane		2.429				0.0124545
Ethane		2.255				0.00284353
Propane		3.708				0.000981846
Isobutane		0.9703				7.14772E-05
n-Butane		3.667				0.000262376
Isopentane		2.010	85			3.67934E-05
n-Pentane		2.843	67			1.7307E-05
n-Hexane		1.774	88			2.0969E-06
Cyclohexane			0			7.33668E-06
i-C6		2.30				8.03248E-06
i-C7		9.612	53			5.96512E-06
Methylcyclohexan	е		0			9.77866E-07
Octane		11.1				3.88198E-07
Nonane		5.306				5.12034E-08
Benzene		2.364				0.00139658
Toluene		4.080				0.000508127
Ethylbenzene		1.019				3.40463E-05
o-Xylene		2.073				8.49704E-05
H2S			0			8.40515E-06
Water		0.5000	0			99.9802
2,2,4-Trimethylper Decanes Plus	ntane	0.5699 41.86				1.80325E-07
Decanes Plus		41.80	07			5.22775E-09
M F 4'		6	7	8	9	10
Mass Fraction		%	%	%	%	%
Carbon Dioxide		0.001971				0.00188534
Nitrogen		0.004867				0.000529317
Methane Ethane		0.2421 0.4212				0.0110894 0.00474555
Propane		1.015				0.00474555
Isobutane		0.3503				0.00240290
n-Butane		1.324				0.000230378
Isopentane		0.9012				0.00046397
n-Pentane		1.274				6.93043E-05
n-Hexane		0.9501				1.00293E-05
Cyclohexane		0.5501	0			3.42698E-05
i-C6		1.236				3.84186E-05
i-C7		5.983				3.31744E-05
Methylcyclohexan	e	1.000	0			5.3289E-06
Octane		7.881				2.46114E-06
Nonane		4.227				3.64487E-07
Benzene		1.147	25			0.0060547
Toluene		2.335				0.00259849
Ethylbenzene		0.672	62			0.000200613
o-Xylene		1.367				0.000500677
H2S	· <u></u>		0			1.58988E-05
Water			0			99.9686
2,2,4-Trimethylper	ntane	0.4044				1.14325E-06
Decanes Plus		68.25	83			7.61645E-08

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Inlet

	6	7	8	9	10
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	4.69163				16.5067
Nitrogen	11.5851				4.63433
Methane	576.306				97.0907
Ethane	1002.59				41.5487
Propane	2417.61				21.0387
Isobutane	833.94				2.01878
n-Butane	3152.14				7.41046
Isopentane	2145.13				1.28997
n-Pentane	3033.55				0.60678
n-Hexane	2261.49				0.0878093
Cyclohexane	0				0.300042
i-C6	2942.69				0.336366
i-C7	14241.5				0.290452
Methylcyclohexane	0				0.0466562
Octane	18759.2				0.021548
Nonane	10063.5				0.00319119
Benzene	2730.76				53.0108
Toluene	5558.95				22.7506
Ethylbenzene	1601.01				1.75643
o-Xylene	3254.07				4.38358
H2S	0				0.139199
Water	0				875255
2,2,4-Trimethylpentane	962.701				0.0100095
Decanes Plus	162472				0.000666844

Stream Properties							
Property	Units	6	7	8	9	10	
Temperature	°F	89		120		89.7294	
Pressure	psig	103	75	40	0.375 *	0.375	
Molecular Weight	lb/lbmol	160.983				18.0174	
Mass Flow	lb/h	238026	0	0	0	875530	
Std Vapor Volumetric Flow	MMSCFD	13.4663	0	0	0	442.573	
Std Liquid Volumetric Flow	sgpm	590.35 *	0	0	0	1750.94	
Gross Ideal Gas Heating Value	Btu/ft^3	8397.12	-			50.5964	

Remarks

	V/TO ENEDOV		All St	reams Report reams y Total Phase			
Client Name: Location:	XTO ENERGY I	NC			Job: DELA	WARE DEVELOPN	IENI
Flowsheet:	Inlet						
	+				1		
			Conn	ections			
			11	12	13	14	15
From Block			VLVE-104	VLVE-103	SPLT-100	RCYL-1	Elect Booster
To Block			Production Separators	Treater Oil	Flowback	MIX-101	FAXR-100
			Stream C	omposition			
			11	12	13	14	15
Mole Fraction			%	%	%	%	%
Carbon Dioxide Nitrogen			0.0290843 0.460409	0.00906046 0.00518636	0.00720998 0.0279699	0 *	0.290335 1.06189
Methane			8.43439	0.63114	2.42962	19 *	46.8801
Ethane			1.47546	1.41613	2.25508	0 *	21.4011
Propane			0.824266	3.29362	3.70807	0 *	15.85
Isobutane			0.113171	1.03496	0.970398	0 *	2.15393
n-Butane			0.324472	3.91681	3.66792	0 *	5.82437
Isopentane n-Pentane			0.106113 0.130623	2.21522 3.0711	2.01085 2.84367	0 *	1.38665 1.50082
n-Hexane			0.0604242	1.95465	1.77488	0 *	0.31638
Cyclohexane			0.0168753	0.575178	0	0 *	0.0638496
i-C6			0.0881321	2.67329	2.3095	0 *	0.588899
i-C7			0.276424	9.7251	9.61253	0 *	0.815331
Methylcyclohexane			0.0105182	0.381244	0	0 *	0.0216849
Octane Nonane			0.296819 0.141739	11.1985 5.42256	11.107 5.30677	0 *	0.234111 0.041007
Benzene			0.0750016	2.45712	2.36441	0 *	0.328954
Toluene			0.113316	4.15705	4.08046	0 *	0.178209
Ethylbenzene			0.0267349	1.0131	1.01993	0 *	0.0157928
o-Xylene			0.0552599	2.09985	2.07301	0 *	0.0266254
H2S Water			0.000115584 85.8315	0.000212422 0.0536626	0	0 * 80 *	0.00188322 0.985119
2,2,4-Trimethylpenta	ane		0.0148765	0.0536268	0.569999	0 *	0.965119
Decanes Plus	ano		1.09427	42.159	41.8607	1 *	3.38094E-05
			11	12	13	14	15
Mass Fraction			%	%	%	%	%
Carbon Dioxide Nitrogen			0.0574504	0.00244092 0.000889377	0.00197106 0.00486717	0 *	0.415328
Methane			0.578893 6.07313	0.000889377	0.00486717	15.1756 *	0.966926 24.4459
Ethane			1.99129	0.260663	0.421213	0 *	20.9172
Propane			1.63137	0.889049	1.01569	0 *	22.718
Isobutane			0.295233	0.368233	0.350357	0 *	4.06929
n-Butane			0.846461	1.39358	1.32428	0 *	11.0037
Isopentane n-Pentane			0.343626 0.422996	0.97837 1.35637	0.901216 1.27447	0 *	3.25194 3.51968
n-Hexane			0.233713	1.03112	0.950102	0 *	0.886214
Cyclohexane			0.0637446	0.296321	0	0 *	0.174666
i-C6			0.340883	1.41022	1.23629	0 *	1.64957
i-C7			1.2432	5.96523	5.98319	0 *	2.65556
Methylcyclohexane Octane			0.0463531 1.52179	0.229145 7.83055	7.88116	0 *	0.0692075 0.869245
Nonane			0.815928	4.25732	4.22789	0 *	0.869245
Benzene			0.262951	1.1749	1.14725	0 *	0.835216
Toluene			0.468621	2.34468	2.33544	0 *	0.533723
Ethylbenzene			0.127394	0.6584	0.67262	0 *	0.0544987
o-Xylene			0.263318	1.36467	1.36711	0 *	0.0918807
H2S Water			0.000176807	4.43168E-05	0	0 * 71.7551 *	0.00208621 0.576868
vvater 2,2,4-Trimethylpenta	ane		69.4026 0.0762718	0.00591793 0.374985	0.404453	71.7551 *	0.576868
Decanes Plus	4119		12.8926	67.7449	68.2583	13.0693 *	0.000288478
			12.0023			. 0.0000	

0.00494506

0 0 *

41516.7

Process Streams Report All Streams Tabulated by Total Phase

Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: BEU DI 38 TB Flowsheet: Inlet

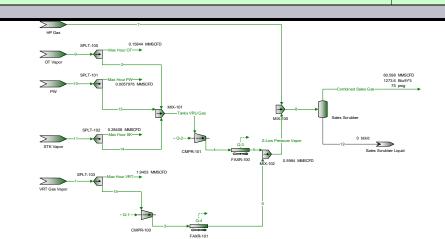
	11	12	13	14	15
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	725.137	5.86334	1.19886	0 *	7.11952
Nitrogen	7306.77	2.13637	2.96036	0 *	16.575
Methane	76654.9	148.883	147.264	0 *	419.049
Ethane	25134	626.137	256.194	0 *	358.56
Propane	20591	2135.58	617.775	0 *	389.43
Isobutane	3726.42	884.531	213.098	0 *	69.7555
n-Butane	10684	3347.52	805.469	0 *	188.624
Isopentane	4337.23	2350.14	548.146	0 *	55.7445
n-Pentane	5339.05	3258.14	775.167	0 *	60.334
n-Hexane	2949.91	2476.85	577.88	0 *	15.1914
Cyclohexane	804.583	711.792	0	0 *	2.9941
i-C6	4302.62	3387.49	751.949	0 *	28.2768
i-C7	15691.6	14329.1	3639.15	0 *	45.5214
Methylcyclohexane	585.068	550.429	0	0 *	1.18635
Octane	19208	18809.7	4793.55	0 *	14.9005
Nonane	10298.6	10226.5	2571.53	0 *	2.93048
Benzene	3318.97	2822.22	697.794	0 *	14.3172
Toluene	5914.92	5632.15	1420.48	0 *	9.14904
Ethylbenzene	1607.96	1581.54	409.107	0 *	0.934212
o-Xylene	3323.59	3278.06	831.516	0 *	1.57501
H2S	2.23165	0.106453	0	0 *	0.0357616
Water	875998	14.2155	0	0 *	9.88861
2,2,4-Trimethylpentane	962.701	900.751	246	0 *	2.09393
Danamas Diva	400700	400700	44540.7	0 *	0.00404500

Stream Properties							
Property	Units	11	12	13	14	15	
Temperature	°F	89.4822	115.973	89	75 *	224.312	
Pressure	psig	103 *	3 *	103	80 *	85 *	
Molecular Weight	lb/lbmol	22.2798	163.359	160.983	20.0853	30.7648	
Mass Flow	lb/h	1.2622E+06	240210	60822.9	0	1714.19	
Std Vapor Volumetric Flow	MMSCFD	515.965	13.3922	3.44105	0	0.50747	
Std Liquid Volumetric Flow	sgpm	3144.8	593.381	150.853	0	8.07236	
Gross Ideal Gas Heating Value	Btu/ft^3	411.44	8518.71	8397.12	366.945	1760.7	

162730

162730

Remarks


2,2,4-Trimethylpentane
Decanes Plus

				1	
	All St	reams Report reams y Total Phase			
Client Name: XTO ENERGY INC			loh: DEL Δ'	WARE DEVELOPMENT	
Location: BEU DI 38 TB			JOD. DELA	WARE DEVELOPMENT	
Flowsheet: Inlet					
	Conne	ections			
	16	17			
From Block	FAXR-100	SPLT-101			
To Block	SPLT-101	MIX-103			
	Stream Co	omposition			
	16	17			
Mole Fraction	%	%			
	0.290335	0.290335			
Carbon Dioxide					
Nitrogen	1.06189	1.06189			
Methane	46.8801	46.8801			
Ethane	21.4011	21.4011			
Propane	15.85	15.85			
Isobutane	2.15393	2.15393			
n-Butane	5.82437	5.82437			
Isopentane	1.38665	1.38665			
n-Pentane	1.50082	1.50082			
n-Hexane	0.31638	0.31638			
Cyclohexane	0.0638496	0.0638496			
i-C6	0.588899	0.588899			
i-C7	0.815331	0.815331			
Methylcyclohexane	0.0216849	0.0216849			
Octane	0.234111	0.234111			
Nonane	0.041007	0.041007			
Benzene	0.328954	0.328954			
Toluene	0.178209	0.178209			
Ethylbenzene	0.0157928	0.0157928			
o-Xylene	0.0266254	0.0266254			
H2S	0.00188322	0.00188322			
Water	0.985119	0.985119			
2,2,4-Trimethylpentane	0.032899	0.032899			
Decanes Plus	3.38094E-05	3.38094E-05			
Decaries i lus	3.30094∟-03	3.30034L-03			
			•	-	•
	16	17			
Mass Fraction	%	%			
Carbon Dioxide	0.415328	0.415328			
Nitrogen	0.966926	0.966926			
Methane	24.4459	24.4459			
Ethane	20.9172	20.9172			
Propane	22.718	22.718			
Isobutane	4.06929	4.06929			
n-Butane	11.0037	11.0037			
Isopentane	3.25194	3.25194			
n-Pentane	3.51968	3.51968			
n-Hexane	0.886214	0.886214			
Cyclohexane	0.174666	0.174666			
i-C6	1.64957	1.64957			
i-C7	2.65556	2.65556			
Methylcyclohexane	0.0692075	0.0692075			
Octane	0.869245	0.869245			
Nonane	0.170954	0.170954			
Benzene	0.835216	0.835216			
Toluene	0.533723	0.533723			
Ethylbenzene	0.0544987	0.0544987			
o-Xylene	0.0918807	0.0918807			
H2S	0.00208621	0.00208621			
Water	0.576868	0.576868			
2,2,4-Trimethylpentane	0.122153	0.122153			
Decanes Plus	0.000288478	0.000288478			
Decalles Flus	U.UUU20047 d	0.000200470			

			All St	eams Report reams Total Phase				
Client Name: X	TO ENERGY INC	<u> </u>			Job: DEL/	Job: DELAWARE DEVELOPMENT		
Location: B	EU DI 38 TB							
Flowsheet: In	nlet							
			16	17				
Mass Flow			lb/h	lb/h				
Carbon Dioxide			7.11952	7.11952				
Nitrogen			16.575	16.575				
Methane			419.049	419.049				
Ethane			358.56	358.56				
Propane			389.43	389.43				
Isobutane			69.7555	69.7555				
n-Butane			188.624	188.624				
Isopentane			55.7445	55.7445				
n-Pentane			60.334	60.334				
n-Hexane			15.1914	15.1914				
Cyclohexane			2.9941	2.9941				
i-C6			28.2768	28.2768				
i-C7			45.5214	45.5214				
Methylcyclohexane			1.18635	1.18635				
Octane			14.9005	14.9005				
Nonane		2.93048	2.93048					
Benzene			14.3172	14.3172				
Toluene			9.14904	9.14904				
Ethylbenzene			0.934212	0.934212				
o-Xylene			1.57501	1.57501				
H2S			0.0357616	0.0357616				
Water			9.88861	9.88861				
2,2,4-Trimethylpentane)		2.09393	2.09393				
Decanes Plus			0.00494506	0.00494506				
			Stroam B	roperties				
Property		Inits	16	17				
Temperature	•		90 *	90				
Pressure		r sig	80 *	80				
Molecular Weight		o/lbmol	30.7648	30.7648				
Mass Flow		o/h	1714.19	1714.19				
Std Vapor Volumetric F		MSCFD	0.50747	0.50747				
Std Liquid Volumetric F		gpm	8.07236	8.07236				
Gross Ideal Gas Heatir		gpm stu/ft^3	1760.7	1760.7				
Gross lucal Gas Healif	ig value D	itu/it J	1700.7	1700.7				

Sales Plant Schematic

Client Name: XTO ENERGY INC Job: DELAWARE DEVELOPMENT
Location: BEU DI 38 TB

Flowsheet:

Sales

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: Flowsheet: BEU DI 38 TB Sales

Connections Max Hour OT Max Hour PW Max Hour SK Max Hour VRT Combined Sales Gas From Block SPLT-100 SPLT-101 SPLT-102 SPLT-103 Sales Scrubber To Block

Stream Composition							
	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT		
Mole Fraction	%	%	%	%	%		
Carbon Dioxide	0.243385	0.156581	1.43779	1.43779	0.195016		
Nitrogen	3.92001	0.06597	1.96351	1.96351	0.137442		
Methane	71.7985	12.215	67.8591	67.8591	15.6098		
Ethane	12.4565	24.1762	14.8457	14.8457	24.1551		
Propane	6.5455	31.0363	5.35976	5.35976	29.3639		
Isobutane	0.775369	4.9451	0.405538	0.405538	4.64866		
n-Butane	2.00977	13.8644	1.44427	1.44427	12.9343		
Isopentane	0.441142	3.34633	0.209402	0.209402	3.11989		
n-Pentane	0.462716	3.60098	0.102329	0.102329	3.35052		
n-Hexane	0.0883393	0.708445	0.0125335	0.0125335	0.669419		
Cyclohexane	0.0177159	0.116038	0.0325926	0.0325926	0.135052		
i-C6	0.170752	1.35035	0.0470561	0.0470561	1.2794		
i-C7	0.218903	1.77968	0.0355227	0.0355227	1.66658		
Methylcyclohexane	0.00567674	0.0371632	0.00514732	0.00514732	0.0437589		
Octane	0.0561587	0.450911	0.00235467	0.00235467	0.43224		
Nonane	0.00906151	0.071795	0.000310895	0.000310895	0.0702479		
Benzene	0.0922135	0.752836	0.588494	0.588494	0.702659		
Toluene	0.0458326	0.374854	0.275774	0.275774	0.354421		
Ethylbenzene	0.00377116	0.0305049	0.0214009	0.0214009	0.0291848		
o-Xylene	0.0062923	0.0506374	0.0368469	0.0368469	0.0487458		
H2S	0.000907656	0.0024209	0.0064534	0.0064534	0.00280906		
Water	0.622784	0.795818	5.307	5.307	0.984602		
2,2,4-Trimethylpentane	0.00872956	0.071617	0.0010801	0.0010801	0.0662678		
Decanes Plus	3.90091E-06	2.65796E-05	1.10495E-05	1.10495E-05	3.025E-05		

	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.477915	0.154885	2.86913	2.86913	0.199455
Nitrogen	4.89963	0.041537	2.49406	2.49406	0.0894775
Methane	51.392	4.4044	49.3614	49.3614	5.81968
Ethane	16.7118	16.3392	20.2409	20.2409	16.8794
Propane	12.878	30.7602	10.7164	10.7164	30.0911
Isobutane	2.01076	6.46011	1.06877	1.06877	6.27913
n-Butane	5.21193	18.112	3.80627	3.80627	17.4709
Isopentane	1.42009	5.42651	0.685045	0.685045	5.23115
n-Pentane	1.48954	5.83946	0.334761	0.334761	5.61785
n-Hexane	0.339662	1.37218	0.0489738	0.0489738	1.34064
Cyclohexane	0.0665236	0.219495	0.124374	0.124374	0.264141
i-C6	0.656536	2.61549	0.183869	0.183869	2.56223
i-C7	0.97867	4.00813	0.161395	0.161395	3.88089
Methylcyclohexane	0.024869	0.0820136	0.0229161	0.0229161	0.0998495
Octane	0.286221	1.15768	0.0121959	0.0121959	1.14744
Nonane	0.0518543	0.206962	0.001808	0.001808	0.209381
Benzene	0.321381	1.32172	2.08433	2.08433	1.27553
Toluene	0.188419	0.776293	1.15213	1.15213	0.75891
Ethylbenzene	0.0178635	0.0727904	0.10302	0.10302	0.072006
o-Xylene	0.0298057	0.12083	0.177374	0.177374	0.120268
H2S	0.0013802	0.00185443	0.0099726	0.0099726	0.00222485
Water	0.500597	0.322239	4.3351	4.3351	0.412222
2,2,4-Trimethylpentane	0.0444914	0.183871	0.00559434	0.00559434	0.175917
Decanes Plus	4.56882E-05	0.00015682	0.000131517	0.000131517	0.000184537

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Sales

	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	712.685	1.19877	0.402794	19.7369	18.3314
Nitrogen	7306.51	0.321487	0.350138	17.1568	8.22366
Methane	76637.8	34.089	6.92979	339.56	534.872
Ethane	24921.3	126.461	2.84159	139.238	1551.35
Propane	19204.1	238.077	1.50446	73.7187	2765.6
Isobutane	2998.52	49.9997	0.150043	7.35209	577.099
n-Butane	7772.23	140.183	0.534358	26.1835	1605.7
Isopentane	2117.7	41.9999	0.0961725	4.71245	480.782
n-Pentane	2221.26	45.1961	0.0469967	2.30284	516.323
n-Hexane	506.516	10.6204	0.00687537	0.336893	123.215
Cyclohexane	99.2025	1.69884	0.0174608	0.855577	24.2765
i-C6	979.051	20.2433	0.0258131	1.26484	235.488
i-C7	1459.43	31.022	0.022658	1.11024	356.683
Methylcyclohexane	37.0856	0.634766	0.00321716	0.157641	9.17692
Octane	426.823	8.96017	0.00171216	0.083896	105.458
Nonane	77.3271	1.60184	0.000253822	0.0124373	19.2437
Benzene	479.256	10.2298	0.292617	14.3382	117.231
Toluene	280.978	6.00833	0.161747	7.92558	69.7495
Ethylbenzene	26.6387	0.56338	0.0144629	0.708681	6.61789
o-Xylene	44.4475	0.935199	0.0249013	1.22017	11.0535
H2S	2.0582	0.0143529	0.00140004	0.068602	0.204481
Water	746.509	2.49405	0.608599	29.8214	37.8863
2,2,4-Trimethylpentane	66.3474	1.42312	0.000785383	0.0384837	16.1681
Decanes Plus	0.068132	0.00121375	1.84635E-05	0.000904711	0.0169604

Stream Properties									
Property	Units	Combined Sales Gas	Max Hour OT	Max Hour PW	Max Hour SK	Max Hour VRT			
Temperature	°F	86.0789	95	89.7294	89.7294	100			
Pressure	psig	75	0.375	0.375	0.375	3			
Molecular Weight	lb/lbmol	22.4125	44.4915	22.0542	22.0542	43.0299			
Mass Flow	lb/h	149124	773.977	14.0389	687.905	9190.75			
Std Vapor Volumetric Flow	MMSCFD	60.5984	0.158437	0.00579757	0.284081	1.94529			
Std Liquid Volumetric Flow	sgpm	811.464	3.08319	0.0753111	3.69024	37.1094			
Gross Ideal Gas Heating Value	Btu/ft^3	1273.64	2512.65	1202.58	1202.58	2430.73			

Client Name: Job: DELAWARE DEVELOPMENT XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Sales

Connections								
	Tanks VRU Gas	Z-Low Pressure Vapor	1	2	3			
From Block	MIX-101	MIX-102	VRT Gas Vapor	SPLT-100	CMPR-100			
To Block	CMPR-101	MIX-100	SPLT-103	MIX-101	FAXR-101			

Stream Composition								
	Tanks VRU Gas	Z-Low Pressure Vapor	1	2	3			
Mole Fraction	%	%	%	%	%			
Carbon Dioxide	0.985005	0.342978	0.195016	0.156581	0.195016			
Nitrogen	1.29291	0.353857	0.137442	0.06597	0.137442			
Methane	48.1942	21.7128	15.6098	12.215	15.6098			
Ethane	18.1431	23.0291	24.1551	24.1762	24.1551			
Propane	14.434	26.5676	29.3639	31.0363	29.3639			
Isobutane	2.00984	4.15442	4.64866	4.9451	4.64866			
n-Butane	5.83362	11.6044	12.9343	13.8644	12.9343			
Isopentane	1.31801	2.7824	3.11989	3.34633	3.11989			
n-Pentane	1.33877	2.97372	3.35052	3.60098	3.35052			
n-Hexane	0.258472	0.59245	0.669419	0.708445	0.669419			
Cyclohexane	0.0620824	0.121385	0.135052	0.116038	0.135052			
i-C6	0.507647	1.13485	1.2794	1.35035	1.2794			
i-C7	0.651917	1.47654	1.66658	1.77968	1.66658			
Methylcyclohexane	0.0164619	0.0386462	0.0437589	0.0371632	0.0437589			
Octane	0.160877	0.381415	0.43224	0.450911	0.43224			
Nonane	0.0255737	0.0618806	0.0702479	0.071795	0.0702479			
Benzene	0.646573	0.692155	0.702659	0.752836	0.702659			
Toluene	0.310789	0.346249	0.354421	0.374854	0.354421			
Ethylbenzene	0.0246183	0.0283296	0.0291848	0.0305049	0.0291848			
o-Xylene	0.0417205	0.04743	0.0487458	0.0506374	0.0487458			
H2S	0.0050283	0.00322472	0.00280906	0.0024209	0.00280906			
Water	3.71273	1.49557	0.984602	0.795818	0.984602			
2,2,4-Trimethylpentane	0.0260082	0.0587273	0.0662678	0.071617	0.0662678			
Decanes Plus	1.65379E-05	2.76818E-05	3.025E-05	2.65796E-05	3.025E-05			

	Tanks VRU Gas	Z-Low Pressure	1	2	3
	24	Vapor	0.4	0.4	•
Mass Fraction	%	%	%	%	%
Carbon Dioxide	1.44577	0.371905	0.199455	0.154885	0.199455
Nitrogen	1.20795	0.244238	0.0894775	0.041537	0.0894775
Methane	25.7858	8.58234	5.81968	4.4044	5.81968
Ethane	18.1948	17.0614	16.8794	16.3392	16.8794
Propane	21.2274	28.8647	30.0911	30.7602	30.0911
Isobutane	3.896	5.94938	6.27913	6.46011	6.27913
n-Butane	11.3083	16.6182	17.4709	18.112	17.4709
Isopentane	3.17148	4.94616	5.23115	5.42651	5.23115
n-Pentane	3.22144	5.28627	5.61785	5.83946	5.61785
n-Hexane	0.742869	1.25793	1.34064	1.37218	1.34064
Cyclohexane	0.174256	0.251703	0.264141	0.219495	0.264141
i-C6	1.45902	2.40958	2.56223	2.61549	2.56223
i-C7	2.17863	3.64536	3.88089	4.00813	3.88089
Methylcyclohexane	0.053907	0.0934925	0.0998495	0.0820136	0.0998495
Octane	0.61289	1.07347	1.14744	1.15768	1.14744
Nonane	0.109392	0.195546	0.209381	0.206962	0.209381
Benzene	1.68442	1.33211	1.27553	1.32172	1.27553
Toluene	0.955042	0.786048	0.75891	0.776293	0.75891
Ethylbenzene	0.0871676	0.0741039	0.072006	0.0727904	0.072006
o-Xylene	0.147722	0.124066	0.120268	0.12083	0.120268

^{*} User Specified Values
? Extrapolated or Approximate Values

Simulation Initiated on 2/9/2020 3:41:52 PM Delaware Tank Battery - Hourly & W&B.pmx Page 4 of 10 **Process Streams Report All Streams Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT XTO ENERGY INC Client Name: Location: BEU DI 38 TB Flowsheet: Sales Tanks VRU Z-Low 2 3 Gas **Pressure** Vapor **Mass Fraction** % 0.00571541 0.00222485 0.00185443 0.00222485 0.00270783 H2S Water 0.663847 0.412222 0.412222 2.23074 0.322239 2,2,4-Trimethylpentane 0.0990833 0.165285 0.175917 0.183871 0.175917 0.000179037 0.000144786 Decanes Plus 0.000184537 0.00015682 0.000184537

	Tanks VRU Gas	Z-Low Pressure Vapor	1	2	3
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	5.33462	9.91748	4.58286	0.299694	4.58286
Nitrogen	4.4571	6.51301	2.05591	0.0803717	2.05591
Methane	95.1446	228.863	133.718	8.52226	133.718
Ethane	67.1353	454.972	387.837	31.6153	387.837
Propane	78.325	769.725	691.4	59.5192	691.4
Isobutane	14.3755	158.65	144.275	12.4999	144.275
n-Butane	41.7252	443.151	401.426	35.0457	401.426
Isopentane	11.7021	131.898	120.196	10.5	120.196
n-Pentane	11.8865	140.967	129.081	11.299	129.081
n-Hexane	2.74104	33.5447	30.8036	2.6551	30.8036
Cyclohexane	0.642969	6.71209	6.06913	0.42471	6.06913
i-C6	5.38348	64.2555	58.8721	5.06082	58.8721
i-C7	8.03873	97.2096	89.1708	7.7555	89.1708
Methylcyclohexane	0.198906	2.49314	2.29423	0.158692	2.29423
Octane	2.26144	28.626	26.3645	2.24004	26.3645
Nonane	0.403633	5.21456	4.81093	0.40046	4.81093
Benzene	6.21517	35.5229	29.3077	2.55746	29.3077
Toluene	3.52391	20.9613	17.4374	1.50208	17.4374
Ethylbenzene	0.321631	1.9761	1.65447	0.140845	1.65447
o-Xylene	0.545067	3.30844	2.76337	0.2338	2.76337
H2S	0.0210887	0.0722089	0.0511202	0.00358822	0.0511202
Water	8.231	17.7026	9.47158	0.623513	9.47158
2,2,4-Trimethylpentane	0.365597	4.40761	4.04202	0.35578	4.04202
Decanes Plus	0.000534231	0.00477432	0.00424009	0.000303437	0.00424009

Stream Properties									
Property	Units	Tanks VRU Gas	Z-Low Pressure Vapor	1	2	3			
Temperature	°F	92.1824	97.8929	100	95	350			
Pressure	psig	0.375	80	3	0.375	85 '			
Molecular Weight	lb/lbmol	29.9836	40.5864	43.0299	44.4915	43.0299			
Mass Flow	lb/h	368.98	2666.67	2297.69	193.494	2297.69			
Std Vapor Volumetric Flow	MMSCFD	0.112079	0.598402	0.486324	0.0396091	0.486324			
Std Liquid Volumetric Flow	sgpm	1.71219	10.9895	9.27736	0.770797	9.27736			
Gross Ideal Gas Heating Value	Btu/ft^3	1665.57	2287.42	2430.73	2512.65	2430.73			

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Location: BEU DI 38 TB Flowsheet: Sales Connections 8 6 CMPR-101 HP Gas From Block FAXR-100 FAXR-101 MIX-100 To Block FAXR-100 MIX-102 MIX-102 MIX-100 Sales Scrubber Stream Composition 6 7 8 4 5 % **Mole Fraction** % 0.985005 0.985005 0.195016 0.243385 Carbon Dioxide 0.242392 Nitrogen 1.29291 1.29291 0.137442 3.95558 3.92001 Methane 48 1942 48.1942 15.6098 72.298 71.7985 Ethane 18.1431 18.1431 24.1551 12.351 12.4565 14.434 14.434 6.34582 6.5455 Propane 29.3639 2.00984 0.741669 0.775369 Isobutane 2.00984 4.64866 n-Butane 5.83362 5.83362 12.9343 1.91408 2.00977 Isopentane 1.31801 1.31801 3.11989 0.417792 0.441142 n-Pentane 1.33877 1.33877 3.35052 0.437673 0.462716 n-Hexane 0.258472 0.258472 $0.6694\overline{19}$ 0.0833116 0.0883393 0.0620824 0.0620824 0.135052 0.016682 0.0177159 Cyclohexane i-C6 0.507647 0.507647 1.2794 0.161137 0.170752 i-C7 0.651917 0.651917 1.66658 0.20636 0.218903 Methylcyclohexane 0.0164619 0.0164619 0.0437589 0.00534792 0.00567674 0.160877 0.160877 0.43224 0.0529148 0.0561587 Octane Nonane 0.0255737 0.0255737 0.0702479 0.00853473 0.00906151 0.646573 0.646573 0.702659 0.0862301 0.0922135 Benzene Toluene 0.310789 0.310789 0.354421 0.0428365 0.0458326 0.00377116 Ethylbenzene 0.0246183 0.0246183 0.0291848 0.00352623 o-Xylene 0.0417205 0.0417205 0.0487458 0.00588202 0.0062923 H2S 0.0050283 0.0050283 0.00280906 0.000884547 0.000907656 Water 3.71273 3.71273 0.984602 0.614079 0.622784 2,2,4-Trimethylpentane 0.0260082 0.0260082 0.0662678 0.00823092 0.00872956 Decanes Plus 1.65379E-05 1.65379E-05 3.66373E-06 3.90091E-06 3.025E-05 4 5 6 7 R **Mass Fraction** % % % 0.479845 Carbon Dioxide 1.44577 1.44577 0.199455 0.477915 Nitrogen 1.20795 1.20795 0.0894775 4.98439 4.89963 Methane 25.7858 25.7858 5.81968 52.1715 51.392 Ethane 18 1948 18.1948 16 8794 16.7055 16.7118 Propane 21.2274 21.2274 30.0911 12.5869 12.878 6.27913 1.93904 Isobutane 3.896 3.896 2.01076 11.3083 11.3083 17.4709 5.00425 5.21193 n-Butane Isopentane 3.17148 3.17148 5.23115 1.35589 1.42009 n-Pentane 3 22144 3 22144 5 61785 1.42041 1.48954 n-Hexane 0.742869 0.742869 1.34064 0.322942 0.339662 0.174256 0.174256 0.264141 0.0631518 0.0665236 Cyclohexane i-C6 1.45902 1.45902 2.56223 0.624616 0.656536 3.88089 i-C7 2.17863 2.17863 0.930116 0.97867 Methylcyclohexane 0.053907 0.053907 0.0998495 0.0236195 0.024869 Octane 0.61289 0.61289 1.14744 0.271887 0.286221 0.109392 0.109392 0.209381 0.049238 0.0518543 Nonane 0.302978 Benzene 1 68442 1.68442 1.27553 0.321381 Toluene 0.955042 0.955042 0.75891 0.177538 0.188419 Ethylbenzene 0.0871676 0.0871676 0.072006 0.0168394 0.0178635 o-Xylene 0.147722 0.147722 0.120268 0.0280895 0.0298057 H2S 0.00571541 0.00571541 0.00222485 0.00135602 0.0013802

Decanes Plus

2,2,4-Trimethylpentane

2.23074

0.0990833

0.000144786

0.412222

0.175917

0.000184537

2.23074

0.0990833

0.000144786

0.497624

0.042292

4.32602E-05

0.500597

0 0444914

4.56882E-05

^{*} User Specified Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Sales

	4	5	6	7	8
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	5.33462	5.33462	4.58286	702.767	712.685
Nitrogen	4.4571	4.4571	2.05591	7300	7306.51
Methane	95.1446	95.1446	133.718	76408.9	76637.8
Ethane	67.1353	67.1353	387.837	24466.3	24921.3
Propane	78.325	78.325	691.4	18434.4	19204.1
Isobutane	14.3755	14.3755	144.275	2839.87	2998.52
n-Butane	41.7252	41.7252	401.426	7329.08	7772.23
Isopentane	11.7021	11.7021	120.196	1985.8	2117.7
n-Pentane	11.8865	11.8865	129.081	2080.29	2221.26
n-Hexane	2.74104	2.74104	30.8036	472.972	506.516
Cyclohexane	0.642969	0.642969	6.06913	92.4904	99.2025
i-C6	5.38348	5.38348	58.8721	914.796	979.051
i-C7	8.03873	8.03873	89.1708	1362.22	1459.43
Methylcyclohexane	0.198906	0.198906	2.29423	34.5924	37.0856
Octane	2.26144	2.26144	26.3645	398.197	426.823
Nonane	0.403633	0.403633	4.81093	72.1126	77.3271
Benzene	6.21517	6.21517	29.3077	443.733	479.256
Toluene	3.52391	3.52391	17.4374	260.017	280.978
Ethylbenzene	0.321631	0.321631	1.65447	24.6626	26.6387
o-Xylene	0.545067	0.545067	2.76337	41.139	44.4475
H2S	0.0210887	0.0210887	0.0511202	1.986	2.0582
Water	8.231	8.231	9.47158	728.806	746.509
2,2,4-Trimethylpentane	0.365597	0.365597	4.04202	61.9397	66.3474
Decanes Plus	0.000534231	0.000534231	0.00424009	0.0633577	0.068132

Stream Properties								
Property	Units	4	5	6	7	8		
Temperature	°F	350 *	100 *	100 *	87.3831	86.5048		
Pressure	psig	80 *	80 *	80 *	80	80		
Molecular Weight	lb/lbmol	29.9836	29.9836	43.0299	22.2313	22.4125		
Mass Flow	lb/h	368.98	368.98	2297.69	146457	149124		
Std Vapor Volumetric Flow	MMSCFD	0.112079	0.112079	0.486324	60	60.5984		
Std Liquid Volumetric Flow	sgpm	1.71219	1.71219	9.27736	800.475	811.464		
Gross Ideal Gas Heating Value	Btu/ft^3	1665.57	1665.57	2430.73	1263.52	1273.64		

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Location: BEU DI 38 TB Flowsheet: Sales Connections 10 11 12 13 From Block STK Vapor SPLT-101 OT Vapor ΡW Sales Scrubber To Block SPLT-100 SPLT-101 SPLT-102 Sales Scrubber MIX-101 Liquid Stream Composition 12 11 13 **Mole Fraction** % % % % 0.156581 1.43779 1.43779 1.43779 Carbon Dioxide Nitrogen 0.06597 1.96351 1.96351 1.96351 Methane 12.215 67.8591 67.8591 67.8591 Ethane 24.1762 14 8457 14 8457 14 8457 Propane 31.0363 5.35976 5.35976 5.35976 Isobutane 4.9451 0.405538 0.405538 0.405538 n-Butane 13.8644 1.44427 1.44427 1.44427 Isopentane 3.34633 0.209402 0.209402 0.209402 n-Pentane 3.60098 0.102329 0.102329 0.102329 n-Hexane 0.708445 0.0125335 0.0125335 0.0125335 Cyclohexane 0.116038 0.0325926 0.0325926 0.0325926 0.0470561 i-C6 1.35035 0.0470561 0.0470561 i-C7 1.77968 0.0355227 0.0355227 0.0355227 Methylcyclohexane 0.0371632 0.00514732 0.00514732 0.00514732 Octane 0.450911 0.00235467 0.00235467 0.00235467 0.071795 0.000310895 0.000310895 0.000310895 Nonane Benzene 0.752836 0.588494 0.588494 0.588494 0.275774 Toluene 0.374854 0.275774 0.275774 Ethylbenzene 0.0305049 0.0214009 0.0214009 0.0214009 o-Xylene 0.0506374 0.0368469 0.0368469 0.0368469 H2S 0.0024209 0.0064534 0.0064534 0.0064534 Water 0.795818 5.307 5.307 5.307 2,2,4-Trimethylpentane 0.071617 0.0010801 0.0010801 0.0010801 Decanes Plus 2.65796E-05 1.10495E-05 1.10495E-05 1.10495E-05 11 12 9 10 13 **Mass Fraction** % % % % % 2.86913 Carbon Dioxide 0.154885 2.86913 2.86913 Nitrogen 0.041537 2.49406 2.49406 2.49406 Methane 4.4044 49.3614 49.3614 49.3614 Ethane 16.3392 20.2409 20.2409 20.2409 30.7602 10.7164 Propane 10.7164 10.7164 Isobutane 6.46011 1.06877 1.06877 1.06877 n-Butane 18.112 3.80627 3.80627 3.80627 Isopentane 5.42651 0.685045 0.685045 0.685045 n-Pentane 5.83946 0.334761 0.334761 0.334761 n-Hexane 1 37218 0.0489738 0.0489738 0.0489738 0.219495 0.124374 0.124374 0.124374 Cyclohexane i-C6 2.61549 0.183869 0.183869 0.183869 i-C7 4.00813 0.161395 0.161395 0.161395 Methylcyclohexane 0.0820136 0.0229161 0.0229161 0.0229161 0.0121959 0.0121959 0.0121959 Octane 1 15768 Nonane 0.206962 0.001808 0.001808 0.001808 Benzene 1.32172 2.08433 2.08433 2.08433 Toluene 0.776293 1.15213 1.15213 1.15213 Ethylbenzene 0.0727904 0.10302 0.10302 0.10302 o-Xylene 0.12083 0.177374 0.177374 0.177374 H2S 0.00185443 0.0099726 0.0099726 0.0099726 Water 0.322239 4.3351 4.3351 4.3351 2,2,4-Trimethylpentane 0.183871 0.00559434 0.00559434 0.00559434 0.00015682 0.000131517 0.000131517 0.000131517 **Decanes Plus**

^{*} User Specified Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Sales

	9	10	11	12	13
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.299694	0.100699	4.93423		0.100699
Nitrogen	0.0803717	0.0875345	4.28919		0.0875345
Methane	8.52226	1.73245	84.8899		1.73245
Ethane	31.6153	0.710399	34.8095		0.710399
Propane	59.5192	0.376116	18.4297		0.376116
Isobutane	12.4999	0.0375107	1.83802		0.0375107
n-Butane	35.0457	0.133589	6.54588		0.133589
Isopentane	10.5	0.0240431	1.17811		0.0240431
n-Pentane	11.299	0.0117492	0.575709		0.0117492
n-Hexane	2.6551	0.00171884	0.0842233		0.00171884
Cyclohexane	0.42471	0.00436519	0.213894		0.00436519
i-C6	5.06082	0.00645327	0.31621		0.00645327
i-C7	7.7555	0.00566451	0.277561		0.00566451
Methylcyclohexane	0.158692	0.000804289	0.0394102		0.000804289
Octane	2.24004	0.000428041	0.020974		0.000428041
Nonane	0.40046	6.34556E-05	0.00310932		6.34556E-05
Benzene	2.55746	0.0731543	3.58456		0.0731543
Toluene	1.50208	0.0404366	1.9814		0.0404366
Ethylbenzene	0.140845	0.00361572	0.17717		0.00361572
o-Xylene	0.2338	0.00622534	0.305042		0.00622534
H2S	0.00358822	0.00035001	0.0171505		0.00035001
Water	0.623513	0.15215	7.45534		0.15215
2,2,4-Trimethylpentane	0.35578	0.000196346	0.00962094		0.000196346
Decanes Plus	0.000303437	4.61587E-06	0.000226178		4.61587E-06

Stream Properties								
Property	Units	9	10	11	12	13		
Temperature	°F	95	89.7294	89.7294		89.7294		
Pressure	psig	0.375	0.375	0.375	75	0.375		
Molecular Weight	lb/lbmol	44.4915	22.0542	22.0542		22.0542		
Mass Flow	lb/h	193.494	3.50972	171.976	0	3.50972		
Std Vapor Volumetric Flow	MMSCFD	0.0396091	0.00144939	0.0710202	0	0.00144939		
Std Liquid Volumetric Flow	sgpm	0.770797	0.0188278	0.922561	0	0.0188278		
Gross Ideal Gas Heating Value	Btu/ft^3	2512.65	1202.58	1202.58	-	1202.58		

	All St	reams Report reams y Total Phase		
Client Name: XTO ENERGY INC			Joh: DEL A	WARE DEVELOPMENT
			JOD. DELA	WARE DEVELOPMENT
Location: BEU DI 38 TB				
Flowsheet: Sales				
	Conn	ections		
	14	15		
From Division				
From Block	SPLT-102	SPLT-103		
To Block	MIX-101	CMPR-100		
	Stream C	omposition		
	14	15		
Mala Foration				
Mole Fraction	%	%		
Carbon Dioxide	1.43779	0.195016		
Nitrogen	1.96351	0.137442		
Methane	67.8591	15.6098		
Ethane	14.8457	24.1551		
Propane	5.35976	29.3639		
Isobutane	0.405538	4.64866		
n-Butane	1.44427	12.9343		
Isopentane	0.209402	3.11989		
n-Pentane	0.102329	3.35052		
n-Hexane	0.0125335	0.669419		
Cyclohexane	0.0325926	0.135052		
i-C6	0.0470561	1.2794		
i-C7	0.0355227	1.66658		
Methylcyclohexane	0.00514732	0.0437589		
Octane	0.00235467	0.43224		
Nonane	0.000310895	0.0702479		
Benzene	0.588494	0.702659		
Toluene	0.275774	0.354421		
Ethylbenzene	0.0214009	0.0291848		
	0.0368469	0.0291646		
o-Xylene				
H2S	0.0064534	0.00280906		
Water	5.307	0.984602		
2,2,4-Trimethylpentane	0.0010801	0.0662678		
Decanes Plus	1.10495E-05	3.025E-05		
Mass Fraction	14 %	15 %	•	
Carbon Dioxide	2 86913	0.199455	•	
Nitrogen	2.49406	0.199455		
Methane	49.3614	5.81968		
Ethane	20.2409	16.8794		
Propane	10.7164	30.0911		
Isobutane	1.06877	6.27913		
n-Butane	3.80627	17.4709		
Isopentane	0.685045	5.23115		
n-Pentane	0.334761	5.61785		
n-Hexane	0.0489738	1.34064		
Cyclohexane	0.124374	0.264141		
i-C6	0.183869	2.56223		
i-C7	0.163869	3.88089		
Methylcyclohexane	0.0229161	0.0998495		
Octane	0.0121959	1.14744		
Nonane	0.001808	0.209381		
Benzene	2.08433	1.27553		
Toluene	1.15213	0.75891		
Ethylbenzene	0.10302	0.072006		
o-Xylene	0.177374	0.120268		
H2S	0.0099726	0.00222485		
Water	4.3351	0.412222		
2,2,4-Trimethylpentane	0.00559434	0.175917		
Decanes Plus	0.00339434	0.000184537		
Decalles Flus	0.000131317	0.000104331		

		All St	eams Report reams Total Phase		
Client Name: XT	O ENERGY INC			Job: DEL	AWARE DEVELOPMENT
	U DI 38 TB				
Flowsheet: Sa					
·				•	
Mass Flow		14 lb/h	15 lb/h		
Carbon Dioxide		4.93423	4.58286		
Nitrogen		4.28919	2.05591		
Methane		84.8899	133.718		
Ethane		34.8095	387.837		
Propane		18.4297	691.4		
Isobutane		1.83802	144.275		
n-Butane		6.54588	401.426		
Isopentane		1.17811	120.196		
n-Pentane		0.575709	129.081		
n-Hexane		0.0842233	30.8036		
Cyclohexane		0.213894	6.06913		
i-C6		0.31621	58.8721		
i-C7		0.277561	89.1708		
Methylcyclohexane		0.0394102	2.29423		
Octane		0.020974	26.3645		
Nonane		0.00310932	4.81093		
Benzene		3.58456	29.3077		
Toluene		1.9814	17.4374		
Ethylbenzene		0.17717	1.65447		
o-Xylene		0.305042	2.76337		
H2S		0.0171505	0.0511202		
Water		7.45534	9.47158		
2,2,4-Trimethylpentane		0.00962094	4.04202		
Decanes Plus		0.000226178	0.00424009		
		Ctue a D	u a m a uti a a		
Duomontus	1114		roperties		
Property	Units °F	14	15		
Temperature		89.7294	100		
Pressure	psig	0.375	•		
Molecular Weight	lb/lbmol	22.0542	43.0299		
Mass Flow	lb/h	171.976	2297.69		
Std Vapor Volumetric Flo	ow MMSCFD	0.0710202	0.486324		
Std Liquid Volumetric Flo	ow sgpm	0.922561	9.27736		
Gross Ideal Gas Heating	y Value Btu/ft^3	1202.58	2430.73		

Tankage **Plant Schematic** XTO ENERGY INC Job: DELAWARE DEVELOPMENT Client Name: Location: BEU DI 38 TB Flowsheet: Tankage "Oil Tank Vapors" VOCs = 667.3 ton/yr "VRT Gas" VOCs = 7,709 ton/yr "Skim Tank Vapors" VOCs = 155.8 ton/yr VRT Sales 0% "PW Vapors" VOCs = 3.18 ton/yr

Process Streams Report All Streams

Tabulated by Total Phase

 Client Name:
 XTO ENERGY INC
 Job: DELAWARE DEVELOPMENT

 Location:
 BEU DI 38 TB

 Flowsheet:
 Tankage

Connections Oil Sales Oil W&B PW to SWD PW Vapors Oil Tank Vapors OIL TANKS From Block OIL TANKS MIX-101 PW TANKS PW TANKS To Block SPLT-100 OT Vapor PW

Stream Composition									
	Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors				
Mole Fraction	%	%	%	%	%				
Carbon Dioxide	0.00141543	0.156581	0.126987	0.000536507	1.43779				
Nitrogen	8.13742E-05	0.06597	0.00245419	1.89273E-05	1.96351				
Methane	0.044157	12.215	2.12949	0.00134307	67.8591				
Ethane	0.484404	24.1762	28.6828	0.000412667	14.8457				
Propane	2.15487	31.0363	35.585	0.000104223	5.35976				
Isobutane	0.855583	4.9451	5.31725	5.0727E-06	0.405538				
n-Butane	3.44866	13.8644	14.7813	2.58857E-05	1.44427				
Isopentane	2.13496	3.34633	3.65208	2.505E-06	0.209402				
n-Pentane	3.01713	3.60098	3.88869	5.51206E-07	0.102329				
n-Hexane	1.98293	0.708445	0.787319	4.45939E-08	0.0125335				
Cyclohexane	0.476202	0.116038	0.12324	2.0001E-06	0.0325926				
i-C6	2.67015	1.35035	1.46272	3.27281E-07	0.0470561				
i-C7	10.11	1.77968	1.79545	1.48443E-07	0.0355227				
Methylcyclohexane	0.317126	0.0371632	0.039741	1.35034E-07	0.00514732				
Octane	11.7213	0.450911	0.435078	2.62999E-09	0.00235467				
Nonane	5.66688	0.071795	0.0564064	2.95507E-10	0.000310895				
Benzene	2.52714	0.752836	0.642595	0.00130043	0.588494				
Toluene	4.33272	0.374854	0.340864	0.000463046	0.275774				
Ethylbenzene	1.06409	0.0305049	0.0289833	3.0547E-05	0.0214009				
o-Xylene	2.19731	0.0506374	0.0422356	7.89498E-05	0.0368469				
H2S	8.62734E-05	0.0024209	0.00283812	7.34963E-06	0.0064534				
Water	0.0129961	0.795818	0.000784711	99.9957	5.307				
2,2,4-Trimethylpentane	0.567223	0.071617	0.0756394	3.4627E-09	0.0010801				
Decanes Plus	44.2126	2.65796E-05	1.76107E-05	3.41899E-09	1.10495E-05				

	Oil Sales	Oil Tank	Oil W&B	PW to SWD	PW Vapors
		Vapors			
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.000368663	0.154885	0.118238	0.00131053	2.86913
Nitrogen	1.3491E-05	0.041537	0.00145454	2.94292E-05	2.49406
Methane	0.0041924	4.4044	0.722768	0.0011959	49.3614
Ethane	0.0862027	16.3392	18.2471	0.000688722	20.2409
Propane	0.562354	30.7602	33.1982	0.000255085	10.7164
Isobutane	0.294305	6.46011	6.53855	1.63646E-05	1.06877
n-Butane	1.18628	18.112	18.1764	8.35076E-05	3.80627
Isopentane	0.911614	5.42651	5.5747	1.00314E-05	0.685045
n-Pentane	1.2883	5.83946	5.93587	2.20733E-06	0.334761
n-Hexane	1.01131	1.37218	1.43544	2.13296E-07	0.0489738
Cyclohexane	0.237185	0.219495	0.219436	9.34283E-06	0.124374
i-C6	1.36179	2.61549	2.66685	1.56541E-06	0.183869
i-C7	5.99542	4.00813	3.8063	8.25581E-07	0.161395
Methylcyclohexane	0.184279	0.0820136	0.0825546	7.35898E-07	0.0229161
Octane	7.92395	1.15768	1.05146	1.66745E-08	0.0121959
Nonane	4.30142	0.206962	0.153058	2.10361E-09	0.001808
Benzene	1.16826	1.32172	1.06196	0.00563806	2.08433
Toluene	2.36262	0.776293	0.664468	0.00236804	1.15213
Ethylbenzene	0.668579	0.0727904	0.0651	0.000180001	0.10302
o-Xylene	1.38059	0.12083	0.0948663	0.000465218	0.177374
H2S	1.74013E-05	0.00185443	0.00204641	1.39028E-05	0.0099726
Water	0.00138563	0.322239	0.000299091	99.9877	4.3351
2,2,4-Trimethylpentane	0.383461	0.183871	0.1828	2.1954E-08	0.00559434
Decanes Plus	68.6861	0.00015682	9.78045E-05	4.98141E-08	0.000131517

^{*} User Specified Values

[?] Extrapolated or Approximate Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Tankage

	Oil Sales	Oil Tank	Oil W&B	PW to SWD	PW Vapors
Mass Flow	lb/h	Vapors lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	1.09626	0.299694	0.560444	11.4718	0.100699
Nitrogen	0.0401173	0.0803717	0.00689446	0.25761	0.0875345
Methane	12.4666	8.52226	3.42588	10.4683	1.73245
Ethane	256.334	31.6153	86.4902	6.02876	0.710399
Propane	1672.23	59.5192	157.358	2.2329	0.376116
Isobutane	875.152	12.4999	30.9923	0.143248	0.0375107
n-Butane	3527.54	35.0457	86.155	0.730987	0.133589
Isopentane	2710.8	10.5	26.4238	0.0878102	0.0240431
n-Pentane	3830.92	11.299	28.1357	0.019322	0.0117492
n-Hexane	3007.25	2.6551	6.80392	0.0018671	0.00171884
Cyclohexane	705.298	0.42471	1.04011	0.0817829	0.00436519
i-C6	4049.46	5.06082	12.6407	0.0137029	0.00645327
i-C7	17828.1	7.7555	18.0416	0.00722676	0.00566451
Methylcyclohexane	547.976	0.158692	0.391304	0.00644172	0.000804289
Octane	23562.8	2.24004	4.98387	0.000145961	0.000428041
Nonane	12790.8	0.40046	0.725486	1.84141E-05	6.34556E-05
Benzene	3473.97	2.55746	5.03361	49.353	0.0731543
Toluene	7025.55	1.50208	3.14954	20.7287	0.0404366
Ethylbenzene	1988.1	0.140845	0.30857	1.57564	0.00361572
o-Xylene	4105.36	0.2338	0.449661	4.07231	0.00622534
H2S	0.0517448	0.00358822	0.00969989	0.121698	0.00035001
Water	4.12036	0.623513	0.00141767	875247	0.15215
2,2,4-Trimethylpentane	1140.27	0.35578	0.866459	0.000192175	0.000196346
Decanes Plus	204247	0.000303437	0.000463588	0.00043605	4.61587E-06

Stream Properties									
Property	Units	Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors			
Temperature	°F	95	95 *	100.493	89.7294	89.7294			
Pressure	psig	0.375	0.375 *	6.89604	0.375	0.375 *			
Molecular Weight	lb/lbmol	168.969	44.4915	47.2659	18.0167	22.0542			
Mass Flow	lb/h	297362	193.494	473.994	875355	3.50972			
Std Vapor Volumetric Flow	MMSCFD	16.0282	0.0396091	0.0913335	442.5	0.00144939			
Std Liquid Volumetric Flow	sgpm	729.167	0.770797	1.8626	1750	0.0188278			
Gross Ideal Gas Heating Value	Btu/ft^3	8802.26	2512.65	2672.79	50.4077	1202.58			

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Tankage

Connections								
	Skim W&B	VRT Gas						
		Vapors						
From Block	MIX-103	SKIM TANKS	SKIM TANKS	MIX-102	VRT			
To Block		STK Vapor	PW TANKS		VRT Gas			
		1			Vapor			

Stream Composition								
	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas			
Mole Fraction	%	%	%	%	%			
Carbon Dioxide	0.920228	1.43779	0.000541215	0.885776	0.195016			
Nitrogen	0.0139742	1.96351	2.53586E-05	0.014494	0.137442			
Methane	1.41345	67.8591	0.00156533	1.3944	15.6098			
Ethane	0.403658	14.8457	0.000461292	0.386762	24.1551			
Propane	0.0254037	5.35976	0.000121778	0.0247178	29.3639			
Isobutane	0.000431909	0.405538	6.40101E-06	0.000423145	4.64866			
n-Butane	0.00156448	1.44427	3.06162E-05	0.00153392	12.9343			
Isopentane	5.70819E-05	0.209402	3.19088E-06	5.66593E-05	3.11989			
n-Pentane	8.86622E-06	0.102329	8.86376E-07	9.79449E-06	3.35052			
n-Hexane	2.0616E-07	0.0125335	8.56466E-08	2.36515E-07	0.669419			
Cyclohexane	7.33083E-06	0.0325926	2.10684E-06	6.76934E-06	0.135052			
i-C6	2.24207E-06	0.0470561	4.8141E-07	2.37935E-06	1.2794			
i-C7	2.97826E-07	0.0355227	2.64795E-07	3.25239E-07	1.66658			
Methylcyclohexane	2.29449E-07	0.00514732	1.51893E-07	2.15999E-07	0.0437589			
Octane	9.8184E-10	0.00235467	1.03426E-08	1.25933E-09	0.43224			
Nonane	2.74284E-11	0.000310895	1.31383E-09	3.49612E-11	0.0702479			
Benzene	0.00481357	0.588494	0.00130236	0.00474495	0.702659			
Toluene	0.000522271	0.275774	0.000463947	0.000514153	0.354421			
Ethylbenzene	1.17392E-05	0.0214009	3.0617E-05	1.15205E-05	0.0291848			
o-Xylene	2.13276E-05	0.0368469	7.90702E-05	2.10687E-05	0.0487458			
H2S	0.00398437	0.0064534	7.37075E-06	0.00390062	0.00280906			
Water	97.2119	5.307	99.9954	97.2826	0.984602			
2,2,4-Trimethylpentane	4.91944E-09	0.0010801	7.00051E-09	5.45403E-09	0.0662678			
Decanes Plus	1.62374E-14	1.10495E-05	3.45518E-09	1.48925E-14	3.025E-05			

	PW W&B	Skim Tank	Skim to PW	Skim W&B	VRT Gas
		Vapors			
Mass Fraction	%	%	%	%	%
Carbon Dioxide	2.21449	2.86913	0.00132203	2.13284	0.199455
Nitrogen	0.0214055	2.49406	3.94289E-05	0.0222149	0.0894775
Methane	1.23989	49.3614	0.00139381	1.22391	5.81968
Ethane	0.663689	20.2409	0.000769875	0.636287	16.8794
Propane	0.0612527	10.7164	0.000298051	0.0596341	30.0911
Isobutane	0.00137267	1.06877	2.06497E-05	0.00134561	6.27913
n-Butane	0.00497213	3.80627	9.87683E-05	0.00487792	17.4709
Isopentane	0.000225195	0.685045	1.2778E-05	0.000223661	5.23115
n-Pentane	3.49784E-05	0.334761	3.54953E-06	3.86634E-05	5.61785
n-Hexane	9.71447E-07	0.0489738	4.09654E-07	1.11514E-06	1.34064
Cyclohexane	3.37356E-05	0.124374	9.84146E-06	3.11701E-05	0.264141
i-C6	1.05649E-05	0.183869	2.30262E-06	1.12184E-05	2.56223
i-C7	1.63182E-06	0.161395	1.47269E-06	1.78307E-06	3.88089
Methylcyclohexane	1.23188E-06	0.0229161	8.27777E-07	1.16035E-06	0.0998495
Octane	6.13264E-09	0.0121959	6.55734E-08	7.8705E-09	1.14744
Nonane	1.92357E-10	0.001808	9.3527E-09	2.4533E-10	0.209381
Benzene	0.0205597	2.08433	0.0056464	0.0202786	1.27553
Toluene	0.00263129	1.15213	0.00237265	0.00259192	0.75891
Ethylbenzene	6.81479E-05	0.10302	0.000180413	6.6918E-05	0.072006
o-Xylene	0.00012381	0.177374	0.000465928	0.000122379	0.120268
H2S	0.00742511	0.0099726	1.39427E-05	0.00727334	0.00222485
Water	95.7618	4.3351	99.9873	95.8882	0.412222
2,2,4-Trimethylpentane	3.07271E-08	0.00559434	4.43842E-08	3.40864E-08	0.175917

^{*} User Specified Values
? Extrapolated or Approximate Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: Flowsheet: BEU DI 38 TB Tankage

	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas
Mass Fraction	%	%	%	%	%
Decanes Plus	2.33065E-13	0.000131517	5.03412E-08	2.13887E-13	0.000184537

	PW W&B	Skim Tank	Skim to PW	Skim W&B	VRT Gas
Mass Flow	lb/h	Vapors lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.589401	4.93423	11.5725	0.575456	4.58286
Nitrogen	0.0056972	4.28919	0.345144	0.00599374	2.05591
Methane	0.330004	84.8899	12.2008	0.330219	133.718
Ethane	0.176645	34.8095	6.73916	0.171675	387.837
Propane	0.0163028	18.4297	2.60901	0.0160897	691.4
Isobutane	0.000365344	1.83802	0.180759	0.000363056	144.275
n-Butane	0.00132336	6.54588	0.864577	0.0013161	401.426
Isopentane	5.99371E-05	1.17811	0.111853	6.03452E-05	120.196
n-Pentane	9.30971E-06	0.575709	0.0310711	1.04317E-05	129.081
n-Hexane	2.58557E-07	0.0842233	0.00358594	3.00873E-07	30.8036
Cyclohexane	8.97894E-06	0.213894	0.0861481	8.40991E-06	6.06913
i-C6	2.81191E-06	0.31621	0.0201562	3.02679E-06	58.8721
i-C7	4.34318E-07	0.277561	0.0128913	4.81084E-07	89.1708
Methylcyclohexane	3.27873E-07	0.0394102	0.00724601	3.13071E-07	2.29423
Octane	1.63224E-09	0.020974	0.000574002	2.12352E-09	26.3645
Nonane	5.11969E-11	0.00310932	8.18697E-05	6.61917E-11	4.81093
Benzene	0.00547208	3.58456	49.4262	0.00547131	29.3077
Toluene	0.000700334	1.9814	20.7692	0.000699319	17.4374
Ethylbenzene	1.8138E-05	0.17717	1.57926	1.8055E-05	1.65447
o-Xylene	3.29528E-05	0.305042	4.07854	3.30187E-05	2.76337
H2S	0.00197624	0.0171505	0.122048	0.0019624	0.0511202
Water	25.4876	7.45534	875248	25.8713	9.47158
2,2,4-Trimethylpentane	8.17821E-09	0.00962094	0.000388521	9.19676E-09	4.04202
Decanes Plus	6.20318E-14	0.000226178	0.000440666	5.77083E-14	0.00424009

Stream Properties									
Property	Units	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas			
Temperature	°F	95.6934	89.7294	89.7294	96.2401	100 *			
Pressure	psig	-11.8723	0.375	0.375	-11.8585	3			
Molecular Weight	lb/lbmol	18.2881	22.0542	18.0167	18.2773	43.0299			
Mass Flow	lb/h	26.6156	171.976	875358	26.9807	2297.69			
Std Vapor Volumetric Flow	MMSCFD	0.0132548	0.0710202	442.501	0.0134446	0.486324			
Std Liquid Volumetric Flow	sgpm	0.0556881	0.922561	1750.02	0.0563944	9.27736			
Gross Ideal Gas Heating Value	Btu/ft^3	71.2646	1202.58	50.4115	70.7868	2430.73			

Process Streams Report All Streams **Tabulated by Total Phase** Job: DELAWARE DEVELOPMENT Client Name: **XTO ENERGY INC** Location: BEU DI 38 TB Flowsheet: Tankage Connections **VRT Sales** z-Oil Loading 2 3 From Block Treater Oil VRT SPLT-101 Dead Oil To Block VRT MIX-100 SPLT-101 Stream Composition **VRT Sales** z-Oil Loading 2 3 1 % **Mole Fraction** % Carbon Dioxide 0.00205325 0.133973 0.00906046 0.000755824 0.00205325 Nitrogen 0.00020268 0.00195391 0.00518636 0.000411633 0.00020268 0.066709 Methane 2.19943 0.63114 0.104571 0.066709 Ethane 0.559271 29.5682 1.41613 0.47561 0.559271 2.31123 Propane 2.31123 35.469 3.29362 1.87847 Isobutane 0.898786 5.22714 1.03496 0.730468 0.898786 n-Butane 3.57701 14.4794 3.91681 3.05525 3.57701 Isopentane 2.18113 3.54955 2.21522 1.96166 2.18113 n-Pentane 3.06057 3.77088 3.0711 2.84717 3.06057 n-Hexane 2.00308 0.75808 1.95465 1.88471 2.00308 Cyclohexane 0.11845 0.575178 0.591763 0.591763 i-C6 2.72582 1.41143 2.67329 2.42639 2.72582 i-C7 10.0288 1.72157 9.7251 10.3371 10.0288 Methylcyclohexane 0.393961 0.0380792 0.381244 0 0.393961 11.6042 0.41302 11.1985 12.0578 11.6042 Octane Nonane 5.62425 0.0535178 5.42256 5.77082 5.62425 2.45712 Benzene 2.52323 0.617079 2.52089 2.52323 Toluene 4.30034 0.32551 4.15705 4.41529 4.30034 Ethylbenzene 0.0275188 1.05017 1.0131 1.10795 1.05017 o-Xylene 2.17714 0.0400363 2.09985 2.25274 2.17714 0.000212422 H2S 0.000114575 0.00286725 0 0.000114575 Water 0.0185827 0.000783292 0.0536626 0.0185827 0 2,2,4-Trimethylpentane 0.0724935 0.615071 0.553979 0.553979 0.536268 Decanes Plus 45.5568 43.7476 43.7476 1.57643E-05 42.159 **VRT Sales** z-Oil Loading 1 2 3 **Mass Fraction** % % 0.000538215 0.125747 0.00244092 0.000193616 0.000538215 Carbon Dioxide Nitrogen 3.38176E-05 0.00116735 0.000889377 6.71199E-05 3.38176E-05 Methane 0.00637415 0.75251 0.0619803 0.00976467 0.00637415 0.260663 Ethane 0 100163 18.9616 0.0832426 0.100163 Propane 0.607024 33.3562 0.889049 0.482141 0.607024 0.311147 6.47944 0.368233 0.247126 0.311147 Isobutane 1.23831 17.9483 1.39358 1.03363 1.23831 n-Butane Isopentane 0.937298 5.46177 0.97837 0.82381 0.937298 n-Pentane 5.80234 1 35637 1.19568 1 31522 1 31522 n-Hexane 1.02813 1.39325 1.03112 0.94537 1.02813 0.296632 Cyclohexane 0.212604 0.296321 0.296632 0 1.21708 i-C6 1.39909 2.59403 1.41022 1.39909 3.67902 6.02908 i-C7 5.98536 5.96523 5.98536 Methylcyclohexane 0.230394 0.0797387 0.229145 0 0.230394 Octane 7.89509 1.00618 7.83055 8.01712 7.89509 4.29641 0.146388 4.25732 4.30811 4.29641 Nonane Benzene 1.17393 1 02799 1.1749 1.14616 1.17393 2.34468 Toluene 2.35999 0.639642 2.36796 2.35999 Ethylbenzene 0.664063 0.0623078 0.6584 0.684661 0.664063 o-Xylene 1.37669 0.0906499 1.36467 1.39209 1.37669 H2S 2.32577E-05 0.00208405 4.43168E-05 2.32577E-05 0 0.00199396 0.000300951 0.00591793 0 0.00199396 0.408954 2,2,4-Trimethylpentane 0.376908 0.176606 0.374985 0.376908

Decanes Plus

8.82542E-05

67.7449

68.3992

69.6078

68.3992

^{*} User Specified Values

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Tankage

	VRT Sales	z-Oil Loading	1	2	3
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0	0.0571904	5.86334	0.11548	1.28048
Nitrogen	0	0.00053092	2.13637	0.0400328	0.0804562
Methane	0	0.342246	148.883	5.82402	15.1649
Ethane	0	8.62387	626.137	49.649	238.301
Propane	0	15.1706	2135.58	287.567	1444.18
Isobutane	0	2.94689	884.531	147.395	740.256
n-Butane	0	8.16301	3347.52	616.495	2946.09
Isopentane	0	2.48405	2350.14	491.351	2229.95
n-Pentane	0	2.63894	3258.14	713.151	3129.06
n-Hexane	0	0.63366	2476.85	563.854	2446.05
Cyclohexane	0	0.0966935	711.792	0	705.723
i-C6	0	1.17978	3387.49	725.911	3328.61
i-C7	0	1.67324	14329.1	3595.97	14239.9
Methylcyclohexane	0	0.0362657	550.429	0	548.134
Octane	0	0.457619	18809.7	4781.71	18783.4
Nonane	0	0.066578	10226.5	2569.52	10221.7
Benzene	0	0.467537	2822.22	683.614	2792.91
Toluene	0	0.290913	5632.15	1412.34	5614.71
Ethylbenzene	0	0.028338	1581.54	408.357	1579.89
o-Xylene	0	0.0412281	3278.06	830.296	3275.3
H2S	0	0.000947839	0.106453	0	0.055333
Water	0	0.000136874	14.2155	0	4.74387
2,2,4-Trimethylpentane	0	0.0803214	900.751	243.916	896.709
Decanes Plus	0	4.01386E-05	162730	41516.7	162730

Stream Properties									
Property	Units	VRT Sales	z-Oil Loading	1	2	3			
Temperature	°F	100	98.726	115.973	90.161	100			
Pressure	psig	3	6.90877	3	25	3			
Molecular Weight	lb/lbmol	167.893	46.8887	163.359	171.801	167.893			
Mass Flow	lb/h	0	45.4806	240210	59643.8	237912			
Std Vapor Volumetric Flow	MMSCFD	0	0.00883411	13.3922	3.16187	12.9059			
Std Liquid Volumetric Flow	sgpm	0	0.179636	593.381	145.833	584.104			
Gross Ideal Gas Heating Value	Btu/ft^3	8748.12	2652.88	8518.71	8944.46	8748.12			

			All St	reams Report I reams y Total Phase			
Client Name:	XTO ENERGY I	NC			Joh: DELA	↓ WARE DEVELOPN	/FNT
Location:	BEU DI 38 TB	NC .			JOD. DELA	WARE DEVELOPIN	/IEIN I
Flowsheet:	Tankage						
1 lowshoot.	Turnage						
			Comm	ti			
				ections	_	l	
			4	5	6	7	8
From Block			SPLT-100	SPLT-100		MIX-100	Prod. Water
To Block					MIX-101	OIL TANKS	SKIM TANKS
			Stream Co	omposition			
			4	5	6	7	8
Mole Fraction			%	%	%	%	%
Carbon Dioxide			0.00141543	0.00141543	0.126987	0.00179794	0.000771852
Nitrogen			8.13742E-05	8.13742E-05	0.00245419	0.000243798	0.000340441
Methane			0.044157	0.044157	2.12949	0.0741596	0.0124545
Ethane			0.484404	0.484404	28.6828	0.542808	0.00284353
Propane			2.15487	2.15487	35.585	2.22607	0.000981846
Isobutane			0.855583	0.855583	5.31725	0.865664	7.14772E-05
n-Butane			3.44866	3.44866	14.7813	3.47434	0.000262376
Isopentane			2.13496	2.13496	3.65208	2.13794	3.67934E-05
n-Pentane			3.01713	3.01713	3.88869	3.01857	1.7307E-05
n-Hexane			1.98293	1.98293	0.787319	1.97979	2.0969E-06
Cyclohexane			0.476202	0.476202	0.12324	0.475314	7.33668E-06
i-Ć6			2.67015	2.67015	1.46272	2.66689	8.03248E-06
i-C7			10.11	10.11	1.79545	10.0894	5.96512E-06
Methylcyclohexane			0.317126	0.317126	0.039741	0.316436	9.77866E-07
Octane			11.7213	11.7213	0.435078	11.6935	3.88198E-07
Nonane			5.66688	5.66688	0.0564064	5.65309	5.12034E-08
Benzene			2.52714	2.52714	0.642595	2.52277	0.00139658
Toluene			4.33272	4.33272	0.340864	4.32296	0.000508127
Ethylbenzene			1.06409	1.06409	0.0289833	1.06154	3.40463E-05
o-Xylene			2.19731	2.19731	0.0422356	2.19202	8.49704E-05
H2Ś			8.62734E-05	8.62734E-05	0.00283812	9.20285E-05	8.40515E-06
Water			0.0129961	0.0129961	0.000784711	0.0149259	99.9802
2,2,4-Trimethylpenta	ane		0.567223	0.567223	0.0756394	0.566001	1.80325E-07
Decanes Plus			44.2126	44.2126	1.76107E-05	44.1037	5.22775E-09
			4	5	6	7	8
Mass Fraction			%	%	%	%	%
Carbon Dioxide			0.000368663	0.000368663	0.118238	0.000469142	0.00188534
Nitrogen			1.3491E-05	1.3491E-05	0.00145454	4.04929E-05	0.000529317
Methane			0.0041924	0.0041924	0.722768	0.00705377	0.0110894
Ethane			0.0862027	0.0862027	18.2471	0.0967716	0.00474555
Propane			0.562354	0.562354	33.1982	0.581991	0.00240296
Isobutane			0.294305	0.294305	6.53855	0.298314	0.000230578
n-Butane			1.18628	1.18628	18.1764	1.19728	0.000846397
Isopentane			0.911614	0.911614	5.5747	0.91455	0.000147335
n-Pentane			1.2883	1.2883	5.93587	1.29126	6.93043E-05
n-Hexane			1.01131	1.01131	1.43544	1.01154	1.00293E-05
Cyclohexane			0.237185	0.237185	0.219436	0.237173	3.42698E-05
i-C6			1.36179	1.36179	2.66685	1.36261	3.84186E-05
i-C7			5.99542	5.99542	3.8063	5.99412	3.31744E-05
Methylcyclohexane			0.184279	0.184279	0.0825546	0.184212	5.3289E-06
Octane			7.92395	7.92395	1.05146	7.91955	2.46114E-06
Nonane			4.30142	4.30142	0.153058	4.29876	3.64487E-07
Benzene			1.16826	1.16826	1.06196	1.16836	0.0060547
Toluene			2.36262	2.36262	0.664468	2.36159	0.00259849
Ethylbenzene			0.668579	0.668579	0.0651	0.668192	0.000200613
o-Xylene			1.38059	1.38059	0.0948663	1.37977	0.000500677
H2S			1.74013E-05	1.74013E-05	0.00204641	1.85958E-05	1.58988E-05
Water			0.00138563	0.00138563	0.000299091	0.00159428	99.9686
2,2,4-Trimethylpenta	ane		0.383461	0.383461	0.1828	0.383331	1.14325E-06
Decanes Plus	-		68.6861	68.6861	9.78045E-05	68.6414	7.61645E-08
_ 55555 1 145			00.0001	00.0001	0 50 152 00	55.5717	

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Tankage

	4	5	6	7	8
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	0.219253	0.877012	0.556702	1.39596	16.5067
Nitrogen	0.00802346	0.0320938	0.00684843	0.120489	4.63433
Methane	2.49333	9.97331	3.40301	20.9889	97.0907
Ethane	51.2669	205.067	85.9128	287.95	41.5487
Propane	334.446	1337.78	156.307	1731.75	21.0387
Isobutane	175.03	700.121	30.7854	887.651	2.01878
n-Butane	705.508	2822.03	85.5798	3562.58	7.41046
Isopentane	542.16	2168.64	26.2474	2721.3	1.28997
n-Pentane	766.183	3064.73	27.9479	3842.21	0.60678
n-Hexane	601.45	2405.8	6.7585	3009.9	0.0878093
Cyclohexane	141.06	564.239	1.03317	705.723	0.300042
i-C6	809.893	3239.57	12.5563	4054.52	0.336366
i-C7	3565.62	14262.5	17.9212	17835.9	0.290452
Methylcyclohexane	109.595	438.38	0.388692	548.134	0.0466562
Octane	4712.57	18850.3	4.9506	23565.1	0.021548
Nonane	2558.16	10232.6	0.720642	12791.2	0.00319119
Benzene	694.794	2779.18	5.00001	3476.53	53.0108
Toluene	1405.11	5620.44	3.12851	7027.05	22.7506
Ethylbenzene	397.621	1590.48	0.30651	1988.24	1.75643
o-Xylene	821.073	3284.29	0.446659	4105.6	4.38358
H2S	0.010349	0.0413958	0.00963513	0.055333	0.139199
Water	0.824071	3.29629	0.00140821	4.74387	875255
2,2,4-Trimethylpentane	228.054	912.215	0.860675	1140.62	0.0100095
Decanes Plus	40849.3	163397	0.000460493	204247	0.000666844

Stream Properties									
Property	Units	4	5	6	7	8			
Temperature	°F	95	95	100.493	98.0712	89.7294			
Pressure	psig	0.375	0.375	6.89604	3	0.375			
Molecular Weight	lb/lbmol	168.969	168.969	47.2659	168.662	18.0174			
Mass Flow	lb/h	59472.5	237890	470.83	297556	875530			
Std Vapor Volumetric Flow	MMSCFD	3.20563	12.8225	0.0907238	16.0678	442.573			
Std Liquid Volumetric Flow	sgpm	145.833 *	583.333	1.85016	729.937	1750.94			
Gross Ideal Gas Heating Value	Btu/ft^3	8802.26	8802.26	2672.79	8786.76	50.5964			

		<u> </u>			
	All S	reams Report treams by Total Phase			
Client Name: XTO ENERGY	NC		Job: DELA	WARE DEVELOPM	1ENT
Location: BEU DI 38 TB					
Flowsheet: Tankage					
			·		
	Conn	ections			
	9	10	11	12	13
From Block	SPLT-101	SKIM TANKS			
To Block	MIX-100	MIX-100	MIX-101	MIX-102	MIX-102
TO BIOCK	WIIX 100	IVIIX TOO	WIDC 101	WIIX TOZ	WIIX TOE
	Stroom C	omposition			
	9	omposition	11	12	40
Mole Fraction	,	10 %	11 %	%	13 %
Carbon Dioxide	0.00205325	70	0.126987	0.885776	0.885776
Nitrogen	0.00203323		0.00245419	0.003770	0.014494
Methane	0.066709		2.12949	1.3944	1.3944
Ethane	0.559271		28.6828	0.386762	0.386762
Propane	2.31123		35.585	0.0247178	0.0247178
Isobutane	0.898786		5.31725	0.000423145	0.000423145
n-Butane	3.57701		14.7813	0.00153392	0.00153392
Isopentane	2.18113		3.65208	5.66593E-05	5.66593E-05
n-Pentane	3.06057		3.88869	9.79449E-06	9.79449E-06
n-Hexane	2.00308		0.787319	2.36515E-07	2.36515E-07
Cyclohexane	0.591763		0.12324	6.76934E-06	6.76934E-06
i-C6	2.72582		1.46272	2.37935E-06	2.37935E-06
i-C7	10.0288		1.79545	3.25239E-07	3.25239E-07
Methylcyclohexane	0.393961		0.039741	2.15999E-07	2.15999E-07
Octane	11.6042		0.435078	1.25933E-09	1.25933E-09
Nonane	5.62425		0.0564064	3.49612E-11	3.49612E-11
Benzene	2.52323		0.642595	0.00474495	0.00474495
Toluene Ethylbenzene	4.30034		0.340864	0.000514153 1.15205E-05	0.000514153
o-Xylene	1.05017 2.17714		0.0289833 0.0422356	2.10687E-05	1.15205E-05 2.10687E-05
H2S	0.000114575		0.00283812	0.00390062	0.00390062
Water	0.0185827		0.000784711	97.2826	97.2826
2,2,4-Trimethylpentane	0.553979		0.0756394	5.45403E-09	5.45403E-09
Decanes Plus	43.7476		1.76107E-05	1.48925E-14	1.48925E-14
300000	,	<u> </u>			
Mass Fraction	9 %	10 %	11 %	12 %	13 %
Carbon Dioxide	0.000538215	,,	0.118238	2.13284	2.13284
Nitrogen	3.38176E-05		0.00145454	0.0222149	0.0222149
Methane	0.00637415		0.722768	1.22391	1.22391
Ethane	0.100163		18.2471	0.636287	0.636287
Propane	0.607024		33.1982	0.0596341	0.0596341
Isobutane	0.311147		6.53855	0.00134561	0.00134561
n-Butane	1.23831		18.1764	0.00487792	0.00487792
Isopentane	0.937298		5.5747	0.000223661	0.000223661
n-Pentane	1.31522		5.93587	3.86634E-05	3.86634E-05
n-Hexane	1.02813		1.43544	1.11514E-06	1.11514E-06
Cyclohexane	0.296632		0.219436	3.11701E-05	3.11701E-05
i-C6	1.39909		2.66685	1.12184E-05	1.12184E-05
i-C7	5.98536		3.8063	1.78307E-06	1.78307E-06
Methylcyclohexane Octano	0.230394 7.89509		0.0825546 1.05146	1.16035E-06	1.16035E-06 7.8705E-09
Octane Nonane	7.89509 4.29641		0.153058	7.8705E-09 2.4533E-10	7.8705E-09 2.4533E-10
Benzene	1.17393		1.06196	0.0202786	0.0202786
Toluene	2.35999		0.664468	0.0202780	0.0202780
Ethylbenzene	0.664063		0.0651	6.6918E-05	6.6918E-05
o-Xylene	1.37669		0.0948663	0.000122379	0.000122379
H2S	2.32577E-05		0.00204641	0.00727334	0.00727334
Water	0.00199396		0.000299091	95.8882	95.8882
2,2,4-Trimethylpentane	0.376908		0.1828	3.40864E-08	3.40864E-08
Decanes Plus	68.3992		9.78045E-05	2.13887E-13	2.13887E-13
	<u> </u>	•	•		

Job: DELAWARE DEVELOPMENT Client Name: XTO ENERGY INC Location: BEU DI 38 TB Flowsheet: Tankage

	9	10	11	12	13
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide	1.28048		0.00374139	0.573557	0.00189909
Nitrogen	0.0804562		4.60257E-05	0.00597396	1.97802E-05
Methane	15.1649		0.0228704	0.329129	0.00108977
Ethane	238.301		0.577388	0.171108	0.000566552
Propane	1444.18		1.05048	0.0160366	5.30985E-05
Isobutane	740.256		0.206897	0.000361858	1.19814E-06
n-Butane	2946.09		0.57515	0.00131175	4.34332E-06
Isopentane	2229.95		0.176399	6.01461E-05	1.99148E-07
n-Pentane	3129.06		0.187827	1.03972E-05	3.4426E-08
n-Hexane	2446.05		0.0454213	2.99881E-07	9.92928E-10
Cyclohexane	705.723		0.00694354	8.38216E-06	2.7754E-08
i-C6	3328.61		0.0843863	3.01681E-06	9.98888E-09
i-C7	14239.9		0.120442	4.79496E-07	1.58765E-09
Methylcyclohexane	548.134		0.00261225	3.12038E-07	1.03318E-09
Octane	18783.4		0.0332711	2.11651E-09	7.00793E-12
Nonane	10221.7		0.00484317	6.59733E-11	2.18443E-13
Benzene	2792.91		0.0336032	0.00545325	1.80561E-05
Toluene	5614.71		0.0210256	0.000697011	2.30786E-06
Ethylbenzene	1579.89		0.00205994	1.79954E-05	5.95841E-08
o-Xylene	3275.3		0.00300183	3.29098E-05	1.08967E-07
H2S	0.055333		6.47541E-05	0.00195592	6.47621E-06
Water	4.74387		9.46404E-06	25.7859	0.0853793
2,2,4-Trimethylpentane	896.709		0.00578427	9.16641E-09	3.03507E-11
Decanes Plus	162730		3.0948E-06	5.75178E-14	1.90446E-16

Stream Properties									
Property	Units	9	10	11	12	13			
Temperature	°F	100		100.493	96.2401	96.2401			
Pressure	psig	3	0.375	6.89604	-11.8585	-11.8585			
Molecular Weight	lb/lbmol	167.893		47.2659	18.2773	18.2773			
Mass Flow	lb/h	237912	0	3.16427	26.8917	0.0890404			
Std Vapor Volumetric Flow	MMSCFD	12.9059	0	0.00060972	0.0134002	4.43691E-05			
Std Liquid Volumetric Flow	sgpm	584.104	0	0.0124342	0.0562083	0.00018611			
Gross Ideal Gas Heating Value	Btu/ft^3	8748.12	-	2672.79	70.7868	70.7868			

		ry - Hourry & W&B.pmx		rage II of I
	All St	reams Report treams by Total Phase		
Client Name: XTO ENERGY	NC:		Job: DELA	WARE DEVELOPMENT
Location: BEU DI 38 TB	110		OOD. DEEM	WALL DEVELOT WEIGH
Flowsheet: Tankage				
			•	
	Conn	ections		
	14	15	16	
From Block				
To Block	MIX-103	MIX-103	<u></u>	
TO BIOCK	WIX-105	WIIX-103		
	Stream C			
		omposition	40	
Mala Erastian	14	15	16	
Mole Fraction Carbon Dioxide	% 0.920228	% 0.920228	% 0.13367	
	0.920228	0.920226	0.0399892	
Nitrogen Methane	1.41345	1.41345	8.85879	
Ethane	0.403658	0.403658	22.8988	
Propane	0.403038	0.0254037	32.35	
Isobutane	0.000431909	0.000431909	5.34777	
n-Butane	0.00156448	0.00156448	15.1488	
Isopentane	5.70819E-05	5.70819E-05	3.73515	
n-Pentane	8.86622E-06	8.86622E-06	4.04522	
n-Hexane	2.0616E-07	2.0616E-07	0.814245	
Cyclohexane	7.33083E-06	7.33083E-06	0.133502	
i-C6	2.24207E-06	2.24207E-06	1.53866	
i-C7	2.97826E-07	2.97826E-07	2.06554	
Methylcyclohexane	2.29449E-07	2.29449E-07	0.0433307	
Octane	9.8184E-10	9.8184E-10	0.537281	
Nonane	2.74284E-11	2.74284E-11	0.0872048	
Benzene	0.00481357	0.00481357	0.864047	
Toluene Ethylbenzene	0.000522271	0.000522271	0.438809	
o-Xylene	1.17392E-05 2.13276E-05	1.17392E-05 2.13276E-05	0.0363649 0.0605049	
H2S	0.00398437	0.00398437	0.00241736	
Water	97.2119	97.2119	0.736414	
2,2,4-Trimethylpentane	4.91944E-09	4.91944E-09	0.0834149	
Decanes Plus	1.62374E-14	1.62374E-14	3.774E-05	
2004,100 . 140	,		0	
	14	15	16	
Mass Fraction	%	%	%	
Carbon Dioxide				
	2.21449	2.21449	0.126356	
	2.21449 0.0214055	2.21449 0.0214055	0.126356 0.0240616	
	0.0214055 1.23989	0.0214055 1.23989	0.0240616 3.05254	
Methane	0.0214055	0.0214055	0.0240616 3.05254 14.7893	
Methane Ethane Propane	0.0214055 1.23989 0.663689 0.0612527	0.0214055 1.23989 0.663689 0.0612527	0.0240616 3.05254 14.7893 30.6398	
Methane Ethane Propane Isobutane	0.0214055 1.23989 0.663689 0.0612527 0.00137267	0.0214055 1.23989 0.663689 0.0612527 0.00137267	0.0240616 3.05254 14.7893 30.6398 6.67622	
Methane Ethane Propane Isobutane n-Butane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912	
Methane Ethane Propane Isobutane n-Butane Isopentane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232 1.44968	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232 1.44968 0.868425	
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129 6.81479E-05	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129 6.81479E-05	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232 1.44968 0.868425 0.082924	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232 1.44968 0.868425	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S Water	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129 6.81479E-05 0.00012381 0.00742511	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129 6.81479E-05 0.00012381 0.00742511 95.7618	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232 1.44968 0.868425 0.082924 0.137971 0.00176957 0.284957	
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129 6.81479E-05 0.00012381 0.00742511	0.0214055 1.23989 0.663689 0.0612527 0.00137267 0.00497213 0.000225195 3.49784E-05 9.71447E-07 3.37356E-05 1.05649E-05 1.63182E-06 1.23188E-06 6.13264E-09 1.92357E-10 0.0205597 0.00263129 6.81479E-05 0.00012381 0.00742511	0.0240616 3.05254 14.7893 30.6398 6.67622 18.912 5.78833 6.26885 1.50714 0.241327 2.84801 4.44555 0.0913822 1.31823 0.240232 1.44968 0.868425 0.082924 0.137971 0.00176957	

		All St	eams Report reams y Total Phase		
Client Name: XT	O ENERGY INC			Job: DELA	WARE DEVELOPMENT
	U DI 38 TB				
Flowsheet: Tai	nkage				
<u> </u>					
Mass Flow		14 lb/h	15 lb/h	16 lb/h	
Carbon Dioxide		0.587331	0.00207017	0.508196	
Nitrogen		0.00567719	2.00105E-05	0.0967742	
Methane		0.328845	0.00115909	12.2771	
Ethane		0.176024	0.000620436	59.4817	
Propane		0.0162455	5.72608E-05	123.231	
Isobutane		0.000364061	1.28321E-06	26.8513	
n-Butane		0.00131872	4.6481E-06	76.0628	
Isopentane		5.97266E-05	2.10519E-07	23.2803	
n-Pentane		9.27701E-06	3.26988E-08	25.2129	
n-Hexane		2.57648E-07	9.08137E-10	6.06164	
Cyclohexane		8.9474E-06	3.1537E-08	0.970601	
i-C6		2.80203E-06	9.87637E-09	11.4545	
i-C7		4.32793E-07	1.52547E-09	17.8797	
Methylcyclohexane		3.26721E-07	1.1516E-09	0.367533	
Octane		1.62651E-09	5.73297E-12	5.30185	
Nonane		5.10171E-11	1.79821E-13	0.966199	
Benzene		0.00545286	1.92198E-05	5.8305	
Toluene		0.000697874	2.45981E-06	3.49275	
Ethylbenzene		1.80743E-05	6.37067E-08	0.333515	
o-Xylene		3.28371E-05	1.15741E-07	0.554911	
H2S		0.0019693	6.94121E-06	0.0071171	
Water		25.3981	0.089521	1.14608	
2,2,4-Trimethylpentane		8.14949E-09	2.87246E-11	0.823133	
Decanes Plus		6.18139E-14	2.17876E-16	0.00085582	
		Ctuo and I	Droportion		
Droporty	Units	14	Properties 15	16	
Property Temperature	°F	95.6934	95.6934	100.493	
Pressure	psig	-11.8723	-11.8723	0.15	
Molecular Weight	psig lb/lbmol	18.2881	18.2881	46.5569	
Mass Flow	lb/h	26.5221	0.0934829	402.194	
Std Vapor Volumetric Flo	112,11	0.0132082	4.65553E-05	0.0786785	
Std Liquid Volumetric Flo		0.0554925	0.000195595	1.56715	
Gross Ideal Gas Heating		71.2646	71.2646	2623.24	
C. C.C. Idea: Gas Fleating	, value Blu/It o	7 1.2070	7 1.2040	2020.24	

Simulation initiated on 2/	9/2020 3.41.32 PM	Delawai	e rank battery - Hourly & W&B.pmx		Page 1 0
		User	Value Sets Report		
Client Name:	XTO ENERGY IN	IC		Job: DELAWARE DEVELOPMENT	
_ocation:	BEU DI 38 TB				
			Tanks-OIL		
			Jser Value [TVP]		
Parameter		9.68913 psia	Upper Bound	psia	
Lower Bound		psia	* Enforce Bounds	False	
		Us	ser Value [MaxVP]		
Parameter		11.3158 psia	Upper Bound	psia	
Lower Bound		psia	* Enforce Bounds	False	
		User V	alue [AvgLiqSurfaceT]		
Parameter		88.5666 °F	Upper Bound	°F	
Lower Bound		°F	* Enforce Bounds	False	
		User V	alue [MaxLiqSurfaceT]		
Parameter		100.493 °F	Upper Bound	°F	
Lower Bound		°F	* Enforce Bounds	False	
Remarks This User Value S	et was programmati	cally generated. GUID={F	45A91A3-BD50-45BF-BA6F-D339	96A9121A2}	
		l	Jser Value [TVP]		
Parameter		0.589984 psia	Upper Bound	psia	
Lower Bound		psia	* Enforce Bounds	False	
		116	cor Value (MaxVD)		
Parameter		0.851284 psia	ser Value [MaxVP] Upper Bound	psia	
Lower Bound		psia	* Enforce Bounds	False	
		·	·		
			alue [AvgLiqSurfaceT]		
Parameter		83.7669 °F	Upper Bound	°F	

Enforce Bounds

Upper Bound

Enforce Bounds

User Value [MaxLiqSurfaceT]

Remarks

Lower Bound

Lower Bound

* Parameter

This User Value Set was programmatically generated. GUID={AADD249D-3323-4DB5-8BE4-B48D5B5C5F5B}

95.6934 °F

False

False

°F

June 27, 2019

14589/16931; 14590/16932;

XTO Energy Inc. #700, 1 Riverway Drive Houston, TX 77056

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation The Tornado Combustion Technologies Inc. (TCTI) designed a dual air assisted flare system for XTO Energy Inc. Battery Facilities (TCTI Design Reference No.: TOR0817B Rev. 0).

The flare has a 24-inch outer diameter air tip, 8-inch outer diameter annular low pressure air assisted waste gas tip for continuous flaring operations, and 6-inch outer diameter high pressure waste gas tip for facility emergency relieving cases. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 40-feet tall. To date TCTI has provided twenty-four (24) flares of this design to XTO Energy Midstream Operations Compressor Facilities, under the following job number:

• 13881/16123;	• 14329/16627;
14010/16304;	14472/16792;
14206/16513;	14465/16786;
14207/16514;	14491/16806;
14208/16515;	14531/16848;

14653/16991; 14565/17000: 14712/17047; 14531/16848; 14552/16870; 14713/17048: 14553/16871; 14714/17049; 14744/17100.

14210/16517; 14211/16518;

14209/16516;

14573/16892;

This flare design is intended to operate such that:

- The maximum high pressure emergency flow rates does not exceed a maximum flow rate of 3,000,000 SCFD, a maximum continuous flowrate of 2,000,000 SCFD which will operate without visible emissions (i.e. excessive soot formation) and, and a maximum net heat release of 255,421,950.00 BTU/h; and,
- ii) The maximum low pressure emergency flow rate does not exceed a maximum flow rate of 1,500,000 SCFD, a maximum continuous flowrate of 800,000 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of and 127,710,975.00 BTU/h.

For more detailed information please refer to the design datasheets.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

TOR0817BR0-40FT.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

- TCTI has been designed the flare so each riser of the dual flare system will operate independently. Thus the calculated 40 CFR 60.18 maximum exit velocity for the high pressure and low pressure air assisted flares is 205.70 ft/s, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the high pressure air assisted flare as determined by paragraph (f)(4) in 40 CFR 60.18, are 385.91 ft/s, and 122.44 ft/s, for the emergency and continuous operating cases respectfully, and for the low pressure air assisted flare are 128.87 ft/s, and 70.55 ft/s, for the emergency and continuous operating cases respectfully. As can be seen the actual exit velocity of the low pressure air assisted flare and the continuous operating case of the high pressure air assisted flare are within the requirements of 40 CFR 60.18. The exit velocity of the emergency case through the high pressure air assisted flare although greater than the requirements of 40 CFR 60.18, is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as the case presented to TCTI for the high pressure air assisted flare have been presented as an emergency case, that is not representative of the flare's performance;
- The calculated lower heating value of the waste gas for both the high pressure air assisted flare and low pressure air assisted flare is 2,043.38 BTU/SCF. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for an air assisted flare, as the heating value of the waste gas is greater than 300 BTU/SCF;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;
- Tornado has designed the flare to modulate the air flow based upon the waste gas flow rate to the flare
 for the cases presented which are not considered startup, shutdown, or malfunction as per 40 CFR
 60.8(c). By doing this in conjunction with proper flare tuning, the flare's air blower cannot introduce too
 much air into the jet exit stream thus lowering the destruction efficiency of the flare by quenching
 mechanisms.

With both flares being designed to operate as described above the Tornado Combustion Technologies Inc. flare system has been designed to operate in compliance with 40 CFR 60.18. As per EPA studies EPA-600/2-83-052, EPA-600/2-86-080, and EPA-600/2-85-106 meeting the criteria of 40 CFR 60.18 will attain a minimum Destruction Removal Efficiency (DRE) of 98% for hydrocarbon compounds.

XTO Energy has advised that the site under consideration does not need to meet the requirements of 40 CFR 60 Subpart 0000 and only the general requirements must be adhered.

Regards,

P10806 Permit Number

Date:

2019-06-27

Brian Herrler, P.Eng **Combustion Engineering** Tornado Combustion Technologies Inc. 200 - 261200 Wagon Wheel Way Municipal District of Rocky View, Alberta T4A 0E3

Phone: (403) 244-3333 Mobile: (403) 669-3400

Email: bherrler@tornadotech.com

Gene Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Cc:(4)

> Cliff Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Bryce Thomas, Flare Manager, Tornado Combustion Technologies Inc; Ian Burge, Combustion Engineering, Tornado Combustion Technologies Inc.

June 27, 2019

XTO Energy Inc. 6401 N. Holiday Hill Rd. Midland, TX 79707

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation
The Tornado Combustion Technologies Inc. (TCTI) designed a high pressure gas assisted flare system for XTO
Energy Inc. Facilities designed on February 20, 2018 (TCTI Design Reference No.: TOR1017D Rev. 2).

The flare has a 14-inch outer diameter tip, with a set of twelve (12) high pressure gas assisted injection nozzles for facility emergency relieving cases and heater treater off gas. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 145-feet tall. To date TCTI has provided twenty-nine (29) flares of this design to XTO Energy Inc. Facilities, under the following job numbers:

•	141	144	/164	17n·
•	17	144/	10-	t / U /

- 14184/16523:
- 14104/10323;
 14203/16519;
- 14203/1031/
- 14204/16520;
- 14205/16521;
- 14330/16628;
- 14464/16785;14490/16805;
- 14530/16847;
- 14532/16849;

- 14549/16867;
- 14550/16868;
- 14551/16869;
- 14555/16885;
- 14571/16890;
- 14572/16891;
- 14586/16928:
- 14587/16929;
- 14588/16930;
- 14634/16977;

- 14643/16987;
- 14652/16992:
- 14707/17042;
- 14708/17043;
- 14709/17044;
- 14707/17044;
 14710/17045;
- 14711/17010/
- 14711/17046;
- 14743/17099;
- 14766/17129.

This flare design is intended to operate such that:

- i) The maximum emergency flow rate does not exceed a maximum flow rate of 60,000,000 SCFD, and a maximum net heat release of 3,572,833,240.71 BTU/h; and,
- ii) The maximum continuous flowrate from the heater treater of 2,000,000 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of 219,758,943.81 BTU/h.

For more detailed information please refer to the design datasheets of the flare stack.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

TOR1017DR2-145FT.

Thus either the above provided TCTI job numbers or above model number can be used to relate back to this design and the intended operating parameters of the flare system design.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

- The calculated 40 CFR 60.18 maximum exit velocity for the flare is 400 ft/s, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the flare as determined by paragraph (f)(4) in 40 CFR 60.18, is cases respectfully 671.88 ft/s for the emergency relief case and 28.60 ft/s for the heater treater off gas case. Where the flare's exit velocity is greater than the requirements of 40 CFR 60.18, the flare is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as this case has been presented as an emergency case that is not representative of the flare's performance. The remaining case is in compliance with the requirements defined in 40 CFR 60.18, which respect to the maximum exit velocity;
- The calculated lower heating value of the waste gas for the flare is 1,413.84 BTU/SCF and 1,986.95 BTU/SCF for the emergency relief and heater treater off gas cases respectfully. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for a non-assisted flare, as the heating value of the waste gas is greater than 200 BTU/SCF;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;

With both flares being designed to operate as described above the Tornado Combustion Technologies Inc. flare system has been designed to operate in compliance with 40 CFR 60.18. As per EPA studies EPA-600/2-83-052, EPA-600/2-86-080, and EPA-600/2-85-106 meeting the criteria of 40 CFR 60.18 will attain a minimum Destruction Removal Efficiency (DRE) of 98% for hydrocarbon compounds.

XTO Energy has advised that the site under consideration does not need to meet the requirements of 40 CFR 60 Subpart OOOO and only the general requirements must be adhered.

Regards,

Permit Number: P10806
Date: 2019-06-27

Brian Herrler, P.Eng
Combustion Engineering
Tornado Combustion Technologies Inc.
200 – 261200 Wagon Wheel Way
Municipal District of Rocky View, Alberta
T4A 0E3

Phone: (403) 244-3333 Mobile: (403) 669-3400

Cc:(4)

Email: bherrler@tornadotech.com

Gene Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Cliff Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Bryce Thomas, Flare Manager, Tornado Combustion Technologies Inc; Ian Burge, Combustion Engineering, Tornado Combustion Technologies Inc.

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source)b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

For flares subject to Chapter 115, Subchapter H, relating to highly reactive volatile organic compounds, flow rate and composition data required by 30 TAC 115.725–26 should be used to determine emissions for any portions of 2009 that HRVOC monitors were installed and operational.

In the absence of monitoring data, selection of the most accurate method may sometimes require exercising scientific judgment. For example, when using the results of a one-time performance test, the test conditions should be compared to the flare's actual operating conditions during the inventory year to determine whether the test accurately represents the flare's performance. If test conditions do not accurately model flare operation, then engineering determinations based on detailed process evaluation may provide the best data.

NO_x and CO Emissions

To calculate NO_x and CO emissions, the net heating value of the flared gas must be known. Using the actual short-term flared gas composition and flow rate data for the inventory year, calculate the net heating value of the flared gas and the total heat release for each short time period. Use these total heat release data, in conjunction with the appropriate emission factors from TCEQ Air Permits guidance, to determine NO_x and CO emissions for each time segment. Since the calculated net heating value of the gas and the assist gas type will determine the appropriate emission factors, carefully select the correct factors for each flare from Table A-6.

Calculate emissions using the most accurate data for the gas flow rate and composition available. (See "Flared Gas Flow Rate and Composition" earlier in this supplement for more information on preferred data.)

Table A-6. TCEQ Air Permits Flare Emission Factors

Contaminant	Assist Type	Waste Gas Stream Net Heating Value ^{a,b}	Emission Factor
NO _x	Steam	High Btu	0.0485 lb/MMBtu
		Low Btu	0.068 lb/MMBtu
	Air or	High Btu	0.138 lb/MMBtu
Unassi	Unassisted	Low Btu	0.0641 lb/MMBtu
CO	Steam	High Btu	0.3503 lb/MMBtu
		Low Btu	0.3465 lb/MMBtu
	Air or	High Btu	0.2755 lb/MMBtu
	Unassisted	Low Btu	0.5496 lb/MMBtu

^a High Btu: > 1000 Btu/scf

^b Low Btu: 192–1000 Btu/scf

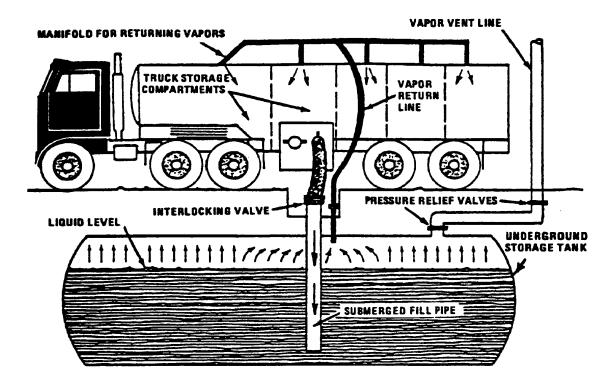


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	
Tank trucks and rail tank cars	Tank trucks and rail tank cars Submerged loading of a clean cargo tank	
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1-\frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks passing the NSPS-level annual test (3 inches pressure change) A collection efficiency of 70 percent should be assumed for trucks not passing one of these annual leak tests⁶.

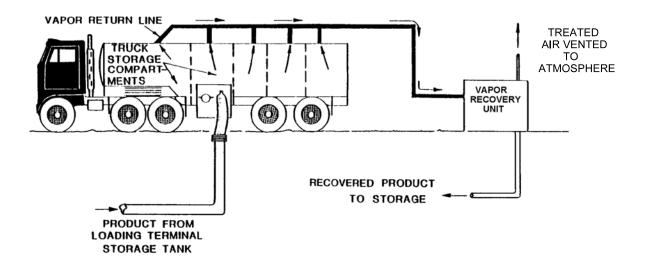


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L_I) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal Gasoline Reid vapor pressure (RVP) is 9 psia Product temperature is 80°F Vapor recovery efficiency is 95 percent Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

S = saturation factor (see Table 5.2-1) - 1.00P = true vapor pressure of gasoline = 6.6 psia M = molecular weight of gasoline vapors = 66 T = temperature of gasoline = 540°R

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_{L} = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb/} 10^{3} \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal}) (8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds (lb)}$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations. These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons (lb/10³ gal).

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{-d}	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D	
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е	
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е	
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е	
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е	
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е	
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е	
71-43-2	Benzene ^b	2.1E-03	В	
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е	
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е	
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е	
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е	
106-97-8	Butane	2.1E+00	Е	
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е	
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	E	
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е	
74-84-0	Ethane	3.1E+00	Е	
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е	
86-73-7	Fluorene ^{b,c}	2.8E-06	Е	
50-00-0	Formaldehyde ^b	7.5E-02	В	
110-54-3	Hexane ^b	1.8E+00	E]
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е	
91-20-3	Naphthalene ^b	6.1E-04	E	
109-66-0	Pentane	2.6E+00	E	
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D	

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
74-98-6	Propane	1.6E+00	Е	
129-00-0	Pyrene ^{b, c}	5.0E-06	E	
108-88-3	Toluene ^b	3.4E-03	С	

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Section 7 Maps

Section 7

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

A site location map and an aerial illustrating access roads and a 0.5 mile boundary are attached.

Form Revision: 10 December 2019 Printed: 2/18/2020

MN (7.5° E)

© DeLorme. DeLorme Topo USA® 7.0.

www.delorme.com

mi

21/2

11/2 2

Data Zoom 11-0

Section 8 Applicable State and Federal Regulations

Section 8A

Applicable State & Federal Regulations

<u>Provide a discussion demonstrating compliance with each applicable state & federal regulation</u>. All input cells should be filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	Yes	This applies to all sites.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide, and Nitrogen Dioxide.	Facility	Yes	This applies to all sites.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	Yes	This applies to all sites.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	Use the regulation link (left) then cut & paste applicable sections.	OT1- OT3	Yes	The site is subject to 20.2.38.109 since the capacity is > 20,000 gallons. Liquids are pumped into the tanks below liquid level and a VRU/flare vent system is used to control tank emissions.
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	HPF, LPF, HT1- HT2	Yes	These units are fuel burning equipment.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	NOI: 20.2.73.200 NMAC applies to all facilities emitting over 10 TPY of any regulated air contaminate. Thus, permitted facilities are also subject to this rule. This GCP-O&G registration also serves the purpose of meeting 20.2.73 the NMAC notification requirements.) Emissions Inventory: 20.2.73.300.A(1) NMAC applies to facilities registering under the GCP. Emission Inventory reporting is required upon request by the department per 20.2.73.300.B(4) NMAC.	Facility	Yes	Under 20.2.73.300.B(4) NMAC, the NMED is requesting emissions inventory reporting from minor sources for calendar year 2020.

Form Revision: 10 December 2019 Printed: 2/18/2020

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended on the date of certification.	FUG	Yes	See discussion in Federal regulations.
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended on the date of certification.	N/A	No	The facility does not fit into any of the source categories.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended on the date of certification.	N/A	No	The facility does not fit into any of the source categories.

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 50	NAAQS	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	Facility	Yes	Compliance with the requirements of the GCP indicates compliance with NAAQS.
40 CFR 60, Subpart A	General Provisions	Applies if any other NSPS subpart applies.	FUG	Yes	See discussion below.
40 CFR 60, Subpart OOOO	Crude Oil and Natural Gas Production, Transmission and Distribution After August 23, 2011, and on or before September 18, 2015		N/A	No	This facility will be constructed after the applicability date of NSPS OOOO. See NSPS OOOOa.
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5385a): controllers (60.5390a); storage vessels (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	FUG	Yes	The oil and water storage tanks were constructed after the applicability date of the rule; however emissions are limited by permit to less than 6 tpy. The tanks are exempt per 60.5365a(e) The site does not use high bleed pneumatic controllers. Since the compressors on the VRU are servicing the well, they are exempt per 60.5365a(c)). Fugitive leaks will be subject to NSPS OOOOa per 60.5365a(i).
40 CFR 60, Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	N/A	No	The facility does not operate any affected sources.
40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	See 40 CFR 60.4230(a), 1 through 5 to determine applicable category and state engine size, fuel type, and date of manufacture.	N/A	No	The facility does not operate any affected sources.

Form Revision: 10 December 2019

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 63, Subpart A	General Provisions	Applies if any other subpart applies.	N/A	No	The facility does not operate any affected sources.
40 CFR 63, Subpart HH	NESHAP for Glycol Dehydrators	See 40 CFR 63, Subpart HH	N/A	No	The facility does not operate any affected sources.
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	N/A	No	The facility does not operate any affected sources.

Form Revision: 10 December 2019 Printed: 2/18/2020

Section 8B Compliance Test History

February 2020: Revision 0

To evaluate the requirement for compliance tests, you must submit a compliance test history. The table below provides an example.

Since this is a proposed facility, no testing has been conducted.

Form Revision: 10 December 2019 Printed: 2/18/2020

Section 9 Proof of Public Notice

Section 9 Proof of Public Notice

General Posting of Notice	BGD D138
Branden Hamila	
(DATE), I posted a true and correct copy of	the undersigned, certify that on the attached Public Notice in a publicly accessible and st public road, at the entrance of the property on which the
Signed this 33 day of January	x. 2020.
Bogle Holl	1-23-2020
Signature	Date
Bruggen Hanri	Sarety Environ mental
Printed Name Title {APP	LICANT OR RELATIONSHIP TO APPLICANT}
Newspaper Publication of N	Votice
circulation in the applicable con	al newspaper advertisement posted in a newspaper in general unty is attached. The original or copy of the advertisement e date and newspaper or publication title.
	OR
stating that the advertisement w	er or publication in general circulation in the applicable county yas published is attached. The affidavit includes the date of the d a legible photocopy of the entire ad.
Wom Jullon	2/18/20
Signature	Date

Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Evan Tullos - Vice President - Consultant for XTO Energy

Printed Name

Religion

For whoever needs to hear this: Luke 12:32

I don't know exactly who needs to hear this. But, for those of you who do, this is for you.

Fear has no place in the Christ follower's world. Fear only brings discouragement, failure and anxiety.

I am talking about the kind of fear that paralyzes one from acting in good faith. I have often struggled to make some hard decisions or say some honest things to people out of fear. I don't want them to think I am self-righteous, or judgmental, or overly critical. I worry about their perception of me, and I lack the faith to actually step in when someone I know needs a compassionate hand and the truth of God's sovereignty.

As some of you know, this world is a broken place. Politicians lie and cheat to secure power. Nations war with each other over issues of race and religion. They don't just work through their differences with love and understanding, they kill each other and murder innocent bystanders. Sicknesses take the lives of our most precious, delicate little ones. The elderly are cheated and defrauded by scam artists who prey on the trust of senior adults.

This world is broken. Marriages fail because men and women selfishly pursue relationships outside their covenant agreements. Children are abused by adults who have

never discovered the hope found in a loving Heavenly Father. When there is no hope for ever finding anything but brokenness, people will surrender themselves

> over to their sin nature. Let's be honest – we become self-absorbed, self-centered and

Pastor's Corner

By Ty Houghtaling

self-destructive. We will let worry and fear consume us. We become callous to the needs of others. We spend gross amounts of time focusing on all the things we don't have while neglecting and destroying the things we do have. We want but we do not

have, we fight but we ultimately tells the listening crowds, "Do lose because we don't fight the good fight.

Yet God, in His wisdom, still calls to us and speaks softly to our hearts. He invites us to call upon Him for all our needs. He calls us to trust Him, to have faith in Him, to join Him in the only effort that will touch eternity. He calls you and me.

You might be pretty special, but I am not. Yet, He calls me to join Him. And when I do join Him, I find great satisfaction. My eyes lift up. My heart finds peace. I experience real joy, not circumstantial happiness. When I join God, fear is driven from

In the Gospel of Luke, Jesus him at ty@fbcartesia.org.)

not be afraid, little flock, for your Father has been pleased to give you the kingdom" (Luke 12:32 NIV). I am so blessed by that promise. I know that no matter what happens in this broken world, I have been given the Kingdom of God. That makes me a little less worried and a whole lot more excited about what God is going to do through me and my church.

I don't know who needed to hear this; but listen, God loves you and His love drives out fear. (EDITOR'S NOTE:

Houghtaling is the lead pastor at First Baptist Church. Contact

Does your church have an upcoming event the public should know about? Email editor@artesianews.com

No retirement from serving God

Years ago when I was working with Marvin Clack, BMA of Texas missionary, starting a church mission on Cedar Creek Lake in Gun Barrel City, Texas, we went to visit a family that had moved into the area that our mission church was located.

We were told about this family by their former pastor from the community they had left to move to the Cedar Creek Lake area. We had a real cordial visit until we began talking about them coming to help in the work at the mission. At that point the husband said, "Brother Clack, we were real active in the church we left, but we have retired and we aren't going get involved like that again.'

I thought as we left, "Who told them that they could retire from serving God?" In the book of Joshua we have a man that may have had a reason to retire. He was eighty-five years old and had served God for more than forty-five years. Yet, he was not ready for retirement. His name was Caleb, and you will find his story in Joshua chapter fourteen (14:6-15).

Those that don't retire from serving God remember all the experiences of faith they have had in the past. Like Caleb they remember how faithfully they

Pastor's Corner

By Rick Smith

retiring. You are just continuing your rebellion into your old age. But if you have been serving the Lord then you know what I

You remember both your victories and defeats in serving the Lord. You remember all that you learned and experienced. They also remember God's promises (v. 9). They know the Lord keeps His promises and they look forward to receiving all that God has for them. The they remember God's blessings, both past and present, (v. 10). They have learned through experience that God can and will use them if they will only submit to obey Him. Don't just look back and remember when. What you did in the past you can do now. Put yourself in the path of faithful obedience and expect God to use you.

Unlike Caleb, your physical served God (Joshua 14:7-8). strength may have declined, but (v. 12). Don't sit around letting If you have not been serving you now have more spiritual George, whoever George is, do the Lord in the past, your not strength than when you started it. Jesus said, "Follow Me...".

(v. 11). Within the physical limitations that you have there are things that you can do that younger believers don't have the experience to do. You know more scripture than they do. In fact, you know more scripture than you obey. Give your physical weaknesses to God and He will make you strong.

The Lord told Paul, "My grace is sufficient for thee: for my strength is made perfect in weakness (2 Corinthians 12:9)." God can use your weakness as an opening to share the gospel with those that are trying to help you. You can be a witness to the doctors and nurses that minister to you physical infirmities. God can use your weaknesses to bring others to Christ. Don't retire. Instead let God use you until He calls you home.

a mountain and get into the battle calvarymissionarybaptistartesia.

He didn't say follow me until 60 or 70 or 85. Pick up your sword and fight until the battle is won or they carry you off the field dead on your shield. Paul said, "I have fought the good fight, I have finished the race, I have kept the faith (2 Timothy 4:7)." This is not the time to quit and retire, but to finish well for the Lord. "...who knoweth whether thou art come to the kingdom for such a time as this? (Esther 4:14)." God may have reserved you just for this time in your life for greater service. Gratefully and willingly call on God to use you for great things at this time in your life.

Don't make excuses. Give your life to be used by the Lord until the Father calls you home. As He has used you in the past, the Lord wants to use you now and in the future. Ask for the mountain and the Lord will give you the strength to win it. What is the mountain that God wants you to claim? Pray, trust God, and fight for it.

If you have any questions, we invite you to visit with us this Sunday. Bible study is at 9:45 a.m. and worship at 10:50 a.m. We are located at 711 W. Washington Ave. Visit Like Caleb you need to ask for online at www.facebook.com/

(EDITOR'S NOTE: Rick Smith is the pastor at Calvary Baptist Church.)

Legal Notice

NOTICE

XTO Energy Inc. announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas) for the facilities listed below. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is January 23, 2020. This notice is a requirement according to New Mexico air quality regulations. The names, county, exact initial location, direction and approximate mileage of nearby city for the facilities are listed below. The standard operating schedule of this facility will be

Facility	UTM Zone	UTM Easting	UTM Northing	County	Direction	Miles	City
Poker Lake Unit 17 Twin Wells Ranch West Tank Battery	13	612707	3563902	Eddy	E	16	Malaga
Poker Lake Unit 30 Big Sinks West Tank Battery	13	611218	3552581	Eddy	SE	17	Malaga
Big Eddy Unit DI 5 Tank Battery	13	607478	3601404	Eddy	NE	23	Carlsbad
Big Eddy Unit DI 38 Tank Battery	13	595853	3582266	Eddy	NE	9	Loving
Corral Canyon 23 Tank Battery	13	598284	3553224	Eddy	SE	10	Malaga
James Ranch Unit DI 7 Tank Battery	13	611463	3578497	Eddy	E	17	Loving
Poker Lake Unit Big Sinks 2-25-30 Tank Battery	13	608494	3558022	Eddy	SE	14	Malaga
Poker Lake Unit 423 Tank Battery	13	602371	3553461	Eddy	SE	12	Malaga
Poker Lake Unit 26 Brushy Draw West Tank Battery	13	607857	3552568	Eddy	SE	15	Malaga
Ross Draw 25 Central Tank Battery	13	599903	3543069	Eddv	S	16	Malaga

Air emissions of any regulated air contaminant will be less than or equal to:

All el	missions of any regulated an contaminant will be les	ss man of equal to:
		Tons per year (TPY)
1.	Nitrogen Oxides (NOx)	95
2.	Carbon Monoxide (CO)	95
3.	Volatile Organic Compounds (VOC) (stack)	95
4.	Particulate Matter (PM10)	25
5.	Particulate Matter (PM2.5)	25
6.	Sulfur Dioxide (SO2)	95
7.	Hydrogen Sulfide (H2S)	25
8.	Any one (1) Hazardous Air Pollutant (HAP)	<10
9.	Sum of all Hazardous Air Pollutants (HAPs)	< 25

The owner and/or operator of the Plant is:

XTO Energy Inc.; 22777 Springwoods Village Pkwy, W4.6B.344; Spring, TX 77389

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

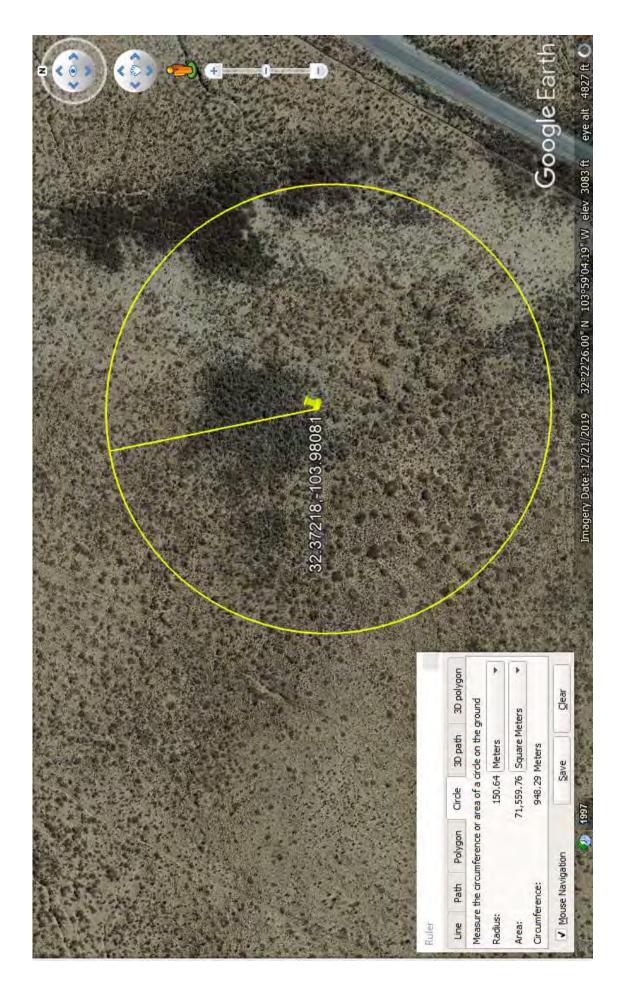
NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Section 10 Certification

Section 10 Certification

Company Name: PEI on behalf of XTO Energy Inc. 1, Evan Tullos , hereby certify that the information and data submitted in this Registration are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this A day of February, 2020, upon my oath or affirmation, before a notary of the State of Illinois. *Signature Evan Tullos Vice President Title Printed Name Scribed and sworn before me on this 2 day of FEBRUARY My authorization as a notary of the State of <u>Illinois</u> expires on the <u>Z</u> day of Notary's Signature Mark Reed

Form Revision: 10 December 2019


Notary's Printed Name

Printed: 2/18/2020

MARK L. REED

OFFICIAL SEAL Notary Public, State of Illinois My Commission Expires August 02, 2020

Facility Name:	TX	XTO-Big Eddy Unit D1		38						
Datum:	WGS84 V		5	UTM east (meters)		3950 Hevation: 1203.96	## ##			
Longitude	-103.98081	degrees	Zone	13 ×	320414/	PSD Major source	Record created on:	1/8/2020		
Surroundings Application Info.	cation Info. Calculator	r Sources Groups	aroups Con	Concentrations Buildings	Receptors View Map Elevations	ons		1		
Retrieve	Retrieve surrounding sources	Eva Loc Infor	Evaluate Location Information	Print Location Information	Determine Bowen Ratio, albedo, and roughness		Last Neighboring Sources Update: 12/4/2019			
			Loca	Location Information	nation					
Heading		Distance Distance (miles) (km)	Distance (km)	Direction (The facility is	Site	Company	ny	AIID E	AI ID Emissions Pollutant (T/yr)	ollutan
City (First closest).	sest). ^	9.00	14.49	northeast of	Loving			0	0	
City (Second closest).	closest).	11.59	18.65	north-northeast of	Malaga			0	0	
Class I area (Class I area (First closest).	26.11	42.02	east-northeast of	Carlsbad Caverns National Park	onal		0	0	
Class I area (Fourth closest).	Fourth	122.54	197.22	southeast of	White Mountain Wilderness Area	erness		0	0	
Class I area (Second closest).	Second	51.41	82.73	east-northeast of	Guadalupe Mountains National Park			0	0	
Class I area (Third closest).	Third	85.42	137.47	south-southeast of	Salt Creek			0	0	
CO monitor	CO monitor (First closest).	150.96	242.95	east-northeast of	800 S San Marcial Street, El Paso, TX	et, El 481410044	944	0	00 0	0
CO monitor (Second closest).	Second	239.13	384.85	southeast of	201 PROSPERITY SE	350010029	67.0	0	00 0	0
Facility emitting over 25 tons/year (first closest)	ting over 25 rst closest)	2.23	3.58	east of	XTO - Horned Frog Compressor	XTO En	XTO Energy Inc	38803	159.81	NO2
Berord: 14 1 of 25 + 11 +6		No Eilbar	Saarch							

			Group Comments	3 Small heater, no minimum stack parameters.		3 Small heater, no minimum stack parameters.				1		0	
	Clear Facility	Import Facility	Temperature (deg. F)	1000	0	1000	0	0	0	0	0	0	0
019			Velocity (ft/s)	34.3	0	34.3	0	0	0	0	0	0	0
lber 25, 2	Calculate	Export Facility	Diameter Velocity (ft) (ft/s)	1	0	1	0	0	0	0	0	0	0
T. Nover			Height (ft)	20	0	20	0	145	9.9	40	9.9	0	0
Program version: November 25, 2019	Diameter 1.414214	Set flare NOX emission rate to 0. Set SO2 emission rate to 0 for all equipment but flares and ECD's.	SO2 Rate (lb/hr)	0 Actual	Minimum	0 Actual	Minimum	0 Actual	Minimum	0 Actual	Minimum	0 Actual	Minimum
lator	Equivalent Di (for facility)	flare NO) SO2 emi		0.56		0.56		0		0		0	
alcu	F (for	Set	Type NC	>		>		>		>		>	
tack C	1.12	0	Equipment Type NOX Rate (Ib/hr)	Heater		Heater		Flare		Flare			
GCP Oil & Gas Stack Calculator	NOX Total emission rate	Group 2 NOX emission rate SO2 total emission rate	Equipment ID Equipment Name	1 HTR-1		2 HTR-2		3 HPF		▶ 4 LPF		*	

March 11, 2020

BY ELECTRONIC MAIL

Olivia Yiu, Asheley Coriz, Marvin Mascarenas, Joseph Kimbrell, Joseph Mashburn, Arianna Espinoza, Kathleen Primm, Vanessa Springer New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Olivia.yiu@state.nm.us, marvin.mascarenas@state.nm.us, Joseph.kimbrell@state.nm.us, joseph.mashburn@state.nm.us, Arianna.espinoza@state.nm.us, kathleen.primm@state.nm.us, Vanessa.springer@state.nm.us

Re: Comments on Applications for General Construction Permits for Oil and Gas Facilities, **Concerns Over Approval of General Permits in Southeast New Mexico**

Dear New Mexico Air Quality Bureau Contacts:

WildEarth Guardians submits the following comments in response to several applications for general construction permits for oil and gas facilities in southeast New Mexico for which you have been identified as New Mexico Environment Department ("NMED") contacts.

In light of ongoing violations of the 8-hour ozone national ambient air quality standards ("NAAQS") in Eddy and Lea Counties, the New Mexico Environment Department ("NMED") is no longer permitted to allow oil and gas companies to obtain general permits for their operations. In light of this, NMED must reject the following registrations for general construction permits and must immediately halt the issuance of any further general construction permits for oil and gas facilities in Eddy and Lea Counties.

301 N. Guadalupe St., Suite 201

Santa Fe, NM 87501

505-988-9126 SANTA FE

wildearthguardians.org

TUCSON

Our comments are specific to the following applications for general construction permits submitted for oil and gas facilities located in Eddy or Lea Counties:

Company	Facility(ies)	NSR Permit No.	Date Application Received
DCP Operating Company LP	West Turkey Track Compressor Station	2098M5	March 4, 2020
DCP Operating Company LP	Jackson Booster Station	2041M6	March 4, 2020
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020
OXY USA Inc.	NC Sand Dunes Compressor Station	8744	March 3, 2020
EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020
Lucid Energy Delaware LLC	Greyhound Compressor Station	8084M2	March 2, 2020
Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8737	March 2, 2020
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020
Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020
Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020
Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M1	February 27, 2020
Spur Energy Partners LLC	Dorami 2H, 4H and 9H Federal Oil Tank Battery	8733	February 27, 2020
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020

At issue is the fact that ozone monitors in southeast New Mexico are currently violating the ozone NAAQS. At this point, all three ozone monitors in both Eddy and Lea Counties are in nonattainment, with 2017-2019 design values all above the 2015 NAAQS of 0.070 parts per million. What's more, these monitoring sites have recorded regular exceedances of the 2015 8-hour ozone NAAQS since 2015. The tables below show the annual first, second, third, and fourth maximum 8-hour ozone readings at the three monitors in Lea and Eddy Counties between 2015 and 2019.

Hobbs, NM 8-Hour Ozone Readings (in ppm), 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.070	0.069	0.080	0.083	0.082
2 nd Max.	0.069	0.066	0.074	0.078	0.075
3 rd Max.	0.069	0.065	0.072	0.077	0.073
4 th Max.	0.067	0.065	0.069	0.076	0.070
Number of Days	0	0	3	6	3
Above NAAQS	U	U	3	U	3

Carlsbad, NM 8-Hour Ozone Readings (in ppm), 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.069	0.065	0.082	0.096	0.095
2 nd Max.	0.068	0.064	0.078	0.095	0.092
3 rd Max.	0.067	0.064	0.077	0.091	0.084
4 th Max.	0.067	0.063	0.076	0.083	0.080
Number of Days Above NAAQS	0	0	10	18	19

Carlsbad Caverns National Park 8-Hour Ozone Readings, 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.068	0.070	0.069	0.099	0.082
2 nd Max.	0.068	0.069	0.065	0.081	0.080
3 rd Max.	0.065	0.069	0.065	0.080	0.078
4 th Max.	0.065	0.069	0.065	0.080	0.074
Number of Days Above NAAQS	0	0	0	10	6

A violation of the 8-hour ozone NAAQS is triggered when the three-year average of the annual fourth highest daily reading exceeds the NAAQS. *See* 40 C.F.R. § 50.19(b). This three-year average value is commonly referred to as the "design value." Based on this monitoring data, all three ozone monitors are in violation of the NAAQS, with the design value at the Carlsbad monitor even violating the ozone NAAQS adopted in 2008, which limited 8-hour concentrations to no more than 0.075 parts per million. The table below shows that the design values at the Lea and Eddy County monitors have increased over the last five years and that currently, all three monitors are violating the ozone NAAQS.

8-Hour Ozone Design Values for Lea and Eddy County, New Mexico Monitoring Sites

	Monitor ID	2015-	2016-	2017-
Monitor		2017	2018	2019
Wioriitor		Design	Design	Design
		Value	Value	Value
Hobbs	350250008	0.067	0.070	0.071
Carlsbad	350151005	0.068	0.074	0.079
Carlsbad	350150010	0.066	0.071	0.073
Caverns	330130010	0.000	0.071	0.073

Under NMED's regulations, a general construction permit cannot be approved if it would "cause or contribute to air contaminant levels in excess of any national or New Mexico ambient air quality standard." 20.2.72.220(A)(2)(c) NMAC. To this end, a source may only register for an oil and gas general construction permit if it can demonstrate compliance with the NAAQS. Indeed, the registration forms for general construction permits for oil and gas facilities requires operators to demonstrate compliance with the NAAQS. Furthermore, NMED

can only approve a general construction permit if it determines that "all facilities registered [] will not cause or contribute to air contaminant levels in excess of any national [] ambient air quality standard." See e.g. NMED, "Air Quality Bureau General Construction Permit for Oil and Gas Facilities, GCP-Oil and Gas" at Condition B100.

In light of current ozone levels in Eddy and Lea Counties, there is no possible way for NMED or sources to conclude that construction and operation of new oil and gas facilities would not cause or contribute to violations of the ozone NAAQS. Every general construction permit registration would authorize increases in nitrogen oxides ("NOx") and volatile organic compounds ("VOCs")—both gases that react with sunlight to form ozone. The general construction permit applications for each facility listed above anticipate increases of up to 95 tons/year for both VOCs and NOx for each source. This means that every source seeking general construction permits will cause or contribute to ozone violations in Eddy and Lea Counties by increasing overall ozone-forming pollution in the region at a time when ozone levels are in violation of the NAAQS.

Given this, there is currently no legal justification for oil and gas sources to qualify for registration for general permits in Eddy and Lea Counties. Accordingly, NMED cannot approve the aforementioned applications for general construction permits, as well as any additional general construction permits, unless and until the ozone NAAQS are attained in Eddy and Lea Counties.

If NMED continues to approve general construction permits for oil and gas facilities in southeast New Mexico, then it will indicate the state implementation plan ("SIP") is inadequate to attain and maintain compliance with the NAAQS and will jeopardize the state's ability to continue implementing its air quality regulatory program under the Clean Air Act.

Thank you for the opportunity to provide these comments.

Sincerely,

Jeremy Nichols

Climate and Energy Program Director

WildEarth Guardians

(303) 437-7663

jnichols@wildearthguardians.org

MICHELLE LUJAN GRISHAM
GOVERNOR

HOWIE C. MORALES

New Mexico Environment Department

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JAMES C. KENNEY
CABINET SECRETARY

JENNIFER J. PRUETT
DEPUTY SECRETARY

March 27, 2020

Return Receipt Requested

Raymond Tole Engineer XTO Energy Inc 22777 Springwood Village Parkway W4.6B.344 Spring, TX 77389 Air Quality General Permit GCP-O&G 8730 Agency Interest No. 39443 - PRN20200001 Big Eddy Unit DI 38 AIRS No. 350152321

Dear Mr. Tole:

This letter is in response to your air quality General Construction Permit - Oil & Gas (GCP-O&G) application dated February 24, 2020 for an oil and gas facility in New Mexico. The application was received by the Department on February 26, 2020.

A review has been completed and the information provided is sufficient to issue your permit in accordance with 20.2.72.220 NMAC and the GCP-O&G conditions. Construction or modification may commence 9 mi NE of Loving in Eddy County at latitude and longitude decimal degrees: 32.37218, -103.98081, as represented in the application.

Attached is a copy of your permit registration and the GCP-O&G Permit. The GCP-O&G Permit includes the terms and conditions for operation as well as emission and compliance requirements.

Pursuant to 20.2.75.11 NMAC, the Department will assess an annual fee for this facility. This regulation set the fee amount at \$1,500 through 2004 and requires it to be adjusted annually for the Consumer Price Index on January 1. The current fee amount is available by contacting the Department or can be found on the Department's website. The AQB will invoice the permittee for the annual fee amount at the beginning of each calendar year. This fee does not apply to sources which are assessed an annual fee in accordance with 20.2.71 NMAC. For sources that satisfy the definition of "small business" in subsection F of 20.2.75.7 NMAC, this annual fee will be divided by two.

All fees shall be remitted in the form of a corporate check, certified check, or money order made payable to the "NM Environment Department, AQB" mailed to the address shown on the invoice and shall be accompanied by the remittance slip attached to the invoice. If there is no invoice included, there is no fee balance due at this time.

XTO Energy Inc Big Eddy Unit DI 38 GCP-O&G 8730 March 27, 2020

ch 27, 2020 Page 2 of 2

If you have any questions, please contact me in Santa Fe at 505-476-4367.

Sincerely,

Arianna Digitally signed by Arianna Espinoza Date: 2020.03.27 08:57:22 -06'00'

Arianna Espinoza Air Permit Specialist Permits Section Air Quality Bureau

cc via email: Evan Tullos, PEI, etullos@pei-tx.com

Enclosure: Instructions to access the Industry/Consultant Feedback Questionnaire online.

Minor Source Emission Inventory in 2020

P.S. The NM Environment Department – Air Quality Bureau (Bureau) will conduct a Minor Source Emissions Inventory (per 20.2.73.300 NMAC) for calendar year 2020. This inventory will apply to all sources with air quality construction permits (20.2.72 NMAC), including General Construction Permits (GCPs). It will also apply to Notices of Intent (NOIs) sources (20.2.73 NMAC). Facility-wide emissions during the calendar year 2020 must be calculated and reported to the Bureau during the period of January 1 through April 1, 2021, using the online reporting tool specified by the Bureau.

We encourage you to sign up for the Minor Source Emissions Inventory bulletins at: https://public.govdelivery.com/accounts/NMED/subscriber/new to receive updates and guidance on the implementation of this requirement.

THE STATE ON THE S

MICHELLE LUJAN GRISHAM GOVERNOR

HOWIE C. MORALES

LT. GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JAMES C. KENNEY
CABINET SECRETARY

JENNIFER J. PRUETT
DEPUTY SECRETARY

Statement of Basis/Data Base Summary GCP- Oil & Gas (O&G) Permit

Size SM>80

Permit Writer: Arianna Espinoza

GCP No. 8730

Agency Interest No. 39443 - PRN20200001

AIRS ID No. 350152321

SIC Code: 1311: Crude petroleum and natural gas
Facility Type: 0&G-Tank Battery/Bulk Fuel Storage

Company: XTO Energy Inc

Facility: XTO- Big Eddy Unit DI 38

Type of Permit Action:GCP - Oil and GasRegistration Date:February 24, 2020Receive Date:February 26, 2020

Co. Pub Notice Date/Paper: January 23, 2020/The Artesia Daily Press

Public Hearing: NA

Permit Due: March 27, 2020 Permit Issued: March 27, 2020

Facility Location: Drive E on GR Howard Rd. for 1.6 miles to a L on Hwy 387. Drive

1.5 mi. to R on NM 31. Drive 7.1 mi. to L on lease road. Site is on

L in 0.2 mi.

UTM Zone: 13

UTM Easting: 595850 meters
UTM Northing: 3582270 meters
Elevation: 3076 ft feet
County: Eddy

Contact Name: Raymond Tole

Phone: 832-624-4426

Email: raymond_tole@xtoenergy.com

Contact Address: 22777 Springwoods Village Parkway

W4.6B.344

Spring, TX 77389

Consultant Name: PE

Phone: 865-850-2007 Email: etullos@pei-tx.com

Consultant Address: 5 Cardinal Court

Edwardsville, IL 62025

1.0 Registration Summary:

Registration Summary: This application requests a GCP-O&G permit for a proposed facility under 20.2.72 NMAC. The Big Eddy Unit (BEU) DI 38 is an oil and gas production battery, with an average well production of 20,000 BOPD, 60,000 BWPD, and 60.6 MMscfd. An additional 5,000 BOPD of dead oil may be transferred directly into the storage tanks from surrounding batteries. The site will consist of the following permitted equipment: WT1-WT6: Six (6) produced water tanks, OT1-OT3: Three (3) oil tanks, SKTK1-SKTK2: Two (2) water skim tanks, BC1-BC2: Two (2) electric booster compressors, FUG: Fugitive equipment leaks, HT1-HT2: Two (2) heater treaters, TL-O: Truck loading of oil, TL-W: Truck loading of water, ROAD: Haul road emissions, VRT: Vapor recovery tower, VRU1: Vapor recovery unit for VRT, VRU2: Vapor recovery unit for OT1-OT3, HPF: High pressure flare, and LPF: Low pressure flare.

2.0 <u>Description of Modification:</u>

NA

3.0 <u>History (In descending chronological order)</u>

Permit Number	Issue Date	Action Type	Description of Action (Changes)
8730	3/27/202	GCP O&G –	New GCP O&G Registration
	0	New etc.	

<u>Public Response/Concerns:</u> The Climate and Energy Program Director from WildEarth Guardians, Jeremy Nichols, submitted a comment about this facility. This was provided to upper management, and permit writer was instructed to process the application as usual.

4.0

5.0 <u>Facility Specifications:</u>

Total Pollutant Emissions from Entire Facility (for information only, not an enforceable condition):

Pollutant	Emissions (tons per year)	Emission Type	Other
Particulate Matter (2.5 microns or less)	1.79	Allowable	
Nitrogen Dioxide	39.14	Allowable	
Particulate Matter (10 microns or less)	3.29	Allowable	
Sulfur Dioxide	.51	Allowable	
Volatile Organic Compounds (VOC)	100.01	Allowable	
Carbon Monoxide	72.5	Allowable	

Total HAPS* and NM TAPS that exceed 1.0 ton per year (for information only, not an enforceable condition):

Pollutant	Emissions (tons per year)	Emission Type	Other
Benzene	1.87	Potential	
Total HAP	4.81	Potential	
Hexane	1.73	Potential	

^{*} HAP emissions are already included in VOC emissions

Note: The Total HAPS may not match the sum of the individual HAPS in this table as it will include values from HAPS that are below 1.0 tpy.

Air Pollution Control Devices:

Subject Item ID, Type, ID, (Unit #)	SI Description	Primary	Secondary
OT1	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT7)			Unit
OT2	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT8)			Unit
OT3	Oil Storage Tank, 750 bbl	Flare	Vapor Recovery
(EQPT9)			Unit
SWTK1	Skim Tank, 1000 bbl	Flare	
(EQPT10)			
SWTK2	Skim Tank, 1000 bbl	Flare	
(EQPT11)			
TL-O	Truck Loading - Oil	Flare	
(EQPT3)			
WT1	Produced Water Tank, 750 bbl	Flare	
(EQPT12)			
WT2	Produced Water Tank, 750 bbl	Flare	
(EQPT13)			
WT3	Produced Water Tank, 750 bbl	Flare	
(EQPT14)			
WT4	Produced Water Tank, 750 bbl	Flare	
(EQPT15)			
WT5	Produced Water Tank, 750 bbl	Flare	
(EQPT16)			
WT6	Produced Water Tank, 750 bbl	Flare	
(EQPT17)			

Equipment Specifications (Active):

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
FUG RPNT1	Fugitives	NA	NA	NA			/	/	Active	Fugitives
HPF EQPT5	Process Flare	Tornado	TBD	TBD			/	60 MM SCF/d / 60 MM SCF/d	Active	High Pressure Flare

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
HT-1 EQPT1	Heater Treater/Stack Pak	TBD	TBD	TBD			/	4 MM BTU/h / 4 MM BTU/h	Active	Heater Treater
HT-2 EQPT2	Heater Treater/Stack Pak	TBD	TBD	TBD			/	4 MM BTU/h / 4 MM BTU/h	Active	Heater Treater
LPF EQPT6	Process Flare	Tornado	TBD	TBD			/	2 MM SCF/d / 2 MM SCF/d	Active	Low Pressure Flare
OT1 EQPT7	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 127749.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT2 EQPT8	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 127749.99 M gal/y	Active	Oil Storage Tank, 750 bbl
OT3 EQPT9	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 127749.99 M gal/y	Active	Oil Storage Tank, 750 bbl
ROAD AREA1	Unpaved roads	NA	NA	NA			/	/	Active	Road Emissions
SWTK1 EQPT10	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	1000 bbl / 459904.95 M gal/y	Active	Skim Tank, 1000 bbl
SWTK2 EQPT11	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	1000 bbl / 459904.95 M gal/y	Active	Skim Tank, 1000 bbl
TL-O EQPT3	Loading/Unlo ading Rack	NA	NA	NA			/	1825000 bbl/y / 1825000 bbl/y	Active	Truck Loading - Oil

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
TL-W EQPT4	Loading/Unlo ading Rack	NA	NA	NA			/	1825000 bbl/y / 1825000 bbl/y	Active	Truck Loading - Water
WT1 EQPT12	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT2 EQPT13	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT3 EQPT14	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT4 EQPT15	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT5 EQPT16	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl
WT6 EQPT17	Tank - Above Ground	TBD	TBD	TBD		30-SEP-15	/	750 bbl / 1533 M gal/y	Active	Produced Water Tank, 750 bbl

Emissions: Pollutant **Permitted** (Allowable) Emissions per piece of equipment or Subject Item as represented by applicant.

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	TSP (pph)	TSP (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H₂S (pph)	H₂S (tpy)
WT3																
(EQPT1 4)																

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	TSP (pph)	TSP (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H ₂ S (pph)	H₂S (tpy)
WT2																
(EQPT1 3)																
FUG (RPNT1)					2.30	10.08										
HT-1 (EQPT1)	0.56	2.45	0.47	2.06	0.03	0.13		0.01			0.04	0.19	0.04	0.19		
TL-O (EQPT3)					0.66	2.52										
TL-W (EQPT4)						0.01										
SWTK2																
(EQPT1 1)																
HPF (EQPT5)		23.70		47.33		44.84						0.93		0.93		
OT3 (EQPT9)																
WT4 (EQPT1 5)																
WT5 (EQPT1 6)																
ROAD (AREA1)											0.48	1.67	0.05	0.17		

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	TSP (pph)	TSP (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H ₂ S (pph)	H ₂ S (tpy)
WT1																
(EQPT1 2)																
WT6 (EQPT1 7)																
HT-2 (EQPT2)	0.56	2.45	0.47	2.06	0.03	0.13		0.01			0.04	0.19	0.04	0.19		
LPF (EQPT6)	2.98	10.54	5.95	21.05	6.91	42.30										
OT1 (EQPT7)																
OT2 (EQPT8)																
SWTK1 (EQPT1 0)																

¹ Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO₂

6.0 <u>Compliance Testing:</u> That may apply.

Unit(s)	Compliance Test	Timeline
Engine(s) or Turbine(s) > 180 hp Exemption: Existing units that have been tested within the last five (5) years are not required to perform an initial compliance test.	Initial Compliance Test Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit. A test may be waived by the Department if the test is not required under a NMAC, NSPS, NESHAP or MACT.	Compliance tests shall be conducted within sixty (60) days after the unit(s) achieve the maximum normal production rate. If the maximum normal production rate does not occur within one hundred twenty (120) days of source startup, then the tests must be conducted no later than one hundred eighty (180) days after initial startup of the source.
Engine(s) or Turbine(s) > 180 hp Facilities with a PER less than 80 tpy of each regulated air pollutant shall perform periodic testing every three (3) years.	Periodic Testing Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit. A test may be waived by the Department if the test is not required under a NMAC, NSPS, NESHAP or MACT.	Every three (3) years.
Engine(s) or Turbine(s) > 180 hp Facilities with PER greater than the 80 tpy of any regulated air pollutant shall perform periodic testing once per calendar year for each engine or turbine > 180 hp.	Periodic Testing Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit	Every calendar year.
Flares	N/A unless subject to compliance test under a NMAC, NSPS, NESHAP or MACT.	Test dates according to applicable regulation

	If the owner or operator does	Within sixty (60) days of the start of		
Thermal Oxidizers	not provide manufacturer's	operations, and the results shall be		
	data to establish the	submitted to the Department within thirty		
	minimum operating	(30) days of the test.		
	temperature required to			
	achieve 98% control			
	efficiency, the			
	owner/operator shall			
	perform an initial compliance			
	test to determine such			
	operating temperature.			
	N/A unless subject to	Test dates according to applicable		
Storage Tanks	compliance test under a	Regulation.		
	NMAC, NSPS, NESHAP or			
	MACT.			

7.0 Startup and Shutdown:

Were emissions from startup, shutdown, and scheduled maintenance operations calculated and included in the emission tables? \boxtimes Yes \square No:

- 8.0 <u>State and Federal Regulatory Analysis (NMAC/AQCR): Refer to Section 8 of the GCP O&G Registration Form.</u>
- 9.0 Permit Writer Comments: NA

Administrative Record Spur Energy Dorami 2H, 4H, &9H Federal Tank Battery GCP No. 8733

Bates Numbers: 0462 - 0676

Adminstrative Record Index Spur Energy Dorami 2H, 4H, & 9H Federal Tank Battery - GCP No. 8733

DATE	FROM	то	FORMAT	SUBJECT
03/11/2020 -	NMED/Spur	NMED/Spur Energy	Emails	Email correspondence relating to Dorami 2H, 4H, &9H Federal
03/23/2020	Energy			Tank Battery Oil and Gas Permit Application
2/10/2020	Spur Energy / ERDI	NMED	Documents	Spur Energy Application for GCP-Oil and Gas
2/28/2020	Spur Energy	NMED	Documents	Permit Tracking Coversheet and Check
3/6/2020	Spur Energy	N/A	Documents / Photos	Location Verification
3/6/2020	Spur Energy	N/A	Documents	Oil and Gas Stack Verification
3/11/2020	Spur Energy	NMED	Documents	Revised Registration for GCP-Oil and Gas
3/11/2020	Spur Energy	NMED	Documents	Revised Section 2 - Table 2-A: Regulated Emission Sources
3/11/2020	Spur Energy	NMED	Signed Documents	Signed Section 9
3/11/2020	Spur Energy	N/A	Documents	Visio
3/11/2020	Jeremy Nichols (WEG)	NMED	Email	Comments on application for GCP-Oil and Gas
3/19/2020	Spur Energy	NMED	Documents	Final Registration
3/23/2020	NMED	Spur Energy	Documents	Approval letter for GCP-Oil and Gas
3/23/2020	NMED	N/A	Documents	Statement of Basis / Data Base Summary GCP-Oil and Gas (O&G) Permit
5/12/2020	NMED	Jeremy Nichols (WEG)	Email	Final Citizen Letter

From: Springer, Vanessa, NMENV

To: energyresourcedevelopmentinc@gmail.com

Subject: FW: Missing electronic files for GCP Oil & Gas application: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H

Federal Oil Tank Battery

Date: Wednesday, March 11, 2020 9:06:57 AM

Importance: High

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV **Sent:** Friday, March 6, 2020 10:55 AM

To: 'jmcerdi@cox.net' **Cc:** 'todd@spurepllc.com'

Subject: Missing electronic files for GCP Oil & Gas application: Spur Energy Partners, LLC – Dorami

2H, 4H, 9H Federal Oil Tank Battery

Importance: High Good morning,

I am the permit reviewer for the GCP Oil & Gas application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery. The application was received on February 27, 2020 but a CD with electronic files was not submitted with the application, as is required. I sent a file request through our Department tool Accellion; please submit all required files as soon as possible. Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/ From: Springer, Vanessa, NMENV

To: <u>energyresourcedevelopmentinc@gmail.com</u>

Subject: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Wednesday, March 11, 2020 9:07:17 AM

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV **Sent:** Friday, March 6, 2020 3:21 PM

To: 'jmcerdi@cox.net' **Cc:** 'todd@spurepllc.com'

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original files,

without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of <u>just the pages that are being revised</u>, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or

- 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/ From: Springer, Vanessa, NMENV

To: jmcerdi@cox.net
Cc: todd@spurepllc.com

Subject: Missing electronic files for GCP Oil & Gas application: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil

Tank Battery

Date: Friday, March 6, 2020 10:55:08 AM

Importance: High

Good morning,

I am the permit reviewer for the GCP Oil & Gas application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery. The application was received on February 27, 2020 but a CD with electronic files was not submitted with the application, as is required. I sent a file request through our Department tool Accellion; please submit all required files as soon as possible. Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/agb/ From: Springer, Vanessa, NMENV

To: <u>ERDI</u>

Cc: <u>jmcerdi@cox.net</u>; <u>todd@spurepllc.com</u>

Subject: RE: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Friday, March 13, 2020 2:25:21 PM

Good afternoon.

Thank you for providing these updates and revisions. I have an additional question about the emissions from the tanks and flare. If I add up the sum of the "VOC Emissions after Control" for water and oil tank flash and working/breathing emissions from the AECT tanks pages I get 48.48 tpy. But the AECT flare calculations on page 17 show only 27 tpy VOCs from Gas Stream 2, which I presume is the stream coming from the tanks. Either I'm missing something or not all of the VOC emissions are being accounted for. Can you please explain or provide some clarity on this? Please respond as soon as possible, but no later than COB Tuesday, March 17, 2020. I am mainly teleworking for the time being, so please respond via email.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/

From: ERDI

Sent: Wednesday, March 11, 2020 1:12 PM

To: Springer, Vanessa, NMENV

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery

(8733) Vanessa,

The answers to your questions are below:

- 1. See updated Table 2-A
- 2. See updated Table 2-A
- 3. See updated Table 2-A
- 4. See updated Table 2-A. I was not sure about the SCC Code for the VRT or VRU but I used the one that i seemed fit.
- 5. See updated Table 2-C
- 6. See updated Table 2-E and Table 2-D
- 7. See revised drawing attached
- 8. See attached
- 9. Yes, the emissions inputted into the water tanks working and standing page is only 1% of the emissions. This is because we assume the water has 1% oil in it.
- 10. The flare does not have a pilot. It used an auto igniter system that will burn gas when present in

the flare.

- 11. The tanks are subject to NMAC $\underline{20.2.38.112}$ since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC $\underline{20.2.38.112}$ (C) by using a flare to minimize vapor or gas loss to the atmosphere.
- 12. See updated GCP Registration Form.

On Wed, Mar 11, 2020 at 10:24 AM ERDI < energyresourcedevelopmentinc@gmail.com wrote:

Vanessa,

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you,

John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV <<u>Vanessa.Springer@state.nm.us</u>> wrote:

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV **Sent:** Friday, March 6, 2020 3:21 PM

To: 'imcerdi@cox.net' <imcerdi@cox.net>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original files, without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of <u>just the pages that are being revised</u>, rather than an entirely new registration form. Again, I still need the original application files as well.

1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This

- description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner. Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/ From: Springer, Vanessa, NMENV

To: <u>ERDI</u>

Cc: jmcerdi@cox.net; todd@spurepllc.com

Subject: RE: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Thursday, March 19, 2020 2:16:34 PM

Hi John,

You are correct, thank you for the explanation. I was double counting some emissions.

One additional question, can you confirm your phone number? Currently, in our database we have the number 225-573-8633 listed for you but that doesn't match the number you listed in the application. I just want to confirm the right info before I remove anything from our system. Thanks.

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/agb/

From: ERDI

Sent: Monday, March 16, 2020 8:26 AM

To: Springer, Vanessa, NMENV

Cc: jmcerdi@cox.net; todd@spurepllc.com

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery

(8733) Vanessa,

I am not sure where you are getting 48.48 tpy from. When I add up the "VOC Emissions After Control", I get the following:

24.4 tpy (oil tank flash) + 0.44 tpy (oil tank W&S) + 0.84 tpy (water tank flash) + 0.0096 tpy (water tank W&S) = 25.68 tpy which is close to 25.71 tpy which is represented in "Field Gas (tpy)" on page 17 under stream 2.

Furthermore, if we add up the "VOC Uncontrolled Emissions" from the tanks, we would get the following:

1219.76 tpy (oil tank flash) + 22.76 tpy (oil tank W&S) + 42.44 tpy (water tank flash) + 0.48 tpy (water tank W&S) = 1285.44 tpy which is the value used on page 17 for "Uncontrolled (tpy) for stream 2. If we multiply the control efficiency of the flare by the uncontrolled tpy of the tanks we get 1285.44 tpy * 98% destruction = 25.7088 tpy uncontrolled which is equal to the above value calculated as "VOC Emissions after control" and what is calculated on the flare page.

I hope this answers your question. If not please give me a call at 225-573-8633 and I will do my best to answer your question.

Thank you,

John Connolly

On Fri, Mar 13, 2020 at 3:25 PM Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>> wrote:

Good afternoon,

Thank you for providing these updates and revisions. I have an additional question about the emissions from the tanks and flare. If I add up the sum of the "VOC Emissions after Control" for water and oil tank flash and working/breathing emissions from the AECT tanks pages I get 48.48 tpy. But the AECT flare calculations on page 17 show only 27 tpy VOCs from Gas Stream 2, which I presume is the stream coming from the tanks. Either I'm missing something or not all of the VOC emissions are being accounted for. Can you please explain or provide some clarity on this? Please respond as soon as possible, but no later than COB Tuesday, March 17, 2020. I am mainly teleworking for the time being, so please respond via email.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/agb/

From: ERDI < energyresourcedevelopmentinc@gmail.com >

Sent: Wednesday, March 11, 2020 1:12 PM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Vanessa,

The answers to your questions are below:

- 1. See updated Table 2-A
- 2. See updated Table 2-A
- 3. See updated Table 2-A
- 4. See updated Table 2-A. I was not sure about the SCC Code for the VRT or VRU but I used the one that I seemed fit.
- 5. See updated Table 2-C
- 6. See updated Table 2-E and Table 2-D
- 7. See revised drawing attached
- 8. See attached
- 9. Yes, the emissions inputted into the water tanks working and standing page is only 1% of the emissions. This is because we assume the water has 1% oil in it.
- 10. The flare does not have a pilot. It used an auto igniter system that will burn gas when present in the flare.
- 11. The tanks are subject to NMAC <u>20.2.38.112</u> since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the atmosphere.

12. See updated GCP Registration Form.

On Wed, Mar 11, 2020 at 10:24 AM ERDI < energyresourcedevelopmentinc@gmail.com > wrote:

Vanessa.

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you,

John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV

<<u>Vanessa.Springer@state.nm.us</u>> wrote:

Link to our <u>Industry/Consultant Feedback Questionnaire</u>

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV **Sent:** Friday, March 6, 2020 3:21 PM

To: '<u>imcerdi@cox.net</u>' < <u>imcerdi@cox.net</u>>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. **These need to be the original files, without any of the revisions described below.** Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of <u>just the pages that are being revised</u>, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.

- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner. Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us https://www.env.nm.gov/aqb/ From: energyresourcedevelopmentinc@gmail.com

To: Springer, Vanessa, NMENV

Cc: todd@spurepllc.com

Re: File Request - File Request: Spur - Dorami 2H, 4H, and 9H Federal Oil Tank Battery Subject:

Date: Wednesday, March 11, 2020 9:31:20 AM

You have received 4 secure files from energyresourcedevelopmentinc@gmail.com.

Use the secure links below to download.

Secure File Downloads:

Available until: 25 March 2020

Click links to download:

AECT-Dorami 2H, 4H, & 9H Federal Oil Tank Battery.pdf

5.63 MB, Fingerprint: e8199810e352ebee8606cec04631e3fe (What is this?)

GCP O&G- Dormai 2H, 4H, & 9H Federal Oil Tank Battery.docx

263.54 KB, Fingerprint: 97cc5ed2802a714ebada27994acd2b86 (What is this?)

GCP O&G- Dormai 2H, 4H, & 9H Federal Oil Tank Battery.pdf

6.73 MB, Fingerprint: 3ab9cd5513fa21e51afea01efb6b25a4 (What is this?)

Section2-Dorami 2H, 4H, & 9H Federal Oil Tank Battery.xls

244 KB, Fingerprint: fa1f8eb3fd0ae9335a820d3d3c5c8fad (What is this?)

You have received attachment link(s) within this email sent via Accellion Secure File Transfer. To retrieve the attachment(s), please click on the link(s).

Secured by Accellion

From: <u>ERDI</u>

To: <u>Springer, Vanessa, NMENV</u>

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Friday, March 20, 2020 7:01:57 AM

Vanessa,

My number on the application is my office phone number. The 225-573-8633 is my cell phone.

On Thu, Mar 19, 2020 at 3:16 PM Springer, Vanessa, NMENV < Vanessa. Springer@state.nm.us > wrote:

Hi John,

You are correct, thank you for the explanation. I was double counting some emissions.

One additional question, can you confirm your phone number? Currently, in our database we have the number 225-573-8633 listed for you but that doesn't match the number you listed in the application. I just want to confirm the right info before I remove anything from our system.

Thanks,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: ERDI < <u>energyresourcedevelopmentinc@gmail.com</u>>

Sent: Monday, March 16, 2020 8:26 AM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Cc: jmcerdi@cox.net; todd@spurepllc.com

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil

Tank Battery (8733)

Vanessa.

I am not sure where you are getting 48.48 tpy from. When I add up the "VOC Emissions After Control", I get the following:

24.4 tpy (oil tank flash) + 0.44 tpy (oil tank W&S) + 0.84 tpy (water tank flash) + 0.0096 tpy (water tank W&S) = 25.68 tpy which is close to 25.71 tpy which is represented in "Field Gas (tpy)" on page 17 under stream 2.

Furthermore, if we add up the "VOC Uncontrolled Emissions" from the tanks, we would get the following:

1219.76 tpy (oil tank flash) + 22.76 tpy (oil tank W&S) + 42.44 tpy (water tank flash) + 0.48 tpy (water tank W&S) = 1285.44 tpy which is the value used on page 17 for "Uncontrolled (tpy) for stream 2. If we multiply the control efficiency of the flare by the uncontrolled tpy of the tanks we get 1285.44 tpy * 98% destruction = 25.7088 tpy uncontrolled which is equal to the above value calculated as "VOC Emissions after control" and what is calculated on the flare page.

I hope this answers your question. If not please give me a call at 225-573-8633 and I will do my best to answer your question.

Thank you,

John Connolly

On Fri, Mar 13, 2020 at 3:25 PM Springer, Vanessa, NMENV < Vanessa. Springer@state.nm.us > wrote:

Good afternoon,

Thank you for providing these updates and revisions. I have an additional question about the emissions from the tanks and flare. If I add up the sum of the "VOC Emissions after Control" for water and oil tank flash and working/breathing emissions from the AECT tanks pages I get 48.48 tpy. But the AECT flare calculations on page 17 show only 27 tpy VOCs from Gas Stream 2, which I presume is the stream coming from the tanks. Either I'm missing something or not all of the VOC emissions are being accounted for. Can you please explain or provide some clarity on this?

Please respond as soon as possible, but no later than COB Tuesday, March 17, 2020. I am mainly teleworking for the time being, so please respond via email.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: ERDI < energyresourcedevelopmentinc@gmail.com >

Sent: Wednesday, March 11, 2020 1:12 PM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil

Tank Battery (8733)

Vanessa,

The answers to your questions are below:

- 1. See updated Table 2-A
- 2. See updated Table 2-A
- 3. See updated Table 2-A
- 4. See updated Table 2-A. I was not sure about the SCC Code for the VRT or VRU but I used the one that i seemed fit.
- 5. See updated Table 2-C
- 6. See updated Table 2-E and Table 2-D
- 7. See revised drawing attached
- 8. See attached
- 9. Yes, the emissions inputted into the water tanks working and standing page is only 1% of the emissions. This is because we assume the water has 1% oil in it.
- 10. The flare does not have a pilot. It used an auto igniter system that will burn gas when present in the flare.
- 11. The tanks are subject to NMAC <u>20.2.38.112</u> since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the atmosphere.
- 12. See updated GCP Registration Form.

On Wed, Mar 11, 2020 at 10:24 AM ERDI < energyresourcedevelopmentinc@gmail.com> wrote:

Vanessa,

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you,

John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>> wrote:

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV Sent: Friday, March 6, 2020 3:21 PM

To: 'imcerdi@cox.net' < imcerdi@cox.net>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery

(8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original files, without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of just the pages that are being revised, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: <u>ERDI</u>

To: Springer, Vanessa, NMENV

Cc: jmcerdi@cox.net; todd@spurepllc.com

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Monday, March 16, 2020 8:26:25 AM

Vanessa.

I am not sure where you are getting 48.48 tpy from. When I add up the "VOC Emissions After Control", I get the following:

24.4 tpy (oil tank flash) + 0.44 tpy (oil tank W&S) + 0.84 tpy (water tank flash) + 0.0096 tpy (water tank W&S) = 25.68 tpy which is close to 25.71 tpy which is represented in "Field Gas (tpy)" on page 17 under stream 2.

Furthermore, if we add up the "VOC Uncontrolled Emissions" from the tanks, we would get the following:

1219.76 tpy (oil tank flash) + 22.76 tpy (oil tank W&S) + 42.44 tpy (water tank flash) + 0.48 tpy (water tank W&S) = 1285.44 tpy which is the value used on page 17 for "Uncontrolled (tpy) for stream 2. If we multiply the control efficiency of the flare by the uncontrolled tpy of the tanks we get 1285.44 tpy * 98% destruction = 25.7088 tpy uncontrolled which is equal to the above value calculated as "VOC Emissions after control" and what is calculated on the flare page.

I hope this answers your question. If not please give me a call at 225-573-8633 and I will do my best to answer your question.

Thank you, John Connolly

On Fri, Mar 13, 2020 at 3:25 PM Springer, Vanessa, NMENV <<u>Vanessa.Springer@state.nm.us</u>> wrote:

Good afternoon,

Thank you for providing these updates and revisions. I have an additional question about the emissions from the tanks and flare. If I add up the sum of the "VOC Emissions after Control" for water and oil tank flash and working/breathing emissions from the AECT tanks pages I get 48.48 tpy. But the AECT flare calculations on page 17 show only 27 tpy VOCs from Gas Stream 2, which I presume is the stream coming from the tanks. Either I'm missing something or not all of the VOC emissions are being accounted for. Can you please explain or provide some clarity on this?

Please respond as soon as possible, but no later than COB Tuesday, March 17, 2020. I am mainly teleworking for the time being, so please respond via email.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: ERDI < energyresourcedevelopmentinc@gmail.com >

Sent: Wednesday, March 11, 2020 1:12 PM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil

Tank Battery (8733)

Vanessa,

The answers to your questions are below:

- 1. See updated Table 2-A
- 2. See updated Table 2-A
- 3. See updated Table 2-A
- 4. See updated Table 2-A. I was not sure about the SCC Code for the VRT or VRU but I used the one that i seemed fit.
- 5. See updated Table 2-C
- 6. See updated Table 2-E and Table 2-D
- 7. See revised drawing attached
- 8. See attached
- 9. Yes, the emissions inputted into the water tanks working and standing page is only 1% of the emissions. This is because we assume the water has 1% oil in it.
- 10. The flare does not have a pilot. It used an auto igniter system that will burn gas when present in the flare.
- 11. The tanks are subject to NMAC 20.2.38.112 since they have a combined storage

capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the atmosphere.

12. See updated GCP Registration Form.

On Wed, Mar 11, 2020 at 10:24 AM ERDI < energyresourcedevelopmentinc@gmail.com > wrote:

Vanessa.

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you,

John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV <<u>Vanessa.Springer@state.nm.us</u>> wrote:

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV Sent: Friday, March 6, 2020 3:21 PM To: 'imcerdi@cox.net' <imcerdi@cox.net>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery

(8733)

Good afternoon.

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I

have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original files, without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of just the pages that are being revised, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: <u>ERDI</u>

To: Springer, Vanessa, NMENV

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Monday, March 23, 2020 12:09:49 PM

It doesn't matter to me. I answer my cell phone more often since I am not always in the office.

On Mon, Mar 23, 2020 at 11:39 AM Springer, Vanessa, NMENV <<u>Vanessa.Springer@state.nm.us</u>> wrote:

John.

Do you have a preference as to which one is in our system as your contact number? I can have it switched to your office number if you prefer.

Thanks,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: ERDI < <u>energyresourcedevelopmentinc@gmail.com</u>>

Sent: Friday, March 20, 2020 7:02 AM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil

Tank Battery (8733)

Vanessa,

My number on the application is my office phone number. The 225-573-8633 is my cell phone.

On Thu, Mar 19, 2020 at 3:16 PM Springer, Vanessa, NMENV <<u>Vanessa.Springer@state.nm.us</u>> wrote:

Hi John,

You are correct, thank you for the explanation. I was double counting some emissions.

One additional question, can you confirm your phone number? Currently, in our database we have the number 225-573-8633 listed for you but that doesn't match the number you listed in the application. I just want to confirm the right info before I remove anything from our system.

Thanks,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: ERDI < energyresourcedevelopmentinc@gmail.com >

Sent: Monday, March 16, 2020 8:26 AM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Cc: jmcerdi@cox.net; todd@spurepllc.com

Subject: Re: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal

Oil Tank Battery (8733)

Vanessa.

I am not sure where you are getting 48.48 tpy from. When I add up the "VOC Emissions After Control", I get the following:

24.4 tpy (oil tank flash) + 0.44 tpy (oil tank W&S) + 0.84 tpy (water tank flash) + 0.0096 tpy (water tank W&S) = 25.68 tpy which is close to 25.71 tpy which is represented in "Field Gas (tpy)" on page 17 under stream 2.

Furthermore, if we add up the "VOC Uncontrolled Emissions" from the tanks, we would get the following:

1219.76 tpy (oil tank flash) + 22.76 tpy (oil tank W&S) + 42.44 tpy (water tank flash) + 0.48 tpy (water tank W&S) = 1285.44 tpy which is the value used on page 17 for "Uncontrolled (tpy) for stream 2. If we multiply the control efficiency of the flare by the

uncontrolled tpy of the tanks we get 1285.44 tpy * 98% destruction = 25.7088 tpy uncontrolled which is equal to the above value calculated as "VOC Emissions after control" and what is calculated on the flare page.

I hope this answers your question. If not please give me a call at 225-573-8633 and I will do my best to answer your question.

Thank you,

John Connolly

On Fri, Mar 13, 2020 at 3:25 PM Springer, Vanessa, NMENV <<u>Vanessa.Springer@state.nm.us</u>> wrote:

Good afternoon,

Thank you for providing these updates and revisions. I have an additional question about the emissions from the tanks and flare. If I add up the sum of the "VOC Emissions after Control" for water and oil tank flash and working/breathing emissions from the AECT tanks pages I get 48.48 tpy. But the AECT flare calculations on page 17 show only 27 tpy VOCs from Gas Stream 2, which I presume is the stream coming from the tanks. Either I'm missing something or not all of the VOC emissions are being accounted for. Can you please explain or provide some clarity on this?

Please respond as soon as possible, but no later than COB Tuesday, March 17, 2020. I am mainly teleworking for the time being, so please respond via email.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: ERDI < energyresourcedevelopmentinc@gmail.com >

Sent: Wednesday, March 11, 2020 1:12 PM

To: Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>>

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Vanessa,

The answers to your questions are below:

- 1. See updated Table 2-A
- 2. See updated Table 2-A
- 3. See updated Table 2-A
- 4. See updated Table 2-A. I was not sure about the SCC Code for the VRT or VRU but I used the one that i seemed fit.
- 5. See updated Table 2-C
- 6. See updated Table 2-E and Table 2-D
- 7. See revised drawing attached
- 8. See attached
- 9. Yes, the emissions inputted into the water tanks working and standing page is only 1% of the emissions. This is because we assume the water has 1% oil in it.
- 10. The flare does not have a pilot. It used an auto igniter system that will burn gas when present in the flare.
- 11. The tanks are subject to NMAC <u>20.2.38.112</u> since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the atmosphere.
- 12. See updated GCP Registration Form.

On Wed, Mar 11, 2020 at 10:24 AM ERDI energyresourcedevelopmenting@gmail.com wrote:

Vanessa,

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you,

John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV < Vanessa. Springer@state.nm.us > wrote:

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV Sent: Friday, March 6, 2020 3:21 PM To: 'jmcerdi@cox.net' <jmcerdi@cox.net>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank

Battery (8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original files, without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of just the pages that are being revised, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.

- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV

To: jmcerdi@cox.net
Cc: todd@spurepllc.com

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Friday, March 6, 2020 3:20:36 PM

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. **These need to be the original files, without any of the revisions described below.** Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of <u>just the pages that are being revised</u>, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S. Environmental Scientist & Permit Specialist New Mexico Environment Department

Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

<u>Vanessa.Springer@state.nm.us</u> <u>https://www.env.nm.gov/aqb/</u> From: <u>Jeremy Nichols</u>

To: Olivia.yiu@state.nm.us; Coriz, Asheley, NMENV; Mascarenas, Marvin, NMENV; Kimbrell, Joseph, NMENV;

Mashburn, Joseph, NMENV; Espinoza, Arianna, NMENV; Primm, Kathleen, NMENV; Springer, Vanessa, NMENV

Cc: Schooley, Ted, NMENV; Romero, Rhonda, NMENV

Subject: [EXT] Comments on Applications for General Construction Permits for Oil and Gas Facilities

Date: Wednesday, March 11, 2020 9:40:13 PM
Attachments: 2020-3-11 WG Comments on GCP Applications.pdf

Dear New Mexico Environment Department, Air Quality Bureau Staff:

Attached, please find comments from WildEarth Guardians regarding several general construction permit applications for oil and gas facilities in Eddy and Lea Counties in southeast New Mexico. These comments are directed to New Mexico Environment Department, Air Quality Bureau staff listed as contacts for the specific permits. Our comments address common issues related to ozone pollution in southeast New Mexico and therefore are directed to all staff contacts. We look forward to our comments being considered as the Air Quality Bureau reviews the referenced permit applications. Thank you.

Sincerely,

Jeremy Nichols

From: <u>ERDI</u>

To: Springer, Vanessa, NMENV

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Wednesday, March 11, 2020 9:24:39 AM

Vanessa,

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you, John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV < Vanessa. Springer@state.nm.us > wrote:

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV
Sent: Friday, March 6, 2020 3:21 PM
To: 'jmcerdi@cox.net' <jmcerdi@cox.net>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original

files, without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of <u>just the pages that are being revised</u>, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: <u>ERDI</u>

To: <u>Springer, Vanessa, NMENV</u>

Subject: [EXT] Re: FW: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (8733)

Date: Wednesday, March 11, 2020 1:12:29 PM
Attachments: Visio-Dorami 2H, 4H, & 9H Drawing.pdf

Signed Section 9.pdf

GCP O&G- Dormai 2H, 4H, & 9H Federal Oil Tank Battery.docx Revised Section2-Dorami 2H, 4H, & 9H Federal Oil Tank Battery.pdf

Vanessa.

The answers to your questions are below:

- 1. See updated Table 2-A
- 2. See updated Table 2-A
- 3. See updated Table 2-A
- 4. See updated Table 2-A. I was not sure about the SCC Code for the VRT or VRU but I used the one that i seemed fit.
- 5. See updated Table 2-C
- 6. See updated Table 2-E and Table 2-D
- 7. See revised drawing attached
- 8. See attached
- 9. Yes, the emissions inputted into the water tanks working and standing page is only 1% of the emissions. This is because we assume the water has 1% oil in it.
- 10. The flare does not have a pilot. It used an auto igniter system that will burn gas when present in the flare.
- 11. The tanks are subject to NMAC <u>20.2.38.112</u> since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the atmosphere.
- 12. See updated GCP Registration Form.

On Wed, Mar 11, 2020 at 10:24 AM ERDI < energyresourcedevelopmentinc@gmail.com wrote:

Vanessa,

I have received your emails and will review and try my best to get you everything by the end of the day.

Thank you, John Connolly

On Wed, Mar 11, 2020 at 10:07 AM Springer, Vanessa, NMENV < <u>Vanessa.Springer@state.nm.us</u>> wrote:

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

From: Springer, Vanessa, NMENV Sent: Friday, March 6, 2020 3:21 PM To: 'imcerdi@cox.net' <imcerdi@cox.net>

Cc: 'todd@spurepllc.com' <todd@spurepllc.com>

Subject: Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery

(8733)

Good afternoon,

I have completed my initial review of the GCP O7G Permit application for Spur Energy Partners, LLC – Dorami 2H, 4H, 9H Federal Oil Tank Battery (Permit No. 8733) and I have the following questions/requests for updates.

Please provide the original application files electronically. These need to be the original files, without any of the revisions described below. Please use the Accellion request link that I sent this morning, or if there are any issues with that you can send the files via email. The electronic files are required with the application submittal. If I do not receive them within two business days this application may be denied.

In addition, I have the following requests. These require edits to your application. For any changes, please submit a pdf of just the pages that are being revised, rather than an entirely new registration form. Again, I still need the original application files as well.

- 1. Table 2-A: Please update the Source Description for units FWKO-1 through 3. This description should not have the same acronym as the "Unit No." It should describe clearly what type of equipment this is.
- 2. Table 2-A: Please update the "Controlled by Unit #" column for the equipment controlled by the flare. The "Controlled by Unit #" box was left blank for all except unit TK-1.
- 3. Table 2-A: Please update the SIC code for the produced water tanks 1-4; it should be 40400315.
- 4. The VRT and VRU need to be added into Table 2-A and the emissions tables if they have uncontrolled emissions, even if controlled emissions are zero.
- 5. Table 2-C: Please include "VRT flash gas during VRU downtime" in with the other equipment that the flare controls.
- 6. Because the haul roads are exempt, the road emissions should not be included in table 2-D or 2-E. Please remove the rows for haul roads and adjust the facility emissions totals in each table accordingly.
- 7. Section 4, Process Flow Diagram: Please add a label or a line in the key to explain

- what "CP" in the diagram is.
- 8. Section 9, the newspaper publication section was not signed and dated. Please sign and email a scan of that page.
- 9. The Tanks 4.0.9d printout with the water tank emissions does not appear to match what was input into the AECT page 16 for uncontrolled working/standing emissions. Is the input into the AECT only 1% of the emissions on the Tanks 4.0.9d page?
- 10. Does the flare have a continuously lit pilot? In the flare calculations on page 17 of the AECT, are the pilot emissions included in stream 1 or 2?
- 11. Section 8, 20.2.38 NMAC :Please address whether the tanks are subject to 20.2.38.112
- 12. Section A, 40 CFR 60 Subpart OOOOa: Please add the lower level citations for applicability of each emissions source listed.

Please respond to these requests as soon as possible, but no later than close of business Tuesday, March 10, 2020 so that this application can be reviewed in a timely manner.

Thank you,

Link to our Industry/Consultant Feedback Questionnaire

If guidance or a determination is included in this email, it is intended to serve as general guidance and is in no way a formal statement of Department policy. New information or changes to regulations may result in a different determination or guidance.

Vanessa Springer, M.S.

Environmental Scientist & Permit Specialist

New Mexico Environment Department Air Quality Bureau

525 Camino de los Marquez, Suite 1, Santa Fe NM, 87505-1816

Direct: 505-476-4373 | AQB Main: 505-476-4300

Vanessa.Springer@state.nm.us

https://www.env.nm.gov/aqb/

NMED GCP-Oil & Gas Permit Application

Dorami 2H, 4H, & 9H Federal Oil Tank Battery

Eddy County, New Mexico

GCP-Oil & Gas Permit No.: Applied

Al No.: Applied February 2020

PREPARED FOR:

Spur Energy Partners, LLC 920 Memorial City Way, Ste 1000 Houston, Texas 77024 (281) 795-2286

PREPARED BY:

Energy Resource Development, Inc. 19345 Point O Woods Court Baton Rouge, Louisiana 70809 (225) 753-4723

Energy Resource Development, Inc. 19345 Point O Woods Court Baton Rouge, Louisiana 70809 jmcerdi@cox.net 225-753-4723

February 10, 2020

Ms. Rhonda Romero Minor Source Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: GCP-Oil & Gas Permit Application Spur Energy Partners LLC – Dorami 2H, 4H, & 9H Federal Oil Tank Battery

Dear Ms. Romero:

On behalf of Spur Energy Partners LLC, we are applying for a General Construction Permit (GCP-Oil & Gas) for the Dorami 2H, 4H, & 9H Federal Oil Tank Battery. Spur Energy Partners is submitting this package to certify the emission limits for the referenced facility. Emission estimates were based on published emission factors, manufacturers' specifications, Tanks 4.0.9d, and representative saltwater, condensate, and gas analysis. Based on estimated emissions, the site should be classified as a minor source under the Federal and State air permitting programs.

The format and content of this application are consistent with the Bureau's current policy regarding GCP-Oil & Gas permit applications; it is a complete application package using the GCP-Oil & Gas application form. Enclosed are two hard copies of the application, including an original certification, one disk containing the electronic files, and an application check. Please feel free to contact either myself at (225) 753-4723 or Todd Mucha, EVP-Operations for Spur Energy Partners, at (281) 795-2286 if you have any questions regarding this application.

Sincerely.

John Connolly John Connolly

Energy Resource Development, Inc

Cc: Todd Mucha

Spur Energy Partners LLC 920 Memorial City Way, Ste 1000

Houston, Texas 77024

Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Nonattainment Areas)

 ⚠ An initial GCP-Oil and Gas Registration Form for a new facility (Registration fee required). ☐ An updated GCP-Oil and Gas Registration Form for a modification to an existing facility (Registration fee required). ☐ A GCP-Oil and Gas Registration Form for an existing facility currently operating under GCP-1 or GCP-4 (No fee required)
The Permitting Administrative Multi-Form may be used for administrative changes identified in the GCP O&G Permit Condition C101.A
No public notification is required, and no filing fees or permit fees apply.
Construction Status: ☐ Not Constructed ☐ Existing Permitted (or NOI) Facility ☐ Existing Non-Permitted (or NOI) Facility
Acknowledgements:
☐ I acknowledge that a pre-application meeting is available to me upon request.
An original signed and notarized Certification for Submittal for this GCP-Oil and Gas Registration is included.
Proof of public notice is included, if required.
The Air Emission Calculation Tool (AECT) is included.
The emissions specified in this Registration Form will establish the emission limits in the GCP-Oil and Gas.
For new registrations or modifications, a check for the registration fee is included for \$4190 prior to 1/1/20 or \$4260 beginning
1/1/20. There is an annual fee in addition to the registration fee: www.env.nm.gov/air-quality/permit-fees-2/
Facilities qualifying as a "small business" under 20.2.75.7.F NMAC qualify for reduced fees, provided that NMED has a Small Business
Certification Form from your company on file. This form can be found at: www.env.nm.gov/aqb/sbap/Small_Business_Forms.html
Provide your Check Number: and Amount: \$4,260.00

If a fee is required and is not submitted with the application, the registration will be denied.

This Registration is being submitted as (check all that apply):

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #:						
1	Facility Name: Dorami 2H, 4H, & 9H Federal Oil Tank Battery	Plant primary SIC Code (4 digits): 1311 Plant NAIC code (6 digits): 211120							
a	Facility Street Address (If no facility street address, check here ⊠ and pro	rovide directions in Section 4):							
2	Plant Operator Company Name: Spur Energy Partners LLC	Phone/Fax: 281-795-2286							
a	Plant Operator Address: 920 Memorial City Way, Ste 1000, Houston, Texa	as 77024							
3	Plant Owner(s) name(s): Spur Energy Partners LLC	Phone/Fax: 281-795-2286							
a	Plant Owner(s) Mailing Address(s): 920 Memorial City Way, Ste 1000, Houston, Texas 77024								

GCP-Oil and Gas Form: 10 December 2019

4	Bill To (Company): Spur Energy	y Partners LLC		Phone/Fax: 281-79	95-2286								
a	Mailing Address: 920 Memorial 77024	City Way, Ste 1000, Housto	on, Texas	E-mail:todd@spur	epllc.com								
5	☐ Preparer: Energy Resource Developm ☐ Consultant: John Connolly	ent, Inc		Phone/Fax: 225-75	53-4723								
a	Mailing Address: 19345 Point C	Woods Court, Baton Rouge	e, LA 70809	E-mail: jmcerdi@o	cox.net								
6	Plant Operator Contact: Todd M	ucha		Phone/Fax: 281-79	95-2286								
a	Mailing Address: 920 Memorial 77024	City Way, Ste 1000, Housto	on, Texas	E-mail: todd@spu	repllc.com								
7	Air Permit Contact ¹ : Todd Much	1a		Title: EVP-Operat	ions								
a	a E-mail: todd@spurepllc.com Phone/Fax: 281-795-2286												
b	Mailing Address: 920 Memorial	City Way, Ste 1000, Housto	on, Texas 7702	24									
	¹ The Air Permit Contact will rec	eive official correspondence	from the Dep	artment.									
0	Will this facility operate in conju	unction with other air regula	ted parties on	the same property?	⊠ No	Yes	5						
8	If yes, what is the name and NO	I or permit number (if know	n) of the other	facility?									
2)	Applicability												
1	Is the facility located in Bernalil	lo County, on tribal lands, o	r in a nonattaiı	nment area?		⊠No	Yes						
If you					ermit.	<u> </u>							
2	Is the facility's SIC code 1311, 1321, 4619, 4612 or 4922? (Other SIC codes may be approved provided that \Boxed{\subseteq No} \Boxed{\subseteq Yes}												
	all the equipment at the facility is allowed in the GCP-Oil & Gas Permit.)												
3	Does the regulated equipment under this GCP-Oil and Gas Registration include any combination of Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit, and no others?												
4	Will the regulated equipment as emissions in Table 106 of the G	specified in this GCP-Oil ar			the total	□No	⊠Yes						
5	Does all equipment comply with Permit?		ments as estab	lished in the GCP-C	il and Gas	□No	⊠Yes						
6	Equipment shall be at least 100				ters above the	□No	⊠Yes						
7	top of the stack. Will the equipm Is the facility at least 150 m from				istance	No	Yes						
	between the two nearest stacks t center to center distances.						_						
8	Is the facility at least 3 miles fro	m any Class I area? This is t	the distance fro	om the nearest facilit	y boundary to	□No	⊠Yes						
T.0	the nearest boundary of the Clas												
	answered NO to any of questions		uality for this	general construction	permit.								
3)	Current Facility Stat		I										
1	Has this facility already been con			urrently operating in									
2	Does this facility currently have (NOI) (20.2.72 NMAC or 20.2.77		otice of Intent	If yes, the permit remain active or n		., and wi	hether it will						
3	Is this Registration in response to ☐Yes ☐No If so, provide cur		7)? If	yes, NOV date:	NOV Trackin	g No.							
4	Check if facility is a: Minor Source: Synthetic M	Sinor Source: \square (SM80 = C	Controlled Emi	ssions > 80 TPY of a	any regulated ai	ir polluta	 int): 🛛						
4)	Facility Location Info				<u>, , , , , , , , , , , , , , , , , , , </u>								
	a) Latitude (decimal degrees):	b) Longitude (decimal deg	rees):	c) County:	d) Elevat	ion (ft):							
1	32.614589	-104.47883	/-	Eddy	3531	().							
2	a) UTM Zone: 12 or 13 b) UTME (to nearest 10 meters) 548,896 c) UTMN (to nearest 10 meters): 3,608,681												

GCP-Oil and Gas Form: 10 December 2019

3	e) Specify which datum is used: NAD 27 NAD 83 WGS 84 See this link for more info. http://en.wikipedia.org/wiki/North_American_Datum											
4	Name and zip code of nearest New Mexico town and tribal	community: 88210										
5	necessary). If there is no street address, provide public road	nce from nearest NM town and tribal community (attach a road map if d mileage marker: From the intersection of Hwy 285 and Hwy 82 in the ton CR 23 (Rock Daisy Rd) and go 4.0 miles to facility road on the										
6	The facility is 16.4 (distance) miles Southwest (direction) of Artesia (nearest town).											
7	Land Status of facility (check one): Private Indian/Pueblo Government BLM Forest Service Military											
5)	Other Facility Information											
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL).	Oil (bbl/day): 2,300 (bbl/yr): 839,500 Gas (MMscf/day): 3.5 (MMscf/yr): 1,277.5 NGL (bbl/day): 0 (bbl/yr): 0										
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.											
6) Sı	ubmittal Requirements											
1	as we bind the document on top, not on the side; except land	istration package printed double sided 'head-to-toe' 2-hole punched dscape tables, which should be head-to-head. If 'head-to-toe printing' b separators in the hard copy submittal(s) as this facilitates the review										
2		Department use. This <u>copy</u> does not need to be 2-hole punched.										
3	the entire Registration as submitted and the individual docus submitted in Microsoft Office compatible file format (Word paste). Any documents that cannot be submitted in a Microsoft delectronic document that created the file. If you are una generated PDFs of files (items that were not created electrocopy format. Spreadsheets must be unlocked since we must be unlocked since we must be unlocked since we must word Document part of the Registration Form (Sections Excel Document part of the Registration Form (Sections 2).	and hard copies. 1 and 3-10) 2) tified reason for including other calculations, include the unlocked										
	To avoid errors, it is best to start with both a blank vers	sion of this form and the AECT for each application.										

Section 2 Tables

Insert Excel spreadsheet with applicable tables filled out. If applicable to the facility all tables must be filled out completely. The unit numbering system must be consistent throughout this Registration

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/10/2020

0505

Table 2-A: Regulated Emission Sources Unit and stack numbering must correspond throughout the application package. Equipment that qualifies for an exemption under 20.2.72.202.B NMAC should be included in Table 2-B Note: Equipment options are not authorized. Date of ontrolled by Manufacture² Unit# Manufact-Requested RICE Source urer's Rated Permitted Ignition Type Unit Manufacturer/Make Classi-Source Description Serial # Capacity³ For Each Piece of Equipment, Check Onc Capacity³ Date of CI, SI, 4SLB, /Model **Emissions** fication Number (Specify (Specify Construction/ Code (SCC 2SLB)4 vented to Units) Units) Stack # Reconstruction² ☐ To be Removed Existing (unchanged) NA NA 0.75 0.75 FWKO-1 HEATED FWKO 31000404 NA NA NA X New/Additional ☐ Replacement Unit MMBtu/hr MMBtu/hr 2020 FWKO-1 ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed NA NA 0.75 0.75 FWKO-2 HEATED FWKO NA NA 31000404 X New/Additional ☐ Replacement Unit NA MMBtu/hr MMBtu/hr FWKO-2 2020 ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed NA NA 0.75 0.75 FWKO-3 HEATED FWKO NA NA 31000404 NA X New/Additional ☐ Replacement Unit MMBtu/hr MMBtu/hr 2020 FWKO-3 □ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed NA NA HEATER 0.50 0.50 31000404 HT-1 NA NA NA X New/Additional ☐ Replacement Unit TREATER MMBtu/hr MMBtu/hr 2020 HT-1 ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL PETROSMITH TK-1 T-15911 1000 BBL 1000 BBL 40400312 NA X New/Additional ☐ Replacement Unit TANK EQUIPMENT LP 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 2/4/2019 1000 BBL OIL PETROSMITH NA TK-2 T-15908 1000 BBL 1000 BBL 40400312 NA X New/Additional ☐ Replacement Unit **TANK** EQUIPMENT LP 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced □ Existing (unchanged) ☐ To be Removed 2/4/2019 NA 1000 BBL OIL PETROSMITH TK-3 T-15912 1000 BBL 1000 BBL 40400312 NA X New/Additional ☐ Replacement Unit **TANK** EQUIPMENT LP 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced ☐ To be Removed Existing (unchanged) 2/4/2019 NA 1000 BBL OIL **PETROSMITH** 40400312 TK-4 T-15909 1000 BBL 1000 BBL NA X New/Additional ☐ Replacement Unit **TANK** EOUIPMENT LP 2020 **FLARE** □ To Be Modified ☐ To be Replaced ☐ To be Removed ☐ Existing (unchanged) 3/15/2019 NA 1000 BBL SAWYER PWTK-1 1000 BBL 1000 BBL 40400312 X New/Additional ☐ Replacement Unit 1504 NA WATER TANK **INDUSTRIES** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced ☐ To be Removed ☐ Existing (unchanged) 3/15/2019 NA 1000 BBL SAWYER PWTK-2 1000 BBL 1502 1000 BBL 40400312 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced 12/2/2018 □ Existing (unchanged) ☐ To be Removed NA 1000 BBL **SAWYER** PWTK-3 1000 BBL 1000 BBL 40400312 1258 X New/Additional NA ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 3/15/2019 NA 1000 BBL **SAWYER** PWTK-4 1501 1000 BBL 1000 BBL 40400312 X New/Additional ☐ Replacement Unit NA WATER TANK **INDUSTRIES FLARE** 2020 □ To Be Modified ☐ To be Replaced DUAL ☐ To be Removed NA Existing (unchanged) NA 4290.58 192.109 **FLARE PRESSURE** VAPROX NA 30600903 X New/Additional ☐ Replacement Unit NA MMScf/yr MMScf/yr 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced **FLARE** FACILITY ☐ To be Removed ☐ Existing (unchanged) NA NA FUG-1 WIDE 31088811 NA NA NA NA NA X New/Additional ☐ Replacement Unit 2020 NA □ To Be Modified ☐ To be Replaced **FUGATIVE**

					ъ	Date of Manufacture ²	Controlled by Unit #					
Unit Number ¹	Source Description	Manufacturer/Make /Model	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	Source Classi- fication Code (SCC)	RICE Ignition Type (CI, SI, 4SLB, 2SLB) ⁴	For Foch Piece of Fauinment Check One		
MALF.	MALFUNTION	NA	NA	NA	NA	NA	NA	31088811	NA	□ Existing (unchanged) □ To be Removed X New/Additional □ Replacement Unit		
MALF.	EMISSIONS	NA	INA	INA	INA	2020	NA	31000011	INA	☐ To Be Modified ☐ To be Replaced		
OILLOA	OIL TRUCK	NA	NA	NA	NA	NA	NA	40600132	NA	 □ Existing (unchanged) □ To be Removed X New/Additional □ Replacement Unit 		
D-1	LOADING	IVA	IVA		INA	2020	NA			40000132 NA		☐ To Be Modified ☐ To be Replaced

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

^{4&}quot;4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Spur Energy Partners LLC Dorami 2H, 4H, 9H Federal Oil Tank Battery Application Date: 2/6/2020 Revision #: NA

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction Date of Installation /Construction	For Each Piece of Equipment, Check Onc
HR-1	HAUL ROAD	NA	NA	NA	20.2.72.202.B.5.	NA	☐ Existing (unchanged) ☐ To be Removed X New/Additional ☐ Replacement Unit
			NA	NA	20.2.72.202.B.5.	2020	□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed
							□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Removed □ Replacement Unit □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To be Replaced

¹ Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FLARE	COMBUSTION FLARE	2020	VOC, H2S	TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, SALES GAS	98%	MANUFACTURER ESTIMATE
VRU-1	VAPOR RECOVERY UNIT	2020	VOC, H2S	VAPOR RECOVERY TOWER (VRT)	100%	ENGINEERING ESTIMATE
1						
List each coi	ntrol device on a separate line. For each control device, list all er	nission units c	controlled by the control device.			

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

** ** **	NO	Ox	C	CO VOC SOx PM10 ¹ PM2		2.5 ¹	Н	$_{2}S$	Le	ead						
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FWKO-1	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-2	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-3	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
HT-1	0.057	0.25	0.048	0.21	0.003	0.013	-	-	0.004	0.018	0.004	0.018	-	-	-	-
TK-1	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	70.92	310.63	-	-	1	-	-	-	-	-	-	-
TK-4	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
PWTK-1	1	1	-	-	2.45	10.73	1	1	-	-	1	-	-	-	-	-
PWTK-2	-	-	-	-	2.45	10.73	-	-	-	-	-	-	-	-	-	-
PWTK-3	-	-	-	-	2.45	10.73	-	-	-	-	-	-	-	-	-	-
PWTK-4	-	-	-	-	2.45	10.73	-	-	-	-	-	-	-	-	-	-
FLARE	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435	-	-	-	-	5.292	3.139	-	-
FUG-1	-	-	-	-	0.54	2.33	-	-	-	-	-	-	0.02	0.08	-	-
MALF.	-	-	-	-	-	10	-	-	-	-	-	-	-	-	-	-
OILLOAD-1	-	-	-	-	14.99	29.97	-	-	-	-	-	-	-	-	-	-
HR-1	-	-	-	-	-	-	-	-	0.13	0.44	0.01	0.05	-	-	-	-
	25.075	10.051	57.604	40.645	250.010	1275.06	7.475	4.42.5	0.025	0.111	0.025	0.111	5.010	2.216		
Totals	25.875	19.851	57.684	42.645	350.818	1375.96	7.477	4.435	0.025	0.111	0.025	0.111	5.312	3.219	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Spur Energy Partners LLC Dorami 2H, 4H, 9H Federal Oil Tank Battery Application Date: 2/6/2020 Revision #: NA

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Ox	C	0	V	OC	SO	Ox	PM	110 ¹	PM	2.5 ¹	Н	2S	Lead	
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
FWKO-1	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-2	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	1	-	1	-
FWKO-3	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
HT-1	0.057	0.25	0.048	0.21	0.003	0.013	-	-	0.004	0.018	0.004	0.018	-	-	-	-
TK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-3	1	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-
PWTK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FLARE	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435	-	-	-	-	5.292	3.139	-	-
FUG-1	-	-	-	-	0.54	2.33	-	-	-	-	-	-	0.02	0.08	-	-
OILLOAD-1	-	-	-	-	14.99	29.97	-	-	-	-	-	-	-	-	-	-
HR-1	-	-	-	-	-	-	-	-	0.13	0.44	0.01	0.05	-	-	-	-
Malfunction	N/A	N/A	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Totals	25.88	19.85	57.68	42.65	57.34	90.52	7.48	4.44	0.16	0.55	0.04	0.16	5.31	3.22	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Spur Energy Partners LLC Dorami 2H, 4H, 9H Federal Oil Tank Battery Application Date: 2/6/2020 Revision #: NA

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type (Engine,			Height Above	Temp.	Flow Rate	Velocity	
Turbine, Flare, ECD, or Thermal Oxidizer Etc.)	Serving Unit Number(s) from Table 2-A	Orientation (H-Horizontal V=Vertical)	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (ft)
FWKO-1	FWKO-1	Vertical	25	250	5	21.62	0.66
FWKO-2	FWKO-2	Vertical	25	250	5	21.62	0.66
FWKO-3	FWKO-3	Vertical	25	250	5	21.62	0.66
HT-1	HT-1	Vertical	25	250	5	21.62	0.66
FLARE	FLARE	Vertical	35	1400	41	51.6	1.00

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the threshold amounts described above. Add additional rows as necessary.

Stack No.	Unit No.(s)	Total	HAPs	Name	Pollutant e Here HAP		Pollutant Here IAP	Namo	Pollutant e Here HAP	Namo	Pollutant e Here IAP		Pollutant Here IAP	Namo	Pollutant Here IAP	Name	Pollutant e Here HAP	Name Here	Pollutant e
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
NA	FUG-1	0.0	0.1																
Tot	als:																		

Table 2-J: Allowable Fuels and Fuel Sulfur for Combustion Emission Units:

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

				Specify Units			
Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	Fuel Source (purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO2 percentage (%) of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value (BTU/SCF)	Annual Fuel Usage (MMSCF/y)	Does the Allowable Fuel and Fuel Sulfur Content meet GCP O&G Condition A110.A?
FWKO-1	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	6.9	✓ Yes
FWKO-2	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	6.9	✓ Yes □ No
FWKO-3	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	6.9	✓ Yes □ No
HT-1	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	4.6	✓ Yes □ No
FLARE	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1210	192.1	✓ Yes □ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Unit and stack numbering must correspond throughout the application package.

Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space	Co	lor	Separator Pressure	Annual Throughput	Turn- overs
							(M)	Roof	Shell	(psia)	(gal/yr)	(per year)
TK-1	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
TK-2	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
TK-3	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
TK-4	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
PWTK-1	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
PWTK-2	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
PWTK-3	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
PWTK-4	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
								_				

Section 3 Registration Summary

<u>The Registration Summary:</u> Provide information about the registration submittal. The Registration Summary shall include a brief description of the facility and its process. In case of a modification to a facility, please describe the proposed changes.

Specify Facility Type: Check the appropriate box below:	
⊠ Production Site	
☐ Tank Battery	
☐ Compressor Station	
☐ Natural Gas Plant	
Other, please specify:	

Registration Summary:

Spur Energy Partners LLC proposes this initial GCP-Oil & Gas application for the Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The site will have an initial production rate of 2,300 bbl/day of oil, 8,000 bbl/day of produced water, and 3.5 MMScf/d of produced gas. Multiple wells are associated with this production facility.

As proposed, equipment at the well site will include three (3) 0.75 MMBtu/hr free water knockouts, one (1) 0.5 MMBtu/hr heater treater, one (1) electric vapor recovery unit (VRU) with an associated Vapor Recovery Tower (VRT), a dual-pressure combustion flare, four (4) 1,000 bbl produced water tanks, four (4) 1,000 bbl oil tanks, and various gas scrubbers.

Additional emissions at the site will result from tank truck loading, truck hauling, fugitive emissions, and malfunction emissions.

The combustion flare will control emissions from the oil & produced water tanks working, standing, and flashing losses, VRT flash gas during VRU downtimes, and produced sales gas to a minimum 98% efficiency. In the event that the VRU is down for maintenance, the flare will still control emissions from the vapor recovery tower. During maintenance or unavailability on the sales gas pipeline, all produced gas off the separators will be continuously routed to the flare until gas can be sold. The flare calculation page on the AECT is broken down into two streams, the high-pressure stream and the low-pressure stream. The high-pressure stream will be a combination of sales gas off the FWKOs during pipeline interruption, VRU gas during pipeline interruption, and gas during VRU downtime. The low-pressure stream will be the flash, working, and standing losses off the oil and water tanks.

Because of both the economic and environmental impacts on operations, Spur diligently inspects the VRU to ensure that it is in continuous operation.

Written description of the routine operations of the facility:

The production stream from the Dorami 2H, 4H, & 9H wells will enter the heated three-phase free water knockouts where the oil, water, and gas will be separated. The gas off the FWKOs will be routed to sales or to the flare for combustion. The water off the FWKOs will be routed to the water tanks. The oil will be routed to the VRT prior to being sent to the oil tanks. The flash gas off the VRT will be captured by the VRU and sent to sales or to the flare for combustion. When the VRU is not working, the VRT will route any captured flash gas to the flare. The oil and water tanks will be controlled to the dual-pressure combustion flare which will combust the flash, working, and standing emissions in the tanks. The produced oil is trucked out of the facility while the water is piped out. All oil truck loading emissions will be vented to the atmosphere. The heater treater will be used to circulate tank bottoms.

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM):

There are no SSM emissions currently associated with this facility.

Malfunction Emissions (M):

Spur Energy Partners LLC request 10 TPY VOC emissions to be added to this application for any malfunctions that might happen at the facility due to sudden and unavoidable failure to air pollution control equipment or process equipment beyond the control of Spur Energy Partners.

Allowable Operations: Check the appropriate box below:
☐ Facility operates continuously (8760 hours per year)
☐ The following regulated equipment will operate less than 8760 hours per year. Add additional rows as necessary. These
units are subject to Condition A108 C of the Permit

Table A – Equipment Operating Less Than 8760 hours per year

Unit #	Requested Annual Operating Hours

Verification of Compliance with Stack Parameter Requirements:

Please use the Stack Calculator and Stack Requirements Explained Guidance on our website: All of the verification information below is required to be filled out.

www.env.nm.gov/air-quality/air-quality-oil-and-gas-gcp-application-forms/

Check the box for each type of equipment at this facility:
☐ Engine(s)
☐ Turbine(s)
☐ Flares(s)
☐ Enclosed Combustion Device (s)
Heater(s)
Reboiler(s)
For each type of equipment checked above, complete the applicable section below

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emis				
Engine/Generator/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
FWKO-1	25	250	21.62	0.66
FWKO-2	25	250	21.62	0.66
FWKO-3	25	250	21.62	0.66
HT-1	25	250	21.62	0.66
Table 1 Minimum Parameters: For verification, list the minimum parameters based on the NOx lb/hr emission rate from the GCP O&G Table 1.	5.9	571	49.2	0.3

4.	Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP O&G?
	Yes. Skip step 5 below.
\boxtimes	No. Go to step 5 below.

5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

Condition A203.C states that if "any heater or boiler is unable to meet the minimum stack parameter requirements in Table 1 or 2 of Condition A202.I, the maximum total emission rates allowed for those heaters and reboilers is 1.23 lb/hr of NOx"; therefor, the heaters at the facility will meet this requirements since their total emission rate is 0.315 lb/hr which is below the 1.23 lb/hr threshold allowed.

Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Table C: Turbine/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total I	NOx Emission Rate:	lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number		• , ,		
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

	O&G?
	Yes. Skip step 5 below.
	No. Go to step 5 below.
5.	For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G,
	explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page
	18 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

4. Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Table D: Flare Stack Height Parameter Verification:

Flare Unit Number	SO ₂ Emission Rate (lb/hr)	8 ()	Table 3 Minimum Stack Height: For verification, list the minimum height parameters based on the SO2 emission rate from the GCP O&G Table 3.
FLARE	7.477	35	11.5

4.	Do all flares comply with minimum stack height requirements? ☐ Yes ☐ No
5.	Does the flare gas contain 6% H ₂ S or less by volume (pre-combustion)?
6.	Explain in detail how assist gas will be added to reduce the gas composition to 6% H ₂ S or less by volume.

Enclosed Combustion Device(s) (ECD):

According to GCP O&G Condition	A208.A, the facility m	nust meet one of the	following options if	an ECD is in	istalled at the
facility:					

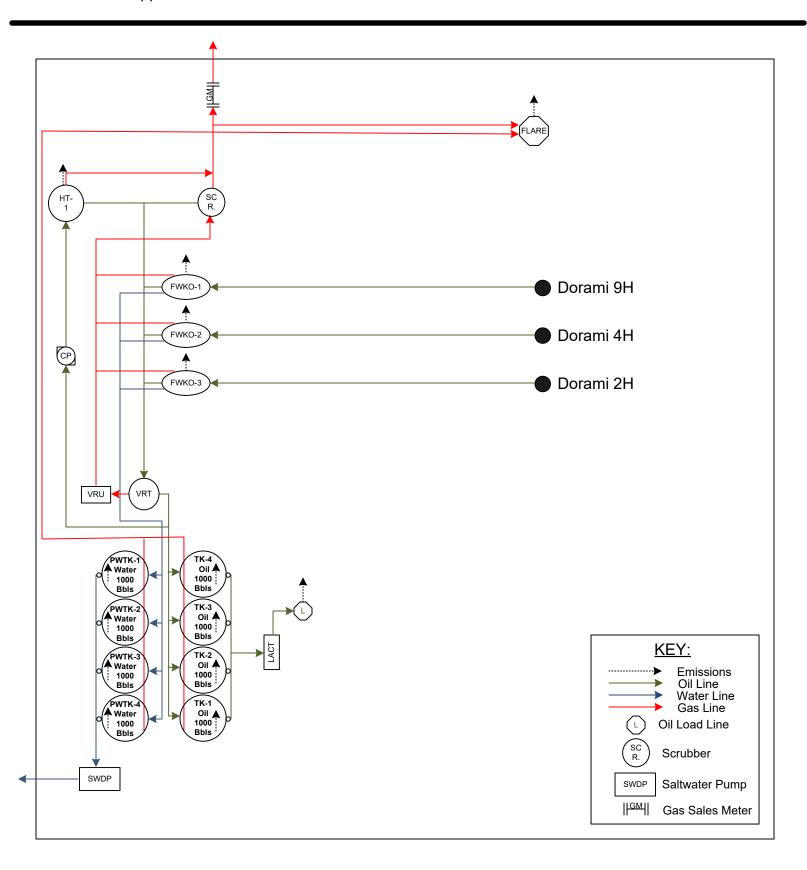
\sim					•	
O	n	tı.	a	n	- 1	•
\circ	μ	ш	v	11	1	•

<u>Option</u>	<u>1:</u>
1.	Will the ECD(s) meet the SO₂ emission limit of 0.7 lb/hr and operate with a velocity of at least one (1) foot per second? ☐ Yes. Skip Option 2 below. ☐ No. Go to Option 2 below.
Option	<u>2:</u>
2.	Will the ECD(s) meet the SO₂ emission limit of 0.9 lb/hr and operate with a velocity of at least two (2) feet per second? ☐ Yes ☐ No

Section 4

Process Flow Sheet

Attach a **process flow sheet** indicating all individual equipment, all emission points, and types of control applied to those points. All units must be labeled, and the unit numbering system must be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water). The process flow sheet must be a legible size.


GCP-Oil and Gas Form: 10 December 2019 Printed: 2/10/2020

0522

Spur Energy Partners LLC

Site Name: Dorami 2H, 4H, & 9H Federal Oil Tank Battery

Al Number: Applied

Prepared by: John Connolly

Date: 02/06/2020

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration. If the AECT, for a piece of equipment is under development, provide alternate calculations. **Do not include alternative calculations unless there is an issue being resolved with the AECT. This will delay review of the application.** The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. The inputs must match the gas analyses information submitted. Inputs that don't match may be grounds for denial of the application submittal.

<u>SSM Calculations</u>: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank).

<u>Control Devices:</u> Report all control devices and list each pollutant controlled by the control device. Indicate in this section if you chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

<u>Calculation Details:</u> The AECT is required for all emission calculations. If the AECT is not functioning, alternative calculations may be submitted only for the portions of the AECT with issues being resolved. Utilize this section to explain in detail, on an equipment-by-equipment basis, why alternative calculations are necessary.

Explai	n here:			
_		 	 	

Equipment Forms Subm	ittea in this S	ection (add ad	ditional rows as necessary):
Equipment Type	Quantity	Check Box to Indicate Units that are Controlled	Enter Control Device Type and Pollutant Controlled
Engine			
Turbine			
Tanks	8		FLARE; VOC & H2S
Generator			
VRU	1		
VRT	1		VRU; VOC & H2S
ULPS			
Glycol Dehydrator			
Flare	1		TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, VRU-1, SALES GAS OFF THE PRODUCTION EQUIPMENT; VOC & H2S
Amine Unit			
Cryogenic Unit			
Fugitive Emissions	1		
Heater	4		
Truck Loading	1		
Enclosed Combustion			

Equipment Forms Submitted in this Section (add additional yours as necessary)

Form Revision: 10 December 2019 Printed: 2/10/2020 0524

Spur Energy Partners LLC	Dorami 2H, 4H, &	9H Federal Oil Tank Battery	2/10/2020
Device (ECD)			
Thermal Oxidizer (TO)			
Unpaved Haul Road	1 🗌		
Other			
		sions unit, control device, or gas number(s) if the scenarios vary	
Vapor Recovery Tower, Ultra	Low-Pressure Separator,	or Flash Tower Located Upstrea	am of Storage Vessels: If the
facility contains one of the follow	wing units located upstream	of the storage vessels and is used	
emissions, check the appropriate	box.		
Unit number: VRT/VRU-1	I I DI I G		
✓ Vapor Recovery Tower and✓ ULPS and VRU Compresso			
Flash Tower and VRU Com			
I lush rower and vice com	pressor		
capture flashing emissions prior of NSPS OOOO or NSPS OOOO Unit number:	to any storage vessels to lim Da. A process vs control de	e Vessels: Check the box below is not the PTE of the storage vessels to termination should be prepared for directly to the sales pipe	to below applicability thresholds or this type of VRU application.
		Check the box below if this faci OOO or NSPS OOOOa applicabili	
☐ VRU controlling Storage Ve 60.5411	essel emissions and the facil	lity is subject to the requirements	under NSPS OOOO, 40 CFR
	essel emissions and the facil	lity is subject to the requirements	under NSPS OOOOa, 40 CFR
scenarios. Flares shall assume a	destruction efficiency of 95	5%, unless the facility is subject to	any appropriate facility operating o requirements for flares under 40 specification sheet (MSS) for that
Unit number: FLARE	<i>,</i> -	device (ECD), thermal oxidizer ((TO):
Controls storage vessels in a		Subpart 0000 or 0000a.	P 172 4 1 11 040
IXI Provides a tederally entarge	able control for the storage	vessels to limit the UTE to below	annuaghality througholds at ///

	\mathcal{E}
\boxtimes	Provides a federally enforceable control for the storage vessels to limit the PTE to below applicability thresholds of 40
	CFR 60, Subpart OOOO or OOOOa.
	Controls the glycol dehydrator
	Controls the amine unit
	Controls truck loading
	Operates only during maintenance events, such as VRU downtime, check one below:
	☐ The emissions during VRU downtime are represented as uncontrolled VOC emissions from the compressor

The emissions during VRU downtime are represented as uncontrolled VOC emissions from the compressor

The combustion emissions during VRU downtime are represented as controlled emissions from the combustion

device

☐ Controls the facility during plant turnaround

Amine Unit: Provide the following information for each amine unit.

Design Capacity in MMscf/day	
Rich Amine Flowrate in gal/min	
Lean Amine Flowrate in gal/min	
Mole Loading H ₂ S	
Sour Gas Input in MMscf/day	

Form Revision: 10 December 2019 Printed: 2/10/2020 ₀₅₂₅

Glycol Dehydration Unit(s): Provide the following information for each glycol dehydration unit: Please include an extended gas analysis in Section 6 of this application.

<u>Unit #</u>	Glycol Pump Circulation Rate
Voluntary Monitoring in Accordance with §40 CFR 60.541 requirements of 40 CFR 60.5416(a). This monitoring program established in the GCP-Oil and Gas for individual equipment. reported in an updated Registration Form to the Department. ☐ Condition A205.B Control Device Options, Requirements	Ceasing to implement this alternative monitoring must be
 □ Condition A206.B Truck Loading Control Device Inspect □ Condition A206.C Vapor Balancing During Truck Loading □ Condition A209.A Vapor Recovery Unit or Department-a □ Condition A210.B Amine Unit Control Device Inspection 	ion ng pproved Equivalent
Fugitive H ₂ S Screening Threshold and Monitoring in account	dance with Condition A212: Check the box that applies.
Condition A212.A does not apply because the facility is be	low the fugitive H ₂ S screening threshold in Condition A212, or
Condition A212.A applies. Because the facility is above the facility is voluntarily complying with Condition A212.A,	e fugitive H ₂ S screening threshold in Condition A212, or the and Condition A212.A applies

Form Revision: 10 December 2019 Printed: 2/10/2020 ₀₅₂₆

Section 6

Information Used to Determine Emissions

Check the box for each type of information submitted. This documentation is required. If applicable to the facility.

Failure to include applicable supporting documentation may result in application denial.

vei	Specifications for control equipment, including control efficiency specifications and sufficient engineering data for rification of control equipment operation, including design drawings, test reports, and design parameters that affect rmal operation. Engine or Generator Manufacturer specifications Catalyst Manufacturer specifications (If a catalyst is being utilized to reduce emissions, the catalyst manufacturer emission factors must be used in all emission calculations. A 25% safety factor may be applied to each pollutant. NSPS JJJJ emission factors may not be utilized in lieu of catalyst manufacture specifications when a catalyst is installed, and the catalysts manufacturer achieves higher control efficiency. Flare Manufacturer specifications Oil/Liquid Analysis: This data is required to match the inputs in all applicable emission calculations. For facilities that have not been constructed and a representative analysis is used it cannot be older than 1 year. For existing facilities, the gas analyses required by Condition A201.A (must be 1 year old or less). Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
	Extended Gas Analysis (must be 1 year old of less) This data is required to mater the inputs in an applicable emission calculations. If requesting to use a representative gas sample, include a discussion of why the sample is representative for this facility and an explanation of how it is representative (e.g., same reservoir, same similar API gravity, similar composition).
	If test data are used, to support emissions calculations or to establish allowable emission limits, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates. Fuel specifications sheet. If computer models are used to estimate emissions, include an input summary and a detailed report, and a disk containing the input file used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, accuracy of
	the model, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Representative Gas Analysis Justification: Representative gas analysis used is from a well with similar API gravity, same reservoir, similar composition, and with similar separation technique. Flash analysis was calculated from a nearby facility that is operating in the same reservoir that has a similar oil composition. The flash analysis was calculated for the pressure drop between the tanks and the upstream separation equipment.

Form Revision: 10 December 2019 Printed: 2/10/2020

Gas Analysis

Atchafalaya Measurement, Inc. 416 East Main Street Artesia, NM 88210 575-746-3481

Inficon Micro GC Fusion F08904 R03RR2

	Sample Information
Sample Name	PercussionHuber 3 Federal 8HGC1-1419-04
Station Number	79410072
Lease Name	Huber 3 Federal 8H
Analysis For	Percussion Petroleum
Producer	Percussion Petroleum
Field Name	Dagger Draw
County/State	Eddy,NM
Frequency/Spot Sample	Quarterly
Sampling Method	Fill Empty
Sample Deg F	59.8
Atmos Deg F	40
Flow Rate	506.0673
Line PSIG	83.4
Date/Time Sampled	12-27-18
Cylinder Number	N/A
Cylinder Clean Date	N/A
Sampled By	Victor Urias
Analysis By	Pat Silvas
Verified/Calibration Date	1-3-19
Report Date	2019-01-04 07:59:11

Component Results

Component Name	Ret. Time	Peak Area	Norm%	PPMV	GPM (Dry) (Gal. / 1000 cu.ft.)	
Nitrogen	22.300	14311.4	2.81090	28109.000	0.000	
H2S	46.000	0.0	1.99577	19957.700	0.000	
Methane	23.120	285170.1	72.02046	720204.600	0.000	
Carbon Dioxide	26.940	14410.7	2.37167	23716.700	0.000	
Ethane	36.960	80184.1	12.11010	121101.000	3.249	
Propane	78.980	46653.6	5.24909	52490.900	1.451	
i-butane	28.780	46697.5	0.68305	6830.500	0.224	
n-Butane	30.380	104115.0	1.46730	14673.000	0.464	
i-pentane	35.440	31060.7	0.37136	3713.600	0.136	
n-Pentane	37.540	27936.5	0.32511	3251.100	0.118	
Hexanes Plus	120.000	52184.0	0.59519	5951.900	0.259	
Total:			100.00000	1000000.000	5.902	

Results Summary

Result	Dry	Sat. (Base)
Total Raw Mole% (Dry)	100.21205	
Pressure Base (psia)	14.730	
Temperature Base	60.00	
Gross Heating Value (BTU / Ideal cu.ft.)	1205.1	1184.1
Gross Heating Value (BTU / Real cu.ft.)	1209.4	1188.8
Relative Density (G), Ideal	0.7474	0.7453
Relative Density (G), Real	0.7498	0.7479
Compressibility (Z) Factor	0.9964	0.9960

Gas Analys	sis - Use if the	e Inputs are Weight Percents	Gas Analys	i is - Use if th	e Inputs are Mole	e Percents		
Analysis Identifier/Name			Analysis Identifier/Name	Huber 3 Federal 8H Gas Analysis				
What site is the sample from?			Where was the sample taken?					
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).					
Where in the process was the sample taken?			Where in the process was the sample taken?					
What is the temperature and pressure of the sample (include units)?			What is the temperature and pressure of the sample (include units)?					
Who analyzed the sample?			Who analyzed the sample?					
Date of sample:			Date of sample:					
Component hydrogen	weight %		Component hydrogen	mole %	Molecular Weight (grams/mole, lb/lb-mol) 2.01588	grams per 100 moles of gas	weight %	
helium			helium	0.0000	4.0026	0		
nitrogen			nitrogen	2.8109	28.01340	79	3.5332	
CO2			CO2	2.3717	44.00950	104	4.6834	
H2S			H2S	1.9958	34.08188	68	3.0521	
methane (C1)			methane (C1)	72.0205	16.04246	1155	51.8422	
ethane (C2)			ethane (C2)	12.1101	30.06904	364	16.3389	
propane (C3)			propane (C3)	5.2491	44.09562	231	10.3857	
butanes (C4)			butanes (C4)	2.1504	58.12220	125	5.6081	
pentanes (C5)			pentanes (C5)	0.6965	72.14878	50	2.2548	
benzene			benzene	0.0000	78.110000	0	0.0000	
other hexanes (C6)			other hexanes (C6)	0.5952	86.18000	51	2.3016	
toluene			toluene	0.0000	92.140000	0	0.0000	
other heptanes (C7)			other heptanes (C7)	0.0000	100.20000	0		
ethylbenzene			ethylbenzene	0.0000	106.170000	0		
xylenes (o, m, p)			xylenes (o, m, p)	0.0000	106.170000	0		
other octanes (C8)			other octanes (C8)	0.0000	114.23000	0		
nonanes (C9)			nonanes (C9)	0.0000	128.26000	0		
decanes plus (C10+) Totals:	0.0000		decanes plus (C10+) Totals:	0.0000	22.29	2229	0.0000	
						2229	100.00	
VOC (Non-methane, Non-eth VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon fr VOC weight% =	0.0000 0.0000 raction only #DIV/0!	iroons)	VOC (Non-methane, Non-eth VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon fr VOC weight% =	20.5502 0.2055 action only 23.1600	arbons)			
VOC weight fraction =	#DIV/0!		VOC weight fraction =	0.2316				
Hydrogen Sulfide		Constants:	Hydrogen Sulfide			Constants:		
H2S weight% = H2S weight fraction = H2S ppm, = H2S prm _{wT} = H ₂ S grains/100 SCF = SWEET GAS			H2S weight% = H2S weight fraction = H2S ppm _V = H2S ppm _{WT} =	H2S weight% = 3.0521 453.59237 mol/lb-mol H2S weight fraction = 3.05E-02 0.06479891 grams/grain				
			1					
Benzene			Benzene					
Benzene content of total samp Benzene weight% = Benzene weight fraction = Benzene content of hydrocarbo	0.0000	ıly	Benzene content of total samp Benzene weight% = Benzene weight fraction = Benzene content of hydrocarb	0.0000	nly			
Benzene weight% = Benzene weight fraction =	#DIV/0!		Benzene weight% = Benzene weight fraction =	0.0000				
Gas Molecular Weight = Gas Specific Gravity =	0.00	<u>Constants:</u> 28.97 air mw 385.48 scf/lb-mol	Gas Molecular Weight = Gas Specific Gravity =	22.29 0.77			air mw scf/lb-mol	
Gas Throughput (MMscf/day)=	0		Gas Throughput (MMscf/day)=	0				
Long Tons Sulfur Compounds per Day =			Long Tons Sulfur Compounds per Day =	0				

Flash Gas Analysis

Certificate of Analysis

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Mike Dunn AMI

Oct. 29, 2019

416 East Main St. Artesia, NM 88210

Station Name: GOOMAN BATTERY Sample Point: HEATER Method: GPA 2286

Analyzed: 10/29/2019 12:19:18 by Administrator

Sampled By: **DEREK SAUDER** Sample Of: Oil Spot Sample Date: 10/24/2019 10:12 Sample Conditions: 30 psig, @ 118 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Hydrogen Sulfide	0.0000	0.0000		GPM TOTAL C2+	26.242	
Nitrogen	4.1416	2.6393		GPM TOTAL C3+	19.551	
Carbon Dioxide	1.7297	1.7317		GPM TOTAL iC5+	3.210	
Methane	5.6041	2.0452		31 III 13 17 IZ 133 1	3.2.13	
Ethane	24.6589	16.8674	6.691			
Propane	35.3821	35.4924	9.890			
Iso-butane	5.9747	7.8998	1.984			
n-Butane	13.9651	18.4647	4.467			
Iso-pentane	3.1895	5.2349	1.183			
n-Pentane	2.8282	4.6419	1.040			
Hexanes Plus	2.5261	4.9827	0.987			
	100.0000	100.0000	26.242			
Calculated Physical Properties		T	otal	C6+		
Relative Density Rea	-	1.5	5433	2.9938		
Calculated Molecula		4	3.96	86.71		
Compressibility Fact		0.0	9831			
GPA 2172 Calculati	on:					
Calculated Gross B	TU per ft ³ @	14.696 psia 8	& 60°F			
Real Gas Dry BTU	-	-	2433	4669		
Water Sat. Gas Base BTU		2	2391	4587		

Certificate of Analysis

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Mike Dunn Oct. 29, 2019

AMI 416 East Main St. Artesia, NM 88210

Station Name: GOOMAN BATTERY
Sample Point: HEATER
Sample Point: HEATER
Sample Of:
Oil Spot
Sample Date: 10/24/2019 10:12
Analyzed: 10/29/2019 12:19:18 by Administrator
Sample Conditions: 30 psig, @ 118 °F

Analytical Data

Analytical Data									
Components	Mol. %	Wt. %	GPM at 14.696 psia						
Hydrogen Sulfide	0.0000	0.0000		GPM TOTAL C2+	26.2420				
Nitrogen	4.1416	2.6393		GPM TOTAL C3+	19.5510				
Methane	5.6041	2.0452		GPM TOTAL iC5+	3.2100				
Carbon Dioxide	1.7297	1.7317							
Ethane	24.6589	16.8674	6.691						
Propane	35.3821	35.4924	9.890						
Iso-Butane	5.9747	7.8998	1.984						
n-Butane	13.9651	18.4647	4.467						
Iso-Pentane	3.1895	5.2349	1.183						
n-Pentane	2.8282	4.6419	1.040						
Hexanes	1.3991	2.6947	0.570						
Heptanes Plus	1.1270	2.2880	0.417						
	100.0000	100.0000	26.242						
Calculated Physica	I Properties		Total	C7+					
Relative Density Real Gas		1.	5433	3.0800					
Calculated Molecula		4	13.96	89.20					
Compressibility Fact	or	0.	9831						
GPA 2172 Calculati	ion:								
Calculated Gross E	BTU per ft ³ @	14.696 psia	& 60°F						
Real Gas Dry BTU		· -	133.1	4680.4					
Water Sat. Gas Base BTU		23	390.7	4598.8					

Brill &

Certificate of Analysis

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Mike Dunn AMI

416 East Main St. Artesia, NM 88210

Real Gas Dry BTU

Water Sat. Gas Base BTU

Station Name: GOOMAN BATTERY Sample Point: HEATER Method: GPA 2286

Analyzed: 10/29/2019 12:19:18 by Administrator

Oct. 29, 2019

Sampled By: DEREK SAUDER Sample Of: Oil Spot Sample Date: 10/24/2019 10:12 Sample Conditions: 30 psig, @ 118 °F

Analytical Data

Hydrogen Sulfide	
Carbon Dioxide 1.7297 1.7317 GPM TOTAL is Methane 5.6041 2.0452 Ethane 24.6589 16.8674 6.691 Propane 35.3821 35.4924 9.890 Iso-Butane 5.9747 7.8998 1.984 n-Butane 13.9651 18.4647 4.467 Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2234 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0010 0.0027 0.000 i-Nonanes 0.0157	C2+ 26.242
Methane 5.6041 2.0452 Ethane 24.6589 16.8674 6.691 Propane 35.3821 35.4924 9.890 Iso-Butane 5.9747 7.8998 1.984 n-Butane 13.9651 18.4647 4.467 Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2234 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0015 0.0422<	C3+ 19.551
Ethane 24.6589 16.8674 6.691 Propane 35.3821 35.4924 9.890 Iso-Butane 5.9747 7.8998 1.984 n-Butane 13.9651 18.4647 4.467 Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonane 0.0004 0.0010 0.000 n-Nonane 0.0002 0.0012<	C5+ 3.210
Propane 35.3821 35.4924 9.890 Iso-Butane 5.9747 7.8998 1.984 n-Butane 13.9651 18.4647 4.467 Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonane 0.0004 0.0012 0.000 n-Nonane 0.0002<	
Iso-Butane 5.9747 7.8998 1.984 n-Butane 13.9651 18.4647 4.467 Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
n-Butane 13.9651 18.4647 4.467 Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.008 n-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0002 0.0012 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Iso-Pentane 3.1895 5.2349 1.183 n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.008 n-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0002 0.0012 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
n-Pentane 2.8282 4.6419 1.040 i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0002 0.0012 0.000 Decane Plus 0.0000 100.0000 26.242	
i-Hexanes 0.9677 1.8494 0.390 n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
n-Hexane 0.4314 0.8453 0.180 Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Benzene 0.2230 0.3964 0.063 Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Cyclohexane 0.2324 0.4448 0.080 i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
i-Heptanes 0.4464 0.9190 0.176 n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
n-Heptane 0.0554 0.1262 0.026 Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Toluene 0.0245 0.0512 0.008 i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
i-Octanes 0.1214 0.2865 0.053 n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
n-Octane 0.0055 0.0142 0.003 Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Ethylbenzene 0.0011 0.0026 0.000 Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Xylenes 0.0010 0.0027 0.000 i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
i-Nonanes 0.0157 0.0422 0.008 n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
n-Nonane 0.0004 0.0010 0.000 Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
Decane Plus 0.0002 0.0012 0.000 100.0000 100.0000 26.242	
<u>100.0000</u> <u>100.0000</u> <u>26.242</u>	
Calculated Physical Properties Total C10+	
Calculated Molecular Weight 43.96 170.33	
Compressibility Factor 0.9831	
GPA 2172 Calculation: Calculated Gross BTU per ft³ @ 14.696 psia & 60°F	

139. Bulgo

9395.2

9075.5

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

2433.1

2390.7

Certificate of Analysis

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Oct. 29, 2019

Mike Dunn AMI 416 East Main St. Artesia, NM 88210

Station Name: GOOMAN BATTERY

Sample Point: HEATER

Sample Conditions: 30 psig, @ 118 °F

Sampled By: DEREK SAUDER Sample Of: Oil Spot Sample Date: 10/24/2019 10:12

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Shrinkage Factor	API 20.1 M	0.9767		mb	10/29/2019
Flash Factor	API 20.1 M	25.4517	Cu.Ft./STBbl.	mb	10/29/2019
Color Visual	API 20.1 M	Crude		mb	10/29/2019
API Gravity @ 60° F	ASTM D-5002	33.4	0	mb	10/29/2019

<u>Gas Analysis</u> - Use if the Inp	outs are Weight Percents	Gas Analys	sis - Use if th	e Inputs are Mole	e Percents	
Analysis Identifier/Name		Analysis Identifier/Name	Goodman B	attery Flash Anal	ysis	
What site is the sample from?		Where was the sample taken?				
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).				
Where in the process was the sample taken?		Where in the process was the sample taken?				
What is the temperature and pressure of the sample (include units)?		What is the temperature and pressure of the sample (include units)?				
Who analyzed the sample?		Who analyzed the sample?				
Date of sample:		Date of sample:				
Component weight % hydrogen		Component hydrogen	mole %	Molecular Weight (grams/mole, lb/lb-mol) 2.01588	grams per 100 moles of gas	weight %
helium		helium	0.0000	4.0026	0	0.0000
nitrogen		nitrogen	4.1416	28.01340	116	2.6343
CO2		CO2	1.7297	44.00950	76	1.7284
H2S		H2S	0.0000	34.08188	0	0.0000
methane (C1)		methane (C1)	5.6041	16.04246	90	2.0413
ethane (C2)		ethane (C2)	24.6589	30.06904	741	16.8356
propane (C3)		propane (C3)	35.3821	44.09562	1560	35.4254
butanes (C4)		butanes (C4)	19.9398	58.12220	1159	26.3147
pentanes (C5)		pentanes (C5)	6.0177	72.14878	434	9.8582
benzene		benzene	0.2230	78.110000	17	0.3955
other hexanes (C6)		other hexanes (C6)	1.6315	86.18000	141	3.1925
toluene		toluene	0.0245	92.140000	2	0.0513
other heptanes (C7)		other heptanes (C7)	0.5018	100.20000	50	1.1417
ethylbenzene		ethylbenzene	0.0011	106.170000	0	0.0027
xylenes (o, m, p)		xylenes (o, m, p)	0.0010	106.170000	0	0.0024
other octanes (C8)		other octanes (C8)	0.1269	114.23000	14	0.3291
nonanes (C9)		nonanes (C9)	0.0161	128.26000	2	0.0469
decanes plus (C10+)		decanes plus (C10+)	0.0000		0	0.0000
Totals: 0.0000		Totals:	99.9998	44.04	4404	100.00
VOC (Non-methane, Non-ethane hydrocarbo	ns)	VOC (Non-methane, Non-eth	ane hydroc	arbons)		
VOC content of total sample VOC weight% = 0.0000 VOC weight fraction = 0.0000 VOC content of hydrocarbon fraction only		VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon fr				
VOC weight% = #DIV/0! VOC weight fraction = #DIV/0!		VOC weight% = VOC weight fraction =				
Hydrogen Sulfide	Constants:	Hydrogen Sulfide			Constants:	
H2S weight% = 0.0000 H2S weight fraction = H2S ppm, = H2S ppm, = H2S ppmw _T = 0.00 0.0000 SWEET GAS	453.59237 mol/lb-mol 0.06479891 grams/grain 385.48 scf/lb-mol 34.08188 g/mol, lb/lb-mol H2S mw	H2S weight% = H2S weight fraction = H2S ppm _v = H2S ppm _v = H2S ppm _{wr} = H ₂ S grains/100 SCF =	0.0000 0.00E+00 0 0.00 0.0000 SWEET GA	s		mol/lb-mol grams/grain scf/lb-mol
Benzene		Benzene				
			la.			
Benzene content of total sample Benzene weight% = 0.0000 Benzene weight fraction = 0.0000		Benzene content of total samp Benzene weight% = Benzene weight fraction =	0.3955 0.0040			
Benzene content of hydrocarbon fraction only Benzene weight% = #DIV/0! Benzene weight fraction = #DIV/0!		Benzene content of hydrocarb Benzene weight% = Benzene weight fraction =	on fraction or 0.4135 0.0041	<u>nly</u>		
Gas Molecular Weight = 0.00	<u>Constants:</u> 28.97 air mw 385.48 scf/lb-mol	Gas Molecular Weight = Gas Specific Gravity =	44.04 1.52			air mw scf/lb-mol
Gas Throughput (MMscf/day)= 0		Gas Throughput (MMscf/day)=	0			
Long Tons Sulfur Compounds per Day = 0		Long Tons Sulfur Compounds per Day =	0			

Liquid Analysis

Certificate of Analysis

Number: 5030-19100539-002A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Nov. 06, 2019

Mike Dunn AMI 416 East Main St. Artesia, NM 88210

Station Name: GOODMAN BATTERY

Sample Point: HEATER Method: **GPA 2103M**

Analyzed: 11/01/2019 00:45:22 by MB2

Sampled By: DONAVON MILLER Sample Of: Oil Spot

Sample Date: 10/22/2019 Sample Conditions: 92 °F

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
·						
Hydrogen Sulfide	NIL	NIL	NIL	NIL	NIL	
Nitrogen	0.040	28.013	0.007	0.8069	0.007	
Methane	0.030	16.043	0.003	0.3000	0.008	
Carbon Dioxide	0.018	44.010	0.005	0.8172	0.005	
Ethane	0.397	30.069	0.075	0.3563	0.172	
Propane	1.973	44.096	0.546	0.5072	0.878	
Iso-Butane	0.888	58.122	0.324	0.5628	0.470	
n-Butane	3.377	58.122	1.232	0.5842	1.720	
Iso-Pentane	2.391	72.149	1.083	0.6251	1.413	
n-Pentane	3.049	72.149	1.381	0.6307	1.786	
i-Hexanes	0.796	85.432	0.427	0.6656	0.523	
n-Hexane	0.593	86.175	0.321	0.6641	0.394	
2,2,4-Trimethylpentane	0.040	114.229	0.029	0.6964	0.034	
Benzene	1.324	78.112	0.649	0.8844	0.599	
Heptanes	5.468	100.202	3.439	0.6882	4.076	
Toluene	2.974	92.138	1.720	0.8719	1.609	
Octanes	7.251	114.229	5.199	0.7066	6.003	
Ethylbenzene	1.408	106.165	0.938	0.8716	0.878	
Xylenes	1.552	106.167	1.034	0.8761	0.963	
Nonanes	5.169	128.255	4.161	0.7222	4.700	
Decanes Plus	61.262	201.356	77.427	0.8564	73.762	
	100.000		100.000		100.000	
Calculated Physical Prope	erties		Total	C10+		
Specific Gravity at 60°F		0.	8158	0.8564		
API Gravity at 60°F		41	1.949	33.735		
Molecular Weight		159	9.316	201.356		
Pounds per Gallon (in Vacu		5.801	7.140			
Pounds per Gallon (in Air)	•	6	6.794	7.132		
Cu. Ft. Vapor per Gallon @	14,696 psia	16	6.201	13.455		

Page 1 of 2

Certificate of Analysis

Number: 5030-19100539-002A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Nov. 06, 2019

Mike Dunn AMI 416 East Main St. Artesia, NM 88210

Station Name: GOODMAN BATTERY

Sample Point: HEATER Sample Conditions: 92 °F

Sampled By: DONAVON MILLER Sample Of: Oil Spot Sample Date: 10/22/2019

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
API Gravity @ 60° F	ASTM D-5002	37.63	0		11/06/2019
Specific Gravity @ 60/60° F	ASTM D-5002	0.8367	_		11/06/2019
Density @ 60° F	ASTM D-5002	0.8358	g/ml		11/06/2019
ASTM D323 RVPE @ 100° F	ASTM D-6377	8.13	psi		11/06/2019
VP of Crude Oil: V/L = 4:1 @ 100 °F	ASTM D-6377	8.89	psi		11/06/2019

<u>Liquid Analy</u>	ysis - Use if t	ne Inputs are Weight Percents	Liquid Analy	sis - Use if t	he Inputs are Mo	ele Percents	
Analysis Identifier/Name			Analysis Identifier/Name	Goodman B	attery Liquid Ana	llysis	
What site is the sample from?			What site is the sample from?				
if the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			If the sample is from a representaive site, explain how this sampled stream is representative of the situation stream at this site (use the notes box provided below if more space is needed).				
Where in the process was the sample taken?			Where in the process was the sample taken?				
What is the temperature and pressure of the sample (include units)?			What is the temperature and pressure of the sample (include units)?				
Who analyzed the sample?			Who analyzed the sample?				
Date of sample:			Date of sample:				
Component	weight %		Component	mole %	Molecular Weight (grams/mole, lb/lb-mol)	grams per 100 moles of gas	weight %
hydrogen	Weight 70		hydrogen	0.0000	2.01588	0	0.0000
helium			helium	0.0000	4.0026	0	0.0000
nitrogen			nitrogen	0.0400	28.01340	1	0.0070
CO2			CO2	0.0180	44.00950	1	0.0050
H2S			H2S	0.0000	34.08188	0	0.0000
methane (C1)			methane (C1)	0.0300	16.04246	0	0.0030
ethane (C2)			ethane (C2)	0.3970	30.06904	12	0.0749
propane (C3)			propane (C3)	1.9730	44.09562	87	0.5461
butanes (C4)			butanes (C4)	4.2650	58.12220	248	1.5560
pentanes (C5)			pentanes (C5)	5.4860	72.14878	396	2.4845
benzene			benzene	1.3240	78.110000	103	0.6492
other hexanes (C6)			other hexanes (C6)	1.3890	86.18000	120	0.7514
toluene			toluene	2.9740	92.140000	274	1.7201
other heptanes (C7) ethylbenzene			other heptanes (C7) ethylbenzene	5.4680 1.4080	100.20000 106.170000	548 149	3.4392 0.9383
xylenes (o, m, p)			xylenes (o, m, p)	1.5520	106.170000	165	1.0343
other octanes (C8)			other octanes (C8)	7.2510	114.22900	828	5.1991
nonanes (C9)			nonanes (C9)	5.1690	128.25500	663	4.1614
decanes plus (C10+)			decanes plus (C10+)	61.2620	201.35600	12335	77.4305
Totals:	0.0000		Totals:	100.0060	159.31	15931.0301	100.00
VOC (Non-methane, Non-eth		rbons)	VOC (Non-methane, Non-eth	•	•		
VOC weight% = VOC weight fraction =	0.0000		VOC weight% = VOC weight fraction =	0.9991			
VOC content of hydrocarbon fivor weight% = VOC weight fraction =	#DIV/0!		VOC content of hydrocarbon fit VOC weight% = VOC weight fraction =	99.9220 0.9992			
Hydrogen Sulfide H2S weight% = H2S weight fraction =			Hydrogen Sulfide H2S weight% = H2S weight fraction =	0.0000 0.00E+00			
H2S ppm _V =			H2S ppm _V =	0.00			
Benzene Benzene content of total samp Benzene weight% = Benzene weight fraction =	0.0000		Benzene Benzene content of total samp Benzene weight% = Benzene weight fraction =	0.6492 0.0065			
Benzene content of hydrocarb Benzene weight% = Benzene weight fraction =	#DIV/0!	<u>lv</u>	Benzene content of hydrocarb Benzene weight% = Benzene weight fraction =	0.6492 0.0065	<u>nly</u>		

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: 1000 BBL OIL TANK

Houston State: Texas

Company: Type of Tank:

Texas
Spur Energy Partners
Vertical Fixed Roof Tank
Dorami 2H, 4H, & 9H Federal Oil Tank Battery 4 - 1000 BBL OIL TANKS DAILY FACILITY THROUGHPUT: 2300 BBL/DAY
DAILY TANK THROUGHPUT: 575 BBL/DAY/TANK Description:

Tank Dimensions

Na Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n): 30.00 15.50 29.00 15.00 40,934.03 215.34 8,814,750.00

Paint Characteristics

Shell Color/Shade: Shell Condition Gray/Medium Gray/Medium Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone

Type: Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.00

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03

Meterological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0 Report Page 2 of 6

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

1000 BBL OIL TANK - Vertical Fixed Roof Tank Houston, Texas

		Da Tem	ily Liquid Su perature (de	urf. eg F)	Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	72.26	58.28	86.25	63.90	3.6413	2.7818	4.7011	50.0000			207.00	Option 4: RVP=5

TANKS 4.0 Report Page 3 of 6

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

1000 BBL OIL TANK - Vertical Fixed Roof Tank Houston, Texas

Annual Emission Calcaulations	
Standing Losses (lb):	2,620.1925
Vapor Space Volume (cu ft):	2,830.3786
Vapor Density (lb/cu ft):	0.0319
Vapor Space Expansion Factor:	0.3097 0.2567
Vented Vapor Saturation Factor:	0.2567
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	2,830.3786
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft): Tank Shell Height (ft):	15.0000 30.0000
Average Liquid Height (ft):	15.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0319
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	0.0440
Surface Temperature (psia):	3.6413 531.9348
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	00.0101
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	523.5667
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,810.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3097
Daily Vapor Temperature Range (deg. R):	55.9424
Daily Vapor Pressure Range (psia):	1.9192 0.0600
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3.6413
Vapor Pressure at Daily Minimum Liquid	0.0110
Surface Temperature (psia):	2.7818
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.7011
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	531.9348
Daily Min. Liquid Surface Temp. (deg R):	517.9492
Daily Max. Liquid Surface Temp. (deg R):	545.9204
Daily Ambient Temp. Range (deg. R):	29.8333
Vented Vapor Saturation Factor	0.0507
Vented Vapor Saturation Factor:	0.2567
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	3.6413
Vapor Space Outage (ft):	15.0000
Working Losses (lb):	8,768.9213
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.6413
Annual Net Throughput (gal/yr.):	8,814,750.0000
Annual Turnovers:	215.3404
Turnover Factor:	0.3060
Maximum Liquid Volume (gal):	40,934.0270
Maximum Liquid Height (ft):	29.0000
Tank Diameter (ft): Working Loss Product Factor:	15.5000 0.7500
Total Losses (lb):	11,389.1138

TANKS 4.0 Report Page 5 of 6

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

1000 BBL OIL TANK - Vertical Fixed Roof Tank Houston, Texas

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Crude oil (RVP 5)	8,768.92	2,620.19	11,389.11			

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: 1000 BBL WATER TANK

Houston State: Texas

Company: Type of Tank:

Spur Energy Partners
Vertical Fixed Roof Tank
Dorami 2H, 4H, & 9H Federal Oil Tank Battery 4 - 1000 BBL WATER TANKS DAILY FACILITY THROUGHPUT: 8000
BBL/DAY DAILY TANK THROUGHPUT: 2000 BBL/DAY/TANK Description:

Tank Dimensions

Na Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n): 30.00 15.50 29.00 15.00 40,934.03 749.01 30,660,000.00

Paint Characteristics

Shell Color/Shade: Shell Condition Gray/Medium Gray/Medium Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone

Type: Height (ft) 0.25 Slope (ft/ft) (Cone Roof) 0.03

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03

Meterological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0 Report Page 2 of 6

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

1000 BBL WATER TANK - Vertical Fixed Roof Tank Houston, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	72.26	58.28	86.25	63.90	3.6413	2.7818	4.7011	50.0000			207.00	Option 4: RVP=5

TANKS 4.0 Report Page 3 of 6

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

1000 BBL WATER TANK - Vertical Fixed Roof Tank Houston, Texas

Annual Emission Calcaulations	
Standing Losses (lb):	2,623.9145
Vapor Space Volume (cu ft):	2,846.1030
Vapor Density (lb/cu ft):	0.0319
Vapor Space Expansion Factor:	0.3097 0.2557
Vented Vapor Saturation Factor:	0.2557
Tank Vapor Space Volume: Vapor Space Volume (cu ft):	2.846.1030
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	15.0833
Tank Shell Height (ft):	30.0000
Average Liquid Height (ft):	15.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	0.0022
Roof Outage (ft): Roof Height (ft):	0.0833 0.2500
Roof Slope (ft/ft):	0.0300
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0319
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	3.6413
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R):	531.9348
Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	523.5667
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.6800 0.6800
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,810.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3097
Daily Vapor Temperature Range (deg. R):	55.9424 1.9192
Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3.6413
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.7818
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	4.7011
Daily Avg. Liquid Surface Temp. (deg R):	531.9348
Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	517.9492
Daily Max. Liquid Surface Temp. (deg R):	545.9204
Daily Ambient Temp. Range (deg. R):	29.8333
Vented Vapor Saturation Factor	0.0557
Vented Vapor Saturation Factor:	0.2557
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	3.6413
Vapor Space Outage (ft):	15.0833
Working Losses (lb):	20,606.0812
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.6413
Annual Net Throughput (gal/yr.): Annual Turnovers:	30,660,000.0000 749.0101
Turnover Factor:	0.2067
Maximum Liquid Volume (gal):	40,934.0270
Maximum Liquid Height (ft):	29.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	0.7500
Total Losses (lb):	23,229.9958
. o.u. 200000 (ID).	20,223.9930

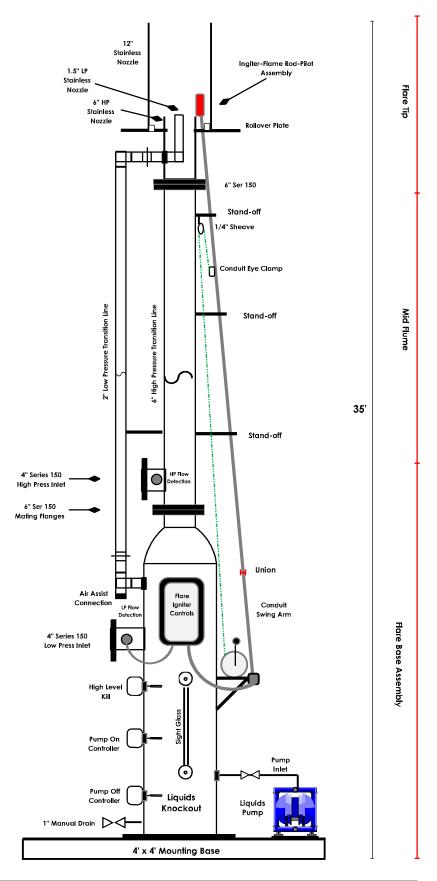
TANKS 4.0 Report Page 5 of 6

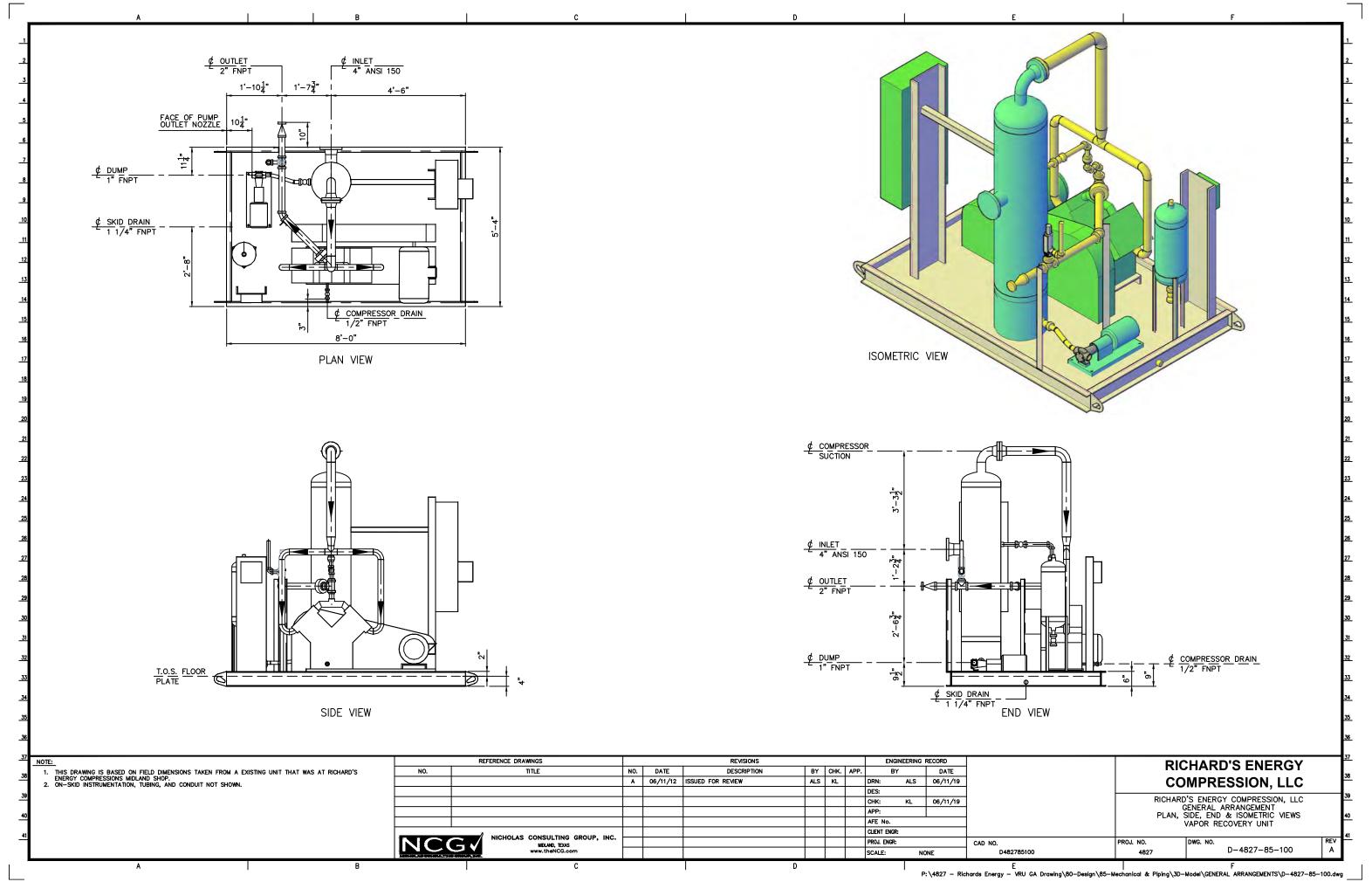
TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

1000 BBL WATER TANK - Vertical Fixed Roof Tank Houston, Texas

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Crude oil (RVP 5)	20,606.08	2,623.91	23,230.00			

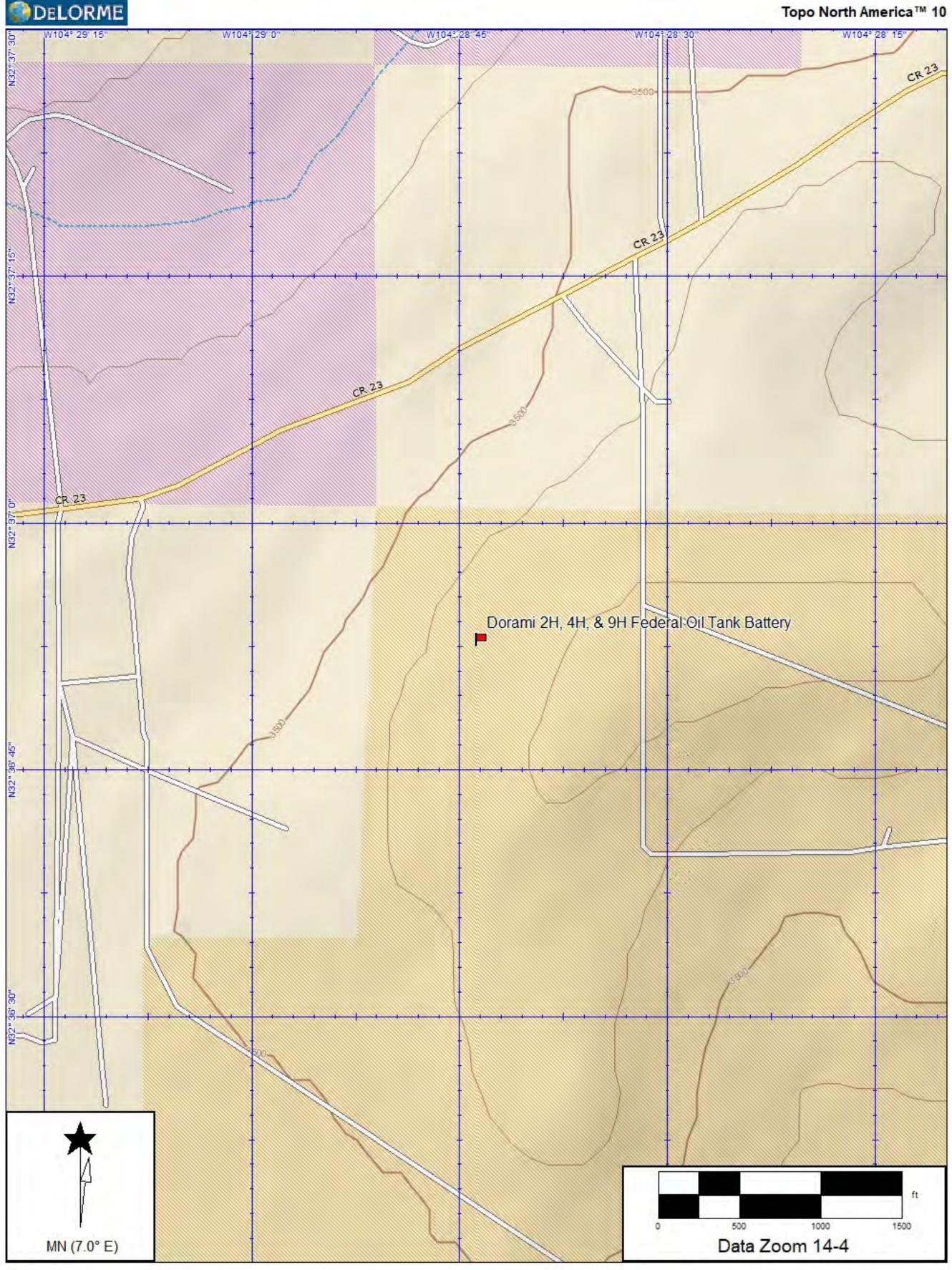

GFS SERIES DUAL PRESSURE FLARE
INSTALLATION & OPERATIONS MANUAL


Dual Pressure Flare - Oil Flare

<u>Vaprox (https://www.vaporprocess.com/)</u> offers a full line of tank battery dual pressure flares. These Systems utilize one flare assembly that attains 98% or greater VOC destruction efficiency for both low pressure tank vapor gas and high pressure emergency vent gas while complying with all state and federal air quality regulations. The dual pressure flare system eliminates the need for a second flare on your tank battery facility, thus reducing construction costs. All Vaprox systems are available in 12vdc and 120vac and come standard with an interchangeable ventilated (smokeless) stainless steel flare tip. Vaprox flares are designed to control liquids found in the waste gas stream with a scrubber pot located at the base completed with a liquid sight glass, level switch, and liquid evacuation pump (pneumatic diaphragm or electric). Vaprox's unique retractable igniter assembly allows the operator to lower the igniter assembly to ground level for maintenance purposes without the cost and safety concerns associated with operating a man lift. You can be sure you're getting the utmost quality and safety from our dual pressure flare by <u>Vaprox</u> (https://www.vaporprocess.com/).

Dual pressure flare and oil flare systems are available with a variety of equipment options including continuous pilot, continuous or intermittent ignition, flow activated ignition, flow detection, mass flow measurement, flame detection via flame rod or thermocouple, data logging with SCADA reporting via RS485 Modbus, flame arrestors, and custom guy wire systems.

TITLE	Vaprox Dual Pressure Flare - Standard Configuration						
AUTHOR	R. Hogue						
DATE	1-19-2015 SHEET 1 OF 1						
REVISION	Revision 1E © Copyright 2015 - All Rights Reserved Vaprox , LLC						


Section 7

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

Form Revision: 10 December 2019 Printed: 2/10/2020

Data use subject to license.

© DeLorme. Topo North America™ 10.

www.delorme.com

Section 8A

Applicable State & Federal Regulations

<u>Provide a discussion demonstrating compliance with each applicable state & federal regulation</u>. All input cells should be filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

Applicable STATE REGULATIONS

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	Yes	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide, and Nitrogen Dioxide.	Facility	Yes	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of the TSP, SO ₂ , H ₂ S, NOx, and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	Yes	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	20.2.38.109 TANK STORAGE ASSOCIATED WITH PETROLEUM PRODUCTION OR PROCESSING FACILITY	TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4	Yes	The purpose of this regulation is to minimize hydrogen sulfide emissions from hydrocarbon storage facilities. The storage tanks, TK-1 through TK-4 & PWTK-1 through PWTK-4 are a new production facility as they were constructed after July 1, 1975. The tanks are all 1000 bbl. The tanks are subject to 20.2.38.109 NMAC. The tanks comply with the requirement to minimize vapor loss to the atmosphere through use of the flare
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	FWKO-1, FWKO-1, FWKO-3, HT-1,	Yes	This regulation establishes controls on smoke and visible emissions from certain sources, including stationary combustion equipment. The heaters and flare are subject to this regulation as they are

Form Revision: 10 December 2019 Printed: 2/10/2020

0552

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
				FLARE		stationary combustion equipment.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	NOI: 20.2.73.200 NMAC applies to all facilities emitting over 10 TPY of any regulated air contaminate. Thus, permitted facilities are also subject to this rule. This GCP-O&G registration also serves the purpose of meeting 20.2.73 the NMAC notification requirements.) Emissions Inventory: 20.2.73.300.A(1) NMAC applies to facilities registering under the GCP. Emission Inventory reporting is required upon request by the department per 20.2.73.300.B(4) NMAC.	Facility	YES	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet any applicable reporting requirements under 20.2.73 NMAC.
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended on the date of certification.	Facility	YES	The facility is subjects to NSPS OOOOa
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended on the date of certification.	NA	NO	The facility is a minor source for HAPS
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended on the date of certification.	NA	NO	The purpose of this regulation is to establish state authority to implement new source performance standards for stationary sources in New Mexico subject to 40 CFR Part 63. This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended through August 29, 2013. This regulation does not apply as no units at this facility are subject to 40 CFR Part 63.

Applicable FEDERAL REGULATIONS (This is not an exhaustive list; add applicable regulations such as NSPS GG and KKKK):

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 50	NAAQS	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	Facility	YES	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.
40 CFR 60, Subpart A	General Provisions	Applies if any other NSPS subpart applies.	Facility, Flare	YES	Applies if any other NSPS subpart applies.
40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375); centrifugal compressors (60.5380); reciprocating compressors (60.5385): controllers		NO	

Form Revision: 10 December 2019 Printed: 2/10/2020

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
	Commenced After August 23, 2011, and on or before September 18, 2015	(60.5390); storage vessels (60.5395); equipment leaks (60.5400); sweetening units (60.5405).			
		If standards apply, list the unit number(s) and regulatory citation of the standard that applies to that unit (e.g. Centrifugal Compressors 1a-3a are subject to the standards at 60.5380(a)(1) and (2) since we use a control device to reduce emissions)			
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5385a): controllers (60.5395a); storage vessels (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	Fugitives TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, VRU-1, FLARE	YES	This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The rule applies to "affected" facilities that are constructed, modified, or reconstructed after September 18, 2015. The facility commenced construction after September 18, 2015. The facility is therefor subject to NSPS OOOOa.
40 CFR 60, Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	NA	NO	
40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	See 40 CFR 60.4230(a), 1 through 5 to determine applicable category and state engine size, fuel type, and date of manufacture.	NA	NO	
40 CFR 63, Subpart A	General Provisions	Applies if any other subpart applies.	NA	NO	
40 CFR 63, Subpart HH	NESHAP for Glycol Dehydrators	See 40 CFR 63, Subpart HH	NA	NO	
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	NA	NO	

Form Revision: 10 December 2019 Printed: 2/10/2020

Section 8B Compliance Test History

To evaluate the requirement for compliance tests,	you must submit a compliance test history.	The table below provides ar
example.		

Compliance Test History Table

Unit No.	Test Description	Test Date

Form Revision: 10 December 2019 Printed: 2/10/2020

0555

Section 9 Proof of Public Notice

Gener	ral Posting of Notice	
conspicuo	nosted a true and correct copy of the attached Public ous place, visible from the nearest public road, at the s, or is proposed to be, located.	
Signed th	nis 5 day of FEBRUARY, 20	20
Signature	math	7/5/20 Date
JER	Production Superint	endent
Printed N	Name Title {APPLICANT OR RELA	TIONSHIP TO APPLICANT}
Newsp	paper Publication of Notice	9
	An original or copy of the actual newspaper adverti circulation in the applicable county is attached. The includes the header showing the date and newspape	original or copy of the advertisement
	OR	
\boxtimes	An affidavit from the newspaper or publication in g stating that the advertisement was published is attac advertisement's publication, and a legible photocop	ched. The affidavit includes the date of the
		52
Signature		Date
	- Ar July Mann	

NOTICE

Spur Energy Partners LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas). The name of this facility is Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is February 19, 2020. This notice is a requirement according to New Mexico air quality regulations.

The exact initial location of the facility is UTM Zone 13, UTM Easting 548,896 m, UTM Northing 3,608,681 m. The approximate location of this site is 16.4 miles southwest of Artesia, NM in Eddy County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Pollutant	Tons per year (TPY)
1. Nitrogen Oxides (NOx)	95
2. Carbon Monoxide (CO)	95
3. Volatile Organic Compounds (VOC) (stack)	95
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Total Suspended Particulates	25
7. Sulfur Dioxide (SO2)	95
8. Hydrogen Sulfide (H2S)	25
9. Any one (1) Hazardous Air Pollutant (HAP)	< 10
10. Sum of all Hazardous Air Pollutants (HAPs)	< 25

The owner and/or operator of the Plant is:

Spur Energy Partners LLC 920 Memorial City Way, Suite 1000 Houston, Texas 77024

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also_visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Form Revision: 10 December 2019 Printed: 2/10/2020

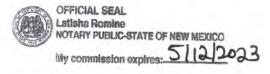
Affidavit of Publication

State of New Mexico

County of Eddy:

Danny Scott

being duly sworn sayes that he is the


Publisher

of the Artesia Daily Press, a daily newspaper of General
circulation, published in English at Artesia, said county
and state, and that the hereto attached

Legal Ad

was published in a regular and entire issue of the said
Artesia Daily Press, a daily newspaper duly qualified
for that purpose within the meaning of Chapter 167 of
the 1937 Session Laws of the state of New Mexico for

1 Consecutive weeks/day on the same
day as follows:
First Publication
February 6, 2020
Second Publication
Third Publication
Fourth Publication
Fifth Publication
Sixth Publication
Seventh Publication
Subscribed and sworn before me this

February

2020

Latisha Romine

day of

Notary Public, Eddy County, New Mexico

Copy of Publication:

Legal Notice

NOTICE

Spur Energy Partners LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas). The name of this facility is Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is February 19, 2020. This notice is a requirement according to New Mexico air quality regulations.

The exact initial location of the facility is UTM Zone 13, UTM Easting 548,896 m, UTM Northing 3,608,681 m. The approximate location of this site is 16.4 miles southwest of Artesia, NM in Eddy County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Pollutant	Tons per year (TPY)
1. Nitrogen Oxides (NOx)	95
2. Carbon Monoxide (CO)	95
3. Volatile Organic	
Compounds (VOC) (stack)	95
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Total Suspended Particulates	25
7. Sulfur Dioxide (SO2)	95
8. Hydrogen Sulfide (H2S)	25
9. Any one (1) Hazardous Air	
Pollutant (HAP)	< 10
10. Sum of all Hazardous Air	
Pollutants (HAPs)	< 25

The owner and/or operator of the Plant is:
Spur Energy Partners LLC
920 Memorial City Way, Suite 1000
Houston, Texas 77024

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

> New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimina-

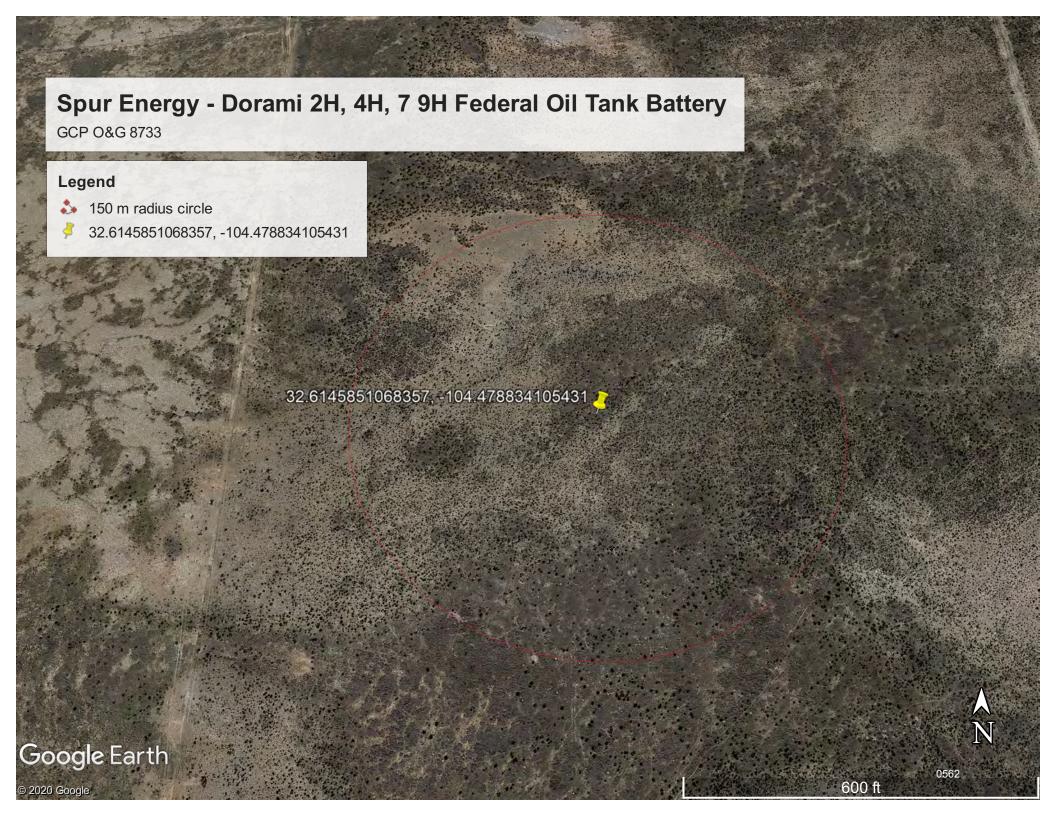
Section 10 Certification

Company Name: Spur Energy Partners LLC I, Todd Mucha, hereby certify that the information and data submitted in this Registration are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this _____ day of ______, ____, upon my oath or affirmation, before a notary of the State of *Signature Date Printed Name Title Scribed and sworn before me on this _____ day of ________, ______. My authorization as a notary of the State of ______ expires on the _____ day of ______, _____, _____ Notary's Signature Date Notary's Printed Name

Form Revision: 10 December 2019 Printed: 2/10/2020

Permit Tracking Coversheet

COPY


	Facility AI Name				Cempo Name OK Use name specified be			
		ram		5000	H Federal Oil Tank Batte	ery		
	Company Name Spur Ener	ov I			Application Name OK Owner/Operator Change	54 .		
	2 2 2 3 3 3 3 3			agita to the		Tech Serv Staff		
Tech			6-2322 Use portable Airs# (777) for GCPs 2, 3, TC; Streamlines, etc.					
Services	AI Number: 3				Permit No.: 8733 Assigned To:			
Staff &	AI Type: O&G : Facility	200	duction	Assign	ed 10:	2/28/20 LMK		
Assigning		ed to (c	or Major Source		ent matrix): Choose an item.			
Manager	Activity Class:	secology a	DOLLARS ALBERTA A NO. O. Y.	$\operatorname{bar})^1 \square$	Use tempo assist to delete actuals	Supervisor Date & Initials		
	NSR	- F-1	CP - 0&G			-10-		
	User Group:	LI R	General Attribu		ddress and Location-Cultural Window	9108		
	AQB-GCP		New Actions:	10 101	☐ Changing permit type (end old User Group in MF and add new one.)	AC		
	O&G	******	SM 80	a v	☐ Add end date to AQB user groups +	013		
	Permittee & Co	onsulta	nt info updated?	1	AI (permit being closed) WAL Updated: ☒ Staff Assigned	Data Steward Date & Initials:		
	△ App Received Date (Use date stamp)							
Data	PRN or PRT 20	020	0001	v ivoi Ki	Outstanding invoice? ☑ No ☐ Yes - \$	2/28/20		
Steward Fee: Received Full payment				al ·	Δ 170 🗀 103 - φ	- KS		
	Permit Fee type: Check Amount: \$4		\$4,260)					
Admin Staff	Create: Folder &	***	ŕť	es de la	the teach we typical many po-	Date & Initials:		
2 days	Folder Color: Red					JL 313120		
	☐ Provided mode		and the second s			Date & Initials:		
Permit Specialist	☐ My current plan☐ Requested date	(8)			by:			
	☐ Permit due date			proto.				
Permit	☐ Requested invo		ne date: (based or	30	If NSR action is Withdrawn or Denied: Take to Data Steward to discuss balance	Date & Initials:		
Specialist	6. 77 % - 30	1	Par all the	- 4	due and invoicing options.			
Data Steward (NSR only)			alance Due Invoi		eturn to Staff	Date & Initials:		
Permit Specialist	☐ Permit convers issuance date of	ion! L	n WAL of previou	ıs permi	actions add "closed" task and enter	Date & Initials:		
GCP-O&G Int. Review	Assigned to:			, D	ate Completed & put in Mailbox:	Date & Initials:		
Notes:	CD	E 1	* * * * g * p ·	m = °				
	in the second				्रीस्ट, ४			

10125 SEP PERMIAN LLC OPERATING ACCOUNT 920 MEMORIAL CITY WAY STE #1000 HOUSTON, TX 77024 DATE 2/26/20 32-1432/1110 PAY
TO THE ORDER OF NEW MEXICO AIR QUALITY BURGAU 1\$ 4,260. 00 SIKITY DOLLARS AND FOUR THOUSAND TWO HUNDRED 100 CENTS DOLLARS PD BB **BANKOF TEXAS** www.bankoftexas.com 中中日 FOR "Ololes" :: 111014325: "BO96735487"

Received

FER 2 7 2020

Air Quality Bureau

<u>Location Information for Spur Energy - Dorami 2H, 4H, 7 9H Federal Oil Tank</u>

UTMEast: 548896 UTMNorth: 3608681 Elevation: 3531

Zone: 13

DateCreated: 12/12/2019 UserID: Vanessa Springer

Datum: WGS84

Latitude: 32.6145851068357 Longitude: -104.478834105431

PSDMajor: False

SurroundingSourceCount: 0

	ngsourceCount: <mark>[able of Locatio</mark> n		<u> </u>					
Heading	Distance(miles)	Distance(km)	Direction	Site	Company	TEMPO_AI_ID	SumOfEmissions(T/yr)	Pollutant
CO monitor (First closest).	129.72	208.77	east- northeast of	800 S San Marcial Street, El Paso, TX	481410044	0	0	СО
CO monitor (Second closest).	208.05	334.82	southeast of	201 PROSPERITY SE	350010029	0	0	СО
PM10 monitor (First closest).	79.33	127.66	west of	Hobbs - 2320 N. Jefferson St	5ZS	0	0	PM10
PM10 monitor (Second closest).	119.59	192.46	east- northeast of	Chaparral- Chaparral Middle School 680 McCombs	6ZK	0	0	PM10
PM2.5 monitor (First closest).	79.33	127.66	west of	Hobbs - 2320 N. Jefferson St	5ZS	0	0	PM2.5
PM2.5 monitor (Second closest).	130.96	210.76	east- northeast of	Anthony- Elementary School	6CM	0	0	PM2.5
Facility emitting over 25 tons/year (first closest)	3.17	5.11	east of	DCP - Dagger Draw Compressor Station	DCP Operating Company LP	255	92.8	NO2
Facility emitting over 25 tons/year (second closest)	4.29	6.90	east- southeast of	Lucid Artesia - 7 Rivers Draw Compressor Station	Lucid Artesia Company	335	44.4	NO2
Facility emitting over 25 tons/year (third closest)	5.83	9.38	east of	Lucid Artesia - Larue Compressor Station GCP4- 0849	Lucid Artesia Company	337	34.3	NO2
Facility emitting over 250 tons/year	11.64	18.73	north- northeast of	OXY - Indian Basin Gas Plant	OXY USA WTP Limited Partnership	197	397.76	NO2

(first closest) Facility emitting over 250 tons/year (second closest) Facility emitting over 250 tons/year (third closest) State Park (first closest). State Park (second closest). State Park (second closest). Class I area (First closest). Class I area (First closest).	.48	26.60 29.74 7.25	west-southwest of	HollyFrontier - Artesia Refinery Artesia Gas Plant	LLC DCP	198		NO2
emitting over 250 tons/year (second closest) Facility emitting over 250 tons/year (third closest) State Park (first closest). State Park (second closest). State Park (second closest). Class I area (First closest). Class I area (First closest). Class I area (First closest).	.48	26.60 29.74 7.25	west-southwest of west-northwest	- Artesia Refinery Artesia Gas	Navajo Refining LLC DCP Operating			
emitting over 250 tons/year (third closest) State Park (first closest). State Park (second closest). State Park (second closest). Class I area (First closest). Class I area (First closest).	50	7.25	southwest of west-northwest		Operating	199	646.52	NO2
Park (first closest). State Park (second closest). State Park (second closest). Class I area (First closest). Class I cree closest.		7.25	northwest					
Park (second closest). State Park (third closest). Class I area (First closest). Class I area	.73		01	Brantley Lake	OXY USA WTP Limited Partnership	197	397.76	NO2
Park (third closest). Class I area (First closest). Class I			northwest of	Living Desert Zoo & Gardens	HollyFrontier Navajo Refining LLC	198	711.32	NO2
area (First closest).	.88	78.66	south of	Bottomless Lakes	DCP Operating Company LP	199	646.52	NO2
oran	.87	46.45		Carlsbad Caverns National Park		0	0	
(Second closest). 45.1	.12	72.61	northeast	Guadalupe Mountains National Park		0	0	
Class I area (Third closest).	.72	105.76	south of	Salt Creek		0	0	
Class I area (Fourth closest).	.32	1/12///	southeast of	White Mountain Wilderness Area		0	0	
City (First closest).	.34		south- southwest of	Atoka		0	0	
City (Second closest).	.37	26.35	south of	Artesia		0	0	
NO2 monitor (First closest).	.57	44 111	northwest of	2811 Holland Street, Carlsbad, NM	5ZR	0	0	NO2
NO2 monitor (Second closest).	.33	127.66	west of	Hobbs - 2320 N. Jefferson St	5ZS	0	0	NO2
SO2 212. monitor	2.14			4700A SAN MATEO NE	350010023	0	0	SO2

(First closest).								
SO2 monitor (Second closest).	212.37	341.77	east of	Hurley-Chino Blvd near Hurley Park	7T	0	0	SO2

GCP Oil & Gas Stack Calculator Program version: November 5, 2019 0.315

NOX Total emission rate Group 2 NOX emission rate Equivalent Diameter [1.32] (for facility)

Set flare NOX emission rate to 0.

SO2 tot	al emission rate	7.477	Set SO2 equipme	emission rate to ent but flares and I	o for all ECD's.				
Equi	pment Equipment Name	Equipment Type	NOX Rate (lb/hr)	SO2 Rate (lb/hr)	Height (ft)	Diameter (ft)	Velocity (ft/s)	Temperature (deg. F)	Group Comments
1	FWKO-1	Heater	0.086	0 Actual	25	0.66	21.62	250	Small heater, no minimum stack parameters.
				Minimum	0	0	0	0	
2	FWKO-2	Heater	0.086	0 Actual	25	0.66	21.62	250	3 Small heater, no minimum stack parameters.
				Minimum	0	0	0	0	
3	FWKO-3	Heater	0.086	0 Actual	25		21.62	250	3 Small heater, no minimum stack parameters.
				Minimum	0	0	0	0	
4	HT-1	Heater	0.057	0 Actual	25		21.62	250	3 Small heater, no minimum stack parameters.
				Minimum	0	0	0	0	
5	Flare	Flare	0	, 10101011	35		0	0	1
				Minimum	11.5	0	0	0	

Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Nonattainment Areas)

If a fee is required and is not submitted with the application, the registration will be denied.

This Registration is being submitted as (check all that apply):

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #:			
1		Plant primary SIC Code (4 digits): 1311				
1	Facility Name: Dorami 2H, 4H, & 9H Federal Oil Tank Battery	Plant NAIC code (6 digits): 211120				
a	Facility Street Address (If no facility street address, check here \(\subseteq \) and provide directions in Section 4):					
2	Plant Operator Company Name: Spur Energy Partners LLC Phone/Fax: 281-795-2286					
a	Plant Operator Address: 920 Memorial City Way, Ste 1000, Houston, Texas 77024					
3	Plant Owner(s) name(s): Spur Energy Partners LLC	Phone/Fax: 281-795-2286				
a	Plant Owner(s) Mailing Address(s): 920 Memorial City Way, Ste 1000, Houston, Texas 77024					

GCP-Oil and Gas Form: 10 December 2019

4	Bill To (Company): Spur Energy	y Partners LLC	Phone/Fax: 281-795-2286						
a	Mailing Address: 920 Memorial 77024	City Way, Ste 1000, Housto	E-mail:todd@spur	epllc.com					
5	☐ Preparer: Energy Resource Developme ☐ Consultant: John Connolly	ent, Inc	Phone/Fax: 225-753-4723						
a	Mailing Address: 19345 Point O Woods Court, Baton Rouge, LA 70809								
6	Plant Operator Contact: Todd M	ucha		Phone/Fax: 281-79	95-2286				
a	Mailing Address: 920 Memorial 77024	City Way, Ste 1000, Housto	on, Texas	E-mail: todd@spu	repllc.com				
7	Air Permit Contact ¹ : Todd Much	na		Title: EVP-Operat	ions				
a	E-mail: todd@spurepllc.com			Phone/Fax: 281-79	95-2286				
b									
	¹ The Air Permit Contact will receive official correspondence from the Department.								
0	Will this facility operate in conjunction with other air regulated parties on the same property?								
8	If yes, what is the name and NOI or permit number (if known) of the other facility?								
2)	Applicability								
1	Is the facility located in Bernalil	lo County, on tribal lands, or	r in a nonattair	nment area?		⊠No	Yes		
If you	answered Yes to the question above	ve, your facility does not qua	alify for this ge	eneral construction p	ermit.				
2	Is the facility's SIC code 1311, 1321, 4619, 4612 or 4922? (Other SIC codes may be approved provided that \Boxed{\subseteq No} \Boxed{\subseteq Yes}								
3	all the equipment at the facility is allowed in the GCP-Oil & Gas Permit.)								
3	Does the regulated equipment under this GCP-Oil and Gas Registration include any combination of Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit, and no others?								
4	Will the regulated equipment as specified in this GCP-Oil and Gas Registration emit less than the total emissions in Table 106 of the GCP-Oil and Gas permit?								
5	Does all equipment comply with the stack parameter requirements as established in the GCP-Oil and Gas Permit?								
6	Equipment shall be at least 100 meters (m) from any stack to terrain that is five (5) or more meters above the top of the stack. Will the equipment at the facility meet this terrain requirement?								
7	Is the facility at least 150 m from any source that emits over 25 tons/year of NO _x ? This is the distance between the two nearest stacks that emit NO _x at each of the facilities. Not the facility boundaries or the								
0	center to center distances.								
8	Is the facility at least 3 miles from any Class I area? This is the distance from the nearest facility boundary to the nearest boundary of the Class I area.								
If you	answered NO to any of questions		ualify for this	general construction	permit.	l .			
3)	Current Facility Stat		·		•				
1	Has this facility already been con	structed? Yes No	If yes, is it co	urrently operating in	New Mexico?	Yes	☐ No		
2	Does this facility currently have a construction permit or Notice of Intent (NOI) (20.2.72 NMAC or 20.2.73 NMAC)? Yes No If yes, the permit No. or NOI No., and whether it will remain active or not:								
3	Is this Registration in response to a Notice of Violation (NOV)? Yes No If so, provide current permit #: If yes, NOV date: NOV Tracking No.								
4	Check if facility is a: Minor Source: Synthetic Minor Source: (SM80 = Controlled Emissions > 80 TPY of any regulated air pollutant):								
4)	Facility Location Info			2011101	<i>J = -8.3</i>	F - 11000			
	a) Latitude (decimal degrees): b) Longitude (decimal degrees): c) County: d) Elevation (ft):								
1	32.614589	-104.47883	Eddy 3531						
2	a) UTM Zone: □12 or □13	b) UTME (to nearest 10 meter	rs) 548,896	c) UTMN (to nearest 10 meters): 3,608,681					

GCP-Oil and Gas Form: 10 December 2019

3	e) Specify which datum is used: NAD 27 NAD 83 WGS 84 See this link for more info. http://en.wikipedia.org/wiki/North_American_Datum					
4	Name and zip code of nearest New Mexico town and tribal community: 88210					
5	Detailed Driving Instructions including direction and distance from nearest NM town and tribal community (attach a road map if necessary). If there is no street address, provide public road mileage marker: From the intersection of Hwy 285 and Hwy 82 in Artesia, NM, go south on Hwy 285 for 15.2 miles. Turn right on CR 23 (Rock Daisy Rd) and go 4.0 miles to facility road on the left.					
6	The facility is 16.4 (distance) miles Southwest (direction) of Artesia (nearest town).					
7	Land Status of facility (check one): Private Indian/	Pueblo 🗌 Government 🔀 BI	LM Forest Service Military			
5)	Other Facility Information					
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL).	Oil (bbl/day): 2,300 Gas (MMscf/day): 3.5 NGL (bbl/day): 0	(bbl/yr): 839,500 (MMscf/yr): 1,277.5 (bbl/yr): 0			
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.	□No ⊠Yes				
6) Sı	ubmittal Requirements					
1	Include one hard copy original signed and notarized Registration package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except landscape tables, which should be head-to-head. If 'head-to-toe printing' is not possible, print single sided. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process.					
2	Include one double sided hard copy, flip on long edge for	Department use. This <u>copy</u> doe	es not need to be 2-hole punched.			
3	The entire Registration package should be submitted electronically on one compact disk (CD). Include a single PDF document of the entire Registration as submitted and the individual documents comprising the Registration. The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDFs of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. Spreadsheets must be unlocked since we must be able to review the formulas and inputs. Ensure all of these are included in both the electronic and hard copies.					
	 \subseteq Word Document part of the Registration Form (Sections 1 and 3-10) \subseteq Excel Document part of the Registration Form (Section 2) \subseteq Air Emissions Calculation Tool (AECT) If there is a justified reason for including other calculations, include the unlocked Excel Spreadsheet. Justification must be provided in Section 5 of the application. \subseteq PDF of entire application 					
	To avoid errors, it is best to start with both a blank version of this form and the AECT for each application.					

Section 2 Tables

Insert Excel spreadsheet with applicable tables filled out. If applicable to the facility all tables must be filled out completely. The unit numbering system must be consistent throughout this Registration

GCP-Oil and Gas Form: 10 December 2019 Printed: 7/6/2020

0570

Section 3 Registration Summary

<u>The Registration Summary:</u> Provide information about the registration submittal. The Registration Summary shall include a brief description of the facility and its process. In case of a modification to a facility, please describe the proposed changes.

Specify Facility Type: Check the appropriate box below:	
□ Production Site □	
☐ Tank Battery	
Compressor Station	
☐ Natural Gas Plant	
Other, please specify:	

Registration Summary:

Spur Energy Partners LLC proposes this initial GCP-Oil & Gas application for the Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The site will have an initial production rate of 2,300 bbl/day of oil, 8,000 bbl/day of produced water, and 3.5 MMScf/d of produced gas. Multiple wells are associated with this production facility.

As proposed, equipment at the well site will include three (3) 0.75 MMBtu/hr free water knockouts, one (1) 0.5 MMBtu/hr heater treater, one (1) electric vapor recovery unit (VRU) with an associated Vapor Recovery Tower (VRT), a dual-pressure combustion flare, four (4) 1,000 bbl produced water tanks, four (4) 1,000 bbl oil tanks, and various gas scrubbers.

Additional emissions at the site will result from tank truck loading, truck hauling, fugitive emissions, and malfunction emissions.

The combustion flare will control emissions from the oil & produced water tanks working, standing, and flashing losses, VRT flash gas during VRU downtimes, and produced sales gas to a minimum 98% efficiency. In the event that the VRU is down for maintenance, the flare will still control emissions from the vapor recovery tower. During maintenance or unavailability on the sales gas pipeline, all produced gas off the separators will be continuously routed to the flare until gas can be sold. The flare calculation page on the AECT is broken down into two streams, the high-pressure stream and the low-pressure stream. The high-pressure stream will be a combination of sales gas off the FWKOs during pipeline interruption, VRU gas during pipeline interruption, and gas during VRU downtime. The low-pressure stream will be the flash, working, and standing losses off the oil and water tanks.

Because of both the economic and environmental impacts on operations, Spur diligently inspects the VRU to ensure that it is in continuous operation.

Written description of the routine operations of the facility:

The production stream from the Dorami 2H, 4H, & 9H wells will enter the heated three-phase free water knockouts where the oil, water, and gas will be separated. The gas off the FWKOs will be routed to sales or to the flare for combustion. The water off the FWKOs will be routed to the water tanks. The oil will be routed to the VRT prior to being sent to the oil tanks. The flash gas off the VRT will be captured by the VRU and sent to sales or to the flare for combustion. When the VRU is not working, the VRT will route any captured flash gas to the flare. The oil and water tanks will be controlled to the dual-pressure combustion flare which will combust the flash, working, and standing emissions in the tanks. The produced oil is trucked out of the facility while the water is piped out. All oil truck loading emissions will be vented to the atmosphere. The heater treater will be used to circulate tank bottoms.

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM):

There are no SSM emissions currently associated with this facility.

Malfunction Emissions (M):

Spur Energy Partners LLC request 10 TPY VOC emissions to be added to this application for any malfunctions that might happen at the facility due to sudden and unavoidable failure to air pollution control equipment or process equipment beyond the control of Spur Energy Partners.

Allowable Operations: Check the appropriate box below:
☐ Facility operates continuously (8760 hours per year)
☐ The following regulated equipment will operate less than 8760 hours per year. Add additional rows as necessary. These
units are subject to Condition A108 C of the Permit

Table A – Equipment Operating Less Than 8760 hours per year

Unit #	Requested Annual Operating Hours

GCP-Oil and Gas Form: 10 December 2019 Printed: 7/6/2020

0572

Verification of Compliance with Stack Parameter Requirements:

Please use the Stack Calculator and Stack Requirements Explained Guidance on our website: All of the verification information below is required to be filled out.

www.env.nm.gov/air-quality/air-quality-oil-and-gas-gcp-application-forms/

Check the box for each type of equipment at this facility:
Engine(s)
☐ Turbine(s)
\boxtimes Flares(s)
☐ Enclosed Combustion Device (s)
Heater(s)
Reboiler(s)
For each type of equipment checked above, complete the applicable section below.

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emis				
Engine/Generator/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
FWKO-1	25	250	21.62	0.66
FWKO-2	25	250	21.62	0.66
FWKO-3	25	250	21.62	0.66
HT-1	25	250	21.62	0.66
Table 1 Minimum Parameters: For verification, list the minimum parameters based on the NOx lb/hr emission rate from the GCP O&G Table 1.	5.9	571	49.2	0.3

4.	Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP O&G?
	Yes. Skip step 5 below.
\boxtimes	No. Go to step 5 below.

5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

Condition A203.C states that if "any heater or boiler is unable to meet the minimum stack parameter requirements in Table 1 or 2 of Condition A202.I, the maximum total emission rates allowed for those heaters and reboilers is 1.23 lb/hr of NOx"; therefor, the heaters at the facility will meet this requirements since their total emission rate is 0.315 lb/hr which is below the 1.23 lb/hr threshold allowed.

Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Table C: Turbine/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total I	NOx Emission Rate:	lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number		• ` ` `		
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

	Yes. Skip step 5 below.
Ш	No. Go to step 5 below.
5.	For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G, explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page 18 of the GCP O&G or Condition A203 C of the GCP O&G. Show all calculations

4. Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Table D: Flare Stack Height Parameter Verification:

Flare Unit Number	SO ₂ Emission Rate (lb/hr)		Table 3 Minimum Stack Height: For verification, list the minimum height parameters based on the SO2 emission rate from the GCP O&G Table 3.
FLARE	7.477	35	11.5

4.	Do all flares comply with minimum stack height requirements? ☐ Yes ☐ No
5.	Does the flare gas contain 6% H₂S or less by volume (pre-combustion)? ☐ Yes. Skip step 6 below. ☐ No. Go to step 6 below.
6.	Explain in detail how assist gas will be added to reduce the gas composition to 6% H ₂ S or less by volume.

Enclosed Combustion Device(s) (ECD):

According to GCP O&G Condition A208.A, the facility must meet one of the following options if an ECD is installed at the facility:

Option 1:

Option 1	<u> </u>
1.	Will the ECD(s) meet the SO₂ emission limit of 0.7 lb/hr and operate with a velocity of at least one (1) foot per second? ☐ Yes. Skip Option 2 below. ☐ No. Go to Option 2 below.
Option 2	<u>2:</u>
2.	Will the ECD(s) meet the SO_2 emission limit of 0.9 lb/hr and operate with a velocity of at least two (2) feet per second? Yes No

Section 4

Process Flow Sheet

Attach a **process flow sheet** indicating all individual equipment, all emission points, and types of control applied to those points. All units must be labeled, and the unit numbering system must be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water). The process flow sheet must be a legible size.

GCP-Oil and Gas Form: 10 December 2019 Printed: 7/6/2020

0577

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration. If the AECT, for a piece of equipment is under development, provide alternate calculations. **Do not include alternative calculations unless there is an issue being resolved with the AECT. This will delay review of the application.** The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. The inputs must match the gas analyses information submitted. Inputs that don't match may be grounds for denial of the application submittal.

<u>SSM Calculations</u>: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank).

<u>Control Devices:</u> Report all control devices and list each pollutant controlled by the control device. Indicate in this section if you chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

<u>Calculation Details:</u> The AECT is required for all emission calculations. If the AECT is not functioning, alternative calculations may be submitted only for the portions of the AECT with issues being resolved. Utilize this section to explain in detail, on an equipment-by-equipment basis, why alternative calculations are necessary.

Explain here:			

Equipment Forms Submitted in this Section (add additional rows as necessary):

Equipment Type	Quantity	Check Box to Indicate Units that are Controlled	Enter Control Device Type and Pollutant Controlled
Engine			
Turbine			
Tanks	8	\boxtimes	FLARE; VOC & H2S
Generator			
VRU	1		
VRT	1		VRU; VOC & H2S
ULPS			
Glycol Dehydrator			
Flare	1		TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, VRU-1, SALES GAS OFF THE PRODUCTION EQUIPMENT; VOC & H2S
Amine Unit			
Cryogenic Unit			
Fugitive Emissions	1		
Heater	4		
Truck Loading	1		
Enclosed Combustion			

Form Revision: 10 December 2019 Printed: 7/6/2020

)578

Spur Energy Partners LLC		Dorami 2H, 4H	I, & 9H Federal (Oil Tank Battery	2/10/2020
Device (ECD)					
Thermal Oxidizer (TO)					
Unpaved Haul Road	1	 			
Other					
For each scenario below, copy and paste each appl					as combustion scenario. Please ry.
	following ur priate box. er and VRU (pressor	nits located upstr			ream of Storage Vessels: If the ed to flash and capture flashing
capture flashing emissions	prior to any poolona. A p	storage vessels t process vs contro	o limit the PTE o	of the storage vessel should be prepared	if the facility is using a VRU to s to below applicability thresholds for this type of VRU application.
storage vessel emissions to Unit number:	limit the PT	E to below NSP	S OOOO or NSP	S OOOOa applicab	cility is using a VRU to reduce illity thresholds:
	ige Vessel er	nissions and the	facility is subjec	t to the requirement	s under NSPS OOOOa, 40 CFR
scenarios. Flares shall assu	ime a destruction eff	ction efficiency	of 95%, unless th	ne facility is subject	to any appropriate facility operating to requirements for flares under 40 specification sheet (MSS) for that
A flare, vapor combustion Unit number: FLARE	unit (VCU),	enclosed combu	stion device (EC	D), thermal oxidize	r (TO):
Controls storage vesse			-		
Provides a federally en CFR 60, Subpart OO			rage vessels to lin	nit the PTE to below	w applicability thresholds of 40
Controls the glycol de		Ja.			
Controls the amine un					
Controls truck loading					
Operates only during					
					nissions from the compressor d emissions from the combustion

Amine Unit: Provide the following information for each amine unit.

Controls the facility during plant turnaround

device

Aimine Cint. 110 vide the following information for each aimine unit.					
Design Capacity in MMscf/day					
Rich Amine Flowrate in gal/min					
Lean Amine Flowrate in gal/min					
Mole Loading H ₂ S					
Sour Gas Input in MMscf/day					

Glycol Dehydration Unit(s): Provide the following information for each glycol dehydration unit: Please include an extended gas analysis in Section 6 of this application.

Unit # Glycol Pump Circulation Rate			
Voluntary Monitoring in Accordance with §40 CFR 60.5416 requirements of 40 CFR 60.5416(a). This monitoring program established in the GCP-Oil and Gas for individual equipment. Creported in an updated Registration Form to the Department.	will be conducted in lieu of the monitoring requirements		
 ☐ Condition A205.B Control Device Options, Requirements, ☐ Condition A206.B Truck Loading Control Device Inspection ☐ Condition A206.C Vapor Balancing During Truck Loading ☐ Condition A209.A Vapor Recovery Unit or Department-ap ☐ Condition A210.B Amine Unit Control Device Inspection 	on g		
Fugitive H ₂ S Screening Threshold and Monitoring in accord	dance with Condition A212: Check the box that applies.		
☑ Condition A212.A does not apply because the facility is below	ow the fugitive H ₂ S screening threshold in Condition A212, or		
Condition A212.A applies. Because the facility is above the facility is voluntarily complying with Condition A212.A, and			

Section 6

Information Used to Determine Emissions

Check the box for each type of information submitted. This documentation is required. If applicable to the facility.

Failure to include applicable supporting documentation may result in application denial.

🛮 Specifications for control equipment, including control efficiency specifications and sufficient engineering data for
verification of control equipment operation, including design drawings, test reports, and design parameters that affect
normal operation.
Engine or Generator Manufacturer specifications ☐ Catalyst Manufacturer specifications (If a catalyst is being utilized to reduce emissions, the catalyst manufacturer emission factors must be used in all emission calculations. A 25% safety factor may be applied to each pollutant. ☐ NSPS JJJJ emission factors may not be utilized in lieu of catalyst manufacture specifications when a catalyst is installed, and the catalysts manufacturer achieves higher control efficiency. ☐ Flare Manufacturer specifications ☐ Oil/Liquid Analysis: This data is required to match the inputs in all applicable emission calculations. For facilities that have not been constructed and a representative analysis is used it cannot be older than 1 year. For existing facilities, the gas analyses required by Condition A201.A (must be 1 year old or less).
☐ Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
Extended Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
If requesting to use a representative gas sample, include a discussion of why the sample is representative for this facility and an explanation of how it is representative (e.g., same reservoir, same similar API gravity, similar composition).
If test data are used, to support emissions calculations or to establish allowable emission limits, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates. Fuel specifications sheet.
If computer models are used to estimate emissions, include an input summary and a detailed report, and a disk containing the input file used to run the model.
For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, accuracy of the model, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Representative Gas Analysis Justification: Representative gas analysis used is from a well with similar API gravity, same reservoir, similar composition, and with similar separation technique. Flash analysis was calculated from a nearby facility that is operating in the same reservoir that has a similar oil composition. The flash analysis was calculated for the pressure drop between the tanks and the upstream separation equipment.

Section 7

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

Section 8A

Applicable State & Federal Regulations

<u>Provide a discussion demonstrating compliance with each applicable state & federal regulation</u>. All input cells should be filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

Applicable STATE REGULATIONS

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	Yes	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide, and Nitrogen Dioxide.	Facility	Yes	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of the TSP, SO ₂ , H ₂ S, NOx, and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	Yes	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	20.2.38.109 TANK STORAGE ASSOCIATED WITH PETROLEUM PRODUCTION OR PROCESSING FACILITY 20.2.38.112 NEW TANK BATTERY MORE THAN 65,000 GALLONS CAPACITY	TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3,	Yes	The purpose of this regulation is to minimize hydrogen sulfide emissions from hydrocarbon storage facilities. The storage tanks, TK-1 through TK-4 & PWTK-1 through PWTK-4 are a new production facility as they were constructed after July 1, 1975. The tanks are all 1000 bbl. The tanks are subject to 20.2.38.109 NMAC. The tanks comply with the requirement to minimize vapor loss to the atmosphere through use of the flare. The tanks are subject to NMAC 20.2.38.112 since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the

Form Revision: 10 December 2019 Printed: 7/6/2020

0583

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
						atmosphere.
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	FWKO-1, FWKO-1, FWKO-3, HT-1, FLARE	Yes	This regulation establishes controls on smoke and visible emissions from certain sources, including stationary combustion equipment. The heaters and flare are subject to this regulation as they are stationary combustion equipment.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	NOI: 20.2.73.200 NMAC applies to all facilities emitting over 10 TPY of any regulated air contaminate. Thus, permitted facilities are also subject to this rule. This GCP-O&G registration also serves the purpose of meeting 20.2.73 the NMAC notification requirements.) Emissions Inventory: 20.2.73.300.A(1) NMAC applies to facilities registering under the GCP. Emission Inventory reporting is required upon request by the department per 20.2.73.300.B(4) NMAC.	Facility	YES	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet any applicable reporting requirements under 20.2.73 NMAC.
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended on the date of certification.	Facility	YES	The facility is subjects to NSPS OOOOa
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended on the date of certification.	NA	NO	The facility is a minor source for HAPS
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended on the date of certification.	NA	NO	The purpose of this regulation is to establish state authority to implement new source performance standards for stationary sources in New Mexico subject to 40 CFR Part 63. This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended through August 29, 2013. This regulation does not apply as no units at this facility are subject to 40 CFR Part 63.

Applicable FEDERAL REGULATIONS (This is not an exhaustive list; add applicable regulations such as NSPS GG and KKKK):

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 50	NAAQS	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	Facility	YES	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
					standards for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.
40 CFR 60, Subpart A	General Provisions	Applies if any other NSPS subpart applies.	Facility, Flare	YES	Applies if any other NSPS subpart applies.
40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced After August 23, 2011, and on or before September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375); centrifugal compressors (60.5380); reciprocating compressors (60.5385): controllers (60.5390); storage vessels (60.5400); sweetening units (60.5405). If standards apply, list the unit number(s) and regulatory citation of the standard that applies to that unit (e.g. Centrifugal Compressors 1a-3a are subject to the standards at 60.5380(a)(1) and (2) since we use a control device to reduce emissions)		NO	
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5385a): controllers (60.5395a); storage vessels (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	Fugitives TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4,	YES	This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The rule applies to "affected" facilities that are constructed, modified, or reconstructed after September 18, 2015. The facility commenced construction after September 18, 2015. The facility is therefor subject to NSPS OOOOa. Fugitive emissions are subject to 60.5397a and the tank are subject to 60.5395a
40 CFR 60, Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	NA	NO	
40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	See 40 CFR 60.4230(a), 1 through 5 to determine applicable category and state engine size, fuel type, and date of manufacture.	NA	NO	
40 CFR 63, Subpart A	General Provisions	Applies if any other subpart applies.	NA	NO	
40 CFR 63,	NESHAP for Glycol	See 40 CFR 63, Subpart HH	NA	NO	

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
Subpart HH	Dehydrators				
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	NA	NO	

Section 8B Compliance Test History

To evaluate the requirement for compliance tests, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date

Form Revision: 10 December 2019

Printed: 7/6/2020 0587

Section 9 Proof of Public Notice

·,	, the undersigned, certify that on
conspicu	posted a true and correct copy of the attached Public Notice in a publicly accessible and lous place, visible from the nearest public road, at the entrance of the property on which the s, or is proposed to be, located.
Signed tl	his, day of,
Signature	Date
Printed N	
News	paper Publication of Notice
	An original or copy of the actual newspaper advertisement posted in a newspaper in general circulation in the applicable county is attached. The original or copy of the advertisement includes the header showing the date and newspaper or publication title.
	OR
	stating that the advertisement was published is attached. The affidavit includes the date of th advertisement's publication, and a legible photocopy of the entire ad.

NOTICE

Spur Energy Partners LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas). The name of this facility is Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is February 19, 2020. This notice is a requirement according to New Mexico air quality regulations.

The exact initial location of the facility is UTM Zone 13, UTM Easting 548,896 m, UTM Northing 3,608,681 m. The approximate location of this site is 16.4 miles southwest of Artesia, NM in Eddy County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Pollutant	Tons per year (TPY)
1. Nitrogen Oxides (NOx)	95
2. Carbon Monoxide (CO)	95
3. Volatile Organic Compounds (VOC) (stack)	95
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Total Suspended Particulates	25
7. Sulfur Dioxide (SO2)	95
8. Hydrogen Sulfide (H2S)	25
9. Any one (1) Hazardous Air Pollutant (HAP)	< 10
10. Sum of all Hazardous Air Pollutants (HAPs)	< 25

The owner and/or operator of the Plant is:

Spur Energy Partners LLC 920 Memorial City Way, Suite 1000 Houston, Texas 77024

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also_visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Section 10 Certification

Company Name: Spur Energy Partners LLC I, Todd Mucha, hereby certify that the information and data submitted in this Registration are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this _____ day of ______, ____, upon my oath or affirmation, before a notary of the State of *Signature Date Printed Name Title Scribed and sworn before me on this _____ day of ________, ______. My authorization as a notary of the State of ______ expires on the _____ day of ______, _____, _____ Notary's Signature Date Notary's Printed Name

Table 2-A: **Regulated Emission Sources** Unit and stack numbering must correspond throughout the application package. Equipment that qualifies for an exemption under 20.2.72.202.B NMAC should be included in Table 2-B **Note:** Equipment options are not authorized. Date of Controlled by Unit# Manufacture² Manufact-Requested RICE Source urer's Rated Permitted Unit Classi-Ignition Type Manufacturer/Make **Source Description** Serial# For Each Piece of Equipment, Check Onc Capacity³ Capacity³ (CI, SI, 4SLB. Date of Number /Model **Emissions** fication (Specify (Specify Construction/ Code (SCC) vented to 2SLB)4 Units) Units) Reconstruction² Stack # HEATED FREE Existing (unchanged) ☐ To be Removed NA **FLARE** 0.75 0.75 FWKO-1 NA 31000404 X New/Additional ☐ Replacement Unit WATER NA NA MMBtu/hr MMBtu/hr 2020 FWKO-1 ☐ To Be Modified ☐ To be Replaced KNOCKOUT HEATED FREE Existing (unchanged) ☐ To be Removed NA **FLARE** 0.75 0.75 FWKO-2 X New/Additional WATER NA NA 31000404 NA ☐ Replacement Unit MMBtu/hr MMBtu/hr 2020 FWKO-2 To Be Modified ☐ To be Replaced KNOCKOUT HEATED FREE Existing (unchanged) ☐ To be Removed NA **FLARE** 0.75 0.75 FWKO-3 WATER NA NA 31000404 X New/Additional ☐ Replacement Unit NA MMBtu/hr MMBtu/hr 2020 FWKO-3 ☐ To be Replaced ☐ To Be Modified KNOCKOUT ☐ Existing (unchanged) ☐ To be Removed NA **FLARE HEATER** 0.50 0.50 HT-1 NA NA 31000404 X New/Additional NA ☐ Replacement Unit **TREATER** MMBtu/hr | MMBtu/hr 2020 HT-1 ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** 1000 BBL 40400312 X New/Additional TK-1 T-15911 1000 BBL NA ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** X New/Additional TK-2 T-15908 1000 BBL 1000 BBL 40400312 NA ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** TK-3 T-15912 1000 BBL 1000 BBL 40400312 X New/Additional NA ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** TK-4 T-15909 1000 BBL 1000 BBL 40400312 NA X New/Additional ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 3/15/2019 **FLARE** 1000 BBL **SAWYER** PWTK-1 1504 1000 BBL 1000 BBL 40400315 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** □ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 3/15/2019 **FLARE** 1000 BBL **SAWYER** PWTK-2 1502 1000 BBL 1000 BBL 40400315 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 1000 BBL 12/2/2018 **FLARE SAWYER** PWTK-3 1258 1000 BBL 1000 BBL 40400315 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 1000 BBL **SAWYER** 3/15/2019 **FLARE** PWTK-4 40400315 1501 1000 BBL 1000 BBL X New/Additional NA ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** To Be Modified ☐ To be Replaced DUAL Existing (unchanged) ☐ To be Removed NA NA 192.109 4290.58 **FLARE** VAPROX 30600903 **PRESSURE** NA NA X New/Additional ☐ Replacement Unit MMScf/yr MMScf/yr 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced **FLARE FACILITY** Existing (unchanged) ☐ To be Removed NA NA FUG-1 **WIDE** NA NA NA NA 31088811 NA X New/Additional ☐ Replacement Unit 2020 NA □ To Be Modified ☐ To be Replaced **FUGATIVE**

					Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ²	Controlled by Unit #				
Unit Number ¹	Source Description	Manufacturer/Make /Model	Serial#	Manufact- urer's Rated Capacity ³ (Specify Units)		Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Source Classi- fication Code (SCC)	RICE Ignition Type (CI, SI, 4SLB, 2SLB) ⁴	For Fach Piace of Fauinment Check One	
	Γ			<u> </u>		I	<u> </u>	I	<u> </u>	☐ Existing (unchanged) ☐ To be Removed	
MALF.	MALFUNTION	NA	NA	NA	NA	NA	NA	31088811	1 NA	 □ Existing (unchanged) □ To be Removed X New/Additional □ Replacement Unit 	
11221	EMISSIONS					2020	NA		1,11	☐ To Be Modified ☐ To be Replaced	
OILLOA	OIL TRUCK	NA	NA	NA	NA	NA	NA	40600132	32 NA	☐ Existing (unchanged) ☐ To be Removed X New/Additional ☐ Replacement Unit	
D-1	LOADING	NA	INA	INA	INA	2020	NA	40000132	INA	X New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	
	VAPOR	RICHARD'S				NA	FLARE			☐ Existing (unchanged) ☐ To be Removed	
VRU-1	RECOVERY UNIT	ENERGY COMPRESSION, LLC	NA	NA	NA	2020	FLARE	31000199	199 NA	X New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	
I ID T	VAPOR	37.4	37.4	27.4	3.7.4	NA	VRU/FLARE	21000120	37.4	☐ Existing (unchanged) ☐ To be Removed	
VRT-1	RECOVERY	NA	NA	NA	NA	2020	FLARE	31000129	NA	X New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	
1	TOWER	to unit numbers in the pro						<u> </u>		10 be mounted 10 be replaced	

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

Spur Energy Partners LLC

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FLARE	COMBUSTION FLARE	2020	VOC, H2S	TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, SALES GAS, VRT FLASH GAS DURING VRU DOWNTIME	98%	MANUFACTURER ESTIMATE
VRU-1	VAPOR RECOVERY UNIT	2020	VOC, H2S	VAPOR RECOVERY TOWER (VRT)	100%	ENGINEERING ESTIMATE
1	ntrol device on a separate line. For each control device, list all en					

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

II	NO	Ox	C	o	V(OC	SC	Ox	PM	110 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FWKO-1	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-2	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-3	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
HT-1	0.057	0.25	0.048	0.21	0.003	0.013	-	-	0.004	0.018	0.004	0.018	-	-	-	-
TK-1	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	1	70.92	310.63	1	-	1	-	-	-	1	-	-	-
TK-3	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	-	1	2.45	10.73	ı	-	1	-	-	-	1	-	-	-
PWTK-2	-	-	-	1	2.45	10.73	ı	-	1	-	-	-	1	-	-	-
PWTK-3	-	-	-	1	2.45	10.73	ı	-	1	-	-	-	1	-	-	-
PWTK-4	-	-	-	-	2.45	10.73	-	-	-	-	-	-	-	-	-	-
FLARE	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435	-	-	-	-	5.292	3.139	-	-
FUG-1	-	-	-	1	0.54	2.33	ı	-	1	-	1	-	0.02	0.08	-	-
MALF.	-	-	-	ı	-	10	ı	-	ı	-	-	-	ı	-	-	-
OILLOAD-1	-	-	-	1	14.99	29.97	ı	-	1	-	1	-	ı	-	-	-
Totals	25.875	19.851	57.684	42.645	350.818	1375.96	7.477	4.435	0.025	0.111	0.025	0.111	5.312	3.219	-	-

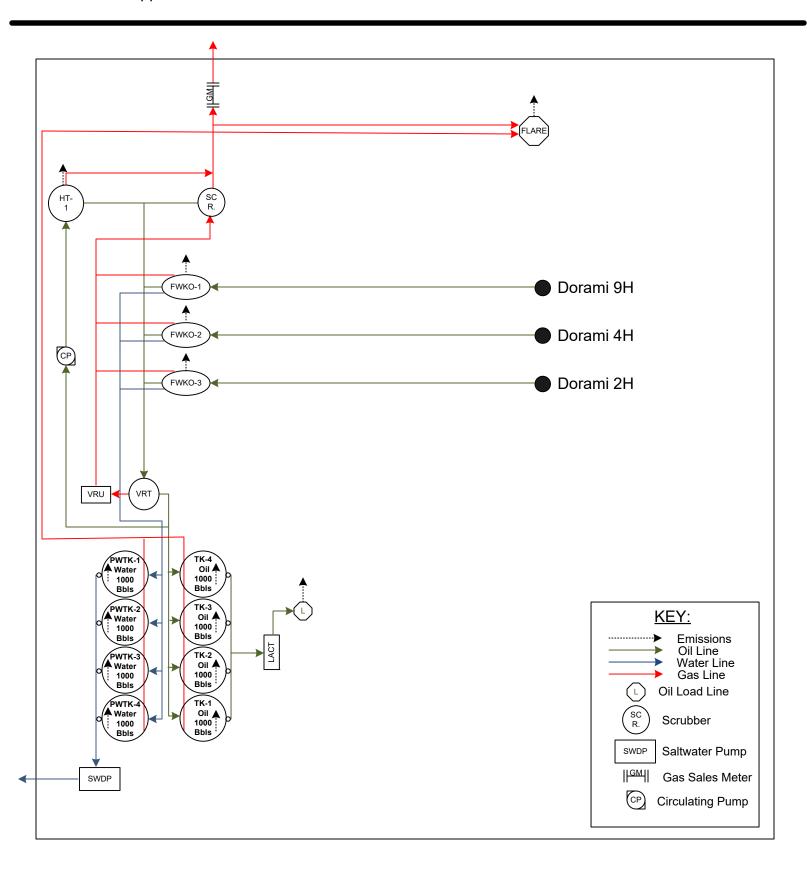
¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

TI 'A NI	N	Ox	C	0	V	OC	SO	Ox	PM	[10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
FWKO-1	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-2	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-3	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
HT-1	0.057	0.25	0.048	0.21	0.003	0.013	-	-	0.004	0.018	0.004	0.018	-	-	-	-
TK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	ı	-	-	-	-	-	ı	-	-	-	-	-	ı	-
PWTK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-3	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-4	-	-	1	-	-	i	-	-	ı	-	ı	-	1	1	ı	-
FLARE	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435	-	-	-	-	5.292	3.139	-	-
FUG-1	-	-	-	-	0.54	2.33	-	-	-	-	-	-	0.02	0.08	-	-
OILLOAD-1	-	-	1	-	14.99	29.97	-	-	1	-	1	-	-	-	1	-
Malfunction	N/A	N/A	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Totals	25.88	19.85	57.68	42.65	57.34	90.52	7.48	4.44	0.03	0.11	0.03	0.11	5.31	3.22	ı	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.


Section 9 Proof of Public Notice

General Posting of Notice
I, <u>JERRY MATREUS</u> , the undersigned, certify that on <u>2/6/20</u> (DATE), I posted a true and correct copy of the attached Public Notice in a publicly accessible and conspicuous place, visible from the nearest public road, at the entrance of the property on which the facility is, or is proposed to be, located.
Signed this 5 day of FEBRUARY, 2020,
Signature $\frac{7/5/20}{}$
TERRY MATLEUS Production Superintendent Printed Name Title {APPLICANT OR RELATIONSHIP TO APPLICANT}
Printed Name Title {APPLICANT OR RELATIONSHIP TO APPLICANT}
Newspaper Publication of Notice
An original or copy of the actual newspaper advertisement posted in a newspaper in general circulation in the applicable county is attached. The original or copy of the advertisement includes the header showing the date and newspaper or publication title.
OR
An affidavit from the newspaper or publication in general circulation in the applicable count stating that the advertisement was published is attached. The affidavit includes the date of the advertisement's publication, and a legible photocopy of the entire ad.
03/11/2020
Signature Date

Spur Energy Partners LLC

Site Name: Dorami 2H, 4H, & 9H Federal Oil Tank Battery

Al Number: Applied

Prepared by: John Connolly Updated: 03/11/2020

March 11, 2020

BY ELECTRONIC MAIL

Olivia Yiu, Asheley Coriz,
Marvin Mascarenas, Joseph Kimbrell,
Joseph Mashburn, Arianna Espinoza,
Kathleen Primm, Vanessa Springer
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1
Santa Fe, NM 87505
Olivia.yiu@state.nm.us, marvin.mascarenas@state.nm.us,
Joseph.kimbrell@state.nm.us, joseph.mashburn@state.nm.us,
Arianna.espinoza@state.nm.us, kathleen.primm@state.nm.us,
Vanessa.springer@state.nm.us

Re: Comments on Applications for General Construction Permits for Oil and Gas Facilities, Concerns Over Approval of General Permits in Southeast New Mexico

Dear New Mexico Air Quality Bureau Contacts:

WildEarth Guardians submits the following comments in response to several applications for general construction permits for oil and gas facilities in southeast New Mexico for which you have been identified as New Mexico Environment Department ("NMED") contacts.

In light of ongoing violations of the 8-hour ozone national ambient air quality standards ("NAAQS") in Eddy and Lea Counties, the New Mexico Environment Department ("NMED") is no longer permitted to allow oil and gas companies to obtain general permits for their operations. In light of this, NMED must reject the following registrations for general construction permits and must immediately halt the issuance of any further general construction permits for oil and gas facilities in Eddy and Lea Counties.

301 N. Guadalupe St., Suite 201

Santa Fe, NM 87501

505-988-9126

wildearthguardians.org

SANTA FE

SEATTLE •

Our comments are specific to the following applications for general construction permits submitted for oil and gas facilities located in Eddy or Lea Counties:

Company	Facility(ies)	NSR Permit No.	Date Application Received
DCP Operating Company LP	West Turkey Track Compressor Station	2098M5	March 4, 2020
DCP Operating Company LP	Jackson Booster Station	2041M6	March 4, 2020
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020
OXY USA Inc.	NC Sand Dunes Compressor Station	8744	March 3, 2020
EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020
Lucid Energy Delaware LLC	Greyhound Compressor Station	8084M2	March 2, 2020
Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8737	March 2, 2020
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020
Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020
Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020
Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M1	February 27, 2020
Spur Energy Partners LLC	Dorami 2H, 4H and 9H Federal Oil Tank Battery	8733	February 27, 2020
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020

At issue is the fact that ozone monitors in southeast New Mexico are currently violating the ozone NAAQS. At this point, all three ozone monitors in both Eddy and Lea Counties are in nonattainment, with 2017-2019 design values all above the 2015 NAAQS of 0.070 parts per million. What's more, these monitoring sites have recorded regular exceedances of the 2015 8-hour ozone NAAQS since 2015. The tables below show the annual first, second, third, and fourth maximum 8-hour ozone readings at the three monitors in Lea and Eddy Counties between 2015 and 2019.

Hobbs, NM 8-Hour Ozone Readings (in ppm), 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.070	0.069	0.080	0.083	0.082
2 nd Max.	0.069	0.066	0.074	0.078	0.075
3 rd Max.	0.069	0.065	0.072	0.077	0.073
4 th Max.	0.067	0.065	0.069	0.076	0.070
Number of Days	0	0	3	6	3
Above NAAQS	U	U	3	U	3

Carlsbad, NM 8-Hour Ozone Readings (in ppm), 2015-2019

	2015	2016	2017	2018	2019
1 st Max.	0.069	0.065	0.082	0.096	0.095
2 nd Max.	0.068	0.064	0.078	0.095	0.092
3 rd Max.	0.067	0.064	0.077	0.091	0.084
4 th Max.	0.067	0.063	0.076	0.083	0.080
Number of Days	0	0	10	18	19
Above NAAQS	U	U	10	10	19

Carlsbad Caverns National Park 8-Hour Ozone Readings, 2015-2019

				0,	
	2015	2016	2017	2018	2019
1 st Max.	0.068	0.070	0.069	0.099	0.082
2 nd Max.	0.068	0.069	0.065	0.081	0.080
3 rd Max.	0.065	0.069	0.065	0.080	0.078
4 th Max.	0.065	0.069	0.065	0.080	0.074
Number of Days	0	0	0	10	6
Above NAAQS	0	0	0	10	6

A violation of the 8-hour ozone NAAQS is triggered when the three-year average of the annual fourth highest daily reading exceeds the NAAQS. *See* 40 C.F.R. § 50.19(b). This three-year average value is commonly referred to as the "design value." Based on this monitoring data, all three ozone monitors are in violation of the NAAQS, with the design value at the Carlsbad monitor even violating the ozone NAAQS adopted in 2008, which limited 8-hour concentrations to no more than 0.075 parts per million. The table below shows that the design values at the Lea and Eddy County monitors have increased over the last five years and that currently, all three monitors are violating the ozone NAAQS.

8-Hour Ozone Design Values for Lea and Eddy County, New Mexico Monitoring Sites

	Monitor ID	2015-	2016-	2017-
Monitor		2017	2018	2019
ivioliitor		Design	Design	Design
		Value	Value	Value
Hobbs	350250008	0.067	0.070	0.071
Carlsbad	350151005	0.068	0.074	0.079
Carlsbad	350150010	0.066	0.071	0.073
Caverns	330130010	0.000	0.071	0.073

Under NMED's regulations, a general construction permit cannot be approved if it would "cause or contribute to air contaminant levels in excess of any national or New Mexico ambient air quality standard." 20.2.72.220(A)(2)(c) NMAC. To this end, a source may only register for an oil and gas general construction permit if it can demonstrate compliance with the NAAQS. Indeed, the registration forms for general construction permits for oil and gas facilities requires operators to demonstrate compliance with the NAAQS. Furthermore, NMED

can only approve a general construction permit if it determines that "all facilities registered [] will not cause or contribute to air contaminant levels in excess of any national [] ambient air quality standard." See e.g. NMED, "Air Quality Bureau General Construction Permit for Oil and Gas Facilities, GCP-Oil and Gas" at Condition B100.

In light of current ozone levels in Eddy and Lea Counties, there is no possible way for NMED or sources to conclude that construction and operation of new oil and gas facilities would not cause or contribute to violations of the ozone NAAQS. Every general construction permit registration would authorize increases in nitrogen oxides ("NOx") and volatile organic compounds ("VOCs")—both gases that react with sunlight to form ozone. The general construction permit applications for each facility listed above anticipate increases of up to 95 tons/year for both VOCs and NOx for each source. This means that every source seeking general construction permits will cause or contribute to ozone violations in Eddy and Lea Counties by increasing overall ozone-forming pollution in the region at a time when ozone levels are in violation of the NAAQS.

Given this, there is currently no legal justification for oil and gas sources to qualify for registration for general permits in Eddy and Lea Counties. Accordingly, NMED cannot approve the aforementioned applications for general construction permits, as well as any additional general construction permits, unless and until the ozone NAAQS are attained in Eddy and Lea Counties.

If NMED continues to approve general construction permits for oil and gas facilities in southeast New Mexico, then it will indicate the state implementation plan ("SIP") is inadequate to attain and maintain compliance with the NAAQS and will jeopardize the state's ability to continue implementing its air quality regulatory program under the Clean Air Act.

Thank you for the opportunity to provide these comments.

Sincerely,

Jeremy Nichols

Climate and Energy Program Director

WildEarth Guardians

(303) 437-7663

jnichols@wildearthguardians.org

Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

Airs # 35-015-2322 AI # 39447 Permit # 8733

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Nonattainment Areas)

An initial GCP-Oil and Gas Registration Form for a new facility (Registration fee required). An updated GCP-Oil and Gas Registration Form for a modification to an existing facility (Registration fee required). A GCP-Oil and Gas Registration Form for an existing facility currently operating under GCP-1 or GCP-4 (No fee required)
The Permitting Administrative Multi-Form may be used for administrative changes identified in the GCP O&G Permit Condition C101. A No public notification is required, and no filing fees or permit fees apply.
Construction Status: ⊠ Not Constructed □ Existing Permitted (or NOI) Facility □ Existing Non-Permitted (or NOI) Facility
Acknowledgements: ☐ I acknowledge that a pre-application meeting is available to me upon request. ☐ An original signed and notarized Certification for Submittal for this GCP-Oil and Gas Registration is included. ☐ Proof of public notice is included, if required. ☐ The Air Emission Calculation Tool (AECT) is included.
The emissions specified in this Registration Form will establish the emission limits in the GCP-Oil and Gas. For new registrations or modifications, a check for the registration fee is included for \$4190 prior to 1/1/20 or \$4260 beginning
1/1/20. There is an annual fee in addition to the registration fee: www.env.nm.gov/air-quality/permit-fees-2/ Facilities qualifying as a "small business" under 20.2.75.7.F NMAC qualify for reduced fees, provided that NMED has a Small Business
Certification Form from your company on file. This form can be found at: www.env.nm.gov/aqb/sbap/Small_Business_Forms.html Provide your Check Number: and Amount: \$4,260.00
· · · · · · · · · · · · · · · · · · ·

If a fee is required and is not submitted with the application, the registration will be denied.

This Registration is being submitted as (check all that apply):

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #:	
1	E TO NO DE CALLANDO DE LA LOTTE LA DOCUMENTA DE LA CONTRA LA CONTR	Plant primary SIC Code (4 digits): 1311		
1	Facility Name: Dorami 2H, 4H, & 9H Federal Oil Tank Battery	Plant NAIC code (6 digits): 211120		
a	Facility Street Address (If no facility street address, check here \(\subseteq \) and provide directions in Section 4):			
2	Plant Operator Company Name: Spur Energy Partners LLC	Phone/Fax: 281-795-2286		
a	Plant Operator Address: 920 Memorial City Way, Ste 1000, Houston, Texas 77024			
3	Plant Owner(s) name(s): Spur Energy Partners LLC	Phone/Fax: 281-795-2286		
a	Plant Owner(s) Mailing Address(s): 920 Memorial City Way, Ste 1000, Houston, Texas 77024			

GCP-Oil and Gas Form: 10 December 2019

4	Bill To (Company): Spur Energy	y Partners LLC		Phone/Fax: 281-79	95-2286		
a	Mailing Address: 920 Memorial 77024	City Way, Ste 1000, Housto	on, Texas	E-mail:todd@spur	epllc.com		
5	☐ Preparer: Energy Resource Developm☐ Consultant: John Connolly	ent, Inc		Phone/Fax: 225-75	53-4723		
a	Mailing Address: 19345 Point C	Woods Court, Baton Rouge	, LA 70809	E-mail: jmcerdi@cox.net			
6	Plant Operator Contact: Todd M	lucha		Phone/Fax: 281-795-2286			
a	Mailing Address: 920 Memorial 77024	City Way, Ste 1000, Housto	n, Texas	E-mail: todd@spurepllc.com			
7	Air Permit Contact ¹ : Todd Mucl	1а		Title: EVP-Operat	Operations		
a	E-mail: todd@spurepllc.com			Phone/Fax: 281-79	95-2286		
b	Mailing Address: 920 Memorial	City Way, Ste 1000, Housto	on, Texas 7702	24			
	¹ The Air Permit Contact will rec	eive official correspondence	from the Dep	artment.			
o	Will this facility operate in conju	unction with other air regulat	ed parties on t	the same property?	⊠ No	☐ Yes	3
8	If yes, what is the name and NO	I or permit number (if known	n) of the other	facility?			
2)	Applicability						
1	Is the facility located in Bernalil	llo County, on tribal lands, or	r in a nonattair	nment area?		⊠No	Yes
If you	answered Yes to the question above				ermit.		
2	Is the facility's SIC code 1311,			es may be approved	provided that	□No	⊠Yes
2	all the equipment at the facility			1-1 1' 4'	C		▼ 7
3	Does the regulated equipment under this GCP-Oil and Gas Registration include any combination of Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit, and no others?						
4	Will the regulated equipment as specified in this GCP-Oil and Gas Registration emit less than the total emissions in Table 106 of the GCP-Oil and Gas permit?						
5	Does all equipment comply with the stack parameter requirements as established in the GCP-Oil and Gas Permit?						
6	Equipment shall be at least 100 meters (m) from any stack to terrain that is five (5) or more meters above the top of the stack. Will the equipment at the facility meet this terrain requirement?						
7	Is the facility at least 150 m from any source that emits over 25 tons/year of NO _x ? This is the distance between the two nearest stacks that emit NO _x at each of the facilities. Not the facility boundaries or the						
	center to center distances.						
8	Is the facility at least 3 miles from any Class I area? This is the distance from the nearest facility boundary to the nearest boundary of the Class I area.						
If you	answered NO to any of questions		ualify for this	general construction	permit.		
3)	Current Facility Stat		Ž		•		
1	Has this facility already been con	structed? Yes No	If yes, is it co	urrently operating in	New Mexico?	Yes	☐ No
2	Does this facility currently have a construction permit or Notice of Intent (NOI) (20.2.72 NMAC or 20.2.73 NMAC)? Yes No remain active or not:						
			7? If	yes, NOV date:			
3	Yes No If so, provide current permit #:						
4	Check if facility is a: Minor Source: Synthetic Minor Source: (SM80 = Controlled Emissions > 80 TPY of any regulated air pollutant):						
4)	Facility Location Info						
1	a) Latitude (decimal degrees): 32.614589	b) Longitude (decimal degradous 104.47883	rees):	c) County: Eddy	d) Elevat 3531	ion (ft):	
2	a) UTM Zone: ☐12 or ☐13	b) UTME (to nearest 10 meter	·s) 548 896	c) UTMN (to nearest	I	18 681	
_	a) 0 1111 2011c. 12 01 13	o, ormin (to hearest to meter	5, 570,070	o) or ivity (to iteales)		.0,001	

3	e) Specify which datum is used: NAD 27 NAD 83 WGS 84 See this link for more info. http://en.wikipedia.org/wiki/North American Datum				
4	Name and zip code of nearest New Mexico town and tribal community: 88210				
5	Detailed Driving Instructions including direction and distance from nearest NM town and tribal community (attach a road map if necessary). If there is no street address, provide public road mileage marker: From the intersection of Hwy 285 and Hwy 82 in Artesia, NM, go south on Hwy 285 for 15.2 miles. Turn right on CR 23 (Rock Daisy Rd) and go 4.0 miles to facility road on the left.				
6	The facility is 16.4 (distance) miles Southwest (direction) of Artesia (nearest town).				
7	Land Status of facility (check one): Private Indian/Pueblo Government BLM Forest Service Military				
5)	Other Facility Information				
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL).	Oil (bbl/day): 2,300 (bbl/yr): 839,500 Gas (MMscf/day): 3.5 (MMscf/yr): 1,277.5 NGL (bbl/day): 0 (bbl/yr): 0			
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.	□No ⊠Yes			
6) S	6) Submittal Requirements				
1	Include one hard copy original signed and notarized Registration package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except landscape tables, which should be head-to-head. If 'head-to-toe printing' is not possible, print single sided. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process.				
2	Include one double sided hard copy , flip on long edge for Department use. This <u>copy</u> does not need to be 2-hole punched.				
3	The entire Registration package should be submitted electronically on one compact disk (CD). Include a single PDF document of the entire Registration as submitted and the individual documents comprising the Registration. The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDFs of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. Spreadsheets must be unlocked since we must be able to review the formulas and inputs.				
	Ensure all of these are included in both the electronic and hard copies.				
	 ⊠Word Document part of the Registration Form (Sections 1 and 3-10) ∑Excel Document part of the Registration Form (Section 2) ဩAir Emissions Calculation Tool (AECT) If there is a justified reason for including other calculations, include the unlocked Excel Spreadsheet. Justification must be provided in Section 5 of the application. ဩPDF of entire application 				
	To avoid errors, it is best to start with both a blank version of this form and the AECT for each application.				

Section 2 Tables

Insert Excel spreadsheet with applicable tables filled out. If applicable to the facility all tables must be filled out completely. The unit numbering system must be consistent throughout this Registration

GCP-Oil and Gas Form: 10 December 2019 Printed: 2/10/2020

0605

Table 2-A: **Regulated Emission Sources** Unit and stack numbering must correspond throughout the application package. Equipment that qualifies for an exemption under 20.2.72.202.B NMAC should be included in Table 2-B **Note:** Equipment options are not authorized. Date of Controlled by Unit# Manufacture² Manufact-Requested RICE Source urer's Rated Permitted Unit Manufacturer/Make Classi-Ignition Type **Source Description** Serial# For Each Piece of Equipment, Check Onc Capacity³ Capacity³ (CI, SI, 4SLB. Date of Number /Model **Emissions** fication (Specify (Specify Construction/ Code (SCC) vented to 2SLB)4 Units) Units) Reconstruction² Stack # HEATED FREE Existing (unchanged) ☐ To be Removed NA **FLARE** 0.75 0.75 FWKO-1 NA 31000404 X New/Additional ☐ Replacement Unit WATER NA NA MMBtu/hr MMBtu/hr 2020 FWKO-1 ☐ To Be Modified ☐ To be Replaced KNOCKOUT HEATED FREE Existing (unchanged) ☐ To be Removed NA **FLARE** 0.75 0.75 FWKO-2 X New/Additional WATER NA NA 31000404 NA ☐ Replacement Unit MMBtu/hr MMBtu/hr 2020 FWKO-2 To Be Modified ☐ To be Replaced KNOCKOUT HEATED FREE Existing (unchanged) ☐ To be Removed NA **FLARE** 0.75 0.75 FWKO-3 WATER NA NA 31000404 X New/Additional ☐ Replacement Unit NA MMBtu/hr MMBtu/hr 2020 FWKO-3 ☐ To be Replaced ☐ To Be Modified KNOCKOUT ☐ Existing (unchanged) ☐ To be Removed NA **FLARE HEATER** 0.50 0.50 HT-1 NA NA 31000404 X New/Additional NA ☐ Replacement Unit **TREATER** MMBtu/hr | MMBtu/hr 2020 HT-1 ☐ To be Replaced ☐ To Be Modified ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** 1000 BBL 40400312 X New/Additional TK-1 T-15911 1000 BBL NA ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** X New/Additional TK-2 T-15908 1000 BBL 1000 BBL 40400312 NA ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced ☐ Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** TK-3 T-15912 1000 BBL 1000 BBL 40400312 X New/Additional NA ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 2/4/2019 **FLARE** 1000 BBL OIL **PETROSMITH** TK-4 T-15909 1000 BBL 1000 BBL 40400312 NA X New/Additional ☐ Replacement Unit **TANK EQUIPMENT LP** 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 3/15/2019 **FLARE** 1000 BBL **SAWYER** PWTK-1 1504 1000 BBL 1000 BBL 40400315 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** □ To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 3/15/2019 **FLARE** 1000 BBL **SAWYER** PWTK-2 1502 1000 BBL 1000 BBL 40400315 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 1000 BBL 12/2/2018 **FLARE SAWYER** PWTK-3 1258 1000 BBL 1000 BBL 40400315 NA X New/Additional ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** To Be Modified ☐ To be Replaced Existing (unchanged) ☐ To be Removed 1000 BBL **SAWYER** 3/15/2019 **FLARE** PWTK-4 40400315 1501 1000 BBL 1000 BBL X New/Additional NA ☐ Replacement Unit WATER TANK **INDUSTRIES** 2020 **FLARE** To Be Modified ☐ To be Replaced DUAL Existing (unchanged) ☐ To be Removed NA NA 192.109 4290.58 **FLARE** VAPROX 30600903 **PRESSURE** NA NA X New/Additional ☐ Replacement Unit MMScf/yr MMScf/yr 2020 **FLARE** ☐ To Be Modified ☐ To be Replaced **FLARE FACILITY** Existing (unchanged) ☐ To be Removed NA NA FUG-1 **WIDE** NA NA NA NA 31088811 NA X New/Additional ☐ Replacement Unit 2020 NA □ To Be Modified ☐ To be Replaced **FUGATIVE**

Spur Energy Partners LLC

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Spur Energy Partners LLC Dorami 2H, 4H, 9H Federal Oil Tank Battery Application Date: 2/6/2020 Revision #: NA

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction Date of Installation	For Each Piece of Equipment, Check Onc
						/Construction ¹	☐ Existing (unchanged) ☐ To be Removed
HR-1	HAUL ROAD	NA	NA NA	NA NA	20.2.72.202.B.5. 20.2.72.202.B.5.	NA 2020	X New/Additional
			141	174	20.2.72.202.05.3	2020	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
							□ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ To be Removed □ Replacement Unit □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ To be Removed □ Replacement Unit □ To Be Modified □ To be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To Be Replaced
							 □ Existing (unchanged) □ New/Additional □ To Be Modified □ To Be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced

¹ Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FLARE	COMBUSTION FLARE	2020	VOC, H2S	TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, SALES GAS, VRT FLASH GAS DURING VRU DOWNTIME	98%	MANUFACTURER ESTIMATE
VRU-1	VAPOR RECOVERY UNIT	2020	VOC, H2S	VAPOR RECOVERY TOWER (VRT)	100%	ENGINEERING ESTIMATE
	ol device on a separate line. For each control device, list all er					

Form Revision: 7/18/2019 Table 2-C: Page 1 Printed 3/11/2020 2:10 PM

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforcable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

II	NO	Ox	C	o	V(OC	SC	Ox	PM	110 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FWKO-1	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-2	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-3	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
HT-1	0.057	0.25	0.048	0.21	0.003	0.013	-	-	0.004	0.018	0.004	0.018	-	-	-	-
TK-1	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	-	1	70.92	310.63	1	-	1	-	-	-	1	-	-	-
TK-3	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	70.92	310.63	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	-	1	2.45	10.73	ı	-	1	-	-	-	1	-	-	-
PWTK-2	-	-	-	1	2.45	10.73	ı	-	1	-	-	-	1	-	-	-
PWTK-3	-	-	-	1	2.45	10.73	ı	-	1	-	-	-	1	-	-	-
PWTK-4	-	-	-	-	2.45	10.73	-	-	-	-	-	-	-	-	-	-
FLARE	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435	-	-	-	-	5.292	3.139	-	-
FUG-1	-	-	-	1	0.54	2.33	ı	-	1	-	1	-	0.02	0.08	-	-
MALF.	-	-	-	ı	-	10	ı	-	ı	-	-	-	ı	-	-	-
OILLOAD-1	-	-	-	1	14.99	29.97	ı	-	1	-	1	-	ı	-	-	-
Totals	25.875	19.851	57.684	42.645	350.818	1375.96	7.477	4.435	0.025	0.111	0.025	0.111	5.312	3.219	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

TI 'A NI	N	Ox	C	0	V	OC	SO	Ox	PM	110 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
FWKO-1	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-2	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
FWKO-3	0.086	0.377	0.072	0.315	0.005	0.022	-	-	0.007	0.031	0.007	0.031	-	-	-	-
HT-1	0.057	0.25	0.048	0.21	0.003	0.013	-	-	0.004	0.018	0.004	0.018	-	-	-	-
TK-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-2	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-1	-	-	ı	-	-	-	-	-	ı	-	-	-	-	-	ı	-
PWTK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-3	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK-4	-	-	1	-	-	i	-	-	ı	-	ı	-	1	1	ı	-
FLARE	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435	-	-	-	-	5.292	3.139	-	-
FUG-1	-	-	-	-	0.54	2.33	-	-	-	-	-	-	0.02	0.08	-	-
OILLOAD-1	-	-	1	-	14.99	29.97	-	-	1	-	1	-	-	-	1	-
Malfunction	N/A	N/A	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Totals	25.88	19.85	57.68	42.65	57.34	90.52	7.48	4.44	0.03	0.11	0.03	0.11	5.31	3.22	ı	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Spur Energy Partners LLC Dorami 2H, 4H, 9H Federal Oil Tank Battery Application Date: 2/6/2020 Revision #: NA

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type (Engine,			Height Above	Temp.	Flow Rate	Velocity	
Turbine, Flare, ECD, or Thermal Oxidizer Etc.)	Serving Unit Number(s) from Table 2-A	Orientation (H-Horizontal V=Vertical)	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (ft)
FWKO-1	FWKO-1	Vertical	25	250	5	21.62	0.66
FWKO-2	FWKO-2	Vertical	25	250	5	21.62	0.66
FWKO-3	FWKO-3	Vertical	25	250	5	21.62	0.66
HT-1	HT-1	Vertical	25	250	5	21.62	0.66
FLARE	FLARE	Vertical	35	1400	41	51.6	1.00

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the threshold amounts described above. Add additional rows as necessary.

Stack No.	Unit No.(s)	Total	HAPs			Namo	Pollutant Here IAP	Name	Pollutant e Here HAP	Name Here	Pollutant e								
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
NA	FUG-1	0.0	0.1																
Tot	als:																		

Table 2-J: Allowable Fuels and Fuel Sulfur for Combustion Emission Units:

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

				Specify Units			
Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	Fuel Source (purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO2 percentage (%) of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value (BTU/SCF)	Annual Fuel Usage (MMSCF/y)	Does the Allowable Fuel and Fuel Sulfur Content meet GCP O&G Condition A110.A?
FWKO-1	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	6.9	✓ Yes No
FWKO-2	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	6.9	✓ Yes □ No
FWKO-3	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	6.9	✓ Yes □ No
HT-1	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1188.8	4.6	✓ Yes □ No
FLARE	FIELD NATURAL GAS	RAW/FIELD NATURAL GAS	-	-	1210	192.1	✓ Yes □ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No
							☐ Yes ☐ No

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Unit and stack numbering must correspond throughout the application package.

Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space	Co	lor	Separator Pressure	Annual Throughput	Turn- overs
							(M)	Roof	Shell	(psia)	(gal/yr)	(per year)
TK-1	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
TK-2	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
TK-3	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
TK-4	2020	CRUDE OIL	Vertical - Fixed Roof (FX)	Welded- Mechanical Shoe	1,000	4.72	4.87	GREEN	GREEN	89.7	8,814,750	215.34
PWTK-1	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
PWTK-2	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
PWTK-3	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
PWTK-4	2020	PRODUCED WATER	Vertical - Fixed Roof (FX)	FIBERGLASS	1,000	4.72	4.87	GREEN	GREEN	264.7	30,660,000	749.01
								_				

Section 3 Registration Summary

The Registration Summary: Provide information about the registration submittal. The Registration Summary shall include a brief description of the facility and its process. In case of a modification to a facility, please describe the proposed changes.

Specify Facility Type: Check the appropriate box below:
⊠ Production Site
☐ Tank Battery
☐ Compressor Station
☐ Natural Gas Plant
Other, please specify:

Registration Summary:

Spur Energy Partners LLC proposes this initial GCP-Oil & Gas application for the Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The site will have an initial production rate of 2,300 bbl/day of oil, 8,000 bbl/day of produced water, and 3.5 MMScf/d of produced gas. Multiple wells are associated with this production facility.

As proposed, equipment at the well site will include three (3) 0.75 MMBtu/hr free water knockouts, one (1) 0.5 MMBtu/hr heater treater, one (1) electric vapor recovery unit (VRU) with an associated Vapor Recovery Tower (VRT), a dual-pressure combustion flare, four (4) 1,000 bbl produced water tanks, four (4) 1,000 bbl oil tanks, and various gas scrubbers.

Additional emissions at the site will result from tank truck loading, truck hauling, fugitive emissions, and malfunction emissions.

The combustion flare will control emissions from the oil & produced water tanks working, standing, and flashing losses, VRT flash gas during VRU downtimes, and produced sales gas to a minimum 98% efficiency. In the event that the VRU is down for maintenance, the flare will still control emissions from the vapor recovery tower. During maintenance or unavailability on the sales gas pipeline, all produced gas off the separators will be continuously routed to the flare until gas can be sold. The flare calculation page on the AECT is broken down into two streams, the high-pressure stream and the low-pressure stream. The high-pressure stream will be a combination of sales gas off the FWKOs during pipeline interruption, VRU gas during pipeline interruption, and gas during VRU downtime. The low-pressure stream will be the flash, working, and standing losses off the oil and water tanks.

Because of both the economic and environmental impacts on operations, Spur diligently inspects the VRU to ensure that it is in continuous operation.

Written description of the routine operations of the facility:

The production stream from the Dorami 2H, 4H, & 9H wells will enter the heated three-phase free water knockouts where the oil, water, and gas will be separated. The gas off the FWKOs will be routed to sales or to the flare for combustion. The water off the FWKOs will be routed to the water tanks. The oil will be routed to the VRT prior to being sent to the oil tanks. The flash gas off the VRT will be captured by the VRU and sent to sales or to the flare for combustion. When the VRU is not working, the VRT will route any captured flash gas to the flare. The oil and water tanks will be controlled to the dual-pressure combustion flare which will combust the flash, working, and standing emissions in the tanks. The produced oil is trucked out of the facility while the water is piped out. All oil truck loading emissions will be vented to the atmosphere. The heater treater will be used to circulate tank bottoms.

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM):

There are no SSM emissions currently associated with this facility.

Malfunction Emissions (M):

Spur Energy Partners LLC request 10 TPY VOC emissions to be added to this application for any malfunctions that might happen at the facility due to sudden and unavoidable failure to air pollution control equipment or process equipment beyond the control of Spur Energy Partners.

Allowable Operations: Check the appropriate box below:
☐ Facility operates continuously (8760 hours per year)
☐ The following regulated equipment will operate less than 8760 hours per year. Add additional rows as necessary. Thes
units are subject to Condition A108.C of the Permit.

Table A – Equipment Operating Less Than 8760 hours per year

Unit #	Requested Annual Operating Hours

Verification of Compliance with Stack Parameter Requirements:

Please use the Stack Calculator and Stack Requirements Explained Guidance on our website: All of the verification information below is required to be filled out.

www.env.nm.gov/air-quality/air-quality-oil-and-gas-gcp-application-forms/

Check the box for each type of equipment at this facility:
Engine(s)
☐ Turbine(s)
\boxtimes Flares(s)
☐ Enclosed Combustion Device (s)
Heater(s)
Reboiler(s)
For each type of equipment checked above, complete the applicable section below

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total NOx Emission Rate: 0.315 lb/hr						
Engine/Generator/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)		
Unit Number						
FWKO-1	25	250	21.62	0.66		
FWKO-2	25	250	21.62	0.66		
FWKO-3	25	250	21.62	0.66		
HT-1	25	250	21.62	0.66		
Table 1 Minimum Parameters: For verification, list the minimum parameters based on the NOx lb/hr emission rate from the GCP O&G Table 1.	5.9	571	49.2	0.3		

4.	Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP O&G?
	Yes. Skip step 5 below.
\boxtimes	No. Go to step 5 below.

5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

Condition A203.C states that if "any heater or boiler is unable to meet the minimum stack parameter requirements in Table 1 or 2 of Condition A202.I, the maximum total emission rates allowed for those heaters and reboilers is 1.23 lb/hr of NOx"; therefor, the heaters at the facility will meet this requirements since their total emission rate is 0.315 lb/hr which is below the 1.23 lb/hr threshold allowed.

Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Table C: Turbine/Heater/Reboiler Stack Parameter Verification:

Calculated Facility Total I	NOx Emission Rate:	lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

_	0&G?
Ш	Yes. Skip step 5 below.
	No. Go to step 5 below.
	•
5.	For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G,
	explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page
	18 of the GCP O&G or Condition A203 C of the GCP O&G. Show all calculations

4. Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Table D: Flare Stack Height Parameter Verification:

Flare Unit Number	SO ₂ Emission Rate (lb/hr)	8 ()	Table 3 Minimum Stack Height: For verification, list the minimum height parameters based on the SO2 emission rate from the GCP O&G Table 3.
FLARE	7.477	35	11.5

4.	Do all flares comply with minimum stack height requirements? ☐ Yes ☐ No
5.	Does the flare gas contain 6% H ₂ S or less by volume (pre-combustion)?
6.	Explain in detail how assist gas will be added to reduce the gas composition to 6% H ₂ S or less by volume.

Enclosed Combustion Device(s) (ECD):

According to GCP O&G Condition	A208.A, the facility m	nust meet one of the	following options if	an ECD is in	istalled at the
facility:					

\sim					•	
O	n	tı.	a	n	- 1	•
\circ	μ	ш	v	11	1	•

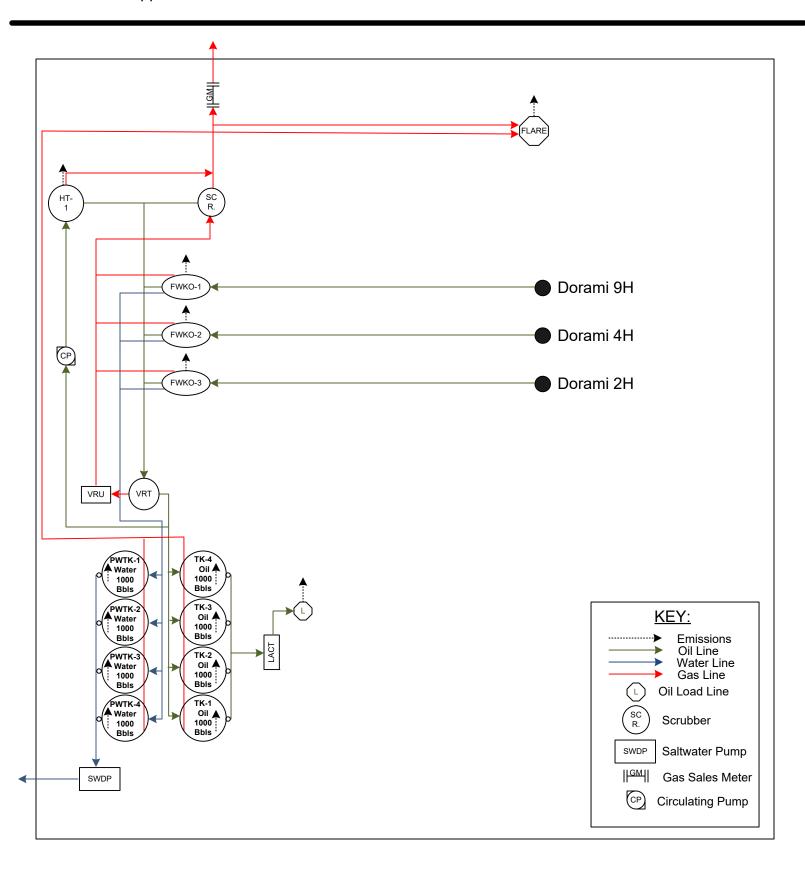
Option :	<u>l:</u>
1.	Will the ECD(s) meet the SO₂ emission limit of 0.7 lb/hr and operate with a velocity of at least one (1) foot per second? ☐ Yes. Skip Option 2 below. ☐ No. Go to Option 2 below.
Option 2	<u>2:</u>
2.	Will the ECD(s) meet the SO₂ emission limit of 0.9 lb/hr and operate with a velocity of at least two (2) feet per second? ☐ Yes ☐ No

Section 4

Process Flow Sheet

Attach a process flow sheet indicating all individual equipment, all emission points, and types of control applied to those points. All units must be labeled, and the unit numbering system must be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water). The process flow sheet must be a legible size.

GCP-Oil and Gas Form: 10 December 2019


0622

Printed: 2/10/2020

Spur Energy Partners LLC

Site Name: Dorami 2H, 4H, & 9H Federal Oil Tank Battery

Al Number: Applied

Prepared by: John Connolly Updated: 03/11/2020

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration. If the AECT, for a piece of equipment is under development, provide alternate calculations. **Do not include alternative calculations unless there is an issue being resolved with the AECT. This will delay review of the application.** The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. The inputs must match the gas analyses information submitted. Inputs that don't match may be grounds for denial of the application submittal.

<u>SSM Calculations</u>: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank).

<u>Control Devices:</u> Report all control devices and list each pollutant controlled by the control device. Indicate in this section if you chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

<u>Calculation Details:</u> The AECT is required for all emission calculations. If the AECT is not functioning, alternative calculations may be submitted only for the portions of the AECT with issues being resolved. Utilize this section to explain in detail, on an equipment-by-equipment basis, why alternative calculations are necessary.

Explain here:			

Equipment Forms Submitted in this Section (add additional rows as necessary):

Equipment Type	Quantity	Check Box to Indicate Units that are Controlled	Enter Control Device Type and Pollutant Controlled
Engine			
Turbine			
Tanks	8	\square	FLARE; VOC & H2S
Generator			
VRU	1		
VRT	1	\boxtimes	VRU; VOC & H2S
ULPS			
Glycol Dehydrator			
Flare	1		TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4, VRU-1, SALES GAS OFF THE PRODUCTION EQUIPMENT; VOC & H2S
Amine Unit			
Cryogenic Unit			
Fugitive Emissions	1		
Heater	4		
Truck Loading	1		
Enclosed Combustion			

Form Revision: 10 December 2019 Printed: 2/10/2020

0624

1 23				, , , , , , , , , , , , , , , , , , ,
Device (ECD)				
Thermal Oxidizer (TO)				
Unpaved Haul Road	1			
Other				
				e emissions unit, control device, or gas combustion scenario. Please ne unit number(s) if the scenarios vary.
	following unitate box. er and VRU Copressor	s locate	ed ups	rator, or Flash Tower Located Upstream of Storage Vessels: If the stream of the storage vessels and is used to flash and capture flashing
capture flashing emissions of NSPS OOOO or NSPS Unit number:	prior to any sto OOOOa. A pro	orage v	essels s con	Storage Vessels: Check the box below if the facility is using a VRU to so to limit the PTE of the storage vessels to below applicability thresholds trol determination should be prepared for this type of VRU application.
storage vessel emissions to Unit number: VRU controlling Stor 60.5411	limit the PTE	to belo	ow NS	Vessels: Check the box below if this facility is using a VRU to reduce SPS OOOO or NSPS OOOOa applicability thresholds: the facility is subject to the requirements under NSPS OOOO, 40 CFR the facility is subject to the requirements under NSPS OOOOa, 40 CFR
scenarios. Flares shall ass	ume a destructi estruction effici	ion effi	cienc	arios below and check the boxes next to any appropriate facility operating y of 95%, unless the facility is subject to requirements for flares under 40 98%) is supported by a manufacturer specification sheet (MSS) for that
Unit number: FLARE Controls storage vesses Provides a federally e CFR 60, Subpart OO Controls the glycol de Controls the amine ur Controls truck loading Operates only during	els in accordance nforceable conto OO or OOOOa chydrator it g	ce with trol for a.	40 C the st	bustion device (ECD), thermal oxidizer (TO): EFR 60, Subpart OOOO or OOOOa. torage vessels to limit the PTE to below applicability thresholds of 40 s VRU downtime, check one below: re represented as uncontrolled VOC emissions from the compressor
	ion emissions o	during `	VRU	downtime are represented as controlled emissions from the combustion
Controls the facility to	umg piani tun	iai Ouil(.1	
Amine Unit: Provide the Design Capacity in MMsc		mation	for e	ach amine unit.

Design Capacity in MMscf/day	
Rich Amine Flowrate in gal/min	
Lean Amine Flowrate in gal/min	
Mole Loading H ₂ S	
Sour Gas Input in MMscf/day	

Form Revision: 10 December 2019 Printed: 2/10/2020

Glycol Dehydration Unit(s): Provide the following information for each glycol dehydration unit: Please include an extended gas analysis in Section 6 of this application.

<u>Unit #</u>	Glycol Pump Circulation Rate
Voluntary Monitoring in Accordance with §40 CFR 60.5416 requirements of 40 CFR 60.5416(a). This monitoring program established in the GCP-Oil and Gas for individual equipment. Creported in an updated Registration Form to the Department.	will be conducted in lieu of the monitoring requirements Ceasing to implement this alternative monitoring must be
 ☐ Condition A205.B Control Device Options, Requirements, ☐ Condition A206.B Truck Loading Control Device Inspection ☐ Condition A206.C Vapor Balancing During Truck Loading ☐ Condition A209.A Vapor Recovery Unit or Department-approximation ☐ Condition A210.B Amine Unit Control Device Inspection 	on .
Fugitive H ₂ S Screening Threshold and Monitoring in accord	ance with Condition A212: Check the box that applies.
☑ Condition A212.A does not apply because the facility is below	w the fugitive H ₂ S screening threshold in Condition A212, or
Condition A212.A applies. Because the facility is above the facility is voluntarily complying with Condition A212.A, and	

Form Revision: 10 December 2019 Printed: 2/10/2020

Section 6

Information Used to Determine Emissions

Check the box for each type of information submitted. This documentation is required. If applicable to the facility.

Failure to include applicable supporting documentation may result in application denial.

	Specifications for control equipment, including control efficiency specifications and sufficient engineering data for
	rification of control equipment operation, including design drawings, test reports, and design parameters that affect
no	rmal operation.
	□ Engine or Generator Manufacturer specifications □ Catalyst Manufacturer specifications (If a catalyst is being utilized to reduce emissions, the catalyst manufacturer emission factors must be used in all emission calculations. A 25% safety factor may be applied to each pollutant. □ NSPS JJJJ emission factors may not be utilized in lieu of catalyst manufacturer specifications when a catalyst is installed, and the catalysts manufacturer achieves higher control efficiency. □ Flare Manufacturer specifications □ Oil/Liquid Analysis: This data is required to match the inputs in all applicable emission calculations. For facilities that have not been constructed and a representative analysis is used it cannot be older than 1 year. For existing facilities, the gas analyses required by Condition A201.A (must be 1 year old or less).
	Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
	☐ Extended Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.
	If requesting to use a representative gas sample, include a discussion of why the sample is representative for this facility and an explanation of how it is representative (e.g., same reservoir, same similar API gravity, similar composition).
	If test data are used, to support emissions calculations or to establish allowable emission limits, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates. Fuel specifications sheet.
_	If computer models are used to estimate emissions, include an input summary and a detailed report, and a disk containing the input file used to run the model.
	For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, accuracy of the model, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Representative Gas Analysis Justification: Representative gas analysis used is from a well with similar API gravity, same reservoir, similar composition, and with similar separation technique. Flash analysis was calculated from a nearby facility that is operating in the same reservoir that has a similar oil composition. The flash analysis was calculated for the pressure drop between the tanks and the upstream separation equipment.

Form Revision: 10 December 2019 Printed: 2/10/2020

Gas Analysis

Atchafalaya Measurement, Inc. 416 East Main Street Artesia, NM 88210 575-746-3481

Inficon Micro GC Fusion F08904 R03RR2

	Sample Information
Sample Name	PercussionHuber 3 Federal 8HGC1-1419-04
Station Number	79410072
Lease Name	Huber 3 Federal 8H
Analysis For	Percussion Petroleum
Producer	Percussion Petroleum
Field Name	Dagger Draw
County/State	Eddy,NM
Frequency/Spot Sample	Quarterly
Sampling Method	Fill Empty
Sample Deg F	59.8
Atmos Deg F	40
Flow Rate	506.0673
Line PSIG	83.4
Date/Time Sampled	12-27-18
Cylinder Number	N/A
Cylinder Clean Date	N/A
Sampled By	Victor Urias
Analysis By	Pat Silvas
Verified/Calibration Date	1-3-19
Report Date	2019-01-04 07:59:11

Component Results

Component Name	Ret. Time	Peak Area	Norm%	PPMV	GPM (Dry) (Gal. / 1000 cu.ft.)	
Nitrogen	22.300	14311.4	2.81090	28109.000	0.000	
H2S	46.000	0.0	1.99577	19957.700	0.000	
Methane	23.120	285170.1	72.02046	720204.600	0.000	
Carbon Dioxide	26.940	14410.7	2.37167	23716.700	0.000	
Ethane	36.960	80184.1	12.11010	121101.000	3.249	
Propane	78.980	46653.6	5.24909	52490.900	1.451	
i-butane	28.780	46697.5	0.68305	6830.500	0.224	
n-Butane	30.380	104115.0	1.46730	14673.000	0.464	
i-pentane	35.440	31060.7	0.37136	3713.600	0.136	
n-Pentane	37.540	27936.5	0.32511	3251.100	0.118	
Hexanes Plus	120.000	52184.0	0.59519	5951.900	0.259	
Total:			100.00000	1000000.000	5.902	

Results Summary

Result	Dry	Sat. (Base)
Total Raw Mole% (Dry)	100.21205	
Pressure Base (psia)	14.730	
Temperature Base	60.00	
Gross Heating Value (BTU / Ideal cu.ft.)	1205.1	1184.1
Gross Heating Value (BTU / Real cu.ft.)	1209.4	1188.8
Relative Density (G), Ideal	0.7474	0.7453
Relative Density (G), Real	0.7498	0.7479
Compressibility (Z) Factor	0.9964	0.9960

Gas Analys	sis - Use if the	e Inputs are Weight Percents	Gas Analys	i is - Use if th	e Inputs are Mole	e Percents		
Analysis Identifier/Name			Analysis Identifier/Name	Huber 3 Federal 8H Gas Analysis				
What site is the sample from?			Where was the sample taken?					
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).					
Where in the process was the sample taken?			Where in the process was the sample taken?					
What is the temperature and pressure of the sample (include units)?			What is the temperature and pressure of the sample (include units)?					
Who analyzed the sample?			Who analyzed the sample?					
Date of sample:			Date of sample:					
Component hydrogen	weight %		Component hydrogen	mole %	Molecular Weight (grams/mole, lb/lb-mol) 2.01588	grams per 100 moles of gas	weight %	
helium			helium	0.0000	4.0026	0	0.0000	
nitrogen			nitrogen	2.8109	28.01340	79		
CO2			CO2	2.3717	44.00950	104	4.6834	
H2S			H2S	1.9958	34.08188	68	3.0521	
methane (C1)			methane (C1)	72.0205	16.04246	1155	51.8422	
ethane (C2)			ethane (C2)	12.1101	30.06904	364	16.3389	
propane (C3)			propane (C3)	5.2491	44.09562	231	10.3857	
butanes (C4)			butanes (C4)	2.1504	58.12220	125 50	5.6081 2.2548	
pentanes (C5) benzene			pentanes (C5) benzene	0.6965 0.0000	72.14878 78.110000	0		
other hexanes (C6)			other hexanes (C6)	0.5952	86.18000	51	2.3016	
toluene			toluene	0.0000	92.140000	0		
other heptanes (C7)			other heptanes (C7)	0.0000	100.20000	0		
ethylbenzene			ethylbenzene	0.0000	106.170000	0		
xylenes (o, m, p)			xylenes (o, m, p)	0.0000	106.170000	0	0.0000	
other octanes (C8)			other octanes (C8)	0.0000	114.23000	0	0.0000	
nonanes (C9)			nonanes (C9)	0.0000	128.26000	0	0.0000	
decanes plus (C10+)			decanes plus (C10+)	0.0000		0		
Totals:	0.0000		Totals:	100.0002	22.29	2229	100.00	
VOC (Non-methane, Non-eth VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon fr VOC weight% = VOC weight fraction =	0.0000 0.0000 raction only #DIV/0!	irbons)	VOC (Non-methane, Non-eth VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon from the content of	20.5502 0.2055	arbons)			
. 50 Holg.R Rubilon =	5, 0.		. 30 Maight Haddon =	1.2010	1			
Hydrogen Sulfide H2S weight% = H2S weight fraction = H2S ppm _V = H2S ppm _{WT} = H ₂ S grains/100 SCF =		Constants: 453.59237 mol/lb-mol 0.06479891 grams/grain 385.48 scf/lb-mol 34.08188 g/mol, lb/lb-mol H2S mw	Hydrogen Sulfide H2S weight% = H2S weight fraction = H2S ppm, = H2S ppm _{v7} = H ₂ S grains/100 SCF =				mol/lb-mol grams/grain scf/lb-mol	
Benzene			Benzene					
	1-			1-				
Benzene content of total samp Benzene weight% = Benzene weight fraction = Benzene content of hydrocarbe	0.0000 0.0000 on fraction on	ıl <u>y</u>	Benzene content of total samp Benzene weight% = Benzene weight fraction = Benzene content of hydrocarb	0.0000 0.0000 on fraction or	<u>aly</u>			
Benzene weight% = Benzene weight fraction =	#DIV/0! #DIV/0!	O-mate :	Benzene weight% = Benzene weight fraction =	0.0000		Ot- :		
Gas Molecular Weight = Gas Specific Gravity =	0.00	<u>Constants:</u> 28.97 air mw 385.48 scf/lb-mol	Gas Molecular Weight = Gas Specific Gravity =	22.29 0.77			air mw scf/lb-mol	
Gas Throughput (MMscf/day)=	0		Gas Throughput (MMscf/day)=	0	l			
Long Tons Sulfur Compounds per Day =			Long Tons Sulfur Compounds per Day =	0				

Flash Gas Analysis

Certificate of Analysis

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Mike Dunn AMI 416 East Main St. Artesia, NM 88210 Oct. 29, 2019

Station Name: GOOMAN BATTERY Sample Point: HEATER

Method: GPA 2286 Analyzed: 10/29/2019 12:19:18 by Administrator Sampled By: DEREK SAUDER Sample Of: Oil Spot Sample Date: 10/24/2019 10:12 Sample Conditions: 30 psig, @ 118 °F

Analytical Data

	Analytical Data								
Components	Mol. %	Wt. %	GPM at 14.696 psia						
Hydrogen Sulfide	0.0000	0.0000		GPM TOTAL C2+	26.242				
Nitrogen	4.1416	2.6393		GPM TOTAL C3+	19.551				
Carbon Dioxide	1.7297	1.7317		GPM TOTAL iC5+	3.210				
Methane	5.6041	2.0452							
Ethane	24.6589	16.8674	6.691						
Propane	35.3821	35.4924	9.890						
Iso-butane	5.9747	7.8998	1.984						
n-Butane	13.9651	18.4647	4.467						
Iso-pentane	3.1895	5.2349	1.183						
n-Pentane	2.8282	4.6419	1.040						
Hexanes Plus	2.5261	4.9827	0.987						
	100.0000	100.0000	26.242						
Calculated Physical	l Properties	1	otal	C6+					
Relative Density Rea	l Gas	1.5	5433	2.9938					
Calculated Molecular	r Weight	4	3.96	86.71					
Compressibility Factor	or	0.0	9831						
GPA 2172 Calculati	on:								
Calculated Gross B	TU per ft³ @	14.696 psia 8	& 60°F						
Real Gas Dry BTU	-	- 2	2433	4669					
Water Sat. Gas Base	BTU	2	2391	4587					

Bull Bull

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Page 1 of 4 0630

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Mike Dunn Oct. 29, 2019

AMI 416 East Main St. Artesia, NM 88210

Station Name: GOOMAN BATTERY
Sample Point: HEATER
Sample Point: HEATER
Sample Of:
Oil Spot
Sample Date: 10/24/2019 10:12
Analyzed: 10/29/2019 12:19:18 by Administrator
Sample Conditions: 30 psig, @ 118 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Hydrogen Sulfide	0.0000	0.0000		GPM TOTAL C2+	26.2420	
Nitrogen	4.1416	2.6393		GPM TOTAL C3+	19.5510	
Methane	5.6041	2.0452		GPM TOTAL iC5+	3.2100	
Carbon Dioxide	1.7297	1.7317				
Ethane	24.6589	16.8674	6.691			
Propane	35.3821	35.4924	9.890			
Iso-Butane	5.9747	7.8998	1.984			
n-Butane	13.9651	18.4647	4.467			
Iso-Pentane	3.1895	5.2349	1.183			
n-Pentane	2.8282	4.6419	1.040			
Hexanes	1.3991	2.6947	0.570			
Heptanes Plus	1.1270	2.2880	0.417			
	100.0000	100.0000	26.242			
Calculated Physica	I Properties	-	Total	C7+		
Relative Density Rea	al Gas	1.	5433	3.0800		
Calculated Molecular	r Weight	4	13.96	89.20		
Compressibility Factor	or	0.	9831			
GPA 2172 Calculati	on:					
Calculated Gross B	TU per ft³ @	14.696 psia	& 60°F			
Real Gas Dry BTU		24	133.1	4680.4		
Water Sat. Gas Base	e BTU	23	390.7	4598.8		

Boll Bull &

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Page 2 of 4 0631

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

DEREK SAUDER

Spot

Oct. 29, 2019 Mike Dunn

AMI 416 East Main St. Artesia, NM 88210

Quality Assurance:

Station Name: GOOMAN BATTERY Sampled By: Sample Of: Sample Point: HEATER Method: GPA 2286

Sample Date: 10/24/2019 10:12 Analyzed: 10/29/2019 12:19:18 by Administrator Sample Conditions: 30 psig, @ 118 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Hydrogen Sulfide	0.0000	0.0000		GPM TOTAL C2+	26.242	
Nitrogen	4.1416	2.6393		GPM TOTAL C3+	19.551	
Carbon Dioxide	1.7297	1.7317		GPM TOTAL iC5+	3.210	
Methane	5.6041	2.0452				
Ethane	24.6589	16.8674	6.691			
Propane	35.3821	35.4924	9.890			
Iso-Butane	5.9747	7.8998	1.984			
n-Butane	13.9651	18.4647	4.467			
Iso-Pentane	3.1895	5.2349	1.183			
n-Pentane	2.8282	4.6419	1.040			
i-Hexanes	0.9677	1.8494	0.390			
n-Hexane	0.4314	0.8453	0.180			
Benzene	0.2230	0.3964	0.063			
Cyclohexane	0.2324	0.4448	0.080			
i-Heptanes	0.4464	0.9190	0.176			
n-Heptane	0.0554	0.1262	0.026			
Toluene	0.0245	0.0512	0.008			
i-Octanes	0.1214	0.2865	0.053			
n-Octane	0.0055	0.0142	0.003			
Ethylbenzene	0.0011	0.0026	0.000			
Xylenes	0.0010	0.0027	0.000			
i-Nonanes	0.0157	0.0422	0.008			
n-Nonane	0.0004	0.0010	0.000			
Decane Plus	0.0002	0.0012	0.000			
	100.0000	100.0000	26.242			
Calculated Physica	al Properties		otal	C10+		
Calculated Molecular Weight		4:	3.96	170.33		
Compressibility Fact	tor	0.9	9831			
GPA 2172 Calculat	ion:					
Calculated Gross E	BTU per ft ³ @	14.696 psia 8	k 60°F			
Real Gas Dry BTU	-	24	33.1	9395.2		
Water Sat. Gas Base BTU		230	90.7	9075.5		

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

> 0632 Page 3 of 4

Number: 5030-19100617-003A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Oct. 29, 2019

Mike Dunn AMI 416 East Main St. Artesia, NM 88210

Station Name: GOOMAN BATTERY

Sample Point: HEATER

Quality Assurance:

Sample Conditions: 30 psig, @ 118 °F

Sample Of: Oil Spot Sample Date: 10/24/2019 10:12

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Shrinkage Factor	API 20.1 M	0.9767		mb	10/29/2019
Flash Factor	API 20.1 M	25.4517	Cu.Ft./STBbl.	mb	10/29/2019
Color Visual	API 20.1 M	Crude		mb	10/29/2019
API Gravity @ 60° F	ASTM D-5002	33.4	0	mb	10/29/2019

Bulgo &

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Page 4 of 4 0633

Gas Analys	sis - Use if the	e Inputs are Weight Percents	Gas Analys	iis - Use if th	e Inputs are Mole	e Percents	
Analysis Identifier/Name			Analysis Identifier/Name	Goodman B	attery Flash Anal	ysis	
What site is the sample from?			Where was the sample taken?				
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).				
Where in the process was the sample taken?			Where in the process was the sample taken?				
What is the temperature and pressure of the sample (include units)?			What is the temperature and pressure of the sample (include units)?				
Who analyzed the sample?			Who analyzed the sample?				
Date of sample:			Date of sample:				
Component hydrogen	weight %		Component hydrogen	mole %	Molecular Weight (grams/mole, lb/lb-mol) 2.01588	grams per 100 moles of gas	
helium			helium	0.0000	4.0026	0	
nitrogen			nitrogen	4.1416	28.01340	116	2.6343
CO2			CO2	1.7297	44.00950	76	1.7284
H2S			H2S	0.0000	34.08188	90	
methane (C1)			methane (C1)	5.6041	16.04246 30.06904	741	2.0413 16.8356
ethane (C2) propane (C3)			ethane (C2) propane (C3)	24.6589 35.3821	44.09562	1560	35.4254
butanes (C4)			butanes (C4)	19.9398	58.12220	1159	26.3147
pentanes (C5)			pentanes (C5)	6.0177	72.14878	434	9.8582
benzene			benzene	0.2230	78.110000	17	0.3955
other hexanes (C6)			other hexanes (C6)	1.6315	86.18000	141	3.1925
toluene			toluene	0.0245	92.140000	2	0.0513
other heptanes (C7)			other heptanes (C7)	0.5018	100.20000	50	1.1417
ethylbenzene			ethylbenzene	0.0011	106.170000	0	0.0027
xylenes (o, m, p)			xylenes (o, m, p)	0.0010	106.170000	0	0.0024
other octanes (C8)			other octanes (C8)	0.1269	114.23000	14	0.3291
nonanes (C9)			nonanes (C9)	0.0161	128.26000	2	0.0469
decanes plus (C10+)			decanes plus (C10+)	0.0000		0	0.0000
Totals:	0.0000		Totals:	99.9998	44.04	4404	100.00
VOC (Non-methane, Non-eth VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon fr VOC weight% = VOC weight fraction =	0.0000 0.0000 raction only #DIV/0!	irbons)	VOC (Non-methane, Non-eth VOC content of total sample VOC weight% = VOC weight fraction = VOC content of hydrocarbon fi VOC weight% = VOC weight fraction =	76.7603 0.7676	arbons)		
Hudrogon Cultida		Constants	Hydronon Cultida			Constant	
Hydrogen Sulfide H2S weight% = H2S weight fraction = H2S ppm _V = H2S ppm _{WT} = H ₂ S grains/100 SCF =		Constants: 453.59237 mol/lb-mol 0.06479891 grams/grain 385.48 scf/lb-mol 34.08188 g/mol, lb/lb-mol H2S mw	Hydrogen Sulfide H2S weightf = H2S weight fraction = H2S ppm _V = H2S ppm _{WT} = H ₂ S grains/100 SCF =	0.0000 0.00E+00 0 0.00 0.0000 SWEET GA	s		mol/lb-mol grams/grain scf/lb-mol
B			Para di di				
Benzene			Benzene				
Benzene content of total samp Benzene weight% = Benzene weight fraction = Benzene content of hydrocarb	0.0000 0.0000 on fraction on	ıl <u>v</u>	Benzene content of total samp Benzene weight% = Benzene weight fraction = Benzene content of hydrocarb	0.3955 0.0040 on fraction or	<u>nly</u>		
Benzene weight% = Benzene weight fraction =	#DIV/0! #DIV/0!	Constants	Benzene weight% = Benzene weight fraction =	0.4135 0.0041		Constant	
Gas Molecular Weight = Gas Specific Gravity =	0.00	<u>Constants:</u> 28.97 air mw 385.48 scf/lb-mol	Gas Molecular Weight = Gas Specific Gravity =	44.04 1.52			air mw scf/lb-mol
Gas Throughput (MMscf/day)= Long Tons Sulfur	0		Gas Throughput (MMscf/day)= Long Tons Sulfur	0	l		
Compounds per Day =			Compounds per Day =	0			

Liquid Analysis

Certificate of Analysis

Number: 5030-19100539-002A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Mike Dunn Nov. 06, 2019

AMI 416 East Main St. Artesia, NM 88210

Station Name: GOODMAN BATTERY

Sample Point: HEATER Method: GPA 2103M

Analyzed: 11/01/2019 00:45:22 by MB2

Sampled By: DONAVON MILLER

Sample Of: Oil Spot Sample Date: 10/22/2019

Sample Conditions: 92 °F

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Hydrogen Sulfide	NIL	NIL	NIL	NIL	NIL	
Nitrogen	0.040	28.013	0.007	0.8069	0.007	
Methane	0.030	16.043	0.003	0.3000	0.008	
Carbon Dioxide	0.018	44.010	0.005	0.8172	0.005	
Ethane	0.397	30.069	0.075	0.3563	0.172	
Propane	1.973	44.096	0.546	0.5072	0.878	
Iso-Butane	0.888	58.122	0.324	0.5628	0.470	
n-Butane	3.377	58.122	1.232	0.5842	1.720	
Iso-Pentane	2.391	72.149	1.083	0.6251	1.413	
n-Pentane	3.049	72.149	1.381	0.6307	1.786	
i-Hexanes	0.796	85.432	0.427	0.6656	0.523	
n-Hexane	0.593	86.175	0.321	0.6641	0.394	
2,2,4-Trimethylpentane	0.040	114.229	0.029	0.6964	0.034	
Benzene	1.324	78.112	0.649	0.8844	0.599	
Heptanes	5.468	100.202	3.439	0.6882	4.076	
Toluene	2.974	92.138	1.720	0.8719	1.609	
Octanes	7.251	114.229	5.199	0.7066	6.003	
Ethylbenzene	1.408	106.165	0.938	0.8716	0.878	
Xylenes	1.552	106.167	1.034	0.8761	0.963	
Nonanes	5.169	128.255	4.161	0.7222	4.700	
Decanes Plus	61.262	201.356	77.427	0.8564	73.762	
	100.000		100.000		100.000	
Calculated Physical Prope	rties		Total	C10+		
Specific Gravity at 60°F		0.	8158	0.8564		
API Gravity at 60°F	41.949		33.735			
Molecular Weight		159	159.316			
Pounds per Gallon (in Vacuu	um)	6.801		7.140		
Pounds per Gallon (in Air)		6	5.794	7.132		
Cu. Ft. Vapor per Gallon @ 14.696 psia		16	6.201	13.455		

Bulg &

Hydrocarbon Laboratory Manager

Number: 5030-19100539-002A

Midland Laboratory 2200 East I-20 Midland, TX 79706 Phone 432-689-7252

Nov. 06, 2019

Mike Dunn AMI 416 East Main St. Artesia, NM 88210

Station Name: GOODMAN BATTERY

Sample Point: HEATER Sample Conditions: 92 °F

Quality Assurance:

Sampled By: DONAVON MILLER Sample Of: Oil Spot Sample Date: 10/22/2019

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
API Gravity @ 60° F	ASTM D-5002	37.63	٥		11/06/2019
Specific Gravity @ 60/60° F	ASTM D-5002	0.8367			11/06/2019
Density @ 60° F	ASTM D-5002	0.8358	g/ml		11/06/2019
ASTM D323 RVPE @ 100° F	ASTM D-6377	8.13	psi		11/06/2019
VP of Crude Oil: V/L = 4:1 @ 100 °F	ASTM D-6377	8.89	psi		11/06/2019

Brille &

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Page 2 of 2 0636

Liquid Analy	<u>ysis</u> - Use if t	he Inputs are Weight Percents	Liquid Analy	sis - Use if t	he Inputs are Mo	le Percents	
Analysis Identifier/Name			Analysis Identifier/Name	Goodman B	attery Liquid Ana	llysis	
What site is the sample from?			What site is the sample from?				
if the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).				
Where in the process was the sample taken?			Where in the process was the sample taken?				
What is the temperature and pressure of the sample (include units)?			What is the temperature and pressure of the sample (include units)?				
Who analyzed the sample?			Who analyzed the sample?				
Date of sample:			Date of sample:				
Component	weight %		Component	mole %	Molecular Weight (grams/mole, lb/lb-mol)	grams per 100 moles of gas	weight %
hydrogen	Weight 70		hydrogen	0.0000	2.01588	0	0.0000
helium			helium	0.0000	4.0026	0	0.0000
nitrogen			nitrogen	0.0400	28.01340	1	0.0070
CO2			CO2	0.0180	44.00950	1	0.0050
H2S			H2S	0.0000	34.08188	0	0.0000
methane (C1)			methane (C1)	0.0300	16.04246	0	0.0030
ethane (C2)			ethane (C2)	0.3970	30.06904	12	0.0749
propane (C3)			propane (C3)	1.9730	44.09562	87	0.5461
butanes (C4)			butanes (C4)	4.2650	58.12220	248	1.5560
pentanes (C5)			pentanes (C5)	5.4860	72.14878	396	2.4845
benzene			benzene	1.3240	78.110000	103	0.6492
other hexanes (C6)			other hexanes (C6)	1.3890	86.18000	120	0.7514
toluene			toluene	2.9740	92.140000	274	1.7201
other heptanes (C7) ethylbenzene			other heptanes (C7) ethylbenzene	5.4680 1.4080	100.20000 106.170000	548 149	3.4392 0.9383
xylenes (o, m, p)			xylenes (o, m, p)	1.5520	106.170000	165	1.0343
other octanes (C8)			other octanes (C8)	7.2510	114.22900	828	5.1991
nonanes (C9)			nonanes (C9)	5.1690	128.25500	663	4.1614
decanes plus (C10+)			decanes plus (C10+)	61.2620	201.35600	12335	77.4305
Totals:	0.0000		Totals:	100.0060	159.31	15931.0301	100.00
VOC (Non-methane, Non-eth		arbons)	VOC (Non-methane, Non-eth	•	•		
VOC weight% = VOC weight fraction =	0.0000		VOC weight% = VOC weight fraction =	0.9991			
VOC content of hydrocarbon fivor weight% = VOC weight fraction =	#DIV/0!		VOC content of hydrocarbon fit VOC weight% = VOC weight fraction =	99.9220 0.9992			
Hydrogen Sulfide H2S weight% =	0.0000		Hydrogen Sulfide H2S weight% =	0.0000			
H2S weight fraction = H2S ppm _V = H2S ppm _{WT} =			H2S weight fraction = H2S ppm _V = H2S ppm _{WT} =	0.00E+00 0.00 0.00			
Benzene Benzene content of total samp Benzene weight% = Benzene weight fraction =	0.0000		Benzene Benzene content of total samp Benzene weight% = Benzene weight fraction =	0.6492 0.0065			
Benzene content of hydrocarb Benzene weight% = Benzene weight fraction =	#DIV/0!	nly	Benzene content of hydrocarb Benzene weight% = Benzene weight fraction =	0.6492 0.0065	<u>nly</u>		

Page 1 of 6 TANKS 4.0 Report

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: 1000 BBL OIL TANK

Houston State: Texas

Company: Type of Tank:

Texas
Spur Energy Partners
Vertical Fixed Roof Tank
Dorami 2H, 4H, & 9H Federal Oil Tank Battery 4 - 1000 BBL OIL TANKS DAILY FACILITY THROUGHPUT: 2300 BBL/DAY
DAILY TANK THROUGHPUT: 575 BBL/DAY/TANK Description:

Tank Dimensions

Na Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n): 30.00 15.50 29.00 15.00 40,934.03 215.34 8,814,750.00

Paint Characteristics

Shell Color/Shade: Shell Condition Roof Color/Shade: Gray/Medium Gray/Medium Roof Condition: Good

Roof Characteristics

Cone

Type: Height (ft) 0.00 Slope (ft/ft) (Cone Roof) 0.00

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03

Meterological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0 Report Page 2 of 6

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

1000 BBL OIL TANK - Vertical Fixed Roof Tank Houston, Texas

		Da Tem	ily Liquid Su perature (de	urf. eg F)	Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	72.26	58.28	86.25	63.90	3.6413	2.7818	4.7011	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

1000 BBL OIL TANK - Vertical Fixed Roof Tank Houston, Texas

Annual Emission Calcaulations	
Standing Losses (lb):	2,620.1925
Vapor Space Volume (cu ft):	2,830.3786
Vapor Density (lb/cu ft):	0.0319
Vapor Space Expansion Factor:	0.3097
Vented Vapor Saturation Factor:	0.2567
Tank Vapor Space Volume: Vapor Space Volume (cu ft):	2.830.3786
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	15.0000
Tank Shell Height (ft):	30.0000
Average Liquid Height (ft):	15.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000 0.0000
Roof Height (ft): Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0319
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	0.0440
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R):	3.6413 531.9348
Daily Avg. Elquid Surface Temp. (deg. R). Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	523.5667
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.6800 0.6800
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,810.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3097
Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia):	55.9424 1.9192
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.6413
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	2.7818
Surface Temperature (psia):	4.7011
Daily Avg. Liquid Surface Temp. (deg R):	531.9348
Daily Min. Liquid Surface Temp. (deg R):	517.9492
Daily Max. Liquid Surface Temp. (deg R):	545.9204
Daily Ambient Temp. Range (deg. R):	29.8333
Vented Vapor Saturation Factor	0.2567
Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	0.2567
Surface Temperature (psia):	3.6413
Vapor Space Outage (ft):	15.0000
Working Losses (lb):	8,768.9213
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	0.0110
Surface Temperature (psia):	3.6413
Annual Net Throughput (gal/yr.): Annual Turnovers:	8,814,750.0000 215.3404
Turnover Factor:	0.3060
Maximum Liquid Volume (gal):	40,934.0270
Maximum Liquid Height (ft):	29.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	0.7500
Total Losses (Ib):	11,389.1138
Total Losses (lb):	11,309.1130

TANKS 4.0 Report Page 5 of 6

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

1000 BBL OIL TANK - Vertical Fixed Roof Tank Houston, Texas

	Losses(lbs)							
Components	Working Loss Breathing Loss Total Emission							
Crude oil (RVP 5)	8,768.92	2,620.19	11,389.11					

Page 1 of 6 TANKS 4.0 Report

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: 1000 BBL WATER TANK

Houston State: Texas

Company: Type of Tank:

Spur Energy Partners
Vertical Fixed Roof Tank
Dorami 2H, 4H, & 9H Federal Oil Tank Battery 4 - 1000 BBL WATER TANKS DAILY FACILITY THROUGHPUT: 8000
BBL/DAY DAILY TANK THROUGHPUT: 2000 BBL/DAY/TANK Description:

Tank Dimensions

Na Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n): 30.00 15.50 29.00 15.00 40,934.03 749.01 30,660,000.00

Paint Characteristics

Shell Color/Shade: Shell Condition Roof Color/Shade: Gray/Medium Gray/Medium Roof Condition: Good

Roof Characteristics

Cone

Type: Height (ft) 0.25 Slope (ft/ft) (Cone Roof) 0.03

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03

Meterological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0 Report Page 2 of 6

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

1000 BBL WATER TANK - Vertical Fixed Roof Tank Houston, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	72.26	58.28	86.25	63.90	3.6413	2.7818	4.7011	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

1000 BBL WATER TANK - Vertical Fixed Roof Tank Houston, Texas

Annual Emission Calcaulations	
Standing Losses (lb):	2,623.9145
Vapor Space Volume (cu ft):	2,846.1030
Vapor Density (lb/cu ft):	0.0319
Vapor Space Expansion Factor:	0.3097
Vented Vapor Saturation Factor:	0.2557
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	2,846.1030
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	15.0833
Tank Shell Height (ft):	30.0000
Average Liquid Height (ft):	15.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0300
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0319
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.6413
Daily Avg. Liquid Surface Temp. (deg. R):	531.9348
Daily Average Ambient Temp. (deg. F):	60.8167
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	523.5667
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,810.0000
radio (Biaroqu'auy).	1,010.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3097
Daily Vapor Temperature Range (deg. R):	55.9424
Daily Vapor Pressure Range (psia):	1.9192
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.6413
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2,7818
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.7011
Daily Avg. Liquid Surface Temp. (deg R):	531.9348
Daily Min. Liquid Surface Temp. (deg R):	517.9492
Daily Max. Liquid Surface Temp. (deg R):	545.9204
Daily Ambient Temp. Range (deg. R):	29.8333
,	
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.2557
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.6413
Vapor Space Outage (ft):	15.0833
p-: -p9- ().	
Working Losses (lb):	20,606.0812
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.6413
Annual Net Throughput (gal/yr.):	30,660,000.0000
Annual Turnovers:	749.0101
Turnover Factor:	0.2067
Maximum Liquid Volume (gal):	40,934.0270
Maximum Liquid Height (ft):	29.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	0.7500
•	
Total Losses (lb):	23,229.9958
· /	.,

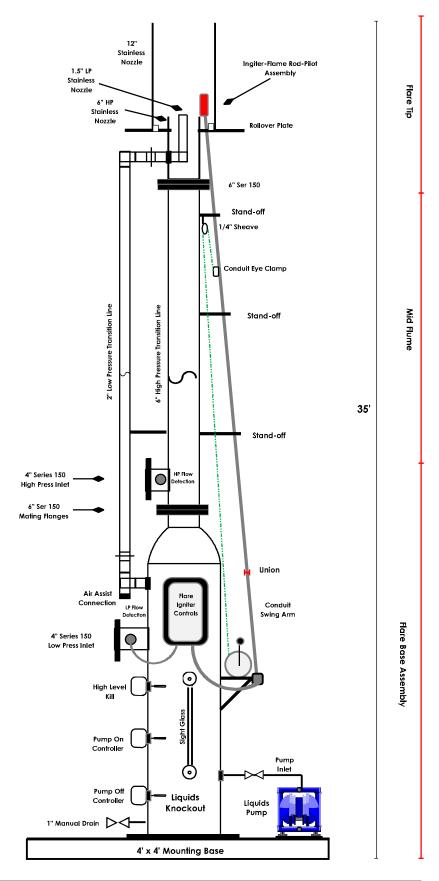
TANKS 4.0 Report Page 5 of 6

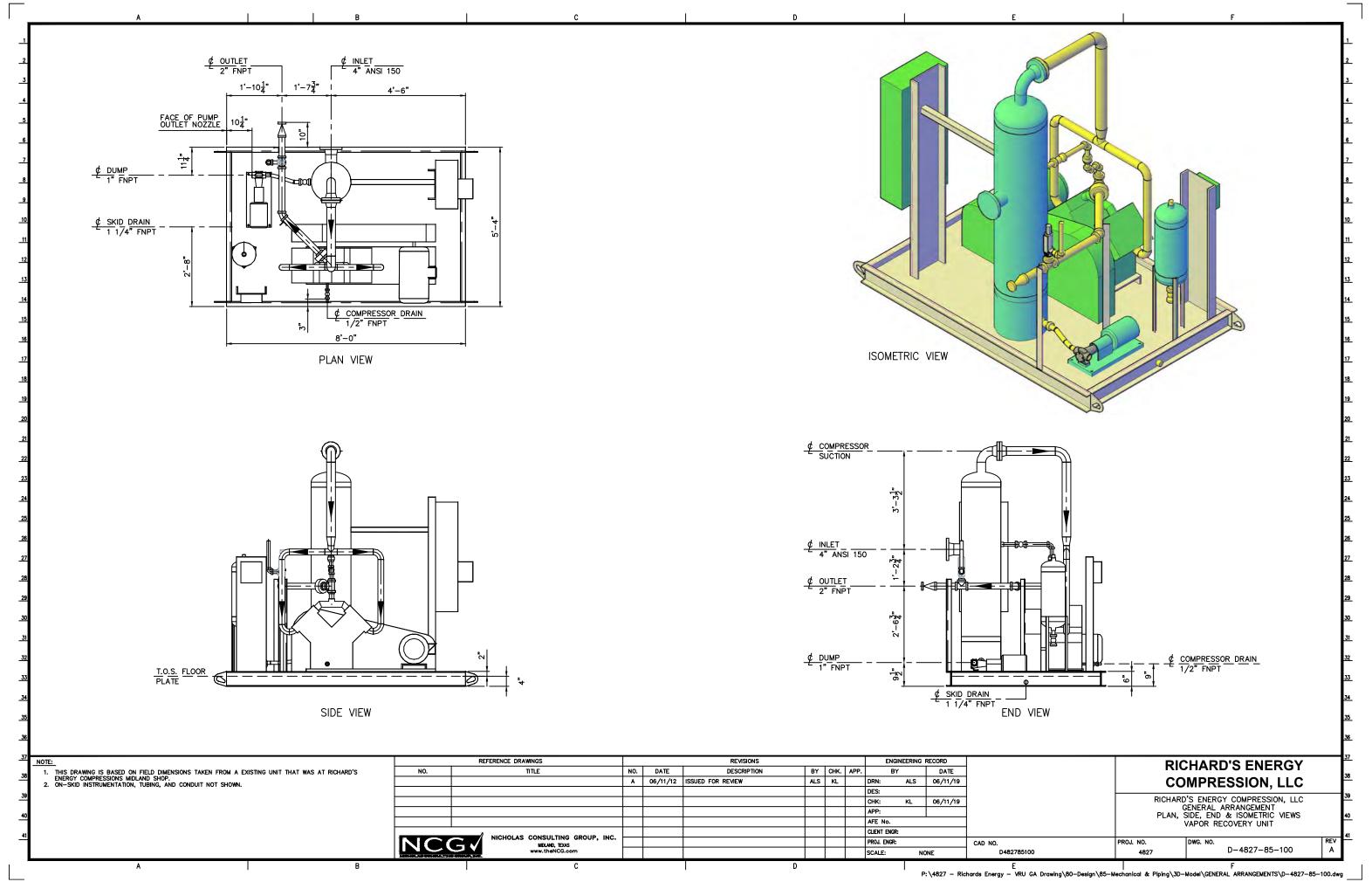
TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

1000 BBL WATER TANK - Vertical Fixed Roof Tank Houston, Texas

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Crude oil (RVP 5)	20,606.08	2,623.91	23,230.00			

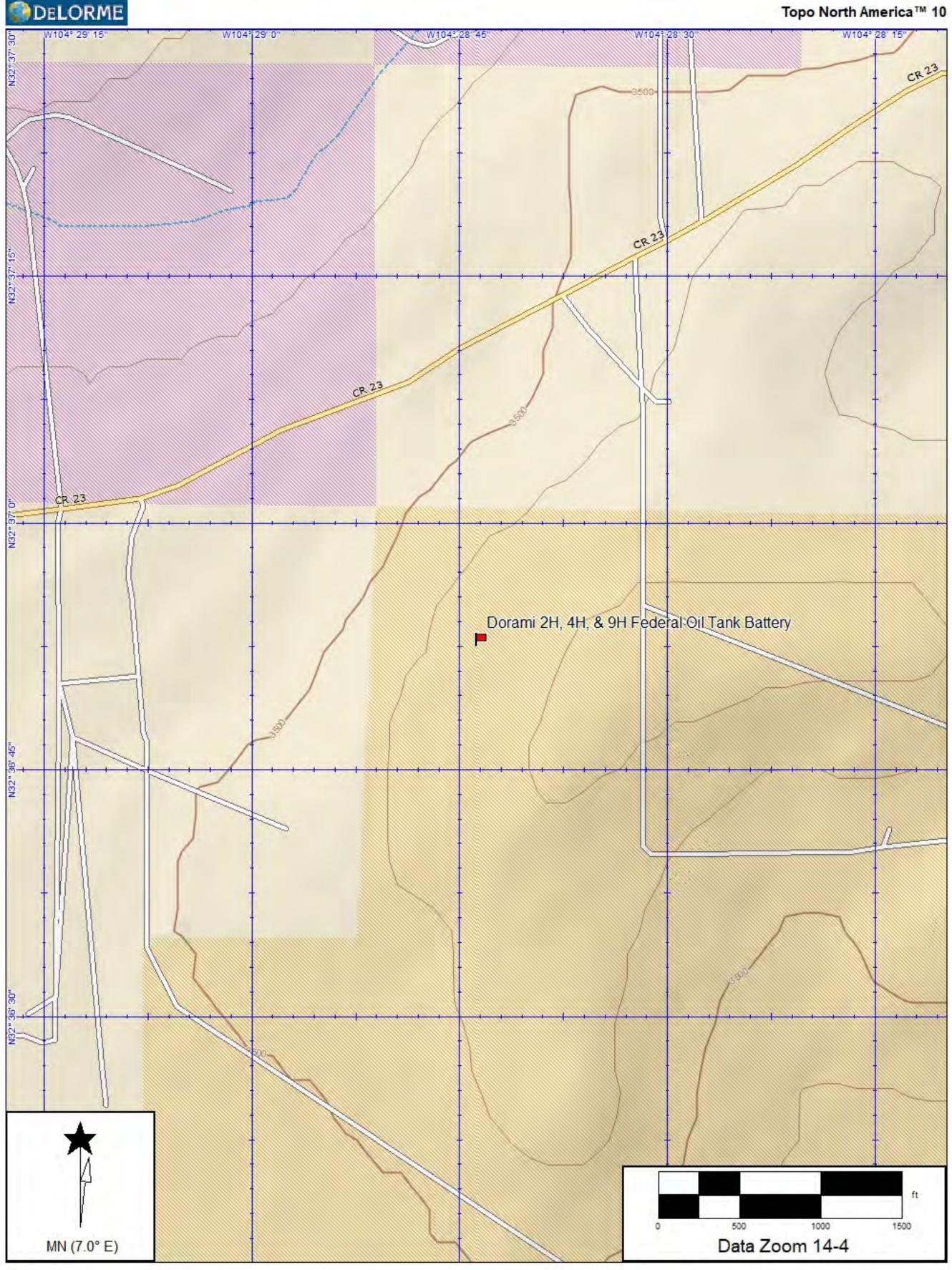

GFS SERIES DUAL PRESSURE FLARE
INSTALLATION & OPERATIONS MANUAL


Dual Pressure Flare - Oil Flare

<u>Vaprox (https://www.vaporprocess.com/)</u> offers a full line of tank battery dual pressure flares. These Systems utilize one flare assembly that attains 98% or greater VOC destruction efficiency for both low pressure tank vapor gas and high pressure emergency vent gas while complying with all state and federal air quality regulations. The dual pressure flare system eliminates the need for a second flare on your tank battery facility, thus reducing construction costs. All Vaprox systems are available in 12vdc and 120vac and come standard with an interchangeable ventilated (smokeless) stainless steel flare tip. Vaprox flares are designed to control liquids found in the waste gas stream with a scrubber pot located at the base completed with a liquid sight glass, level switch, and liquid evacuation pump (pneumatic diaphragm or electric). Vaprox's unique retractable igniter assembly allows the operator to lower the igniter assembly to ground level for maintenance purposes without the cost and safety concerns associated with operating a man lift. You can be sure you're getting the utmost quality and safety from our dual pressure flare by <u>Vaprox</u> (https://www.vaporprocess.com/).

Dual pressure flare and oil flare systems are available with a variety of equipment options including continuous pilot, continuous or intermittent ignition, flow activated ignition, flow detection, mass flow measurement, flame detection via flame rod or thermocouple, data logging with SCADA reporting via RS485 Modbus, flame arrestors, and custom guy wire systems.

TITLE	Vaprox Dual Pressure Flare - Standard Configuration					
AUTHOR	R. Hogue					
DATE	1-19-2015	SHEET	1	OF	1	
REVISION	Revision 1E © Copyright 2015 - All Rights Reserved Vaprox , LLC		·			


Section 7

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

Form Revision: 10 December 2019 Printed: 2/10/2020

Data use subject to license.

© DeLorme. Topo North America™ 10.

www.delorme.com

Section 8A

Applicable State & Federal Regulations

<u>Provide a discussion demonstrating compliance with each applicable state & federal regulation</u>. All input cells should be filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

Applicable STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	Yes	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide, and Nitrogen Dioxide.	Facility	Yes	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of the TSP, SO ₂ , H ₂ S, NOx, and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	Yes	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emissions.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	20.2.38.109 TANK STORAGE ASSOCIATED WITH PETROLEUM PRODUCTION OR PROCESSING FACILITY 20.2.38.112 NEW TANK BATTERY MORE THAN 65,000 GALLONS CAPACITY	TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3,	Yes	The purpose of this regulation is to minimize hydrogen sulfide emissions from hydrocarbon storage facilities. The storage tanks, TK-1 through TK-4 & PWTK-1 through PWTK-4 are a new production facility as they were constructed after July 1, 1975. The tanks are all 1000 bbl. The tanks are subject to 20.2.38.109 NMAC. The tanks comply with the requirement to minimize vapor loss to the atmosphere through use of the flare. The tanks are subject to NMAC 20.2.38.112 since they have a combined storage capacity greater than 65,000 gallons. The facility complies with this regulation through NMAC 20.2.38.112(C) by using a flare to minimize vapor or gas loss to the

Form Revision: 10 December 2019 Printed: 3/13/2020

0652

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m³, 3. VOL)
						atmosphere.
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	FWKO-1, FWKO-1, FWKO-3, HT-1, FLARE	Yes	This regulation establishes controls on smoke and visible emissions from certain sources, including stationary combustion equipment. The heaters and flare are subject to this regulation as they are stationary combustion equipment.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	NOI: 20.2.73.200 NMAC applies to all facilities emitting over 10 TPY of any regulated air contaminate. Thus, permitted facilities are also subject to this rule. This GCP-O&G registration also serves the purpose of meeting 20.2.73 the NMAC notification requirements.) Emissions Inventory: 20.2.73.300.A(1) NMAC applies to facilities registering under the GCP. Emission Inventory reporting is required upon request by the department per 20.2.73.300.B(4) NMAC.	Facility	YES	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet any applicable reporting requirements under 20.2.73 NMAC.
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended on the date of certification.	Facility	YES	The facility is subjects to NSPS OOOOa
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended on the date of certification.	NA	NO	The facility is a minor source for HAPS
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended on the date of certification.	NA	NO	The purpose of this regulation is to establish state authority to implement new source performance standards for stationary sources in New Mexico subject to 40 CFR Part 63. This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended through August 29, 2013. This regulation does not apply as no units at this facility are subject to 40 CFR Part 63.

Applicable FEDERAL REGULATIONS (This is not an exhaustive list; add applicable regulations such as NSPS GG and KKKK):

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 50	NAAQS	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	Facility	YES	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality

Form Revision: 10 December 2019 Printed: 3/13/2020

FEDERAL REGU- LATIONS CITATION	<u>LATIONS</u> Title		Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
					standards for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.
40 CFR 60, Subpart A	General Provisions	Applies if any other NSPS subpart applies.	Facility, Flare	YES	Applies if any other NSPS subpart applies.
40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced After August 23, 2011, and on or before September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375); centrifugal compressors (60.5380); reciprocating compressors (60.5385): controllers (60.5395); storage vessels (60.5395); equipment leaks (60.5400); sweetening units (60.5405). If standards apply, list the unit number(s) and regulatory citation of the standard that applies to that unit (e.g. Centrifugal Compressors 1a-3a are subject to the standards at 60.5380(a)(1) and (2) since we use a control device to reduce emissions)		NO	
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5385a): controllers (60.5395a); storage vessels (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	Fugitives TK-1, TK-2, TK-3, TK-4, PWTK-1, PWTK-2, PWTK-3, PWTK-4,	YES	This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The rule applies to "affected" facilities that are constructed, modified, or reconstructed after September 18, 2015. The facility commenced construction after September 18, 2015. The facility is therefor subject to NSPS OOO0a. Fugitive emissions are subject to 60.5397a and the tank are subject to 60.5395a
40 CFR 60, Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	NA	NO	
40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	See 40 CFR 60.4230(a), 1 through 5 to determine applicable category and state engine size, fuel type, and date of manufacture.	NA	NO	
40 CFR 63, Subpart A	General Provisions	Applies if any other subpart applies.	NA	NO	
40 CFR 63,	NESHAP for Glycol	See 40 CFR 63, Subpart HH	NA	NO	

Form Revision: 10 December 2019 Printed: 3/13/2020

Spur Energy	Partners LLC
-------------	--------------

Dorami 2H, 4H, & 9H Federal Oil Tank Battery

2/1		

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
Subpart HH	Dehydrators				
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	NA	NO	

Section 8B Compliance Test History

To evaluate the requirement for compliance tests, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date

Form Revision: 10 December 2019 Printed: 3/13/2020

Section 9 Proof of Public Notice

General Posting of Notice
I, <u>JERRY MATRICES</u> , the undersigned, certify that on <u>2/6/20</u> (DATE), I posted a true and correct copy of the attached Public Notice in a publicly accessible and conspicuous place, visible from the nearest public road, at the entrance of the property on which the facility is, or is proposed to be, located.
Signed this 5 day of FEBRUARY, 2020,
Signature $\frac{2/5/20}{}$
Printed Name Title {APPLICANT OR RELATIONSHIP TO APPLICANT}
Printed Name Title {APPLICANT OR RELATIONSHIP TO APPLICANT}
Newspaper Publication of Notice
An original or copy of the actual newspaper advertisement posted in a newspaper in general circulation in the applicable county is attached. The original or copy of the advertisement includes the header showing the date and newspaper or publication title.
OR
An affidavit from the newspaper or publication in general circulation in the applicable county stating that the advertisement was published is attached. The affidavit includes the date of the advertisement's publication, and a legible photocopy of the entire ad.
Signature O3/11/2020 Date

NOTICE

Spur Energy Partners LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas). The name of this facility is Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is February 19, 2020. This notice is a requirement according to New Mexico air quality regulations.

The exact initial location of the facility is UTM Zone 13, UTM Easting 548,896 m, UTM Northing 3,608,681 m. The approximate location of this site is 16.4 miles southwest of Artesia, NM in Eddy County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Pollutant	Tons per year (TPY)
1. Nitrogen Oxides (NOx)	95
2. Carbon Monoxide (CO)	95
3. Volatile Organic Compounds (VOC) (stack)	95
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Total Suspended Particulates	25
7. Sulfur Dioxide (SO2)	95
8. Hydrogen Sulfide (H2S)	25
9. Any one (1) Hazardous Air Pollutant (HAP)	< 10
10. Sum of all Hazardous Air Pollutants (HAPs)	< 25

The owner and/or operator of the Plant is:

Spur Energy Partners LLC 920 Memorial City Way, Suite 1000 Houston, Texas 77024

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also_visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

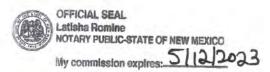
Form Revision: 10 December 2019 Printed: 2/10/2020

Affidavit of Publication

Publisher State of New Mexico County of Eddy:

Danny Scott

being duly sworn sayes that he is the


Publisher

2020

of the Artesia Daily Press, a daily newspaper of General circulation, published in English at Artesia, said county and state, and that the hereto attached

Legal Ad

was published in a regular and entire issue of the said Artesia Daily Press, a daily newspaper duly qualified for that purpose within the meaning of Chapter 167 of the 1937 Session Laws of the state of New Mexico for Consecutive weeks/day on the same day as follows: First Publication February 6, 2020 Second Publication Third Publication Fourth Publication Fifth Publication Sixth Publication Seventh Publication

February

Latisha Romine

Subscribed and sworn before me this

day of

Notary Public, Eddy County, New Mexico

Copy of Publication:

Legal Notice

NOTICE

Spur Energy Partners LLC announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas). The name of this facility is Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The expected date of the submittal of our Registration for an air quality permit to the Air Quality Bureau is February 19, 2020. This notice is a requirement according to New Mexico air quality regulations.

The exact initial location of the facility is UTM Zone 13, UTM Easting 548,896 m, UTM Northing 3,608,681 m. The approximate location of this site is 16.4 miles southwest of Artesia, NM in Eddy County. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Pollutant	Tons per year (TPY)
1. Nitrogen Oxides (NOx)	95
2. Carbon Monoxide (CO)	95
3. Volatile Organic	
Compounds (VOC) (stack)	95
4. Particulate Matter (PM10)	25
5. Particulate Matter (PM2.5)	25
6. Total Suspended Particulates	25
7. Sulfur Dioxide (SO2)	95
8. Hydrogen Sulfide (H2S)	25
9. Any one (1) Hazardous Air	
Pollutant (HAP)	< 10
10. Sum of all Hazardous Air	
Pollutants (HAPs)	< 25
3. Volatile Organic Compounds (VOC) (stack) 4. Particulate Matter (PM10) 5. Particulate Matter (PM2.5) 6. Total Suspended Particulates 7. Sulfur Dioxide (SO2) 8. Hydrogen Sulfide (H2S) 9. Any one (1) Hazardous Air Pollutant (HAP) 10. Sum of all Hazardous Air	95 25 25 25 95 25 < 10

The owner and/or operator of the Plant is: Spur Energy Partners LLC 920 Memorial City Way, Suite 1000 Houston, Texas 77024

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

> New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimina- 0658

Section 10 Certification

Company Name: Spur Energy Partners LLC

I, <u>Todd Mucha</u>, hereby certify that the information and data submitted in this Registration are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 24 day of Febu, 2020, upon	n my oath or affirmation, before a notary of the State of
Texas.	
*Signature	2/24/2020 Date
Toop Much Printed Name	ENP-Op.
Scribed and sworn before me on this 24 th day of Febr	uary . 2020
My authorization as a notary of the State of	expires on the
19th day of September, 2	2023.
Michelle Dussetschlege Notary's Signature	$\frac{2 24 2020}{\text{Date}}$
Michelle Dussetschleger Notary's Printed Name	MICHELLE DUSSETSCHLEGER Notary Public, State of Texas Comm. Expires 09-19-2023 Notary ID 132181084

Form Revision: 10 December 2019

Printed: 2/10/2020

MICHELLE LUJAN GRISHAM **GOVERNOR**

> HOWIE C. MORALES LT. GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

March 23, 2020

Certified Mail No. **Return Receipt Requested**

Todd Mucha **EVP-Operations** Spur Energy Partners LLC 920 Memorial City Way **Suite 1000** Houston, TX 77024

Air Quality General Permit GCP- Oil & Gas 8733 IDEA No. 39447 - PRN20200001 Spur - Dorami 2H, 4H, and 9H Federal Oil Tank Battery AIRS No. 350152322

Dear Todd Mucha:

This letter is in response to your air quality General Construction Permit - Oil & Gas (GCP-O&G) application dated February 24, 2020 to construct an oil and gas facility in New Mexico. The application was received by the Department on February 27, 2020.

A review has been completed and the information provided is sufficient to issue your permit in accordance with the GCP-O&G conditions as established under 20.2.72.220 NMAC.

Attached is a copy of your permit registration and the GCP-O&G. The GCP-O&G includes the terms and conditions for operation as well as emission and compliance requirements.

Pursuant to 20.2.75.11 NMAC, the Department will assess an annual fee for this facility. This regulation set the fee amount at \$1,500 through 2004 and requires it to be adjusted annually for the Consumer Price Index on January 1. The current fee amount is available by contacting the Department or can be found on the Department's website. The AQB will invoice the permittee for the annual fee amount at the beginning of each calendar year. This fee does not apply to sources which are assessed an annual fee in accordance with 20.2.71 NMAC. For sources that satisfy the definition of "small business" in subsection F of 20.2.75.7 NMAC, this annual fee will be divided by two.

Page 2 of 2

All fees shall be remitted in the form of a corporate check, certified check, or money order made payable to the "NM Environment Department, AQB" mailed to the address shown on the invoice, and shall be accompanied by the remittance slip attached to the invoice.

If you have any questions, please contact me in Santa Fe at 505-476-4373 or vanessa.springer@state.nm.us.

Sincerely,

Vanessa Springer Air Permit Specialist Permits Section Air Quality Bureau

cc via email: John Connolly, Energy Resource Development, Inc

Enclosure: Instructions to access the Industry/Consultant Feedback Questionnaire online.

MICHELLE LUJAN GRISHAM GOVERNOR

HOWIE C. MORALES

LT. GOVERNOR

New Mexico ENVIRONMENT DEPARTMENT

525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816 Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov

JAMES C. KENNEY
CABINET SECRETARY

JENNIFER J. PRUETT
DEPUTY SECRETARY

Statement of Basis/Data Base Summary GCP- Oil & Gas (O&G) Permit

Size SM>80

Permit Writer: Vanessa Springer

GCP No. 8733

Agency Interest No. 39447 - PRN20200001

AIRS ID No. 350152322

SIC Code: 1311: Crude petroleum and natural gas

Facility Type: O&G-Production Facility **Company:** Spur Energy Partners LLC

Facility: Dorami 2H, 4H, and 9H Federal Oil Tank Battery

Type of Permit Action:GCP - Oil and GasRegistration Date:February 24, 2020Receive Date:February 27, 2020

Co. Pub Notice Date/Paper: February 6, 2020 / Artesia Daily Press

Public Hearing: N/A

Permit Due: March 28, 2020 Permit Issued: March 23, 2020

Facility Location: 16.4 miles southwest of Artesia, NM

UTM Zone: 13

UTM Easting: 548896 meters UTM Northing: 3608681 meters

Elevation: 3531 feet **County:** Eddy

Contact Name: Todd Mucha

Phone: 281-795-2286

Email: todd@spurepllc.com

Contact Address: 920 Memorial City Way

Suite 1000

Houston, TX 77024

Consultant Name: John Connolly

Energy Resource Development, Inc

Phone: 225-753-4723 Email: jmcerdi@cox.net

Consultant Address: 19345 Point O Woods Court

Baton Rouge, LA 70809

1.0 Registration Summary:

Spur Energy Partners LLC proposes this initial GCP-Oil & Gas application for the Dorami 2H, 4H, & 9H Federal Oil Tank Battery. The site will have an initial production rate of 2,300 bbl/day of oil, 8,000 bbl/day of produced water, and 3.5 MMScf/d of produced gas. Multiple wells are associated with this production facility.

As proposed, equipment at the well site will include three (3) 0.75 MMBtu/hr free water knockouts, one (1) 0.5 MMBtu/hr heater treater, one (1) electric vapor recovery unit (VRU) with an associated Vapor Recovery Tower (VRT), a dual-pressure combustion flare, four (4) 1,000 bbl produced water tanks, four (4) 1,000 bbl oil tanks, and various gas scrubbers. Additional emissions at the site will result from tank truck loading, truck hauling, fugitive

The combustion flare will control emissions from the oil & produced water tanks working, standing, and flashing losses, VRT flash gas during VRU downtimes, and produced sales gas to a minimum 98% efficiency. In the event that the VRU is down for maintenance, the flare will still control emissions from the vapor recovery tower. During maintenance or unavailability on the sales gas pipeline, all produced gas off the separators will be continuously routed to the flare until gas can be sold. The flare calculation page on the AECT is broken down into two streams, the high-pressure stream and the low-pressure stream. The high-pressure stream will be a combination of sales gas off the FWKOs during pipeline interruption, VRU gas during pipeline

interruption, and gas during VRU downtime. The low-pressure stream will be the flash, working,

Description of Modification:

N/A – Not a modification

2.0

3.0 History (In descending chronological order)

and standing losses off the oil and water tanks.

emissions, and malfunction emissions.

Permit Number	Issue Date	Action Type	Description of Action (Changes)
8733	3/23/2020	GCP O&G – New	Equipment at the well site will include three (3) 0.75 MMBtu/hr free water knockouts, one (1) 0.5 MMBtu/hr heater treater, one (1) electric vapor recovery unit (VRU) with an associated Vapor Recovery Tower (VRT), a dual-pressure combustion flare, four (4) 1,000 bbl produced water tanks, four (4) 1,000 bbl oil tanks, and various gas scrubbers. Additional emissions at the site will result from tank truck loading, truck hauling, fugitive emissions, and malfunction emissions.

4.0 Public Response/Concerns:

Jeremy Nichols, Climate and Energy Program Director for WildEarth Guardians, submitted a comment about this facility, which the permit writer passed on to upper management. Permit writer was instructed to process the application as usual.

5.0 <u>Facility Specifications:</u>

Total Pollutant Emissions from Entire Facility (for information only, not an enforceable condition):

Pollutant	Emissions (tons per year)	Emission Type
Particulate Matter (2.5 microns or less)	0.11	Allowable
Nitrogen Dioxide	19.85	Allowable
Particulate Matter (10 microns or less)	0.11	Allowable
Hydrogen sulfide (NMAAQ)	3.22	Allowable
Sulfur Dioxide	4.44	Allowable
Volatile Organic Compounds (VOC)	90.52	Allowable
Carbon Monoxide	42.65	Allowable

Total HAPS* and NM TAPS that exceed 1.0 ton per year (for information only, not an enforceable condition):

Pollutant	Emissions (tons per year)	Emission Type
Total HAP	0.1	Potential

^{*} HAP emissions are already included in VOC emissions

Note: The Total HAPS may not match the sum of the individual HAPS in this table as it will include values from HAPS that are below 1.0 tpy.

Air Pollution Control Devices:

Subject Item ID, Type, ID, (Unit #)	SI Description	Primary	Control Equipment Mfg & model (or equivalent)
PWTK-1 (EQPT9)	1000 bbl Water Tank	Flare	Vaprox
PWTK-2 (EQPT10)	1000 bbl Water Tank	Flare	Vaprox
PWTK-3 (EQPT11)	1000 bbl Water Tank	Flare	Vaprox
PWTK-4 (EQPT12)	1000 bbl Water Tank	Flare	Vaprox
TK-1 (EQPT5)	1000 bbl Oil Tank	Flare	Vaprox
TK-2 (EQPT6)	1000 bbl Oil Tank	Flare	Vaprox
TK-3 (EQPT7)	1000 bbl Oil Tank	Flare	Vaprox
TK-4 (EQPT8)	1000 bbl Oil Tank	Flare	Vaprox

Equipment Specifications (Active):

Unit No.	Unit Type	Manufacturer	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
FLARE EQPT13	Process Flare	Vaprox	4290.58 MM SCF/y / 192.11 MM SCF/y	/	Active	4290.58 / 192.109 MMScf/y Dual Tip Flare
FUG-1 RPNT1	Fugitives		/	/	Active	Facility-wide Fugitives
FWKO-1 EQPT1	Heater Treater/Stack Pak		.75 MM BTU/h / .75 MM BTU/h	/	Active	0.75 MMBtu/h Heated Water Knockout

Unit No.	Unit Type	Manufacturer	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
FWKO-2 EQPT2	Heater Treater/Stack Pak		.75 MM BTU/h / .75 MM BTU/h	/	Active	0.75 MMBtu/h Heated Water Knockout
FWKO-3 EQPT3	Heater Treater/Stack Pak		.75 MM BTU/h / .75 MM BTU/h	/	Active	0.75 MMBtu/h Heated Water Knockout
HT-1 EQPT4	Heater Treater/Stack Pak		.5 MM BTU/h / .5 MM BTU/h	/	Active	0.5 MMBtu/h Heater Treater
MALF RPNT2	Fugitives		/	/	Active	Malfunction emissions
OILLOAD-1 EQPT14	Loading/Unlo ading Rack		/	35259000 bbl/y / 35259000 bbl/y	Active	Oil Truck Loading
PWTK-1 EQPT9	Tank - Above Ground		/	1000 bbl / 30660000 gal/y	Active	1000 bbl Water Tank
PWTK-2 EQPT10	Tank - Above Ground		/	1000 bbl / 30660000 gal/y	Active	1000 bbl Water Tank
PWTK-3 EQPT11	Tank - Above Ground		/	1000 bbl / 30660000 gal/y	Active	1000 bbl Water Tank
PWTK-4 EQPT12	Tank - Above Ground		/	1000 bbl / 30660000 gal/y	Active	1000 bbl Water Tank
TK-1 EQPT5	Tank - Above Ground		/	1000 bbl / 8814750 gal/y	Active	1000 bbl Oil Tank

Unit No.	Unit Type	Manufacturer	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
TK-2 EQPT6	Tank - Above Ground		/	1000 bbl / 8814750 gal/y	Active	1000 bbl Oil Tank
TK-3 EQPT7	Tank - Above Ground		/	1000 bbl / 8814750 gal/y	Active	1000 bbl Oil Tank
TK-4 EQPT8	Tank - Above Ground		/	1000 bbl / 8814750 gal/y	Active	1000 bbl Oil Tank

Equipment Specifications (Retired/Removed):

Unit No.	Unit Type	Manufacturer	Model No.	Serial No.	Yr of Construction	Yr of Manufacture	Operating Rate Max/Site	Operating Capacity Max/Site	Subject Item Status	Subject Item Description
N/A										

Emissions: Pollutant **Permitted** (Allowable) Emissions per piece of equipment or Subject Item as represented by applicant.

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO₂ (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H₂S (pph)	H₂S (tpy)
PWTK-1 (EQPT9)														
TK-1 (EQPT5)														
FWKO- 3 (EQPT3)	0.086	0.377	0.072	0.315	0.005	0.022			0.007	0.031	0.007	0.031		
HT-1 (EQPT4)	0.057	0.25	0.048	0.21	0.003	0.013			0.004	0.018	0.004	0.018		

Unit No.	NO _x (pph)	¹NO _x (tpy)	CO (pph)	CO (tpy)	VOC (pph)	VOC (tpy)	SO ₂ (pph)	SO ₂ (tpy)	PM ₁₀ (pph)	PM ₁₀ (tpy)	PM _{2.5} (pph)	PM _{2.5} (tpy)	H ₂ S (pph)	H ₂ S (tpy)
TK-4 (EQPT8)														
PWTK-4 (EQPT1 2)														
PWTK-2 (EQPT1 0)														
PWTK-3 (EQPT1 1)														
MALF (RPNT2)						10.00								
TK-3 (EQPT7)														
FLARE (EQPT1 3)	25.56	18.47	57.42	41.49	41.79	48.14	7.477	4.435					5.292	3.139
OILLOA D-1 (EQPT1 4)					14.99	29.97								
FWKO- 1 (EQPT1)	0.086	0.377	0.072	0.315	0.005	0.022			0.007	0.031	0.007	0.031		
TK-2 (EQPT6)														
FUG-1 (RPNT1)					0.54	2.33							0.02	0.08

Unit	NO _x	¹NO _x	CO	CO	VOC	VOC	SO ₂	SO ₂	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}	H ₂ S	H₂S
No.	(pph)	(tpy)	(pph)	(tpy)	(pph)	(tpy)	(pph)	(tpy)	(pph)	(tpy)	(pph)	(tpy)	(pph)	(tpy)
FWKO- 2 (EQPT2)	0.086	0.377	0.072	0.315	0.005	0.022			0.007	0.031	0.007	0.031		

¹ Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO₂

6.0 <u>Compliance Testing:</u> That may apply.

Unit(s)	Compliance Test	Timeline
Engine(s) or Turbine(s) > 180 hp Exemption: Existing units that have been tested within the last five (5) years are not required to perform an initial compliance test.	Initial Compliance Test Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit. A test may be waived by the Department if the test is not required under a NMAC, NSPS, NESHAP or MACT.	Compliance tests shall be conducted within sixty (60) days after the unit(s) achieve the maximum normal production rate. If the maximum normal production rate does not occur within one hundred twenty (120) days of source startup, then the tests must be conducted no later than one hundred eighty (180) days after initial startup of the source.
Engine(s) or Turbine(s) > 180 hp Facilities with a PER less than 80 tpy of each regulated air pollutant shall perform periodic testing every three (3) years.	Periodic Testing Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit. A test may be waived by the Department if the test is not required under a NMAC, NSPS, NESHAP or MACT.	Every three (3) years.
Engine(s) or Turbine(s) > 180 hp Facilities with PER greater than the 80 tpy of any regulated air pollutant shall perform periodic testing once per calendar year for each engine or turbine > 180 hp.	Periodic Testing Testing requirements shall be conducted in accordance with Section B111 of the GCP- O&G Permit	Every calendar year.
Flares	N/A unless subject to compliance test under a NMAC, NSPS, NESHAP or MACT.	Test dates according to applicable regulation

Thermal Oxidizers	If the owner or operator does not provide manufacturer's data to establish the minimum operating temperature required to achieve 98% control efficiency, the owner/operator shall perform an initial compliance test to determine such	Within sixty (60) days of the start of operations, and the results shall be submitted to the Department within thirty (30) days of the test.
	operating temperature.	Test dates asserting to applicable
Storage Tanks	N/A unless subject to compliance test under a NMAC, NSPS, NESHAP or MACT.	Test dates according to applicable Regulation.

7.0 Startup and Shutdown:

Were emissions from startup, shutdown, and scheduled maintenance operations calculated and included in
the emission tables? Yes
No: Only malfunction emissions were included (10 tpy VOCs).

8.0 <u>State and Federal Regulatory Analysis (NMAC/AQCR): Refer to Section 8 of the GCP O&G Registration Form.</u>

9.0 **Permit Writer Comments:**

In regards to the applicability of 40 CFR 60, OOOa to the facility's tanks: The flare is used as a control for the produced water tanks and oil tanks. The flare keeps the water tanks below the 6 tpy threshold for OOOOa applicability. However, the oil tanks are over 6 tpy even with the flare controlling emissions, so the oil tanks 1-4 are subject to OOOOa. The applicant chose to count the post-control emissions from all tanks at the flare, which is why in Tempo the tank emissions appear to be 0 tpy. In the AECT oil tanks pages, you can see that emissions after control are over 6 tpy.

From: Schooley, Ted, NMENV

To: <u>Jeremy Nichols</u>; <u>Romero, Rhonda, NMENV</u>

Subject: RE: [EXT] reguest for updates on oil and gas general permit registrations

Date: Tuesday, May 12, 2020 8:20:00 AM

Mr. Nichols,

Thank you for your email regarding the status of the Oil and Gas General Construction Permits (O&G GCPs) for which WEG has submitted comments. At the bottom of this email is a table showing the status of the registrations WEG has inquired about. Information regarding GCP registration applications can be found on the Bureau's website on the following page:

https://www.env.nm.gov/air-quality/aqb-p_current_permitting_activites/, which includes this link: Current Permitting Actions for NSR and Title V – Updated 04/30/2020.

Administrative review of the Department's determination to grant an application to register under a GCP is available pursuant to the Environmental Improvement Board's GCP regulations at subsection 20.2.72.220.C(5) NMAC (available here), which in turn references the Air Quality Control Act at NMSA 1978, Section 74-2-7. Subsection 74-2-7(H) of the statute provides that any person who participated in a permitting action before the Department and who is adversely affected by such permitting action may file a petition for hearing before the EIB within 30 days from the date notice is given of the Department's action.

For any of the O&G GCP registration applications listed below on which WEG submitted comments, you may regard the date of this email as the date notice was provided to WEG of the Department's action on those applications.

Best.

Ted Schooley

Permit Programs Section Chief
New Mexico Environment Department
Air Quality Bureau
525 Camino de los Marquez, Suite 1, Santa Fe, NM 87505
Office: (505) 476-4334
ted.schooley@state.nm.us

https://www.env.nm.gov/air-quality/

"Innovation, Science, Collaboration, Compliance"

Company	Facility(ies)	NSR Permit	Date Application	Permitting	Status
Company	1 demey(ies)	No.	Received	Action Type	
Cimarex Energy Co.	Dos Equis 11-14	8136M1	March 30, 2020	GCP-Oil and	Issued
of Colorado	Federal Com 4H	91301/11	March 50, 2020	Gas	
Matador Production	Ray state Slot 3	8793	March 20, 2020	GCP-Oil and	Issued
Co.	Facility	8/93	March 30, 2020	Gas	
Matador Production	Stebbins 19 Fed 3	7811M2	March 20 2020	GCP-Oil and	Issued
Co.	Facility	/811IVI2	March 26, 2020	Gas	
Matador Production	Grevey Com Tank	8780	March 20 2020	GCP-Oil and	Issued
Co.	Battery	8780	March 26, 2020	Gas	
New Mexico Gas	Lea County	0701	March 20 2020	GCP-Oil and	Issued
Company	Compressor Station	8781	March 26, 2020	Gas	

Summit Midstream Permian LLC	Lane Gas Plant	7426M1	March 26, 2020	GCP-Oil and Gas	Withdrawn
XTO Energy Inc.	Poker Lake Unit 28, Big Sinks Tank Battery	8395M1	March 26, 2020	GCP- GCP Oil and Gas	Issued
XTO Energy Inc.	Poker Lake Unit 21, Brushy Draw West Tank	8398M1	March 26, 2020	GCP- GCP Oil and Gas	Issued
XTO Energy Inc.	Poker Lake Unit 17, Twin Wells Ranch West	8782	March 26, 2020	GCP-Oil and Gas	Issued
Devon Energy Production Co.	Belloq 11 CTB 1	8201M2	March 26, 2020	GCP- Oil and Gas	Issued
Ameredev II LLC	Nandina CBT	8189M1	March 25, 2020	GCP- Oil and Gas	Issued
Marathon Oil Permian LLC	Mazer Rackham 20 Fed Com CTB	8652M1	March 23, 2020	GCP- Oil and Gas	Issued
Chevron USA Inc.	Dagger Lake Section 4 CTB	8776	March 20, 2020	GCP6/NOI	Issued
Chevron USA Inc.	Dagger Lake Section 4 CS	8777	March 20, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Papa Fritas 27 CTB 2	8778	March 20, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Papas Fritas 27 CTB 1	8779	March 19, 2020	GCP- Oil and Gas	Issued
Cotton Draw Midstream LLC	Moon Compressor Station	8110M2	March 18, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Uraninite 32 CTB 2	8773	March 18, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Stebbins 20 Fed Facility	7585M1	March 18, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Jack Sleeper Facility	8772	March 18, 20209	GCP- Oil and Gas	Issued
Cimarex Energy Co. of Colorado	Parkway 15-14, North State Com 1H, 2H	8701M1	March 17, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Leslie Fed West Facility	8769	March 16, 2020	GCP- Oil and Gas	Issued
Tap Rock Operating LLC	Money Graham Facility	8634M1	March 16, 2020	GCP- Oil and Gas	Issued
ConocoPhillips Co.	Emerald Federal No. 3 Production	4610M1	March 12, 2020	GCP- Oil and Gas	Issued
Devon Energy Production Co.	Boundary Raider 7 CTB 2	8766	March 12, 2020	GCP- Oil and Gas	Issued
Matador Production Co.	Rodney Robinson North Facility	8765	March 12, 2020	GCP- Oil and Gas	Issued
XTO Energy Inc.	Legg Federal Tank Battery	5044M4	March 12, 2020	GCP- Oil and Gas	Issued
Cimarex Energy Co. of Colorado	Tar Heel 19-18 Fed 1- 3H and 17-19H	8763	March 11, 2020	GCP- Oil and Gas	Issued
Matador Production	Stebbins 20/19 Fed	7792M2	March 11, 2020	GCP- Oil and	Issued

Co.	Facility			Gas	
DCP Operating Company LP	West Turkey Track Compressor Station	2098M5	March 4, 2020	GCP- Oil and Gas	Issued
DCP Operating Company LP	Jackson Booster Station	2041M6	March 4, 2020	GCP- Oil and Gas	Issued
XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020	GCP-Oil and Gas	Issued
OXY USA Inc.	NC Sand Dunes Compressor Station	8744	March 3, 2020	GCP- Oil and Gas	Issued
EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020	GCP-Oil and Gas	Issued
EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020	GCP-Oil and Gas	Issued
Lucid Energy Delaware LLC	Greyhound Compressor Station	8084M2	March 2, 2020	GCP-Oil and Gas	Issued
Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020	GCP-Oil and Gas	Issued
ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8015M1	March 2, 2020	GCP-Oil and Gas	Issued
Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020	GCP- Oil and Gas	Issued
Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020	GCP-Oil and Gas	Issued
Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020	GCP-Oil and Gas	Issued
Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M3	February 10, 2020	GCP Oil and Gas	Issued
Spur Energy Partners LLC	Dorami 2H, 4H and 9H Federal Oil Tank Battery	8733	February 27, 2020	GCP-Oil and Gas	Issued
XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020	GCP-Oil and Gas	Issued
XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020	GCP-Oil and Gas	Issued

From: Jeremy Nichols < jnichols@wildearthguardians.org>

Sent: Monday, May 4, 2020 7:45 PM

To: Schooley, Ted, NMENV <ted.schooley@state.nm.us>; Romero, Rhonda, NMENV

<Rhonda.Romero@state.nm.us>

Subject: [EXT] request for updates on oil and gas general permit registrations

Dear Mr. Schooley and Ms. Romero:

I am writing regarding the status of the oil and gas general permit registrations listed below that are under review by the New Mexico Environment Department. As you know, WildEarth Guardians has commented on general permit applications listed below over the past several weeks. We have not

received a response from the Environment Department or a notification that any registration has been approved. It is not currently possible to determine online whether registrations have been granted or denied. Pursuant to Section 74-7-H NMSA, a person participating in a permitting action has 30 days after notification of the permitting action to file a request for hearing with the Environmental Improvement Board. If general permit registrations that WildEarth Guardians has commented on have been granted, we reques the Environment Department provide us notification so that we may file a request for hearing with the Board.

To this end, if you could please provide the status of each of the following general permit registrations, it would be much appreciated. Thank you. - Jeremy Nichols

Company	Facility(ies)	NSR Permit No.	Date Application Received
Cimarex Energy Co. of Colorado	Dos Equis 11-14 Federal Com 4H	8136M1	March 30, 2020
Matador Production Co.	Ray state Slot 3 Facility	8793	March 30, 2020
Matador Production Co.	Stebbins 19 Fed 3 Facility	7811M2	March 26, 2020
Matador Production Co.	Grevey Com Tank Battery	8780	March 26, 2020
New Mexico Gas Company	Lea County Compressor Station	8781	March 26, 2020
Summit Midstream Permian LLC	Lane Gas Plant	7426M1	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 28, Big Sinks Tank Battery	8395M1	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 21, Brushy Draw West Tank	8398M1	March 26, 2020
Matador Production Co.	Stebbins 19 Fed 3 Facility	7811M2	March 26, 2020
XTO Energy Inc.	Poker Lake Unit 17, Twin Wells Ranch West	8782	March 26, 2020
Devon Energy Production Co.	Belloq 11 CTB 1	8201M2	March 26, 2020
Ameredev II LLC	Nandina CBT	8189M1	March 25, 2020
Marathon Oil Permian LLC	Mazer Rackham 20 Fed Com CTB	8652M1	March 23, 2020
Chevron USA Inc.	Dagger Lake Section 4 CTB	8776	March 20, 2020
Chevron USA Inc.	Dagger Lake Section 4 CS	8777	March 20, 2020
Devon Energy Production Co.	Papa Fritas 27 CTB 2	8778	March 20, 2020
Devon Energy Production Co.	Papas Fritas 27 CTB 1	8779	March 19, 2020
Cotton Draw Midstream LLC	Moon Compressor Station	8110M2	March 18, 2020
Devon Energy Production Co.	I Uraninite 32 CIB 2		March 18, 2020
Matador Production Co.	Stebbins 20 Fed Facility	7585M1	March 18, 2020
Matador Production Co.	Jack Sleeper Facility	8772	March 18, 20209
Cimarex Energy Co. of Colorado	Parkway 15-14, North State Com 1H, 2H	8701M1	March 17, 2020

Tap Rock Operating LLCMoney Graham Facility8634M1March 16, 2020ConocoPhillips Co.Emerald Federal No. 3 Production4610M1March 12, 2020Devon Energy Production Co.Boundary Raider 7 CTB 28766March 12, 2020Matador Production Co.Rodney Robinson North Facility8765March 12, 2020XTO Energy Inc.Legg Federal Tank Battery5044M4March 12, 2020Cimarex Energy Co. of ColoradoTar Heel 19-18 Fed 1-3H and 17-19H8763March 11, 2020Matador Production Co.Stebbins 20/19 Fed Facility7792M2March 11, 2020DCP Operating Company LPWest Turkey Track Compressor Station2098M5March 4, 2020DCP Operating Company LPJackson Booster Station2041M6March 4, 2020XTO Energy Inc.James Ranch Unit D178746March 4, 2020OXY USA Inc.NC Sand Dunes Compressor Station8744March 3, 2020EOG Resources Inc.Viper Localized Gas Lift Station8739March 2, 2020EOG Resources Inc.Date 14 CTB8738March 2, 2020Lucid Energy Delaware LLCGreyhound Compressor Station8084M2March 2, 2020Matador Production Co.Dr. Scrivner Facility7825M3March 2, 2020Ameredev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LL	Matador Production Co.	Leslie Fed West Facility	8769	March 16, 2020
ConocoPhillips Co.Production4610M1March 12, 2020Devon Energy Production Co.Boundary Raider 7 CTB 28766March 12, 2020Matador Production Co.Rodney Robinson North Facility8765March 12, 2020XTO Energy Inc.Legg Federal Tank Battery5044M4March 12, 2020Cimarex Energy Co. of ColoradoTar Heel 19-18 Fed 1-3H and 17-19H8763March 11, 2020Matador Production Co.Stebbins 20/19 Fed Facility7792M2March 11, 2020DCP Operating Company LPWest Turkey Track Compressor Station2098M5March 4, 2020DCP Operating Company LPJackson Booster Station2041M6March 4, 2020XTO Energy Inc.James Ranch Unit DI 78746March 4, 2020OXY USA Inc.NC Sand Dunes Compressor Station8744March 3, 2020EOG Resources Inc.Viper Localized Gas Lift Station8739March 2, 2020EOG Resources Inc.Date 14 CTB8738March 2, 2020Lucid Energy Delaware LCGreyhound Compressor Station8084M2March 2, 2020Lucid Energy Delaware LCGreyhound Compressor Station8084M2March 2, 2020Amerdev II LLCPine Straw CTB8217M2February 27, 2020Amerdev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery <td>Tap Rock Operating LLC</td> <td>Money Graham Facility</td> <td>8634M1</td> <td>March 16, 2020</td>	Tap Rock Operating LLC	Money Graham Facility	8634M1	March 16, 2020
Co. Boundary Raider / CTB 2 8766 March 12, 2020 Matador Production Co. Rodney Robinson North Facility 8765 March 12, 2020 XTO Energy Inc. Legg Federal Tank Battery 5044M4 March 12, 2020 Cimarex Energy Co. of Colorado Tar Heel 19-18 Fed 1-3H and 17-19H 8763 March 11, 2020 Matador Production Co. Stebbins 20/19 Fed Facility 7792M2 March 11, 2020 DCP Operating Company LP Station 2098M5 March 4, 2020 DCP Operating Company LP Jackson Booster Station 2041M6 March 4, 2020 XTO Energy Inc. James Ranch Unit DI 7 8746 March 4, 2020 DXY USA Inc. NC Sand Dunes Compressor Station 8739 March 2, 2020 EOG Resources Inc. Date 14 CTB 8738 March 2, 2020 Lucid Energy Delaware LLC Greyhound Compressor Station 8084M2 March 2, 2020 Matador Production Co. Dr. Scrivner Facility 7825M3 March 2, 2020 ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery 8737 March 2, 2020 Kaiser-Francis Oil Co. South Bell Lake Pad 11 7132M3 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 8149M1 February 27, 2020 Spur Energy Partners LLC Big Eddy Unit DI 38 8730 February 27, 2020	ConocoPhillips Co.		4610M1	March 12, 2020
XTO Energy Inc.Legg Federal Tank Battery5044M4March 12, 2020Cimarex Energy Co. of ColoradoTar Heel 19-18 Fed 1-3H and 17-19H8763March 11, 2020Matador Production Co.Stebbins 20/19 Fed Facility7792M2March 11, 2020DCP Operating Company LPWest Turkey Track Compressor Station2098M5March 4, 2020DCP Operating Company LPJackson Booster Station2041M6March 4, 2020XTO Energy Inc.James Ranch Unit DI 78746March 4, 2020OXY USA Inc.NC Sand Dunes Compressor Station8744March 3, 2020EOG Resources Inc.Viper Localized Gas Lift Station8739March 2, 2020EOG Resources Inc.Date 14 CTB8738March 2, 2020Lucid Energy Delaware LCGreyhound Compressor Station8084M2March 2, 2020Lucid Energy Delaware LCGreyhound Compressor Station8084M2March 2, 2020Matador Production Co.Dr. Scrivner Facility7825M3March 2, 2020ConocoPhillips Co.Zeppo 5 Fed Com 25H Battery8737March 2, 2020Ameredev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.South Bell Lake Pad 08149M1February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020		Boundary Raider 7 CTB 2	8766	March 12, 2020
Cimarex Energy Co. of ColoradoTar Heel 19-18 Fed 1-3H and 17- 19H8763March 11, 2020Matador Production Co.Stebbins 20/19 Fed Facility7792M2March 11, 2020DCP Operating Company LPWest Turkey Track Compressor Station2098M5March 4, 2020DCP Operating Company LPJackson Booster Station2041M6March 4, 2020XTO Energy Inc.James Ranch Unit DI 78746March 4, 2020OXY USA Inc.NC Sand Dunes Compressor Station8744March 3, 2020EOG Resources Inc.Viper Localized Gas Lift Station8739March 2, 2020EOG Resources Inc.Date 14 CTB8738March 2, 2020Lucid Energy Delaware LLCGreyhound Compressor Station8084M2March 2, 2020Matador Production Co.Dr. Scrivner Facility7825M3March 2, 2020ConocoPhillips Co.Zeppo 5 Fed Com 25H Battery8737March 2, 2020Ameredev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.South Bell Lake Pad 117132M3February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8730February 26, 2020	Matador Production Co.	Rodney Robinson North Facility	8765	March 12, 2020
Colorado19H8/63March 11, 2020Matador Production Co.Stebbins 20/19 Fed Facility7792M2March 11, 2020DCP Operating Company LPWest Turkey Track Compressor Station2098M5March 4, 2020DCP Operating Company LPJackson Booster Station2041M6March 4, 2020XTO Energy Inc.James Ranch Unit DI 78746March 4, 2020OXY USA Inc.NC Sand Dunes Compressor Station8744March 3, 2020EOG Resources Inc.Viper Localized Gas Lift Station8739March 2, 2020EOG Resources Inc.Date 14 CTB8738March 2, 2020Lucid Energy Delaware LLCGreyhound Compressor Station8084M2March 2, 2020Matador Production Co.Dr. Scrivner Facility7825M3March 2, 2020ConocoPhillips Co.Zeppo 5 Fed Com 25H Battery8737March 2, 2020Ameredev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.South Bell Lake Pad 117132M3February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8730February 27, 2020	XTO Energy Inc.	Legg Federal Tank Battery	5044M4	March 12, 2020
DCP Operating Company LP Station 2098M5 March 4, 2020 DCP Operating Company LP Jackson Booster Station 2041M6 March 4, 2020 XTO Energy Inc. James Ranch Unit DI 7 8746 March 4, 2020 OXY USA Inc. NC Sand Dunes Compressor Station 8739 March 2, 2020 EOG Resources Inc. Date 14 CTB 8738 March 2, 2020 Lucid Energy Delaware LLC Pine Straw CTB 8217M2 February 27, 2020 Ameredev II LLC Pine Straw CTB 8734 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 8738 February 27, 2020 Spur Energy Partners LLC Diames Tation Station Power Polary 101 Sand Persons Polary 26, 2020 Kaiser-Grapping. Big Eddy Unit DI 38 8730 February 26, 2020			8763	March 11, 2020
LPStation2098M5March 4, 2020DCP Operating Company LPJackson Booster Station2041M6March 4, 2020XTO Energy Inc.James Ranch Unit DI 78746March 4, 2020OXY USA Inc.NC Sand Dunes Compressor Station8744March 3, 2020EOG Resources Inc.Viper Localized Gas Lift Station8739March 2, 2020EOG Resources Inc.Date 14 CTB8738March 2, 2020Lucid Energy Delaware LLCGreyhound Compressor Station8084M2March 2, 2020Matador Production Co.Dr. Scrivner Facility7825M3March 2, 2020ConocoPhillips Co.Zeppo 5 Fed Com 25H Battery8737March 2, 2020Ameredev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.South Bell Lake Pad 117132M3February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020XTO Energy Inc.Big Eddy Unit DI 388730February 26, 2020	Matador Production Co.	Stebbins 20/19 Fed Facility	7792M2	March 11, 2020
LP XTO Energy Inc. James Ranch Unit DI 7 NC Sand Dunes Compressor Station EOG Resources Inc. Viper Localized Gas Lift Station EOG Resources Inc. Date 14 CTB Lucid Energy Delaware LLC Matador Production Co. Dr. Scrivner Facility ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery Ameredev II LLC Pine Straw CTB Big Eddy Unit DI 38 March 2, 2020 Matador Production Co. South Bell Lake Pad 0 Spur Energy Partners LLC March 2, 2020 February 27, 2020	, ,		2098M5	March 4, 2020
OXY USA Inc. NC Sand Dunes Compressor Station EOG Resources Inc. Viper Localized Gas Lift Station 8739 March 2, 2020 EOG Resources Inc. Date 14 CTB 8738 March 2, 2020 Lucid Energy Delaware LLC Greyhound Compressor Station March 2, 2020 Matador Production Co. Dr. Scrivner Facility 7825M3 March 2, 2020 March 2, 2020 ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery 8737 March 2, 2020 Ameredev II LLC Pine Straw CTB 8217M2 February 27, 2020 Eovon Production Co. Blue Krait 23 CTB 2 Kaiser-Francis Oil Co. South Bell Lake Pad 11 7132M3 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 Spur Energy Partners LLC Dorami 2H, 4H and 9H Federal Oil Tank Battery XTO Energy Inc. Big Eddy Unit DI 38 8730 February 26, 2020		Jackson Booster Station	2041M6	March 4, 2020
Station EOG Resources Inc. Viper Localized Gas Lift Station 8739 March 2, 2020 EOG Resources Inc. Date 14 CTB 8738 March 2, 2020 Lucid Energy Delaware LLC Greyhound Compressor Station March 2, 2020 ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery Ameredev II LLC Pine Straw CTB 8737 March 2, 2020 Ameredev II LLC Pine Straw CTB 8734 February 27, 2020 Kaiser-Francis Oil Co. South Bell Lake Pad 11 7132M3 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 8733 February 27, 2020 Spur Energy Partners LLC Dorami 2H, 4H and 9H Federal Oil Tank Battery XTO Energy Inc. Big Eddy Unit DI 38 8730 February 26, 2020	XTO Energy Inc.	James Ranch Unit DI 7	8746	March 4, 2020
EOG Resources Inc. Date 14 CTB 8738 March 2, 2020 Lucid Energy Delaware LLC Matador Production Co. Dr. Scrivner Facility 7825M3 March 2, 2020 ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery 8737 March 2, 2020 Ameredev II LLC Pine Straw CTB Bue Krait 23 CTB 2 Kaiser-Francis Oil Co. South Bell Lake Pad 11 T132M3 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 Spur Energy Partners LLC Dorami 2H, 4H and 9H Federal Oil Tank Battery STO Energy Inc. Big Eddy Unit DI 38 8730 March 2, 2020 March 2, 2020 March 2, 2020 February 27, 2020	OXY USA Inc.	•	8744	March 3, 2020
Lucid Energy Delaware LLCGreyhound Compressor Station8084M2March 2, 2020Matador Production Co.Dr. Scrivner Facility7825M3March 2, 2020ConocoPhillips Co.Zeppo 5 Fed Com 25H Battery8737March 2, 2020Ameredev II LLCPine Straw CTB8217M2February 27, 2020Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.South Bell Lake Pad 117132M3February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020XTO Energy Inc.Big Eddy Unit DI 388730February 26, 2020	EOG Resources Inc.	Viper Localized Gas Lift Station	8739	March 2, 2020
Matador Production Co. Dr. Scrivner Facility T825M3 March 2, 2020 ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery Ameredev II LLC Pine Straw CTB Blue Krait 23 CTB 2 Kaiser-Francis Oil Co. Kaiser-Francis Oil Co. South Bell Lake Pad 11 Spur Energy Partners LLC Greyhound Compressor Station Narch 2, 2020 March 2, 2020 March 2, 2020 8737 March 2, 2020 8737 March 2, 2020 February 27, 2020 February 27, 2020 8734 February 27, 2020 Spur Energy Partners LLC Dorami 2H, 4H and 9H Federal Oil Tank Battery March 2, 2020 8737 March 2, 2020 February 27, 2020	EOG Resources Inc.	Date 14 CTB	8738	March 2, 2020
ConocoPhillips Co. Zeppo 5 Fed Com 25H Battery 8737 March 2, 2020 Ameredev II LLC Pine Straw CTB 8217M2 February 27, 2020 Devon Production Co. Blue Krait 23 CTB 2 8734 February 27, 2020 Kaiser-Francis Oil Co. South Bell Lake Pad 11 7132M3 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 8149M1 February 27, 2020 Spur Energy Partners LLC Dorami 2H, 4H and 9H Federal Oil Tank Battery 8733 February 27, 2020 XTO Energy Inc. Big Eddy Unit DI 38 8730 February 26, 2020	= :	Greyhound Compressor Station	8084M2	March 2, 2020
Ameredev II LLC Pine Straw CTB 8217M2 February 27, 2020 Devon Production Co. Blue Krait 23 CTB 2 8734 February 27, 2020 Kaiser-Francis Oil Co. South Bell Lake Pad 11 7132M3 February 27, 2020 Kaiser-Francis Oil Co. North Bell Lake Pad 0 8149M1 February 27, 2020 Spur Energy Partners LLC Dorami 2H, 4H and 9H Federal Oil Tank Battery 8733 February 27, 2020 XTO Energy Inc. Big Eddy Unit DI 38 8730 February 26, 2020	Matador Production Co.	Dr. Scrivner Facility	7825M3	March 2, 2020
Devon Production Co.Blue Krait 23 CTB 28734February 27, 2020Kaiser-Francis Oil Co.South Bell Lake Pad 117132M3February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020XTO Energy Inc.Big Eddy Unit DI 388730February 26, 2020	ConocoPhillips Co.	Zeppo 5 Fed Com 25H Battery	8737	March 2, 2020
Kaiser-Francis Oil Co.South Bell Lake Pad 117132M3February 27, 2020Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020XTO Energy Inc.Big Eddy Unit DI 388730February 26, 2020	Ameredev II LLC	Pine Straw CTB	8217M2	February 27, 2020
Kaiser-Francis Oil Co.North Bell Lake Pad 08149M1February 27, 2020Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020XTO Energy Inc.Big Eddy Unit DI 388730February 26, 2020	Devon Production Co.	Blue Krait 23 CTB 2	8734	February 27, 2020
Spur Energy Partners LLCDorami 2H, 4H and 9H Federal Oil Tank Battery8733February 27, 2020XTO Energy Inc.Big Eddy Unit DI 388730February 26, 2020	Kaiser-Francis Oil Co.	South Bell Lake Pad 11	7132M3	February 27, 2020
Spur Energy Partners LLC Oil Tank Battery XTO Energy Inc. Big Eddy Unit DI 38 8730 February 27, 2020 February 27, 2020 February 26, 2020	Kaiser-Francis Oil Co.	North Bell Lake Pad 0	8149M1	February 27, 2020
	Spur Energy Partners LLC	•	8733	February 27, 2020
XTO Energy Inc. Corral Canyon 23 8729 February 26, 2020	XTO Energy Inc.	Big Eddy Unit DI 38	8730	February 26, 2020
	XTO Energy Inc.	Corral Canyon 23	8729	February 26, 2020

Climate and Energy Program Director

(303) 437-7663 www.wildearthguardians.org/climateenergy

