STATE OF NEW MEXICO
BEFORE THE WATER QUALITY CONTROL COMMISSION

In the Matter of:

PROPOSED AMENDMENT
TO 20.6.2 NMAC (Copper Rule)

No. WQCC 12-01(R)

' me S e Nt N s

EXHIBIT FINLEY -2



Chapter 6

GEOCHEMISTRY OF AciD MINE WATERS

D. Kirk Nordstrom'
ne Street, Boulder, CO 80303-1066
2U.8. Geological Survey, Placer Hall, 6000 J Street, Sacramento, CA 95879-6129

177.S. Geological Survey, 3215 Mari

INTRODUCTION

There are about a dozen major hydrogeochemical processes
that can account for the chemical composition of most natural
waters. One of these is the oxidation of pyrite, a process at least
as important a souree of sulfate in natural waters as seawater and
sea spray, gypsum dissolution, and atmospheric cmissions. The
natural process of pyrite oxidation is fundamental to the supet-
gene alteration of ore deposits, the formation of acid-sulfate soils,
and the development of acidity and metal mobilization in natural
waters. As mineral deposits continue to be mined, and inactive or
abandoned mines with their associated waste-rock and tailings
piles continue to be exposed to weathering, large concentrations
of sulfate and heavy metals will continue to be found in both sur-
face waters and ground wafers. Nearly 5 X 1010 tons of mining and
mineral processing wastes had been generated in the United States
as of 1985 and about 10? tons continue t0 be generated each year
US. Environmental Protection Agency, 1985). A more recent
estimate indicates that there may be more than 500,000 inactive or
abandoned mine sites in the U.S. (Lyon et al., 1993). Hazardous
mine sites in serious need of remediation are probably much fewer
but may still range in the thousands. Inventories of mineral
resources, mine sites, and their associated environmental hazards
are being assembled at various scales by federal and state agencies
to better assess the magnitude of the problem.

The water-quality hazard produced by pyrite oxidation is
known as “acid rock drainage,” Of if from a mined area, “acid
mine drainage.” Weuse the terms “acid mine drainage” and “acid
mine water” synonymously, reflecting popular usage. These
waters drain from waste rock, tailings, opent pits, and underground
mines into surface streams, rivers, and lakes. Acid mine waters
typically have pH values in the range of 2—4 and high concentra-
tions of metals known to be toxic to living organisms (Ash et al.,
1951; Martin and Mills, 19765 Nordstrom and Ball, 1985). Natural
waters acidified by mine drainage have Kkilled enormous numbers
of fish and benthic organisms, harmed livestock, and destroyed
crops and have made many rivers, streams, and lakes turbid, col-
ored, and unfit for most beneficial purposes. 1n the United States,
107 fish were reported killed during 1961-1975 from the effects
of mining activities (Biernacki, 1978), and this number can safely

be considered a gross underestimate. For example, the eighth

annual report of the Federal Water Pollution Control

Administration (1968) states that of the 11.59 x 106 fish repotted
killed in 1967 from all types of poltution only 16,413 were report-
ed killed from the state of California, The California Department
of Fish and Game (Nordstrom et al., 1977), however, recorded
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47,100 fish killed from mine drainage at one site during a 7-day
period in January of 1967. Many other mining-related fish kills
may not be adequately recorded in federal or state archives.

Kleinmann (1989) has estimated that about 19,300 km of rivers
and streams and more than 180,000 acres of lakes and Yeservoirs
in the continental U.S. have been seriously damaged by acid mine
drainage. Although a quantitative assessment of environmental
damage from mining activities may be difficuit or impossible, the
volume of water bodies affected by acid mine drainage could be
comparable to that affected by acid rain or other industrial sources
of acidification.

Tt is important to note that pyrite oxidation also occurs$ in the
absence of mining and there are nUMErous Jocalities world-wide
where naturally acidic waters containing high concentrations. of
metals are known (Runnells et al., 1992). The geochemical
processes of weathering may be very similar in terms of mineral
oxidation and dissolution but the hydrologic regime, the rates of
reaction, and the environmental consequences can be quite differ-
ent. Geochemical reactions in mined areas are more rapid because
of:-
1) greater accessibility of air through mine workings, wastes, and

tailings,
2) greater surface areas for sulfides in mine workings, wastes, and

especially tailings, and
3) different compositions of tailings as a result of mineral pro-

cessing.
The presence of flues and flue dust piles (typically high in arsenic,
zinc, and cadmium), slag piles, and soils and rocks contaminated
by smelter fumes can be particularly detrimental to flora and
fauna. Erosion of these materials by both aeolian and fluvial trans-
port can contaminate drainage systems for very long distances
(Moore and Luoma, 1990). The slower weathering of unmined
mineral deposits occurs over longer time frames and tends to lead
to more stable and insoluble mineral phases than those at mined
deposits. '

As an example of the extremes to which mine waters can
develop acidity and high metal concentrations, the analyses of
four of the most acidic mine waters ever reported are shown in
Table 6.1, These waters were found in the Richmond mine work-
ings at Iron Mountain, California (Nordstrom et al., 1991). Note
that afl samples have negative pH values and metal concentrations
in grams per liter. These concentrations are some of the highest
recorded metal and sulfate concentrations and the lowest pH val-
ues known. A survey of the literature indicates that only one
known determination for copper, one for zin¢, and one for arsenic
have been found to be higher than those from the Richmond mine

RIZN )




134

waters (Table 6.1). Although these extreme values are rare, they do
indicate the dramatic changes in water quality caused by natural
processes and enhanced by mining activities.

TABLE 6.1—Comparison of four of the most acidic mine waters at Iron
Mountain, California with the most acidic and metal-rich mine waters
reported in the world (pH values in standard units, concentrations in
grams per liter, Nordstrom et al., 1991; Nordstrom and Alpers, 1999).

Iron Mountain Other References
sites

pH -0.7 25 26 -36 0.67 Goleva et al. (1970)
Cu 2.3 4.8 32 nd 48 Clarke (1916)
Zn 77 235 20 nd. 50 Braeuning (1977)
Cd 0.048 021 017 nd 0.041 Lindgren (1928)
As 0.15 034 022 nd 040 Gotleva (1977)
Fe (total) 86.2 111 101 163 48 Blowes et al, (1991)
Fe (I) 797 345 349 98 48 Blowes et al. (1991)
SO, 360 760 650 nd. 209 Lindgren (1928)

The chemical reaction responsible for the formation of acid
mine waters requires three basic ingredients: pyrite, oxygen, and
water. The overall reaction is often written as:

FeSyug, + 154 Oy *+ 72 Ha0p = Fe(OH) )+ 2 HySO4aq) [1]

where one mole of ferric hydroxide and 2 moles of sulfuric acid
are produced for every mole of pyrite oxidized. For each mole of
pyrite oxidized in equation [1], 1 electron is lost by oxidation of
iron, 14 electrons are Jost by oxidation of disulfide, and 15 elec-
trons are gained by reduction of oxygen. Iron is also hydrolyzed
and precipitated. All of these reactions cannot take place in a sin-
gle step. Electron transfer reactions take place generally with only
one or two electrons at a time (Basolo and Pearson, 1967). Hence,
there could be 15 or more reactions with as many possible rate-
determining steps t0 consider. To further complicate matters, Sev-
eral other oxidizing agents besides oxygen have been implicated in
pyrite oxidation, €.g., ferric iron, Fortunately, all the intermediate
reactions need not be determined to delineate the rate-controlling
mechanisms involved with pyrite oxidation.
This chapter reviews the abiotic and microbial rates and mech-
_ anisms for sulfide mineral oxidation, the secondary minerals
formed as a result of sulfide oxidation, and the major environmen-
tal factors that control the quality and quantity of acid water pro-
duced from mining activities.

HISTORICAL BACKGROUND

The history of mining and its environmental consequences, like
technology in general, goes back several thousands of years, well
before recorded history. Theophrastus (ca. 315 B.C.) mentions the
degradation of pyrite to acid and salts (see Agticola, 1556). By the
time of Pliny (23-79 A.D.), it was already well known that oil of
vitriol (sulfuric acid), vitriol (ferrous sulfate), and alum (alu-
minum sulfates) were produced by the natural lixiviation (leach-
ing) of pyritiferous rocks. Oil of vitriol was used to make other
acids and compounds, vitriol was primarily used to blacken
leather, and alum was used to tan hides. The acid waters and their
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associated efflorescent (or flowering) salts produced from pyrite
oxidation were also known to be highly toxic. Georgius Agricola
(1546) wrote “{Vhen moisture corrodes cupriferous and friable
pyrite it produces an acid juice from which atramentum sutorium
forms and also liquid alum.... Experiments show that when
porous, friable pyrite is attacked by moisture such an acid juice is
produced.” De Re Metallica (Agricola, 1556), considered to be the
first systematic book on mining and mineralogy, contains the fol-
Jowing passage, “Since I have explained the nature of vitriol and
its relatives which are attained from cupriferous pyrites I will next
speak of an acrid solidified juice...; it is hard and white and so
acrid that it kills mice, crickets and every kind of animal.” The
“solidified juice” was later identified (by Herbert Hoover, transla-
tor) as goslarite, a hydrated zinc sulfate that likely contained some
cadmium. With the dawn of the industrial revolution, acid mine
drainage became a major source of water pollution on a large
scale.

In the United States, occasional effort was directed towards the
problem of acid mine drainage in the Appalachian coal mining
region before 1900 (Vranesh, 1979). The State of Indiana has had
a land reclamation act for coal-stripping since 1942 and a history
of concern with the adverse effects of strip mining that can be
traced back to 1917 (Wilber, 1969). Western mines were original-
ly exempt from regulations on mine drainage or other environ-
mental hazards because of the interest in attracting businesses and
people to the West. Mining and metallurgical engineers occasion-
ally investigated the problem (e.g., Burke and Downs, 1938), but
primarily with an aim to alleviate coal mine drainage problems.
From the 1920s through the 1940s, government agencies and the
mining industry investigated acid mine drainage produced in the
Appalachians from coal mines (Ash et al., 1951). Twenty years
later the Appalachian Regional Commission reviewed the coal
mine drainage problems {Appalachian Regional Commission,
1969). From the late 1960s through the late 1970s the National
Coal Association and Bituminous Coal Research, Inc. sponsored a
series of Coal Mine Drainage Research Symposia that resulted in
several useful publications on the problem. About the same time,
considerable research was supported by the Federal Water
Pollution Control Federation and, later, the Environmental
Protection Agency (EPA) on both the causes of acid mine drainage
and its remediation. Even more attention has been given o the
problem with the advent of the Comprehensive Environmental
Response, Compensation and Liability Act (CERCLA ot
Superfund) in 1980. Several mining sites around the country were
put on EPA’s National Priority List for Superfund investigation and
remediation.

FORMATION OF ACID MINE WATERS

The general description of the weathering of pyrite will now be
examined in more detail. Bquation [1], the overall reaction for the
breakdown of pyrite to ferric hydroxide and sulfuric acid, is @
gross oversimplification. It gives the correct picture in that oxygen
is the ultimate driving force for the oxidation of pyrite and the final
products are an insoluble form of oxidized iron and an aqueous
sulfuric acid solution. Some problems with equation [1] are that it
does not explain geochemical mechanisms or rates, it does not
explain that ferric hydroxide is a fictitious, idealized phase, and it
does not reflect the slow oxidation of aqueous ferrous iron in aci

solutions that often results in high ferrous iron concentrations i
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ulfur moiety in pyrite oxidizes
it must transfer a large number of electrons (14 times as many
as iron per mole of pyrite). Conseq

uently, there are severa] possi-
ble side reactions and sulfur intermediates that may occur during
1ne operators as well as reclamation and remediation teamns oxidation,

d like to know the potential or actual production of acid
s from a mine or from waste materials at a mine or a miner- oxidation (Stokes, 1901

simple, single test to assess i
ngs because of the numerous

mine waters, Furthermore, factors such ag microbial cataly-  The s
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have an important influence on pyrite weathering, but are
nsidered explicitly in equation [1],

more quickly than the iron,
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v found in sulfate: ie., thiosulfate (82032‘), polythionates (SHOGZ"),
and sulfite (SO32‘). Steger and Desjardins ( 1978) reported a thio-
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. . . . L pyrite and sphalerite oxidation experiments of Moses et al, (1987)

Stoichiometry and kinetics of abiotic pyrite oxidation included more direct determination of sulfate, sulfite, polythion-
. oo . L ates, and thiosulfate by ion chromatography (Moses et al,, 1984),
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: . e oo produce any detectable interme

I¢ geochemical oxidation, More recent contributions can be found

diate sulfoxyanions. These results
in Goldhaber (1983), McKibben an d Barnes (1986), Moses et al are also similar to thoge of aqueous H,S oxidation with oxygen

and Evangelou (1995). When (Chen and Morris, 1971, 1972; Zhang and Millero, 1994,
ore are two species that can oxidize, the ferrous  Vaitavamurthy et al,, 19 94).
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sentation of the

and sulfuric acid, Hence, another com
pyrite oxidation reaction is:

mon repre-  rates so that these metastable

2% 2-
FeSz(S) + 7/202(g) + HZO(I) — Fe(aq)+ ZSO4(aq)+ ZHaq) [2]

ystems and even rapidly-moving
shearing at the mineral surface,
out that species such as thiosul-
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fate and sulfite would not be detected in solutions containing
Fe3;r because they oxidize so rapidly; experiments by Williamson
ané (ﬁimstidt (1993) and references therein confirmed that this
reaction is rapid. Furthermore, intermediate sulfoxyanions are an
excellent source of energy for chemoautotrophic bacteria of the
Thiobacillus genus and may be quickly biodegraded before
detectable concentrations can accumulate (Gould et al., 1994).

The experiments of Granger and Warren (1969) are often cited
as evidence for the formation of sulfoxyanions from pyrite oxida-
tion and the role of sulfoxyanions in the genesis of ore deposits.
However, these authors admitted that the thiosulfate they found in
their column experiments may have been formed by the oxidation
of residual aqueous Na,S solution. They had first added H,O,
solution in an effort to sterilize the column and then added Na,S
solution to reduce the iron oxide stains that had formed from the
peroxide treatment. After such a traumatic chemical treatment,
significant quantities of thiosulfate would have formed from the
aqueous sulfide solution and would have been difficult to remove
completely from the column. The thiosulfate thus formed may
have had nothing to do with pyrite oxidation.

It has long been known that ferric iron rapidly oxidizes pyrite
(Stokes, 1901). Experiments carried out by Garrels and Thompson
(1960) and McKibben and Barnes (1986) have confirmed the bal-
anced reaction stoichiometry:

for the oxidation of pyrite by aqueous ferric ions. This reaction is
considerably faster than the reaction with oxygen as the oxidant,
but significant concentrations of oxidized iron only occur at low
pH values because of the low solubility of hydrolyzed ferric iron
at circumneutral pH values. Hence, it is thought that pyrite oxida-
tion is initiated by oxygen at circumneutral pH (equation [2]) but
as pH values reduce to about 4, the rate of oxidation becomes gov-
erned by equation [3]. Oxygen is still required to replenish the
supply of ferric iron according to

2+ + 3+
Fe(aqg- 1/402(g) + H(aq) — Fe G+ 1/2H2O(1) 4]

but the oxygen does not have to diffuse all the way to the pyrite
surfaces. It is quite possible for pyrite to oxidize in the absence of
dissolved oxygen. Nevertheless, the overall rate of pyrite oxida-
tion in a tailings pile, in a mine, or in a waste rock pile will large-
ly be determined by the overall rate of oxygen transport (advec-
tion and diffusion).

Considerable speculation can be found in the literature on the
question of the initiation and propagation of pyrite oxidation.
Undoubtedly, during the initiation of pyrite oxidation, there are
complex chemical and microbiological processes occurring in
microenvironments (Williams et al., 1982), i.e., within a few tens
of nanometers of the surface of a sulfide grain. These regions are
inaccessible to normal sampling techniques and are not represent-
ed by the bulk aqueous phase. For example, when oxygen initial-
ly adsorbs to a pyrite surface and transfers electrons, an accumu-
lation of protons will form at or near the surface. Acidophilic iron-
oxidizing bacteria will begin to colonize and a film of acidic water
will cover the mineral grain without affecting the bulk aqueous
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phase. Even before some acidic water develops, neutrophilic
Thiobacilli will catalyze the initial stage of pyrite oxidation
(Blowes et al., 1995; Gould et al., 1994). The extent to which these
microenvironmental gradients affect the bulk properties are depen-
dent on many factors, not the least of which is the pyrite concen-
tration in the rock, soil, or waste material. The existence and
importance of these microenvironments is well illustrated by the
formation of jarosite, a mineral that can only form under acid con-
ditions and has been found in soil waters of circumneutral pH
(Carson et al., 1982).

The oxidation of at least 18 different sulfide minerals has been
investigated (Table 6.3). Most of these have been studied with and
without microbial catalysis by Thiobacillus ferrooxidans. The
microbial oxidation rate is usually greater than the abiotic rate, all
other conditions being equal. Unfortunately, most of the microbial
studies were done without measurement of surface area and with-
out a consistent procedure for removing small particles or other-
wise cleaning the samples before the experiment. The lack of these
characteristics prevents any direct comparison of microbial oxida-
tion rates except in a qualitative manner. The results for abiotic
and biotic oxidation of pyrite, however, are of considerably better
quality than for other sulfide minerals and some quantitative com-
parisons are possible.

It should be noted that arsenic-rich minerals such as arsenopy-
rite and orpiment are also subject to bacterially catalyzed oxida-
tion (Ehrlich, 1963a, 1964). Indeed, the occurrence of arsenite-
oxidizing bacteria in acid mine waters has been reported by Wakao
et al. (1988) and one of the first reports of arsenite oxidation by
heterotrophic bacteria was that of Turner (1949).

There are now numerous reports on the oxidation rates of
pyrite and marcasite by oxygen (Bergholm, 1955; McKay and
Halpern, 1958; Smith and Shumate, 1970; Mathews and Robins,
1974; Goldhaber, 1983; McKibben and Barnes, 1986; Moses et
al., 1987; Nicholson et al., 1988; Moses and Herman, 1991), by
ferric iron (Bergholm, 1955; Garrels and Thompson, 1960; Smith
and Shumate, 1970; Mathews and Robins, 1972; Wiersma and
Rimstidt, 1984; McKibben and Barnes, 1986; Moses et al., 1987;
Brown and Jurinak, 1989; Moses and Herman, 1991), and by
hydrogen peroxide (McKibben and Barnes, 1986). The oxidation
rates of pyrrhotite in the presence of oxygen (Nicholson and
Scharer, 1994) and marcasite, covellite, galena, sphalerite, chal-
copyrite, and arsenopyrite in the presence of ferric iron (Rimstidt
et al., 1994) have been measured. Pyrite oxidation rates from dif-
ferent studies are generally comparable, but differences in experi-
mental design, initial pH values, temperatures, grain size, mineral
preparation, method for data reduction and rate law expression
make a quantitative comparison difficult. For this paper, we use
the results of McKibben and Barnes (1986) on pyrite to compare
with the biotic rates in the next section. Table 6.4 summarizes the
reaction rates from several studies cited above for a pH close to 2,
Mg = 1073, temperatures close to 25°C, and oxygen in equilib-
rium with the atmosphere.

The rates in Table 6.4 show that the oxidation of pyrite by fer-
ric iron (according to the reaction stoichiometries given in equa-
tions [2] and [3]) can be about 2--3 orders of magnitude faster than
by oxygen, that some minerals oxidize more rapidly than pyrite
and some more slowly, and that oxidation rates can range ovef
three orders of magnitude. These rates are demonsirably fastel
than the dissolution rates for aluminosilicate minera}s (White and -
Brantley, 1995) by one to several orders of magnitude. J
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3 —Sulfide oxidation studies (more references can be found in Nordstrom and Southam, 1997).

Formula Oxidant pH

Reference

FeS,
FeS,
Fe S
(Zn, Fe)S
PbS
CuFeS,

0,, Fe**, H,0, 0-10
0,, Fe3* 2-3
0, 2-6
0,, Fe?* 2-7
0,, Fe** 2
0,, Fe3t+
FeAsS 0,, Fe¥*
CuS 0,, Fe*
Cu,S ‘0,
Cds
NiS
CoS
CuSe
HgS
Cu,AsS,
As,S,
Cu,FeS,
MoS,
(Cu,Fe),,Sb,S 5
Sb,S,
(Fe, Ni)ySg

Bornite
_ Molybdenite
Tetrahedrite
Stibnite
Pentlandite

See references in next sections

Wiersma and Rimstidt (1984); Silverman et al. (1961)
Nicholson and Scharer (1994)

Rimstidt et al. (1994); Torma et al. (1972); Khalid and Ralph (1977)
Rimstidt et al. (1994); Torma and Subramanian (1974)
Rimstidt et al. (1994); Torma et al. (1976)

Rimstidt et al. (1994); Ehrlich (1964)

Walsh and Rimstidt (1986); Rickard and Vanselow (1978)
Beck (1977); Sakaguchi et al. (1976)

Torma et al. (1974)

Torma et al. (1974)

Torma et al., (1974)

Torma and Habashi (1972)

Burkstaller et al. (1975)

Enrlich (1964)

Ehrlich (1963a)

Landesman et al. (1966)

Brierley and Murr (1973)

Yakhontova et al. (1980)

Torma et al, (1974)

Brierley and Le Roux (1977)

TABLE 6.4—Abiotic reaction rates (mol m s’!) for sulfide mineral oxidation.

Mineral/Oxidant MB86! BJ89? R9437
Pyrite/O, 3.1x 1010

Pyrite/Fe>* 9.6 x 10”9 1.8x 108 1.9x 108
Pyrrhotite/O,

Marcasite/Fe>* 1.5x 107"
Arsenopyrite/Fe>* 1.7x 106
Galena/Fe>* 1.6 x 106
Sphalerite/Fe3* 7.0x 108
Blau. covellite®/Fe>* 7.1x 108
Chalcopyrite/Fe** 9.6x 107
Covellite/Fe3+ 9.1x10°

I'McKibben and Barnes (1986); because there appears to be an error in the stated value for pyrite oxidation by oxygen we have used the corrected value from Nicholson

(1994),

2Brown and Jurinak (1989); average from oxidation rates measured in different electrolytes.

3 Rimstidt et al. (1994).

4 Nicholson (1994); the value for pyrite is an average from four studies covering a pH range of 1-8.

3 Nicholson and Scharer (1994) and Tervari and Campbell (1976).

“blau, covellite” is blaubleibender or “blue-remaining” covellite having slightly different optical and X-ray properties than ordinary covellite.
"'The values listed for R94 are all given in terms of the amount of Fe(IIT) reduced except for pyrite. All values for pyrite are given in the same units, per mole of pyrite oxi-

dized, for purposes of direct comparison.

Galvanic protection does occur during oxidative dissolution of
coexisting sulfide minerals. This phenomenon is the same as that
for galvanized iron. The more electroconductive metal sulfide (the
one with the higher standard electrode reduction potential, see
Sato, 1992) will oxidize at a slower rate and the less electrocon-
ductive sulfide will oxidize at a faster rate than either one would
when not in contact. Sveshnikov and Dobychin (1956) reported
that rates of metal release from different sulfides are related to

their electrode potentials and that a mixture of sulfide minerals in
contact releases more metals into solution and decreases the pH
more than monomineralic samples. Sveshnikov and Ryss (1964)
postulated that these electronic properties of co-existing conduc-
tive sulfides are important during the weathering of sulfide miner-
al deposits. Sato (1992) has used electrochemical data on metal
sulfides, typical of heavy metal sulfide deposits, to explain the -
mineral assemblage that is found during supergene enrichment.
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fate and sulfite would not be detected in solutions containing
Fe3;L because they oxidize so rapidly; experiments by Williamson
ané ql%imstidt (1993) and references therein confirmed that this
reaction is rapid. Furthermore, intermediate sulfoxyanions are an
excellent source of energy for chemoautotrophic bacteria of the
Thiobacillus genus and may be quickly biodegraded before
detectable concentrations can accumulate (Gould et al., 1994).

The experiments of Granger and Warren (1969) are often cited
as evidence for the formation of sulfoxyanions from pyrite oxida-
tion and the role of sulfoxyanions in the genesis of ore deposits.
However, these authors admitted that the thiosulfate they found in
their column experiments may have been formed by the oxidation
of residual aqueous Na,S solution. They had first added H,0,
solution in an effort to sterilize the column and then added Na,S
solution to reduce the iron oxide stains that had formed from the
peroxide treatment. After such a traumatic chemical treatment,
significant quantities of thiosulfate would have formed from the
aqueous sulfide solution and would have been difficult to remove
completely from the column. The thiosulfate thus formed may
have had nothing to do with pyrite oxidation.

It has long been known that ferric iron rapidly oxidizes pyrite
(Stokes, 1901), Experiments carried out by Garrels and Thompson
(1960) and McKibben and Barnes (1986) have confirmed the bal-
anced reaction stoichiometry:

FeSyq + 14Feé;)+ 8H,0,, —> 15Fe + ZSOEan)+ 16H, o 3]

for the oxidation of pyrite by aqueous ferric ions. This reaction is
considerably faster than the reaction with oxygen as the oxidant,
but significant concentrations of oxidized iron only occur at low
pH values because of the low solubility of hydrolyzed ferric iron
at circumneutral pH values. Hence, it is thought that pyrite oxida-
tion is initiated by oxygen at circumneutral pH (equation [2]) but
as pH values reduce to about 4, the rate of oxidation becomes gov-
erned by equation [3]. Oxygen is still requited to replenish the
supply of ferric iron according to

2+ + 3+
Fegg + 1/402(g) + Hf,y — Fegg) +12H,0¢ (4]

but the oxygen does not have to diffuse all the way to the pyrite
surfaces. It is quite possible for pyrite to oxidize in the absence of
dissolved oxygen. Nevertheless, the overall rate of pyrite oxida-
tion in a tailings pile, in a mine, or in a waste rock pile will large-
ly be determined by the overall rate of oxygen transport (advec-
tion and diffusion).

Considerable speculation can be found in the literature on the
question of the initiation and propagation of pyrite oxidation,
Undoubtedly, during the initiation of pyrite oxidation, there are
complex chemical and microbiological processes occurring in
microenvironments (Williams et al., 1982), i.e., within a few tens
of nanometers of the surface of a suifide grain. These regions are
inaccessible to normal sampling techniques and are not represent-
ed by the bulk aqueous phase. For example, when oxygen initial-
ly adsorbs to a pyrite surface and transfers electrons, an accumu-
lation of protons will form at or near the surface. Acidophilic iron-
oxidizing bacteria will begin to colonize and a film of acidic water
will cover the mineral grain without affecting the bulk aqueous
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phase, Even before some acidic water develops, neutrophilic
Thiobacilli will catalyze the initial stage of pyrite oxidation
(Blowes et al., 1995; Gould et al., 1994). The extent to which these
microenvironmental gradients affect the bulk properties are depen-
dent on many factors, not the least of which is the pyrite concen-
tration in the rock, soil, or waste material. The existence and
importance of these microenvironments is well illustrated by the
formation of jarosite, a mineral that can only form under acid con-
ditions and has been found in soil waters of circumneutral pH
(Carson et al., 1982).

The oxidation of at least 18 different sulfide minerals has been
investigated (Table 6.3). Most of these have been studied with and
without microbial catalysis by Thiobacillus ferrooxidans. The
microbial oxidation rate is usually greater than the abiotic rate, all
other conditions being equal. Unfortunately, most of the microbial
studies were done without measurement of surface area and with-
out a consistent procedure for removing small particles or other-
wise cleaning the samples before the experiment. The lack of these
characteristics prevents any direct comparison of microbial oxida-
tion rates except in a qualitative manner. The results for abiotic
and biotic oxidation of pyrite, however, are of considerably better
quality than for other sulfide minerals and some quantitative com-
parisons are possible.

It should be noted that arsenic-rich minerals such as arsenopy-
rite and orpiment are also subject to bacterially catalyzed oxida-
tion (Ehrlich, 1963a, 1964). Indeed, the occurrence of arsenite-
oxidizing bacteria in acid mine waters has been reported by Wakao
et al. (1988) and one of the first reports of arsenite oxidation by
heterotrophic bacteria was that of Turner (1949),

There are now numerous reports on the oxidation rates of
pyrite and marcasite by oxygen (Bergholm, 1955; McKay and
Halpern, 1958; Smith and Shumate, 1970; Mathews and Robins,
1974; Goldhaber, 1983; McKibben and Barnes, 1986; Moses et
al., 1987; Nicholson et al., 1988; Moses and Herman, 1991), by
ferric iron (Bergholm, 1955; Garrels and Thompson, 1960; Smith
and Shumate, 1970; Mathews and Robins, 1972; Wiersma and
Rimstidt, 1984; McKibben and Barnes, 1986; Moses et al., 1987,
Brown and Jurinak, 1989; Moses and Herman, 1991), and by
hydrogen peroxide (McKibben and Barnes, 1986). The oxidation
rates of pyrrhotite in the presence of oxygen (Nicholson and
Scharer, 1994) and marcasite, covellite, galena, sphalerite, chal-
copyrite, and arsenopyrite in the presence of ferric iron (Rimstid
et al., 1994) have been measured. Pyrite oxidation rates from dif-
ferent studies are generally comparable, but differences in experi-
mental design, initial pH values, temperatures, grain size, mineral
preparation, method for data reduction and rate law expression
make a quantitative comparison difficult. For this paper, we use
the results of McKibben and Barnes (1986) on pyrite to compare
with the biotic rates in the next section. Table 6.4 summarizes the
reaction rates from several studies cited above for a pH close to 2,
Mgy = 1073, temperatures close to 25°C, and oxygen in equilib-
rium with the atmosphere.

The rates in Table 6.4 show that the oxidation of pyrite by fer-
ric iron (according to the reaction stoichiometries given in equa-
tions [2] and [3]) can be about 2-3 orders of magnitude faster than
by oxygen, that some minerals oxidize more rapidly than pyrite
and some more slowly, and that oxidation rates can range over
three orders of magnitude. These rates are demonstrably faster
than the dissolution rates for aluminosilicate minerals (White and
Brantley, 1995) by one to several orders of magnitude.




137

GEOCHEMISTRY OF ACID MINE WATERS

ABLE 6.3—Sulfide oxidation studies (more references can be found in Nordstrom and Southam, 1997).

T
~ M
pyrite FeS, 0,, F**, H,0y 0-10 See references in next sections
Marcasite FeS, 0,, Fe3* 2-3 Wiersma and Rimstidt (1984); Silverman et al. (1961)
pyrrhotite Fe, S 0, 2-6 Nicholson and Scharer (1994)
gphalerite (Zn, Fe)S 0,, Fe’* 2-7 Rimstidt et al, (1994); Torma et al, (1972); Khalid and Ralph (1977)
Galena PbS 0,, Fe* 2 Rimstidt et al. (1994); Torma and Subramanian (1974)
Chalcopyrite CuFeS, 0,, Fe3t+ 1.2-2.5 Rimstidt et al. (1994); Torma et al. (1976)
Arsenopyrite FeAsS 0O, Fe3* 2 Rimstidt et al. (1994); Ehrlich (1964)
Covellite CuS 0,, Fe+ 2 Walsh and Rimstidt (1986); Rickard and Vanselow (1978)
Chalcocite Cu,S 0, 2-4.8 Beck (1977); Sakaguchi et al. (1976)
Greenockite Cds 0, 2.3 Torma et al. (1974)
Millerite NiS 0, 23 Torma et al. (1974)
Cobalt sulfide CoS 0, 23 Torma et al. (1974)
Klockmannite CuSe 0, 2.3 Torma and Habashi (1972)
Cinnabar HgS Fe?* 2 Burkstaller et al. (1975)
Enargite Cu,AsS, 0, 3 Ehrlich (1964) -
Orpiment As,S, 0, Ehrlich (1963a)
Bornite CugFe3, 0, Landesman et al. (1966)
Mbolybdenite MoS, 0, 2.5 Brierley and Murr (1973)
Tetrahedrite (Cu,Fe);,5b,843 0, Yakhontova et al. (1980)
Stibnite Sb,S; 0, Torma et al. (1974)
Pentlandite (Fe, Ni)ySq 0, Brierley and Le Roux 1977

TABLE 6.4—Abiotic reaction rates (mol m2 s!) for sulfide mineral oxidation.

Mineral/Oxidant MB86! : BJ89? R94%7 N94* NS$943
Pyrite/O, 31x 1010 53 % 10710 11x 1010
Pyrite/Fe™* 96x 107 18x10% 1.9x 10

Pyrrhotite/O, 14x 108

Marcasite/Fe** 1.5x 107

Arsenopyrite/Fe* 1.7 x 106

Galena/Fe** 1.6x 10

Sphalerite/Pe* 7.0x 108

Blau. covellite®/Fe>* i 7.1x10%

Chalcopyrite/Fe** 9.6x 107

Covellite/Fe>* 9.1x 10°

1 McKibben and Barnes (1986); because there appears to be an error in the stated value for pyrite oxidation by oxygen we have used the corrected value from Nicholson

(1994).

2Brown and Jurinak (1989); average from oxidation rates measured in different electrolytes.

3Rimstidt et al. (1994).

4 Nicholson (1994); the value for pyrite is an average from four studies covering a pH range of 1-8.

5 Nicholson and Scharer (1994) and Tervari and Campbell (1976).

6 <pian. covellite” is blaubleibender or “plue-remaining” covellite having slightly different optical and X-ray properties than ordinary covellite.

7 The values listed for R94 are all given in terms of the amount of Fe({ID) reduced except for pyrite. All values for pyrite are given in the same units, per mole of pyrite oxi-

dized, for purposes of direct comparison.

Galvanic protection does occur during oxidative dissolution of  their clectrode potentials and that a mixture of sulfide minerals in
coexisting sulfide minerals. This phenomenon is the same as that  contact releases more metals into solution and decreases the pH
for galvanized iron. The more electroconductive metal sulfide (the ~ more than monomineralic samples. Sveshnikov and Ryss (1964)
one with the higher standard electrode reduction potential, see postulated that these electronic properties of co-existing conduc-
Sato, 1992) will oxidize at a slower rate and the less electrocon- tive sulfides are important during the weathering of sulfide miner-
ductive sulfide will oxidize at a faster rate than either one would  al deposits. Sato (1992) has used electrochemical data on metal
when not in contact. Sveshnikov and Dobychin (1956) reported  sulfides, typical of heavy metal sulfide deposits, t0 explain the
that rates of metal release from different sulfides are related to  mineral assemblage that is found during supergenc enrichment.
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references

Oxidation of aqueous ferrous iron’ 3x 1012
(Singer and Stumm, 1968; Lacey and Lawson, mol L1st
1977; Nordstrom, 1985)

Oxidation of pyrite by ferric iron tto2x 10
(McKibben and Barnes, 1986; Rimstidt et al., 1994) mol m™“ s
Oxidation of pyrite by oxygen 0.3t03x10°
(McKibben and Barnes, 1986; Olson, 1991) mol m? s~

Oxidation of waste dump (Ritchie, 1994a, b)

Oxidation of tailings (Blberling et al., 1993)

Microbial rate

Field rate
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8.8 x 108
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0,03 x 108
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20 to 60 x 10
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This rate falls squarely between the abiotic oxidation of pytite by

ferric iron and the microbial oxidation of ferrous iron, i.e., within
the uncertainty of the data, there is little difference between the
oxidation rate of pyrite by forric iron and the oxidation rate of fer-
rous iron by T, ferrooxidans. The lower rate of microbial pyrite
oxidation compared to the oxidation rate of ferrous iron by T. fer-
rooxidans suggests that the heterogeneous reaction is the rate-
determining step. We would suggest, however, that the uncertain-
ties on the rates are large enough and the natural variation in the
ferrous iron oxidation rate is large enough that there.is not a sig-
nificant difference. Hence, the rate of pyrite oxidation proceeds
about as fast as the aqueous ferric iron can be produced from fer-

rous iron through microbial catalysis.

Field oxidation rates

of pyritic mine waste in the

What are the actual oxidation rates
field? What governs oxidation rates at field sites? Singer and
Stumm (19702) conceived of rates in the conventional sense of
chemical kinetics. They described the abiotic oxidation of aque-
ous ferrous to ferric iron as the “rate-determining step” for the
production of acid mine drainage because it is orders of magni-
tude slower than the oxidation of pyrite by ferric iron. This abiot-
ic iron oxidation rate, however, has limited relevance because

iron- and sulfur-oxidizing bacteria are ubiquitous in ground and
on and pyrite oxidation by

surface waters, catalyzing aqueous ir
orders of magnitude. Singer and Stumm (1970a, b) recognized
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that microbial catalysis

the use of bacterici
activity. The microbial oxidation of aqueou
optimal conditions of temperature,
availability, is the fastes
vides an upper limit to the p
zero (or negativ
of oxygen and water.
over which actual rates

greatly speeds up the oxidation of aqueous
errous iron and that either the complete elimination of oxygen or
des would be necessary (o eliminate microbial
s ferrous iron, under
oxygen supply, and nutrient
¢ rate known in the system. This rate pro-
yrite oxidation rate. The lower limit is
duction is considered) in the absence
emes of rate cover a wide range
may occur in the field.
area, degree of crystallinity, and
as only to compare the sponta-

e if sulfate re
These extr

The effects of sulfide surface
purity cannot be overstated. One h
neous oxidation of “framboidal,” “microcrystalline,” or “cryp-
tocrystalline” pyrite (see Pabst, 1940; Caruccio, 1970) with untar-
nished, large, euhedral pyrite cubes that have survived in museums
for several centuries t0 notice the difference in oxidation rates.

The signatures of kings, queens, and other dignitaries over the last

century can still be seen clearly on an exposed surface of massive
n. Caruccio (1970) and

chalcopyrite in the Falun mine in Swede
Caruccio et al. (1976) pointed out that the grain size and surface
area of pyrite in coal deposits has a considerable influence on the
production rate of acid mine drainage, with framboidal pyrite
being the most reactive, Normalizing reaction rates to unit surface
area is now routinely done when reporting dissolution rates of
minerals but differences in degree of crystallinity and purity (solid
solution substitutions) may also affect reaction rates. Furthermore, -
the “reactive surface area” may be significantly less than the total
measured surface area as measured by standard techniques
(Dzombak and Morel, 1990). Reactive surface area refers to those
sites on the surface that are actively available to adsorb and chem-
ically bond with aqueous species, and can be reduced by intei-
granular contact or inclusion within other minerals. Another conm-
plication in the field is that not all exposed surface sites are in the
flow path of the watet, thereby reducing further the reactive sur-

face area.
ates for pyrite are complicated by air and

Field oxidation r
water transport processes, microbial growth Kkinetics, microbial
ents, secondaty

ecology, organic compounds, temperature gradi

mineral formation, neutralization reactions, climatic patierns, and
the site-specific design of mine workings, waste dumps, and tail-
ings. The production rate of acid mine drainage is governed by
rates of transport and attenuation processes, which tend to be
slower than rates of pyrite oxidation. Some confusion exists in the
literature because the distinction between oxidation rates and
transport/attenuation rates has not been made clear. In this sensé,
an obvious parallel or analogy can be made with silicate mineral
weathering rates and discrepancies between laboratory and field
studies (see Alpers and Nordstrom, 1999, and White and Brantley,

b) has reviewed and analyzed the physical fac-
-om waste piles. B¢

the acid production rate fr
limiting factor is the ransport and reaction 0
main processes are dominant in these
n of oxygen, and the

5).

Ritchie (19944,
tors that pertain to
has shown that the
oxygen in the waste. Three
systems: convection of oxygen, diffusio
intrinsic oxidation rate which he has calculated for two sites and
compared with results compiled from other sites. Ritchie (1994
b) described the “ global oxidation rate” as the overall flux rate o
acid mine drainage from a waste dump and the «intrinsic oxidaton
rate” as the oxygen consumption rate, measured from oxygen pro-
files in units of mol kg'! 1 or mol m s'1. Several assumptions

are involved in making these computations, including a stoichi®”



etric relationship between oxygen consumed and pyrite OXi-

'aquf:ous
ygen o sed (i.e., that oxygen is consumed only by pyrite).
licrobig) _The oxidation of pyrite is a highly exothermic reaction, which

n cause thermal air convection in waste dumps and underground

1, undey

Nutriey ines (Zverev et al., 1983). Air temperatures of 50 to 65°C are
ate pro. mmonly achieved in waste-rock piles and copper heap-leach
Limit jg mps (Cathles and Apps, 1975; Harries and Ritchie, 1981;

athles, 1994; Ritchie, 1994a) and a water temperature of 47°C
was reported from the Richmond Mine at Iron Mountain,
California (Alpers and Nordstrom, 1991). Temperature and densi-

leenCe
3 range

ty, and iy gradients resulting from heat generation cause convective air
bonta- transport, which can be a significant oxygen-supply mechanism
“cryp- (Rifchie, 1994a). Cathles (1994) indicated that convective gas flux
untar- _driven by thermal gradients was dominant in the well-instrument-
seums _ ed Midas Test Dump and other larger dumps at Kennecott’s
rates, Bingham Canyon Mine (Cathles and Apps, 1975). However,
te last Ritchie (1994a) asserted that the convective flux in a large dump
1ssive - generally applies over a much smaller area than the diffusive oxy-
) and gen flux.

rface The relative importance of diffusion vs. convection depends
n t_he primarily upon the range of air permeability. Ritchie (1994a) sug-
yrite gested a cutoff permeability value of 10 m2 Above this value,
rface convection should dominate and below this value, diffusion
s 9f should dominate. Ritchie (1994a) also pointed out that he has
solid found the global oxidation rate to be insensitive to changes in the
Fore, ' intrinsic oxidation rate. Hence, for unsaturated waste rock, the
otal dominant rate-limiting process should be oxygen diffusion, espe-
ues cially in a newly built waste-rock dump (Ritchie, 1994a). Parts of
iose waste rock piles, usually located near the center, are typically
E::: dominated by diffusion whereas the outer edges may be dominat-
- ed by convection. With time, convective gas transport will pene-
the trate further into the dump as it ages (Ritchie 1994a).

Other factors that affect the ultimate release of acid drainage
include the climate, hydrologic variables, mineralogy of the waste
materials, physical structure of the waste and geological structure

ur-

ir;cll and .setting of the mine site, historical elvolution pf m‘ineral-pro-
ry cessing practices, materials used and discarded in mineral pro-
d cessing, geomorphology of the terrain, and vegetation. Discussion
I of these subjects is beyond the scope of this chapter and can be
y found in other chapters of this volume or in other review papers.
'e For example, Moore and Luoma (1990) have outlined the sources,
e transport mechanisms, and sinks for mining and mineral-process-
d ing wastes. They use the categories “primary,” “secondary,” and

“tertiary” according to how many times the mining waste has been
retransported. A comprehensive overview of tailings problems and
their management has been published by Ritcey (1989),

Y
>

REDOX CHEMISTRY AND MINERAL SOLUBILITIES

Eh-pH diagrams and redox chemistry

The traditional graphical method of delineating the stabilities
of reduction-oxidation (or redox) species in geochemical systems
(and in corrosion systems) has been through the use of Eh-pH (or
pe-pH) diagrams. These are a type of master variable diagram
where the independent or master variable is pH. Originally devel-
oped by Pourbaix (1945, 1966; also see Pourbaix and Pourbaix,
1992; Sato, 1992) to portray equilibrium relationships in metal
corrosion systems, they were introduced and championed in the
geochemical literature by Krumbein and Garrels (1952), Garrels

GEOCHEMISTRY OF ACID MINE WATERS

(1954) and Garrels and Christ (1965). Hem (1961, 1985),
Krauskopf (1967), Krauskopf and Bird (1995) and many others
have used the concepts of Eh and pH as a convenient means of
representing redox relationships for ions and minerals, The read-
er is referred to these sources as well as discussions by Stumm and
Morgan (1981) and Nordstrom and Munoz (1994) for an infro-
duction to the construction of these diagrams from thermodynam-
ic data.

A pe-pH diagram for the Fe-S-K-O,-H,O system is shown on
Figure 6.2 with the thermodynamic stability fields of several
major ions and minerals of iron. The formation and occurrence of
jarosite, goethite, and other secondary iron minerals are discussed
in the next section, The stability boundary between goethite and
jarosite can vary over several units of pH depending on the crys-
tallinity and particle size of these minerals. Metastable phases
such as ferrihydrite may form more readily than the thermody-
namically stable phase in some conditions, and thus can play an
important role in controlling aqueous metal concentrations.

Figure 6.2 indicates that goethite is stable under mildly acidic
to basic oxidizing conditions, jarosite is stable under acidic oxi-
dizing conditions, and pyrite is stable under a large range of
strongly reducing conditions. Acidity tends to promote dissolution
of minerals under a range of redox conditions. Additional iron
minerals can be shown on diagrams similar to Figure 6.2, if addi-
tienal components such as carbonate, silica, phosphate, and urani-
um are included, but such multi-component diagrams can become
very cluttered and most of these additional minerals are not par-
ticularly relevant to acid mine waters.

These pe-pH diagrams can be very useful in showing the gen-
eral stability relations among redox-sensitive ions and minerals
but their limitations must be clearly understood:

1) The redox chemistry of a solution or a natural water cannot be
measured by a simple “Eh” parameter. There is no such thing
as a single representative redox potential or an Eh of a water.
A measurement of electromotive force (EMF) with a platinum
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FIGURE 6.2—pe-pH diagram, showing stable solid phases in Fe-S—'(K—
O-H system at 25°C (modified from Alpers et al,, 1989).
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electrode (converted to Eh by subtracting the reference elec-

trode half-cell potential) for a water sample may or may not

reflect an equilibrium potential for a single redox couple but
there is no single Eh that represents the water (Thorstenson,

1984; Hostetler, 1984). Hence, Eh measurements may be quan-

titatively correlated to a specific redox couple such as Fe(II/III)

but otherwise they are of little use.

2) Redox couples of different elements rarely, if ever, reach equi-
librium at temperatures below 100°C. This fact is one of the
reasons why a single Eh cannot be assigned to a water sample.
Redox disequilibrium is the rule, not the exception. Lindberg
and Runnells (1984) showed that when different redox couples
are measured in the same water sample, none of them appear
to be in equilibrium. The reasons for this are largely kinetic.
Electrons transfer much more readily between redox-sensitive
ions and surfaces such as electroconductive minerals (most
sulfides) and bacteria than with other ions in solution.
Redox potential measurements respond to electroactive aque-
ous ions. To be electroactive an ion must have a sufficiently
high exchange current density (Bricker, 1982) so that there is
no kinetic hindrance to the transfer of electrons. This criterion
requires both sufficiently high concentrations of the redox-sen-
sitive ions as well as the lack of kinetic barriers to electron
transfer. Only two common elements clearly meet this require-
ment: iron (II/III) and sulfur (sulfide). All other elements and
ions found in natural waters (with the possible exception of
uranium and cobalt under unusual circumstances) do not.

4) The redox conditions of a water sample are best characterized
analytically by determining the concentrations of multiple
redox species for each redox-active element in the sample.
Acid mine waters are easily analyzed for Fe(II) and Fe(total)
(with Fe(IIl) computed by difference or by direct determina-
tion, To et al., 1999) by visible spectrophotometry using a fer-
roin reagent such as bipyridine, orthophenanthroline, or fer-
rozine, The more precise and sensitive nature of methods using
a colorimetric reagent such as ferrozine make them preferable
to atomic absorption or inductively-coupled plasma atomic-
emission spectroscopy (Ball and Nordstrom, 1994). Once the
concentrations of redox species have been determined then the
classification of Berner (1981) can be used to describe the
redox chemistry. ‘Berner suggests a practical lower limit of
detection as 10°® molar for oxygen, iron, sulfide, and methane.
The presence of oxygen classifies a water as “oxic,” the
absence of oxygen and presence of ferrous iron classifies it as
“post-oxic,” the presence of sulfide classifies it as “sulfidic,”
and the presence of methane classifies it as “methanic.” This
general classification works well for the typical ground water
evolving into more reducing conditions with time and depth,
but not for acid mine waters. Acid mine waters and other types
of surface waters are usually of a mixed redox chemistry and
only be determining relevant redox species can you interpret
the redox chemistry of the water,

Nordstrom et al. (1979) showed that acid mine waters typical-
ly have sufficient iron concentrations to give an equilibrium poten-
tial at the platinum electrode for the Fe (I/IIl) redox couple but
that the O,/H,O redox couple was far from equilibrium with
respect to the iron couple. Careful analyses of acid mine waters
from the Leviathan/Bryant Creek system demonstrate the limits of
redox measurements for mine waters even more clearly (Ball and
Nordstrom, 1989, 1994). Figures 6.3a and 6.3b compare platinum
electrode Eh measurements with Eh values calculated from Fe

3

~

(IV/III) determinations and speciated with the WATEQA4F code

(Ball and Nordstrom, 1991; see Alpers and Nordstrom, 1999). The M(;]ej
comparison of measured and calculated Eh on Figures 6.3a and KV/Iil?
6.3b shows an excellent correlation for samples with total iron da ﬁl
concentrations greater than 10 m. Most of the deviations are ni yhtr
found at the lowest Eh values where the iron concentrations are so i ¢
low (less than 106 m) that iron is no longer electroactive, ?Ee a}g‘
Furthermore, these waters are saturated with atmospheric oxygen mine ‘
so that a mixed potential results from the oxygen competing with dissoly
the low concentrations of iron. Poor comparisons of calculated quence
and measured Eh are occasionally found at very high iron con- Ostwal
centrations and low pH values because of inherent problems with hydrox
the chemical model under these conditions (see Alpers and Alterﬁz

Nordstrom, 1999).

colloid,
ty for ;
1989).
with re
with mq
show ]
observe
daylight
genatior

Iron photoreduction

Tron (II) concentrations in oxygenated surface waters have not
only been detected but have been found to vary from night to day,
The concentrations of Fe (II) reach a peak during midday, at the
peak of insolation. The solar radiation reduces both dissolved Fe
(II) and colloidal ferric hydroxide in natural waters (Waite and
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couple to Bh measured with a platinum electrode. (b) Differenice b
calculated and measured Eh plotted as function of total dissolved i
centrations in molal units. Data from Leviathan/Bryant Creek walt
California and Nevada (Ball and Nordstrom, 1989; 1994).




1984). The same effect has been found for acid mine
at have dissolved iron <5 mgfl (McKnight et al., 1988;
s oht and Bencala, 1988). McKnight et al. (1988) found the
-oduction of Fe(Il) to be nearly 4 times faster than the
oxidation of Fe(il). These results might also be
y light inhibition of iron- and sulfur-oxidizing bacteria
nd Marshall, 1977). The continual exposure of acid
s to the sun promofes recycling of the iron between
nd particulate phases and may have important conse-
the sorption of metals. Solar radiation could lead to
ssening of iron colloids which would increasc the iron
particle size and decrease the reactive surface area.
Alternati ely, recycling of iron hydroxides and recreation of fresh
colloidal surfaces would promote surface area and the opportuni—
Ty for increased adsorption of metals (McKnight and Bencala,
1989). These effects, however, may only be detectable in streams
with relatively small concentrations of iron. Acid mine waters
with more typical iron concentrations of 20-1000 mg/l may not
show this effect. Tn wetlands, an opposite effect has been
cbserved, where Fe (ID concentrations reach a minimum during
daylight hours; this effect has been attributed to daytime OXy-
genation by algae (Wieder, 1994).

Saturation indices (SD and mineral solubilities

When complete water analyses for the major ions are avail-
able, a speciation computation can be done to determine the state
of saturation with respect to any particular minerals for which
thermodynamic data are available (see Alpers and Nordstrom,
1999). Numerous acid mine waters and tailings pore waters have
been subject to these calculations 10 achieve more quantitative
interpretations on the control of metal concentrations by mineral
solubilities. Some brief examples of the usefulness of this
approach are shown here.

Acid mine waters are characterized by low pH, high iron and
aluminum concentrations, high metal concentrations, and high
qulfate concentrations. Minerals that might be stable under these
conditions should be hydrolyzed iron- and atuminum-sulfate min-
erals and insoluble metal-sulfate minerals. Prime candidates
include jarosite, alunite, barite, anglesite, gypsuin, and a suite of
ferric- and aluminum—hydroxysulfatc compounds. Figures 6.4a-d
show two examples of SI vatues for batite, one for alunite, and
one for anglesite. If equilibrium solubility is achieved and if it
exerts the dominant control on the concentration of one or more
elements, then the ST values should show a linear and horizontal
trend close 1o Zero. Such a pattern signifies that the water chem-
istry reflects the stoichiometry of the given mineral and may have
reached equilibrium saturation. AS expected, the values tend to
plateau with the appropriate stoichiometry of the mineral but ge1-
erally in the region of supersaturation. This effect might be
explained by the particle size effect on solubility because the sol-
ubility product constant usually refers to 2 coarse-grained, well-
crystallized material and it might also be due to solid solution
substitution of trace components. Some of the apparent supersat-
uration could also be due to inadequacies in the chemical model,
e§pecially in the activity coefficient and stability constant expres-
sions.

The behavior of aluminum and iron as reflected in saturation
indices can be seen on Figures 6.5a-d. On Figure 6.5a, a platean
in the SI values for AI(OH), is seent at pH values above about 4.5.
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At pH values above 4.5, solubility equilibrium is apparently
reached with respect t0 microcrystalline oF amorphous ANOH),
and seems to be maintained at all higher pH yatues. This phe-
nomenon was pointed out by Nordstrom and Ball (1986) and can
be more clearly seet on Figure 6.5b in which the activity of the
free aluminum ion is plotted against pH. The rate of aluminum
leaching from common minerals at low pH is not generally fast
enough relative 10 the flow rate of surface and ground waters to
reach equilibrium with gibbsite. Furthermote, gibbsite solubility
is so high at very Jow pH that it becomes an unstable of metastable
phase with respect 0 other aluminous minerals, especially in the
presence of high sulfate concentrations (Nordstrom, 1982b).
When acid mine drainage is diluted by peutral surface watets,
the pH and aluminum concentrations oventually reach the gibbsite
solubility curve and aluminum concentrations become controlled
by one of 3 possibilities: 4] solubility of a solid phase (such as
gibbsite), (2) a surface coating control with a stoichiometry simi-
far to gibbsite, of (3) a common aluminosilicate mineral with an
exchange ratio of A to HY of 1:3. ApHOf518 also equat to the
pK,, the negative logarithm of the first hydrolysis constant for
aluminum, and without hydrolysis the precipitation of hydrolyzed
aluminum would not be possible. Hem and Roberson (1990) have
shown that the rate of aluminum hydrolysis increases as pH val-
ues rise to about 5 go that the hydrolysis kinetics for dissotved
aluminum favors the tendency toward equilibrivm. Nordstrom et
al. (1984) have shown that, when rapid mixing causes precipita-
tion of atufninum in acid mine waters, the solid produced is an
amorphous aluminum—hydroxysulfate material that might best be
described as an amorphous basaluminite.

Comparable diagrams fot jron are shown on Figures 6.5¢-d.
Apparent supersaturation with respect to ferric hydroxide of ferri-
hydtite occuts at pH values above about 4. The supersatui'ation
might be explained by substitution of sulfate for hydroxide jons in
the ferrihydrite and the formation of a schwertmannite—like phase.
Schwertmannite [FegOg(OH)é(SO 21 was described by Bigham et
al. (1990) and Bigham (1994) and is discussed in more detailina
later section of this chapter. The apparent supersaturation with
respect t0 ferric hydroxide might also be explained by the forma-
tion of colloidal iron particles that cannot be filtered out by 0.1
micrometer pore gize membranes. This apparent supei‘saturation
pehavior for ferric hydroxide is commonly seen for both surface
waters and ground waters.

In general, the stoichiometry of a phase controlling the solu-
bility of an aqueous constituent can be derived from an appropri-
ately—selected jon-activity plot. For example, if pure ferric
hydroxide were controlling the solubility of ferric iron, the reac-

tion

Fe(OH); + 3 H —> Fe*t +3HO [6a]
and its 10g equilibrium constant expression

log K = logage+ - 3 logag+ + 3 logau,o [6bl

would indicate that plot of Fed* activity versus pH (= -log 2y )
should have a slope of -3.

The observed slope of -2.4 on Figure 6.5d is clearly inconsis-
tent with solubility control by pute ferric hydroxide having 2
molar Fe:OH ratio of 1:3 (Nordstrom, 1991). Similar results (2
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slope of -2.35) in other surface-water environments and in labora-
tory experiments were interpreted by Fox (1988) to represent a fer-
ric hydroxide in which nitrate has partially substituted for hydrox-
ide, i.e., Fe(OH)2_35(NO3)0_65. Kimball et al. (1994) found a
regressed slope of -2.23 from iron data on the acid mine waters of
St. Kevin Gulch, Colorado during a neutralization experiment.
The relation on Figure 6.5d could be caused by a reaction
involving a hypothetical sulfate-substituted ferric hydroxide such
as :

Fe(OH), 4 (S0,)g3+2:4H" —>Fe** +03807 +24H,0 [7a]

with its log equilibrium constant expression

logK =logag,3+ - 2.4 logay++0.3 10gaso§— +2.4 10gaH20 [7b]

o not indicate solubility with schw-
ertmannite of the composition reported by Bigham (1994). The
expected slope on a plot of ag., V. pH showing schwertmannite
solubility equilibrium would be -2.75, based on the reaction

The data on Figure 6.5d d

FeO(OH), 1580 125 + 275H ==

Fe3* +0.125 S0% - + 1.75 H,0 [8a)

and its log equilibrium constant expression

logK =logag,3+- 2.75logay+ + 0.125 logasog_ +1.75 1ogaH20 [8b]

Bigham (1994) reported that schwertmannite is associated with
mine drainage ranging in pH from about 2.5 to 6, and is most com-
monly associated with “typical” mine effluents with pH from 3 to
4, Bigham (1994) also noted that ferrihydrite is associated with
mine drainage in the pH range of about 5 to 8. The data on Figure
6.5d with slope of -2.4 span from pH of about 4 to about 7. This
suggests that the apparent stoichiometry is more likely to represent
a sulfate-substituted ferrihydrite, schwertmannite, or other hydrous
ferric oxide with a molar Fe:OH ratio of 1:2.4. It is also possible
that mixtures of different iron mineral phases are precipitating
from these waters over this pH range and the slope is not cleatly
resolvable into a particular reaction. This complex chemistry needs
more detailed work to quantitatively relate water chemistry to iron
colloids and other precipitates.

In his thesis work (Blowes, 1990) and in subsequent papers
(Blowes and Jambor, 1990; Blowes et al.,, 1991; Blowes and

Ptacek, 1994; Ptacek and Blowes, 1994), Dr. Blowes and his col-
leagues have mapped the saturation indices for siderite, calcite,
melanterite, and anglesite with

goethite, ferrihydrite, gypsum,

depth in tailings piles at Heath Steele, New Brunswick, and Waite
Amulet, Quebec. Similar detailed hydrogeochemical studies are
being completed at Kidd Creek and Copper Cliff, Ontario. In some
of these studies, two aqueous models are compared: the ion asso-
ciation model and the specific ion interaction (Pitzer) model. For
some minerals, the comparisons of saturation indices computed by
both models are nearly identical, but for others the Pitzer model
gives SI values that are more consistently at equilibrium. The min-
eralogy at these sites has also been studied in detail and it fully sup-
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tions based on the Pitzer model saturation
which are more appropriate for solutions of
ths and limitations of these aqueous
ters are discussed by Alpers and

ports the interpreta
index computations,
high ionic strength. The streng
models as applied to acid mine wa

Nordstrom (1999).

SECONDARY MINERALS

Acid mine waters are highly reactive solutions that can dis-
solve most primary minerals and form a wide variety of secondary
minerals. The understanding of secondary mineral formation has

important consequences for environmental management of min-

ing wastes. Insoluble secondary minerals with large surface areas
of the major contaminants in

can effectively immobilize many
acid mine waters, providing an important attenuation and detoxi-
fying mechanism. Soluble secondary minerals also slow down
toxic metal mobility but only temporarily until the next rainstorm
or snowmelt event. Hence, the occurrence and properties of these
minerals are equal in importance to the water chemistry and pyrite
oxidation rates for the interpretation of chemical processes occur-
ring in mine waste environments.
ussion, secondary minerals are

For the purpose of this disc
defined as those that form during weathering. A further distinction
inerals formed by natural

can be made between secondary mi

processes prior to human disturbance and those formed after the

commencement of mining, exploration, or other human activity.
In this chapter we refer to these effects as pre-mining and post-
mining.

There are clear similarities in the geochemistry of pre- and
post-mining weathering processes, as well as in the nature of the
associated aqueous solutions and secondary minerals; however,
there are also some important differences. Mining tends to cause
a dramatic increase in the rate of sulfide oxidation reactions
because of rapid exposure of large volumes of reactive material to
atmospheric oxygen. Blasting and crushing of ores and waste
material leads to a considerable increase in the available surface
area of reactive minerals. Hydrologic changes caused by mine
dewatering in both underground and open-pit mines may eXpose
large volumes of rock to atmospheric oxygen.

The type of secondary imineral formed depends on the compo-
sition of the water, the type and composition of the primary min-
erals, the temperature, and the moisture content. The initial min-
erals that precipitate in certain environments tend to be poorly
crystalline, metastable phases that may transform to more stable
phases over time. Therefore, those secondary minerals that are
preserved in the geologic record in leached cappings, gossans, 8l
sones of secondary enrichment may be quite different in their
mineralogy compared with the secondary minerals that form over .
shorter time frames in mine drainage settings.

Four important processes iead to the formation of secondary
minerals from acid mine waters: (1) iron oxidation and hydroly-
sis, (2) reaction of acid solutions with sulfides, gangue minerals
and country rock, (3) mixing of acid mine waters with more dilut
waters, and (4) evaporation of acid mine waters.

A suite of Fe(IIl) minerals can form from iron oxidation an
hydrolysis. Many of these phases have vety low solubility, fall 1
the colloidal size range (less than 1.0 micrometer), and can adsor
or coprecipitate significant quantities of trace elements, Reactl®
of acid mine waters with country rock and some gangue minerd
such as calcite and dolomite, will cause neutralization and prect?
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Schwertmant, 1981). Ferrihydrite formed in mining environ-
ments tends to have two to four XRD peaks, and is associated with
waters having pH values of 5 10 g (Bigham, 1994). The “gwo-line”
eferred to a8 “proto—ferrihydrite” (Chukhrov et

ferrihydrite i alsor
al., 1973), although this ijs not an approved mineral name. At least

two formulas
(Towe and Bradley, 1967) and Fe203-2
tural formula based on infrared spectroscopy
latter formula can also be expressed as Fe,041.8H,0-
Hematite (Fe203) and goethite [FeO(OH)] are the most com-
mon and most stable forms of ferric oxide and oxyhydtoxide,
ility and stability of hematite and goethite

respectively. The solub
grain size and surface Gibbs free ener-

se relations. With regard to

it is unstable relative to coarser-grained
ocks. This conclusion is

logic conditions that form sedimentary I
d by both laboratory (Bernet, 1969, 1971) and field evi-

distribution of
1982; Schwertmant, 19852, b). Ferrihydrite is
itions are maintained

Schwertmanm,
known {0 convert to hematite if condi
¢ ferrihydrite

between pi 5and 9. Outside of this range, most of th

dissolves and reprecipitates as goethite (Schwertmann and Murad,

ors may influence the formation of these phases,

1983). Other fact

such as humidity, Al-content (Tardy and Nahon, 1985), grain size,

and the presence of trace elements (Torrent and Guzman, 1982;

Thornber, 1975). The preparation and characterization of iron
d Cornell (1991).

oxides has been reviewed by Schwertmann an
n done to understand the factors

Relatively little work has bee
that influence the distribution of hematite and goethite in the
weathered zone of mineral deposits. Leached cappings and gos-
sans represent the in situ oxidized equivalents of porphyry copper
and massive sulfide deposits, respectively. The mineralogy of iron
in the oxidized zones of these deposits ;s dominated by hematite,
goethite, and jarosite [(K,Na,H3O)Fe“13(SO4)2(OH)6]. The early
literature (6.8 Locke, 1926; Tunell, 1930) documented the obser-
yation that “deep maroon 0 seal brown” hematitic iron oxide
tends to remain in rocks after oxidation of supergene chalcocite-
bearing Ores, which form as the enrichment product of copper-
iron sulfide protores. Increasing s of goethite and jarosite
relative t0 hematite correlate with ptogressiveiy higher ratios O
pyrite to chalcocite at depth (Loghry, 1972; Alpers and Brimhatl,
1989). The texture of the iron oxides (ot “limonites”) also reflects
a systematic change from indigenous (in original sulfide cavities)
d (outside sulfide cavities and in fractures) with
content prior 0 oxidation (Blanchard,

(Ee™)

y X-ray

(eg, W transporte
increasing relative pyrite
1968; Loghty, 1972).:

Aluminum has been observed to substitute into goethite and
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TABLE 6.8—Some other oxide and hydroxide minerals and native metals,

Mineral Formula

ysulfate minerals.

TABLE 6.6—Iron oxide, hydroxide, and hydrox

Mineral Formula
Hematite o-Fe,03 Pyrolusite MnO,
Maghemite v-Fe,0, Hausmannite Mn,04
Magnetite FeO-Fe,04 Manganite 'y-MnO(OH)
Goethite o-FeO(OH) Pyrochroite Mn(OH),
Akaganéite B-FeO(OH,CH Todorokite (Mn“,Ca,Mg)MnW3O7~HZO
Lepidocrocite y-FeO(OH) Takanelite (Mn“,Ca)MnW 0o H,0
Feroxyhyte §'-FeO(OH) Rancieite (Ca,Mn“)MnIV 40300
Ferrihydrite Fe5H08-4H20 Native copper
or Tenorite CuO
F6203'2FCO(OH)‘2.6H20 .
. T Cuprite Cu,0
Schwertmannite Fe 8Og(SO 4)(OH)6 )
. , o Delafossite CuFeO,
Fibroferrite Fe (SO4)(OH)-5H20 . .
X T Bunsenite NiO
Amarantite Eell'(SO 4)(OH)-3H20 . .
. . Theophrastite Ni(OH),
Jarosite KFe 3(SO4)2(OH)6 . Tl 2
. . Tt Jamborite (Nt NL JFe)(OH) (OH,S,H,0)
Natrojarosite NaFe 3(SO4)2(OH)6 .
] ’ 1 Native silver Ag
Hydronium Jarosite (H,0)Fe 3(SO4)2(OH)6 Nati d A
ve go u
Ammonium Jarosite (NH,Fel(S0,),(OHg ative 8
k . Tt Native mercury Hg
Argentojarosite AgPe™,(SO 4)2(01—1)6 .
o T Montroydite HgO
Plumbojarosite Pb,, sFe 3(504)2(01—1)6 . )
. Y Massicot litharge PbO
Beaverite PbCuFe 2(SO 4)2(0H)6 .
I i1t Plattnerite PbO,
Chromate jarosite KFe 3(CrO 4)2(0H)6

TABLE 6.7—Aluminum oxide,

hydroxide, and hy!

droxysulfaté"minerals.

TABLE 6.9—Selected soluble iron-

sulfate minerals.

Mineral Formula

Mineral Formula
Corundum a-Al, 0, Melanterite Fel'SO, TH,0
y-Alumina)! -AL,0; Siderotil FellSO,5H,0
Diaspore o-AIO(OF) Rozenite FellSO4H,0
Boehmite y-AlO(CH) Szomolnokite Fel'SO,H0
Gibbsite v-Al(OH)3 Halotrichite pellAL(SO,) 42200
Bayerite a-AlOH), Roemerite FellFelll (SO ), 14H,0
Doyleite AlOH); Cogquimbite Fel(S0,)y9H,0
Nordstrandite Al(OH)3 Kornelite Felll,(50,), 7H,0
Alunite KAL(S0,),(0H)s Rhomboclase (H,0)Fe(S0); 3120
Natroalunite NaAL,(SO),(OH)g Ferricopiapite Fell'y(SO 4)60(0H)'20H20
[Hydronium Alunite]* (H0)ALS0,),(OHs Copiapite FellFel (SO,)(( Oy 2080
Ammonium Alunite (NH4)A13(SO 4)Z(OH) 6 Voltaite KzFe“ SFe}“ 4(SO ) 12'181—120
Osarizawaite PbCuAL (SO 4)2(OH) 5
Jurbanite Al(SO,)(OH)-SH,0
Basaluminite AL(SO 4)(OH) 10 5H,0
Hydro-basaluminite Al (SO)(OH) 12-36H;0

! y-Alumina is a synthetic compound, used as a catalyst in industry. Surface propet-
ties are reviewed by Goldberg et al. (1995).

2 Hydronium alunite has not been found in nature and

mineral,

therefore is not considered a
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£ 6,10—Some other soluble sulfate minerals. TABLE 6,12—Some carbonate minerals.

* mg|
Formula Mineral Formula
. Rhombohedral
MgSO, 7H,0 Calcite CaCO,
MgSO,6H,0 Magnesite MgCO,
ZnS0, TH,0 Siderite FellCO,
Rhodochrosite MnCO
6H.0 3
ZnSO6H, Smithsonite ZnCO,4
ZnSO;H,0 Otavite CdCO,
ZnSO, Gaspéite NiCO,
CaS0,2H,0 Sphaerocobaltlte CoCO,
CasSOy, Orthorhombic
coy AT Aragonite CaCO;,
Nl.SO“ TH,0 Strontianite SrCO,
NiSO, 6H,0 Witherite BaCO,
CuSO,7TH,0 Cerrusite PbCO;,
CuSO4'5H2O Double
. utnahorite a(Mn,Mg, 3)n
Al(SO,)5 1 THO Ankerite Ca(Fel, Mg Ma)(CO2),
Na,SOy 10H,0 Minrecordite CaZn(COy),
Na,SO4 Hydroxyl
Malachite C\12(C03)(OH)2
Azurite Cu3(CO3)2(OH)2
Hydrocerussite ]E’bS(CO3)7_(OH)2
Hydrozincite ZnS(CO3)2(OH)6
Aurichalcite (Zn,Cu)S(CO3)2(OH)6

e L

TABLE 6.11—Some fess-soluble sulfate and hydroxysulfate minerals. TABLE 6.13—Supergene and diagenetic sulfide minerals.
Mineral Formula Mineral Formula
Celestite S1S0, Supergene sulfide minerals
. Chalcocite Cu,S
Ang'leslte PbSO, Djutleite-1 Cu, 0655
Barite BaSO, Dijurteite-Il Cuy 9345
Radium sulfate : RaSO, Izigelznite (Ccu’ge)gss
. nilite S,
Antlerite Cu,(SO (OH), Geerite CugSs
Brochantite Cuy(SO 4)(OH)6 Spionk(?pite CuyoSyg
Langite, Wroewolfeite Cu (SO NOM2H,0 \erowﬁe . i gusss S
_ ue-remaining covellite 0
Posnjakite Ciy (SO O HO Covellite Gl
Violarite Ni,FeS,
Diagenetic sulfide minerals
Amorphous FeS FeS with coprecipitated Zn,
Cd, Mn, Cu, Ni, As)
Mackinawite (Fe,Ni)988
Smythite (Fe,N')ﬁS11
Greigite FellFell,S,

o eI

E Pyrite, marcasite FeS,







'S~

OH), is apparent, as descr
b). Such control may be caused by equili

urface reaction involvi

her because of rapid mixing with ¢
aluminum-hydroxys
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the bulk of the nickel liberated by oxidation of these sulfides ends
the nickel remains in solution and is trans-

ported from the site of oxidation, a small amount is taken up by
silicates that replace

ng the exchange of A3 for 30" on an
urface. May and Nordstrom (1991) showed that a vermiculite and associated mixed-layer
change of behavior for aluminam from conservative biotite, and some may occur as secondary violarite (see Supergene
conservative is common for a wide variety of sulfate-acid- and Diagenetic Sulfides section, below), which is expected to
_When the pH in an acid mine water increases to5or  occur but has not yet been found in the Copper Cliff tailings
ircumneutral, dilute water, (Alpers et al., 1994b).
ulfate compound precipitates immediately. Copper oxides, particularly tenorite and cuprite, are known to
ly white, and is most commonly amor- form in the oxidized zone of sulfide deposits and are indicative of
RD, electron diffraction, transmission electron low pyrite content and(or) a high wallrock neutralization capacity
microscopy (Nordstrom et al., (Loghry, 1972; Anderson, 1982). The behavior of copper i tail-
o be of fairly constant composition, similar to the ings impounfiments and waste-rock piles is similar to that of nick-
uminite reported by Adams and Rawajfih (1977). el in that discrete secondary copper oxides are rarely formed;
rather the copper is either transported away from the oxidized

le working on acid mine ) ppet. !
zone in solution, 18 fixed in other secondary phases such as sul-
and(or) adsorbed

astes. The occurrence of the white, aluminous 1A \ ad

pH values of 5 or above is so consistent that one can fates, carbonates, OF silicates, or 18 coprecipitated
predict the pH of the water when a to hydrous iron oxides. .

{lable. A classic example is the .Man'ganese 'ox1des and hydrox1d§s are knoxl»vn to form from

the Gem Mine (often called the Paradise portal), in acid mine drainage, often at considerable distance from the

ern Colorado, which has source(s) of sulfide oxidation and acid formation. Krauskopf

(1957) pointed out that the redox and hydrolysis properties of iron

ine water continuously withapHof 5.5 03 A -
and manganese are such that they sometimes behave differently

triking white precipitate, ! o SO -
under changing conditions of oxidation and reduction. Hem

as “white death,” that consists primarily of . MO
(1978, 1980) considered the effects of manganese oxidation and
f other trace metals

d water (Nordstrom et al., 1984); anomalous - > - et
de elements have been found in this pre- disproportionation 0n the coprecipifation 0O
1991; Nordstrom et al., 1995). with manganese oxides. He demonstrated the effect of manganese
. ’ on the coprecipitation of CoO(OH) (Hem et al., 1985) and on the

As with the iron minerals, thermodynamic stability relations 1o MUE ¢ -
precipitation of zinc as hetaerolite, ZnMn, 0, at 95°C (Hem et al.,
at low-temperature

d their kinetic rates of formation : .
sulfate concentration, salinity, 1987). He further discussed the poss1‘b1hty th

“ferrite” compounds may be responsible for the low concentra-

ated natural waters. Hem

ons to our understand-

f trace metals (Hem,

ibed previously (Figs. 6.5a and
brium solubility or by WP in goethite, a part of

and temperature. Precipitation rates for some of h . ’
luggish so that the equilibrium tions of trace metals found in uncontamin

reached in surface waters. In soil and also made many other significant contributi
ing of the hydrolysis and precipitation O

solubility control by
1985).

and hydroxides of sev- Manganese oxides are actively precipitating at Pinal Creek,
Arizona, in the Globe-Miami mining district, and so provide an
opportunity for study of geochemical processes controlling man-
ganese solubility in a mine drainage setting. At Pinal Creek, an
idized zones (gossans and leached cap- alluvial ground-water aquifer was contaminated by acidic
have reacted with the recharge (pH about 2.7) from copper mining and smelting activi-
formerly mineralized rocks. Tt is unlikely that these phases exert ties (Bychaner, 1991). After neutralization by interaction with the
r, but rather they ate altuvial material, the contaminated ground-watet emerges at near-
ial reach of Pinal Creek, about 15 km down-

solubility control on large volumes of wate ¢
likely to form during dry periods when isolated microenviron- neutral pH in a perennt v
the acid source, at which point manganese-Tich

ments may reach saturation with a given native metal, oxide or . !
hydroxide. The absence of discrete trace-metal-bearing oxides  crusts have developed in the streambed. Chemical and XRD
analyses (Lind, 1991) suggest that the manganese 0ccurs as 2 mix-

and hydroxides in most oxidized mine wastes suggests that other
mechanisms, such as adsorption or CO ture of two related hydrous oxides, takanelite and rancieite (see
onate, probably kutnohorite

precipitation with hydrous
iron oxides, limit the concentrations of dissolved trace metals in Table 6.8), plus an Mn-bearing carb
(see Table 6.12). The overall oxidation state of the manganese in

mining environments (see Smith, 1999). .
The behavior of nickel in tailings impoundments and acid-  the less-than-75 micrometer size fraction of the Pinal Creek pre-
5 (Lind, 1991). To test the hypothesis that neu-

mine-drainage precipitates illustrates that the fate of trace metals  cipitates was 3.6
the major ele- tralization of acidic Mn-bearing water would lead to formation of
de of Mn-rich

in mine drainage settings is generally tied to that of
ments, particularly iron. Mineralogical analysis and microanalysis similar Mn-bearing minerals, titrations were ma
Creck area with 2 0.1 molar NaOH

by Jambor and co-workers as part of a study on the Copper CHLff  ground waters from the Pinal
tailings area at Sudbury, h and without CO, present; these experiments yielded

Ontario, has indicated that nickel tends to solution wit
occur dispersed in hydrous iron oxides forming alteration rims on hausmannite (which aged to manganite), kutnohorite, and a mixed
pentlandite and nickeliferous pyrrhotite, rather than as discreet Ca-Mn species similar to todorokite (Hem and Lind, 1993).

t al., 1994b). Overall,

nickel oxide or hydroxide phases (Alpers €

Other metals—Native metals, oxides,
nickel, manganese, silver, gold,

ccur from the weathering and oxidation of pri-
nerals tend to occur as

gradient from
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Soluble sulfates

Soluble sulfate miner
are common in mines, on
fide mineralization €xpose

and sulfate during dry p
events, a process that has an impor

ations of metals in surface waters a

Iron sulfates—The most common
hydrated iron sulfate salts (Table 6.9).
experiments of evaporating acid
observations, the hydrate
paragenetic sequence as show
Nordstrom, 1982a;

tant influence

melanterite (rozenite, szomolnokite)

N

copiapite

A
rhomboclase

N

The formation of melanterit
the evaporation of many aci
preponderance of aqueous ferro
(2) and (3) indicate that aqueous ferr
initial products of pyrite oxidation, an
bine to form melanterite. The remaining
alized paragenetic sequence
the ferrous iron oxidizes to ferric;
from ferrous 10 ferric salts is not 0
in solubility among the various sal
major elements which
and trivaledtiron, such as cop
minum for ferric iron.

Copper tends to partition into melanterit

(Alpers et al., 1994a). The result of this par
toward higher ratios of zinc
melanterite and related phases fo
lower ratios of zinc/copper as the sal
son (Alpers et al., 1994a).
Another important role O
acidity and oxidation potential in th
ric ions. The imineral rhomboclase is
sulfuric acid plus fer
rare, large quantities O

however,

per and zinc

f the soluble

were found at Iro
mine workings within a volc
(Alpers and Nordstrom,
actively forming from wate
(Nordstrom et al, 1991; Alpers et al,

other settings where acid waters evi
storage mechanism for hydronium i0
mixed ferrous-ferric-
mine wastes and spoils in nu
metal mines (e.8. Zodrov an
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al,, 1979; Cravotta, 1994; Plumlee et al., 1995).

acid mine waters. Flooding
wastes as a Teme
improvements in water

orescent salts,

mine tailings and waste rock, and on sul-

d to the air. These phase:
eriods and dissolve readily during

als, often occurring as effl

s store metals
solve and tl

viding an ox

ffected by mine wastes. Cravotta, 1994).

efflorescent minerals are
Based both on 1aborato
mine waters as well as field
d iron sulfate minerals seem
n below (Buurman,

C. Maenz, written commun.,

al metal sulfates tha
mineral deposits and
common ones are lis

roemerite, coquimbite, kornelite

voltaite, halotrichite

precipitate from
nsistent with the
ters. Reactions
ous iron and sulfate are the
d it is these ions that com-
iron sulfates in the"gener-
utions evaporate and
a simple progression
se of differences

ts and the influence of other

substitute to a variable degree
for ferrous iron and alu-

e as the first phase to
d mine waters 18 coO
us iron in these

form as the sol

bserved becau

¢ in preference t0 zinc
titioning is & tendency

al solutions as

jcopper in residu
and then Carbonates may origin

rm in the dry seasomn,

ts are flushed in the wet sea-

iron sulfates is to store tralization,

m and fer-
id form of of acid in mine

dered formsasa secon
ron sulfate salts

e form o
essentially a sol
ric sulfate. Although gene

f rhomboclase and other 1
active underground

sulfide deposit minerals in th
observed to be wastes.
s than -3

n Mountain, California, in in
anogenic massive
1991). The salts were
rs with pH values from 1 to les
, 1991 Nordstrom and
ent in trace amounts in

providing a

Alpers, 1999). Rhomboclase may be pres
Ifate and The supergenc enrichment proces

aporate

ns. Other ferric-su
sulfate salts have been found associated with ~ ores may also be 2 fa

es including coal and

merous Jocaliti
b; Zodrov et

d McCandlish, 1978a,
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Dissolution of these salts can create Jarge quantities of very
of underground mines and mine

dial measure may not result in short-term
quality because the ferric salts will dis-

he ferric iron will hydrolyze (if pH is above 2.2), pro-
idant that will cause continued sulfide oxidation (e.g.,

sulfates—There are 3 Jarge number of addition-

{ oCCur as efflorescent minerals in weathered
mining environments. Some of the more

ted in Table 6.10. One of the important
aspects of these galts is that they are @ solid form of acid mine
drainage that is stored until the next rainstorm event when the salts
can quickly dissolve and be transported to a drainage system.
Dagenhart (1980) demonstrated that the concentrations of copper,
zinc, iron, and aluminum increase sharply during the rising limb
of the discharge as rain dissolves and flushes efflorescent salts
from oxidizing tailings into a receiving stream. This phenomenon
is probably common at mined sites and may be an important fac-

tor in the association of fish kills during periods of high runoff,
especially after a significant dry period.

Other metal

Less-soluble sulfates

Although there are 2 great many metal sulfate minerals of low
solubility known to occub, the most common ONes are barite,

celestite, and anglesite (Table 6.11). These ar¢ likely to provide
solubility controls for the concentrations of barium, strontium,
and lead (see previous section on mineral solubilities, Fig. 6.4)
Their low solubilities tend to immobilize these elements in the

environment and make them less bioavailable than many of the
other hazardous metals at mine sites. In particular, lead concen-

trations in acid mine drainage and tailings pore waters appear 10
be controlled at relatively low levels by anglesite solubility (e.8+

Blowes and Jambor, 1990).

Carbonates

Many carbonate minerals occur a8 either primary or secondary

minerals in mine wastes. Examples are given in Table 6.12.
ate as an accessory gangue mineral that
accompanies the mineral deposit and mine waste (mine working
residuum, waste piles, tailings), as an amended material for new
or as a secondary product from weathering of wastes
or amendments. Carbonate minerals are jmportant as neutralizefs

nd Ptacek, 1994). Siderite

drainage (Blowes a
dary phase in tailings impoundments where cal
ek and Blowes, 1

cite reacts with Fe(ID)-rich solutions (Ptac
The hydroxyl—bearing carbonates in Table 6.13 form as seconce
e oxidation of 7n-Cu-Pb ores and related mine

Supergene and diagenetic sulfides

y sulfide
ne wast?
ergon®
Jted i0

s that affects primar
ctor in redistribution of metals in mi

environments, particularly tailings impoundments. up
alteration of copper- and nickel-sulfide deposits has resd
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ore grades by oxidation and leaching of metals in 12)

d zone above the water table followed by transport
ctals to @ ZONe of more reducing conditions where secondary 14) microbial sorption and up
minerals are formed (Anderson, 1982; Alpers and 15) mineral precipitation and dissolution during transport
1989). A list of some supergenc copper and nickel min- 16) adsorption and desorption of metals during transport
s given in ble 6.13. The two compositions for djurleite are 17 photoreduction of iron

od on the investigation by Potter (1977). An example of active 18) organic complexing

ergene enrichment in a tailings impoundment is the presence 19) microenvironmental processes (surface films, microbial
secondary covellite near the depth of active oxidation at Waite films, mineral coatings)
mulet, Ontario (Blowes and Jambor, 1990).

drainage geochemistry in . e
TABLE 6.14—Minerals whose solubilities might control metal concen-

processes affect mine
reduction and

MINE WATERS

13) microbial cat

trations in mine waters.
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temperature
alysis of reaction rates

take of metals

Diagenetic
ducing conditions can lead to sulfate

are generally

eas where I
¢ formation of secondary sulfides. The sulfides
(oluble, so this represents a plausible geochemical mechanism  Solubility equilibrium likely
¢ metal fixation in mine workings, anoxic wetlands, and lake but possible
ottoms, if reducing conditions are aintained. Iron is commonly
ne most abundant transition metal and therefore is the most like- alunogen alunite
y metal to combine with HyS t0 produce secondary sulfides in anglesite ankerite
envi ats affected by mine drainage. Other divalent metals pasalumi batte ) 'a;mtlentet «
present will also tend t0 form secondary sulfides, as indicated in asa ummét;éi?orp ous) atacamt i’zg‘:‘;é acamite
Table 6.13. The relative solubility of metal sulfides, starting from corussite bronchantite
the most soluble, is: MnS >FeS> NiS ~ ZnS > CdS ~ PbS > CuS chalcanthite chrysocolla
5 Hg$S (DiToro et al., 1991). epsomite goethite
ferrthydrite hemimorphite
‘ gibbsite (amorphous to microcrystatline) hematite
oW A summary of mineralogic controls on metal concentrations & goslarite hydrozincite
ite, ‘ ypsum jarosite
ide As a guide to the aqueous geochemistry for acid mine waters, halotrichite-pickeringite kaolinite
im, we have compiled  list of minerals in Table 6.14 that might be manganese oxides kutnohorite
4). _ important in governing metal concentrations. This list is drawn melanterite malachite
the from our experience in modeling and interpretin mine water otavite natroalunite
. pe . & pret & rhodochrosite natrojarosite
the chemistry and is meant as a guide rather thar} a strict protoeol. The schwertmannite plumbojar osite
en- two columns 1n Table 6.14 show those minerals most likely to scorodite
trol and those less likely but possible. siderite
silica (microcrystalline)

have a solubility con

SUMMARY

and biological processes all play important

Physical, chemical,
release, mobility, and attenuation of cont-

| roles in the production,

12. aminants in acid mine waters. Physical aspects include the geolo-

hat gy (geomorphology, structure, petrology, geophysical features),  size, and distribution of pyrite present in a mine,

ing the hydrology (water budget, Porosity, permeability, flow direc-  pile. The rate of oxidation can vary depending on the accessibility

eu- tion, flow rate, dispersion, mixing, surface transpott characteris-  of aif, moisture, and microbes to the pyrite surfaces and the neu-

stes tics), and the effects of mining and mineral processing. The spe- tralizing capacity of available buffering materials. These complex

ers cific processes that have been studied and found to contribute to  geochemical processes can be modeled with either equilibrium of

rite the overall phenomenon of acid mine water geochemistry are: kinetic principles t0 ostimate the result of pyrite oxidation, car-

cal- 1) pyrite oxidation bonate buffering, and silicate hydrolysis (see Chapter 14 on ge0-

)4). 2) oxidation of other sulfides . chemical modeling). Modeling calculations of this type have been

lary 3) oxidation and hydrolysis of aqueous iron and other ele-  done for pyritic rocks and waters of different {nitial compositions

iine ments (e.g.» Lichtner, 1994). Modeling calculations, however, are well-
4) neutralizing capacity of gangu® minerals and country rock  educated guesses. There will always be inadequate data and con-
5) neutralizing capacity of bicarbonate-buffered waters tentious ambiguities in the conclusions. The advantage of model-
6) Oxygen transport ing is that it can take into account some of the complex interac-
7) fluid transport of water and water vapor tions between hydrology, geochemistty, geology, and other site
g) form and location of permeable zoneS relative to flow paths characteristics as well as performing database management. This

fide 9) climatic variations (diel, storm events, seasonal) advantage is a major step beyond various acid-base accounting,

aste 10) evaporation, efflorescence, redissolution static, and kinetic tests for which comparison, evaluation, an

ene 11) heating by conduction and radiation (due to 3 variety of agreement is lacking (White and Jeffers, 1994).

1in exothermic reactions including pyrite oxidation, dissolu- The geochemistry of acid mine waters is 2 complex subject that

tion of soluble salts, and dilution of concentrated acid) draws upon many technical disciplines. Although considerable

Solubility equilibrium difficult

smithsonite
witherite
are represented schematically on
important factors affecting the pro-
nt, concentration, grain

tailings, or waste

Many of these processes

Figure 6.7. Perhaps the most
duction of acid mine waters are the amou




D. KirK NORDSTROM AND C.N. ALPERS

154

O, + H,0 (fluid advection)

| \l 1
, | 0, lgas advection)

2
Thermal convection
and evaporation
sulfide grains and masses
-mineralogy

-grain size/surface area
_race elements
_defect structures
-microbes

Evaporation Zone

- wet/dry cycles
- efflorescent salt formation

and dissolution
- oxidation
- microbes

/ Acid mine drainage
-microbes
-iron precipitation

saturated
Flow

showing the various materials and processes

FIGURE 6.7—Schematic diagram depicting 2 hypothetical tailings or waste pile or mineralized site,

involving reaction and flow.
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